]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
d7e50217 | 6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. |
1c79356b | 7 | * |
d7e50217 A |
8 | * This file contains Original Code and/or Modifications of Original Code |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
d7e50217 A |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
1c79356b A |
22 | * |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * @OSF_COPYRIGHT@ | |
27 | */ | |
28 | /* | |
29 | * Mach Operating System | |
30 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
31 | * All Rights Reserved. | |
32 | * | |
33 | * Permission to use, copy, modify and distribute this software and its | |
34 | * documentation is hereby granted, provided that both the copyright | |
35 | * notice and this permission notice appear in all copies of the | |
36 | * software, derivative works or modified versions, and any portions | |
37 | * thereof, and that both notices appear in supporting documentation. | |
38 | * | |
39 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
40 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
41 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
42 | * | |
43 | * Carnegie Mellon requests users of this software to return to | |
44 | * | |
45 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
46 | * School of Computer Science | |
47 | * Carnegie Mellon University | |
48 | * Pittsburgh PA 15213-3890 | |
49 | * | |
50 | * any improvements or extensions that they make and grant Carnegie Mellon | |
51 | * the rights to redistribute these changes. | |
52 | */ | |
53 | /* | |
54 | */ | |
55 | /* | |
56 | * File: vm/vm_pageout.c | |
57 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
58 | * Date: 1985 | |
59 | * | |
60 | * The proverbial page-out daemon. | |
61 | */ | |
1c79356b A |
62 | |
63 | #include <mach_pagemap.h> | |
64 | #include <mach_cluster_stats.h> | |
65 | #include <mach_kdb.h> | |
66 | #include <advisory_pageout.h> | |
67 | ||
68 | #include <mach/mach_types.h> | |
69 | #include <mach/memory_object.h> | |
70 | #include <mach/memory_object_default.h> | |
0b4e3aa0 | 71 | #include <mach/memory_object_control_server.h> |
1c79356b A |
72 | #include <mach/mach_host_server.h> |
73 | #include <mach/vm_param.h> | |
74 | #include <mach/vm_statistics.h> | |
75 | #include <kern/host_statistics.h> | |
76 | #include <kern/counters.h> | |
77 | #include <kern/thread.h> | |
1c79356b A |
78 | #include <kern/xpr.h> |
79 | #include <vm/pmap.h> | |
d7e50217 | 80 | #include <vm/vm_fault.h> |
1c79356b A |
81 | #include <vm/vm_map.h> |
82 | #include <vm/vm_object.h> | |
83 | #include <vm/vm_page.h> | |
84 | #include <vm/vm_pageout.h> | |
85 | #include <machine/vm_tuning.h> | |
86 | #include <kern/misc_protos.h> | |
87 | ||
88 | extern ipc_port_t memory_manager_default; | |
89 | ||
90 | #ifndef VM_PAGE_LAUNDRY_MAX | |
0b4e3aa0 | 91 | #define VM_PAGE_LAUNDRY_MAX 6 /* outstanding DMM page cleans */ |
1c79356b A |
92 | #endif /* VM_PAGEOUT_LAUNDRY_MAX */ |
93 | ||
94 | #ifndef VM_PAGEOUT_BURST_MAX | |
95 | #define VM_PAGEOUT_BURST_MAX 32 /* simultaneous EMM page cleans */ | |
96 | #endif /* VM_PAGEOUT_BURST_MAX */ | |
97 | ||
98 | #ifndef VM_PAGEOUT_DISCARD_MAX | |
99 | #define VM_PAGEOUT_DISCARD_MAX 68 /* simultaneous EMM page cleans */ | |
100 | #endif /* VM_PAGEOUT_DISCARD_MAX */ | |
101 | ||
102 | #ifndef VM_PAGEOUT_BURST_WAIT | |
103 | #define VM_PAGEOUT_BURST_WAIT 30 /* milliseconds per page */ | |
104 | #endif /* VM_PAGEOUT_BURST_WAIT */ | |
105 | ||
106 | #ifndef VM_PAGEOUT_EMPTY_WAIT | |
107 | #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */ | |
108 | #endif /* VM_PAGEOUT_EMPTY_WAIT */ | |
109 | ||
110 | /* | |
111 | * To obtain a reasonable LRU approximation, the inactive queue | |
112 | * needs to be large enough to give pages on it a chance to be | |
113 | * referenced a second time. This macro defines the fraction | |
114 | * of active+inactive pages that should be inactive. | |
115 | * The pageout daemon uses it to update vm_page_inactive_target. | |
116 | * | |
117 | * If vm_page_free_count falls below vm_page_free_target and | |
118 | * vm_page_inactive_count is below vm_page_inactive_target, | |
119 | * then the pageout daemon starts running. | |
120 | */ | |
121 | ||
122 | #ifndef VM_PAGE_INACTIVE_TARGET | |
123 | #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 3) | |
124 | #endif /* VM_PAGE_INACTIVE_TARGET */ | |
125 | ||
126 | /* | |
127 | * Once the pageout daemon starts running, it keeps going | |
