]>
Commit | Line | Data |
---|---|---|
fe8ab488 A |
1 | /* |
2 | * Copyright (c) 2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach/mach_types.h> | |
30 | #include <mach/machine.h> | |
31 | ||
32 | #include <machine/machine_routines.h> | |
33 | #include <machine/sched_param.h> | |
34 | #include <machine/machine_cpu.h> | |
35 | ||
36 | #include <kern/kern_types.h> | |
37 | #include <kern/debug.h> | |
38 | #include <kern/mach_param.h> | |
39 | #include <kern/machine.h> | |
40 | #include <kern/misc_protos.h> | |
41 | #include <kern/processor.h> | |
42 | #include <kern/queue.h> | |
43 | #include <kern/sched.h> | |
44 | #include <kern/sched_prim.h> | |
45 | #include <kern/task.h> | |
46 | #include <kern/thread.h> | |
47 | ||
48 | #include <sys/kdebug.h> | |
49 | ||
50 | /* | |
51 | * Theory Statement | |
52 | * | |
53 | * How does the task scheduler work? | |
54 | * | |
55 | * It schedules threads across a few levels. | |
56 | * | |
57 | * RT threads are dealt with above us | |
58 | * Bound threads go into the per-processor runq | |
59 | * Non-bound threads are linked on their task's sched_group's runq | |
60 | * sched_groups' sched_entries are linked on the pset's runq | |
61 | * | |
62 | * TODO: make this explicit - bound threads should have a different enqueue fxn | |
63 | * | |
64 | * When we choose a new thread, we will decide whether to look at the bound runqueue, the global runqueue | |
65 | * or the current group's runqueue, then dequeue the next thread in that runqueue. | |
66 | * | |
67 | * We then manipulate the sched_entries to reflect the invariant that: | |
68 | * Each non-empty priority level in a group's runq is represented by one sched_entry enqueued in the global | |
69 | * runqueue. | |
70 | * | |
71 | * A sched_entry represents a chance at running - for each priority in each task, there is one chance of getting | |
72 | * to run. This reduces the excess contention bonus given to processes which have work spread among many threads | |
73 | * as compared to processes which do the same amount of work under fewer threads. | |
74 | * | |
75 | * NOTE: Currently, the multiq scheduler only supports one pset. | |
76 | * | |
77 | * NOTE ABOUT thread->sched_pri: | |
78 | * | |
79 | * It can change after enqueue - it's changed without pset lock but with thread lock if thread->runq is 0. | |
80 | * Therefore we can only depend on it not changing during the enqueue and remove path, not the dequeue. | |
81 | * | |
82 | * TODO: Future features: | |
83 | * | |
84 | * Decouple the task priority from the sched_entry priority, allowing for: | |
85 | * fast task priority change without having to iterate and re-dispatch all threads in the task. | |
86 | * i.e. task-wide priority, task-wide boosting | |
87 | * fancier group decay features | |
88 | * | |
89 | * Group (or task) decay: | |
90 | * Decay is used for a few different things: | |
91 | * Prioritizing latency-needing threads over throughput-needing threads for time-to-running | |
92 | * Balancing work between threads in a process | |
93 | * Balancing work done at the same priority between different processes | |
94 | * Recovering from priority inversions between two threads in the same process | |
95 | * Recovering from priority inversions between two threads in different processes | |
96 | * Simulating a proportional share scheduler by allowing lower priority threads | |
97 | * to run for a certain percentage of the time | |
98 | * | |
99 | * Task decay lets us separately address the 'same process' and 'different process' needs, | |
100 | * which will allow us to make smarter tradeoffs in different cases. | |
101 | * For example, we could resolve priority inversion in the same process by reordering threads without dropping the | |
102 | * process below low priority threads in other processes. | |
103 | * | |
104 | * One lock to rule them all (or at least all the runqueues) instead of the pset locks | |
105 | * | |
106 | * Shrink sched_entry size to the size of a queue_chain_t by inferring priority, group, and perhaps runq field. | |
107 | * The entries array is 5K currently so it'd be really great to reduce. | |
108 | * One way to get sched_group below 4K without a new runq structure would be to remove the extra queues above realtime. | |
109 | * | |
110 | * When preempting a processor, store a flag saying if the preemption | |
111 | * was from a thread in the same group or different group, | |
112 | * and tell choose_thread about it. | |
113 | * | |
114 | * When choosing a processor, bias towards those running in the same | |
115 | * group as I am running (at the same priority, or within a certain band?). | |
116 | * | |
117 | * Decide if we need to support psets. | |
118 | * Decide how to support psets - do we need duplicate entries for each pset, | |
119 | * or can we get away with putting the entry in either one or the other pset? | |
120 | * | |
121 | * Consider the right way to handle runq count - I don't want to iterate groups. | |
39037602 | 122 | * Perhaps keep a global counter. |
fe8ab488 A |
123 | * Alternate option - remove it from choose_processor. It doesn't add much value |
124 | * now that we have global runq. | |
125 | * | |
126 | * Need a better way of finding group to target instead of looking at current_task. | |
127 | * Perhaps choose_thread could pass in the current thread? | |
128 | * | |
129 | * Consider unifying runq copy-pastes. | |
130 | * | |
131 | * Thoughts on having a group central quantum bucket: | |
132 | * | |
133 | * I see two algorithms to decide quanta: | |
134 | * A) Hand off only when switching thread to thread in the same group | |
135 | * B) Allocate and return quanta to the group's pool | |
136 | * | |
137 | * Issues: | |
138 | * If a task blocks completely, should it come back with the leftover quanta | |
139 | * or brand new quanta? | |
140 | * | |
141 | * Should I put a flag saying zero out a quanta you grab when youre dispatched'? | |
142 | * | |
143 | * Resolution: | |
144 | * Handing off quanta between threads will help with jumping around in the current task | |
145 | * but will not help when a thread from a different task is involved. | |
146 | * Need an algorithm that works with round robin-ing between threads in different tasks | |
147 | * | |
148 | * But wait - round robining can only be triggered by quantum expire or blocking. | |
149 | * We need something that works with preemption or yielding - that's the more interesting idea. | |
150 | * | |
151 | * Existing algorithm - preemption doesn't re-set quantum, puts thread on head of runq. | |
152 | * Blocking or quantum expiration does re-set quantum, puts thread on tail of runq. | |
153 | * | |
154 | * New algorithm - | |
155 | * Hand off quanta when hopping between threads with same sched_group | |
156 | * Even if thread was blocked it uses last thread remaining quanta when it starts. | |
157 | * | |
158 | * If we use the only cycle entry at quantum algorithm, then the quantum pool starts getting | |
159 | * interesting. | |
160 | * | |
161 | * A thought - perhaps the handoff approach doesn't work so well in the presence of | |
162 | * non-handoff wakeups i.e. wake other thread then wait then block - doesn't mean that | |
163 | * woken thread will be what I switch to - other processor may have stolen it. | |
164 | * What do we do there? | |
165 | * | |
166 | * Conclusions: | |
167 | * We currently don't know of a scenario where quantum buckets on the task is beneficial. | |
168 | * We will instead handoff quantum between threads in the task, and keep quantum | |
169 | * on the preempted thread if it's preempted by something outside the task. | |
170 | * | |
171 | */ | |
172 | ||
173 | #if DEBUG || DEVELOPMENT | |
174 | #define MULTIQ_SANITY_CHECK | |
175 | #endif | |
176 | ||
177 | typedef struct sched_entry { | |
39037602 | 178 | queue_chain_t entry_links; |
fe8ab488 A |
179 | int16_t sched_pri; /* scheduled (current) priority */ |
180 | int16_t runq; | |
181 | int32_t pad; | |
182 | } *sched_entry_t; | |
183 | ||
184 | typedef run_queue_t entry_queue_t; /* A run queue that holds sched_entries instead of threads */ | |
185 | typedef run_queue_t group_runq_t; /* A run queue that is part of a sched_group */ | |
186 | ||
187 | #define SCHED_ENTRY_NULL ((sched_entry_t) 0) | |
188 | #define MULTIQ_ERUNQ (-4) /* Indicates entry is on the main runq */ | |
189 | ||
190 | /* Each level in the run queue corresponds to one entry in the entries array */ | |
191 | struct sched_group { | |
192 | struct sched_entry entries[NRQS]; | |
193 | struct run_queue runq; | |
194 | queue_chain_t sched_groups; | |
195 | }; | |
196 | ||
fe8ab488 A |
197 | /* |
198 | * Keep entry on the head of the runqueue while dequeueing threads. | |
199 | * Only cycle it to the end of the runqueue when a thread in the task | |
200 | * hits its quantum. | |
201 | */ | |
202 | static boolean_t deep_drain = FALSE; | |
203 | ||
fe8ab488 A |
204 | /* Verify the consistency of the runq before touching it */ |
205 | static boolean_t multiq_sanity_check = FALSE; | |
206 | ||
207 | /* | |
208 | * Draining threads from the current task is preferred | |
209 | * when they're less than X steps below the current | |
210 | * global highest priority | |
211 | */ | |
212 | #define DEFAULT_DRAIN_BAND_LIMIT MAXPRI | |
213 | static integer_t drain_band_limit; | |
214 | ||
215 | /* | |
216 | * Don't go below this priority level if there is something above it in another task | |
217 | */ | |
218 | #define DEFAULT_DRAIN_DEPTH_LIMIT MAXPRI_THROTTLE | |
219 | static integer_t drain_depth_limit; | |
220 | ||
3e170ce0 A |
221 | /* |
222 | * Don't favor the task when there's something above this priority in another task. | |
223 | */ | |
224 | #define DEFAULT_DRAIN_CEILING BASEPRI_FOREGROUND | |
225 | static integer_t drain_ceiling; | |
fe8ab488 A |
226 | |
227 | static struct zone *sched_group_zone; | |
228 | ||
229 | static uint64_t num_sched_groups = 0; | |
230 | static queue_head_t sched_groups; | |
231 | ||
232 | static lck_attr_t sched_groups_lock_attr; | |
233 | static lck_grp_t sched_groups_lock_grp; | |
234 | static lck_grp_attr_t sched_groups_lock_grp_attr; | |
235 | ||
236 | static lck_mtx_t sched_groups_lock; | |
237 | ||
238 | ||
239 | static void | |
240 | sched_multiq_init(void); | |
241 | ||
242 | static thread_t | |
243 | sched_multiq_steal_thread(processor_set_t pset); | |
244 | ||
245 | static void | |
3e170ce0 | 246 | sched_multiq_thread_update_scan(sched_update_scan_context_t scan_context); |
fe8ab488 A |
247 | |
248 | static boolean_t | |
249 | sched_multiq_processor_enqueue(processor_t processor, thread_t thread, integer_t options); | |
250 | ||
251 | static boolean_t | |
252 | sched_multiq_processor_queue_remove(processor_t processor, thread_t thread); | |
253 | ||
254 | void | |
255 | sched_multiq_quantum_expire(thread_t thread); | |
256 | ||
257 | static ast_t | |
258 | sched_multiq_processor_csw_check(processor_t processor); | |
259 | ||
260 | static boolean_t | |
261 | sched_multiq_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte); | |
262 | ||
263 | static int | |
264 | sched_multiq_runq_count(processor_t processor); | |
265 | ||
266 | static boolean_t | |
267 | sched_multiq_processor_queue_empty(processor_t processor); | |
268 | ||
269 | static uint64_t | |
270 | sched_multiq_runq_stats_count_sum(processor_t processor); | |
271 | ||
272 | static int | |
273 | sched_multiq_processor_bound_count(processor_t processor); | |
274 | ||
275 | static void | |
276 | sched_multiq_pset_init(processor_set_t pset); | |
277 | ||
278 | static void | |
279 | sched_multiq_processor_init(processor_t processor); | |
280 | ||
281 | static thread_t | |
282 | sched_multiq_choose_thread(processor_t processor, int priority, ast_t reason); | |
283 | ||
284 | static void | |
285 | sched_multiq_processor_queue_shutdown(processor_t processor); | |
286 | ||
287 | static sched_mode_t | |
288 | sched_multiq_initial_thread_sched_mode(task_t parent_task); | |
289 | ||
a39ff7e2 A |
290 | static bool |
291 | sched_multiq_thread_avoid_processor(processor_t processor, thread_t thread); | |
292 | ||
fe8ab488 | 293 | const struct sched_dispatch_table sched_multiq_dispatch = { |
3e170ce0 | 294 | .sched_name = "multiq", |
fe8ab488 | 295 | .init = sched_multiq_init, |
3e170ce0 | 296 | .timebase_init = sched_timeshare_timebase_init, |
fe8ab488 A |
297 | .processor_init = sched_multiq_processor_init, |
298 | .pset_init = sched_multiq_pset_init, | |
3e170ce0 | 299 | .maintenance_continuation = sched_timeshare_maintenance_continue, |
fe8ab488 | 300 | .choose_thread = sched_multiq_choose_thread, |
3e170ce0 | 301 | .steal_thread_enabled = FALSE, |
fe8ab488 | 302 | .steal_thread = sched_multiq_steal_thread, |
3e170ce0 | 303 | .compute_timeshare_priority = sched_compute_timeshare_priority, |
fe8ab488 A |
304 | .choose_processor = choose_processor, |
305 | .processor_enqueue = sched_multiq_processor_enqueue, | |
306 | .processor_queue_shutdown = sched_multiq_processor_queue_shutdown, | |
307 | .processor_queue_remove = sched_multiq_processor_queue_remove, | |
308 | .processor_queue_empty = sched_multiq_processor_queue_empty, | |
309 | .priority_is_urgent = priority_is_urgent, | |
310 | .processor_csw_check = sched_multiq_processor_csw_check, | |
311 | .processor_queue_has_priority = sched_multiq_processor_queue_has_priority, | |
3e170ce0 | 312 | .initial_quantum_size = sched_timeshare_initial_quantum_size, |
fe8ab488 A |