128 | * until vm_page_free_count meets or exceeds vm_page_free_target. | |
129 | */ | |
130 | ||
131 | #ifndef VM_PAGE_FREE_TARGET | |
132 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80) | |
133 | #endif /* VM_PAGE_FREE_TARGET */ | |
134 | ||
135 | /* | |
136 | * The pageout daemon always starts running once vm_page_free_count | |
137 | * falls below vm_page_free_min. | |
138 | */ | |
139 | ||
140 | #ifndef VM_PAGE_FREE_MIN | |
141 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100) | |
142 | #endif /* VM_PAGE_FREE_MIN */ | |
143 | ||
144 | /* | |
145 | * When vm_page_free_count falls below vm_page_free_reserved, | |
146 | * only vm-privileged threads can allocate pages. vm-privilege | |
147 | * allows the pageout daemon and default pager (and any other | |
148 | * associated threads needed for default pageout) to continue | |
149 | * operation by dipping into the reserved pool of pages. | |
150 | */ | |
151 | ||
152 | #ifndef VM_PAGE_FREE_RESERVED | |
153 | #define VM_PAGE_FREE_RESERVED \ | |
0b4e3aa0 | 154 | ((16 * VM_PAGE_LAUNDRY_MAX) + NCPUS) |
1c79356b A |
155 | #endif /* VM_PAGE_FREE_RESERVED */ |
156 | ||
0b4e3aa0 A |
157 | /* |
158 | * Exported variable used to broadcast the activation of the pageout scan | |
159 | * Working Set uses this to throttle its use of pmap removes. In this | |
160 | * way, code which runs within memory in an uncontested context does | |
161 | * not keep encountering soft faults. | |
162 | */ | |
163 | ||
164 | unsigned int vm_pageout_scan_event_counter = 0; | |
1c79356b A |
165 | |
166 | /* | |
167 | * Forward declarations for internal routines. | |
168 | */ | |
169 | extern void vm_pageout_continue(void); | |
170 | extern void vm_pageout_scan(void); | |
171 | extern void vm_pageout_throttle(vm_page_t m); | |
172 | extern vm_page_t vm_pageout_cluster_page( | |
173 | vm_object_t object, | |
174 | vm_object_offset_t offset, | |
175 | boolean_t precious_clean); | |
176 | ||
177 | unsigned int vm_pageout_reserved_internal = 0; | |
178 | unsigned int vm_pageout_reserved_really = 0; | |
179 | ||
180 | unsigned int vm_page_laundry_max = 0; /* # of clusters outstanding */ | |
181 | unsigned int vm_page_laundry_min = 0; | |
182 | unsigned int vm_pageout_burst_max = 0; | |
183 | unsigned int vm_pageout_burst_wait = 0; /* milliseconds per page */ | |
184 | unsigned int vm_pageout_empty_wait = 0; /* milliseconds */ | |
185 | unsigned int vm_pageout_burst_min = 0; | |
186 | unsigned int vm_pageout_pause_count = 0; | |
187 | unsigned int vm_pageout_pause_max = 0; | |
188 | unsigned int vm_free_page_pause = 100; /* milliseconds */ | |
189 | ||
9bccf70c A |
190 | /* |
191 | * Protection against zero fill flushing live working sets derived | |
192 | * from existing backing store and files | |
193 | */ | |
194 | unsigned int vm_accellerate_zf_pageout_trigger = 400; | |
195 | unsigned int vm_zf_iterator; | |
196 | unsigned int vm_zf_iterator_count = 40; | |
197 | unsigned int last_page_zf; | |
198 | unsigned int vm_zf_count = 0; | |
199 | ||
1c79356b A |
200 | /* |
201 | * These variables record the pageout daemon's actions: | |
202 | * how many pages it looks at and what happens to those pages. | |
203 | * No locking needed because only one thread modifies the variables. | |
204 | */ | |
205 | ||
206 | unsigned int vm_pageout_active = 0; /* debugging */ | |
207 | unsigned int vm_pageout_inactive = 0; /* debugging */ | |
208 | unsigned int vm_pageout_inactive_throttled = 0; /* debugging */ | |
209 | unsigned int vm_pageout_inactive_forced = 0; /* debugging */ | |
210 | unsigned int vm_pageout_inactive_nolock = 0; /* debugging */ | |
211 | unsigned int vm_pageout_inactive_avoid = 0; /* debugging */ | |
212 | unsigned int vm_pageout_inactive_busy = 0; /* debugging */ | |
213 | unsigned int vm_pageout_inactive_absent = 0; /* debugging */ | |
214 | unsigned int vm_pageout_inactive_used = 0; /* debugging */ | |
215 | unsigned int vm_pageout_inactive_clean = 0; /* debugging */ | |
216 | unsigned int vm_pageout_inactive_dirty = 0; /* debugging */ | |
217 | unsigned int vm_pageout_dirty_no_pager = 0; /* debugging */ | |
1c79356b A |
218 | unsigned int vm_stat_discard = 0; /* debugging */ |
219 | unsigned int vm_stat_discard_sent = 0; /* debugging */ | |
220 | unsigned int vm_stat_discard_failure = 0; /* debugging */ | |
221 | unsigned int vm_stat_discard_throttle = 0; /* debugging */ | |
222 | unsigned int vm_pageout_scan_active_emm_throttle = 0; /* debugging */ | |
223 | unsigned int vm_pageout_scan_active_emm_throttle_success = 0; /* debugging */ | |