313 | .initial_thread_sched_mode = sched_multiq_initial_thread_sched_mode, |
314 | .can_update_priority = can_update_priority, | |
315 | .update_priority = update_priority, | |
316 | .lightweight_update_priority = lightweight_update_priority, | |
317 | .quantum_expire = sched_multiq_quantum_expire, | |
fe8ab488 A |
318 | .processor_runq_count = sched_multiq_runq_count, |
319 | .processor_runq_stats_count_sum = sched_multiq_runq_stats_count_sum, | |
fe8ab488 A |
320 | .processor_bound_count = sched_multiq_processor_bound_count, |
321 | .thread_update_scan = sched_multiq_thread_update_scan, | |
322 | .direct_dispatch_to_idle_processors = FALSE, | |
3e170ce0 A |
323 | .multiple_psets_enabled = FALSE, |
324 | .sched_groups_enabled = TRUE, | |
a39ff7e2 A |
325 | .avoid_processor_enabled = TRUE, |
326 | .thread_avoid_processor = sched_multiq_thread_avoid_processor, | |
5ba3f43e A |
327 | .processor_balance = sched_SMT_balance, |
328 | ||
329 | .rt_runq = sched_rtglobal_runq, | |
330 | .rt_init = sched_rtglobal_init, | |
331 | .rt_queue_shutdown = sched_rtglobal_queue_shutdown, | |
332 | .rt_runq_scan = sched_rtglobal_runq_scan, | |
333 | .rt_runq_count_sum = sched_rtglobal_runq_count_sum, | |
334 | ||
335 | .qos_max_parallelism = sched_qos_max_parallelism, | |
336 | .check_spill = sched_check_spill, | |
337 | .ipi_policy = sched_ipi_policy, | |
338 | .thread_should_yield = sched_thread_should_yield, | |
fe8ab488 A |
339 | }; |
340 | ||
341 | ||
342 | static void | |
343 | sched_multiq_init(void) | |
344 | { | |
fe8ab488 A |
345 | #if defined(MULTIQ_SANITY_CHECK) |
346 | PE_parse_boot_argn("-multiq-sanity-check", &multiq_sanity_check, sizeof(multiq_sanity_check)); | |
347 | #endif | |
348 | ||
349 | PE_parse_boot_argn("-multiq-deep-drain", &deep_drain, sizeof(deep_drain)); | |
350 | ||
3e170ce0 A |
351 | if (!PE_parse_boot_argn("multiq_drain_ceiling", &drain_ceiling, sizeof(drain_ceiling))) { |
352 | drain_ceiling = DEFAULT_DRAIN_CEILING; | |
353 | } | |
fe8ab488 A |
354 | |
355 | if (!PE_parse_boot_argn("multiq_drain_depth_limit", &drain_depth_limit, sizeof(drain_depth_limit))) { | |
356 | drain_depth_limit = DEFAULT_DRAIN_DEPTH_LIMIT; | |
357 | } | |
358 | ||
359 | if (!PE_parse_boot_argn("multiq_drain_band_limit", &drain_band_limit, sizeof(drain_band_limit))) { | |
360 | drain_band_limit = DEFAULT_DRAIN_BAND_LIMIT; | |
361 | } | |
362 | ||
3e170ce0 A |
363 | printf("multiq scheduler config: deep-drain %d, ceiling %d, depth limit %d, band limit %d, sanity check %d\n", |
364 | deep_drain, drain_ceiling, drain_depth_limit, drain_band_limit, multiq_sanity_check); | |
fe8ab488 A |
365 | |
366 | sched_group_zone = zinit( | |
367 | sizeof(struct sched_group), | |
368 | task_max * sizeof(struct sched_group), | |
369 | PAGE_SIZE, | |
370 | "sched groups"); | |
371 | ||
372 | zone_change(sched_group_zone, Z_NOENCRYPT, TRUE); | |
373 | zone_change(sched_group_zone, Z_NOCALLOUT, TRUE); | |
374 | ||
375 | queue_init(&sched_groups); | |
376 | ||
377 | lck_grp_attr_setdefault(&sched_groups_lock_grp_attr); | |
378 | lck_grp_init(&sched_groups_lock_grp, "sched_groups", &sched_groups_lock_grp_attr); | |
379 | lck_attr_setdefault(&sched_groups_lock_attr); | |
380 | lck_mtx_init(&sched_groups_lock, &sched_groups_lock_grp, &sched_groups_lock_attr); | |
381 | ||
3e170ce0 | 382 | sched_timeshare_init(); |
fe8ab488 A |
383 | } |
384 | ||
385 | static void | |
386 | sched_multiq_processor_init(processor_t processor) | |
387 | { | |
388 | run_queue_init(&processor->runq); | |
389 | } | |
390 | ||
391 | static void | |
392 | sched_multiq_pset_init(processor_set_t pset) | |
393 | { | |
394 | run_queue_init(&pset->pset_runq); | |
395 | } | |
396 | ||
397 | static sched_mode_t | |
398 | sched_multiq_initial_thread_sched_mode(task_t parent_task) | |
399 | { | |
400 | if (parent_task == kernel_task) | |
401 | return TH_MODE_FIXED; | |
402 | else | |
403 | return TH_MODE_TIMESHARE; | |
404 | } | |
405 | ||
406 | sched_group_t | |
407 | sched_group_create(void) | |
408 | { | |
409 | sched_group_t sched_group; | |
410 | ||
3e170ce0 | 411 | if (!SCHED(sched_groups_enabled)) |
fe8ab488 A |
412 | return SCHED_GROUP_NULL; |
413 | ||
414 | sched_group = (sched_group_t)zalloc(sched_group_zone); | |
415 | ||
416 | bzero(sched_group, sizeof(struct sched_group)); | |
417 | ||
418 | run_queue_init(&sched_group->runq); | |
419 | ||
420 | for (int i = 0; i < NRQS; i++) { | |
421 | sched_group->entries[i].runq = 0; | |
422 | sched_group->entries[i].sched_pri = i; | |
423 | } | |
424 | ||
425 | lck_mtx_lock(&sched_groups_lock); | |
426 | queue_enter(&sched_groups, sched_group, sched_group_t, sched_groups); | |
427 | num_sched_groups++; | |
428 | lck_mtx_unlock(&sched_groups_lock); | |
429 | ||
430 | return (sched_group); | |
431 | } | |
432 | ||
433 | void | |
434 | sched_group_destroy(sched_group_t sched_group) | |
435 | { | |
3e170ce0 | 436 | if (!SCHED(sched_groups_enabled)) { |
fe8ab488 A |
437 | assert(sched_group == SCHED_GROUP_NULL); |
438 | return; | |
439 | } | |
440 | ||
441 | assert(sched_group != SCHED_GROUP_NULL); | |
442 | assert(sched_group->runq.count == 0); | |
443 | ||
444 | for (int i = 0; i < NRQS; i++) { | |
445 | assert(sched_group->entries[i].runq == 0); | |
446 | assert(sched_group->entries[i].sched_pri == i); | |
447 | } | |
448 | ||
449 | lck_mtx_lock(&sched_groups_lock); | |
450 | queue_remove(&sched_groups, sched_group, sched_group_t, sched_groups); | |
451 | num_sched_groups--; | |
452 | lck_mtx_unlock(&sched_groups_lock); | |
453 | ||
454 | zfree(sched_group_zone, sched_group); | |
455 | } | |
456 | ||
457 | __attribute__((always_inline)) | |
458 | static inline entry_queue_t | |
459 | multiq_main_entryq(processor_t processor) | |
460 | { | |
461 | return (entry_queue_t)&processor->processor_set->pset_runq; | |
462 | } | |
463 | ||
464 | __attribute__((always_inline)) | |
465 | static inline run_queue_t | |
466 | multiq_bound_runq(processor_t processor) | |
467 | { | |
468 | return &processor->runq; | |
469 | } | |
470 | ||
471 | __attribute__((always_inline)) | |
472 | static inline sched_entry_t | |
473 | group_entry_for_pri(sched_group_t group, integer_t pri) | |
474 | { | |
475 | return &group->entries[pri]; | |
476 | } | |
477 | ||
478 | __attribute__((always_inline)) | |
479 | static inline sched_group_t | |
480 | group_for_entry(sched_entry_t entry) | |
481 | { | |
39037602 A |
482 | #pragma clang diagnostic push |
483 | #pragma clang diagnostic ignored "-Wcast-align" | |
fe8ab488 | 484 | sched_group_t group = (sched_group_t)(entry - entry->sched_pri); |
39037602 | 485 | #pragma clang diagnostic pop |
fe8ab488 A |
486 | return group; |
487 | } | |
488 | ||
489 | /* Peek at the head of the runqueue */ | |
490 | static sched_entry_t | |
491 | entry_queue_first_entry(entry_queue_t rq) | |
492 | { | |
493 | assert(rq->count != 0); | |
494 | ||
39037602 | 495 | queue_t queue = &rq->queues[rq->highq]; |
fe8ab488 | 496 | |
39037602 | 497 | sched_entry_t entry = qe_queue_first(queue, struct sched_entry, entry_links); |
fe8ab488 A |
498 | |
499 | assert(entry->sched_pri == rq->highq); | |
500 | ||
501 | return entry; | |
502 | } | |
503 | ||
504 | #if defined(MULTIQ_SANITY_CHECK) | |
505 | ||
3e170ce0 | 506 | #if MACH_ASSERT |
fe8ab488 A |
507 | __attribute__((always_inline)) |
508 | static inline boolean_t | |
509 | queue_chain_linked(queue_chain_t* chain) | |
510 | { | |
511 | if (chain->next != NULL) { | |
512 | assert(chain->prev != NULL); | |
513 | return TRUE; | |
514 | } else { | |
515 | assert(chain->prev == NULL); | |
516 | return FALSE; | |
517 | } | |
518 | } | |
3e170ce0 | 519 | #endif /* MACH_ASSERT */ |
fe8ab488 A |
520 | |
521 | static thread_t | |
522 | group_first_thread(sched_group_t group) | |
523 | { | |
524 | group_runq_t rq = &group->runq; | |
525 | ||
526 | assert(rq->count != 0); | |
527 | ||
39037602 | 528 | queue_t queue = &rq->queues[rq->highq]; |
fe8ab488 | 529 | |
39037602 | 530 | thread_t thread = qe_queue_first(queue, struct thread, runq_links); |
fe8ab488 A |
531 | |
532 | assert(thread != THREAD_NULL); | |
39037602 | 533 | assert_thread_magic(thread); |
fe8ab488 A |
534 | |
535 | assert(thread->sched_group == group); | |
536 | ||
537 | /* TODO: May not be safe */ | |
538 | assert(thread->sched_pri == rq->highq); | |
539 | ||
540 | return thread; | |
541 | } | |
542 | ||
543 | /* Asserts if entry is not in entry runq at pri */ | |
544 | static void | |
545 | entry_queue_check_entry(entry_queue_t runq, sched_entry_t entry, int expected_pri) | |
546 | { | |
547 | queue_t q; | |
548 | sched_entry_t elem; | |
549 | ||
39037602 | 550 | assert(queue_chain_linked(&entry->entry_links)); |
fe8ab488 A |
551 | assert(entry->runq == MULTIQ_ERUNQ); |
552 | ||
553 | q = &runq->queues[expected_pri]; | |
554 | ||
39037602 | 555 | qe_foreach_element(elem, q, entry_links) { |
fe8ab488 A |
556 | if (elem == entry) |
557 | return; | |
558 | } | |
559 | ||
560 | panic("runq %p doesn't contain entry %p at pri %d", runq, entry, expected_pri); | |
561 | } | |
562 | ||
563 | /* Asserts if thread is not in group at its priority */ | |
564 | static void | |
565 | sched_group_check_thread(sched_group_t group, thread_t thread) | |
566 | { | |
567 | queue_t q; | |
568 | thread_t elem; | |
569 | int pri = thread->sched_pri; | |
570 | ||
571 | assert(thread->runq != PROCESSOR_NULL); | |
572 | ||
573 | q = &group->runq.queues[pri]; | |
574 | ||
39037602 | 575 | qe_foreach_element(elem, q, runq_links) { |
fe8ab488 A |
576 | if (elem == thread) |
577 | return; | |
578 | } | |
579 | ||
580 | panic("group %p doesn't contain thread %p at pri %d", group, thread, pri); | |
581 | } | |
582 | ||
583 | static void | |
584 | global_check_entry_queue(entry_queue_t main_entryq) | |
585 | { | |
586 | if (main_entryq->count == 0) | |
587 | return; | |
588 | ||
589 | sched_entry_t entry = entry_queue_first_entry(main_entryq); | |
590 | ||
591 | assert(entry->runq == MULTIQ_ERUNQ); | |
592 | ||
593 | sched_group_t group = group_for_entry(entry); | |
594 | ||
595 | thread_t thread = group_first_thread(group); | |
596 | ||
597 | __assert_only sched_entry_t thread_entry = group_entry_for_pri(thread->sched_group, thread->sched_pri); | |
598 | ||
599 | assert(entry->sched_pri == group->runq.highq); | |
600 | ||
601 | assert(entry == thread_entry); | |
602 | assert(thread->runq != PROCESSOR_NULL); | |
603 | } | |
604 | ||
605 | static void | |
606 | group_check_run_queue(entry_queue_t main_entryq, sched_group_t group) | |
607 | { | |
608 | if (group->runq.count == 0) | |
609 | return; | |
610 | ||
611 | thread_t thread = group_first_thread(group); | |
612 | ||
613 | assert(thread->runq != PROCESSOR_NULL); | |
614 | ||
615 | sched_entry_t sched_entry = group_entry_for_pri(thread->sched_group, thread->sched_pri); | |
616 | ||
617 | entry_queue_check_entry(main_entryq, sched_entry, thread->sched_pri); | |
618 | ||
619 | assert(sched_entry->sched_pri == thread->sched_pri); | |
620 | assert(sched_entry->runq == MULTIQ_ERUNQ); | |
621 | } | |
622 | ||
623 | #endif /* defined(MULTIQ_SANITY_CHECK) */ | |
624 | ||
625 | /* | |
626 | * The run queue must not be empty. | |
627 | */ | |
628 | static sched_entry_t | |
629 | entry_queue_dequeue_entry(entry_queue_t rq) | |
630 | { | |
631 | sched_entry_t sched_entry; | |
39037602 | 632 | queue_t queue = &rq->queues[rq->highq]; |
fe8ab488 A |
633 | |
634 | assert(rq->count > 0); | |
635 | assert(!queue_empty(queue)); | |
636 | ||
39037602 | 637 | sched_entry = qe_dequeue_head(queue, struct sched_entry, entry_links); |
fe8ab488 A |
638 | |
639 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
640 | rq->count--; | |
641 | if (SCHED(priority_is_urgent)(rq->highq)) { | |
642 | rq->urgency--; assert(rq->urgency >= 0); | |
643 | } | |
644 | if (queue_empty(queue)) { | |
39037602 A |
645 | rq_bitmap_clear(rq->bitmap, rq->highq); |
646 | rq->highq = bitmap_first(rq->bitmap, NRQS); | |
fe8ab488 A |
647 | } |
648 | ||
649 | sched_entry->runq = 0; | |
650 | ||
651 | return (sched_entry); | |
652 | } | |
653 | ||
654 | /* | |
655 | * The run queue must not be empty. | |
656 | */ | |
657 | static boolean_t | |
658 | entry_queue_enqueue_entry( | |
659 | entry_queue_t rq, | |
660 | sched_entry_t entry, | |
661 | integer_t options) | |
662 | { | |
663 | int sched_pri = entry->sched_pri; | |
39037602 | 664 | queue_t queue = &rq->queues[sched_pri]; |
fe8ab488 A |
665 | boolean_t result = FALSE; |
666 | ||
667 | assert(entry->runq == 0); | |
668 | ||
669 | if (queue_empty(queue)) { | |
39037602 | 670 | enqueue_tail(queue, &entry->entry_links); |
fe8ab488 | 671 | |
39037602 | 672 | rq_bitmap_set(rq->bitmap, sched_pri); |
fe8ab488 A |
673 | if (sched_pri > rq->highq) { |
674 | rq->highq = sched_pri; | |
675 | result = TRUE; | |
676 | } | |
677 | } else { | |
678 | if (options & SCHED_TAILQ) | |
39037602 | 679 | enqueue_tail(queue, &entry->entry_links); |
fe8ab488 | 680 | else |
39037602 | 681 | enqueue_head(queue, &entry->entry_links); |
fe8ab488 A |
682 | } |
683 | if (SCHED(priority_is_urgent)(sched_pri)) | |
684 | rq->urgency++; | |
685 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
686 | rq->count++; | |
687 | ||
688 | entry->runq = MULTIQ_ERUNQ; | |
689 | ||
690 | return (result); | |
691 | } | |
692 | ||
693 | /* | |
694 | * The entry must be in this runqueue. | |
695 | */ | |
696 | static void | |
697 | entry_queue_remove_entry( | |
698 | entry_queue_t rq, | |
699 | sched_entry_t entry) | |
700 | { | |
701 | int sched_pri = entry->sched_pri; | |
702 | ||