224 | unsigned int vm_pageout_scan_active_emm_throttle_failure = 0; /* debugging */ | |
225 | unsigned int vm_pageout_scan_inactive_emm_throttle = 0; /* debugging */ | |
226 | unsigned int vm_pageout_scan_inactive_emm_throttle_success = 0; /* debugging */ | |
227 | unsigned int vm_pageout_scan_inactive_emm_throttle_failure = 0; /* debugging */ | |
228 | ||
229 | ||
230 | unsigned int vm_pageout_out_of_line = 0; | |
231 | unsigned int vm_pageout_in_place = 0; | |
232 | /* | |
233 | * Routine: vm_pageout_object_allocate | |
234 | * Purpose: | |
235 | * Allocate an object for use as out-of-line memory in a | |
236 | * data_return/data_initialize message. | |
237 | * The page must be in an unlocked object. | |
238 | * | |
239 | * If the page belongs to a trusted pager, cleaning in place | |
240 | * will be used, which utilizes a special "pageout object" | |
241 | * containing private alias pages for the real page frames. | |
242 | * Untrusted pagers use normal out-of-line memory. | |
243 | */ | |
244 | vm_object_t | |
245 | vm_pageout_object_allocate( | |
246 | vm_page_t m, | |
247 | vm_size_t size, | |
248 | vm_object_offset_t offset) | |
249 | { | |
250 | vm_object_t object = m->object; | |
251 | vm_object_t new_object; | |
252 | ||
253 | assert(object->pager_ready); | |
254 | ||
255 | if (object->pager_trusted || object->internal) | |
256 | vm_pageout_throttle(m); | |
257 | ||
258 | new_object = vm_object_allocate(size); | |
259 | ||
260 | if (object->pager_trusted) { | |
261 | assert (offset < object->size); | |
262 | ||
263 | vm_object_lock(new_object); | |
264 | new_object->pageout = TRUE; | |
265 | new_object->shadow = object; | |
266 | new_object->can_persist = FALSE; | |
267 | new_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
268 | new_object->shadow_offset = offset; | |
269 | vm_object_unlock(new_object); | |
270 | ||
271 | /* | |
272 | * Take a paging reference on the object. This will be dropped | |
273 | * in vm_pageout_object_terminate() | |
274 | */ | |
275 | vm_object_lock(object); | |
276 | vm_object_paging_begin(object); | |
277 | vm_object_unlock(object); | |
278 | ||
279 | vm_pageout_in_place++; | |
280 | } else | |
281 | vm_pageout_out_of_line++; | |
282 | return(new_object); | |
283 | } | |
284 | ||
285 | #if MACH_CLUSTER_STATS | |
286 | unsigned long vm_pageout_cluster_dirtied = 0; | |
287 | unsigned long vm_pageout_cluster_cleaned = 0; | |
288 | unsigned long vm_pageout_cluster_collisions = 0; | |
289 | unsigned long vm_pageout_cluster_clusters = 0; | |
290 | unsigned long vm_pageout_cluster_conversions = 0; | |
291 | unsigned long vm_pageout_target_collisions = 0; | |
292 | unsigned long vm_pageout_target_page_dirtied = 0; | |
293 | unsigned long vm_pageout_target_page_freed = 0; | |
1c79356b A |
294 | #define CLUSTER_STAT(clause) clause |
295 | #else /* MACH_CLUSTER_STATS */ | |
296 | #define CLUSTER_STAT(clause) | |
297 | #endif /* MACH_CLUSTER_STATS */ | |
298 | ||
299 | /* | |
300 | * Routine: vm_pageout_object_terminate | |
301 | * Purpose: | |
302 | * Destroy the pageout_object allocated by | |
303 | * vm_pageout_object_allocate(), and perform all of the | |
304 | * required cleanup actions. | |
305 | * | |
306 | * In/Out conditions: | |
307 | * The object must be locked, and will be returned locked. | |
308 | */ | |
309 | void | |
310 | vm_pageout_object_terminate( | |
311 | vm_object_t object) | |
312 | { | |
313 | vm_object_t shadow_object; | |
314 | ||
315 | /* | |
316 | * Deal with the deallocation (last reference) of a pageout object | |
317 | * (used for cleaning-in-place) by dropping the paging references/ | |
318 | * freeing pages in the original object. | |
319 | */ | |
320 | ||
321 | assert(object->pageout); | |
322 | shadow_object = object->shadow; | |
323 | vm_object_lock(shadow_object); | |
324 | ||
325 | while (!queue_empty(&object->memq)) { | |
326 | vm_page_t p, m; | |
327 | vm_object_offset_t offset; | |
328 | ||
329 | p = (vm_page_t) queue_first(&object->memq); | |
330 | ||
331 | assert(p->private); | |
332 | assert(p->pageout); | |
333 | p->pageout = FALSE; | |
334 | assert(!p->cleaning); | |
335 | ||
336 | offset = p->offset; | |
337 | VM_PAGE_FREE(p); | |
338 | p = VM_PAGE_NULL; | |
339 | ||
340 | m = vm_page_lookup(shadow_object, | |
341 | offset + object->shadow_offset); | |
342 | ||
343 | if(m == VM_PAGE_NULL) | |
344 | continue; | |
345 | assert(m->cleaning); | |
0b4e3aa0 A |
346 | /* used as a trigger on upl_commit etc to recognize the */ |
347 | /* pageout daemon's subseqent desire to pageout a cleaning */ | |