703 | #if defined(MULTIQ_SANITY_CHECK) | |
704 | if (multiq_sanity_check) { | |
705 | entry_queue_check_entry(rq, entry, sched_pri); | |
706 | } | |
707 | #endif | |
708 | ||
39037602 | 709 | remqueue(&entry->entry_links); |
fe8ab488 A |
710 | |
711 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
712 | rq->count--; | |
713 | if (SCHED(priority_is_urgent)(sched_pri)) { | |
714 | rq->urgency--; assert(rq->urgency >= 0); | |
715 | } | |
716 | ||
39037602 | 717 | if (queue_empty(&rq->queues[sched_pri])) { |
fe8ab488 | 718 | /* update run queue status */ |
39037602 A |
719 | rq_bitmap_clear(rq->bitmap, sched_pri); |
720 | rq->highq = bitmap_first(rq->bitmap, NRQS); | |
fe8ab488 A |
721 | } |
722 | ||
723 | entry->runq = 0; | |
724 | } | |
725 | ||
3e170ce0 A |
726 | static void |
727 | entry_queue_change_entry( | |
728 | entry_queue_t rq, | |
729 | sched_entry_t entry, | |
730 | integer_t options) | |
731 | { | |
732 | int sched_pri = entry->sched_pri; | |
39037602 | 733 | queue_t queue = &rq->queues[sched_pri]; |
3e170ce0 A |
734 | |
735 | #if defined(MULTIQ_SANITY_CHECK) | |
736 | if (multiq_sanity_check) { | |
737 | entry_queue_check_entry(rq, entry, sched_pri); | |
738 | } | |
739 | #endif | |
3e170ce0 A |
740 | |
741 | if (options & SCHED_TAILQ) | |
39037602 | 742 | re_queue_tail(queue, &entry->entry_links); |
3e170ce0 | 743 | else |
39037602 | 744 | re_queue_head(queue, &entry->entry_links); |
3e170ce0 | 745 | } |
fe8ab488 A |
746 | /* |
747 | * The run queue must not be empty. | |
748 | * | |
749 | * sets queue_empty to TRUE if queue is now empty at thread_pri | |
750 | */ | |
751 | static thread_t | |
752 | group_run_queue_dequeue_thread( | |
753 | group_runq_t rq, | |
754 | integer_t *thread_pri, | |
755 | boolean_t *queue_empty) | |
756 | { | |
757 | thread_t thread; | |
39037602 | 758 | queue_t queue = &rq->queues[rq->highq]; |
fe8ab488 A |
759 | |
760 | assert(rq->count > 0); | |
761 | assert(!queue_empty(queue)); | |
762 | ||
763 | *thread_pri = rq->highq; | |
764 | ||
39037602 A |
765 | thread = qe_dequeue_head(queue, struct thread, runq_links); |
766 | assert_thread_magic(thread); | |
fe8ab488 A |
767 | |
768 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
769 | rq->count--; | |
770 | if (SCHED(priority_is_urgent)(rq->highq)) { | |
771 | rq->urgency--; assert(rq->urgency >= 0); | |
772 | } | |
773 | if (queue_empty(queue)) { | |
39037602 A |
774 | rq_bitmap_clear(rq->bitmap, rq->highq); |
775 | rq->highq = bitmap_first(rq->bitmap, NRQS); | |
fe8ab488 A |
776 | *queue_empty = TRUE; |
777 | } else { | |
778 | *queue_empty = FALSE; | |
779 | } | |
780 | ||
39037602 | 781 | return thread; |
fe8ab488 A |
782 | } |
783 | ||
784 | /* | |
785 | * The run queue must not be empty. | |
786 | * returns TRUE if queue was empty at thread_pri | |
787 | */ | |
788 | static boolean_t | |
789 | group_run_queue_enqueue_thread( | |
790 | group_runq_t rq, | |
791 | thread_t thread, | |
792 | integer_t thread_pri, | |
793 | integer_t options) | |
794 | { | |
39037602 | 795 | queue_t queue = &rq->queues[thread_pri]; |
fe8ab488 A |
796 | boolean_t result = FALSE; |
797 | ||
798 | assert(thread->runq == PROCESSOR_NULL); | |
39037602 | 799 | assert_thread_magic(thread); |
fe8ab488 A |
800 | |
801 | if (queue_empty(queue)) { | |
39037602 | 802 | enqueue_tail(queue, &thread->runq_links); |
fe8ab488 | 803 | |
39037602 | 804 | rq_bitmap_set(rq->bitmap, thread_pri); |
fe8ab488 A |
805 | if (thread_pri > rq->highq) { |
806 | rq->highq = thread_pri; | |
807 | } | |
808 | result = TRUE; | |
809 | } else { | |
810 | if (options & SCHED_TAILQ) | |
39037602 | 811 | enqueue_tail(queue, &thread->runq_links); |
fe8ab488 | 812 | else |
39037602 | 813 | enqueue_head(queue, &thread->runq_links); |
fe8ab488 A |
814 | } |
815 | if (SCHED(priority_is_urgent)(thread_pri)) | |
816 | rq->urgency++; | |
817 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
818 | rq->count++; | |
819 | ||
820 | return (result); | |
821 | } | |
822 | ||
823 | /* | |
824 | * The thread must be in this runqueue. | |
825 | * returns TRUE if queue is now empty at thread_pri | |
826 | */ | |
827 | static boolean_t | |
828 | group_run_queue_remove_thread( | |
829 | group_runq_t rq, | |
830 | thread_t thread, | |
831 | integer_t thread_pri) | |
832 | { | |
833 | boolean_t result = FALSE; | |
834 | ||
39037602 | 835 | assert_thread_magic(thread); |
fe8ab488 A |
836 | assert(thread->runq != PROCESSOR_NULL); |
837 | ||
39037602 | 838 | remqueue(&thread->runq_links); |
fe8ab488 A |
839 | |
840 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); | |
841 | rq->count--; | |
842 | if (SCHED(priority_is_urgent)(thread_pri)) { | |
843 | rq->urgency--; assert(rq->urgency >= 0); | |
844 | } | |
845 | ||
39037602 | 846 | if (queue_empty(&rq->queues[thread_pri])) { |
fe8ab488 | 847 | /* update run queue status */ |
39037602 A |
848 | rq_bitmap_clear(rq->bitmap, thread_pri); |
849 | rq->highq = bitmap_first(rq->bitmap, NRQS); | |
fe8ab488 A |
850 | result = TRUE; |
851 | } | |
852 | ||
853 | thread->runq = PROCESSOR_NULL; | |
854 | ||
855 | return result; | |
856 | } | |
857 | ||
858 | /* | |
859 | * A thread's sched pri may change out from under us because | |
860 | * we're clearing thread->runq here without the thread locked. | |
861 | * Do not rely on it to be the same as when we enqueued. | |
862 | */ | |
863 | static thread_t | |
864 | sched_global_dequeue_thread(entry_queue_t main_entryq) | |
865 | { | |
866 | boolean_t pri_level_empty = FALSE; | |
867 | sched_entry_t entry; | |
868 | group_runq_t group_runq; | |
869 | thread_t thread; | |
870 | integer_t thread_pri; | |
871 | sched_group_t group; | |
872 | ||
873 | assert(main_entryq->count > 0); | |
874 | ||
875 | entry = entry_queue_dequeue_entry(main_entryq); | |
876 | ||
877 | group = group_for_entry(entry); | |
878 | group_runq = &group->runq; | |
879 | ||
880 | thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty); | |
881 | ||
882 | thread->runq = PROCESSOR_NULL; | |
883 | ||
884 | if (!pri_level_empty) { | |
885 | entry_queue_enqueue_entry(main_entryq, entry, SCHED_TAILQ); | |
886 | } | |
887 | ||
888 | return thread; | |
889 | } | |
890 | ||
891 | /* Dequeue a thread from the global runq without moving the entry */ | |
892 | static thread_t | |
893 | sched_global_deep_drain_dequeue_thread(entry_queue_t main_entryq) | |
894 | { | |
895 | boolean_t pri_level_empty = FALSE; | |
896 | sched_entry_t entry; | |
897 | group_runq_t group_runq; | |
898 | thread_t thread; | |
899 | integer_t thread_pri; | |
900 | sched_group_t group; | |
901 | ||
902 | assert(main_entryq->count > 0); | |
903 | ||
904 | entry = entry_queue_first_entry(main_entryq); | |
905 | ||
906 | group = group_for_entry(entry); | |