348 | /* page. When the bit is on the upl commit code will */ | |
349 | /* respect the pageout bit in the target page over the */ | |
350 | /* caller's page list indication */ | |
351 | m->dump_cleaning = FALSE; | |
1c79356b A |
352 | |
353 | /* | |
354 | * Account for the paging reference taken when | |
355 | * m->cleaning was set on this page. | |
356 | */ | |
357 | vm_object_paging_end(shadow_object); | |
358 | assert((m->dirty) || (m->precious) || | |
359 | (m->busy && m->cleaning)); | |
360 | ||
361 | /* | |
362 | * Handle the trusted pager throttle. | |
363 | */ | |
364 | vm_page_lock_queues(); | |
365 | if (m->laundry) { | |
366 | vm_page_laundry_count--; | |
367 | m->laundry = FALSE; | |
368 | if (vm_page_laundry_count < vm_page_laundry_min) { | |
369 | vm_page_laundry_min = 0; | |
370 | thread_wakeup((event_t) &vm_page_laundry_count); | |
371 | } | |
372 | } | |
373 | ||
374 | /* | |
375 | * Handle the "target" page(s). These pages are to be freed if | |
376 | * successfully cleaned. Target pages are always busy, and are | |
377 | * wired exactly once. The initial target pages are not mapped, | |
378 | * (so cannot be referenced or modified) but converted target | |
379 | * pages may have been modified between the selection as an | |
380 | * adjacent page and conversion to a target. | |
381 | */ | |
382 | if (m->pageout) { | |
383 | assert(m->busy); | |
384 | assert(m->wire_count == 1); | |
385 | m->cleaning = FALSE; | |
386 | m->pageout = FALSE; | |
387 | #if MACH_CLUSTER_STATS | |
388 | if (m->wanted) vm_pageout_target_collisions++; | |
389 | #endif | |
390 | /* | |
391 | * Revoke all access to the page. Since the object is | |
392 | * locked, and the page is busy, this prevents the page | |
393 | * from being dirtied after the pmap_is_modified() call | |
394 | * returns. | |
395 | */ | |
d7e50217 | 396 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
1c79356b A |
397 | |
398 | /* | |
399 | * Since the page is left "dirty" but "not modifed", we | |
400 | * can detect whether the page was redirtied during | |
401 | * pageout by checking the modify state. | |
402 | */ | |
d7e50217 | 403 | m->dirty = pmap_is_modified(m->phys_page); |
1c79356b A |
404 | |
405 | if (m->dirty) { | |
406 | CLUSTER_STAT(vm_pageout_target_page_dirtied++;) | |
407 | vm_page_unwire(m);/* reactivates */ | |
408 | VM_STAT(reactivations++); | |
409 | PAGE_WAKEUP_DONE(m); | |
1c79356b A |
410 | } else { |
411 | CLUSTER_STAT(vm_pageout_target_page_freed++;) | |
412 | vm_page_free(m);/* clears busy, etc. */ | |
413 | } | |
414 | vm_page_unlock_queues(); | |
415 | continue; | |
416 | } | |
417 | /* | |
418 | * Handle the "adjacent" pages. These pages were cleaned in | |
419 | * place, and should be left alone. | |
420 | * If prep_pin_count is nonzero, then someone is using the | |
421 | * page, so make it active. | |
422 | */ | |
0b4e3aa0 A |
423 | if (!m->active && !m->inactive && !m->private) { |
424 | if (m->reference) | |
1c79356b A |
425 | vm_page_activate(m); |
426 | else | |
427 | vm_page_deactivate(m); | |
428 | } | |
429 | if((m->busy) && (m->cleaning)) { | |
430 | ||
431 | /* the request_page_list case, (COPY_OUT_FROM FALSE) */ | |
432 | m->busy = FALSE; | |
433 | ||
434 | /* We do not re-set m->dirty ! */ | |
435 | /* The page was busy so no extraneous activity */ | |
436 | /* could have occured. COPY_INTO is a read into the */ | |
437 | /* new pages. CLEAN_IN_PLACE does actually write */ | |
438 | /* out the pages but handling outside of this code */ | |
439 | /* will take care of resetting dirty. We clear the */ | |
440 | /* modify however for the Programmed I/O case. */ | |
d7e50217 | 441 | pmap_clear_modify(m->phys_page); |
1c79356b A |
442 | if(m->absent) { |
443 | m->absent = FALSE; | |
444 | if(shadow_object->absent_count == 1) | |
445 | vm_object_absent_release(shadow_object); | |
446 | else | |
447 | shadow_object->absent_count--; | |
448 | } | |
449 | m->overwriting = FALSE; | |
450 | } else if (m->overwriting) { | |
451 | /* alternate request page list, write to page_list */ | |
452 | /* case. Occurs when the original page was wired */ | |
453 | /* at the time of the list request */ | |
454 | assert(m->wire_count != 0); | |
455 | vm_page_unwire(m);/* reactivates */ | |
456 | m->overwriting = FALSE; | |
457 | } else { | |
458 | /* | |
459 | * Set the dirty state according to whether or not the page was | |
460 | * modified during the pageout. Note that we purposefully do | |
461 | * NOT call pmap_clear_modify since the page is still mapped. | |
462 | * If the page were to be dirtied between the 2 calls, this | |
463 | * this fact would be lost. This code is only necessary to | |
464 | * maintain statistics, since the pmap module is always | |
465 | * consulted if m->dirty is false. | |
466 | */ | |
467 | #if MACH_CLUSTER_STATS | |
d7e50217 | 468 | m->dirty = pmap_is_modified(m->phys_page); |
1c79356b A |
469 | |
470 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
471 | else vm_pageout_cluster_cleaned++; | |
472 | if (m->wanted) vm_pageout_cluster_collisions++; | |
473 | #else | |
474 | m->dirty = 0; | |
475 | #endif | |
476 | } | |
477 | m->cleaning = FALSE; | |
478 | ||
1c79356b A |
479 | /* |
480 | * Wakeup any thread waiting for the page to be un-cleaning. | |
481 | */ | |
482 | PAGE_WAKEUP(m); | |
483 | vm_page_unlock_queues(); | |
484 | } | |
485 | /* | |
486 | * Account for the paging reference taken in vm_paging_object_allocate. | |
487 | */ | |
488 | vm_object_paging_end(shadow_object); | |
489 | vm_object_unlock(shadow_object); | |
490 | ||
491 | assert(object->ref_count == 0); | |
492 | assert(object->paging_in_progress == 0); | |
493 | assert(object->resident_page_count == 0); | |
494 | return; | |
495 | } | |
496 | ||
497 | /* | |
498 | * Routine: vm_pageout_setup | |
499 | * Purpose: | |
500 | * Set up a page for pageout (clean & flush). | |
501 | * | |
502 | * Move the page to a new object, as part of which it will be | |
503 | * sent to its memory manager in a memory_object_data_write or | |
504 | * memory_object_initialize message. | |
505 | * | |
506 | * The "new_object" and "new_offset" arguments | |
507 | * indicate where the page should be moved. | |
508 | * | |
509 | * In/Out conditions: | |
510 | * The page in question must not be on any pageout queues, | |
511 | * and must be busy. The object to which it belongs | |
512 | * must be unlocked, and the caller must hold a paging | |
513 | * reference to it. The new_object must not be locked. | |
514 | * | |
515 | * This routine returns a pointer to a place-holder page, | |
516 | * inserted at the same offset, to block out-of-order | |
517 | * requests for the page. The place-holder page must | |
518 | * be freed after the data_write or initialize message | |
519 | * has been sent. | |
520 | * | |
521 | * The original page is put on a paging queue and marked | |
522 | * not busy on exit. | |
523 | */ | |
524 | vm_page_t | |
525 | vm_pageout_setup( | |
526 | register vm_page_t m, | |
527 | register vm_object_t new_object, | |
528 | vm_object_offset_t new_offset) | |
529 | { | |
530 | register vm_object_t old_object = m->object; | |
531 | vm_object_offset_t paging_offset; | |
532 | vm_object_offset_t offset; | |
533 | register vm_page_t holding_page; | |
534 | register vm_page_t new_m; | |
535 | register vm_page_t new_page; | |
536 | boolean_t need_to_wire = FALSE; | |
537 | ||
538 | ||
539 | XPR(XPR_VM_PAGEOUT, | |
540 | "vm_pageout_setup, obj 0x%X off 0x%X page 0x%X new obj 0x%X offset 0x%X\n", | |
541 | (integer_t)m->object, (integer_t)m->offset, | |
542 | (integer_t)m, (integer_t)new_object, | |
543 | (integer_t)new_offset); | |
544 | assert(m && m->busy && !m->absent && !m->fictitious && !m->error && | |
545 | !m->restart); | |
546 | ||
547 | assert(m->dirty || m->precious); | |
548 | ||
549 | /* | |
550 | * Create a place-holder page where the old one was, to prevent | |
551 | * attempted pageins of this page while we're unlocked. | |
1c79356b A |
552 | */ |
553 | VM_PAGE_GRAB_FICTITIOUS(holding_page); | |
554 | ||
1c79356b A |
555 | vm_object_lock(old_object); |
556 | ||
557 | offset = m->offset; | |
558 | paging_offset = offset + old_object->paging_offset; | |
559 | ||
560 | if (old_object->pager_trusted) { | |
561 | /* | |
562 | * This pager is trusted, so we can clean this page | |
563 | * in place. Leave it in the old object, and mark it | |
564 | * cleaning & pageout. | |
565 | */ | |
566 | new_m = holding_page; | |
567 | holding_page = VM_PAGE_NULL; | |
568 | ||
1c79356b A |
569 | /* |
570 | * Set up new page to be private shadow of real page. | |
571 | */ | |
d7e50217 | 572 | new_m->phys_page = m->phys_page; |
1c79356b | 573 | new_m->fictitious = FALSE; |
1c79356b A |
574 | new_m->pageout = TRUE; |
575 | ||
576 | /* | |
577 | * Mark real page as cleaning (indicating that we hold a | |
578 | * paging reference to be released via m_o_d_r_c) and | |
579 | * pageout (indicating that the page should be freed | |
580 | * when the pageout completes). | |
581 | */ | |
d7e50217 | 582 | pmap_clear_modify(m->phys_page); |