907 | group_runq = &group->runq; | |
908 | ||
909 | thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty); | |
910 | ||
911 | thread->runq = PROCESSOR_NULL; | |
912 | ||
913 | if (pri_level_empty) { | |
914 | entry_queue_remove_entry(main_entryq, entry); | |
915 | } | |
916 | ||
917 | return thread; | |
918 | } | |
919 | ||
920 | ||
921 | static thread_t | |
922 | sched_group_dequeue_thread( | |
923 | entry_queue_t main_entryq, | |
924 | sched_group_t group) | |
925 | { | |
926 | group_runq_t group_runq = &group->runq; | |
927 | boolean_t pri_level_empty = FALSE; | |
928 | thread_t thread; | |
929 | integer_t thread_pri; | |
930 | ||
931 | thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty); | |
932 | ||
933 | thread->runq = PROCESSOR_NULL; | |
934 | ||
935 | if (pri_level_empty) { | |
936 | entry_queue_remove_entry(main_entryq, group_entry_for_pri(group, thread_pri)); | |
937 | } | |
938 | ||
939 | return thread; | |
940 | } | |
941 | ||
942 | static void | |
943 | sched_group_remove_thread( | |
944 | entry_queue_t main_entryq, | |
945 | sched_group_t group, | |
946 | thread_t thread) | |
947 | { | |
948 | integer_t thread_pri = thread->sched_pri; | |
949 | sched_entry_t sched_entry = group_entry_for_pri(group, thread_pri); | |
950 | ||
951 | #if defined(MULTIQ_SANITY_CHECK) | |
952 | if (multiq_sanity_check) { | |
953 | global_check_entry_queue(main_entryq); | |
954 | group_check_run_queue(main_entryq, group); | |
955 | ||
956 | sched_group_check_thread(group, thread); | |
957 | entry_queue_check_entry(main_entryq, sched_entry, thread_pri); | |
958 | } | |
959 | #endif | |
960 | ||
961 | boolean_t pri_level_empty = group_run_queue_remove_thread(&group->runq, thread, thread_pri); | |
962 | ||
963 | if (pri_level_empty) { | |
964 | entry_queue_remove_entry(main_entryq, sched_entry); | |
965 | } | |
966 | ||
967 | #if defined(MULTIQ_SANITY_CHECK) | |
968 | if (multiq_sanity_check) { | |
969 | global_check_entry_queue(main_entryq); | |
970 | group_check_run_queue(main_entryq, group); | |
971 | } | |
972 | #endif | |
973 | } | |
974 | ||
975 | static void | |
976 | sched_group_enqueue_thread( | |
977 | entry_queue_t main_entryq, | |
978 | sched_group_t group, | |
979 | thread_t thread, | |
980 | integer_t options) | |
981 | { | |
982 | #if defined(MULTIQ_SANITY_CHECK) | |
983 | if (multiq_sanity_check) { | |
984 | global_check_entry_queue(main_entryq); | |
985 | group_check_run_queue(main_entryq, group); | |
986 | } | |
987 | #endif | |
988 | ||
989 | int sched_pri = thread->sched_pri; | |
990 | ||
991 | boolean_t pri_level_was_empty = group_run_queue_enqueue_thread(&group->runq, thread, sched_pri, options); | |
992 | ||
993 | if (pri_level_was_empty) { | |
994 | /* | |
995 | * TODO: Need to figure out if passing options here is a good idea or not | |
996 | * What effects would it have? | |
997 | */ | |
998 | entry_queue_enqueue_entry(main_entryq, &group->entries[sched_pri], options); | |
3e170ce0 A |
999 | } else if (options & SCHED_HEADQ) { |
1000 | /* The thread should be at the head of the line - move its entry to the front */ | |
1001 | entry_queue_change_entry(main_entryq, &group->entries[sched_pri], options); | |
fe8ab488 A |
1002 | } |
1003 | } | |
1004 | ||
1005 | /* | |
1006 | * Locate a thread to execute from the run queue and return it. | |
1007 | * Only choose a thread with greater or equal priority. | |
1008 | * | |
1009 | * pset is locked, thread is not locked. | |
1010 | * | |
1011 | * Returns THREAD_NULL if it cannot find a valid thread. | |
1012 | * | |
1013 | * Note: we cannot rely on the value of thread->sched_pri in this path because | |
1014 | * we don't have the thread locked. | |
1015 | * | |
1016 | * TODO: Remove tracepoints | |
1017 | */ | |
1018 | static thread_t | |
1019 | sched_multiq_choose_thread( | |
1020 | processor_t processor, | |
1021 | int priority, | |
1022 | ast_t reason) | |
1023 | { | |
1024 | entry_queue_t main_entryq = multiq_main_entryq(processor); | |
1025 | run_queue_t bound_runq = multiq_bound_runq(processor); | |
1026 | ||
1027 | boolean_t choose_bound_runq = FALSE; | |
1028 | ||
1029 | if (bound_runq->highq < priority && | |
1030 | main_entryq->highq < priority) | |
1031 | return THREAD_NULL; | |
1032 | ||
1033 | if (bound_runq->count && main_entryq->count) { | |
1034 | if (bound_runq->highq >= main_entryq->highq) { | |
1035 | choose_bound_runq = TRUE; | |
1036 | } else { | |
1037 | /* Use main runq */ | |
1038 | } | |
1039 | } else if (bound_runq->count) { | |
1040 | choose_bound_runq = TRUE; | |
1041 | } else if (main_entryq->count) { | |
1042 | /* Use main runq */ | |
1043 | } else { | |
1044 | return (THREAD_NULL); | |
1045 | } | |
1046 | ||
1047 | if (choose_bound_runq) { | |
1048 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1049 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE, | |
1050 | MACH_MULTIQ_BOUND, main_entryq->highq, bound_runq->highq, 0, 0); | |
1051 | ||
1052 | return run_queue_dequeue(bound_runq, SCHED_HEADQ); | |
1053 | } | |
1054 | ||
1055 | sched_group_t group = current_thread()->sched_group; | |
1056 | ||
1057 | #if defined(MULTIQ_SANITY_CHECK) | |
1058 | if (multiq_sanity_check) { | |
1059 | global_check_entry_queue(main_entryq); | |
1060 | group_check_run_queue(main_entryq, group); | |
1061 | } | |
1062 | #endif | |
1063 | ||
1064 | /* | |
1065 | * Determine if we should look at the group or the global queue | |
1066 | * | |
1067 | * TODO: | |
1068 | * Perhaps pass reason as a 'should look inside' argument to choose_thread | |
1069 | * Should YIELD AST override drain limit? | |
1070 | */ | |
1071 | if (group->runq.count != 0 && (reason & AST_PREEMPTION) == 0) { | |
3e170ce0 A |
1072 | boolean_t favor_group = TRUE; |
1073 | ||
1074 | integer_t global_pri = main_entryq->highq; | |
1075 | integer_t group_pri = group->runq.highq; | |
fe8ab488 | 1076 | |
3e170ce0 A |
1077 | /* |
1078 | * Favor the current group if the group is still the globally highest. | |
1079 | * | |
1080 | * Otherwise, consider choosing a thread from the current group | |
1081 | * even if it's lower priority than the global highest priority. | |
1082 | */ | |
1083 | if (global_pri > group_pri) { | |
fe8ab488 A |
1084 | /* |
1085 | * If there's something elsewhere above the depth limit, | |
1086 | * don't pick a thread below the limit. | |
1087 | */ | |
3e170ce0 A |
1088 | if (global_pri > drain_depth_limit && group_pri <= drain_depth_limit) |
1089 | favor_group = FALSE; | |
fe8ab488 A |
1090 | |
1091 | /* | |
3e170ce0 A |
1092 | * If there's something at or above the ceiling, |
1093 | * don't favor the group. | |
fe8ab488 | 1094 | */ |
3e170ce0 A |
1095 | if (global_pri >= drain_ceiling) |
1096 | favor_group = FALSE; | |
fe8ab488 | 1097 | |
3e170ce0 A |
1098 | /* |