1c79356b | 583 | vm_page_lock_queues(); |
0b4e3aa0 | 584 | new_m->private = TRUE; |
1c79356b A |
585 | vm_page_wire(new_m); |
586 | m->cleaning = TRUE; | |
587 | m->pageout = TRUE; | |
588 | ||
589 | vm_page_wire(m); | |
590 | assert(m->wire_count == 1); | |
591 | vm_page_unlock_queues(); | |
592 | ||
593 | m->dirty = TRUE; | |
594 | m->precious = FALSE; | |
595 | m->page_lock = VM_PROT_NONE; | |
596 | m->unusual = FALSE; | |
597 | m->unlock_request = VM_PROT_NONE; | |
598 | } else { | |
599 | /* | |
600 | * Cannot clean in place, so rip the old page out of the | |
601 | * object, and stick the holding page in. Set new_m to the | |
602 | * page in the new object. | |
603 | */ | |
604 | vm_page_lock_queues(); | |
605 | VM_PAGE_QUEUES_REMOVE(m); | |
606 | vm_page_remove(m); | |
607 | ||
1c79356b A |
608 | vm_page_insert(holding_page, old_object, offset); |
609 | vm_page_unlock_queues(); | |
610 | ||
611 | m->dirty = TRUE; | |
612 | m->precious = FALSE; | |
613 | new_m = m; | |
614 | new_m->page_lock = VM_PROT_NONE; | |
615 | new_m->unlock_request = VM_PROT_NONE; | |
616 | ||
617 | if (old_object->internal) | |
618 | need_to_wire = TRUE; | |
619 | } | |
620 | /* | |
621 | * Record that this page has been written out | |
622 | */ | |
623 | #if MACH_PAGEMAP | |
624 | vm_external_state_set(old_object->existence_map, offset); | |
625 | #endif /* MACH_PAGEMAP */ | |
626 | ||
627 | vm_object_unlock(old_object); | |
628 | ||
629 | vm_object_lock(new_object); | |
630 | ||
631 | /* | |
632 | * Put the page into the new object. If it is a not wired | |
633 | * (if it's the real page) it will be activated. | |
634 | */ | |
635 | ||
636 | vm_page_lock_queues(); | |
637 | vm_page_insert(new_m, new_object, new_offset); | |
638 | if (need_to_wire) | |
639 | vm_page_wire(new_m); | |
640 | else | |
641 | vm_page_activate(new_m); | |
642 | PAGE_WAKEUP_DONE(new_m); | |
643 | vm_page_unlock_queues(); | |
644 | ||
645 | vm_object_unlock(new_object); | |
646 | ||
647 | /* | |
648 | * Return the placeholder page to simplify cleanup. | |
649 | */ | |
650 | return (holding_page); | |
651 | } | |
652 | ||
653 | /* | |
654 | * Routine: vm_pageclean_setup | |
655 | * | |
656 | * Purpose: setup a page to be cleaned (made non-dirty), but not | |
657 | * necessarily flushed from the VM page cache. | |
658 | * This is accomplished by cleaning in place. | |
659 | * | |
660 | * The page must not be busy, and the object and page | |
661 | * queues must be locked. | |
662 | * | |
663 | */ | |
664 | void | |
665 | vm_pageclean_setup( | |
666 | vm_page_t m, | |
667 | vm_page_t new_m, | |
668 | vm_object_t new_object, | |
669 | vm_object_offset_t new_offset) | |
670 | { | |
671 | vm_object_t old_object = m->object; | |
672 | assert(!m->busy); | |
673 | assert(!m->cleaning); | |
674 | ||
675 | XPR(XPR_VM_PAGEOUT, | |
676 | "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n", | |
677 | (integer_t)old_object, m->offset, (integer_t)m, | |
678 | (integer_t)new_m, new_offset); | |
679 | ||
d7e50217 | 680 | pmap_clear_modify(m->phys_page); |
1c79356b A |
681 | vm_object_paging_begin(old_object); |
682 | ||
683 | /* | |
684 | * Record that this page has been written out | |
685 | */ | |
686 | #if MACH_PAGEMAP | |
687 | vm_external_state_set(old_object->existence_map, m->offset); | |
688 | #endif /*MACH_PAGEMAP*/ | |
689 | ||
690 | /* | |
691 | * Mark original page as cleaning in place. | |
692 | */ | |
693 | m->cleaning = TRUE; | |
694 | m->dirty = TRUE; | |
695 | m->precious = FALSE; | |
696 | ||
697 | /* | |
698 | * Convert the fictitious page to a private shadow of | |
699 | * the real page. | |
700 | */ | |
701 | assert(new_m->fictitious); | |
702 | new_m->fictitious = FALSE; | |
703 | new_m->private = TRUE; | |
704 | new_m->pageout = TRUE; | |
d7e50217 | 705 | new_m->phys_page = m->phys_page; |
1c79356b A |
706 | vm_page_wire(new_m); |
707 | ||
708 | vm_page_insert(new_m, new_object, new_offset); | |
709 | assert(!new_m->wanted); | |
710 | new_m->busy = FALSE; | |
711 | } | |
712 | ||
713 | void | |
714 | vm_pageclean_copy( | |
715 | vm_page_t m, | |
716 | vm_page_t new_m, | |
717 | vm_object_t new_object, | |
718 | vm_object_offset_t new_offset) | |
719 | { | |
720 | XPR(XPR_VM_PAGEOUT, | |
721 | "vm_pageclean_copy, page 0x%X new_m 0x%X new_obj 0x%X offset 0x%X\n", | |
722 | m, new_m, new_object, new_offset, 0); | |
723 | ||
724 | assert((!m->busy) && (!m->cleaning)); | |
725 | ||
726 | assert(!new_m->private && !new_m->fictitious); | |
727 | ||
d7e50217 | 728 | pmap_clear_modify(m->phys_page); |