1099 | * Don't go more than X steps below the global highest | |
1100 | */ | |
1101 | if ((global_pri - group_pri) >= drain_band_limit) | |
1102 | favor_group = FALSE; | |
fe8ab488 A |
1103 | } |
1104 | ||
3e170ce0 | 1105 | if (favor_group) { |
fe8ab488 A |
1106 | /* Pull from local runq */ |
1107 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1108 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE, | |
3e170ce0 | 1109 | MACH_MULTIQ_GROUP, global_pri, group_pri, 0, 0); |
fe8ab488 A |
1110 | |
1111 | return sched_group_dequeue_thread(main_entryq, group); | |
1112 | } | |
1113 | } | |
1114 | ||
1115 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
1116 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE, | |
1117 | MACH_MULTIQ_GLOBAL, main_entryq->highq, group->runq.highq, 0, 0); | |
1118 | ||
1119 | /* Couldn't pull from local runq, pull from global runq instead */ | |
1120 | if (deep_drain) { | |
1121 | return sched_global_deep_drain_dequeue_thread(main_entryq); | |
1122 | } else { | |
1123 | return sched_global_dequeue_thread(main_entryq); | |
1124 | } | |
1125 | } | |
1126 | ||
1127 | ||
1128 | /* | |
1129 | * Thread must be locked, and not already be on a run queue. | |
1130 | * pset is locked. | |
1131 | */ | |
1132 | static boolean_t | |
1133 | sched_multiq_processor_enqueue( | |
1134 | processor_t processor, | |
1135 | thread_t thread, | |
1136 | integer_t options) | |
1137 | { | |
1138 | boolean_t result; | |
1139 | ||
1140 | assert(processor == thread->chosen_processor); | |
1141 | ||
1142 | if (thread->bound_processor != PROCESSOR_NULL) { | |
1143 | assert(thread->bound_processor == processor); | |
1144 | ||
1145 | result = run_queue_enqueue(multiq_bound_runq(processor), thread, options); | |
1146 | thread->runq = processor; | |
1147 | ||
1148 | return result; | |
1149 | } | |
1150 | ||
1151 | sched_group_enqueue_thread(multiq_main_entryq(processor), | |
1152 | thread->sched_group, | |
1153 | thread, options); | |
1154 | ||
1155 | thread->runq = processor; | |
1156 | ||
1157 | return (FALSE); | |
1158 | } | |
1159 | ||
1160 | /* | |
1161 | * Called in the context of thread with thread and pset unlocked, | |
1162 | * after updating thread priority but before propagating that priority | |
1163 | * to the processor | |
1164 | */ | |
1165 | void | |
1166 | sched_multiq_quantum_expire(thread_t thread) | |
1167 | { | |
1168 | if (deep_drain) { | |
1169 | /* | |
1170 | * Move the entry at this priority to the end of the queue, | |
1171 | * to allow the next task a shot at running. | |
1172 | */ | |
1173 | ||
1174 | processor_t processor = thread->last_processor; | |
1175 | processor_set_t pset = processor->processor_set; | |
1176 | entry_queue_t entryq = multiq_main_entryq(processor); | |
1177 | ||
1178 | pset_lock(pset); | |
1179 | ||
1180 | sched_entry_t entry = group_entry_for_pri(thread->sched_group, processor->current_pri); | |
1181 | ||
1182 | if (entry->runq == MULTIQ_ERUNQ) { | |
3e170ce0 | 1183 | entry_queue_change_entry(entryq, entry, SCHED_TAILQ); |
fe8ab488 A |
1184 | } |
1185 | ||
1186 | pset_unlock(pset); | |
1187 | } | |
1188 | } | |
1189 | ||
1190 | static boolean_t | |
1191 | sched_multiq_processor_queue_empty(processor_t processor) | |
1192 | { | |
1193 | return multiq_main_entryq(processor)->count == 0 && | |
1194 | multiq_bound_runq(processor)->count == 0; | |
1195 | } | |
1196 | ||
1197 | static ast_t | |
1198 | sched_multiq_processor_csw_check(processor_t processor) | |
1199 | { | |
1200 | boolean_t has_higher; | |
1201 | int pri; | |
1202 | ||
a39ff7e2 A |
1203 | if (sched_multiq_thread_avoid_processor(processor, current_thread())) { |
1204 | return (AST_PREEMPT | AST_URGENT); | |
1205 | } | |
1206 | ||
fe8ab488 | 1207 | entry_queue_t main_entryq = multiq_main_entryq(processor); |
3e170ce0 | 1208 | run_queue_t bound_runq = multiq_bound_runq(processor); |
fe8ab488 A |
1209 | |
1210 | assert(processor->active_thread != NULL); | |
1211 | ||
1212 | pri = MAX(main_entryq->highq, bound_runq->highq); | |
1213 | ||
3e170ce0 | 1214 | if (processor->first_timeslice) { |
fe8ab488 A |
1215 | has_higher = (pri > processor->current_pri); |
1216 | } else { | |
1217 | has_higher = (pri >= processor->current_pri); | |
1218 | } | |
1219 | ||
1220 | if (has_higher) { | |
1221 | if (main_entryq->urgency > 0) | |
1222 | return (AST_PREEMPT | AST_URGENT); | |
1223 | ||
1224 | if (bound_runq->urgency > 0) | |
1225 | return (AST_PREEMPT | AST_URGENT); | |
fe8ab488 A |
1226 | |
1227 | return AST_PREEMPT; | |
1228 | } | |
1229 | ||
1230 | return AST_NONE; | |
1231 | } | |
1232 | ||
1233 | static boolean_t | |
1234 | sched_multiq_processor_queue_has_priority( | |
1235 | processor_t processor, | |
1236 | int priority, | |
1237 | boolean_t gte) | |
1238 | { | |
39037602 A |
1239 | run_queue_t main_runq = multiq_main_entryq(processor); |
1240 | run_queue_t bound_runq = multiq_bound_runq(processor); | |
1241 | ||
39037602 | 1242 | int qpri = MAX(main_runq->highq, bound_runq->highq); |
fe8ab488 A |
1243 | |
1244 | if (gte) | |
1245 | return qpri >= priority; | |
1246 | else | |
1247 | return qpri > priority; | |
1248 | } | |
1249 | ||
fe8ab488 A |
1250 | static int |
1251 | sched_multiq_runq_count(processor_t processor) | |
1252 | { | |
1253 | /* | |
1254 | * TODO: Decide whether to keep a count of runnable threads in the pset | |
1255 | * or just return something less than the true count. | |
1256 | * | |
1257 | * This needs to be fast, so no iterating the whole runq. | |
1258 | * | |
1259 | * Another possible decision is to remove this - with global runq | |
1260 | * it doesn't make much sense. | |
1261 | */ | |
1262 | return multiq_main_entryq(processor)->count + multiq_bound_runq(processor)->count; | |
1263 | } | |
1264 | ||
1265 | static uint64_t | |
1266 | sched_multiq_runq_stats_count_sum(processor_t processor) | |
1267 | { | |
1268 | /* | |
1269 | * TODO: This one does need to go through all the runqueues, but it's only needed for | |
1270 | * the sched stats tool | |
1271 | */ | |
1272 | ||
1273 | uint64_t bound_sum = multiq_bound_runq(processor)->runq_stats.count_sum; | |
1274 | ||
1275 | if (processor->cpu_id == processor->processor_set->cpu_set_low) | |
1276 | return bound_sum + multiq_main_entryq(processor)->runq_stats.count_sum; | |
1277 | else | |
1278 | return bound_sum; | |
1279 | } | |
1280 | ||
1281 | static int | |
1282 | sched_multiq_processor_bound_count(processor_t processor) | |
1283 | { | |
1284 | return multiq_bound_runq(processor)->count; | |
1285 | } | |
1286 | ||
1287 | static void | |
1288 | sched_multiq_processor_queue_shutdown(processor_t processor) | |
1289 | { | |
1290 | processor_set_t pset = processor->processor_set; | |
1291 | entry_queue_t main_entryq = multiq_main_entryq(processor); | |