1c79356b A |
729 | |
730 | m->busy = TRUE; | |
731 | vm_object_paging_begin(m->object); | |
732 | vm_page_unlock_queues(); | |
733 | vm_object_unlock(m->object); | |
734 | ||
735 | /* | |
736 | * Copy the original page to the new page. | |
737 | */ | |
738 | vm_page_copy(m, new_m); | |
739 | ||
740 | /* | |
741 | * Mark the old page as clean. A request to pmap_is_modified | |
742 | * will get the right answer. | |
743 | */ | |
744 | vm_object_lock(m->object); | |
745 | m->dirty = FALSE; | |
746 | ||
747 | vm_object_paging_end(m->object); | |
748 | ||
749 | vm_page_lock_queues(); | |
750 | if (!m->active && !m->inactive) | |
751 | vm_page_activate(m); | |
752 | PAGE_WAKEUP_DONE(m); | |
753 | ||
754 | vm_page_insert(new_m, new_object, new_offset); | |
755 | vm_page_activate(new_m); | |
756 | new_m->busy = FALSE; /* No other thread can be waiting */ | |
757 | } | |
758 | ||
759 | ||
760 | /* | |
761 | * Routine: vm_pageout_initialize_page | |
762 | * Purpose: | |
763 | * Causes the specified page to be initialized in | |
764 | * the appropriate memory object. This routine is used to push | |
765 | * pages into a copy-object when they are modified in the | |
766 | * permanent object. | |
767 | * | |
768 | * The page is moved to a temporary object and paged out. | |
769 | * | |
770 | * In/out conditions: | |
771 | * The page in question must not be on any pageout queues. | |
772 | * The object to which it belongs must be locked. | |
773 | * The page must be busy, but not hold a paging reference. | |
774 | * | |
775 | * Implementation: | |
776 | * Move this page to a completely new object. | |
777 | */ | |
778 | void | |
779 | vm_pageout_initialize_page( | |
780 | vm_page_t m) | |
781 | { | |
782 | vm_map_copy_t copy; | |
783 | vm_object_t new_object; | |
784 | vm_object_t object; | |
785 | vm_object_offset_t paging_offset; | |
786 | vm_page_t holding_page; | |
787 | ||
788 | ||
789 | XPR(XPR_VM_PAGEOUT, | |
790 | "vm_pageout_initialize_page, page 0x%X\n", | |
791 | (integer_t)m, 0, 0, 0, 0); | |
792 | assert(m->busy); | |
793 | ||
794 | /* | |
795 | * Verify that we really want to clean this page | |
796 | */ | |
797 | assert(!m->absent); | |
798 | assert(!m->error); | |
799 | assert(m->dirty); | |
800 | ||
801 | /* | |
802 | * Create a paging reference to let us play with the object. | |
803 | */ | |
804 | object = m->object; | |
805 | paging_offset = m->offset + object->paging_offset; | |
806 | vm_object_paging_begin(object); | |
807 | vm_object_unlock(object); | |
808 | if (m->absent || m->error || m->restart || | |
809 | (!m->dirty && !m->precious)) { | |
810 | VM_PAGE_FREE(m); | |
811 | panic("reservation without pageout?"); /* alan */ | |
812 | return; | |
813 | } | |
814 | ||
815 | /* set the page for future call to vm_fault_list_request */ | |
816 | holding_page = NULL; | |
817 | vm_object_lock(m->object); | |
818 | vm_page_lock_queues(); | |
d7e50217 | 819 | pmap_clear_modify(m->phys_page); |
1c79356b A |
820 | m->dirty = TRUE; |
821 | m->busy = TRUE; | |
822 | m->list_req_pending = TRUE; | |
823 | m->cleaning = TRUE; | |
824 | m->pageout = TRUE; | |
825 | vm_page_wire(m); | |
826 | vm_page_unlock_queues(); | |
827 | vm_object_unlock(m->object); | |
828 | vm_pageout_throttle(m); | |
1c79356b A |
829 | |
830 | /* | |
831 | * Write the data to its pager. | |
832 | * Note that the data is passed by naming the new object, | |
833 | * not a virtual address; the pager interface has been | |
834 | * manipulated to use the "internal memory" data type. | |
835 | * [The object reference from its allocation is donated | |
836 | * to the eventual recipient.] | |
837 | */ | |
838 | memory_object_data_initialize(object->pager, | |
1c79356b | 839 | paging_offset, |
1c79356b A |
840 | PAGE_SIZE); |
841 | ||
842 | vm_object_lock(object); | |
843 | } | |
844 | ||
845 | #if MACH_CLUSTER_STATS | |
846 | #define MAXCLUSTERPAGES 16 | |
847 | struct { | |
848 | unsigned long pages_in_cluster; | |
849 | unsigned long pages_at_higher_offsets; | |
850 | unsigned long pages_at_lower_offsets; | |
851 | } cluster_stats[MAXCLUSTERPAGES]; | |
852 | #endif /* MACH_CLUSTER_STATS */ | |
853 | ||
854 | boolean_t allow_clustered_pageouts = FALSE; | |
855 | ||
856 | /* | |
857 | * vm_pageout_cluster: | |
858 | * | |
859 | * Given a page, page it out, and attempt to clean adjacent pages | |
860 | * in the same operation. | |
861 | * | |
862 | * The page must be busy, and the object unlocked w/ paging reference | |
863 | * to prevent deallocation or collapse. The page must not be on any | |