1292 | thread_t thread; | |
1293 | queue_head_t tqueue; | |
1294 | ||
1295 | /* We only need to migrate threads if this is the last active processor in the pset */ | |
1296 | if (pset->online_processor_count > 0) { | |
1297 | pset_unlock(pset); | |
1298 | return; | |
1299 | } | |
1300 | ||
1301 | queue_init(&tqueue); | |
1302 | ||
1303 | /* Note that we do not remove bound threads from the queues here */ | |
1304 | ||
1305 | while (main_entryq->count > 0) { | |
1306 | thread = sched_global_dequeue_thread(main_entryq); | |
39037602 | 1307 | enqueue_tail(&tqueue, &thread->runq_links); |
fe8ab488 A |
1308 | } |
1309 | ||
1310 | pset_unlock(pset); | |
1311 | ||
39037602 A |
1312 | qe_foreach_element_safe(thread, &tqueue, runq_links) { |
1313 | ||
1314 | remqueue(&thread->runq_links); | |
1315 | ||
fe8ab488 A |
1316 | thread_lock(thread); |
1317 | ||
1318 | thread_setrun(thread, SCHED_TAILQ); | |
1319 | ||
1320 | thread_unlock(thread); | |
1321 | } | |
1322 | } | |
1323 | ||
1324 | /* | |
1325 | * Thread is locked | |
1326 | * | |
1327 | * This is why we can never read sched_pri unless we have the thread locked. | |
1328 | * Which we do in the enqueue and remove cases, but not the dequeue case. | |
1329 | */ | |
1330 | static boolean_t | |
1331 | sched_multiq_processor_queue_remove( | |
1332 | processor_t processor, | |
1333 | thread_t thread) | |
1334 | { | |
1335 | boolean_t removed = FALSE; | |
fe8ab488 A |
1336 | processor_set_t pset = processor->processor_set; |
1337 | ||
1338 | pset_lock(pset); | |
1339 | ||
1340 | if (thread->runq != PROCESSOR_NULL) { | |
1341 | /* | |
1342 | * Thread is on a run queue and we have a lock on | |
1343 | * that run queue. | |
1344 | */ | |
1345 | ||
1346 | assert(thread->runq == processor); | |
1347 | ||
1348 | if (thread->bound_processor != PROCESSOR_NULL) { | |
1349 | assert(processor == thread->bound_processor); | |
1350 | run_queue_remove(multiq_bound_runq(processor), thread); | |
1351 | thread->runq = PROCESSOR_NULL; | |
1352 | } else { | |
1353 | sched_group_remove_thread(multiq_main_entryq(processor), | |
1354 | thread->sched_group, | |
1355 | thread); | |
1356 | } | |
1357 | ||
1358 | removed = TRUE; | |
1359 | } | |
1360 | ||
1361 | pset_unlock(pset); | |
1362 | ||
1363 | return removed; | |
1364 | } | |
1365 | ||
1366 | /* pset is locked, returned unlocked */ | |
1367 | static thread_t | |
1368 | sched_multiq_steal_thread(processor_set_t pset) | |
1369 | { | |
1370 | pset_unlock(pset); | |
1371 | return (THREAD_NULL); | |
1372 | } | |
1373 | ||
1374 | /* | |
1375 | * Scan the global queue for candidate groups, and scan those groups for | |
1376 | * candidate threads. | |
1377 | * | |
39037602 A |
1378 | * TODO: This iterates every group runq in its entirety for each entry it has in the runq, which is O(N^2) |
1379 | * Instead, iterate only the queue in the group runq matching the priority of the entry. | |
1380 | * | |
fe8ab488 A |
1381 | * Returns TRUE if retry is needed. |
1382 | */ | |
1383 | static boolean_t | |
3e170ce0 | 1384 | group_scan(entry_queue_t runq, sched_update_scan_context_t scan_context) { |
39037602 A |
1385 | int count = runq->count; |
1386 | int queue_index; | |
1387 | ||
1388 | assert(count >= 0); | |
1389 | ||
1390 | if (count == 0) | |
1391 | return FALSE; | |
1392 | ||
1393 | for (queue_index = bitmap_first(runq->bitmap, NRQS); | |
1394 | queue_index >= 0; | |
1395 | queue_index = bitmap_next(runq->bitmap, queue_index)) { | |
1396 | ||
1397 | sched_entry_t entry; | |
1398 | ||
1399 | qe_foreach_element(entry, &runq->queues[queue_index], entry_links) { | |
1400 | assert(count > 0); | |
1401 | ||
1402 | sched_group_t group = group_for_entry(entry); | |
1403 | if (group->runq.count > 0) { | |
1404 | if (runq_scan(&group->runq, scan_context)) | |
1405 | return (TRUE); | |
fe8ab488 | 1406 | } |
39037602 | 1407 | count--; |
fe8ab488 A |
1408 | } |
1409 | } | |
1410 | ||
1411 | return (FALSE); | |
1412 | } | |
1413 | ||
1414 | static void | |
3e170ce0 | 1415 | sched_multiq_thread_update_scan(sched_update_scan_context_t scan_context) |
fe8ab488 A |
1416 | { |
1417 | boolean_t restart_needed = FALSE; | |
1418 | processor_t processor = processor_list; | |
1419 | processor_set_t pset; | |
1420 | thread_t thread; | |
1421 | spl_t s; | |
1422 | ||
1423 | /* | |
1424 | * We update the threads associated with each processor (bound and idle threads) | |
1425 | * and then update the threads in each pset runqueue. | |
1426 | */ | |
1427 | ||
1428 | do { | |
1429 | do { | |
1430 | pset = processor->processor_set; | |
1431 | ||
1432 | s = splsched(); | |
1433 | pset_lock(pset); | |
1434 | ||
3e170ce0 | 1435 | restart_needed = runq_scan(multiq_bound_runq(processor), scan_context); |
fe8ab488 A |
1436 | |
1437 | pset_unlock(pset); | |
1438 | splx(s); | |
1439 | ||
1440 | if (restart_needed) | |
1441 | break; | |
1442 | ||
1443 | thread = processor->idle_thread; | |
1444 | if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) { | |
1445 | if (thread_update_add_thread(thread) == FALSE) { | |
1446 | restart_needed = TRUE; | |
1447 | break; | |
1448 | } | |
1449 | } | |
1450 | } while ((processor = processor->processor_list) != NULL); | |
1451 | ||
1452 | /* Ok, we now have a collection of candidates -- fix them. */ | |
1453 | thread_update_process_threads(); | |
1454 | ||
1455 | } while (restart_needed); | |
1456 | ||
1457 | pset = &pset0; | |
1458 | ||
1459 | do { | |
1460 | do { | |
1461 | s = splsched(); | |
1462 | pset_lock(pset); | |
1463 | ||
3e170ce0 | 1464 | restart_needed = group_scan(&pset->pset_runq, scan_context); |
fe8ab488 A |
1465 | |
1466 | pset_unlock(pset); | |
1467 | splx(s); | |
1468 | ||
1469 | if (restart_needed) | |
1470 | break; | |
1471 | } while ((pset = pset->pset_list) != NULL); | |
1472 | ||
1473 | /* Ok, we now have a collection of candidates -- fix them. */ | |
1474 | thread_update_process_threads(); | |
1475 | ||
1476 | } while (restart_needed); | |
1477 | } | |
a39ff7e2 A |
1478 | |
1479 | extern int sched_allow_rt_smt; | |
1480 | ||
1481 | /* Return true if this thread should not continue running on this processor */ | |
1482 | static bool | |
1483 | sched_multiq_thread_avoid_processor(processor_t processor, thread_t thread) | |
1484 | { | |
1485 | if (processor->processor_primary != processor) { | |
1486 | /* | |
1487 | * This is a secondary SMT processor. If the primary is running | |
1488 | * a realtime thread, only allow realtime threads on the secondary. | |
1489 | */ | |
1490 | if ((processor->processor_primary->current_pri >= BASEPRI_RTQUEUES) && ((thread->sched_pri < BASEPRI_RTQUEUES) || !sched_allow_rt_smt)) { | |
1491 | return true; | |
1492 | } | |
1493 | } | |
1494 | ||
1495 | return false; | |
1496 | } |