864 | * pageout queue. | |
865 | */ | |
866 | void | |
867 | vm_pageout_cluster( | |
868 | vm_page_t m) | |
869 | { | |
870 | vm_object_t object = m->object; | |
871 | vm_object_offset_t offset = m->offset; /* from vm_object start */ | |
872 | vm_object_offset_t paging_offset = m->offset + object->paging_offset; | |
873 | vm_object_t new_object; | |
874 | vm_object_offset_t new_offset; | |
875 | vm_size_t cluster_size; | |
876 | vm_object_offset_t cluster_offset; /* from memory_object start */ | |
877 | vm_object_offset_t cluster_lower_bound; /* from vm_object_start */ | |
878 | vm_object_offset_t cluster_upper_bound; /* from vm_object_start */ | |
879 | vm_object_offset_t cluster_start, cluster_end;/* from vm_object start */ | |
880 | vm_object_offset_t offset_within_cluster; | |
881 | vm_size_t length_of_data; | |
882 | vm_page_t friend, holding_page; | |
1c79356b A |
883 | kern_return_t rc; |
884 | boolean_t precious_clean = TRUE; | |
885 | int pages_in_cluster; | |
886 | ||
887 | CLUSTER_STAT(int pages_at_higher_offsets = 0;) | |
888 | CLUSTER_STAT(int pages_at_lower_offsets = 0;) | |
889 | ||
890 | XPR(XPR_VM_PAGEOUT, | |
891 | "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n", | |
892 | (integer_t)object, offset, (integer_t)m, 0, 0); | |
893 | ||
894 | CLUSTER_STAT(vm_pageout_cluster_clusters++;) | |
895 | /* | |
896 | * Only a certain kind of page is appreciated here. | |
897 | */ | |
898 | assert(m->busy && (m->dirty || m->precious) && (m->wire_count == 0)); | |
899 | assert(!m->cleaning && !m->pageout && !m->inactive && !m->active); | |
900 | ||
901 | vm_object_lock(object); | |
902 | cluster_size = object->cluster_size; | |
903 | ||
904 | assert(cluster_size >= PAGE_SIZE); | |
905 | if (cluster_size < PAGE_SIZE) cluster_size = PAGE_SIZE; | |
906 | assert(object->pager_created && object->pager_initialized); | |
907 | assert(object->internal || object->pager_ready); | |
908 | ||
909 | if (m->precious && !m->dirty) | |
910 | precious_clean = TRUE; | |
911 | ||
912 | if (!object->pager_trusted || !allow_clustered_pageouts) | |
913 | cluster_size = PAGE_SIZE; | |
914 | vm_object_unlock(object); | |
915 | ||
916 | cluster_offset = paging_offset & (vm_object_offset_t)(cluster_size - 1); | |
917 | /* bytes from beginning of cluster */ | |
918 | /* | |
919 | * Due to unaligned mappings, we have to be careful | |
920 | * of negative offsets into the VM object. Clip the cluster | |
921 | * boundary to the VM object, not the memory object. | |
922 | */ | |
923 | if (offset > cluster_offset) { | |
924 | cluster_lower_bound = offset - cluster_offset; | |
925 | /* from vm_object */ | |
926 | } else { | |
927 | cluster_lower_bound = 0; | |
928 | } | |
929 | cluster_upper_bound = (offset - cluster_offset) + | |
930 | (vm_object_offset_t)cluster_size; | |
931 | ||
932 | /* set the page for future call to vm_fault_list_request */ | |
933 | holding_page = NULL; | |
934 | vm_object_lock(m->object); | |
935 | vm_page_lock_queues(); | |
936 | m->busy = TRUE; | |
937 | m->list_req_pending = TRUE; | |
938 | m->cleaning = TRUE; | |
939 | m->pageout = TRUE; | |
940 | vm_page_wire(m); | |
941 | vm_page_unlock_queues(); | |
942 | vm_object_unlock(m->object); | |
943 | vm_pageout_throttle(m); | |
944 | ||
945 | /* | |
946 | * Search backward for adjacent eligible pages to clean in | |
947 | * this operation. | |
948 | */ | |
949 | ||
950 | cluster_start = offset; | |
951 | if (offset) { /* avoid wrap-around at zero */ | |
952 | for (cluster_start = offset - PAGE_SIZE_64; | |
953 | cluster_start >= cluster_lower_bound; | |
954 | cluster_start -= PAGE_SIZE_64) { | |
955 | assert(cluster_size > PAGE_SIZE); | |
956 | ||
957 | vm_object_lock(object); | |
958 | vm_page_lock_queues(); | |
959 | ||
960 | if ((friend = vm_pageout_cluster_page(object, cluster_start, | |
961 | precious_clean)) == VM_PAGE_NULL) { | |
962 | vm_page_unlock_queues(); | |
963 | vm_object_unlock(object); | |
964 | break; | |
965 | } | |
966 | new_offset = (cluster_start + object->paging_offset) | |
967 | & (cluster_size - 1); | |
968 | ||
969 | assert(new_offset < cluster_offset); | |
970 | m->list_req_pending = TRUE; | |
971 | m->cleaning = TRUE; | |
972 | /* do nothing except advance the write request, all we really need to */ | |
973 | /* do is push the target page and let the code at the other end decide */ | |
974 | /* what is really the right size */ | |
975 | if (vm_page_free_count <= vm_page_free_reserved) { | |
976 | m->busy = TRUE; | |
977 | m->pageout = TRUE; | |
978 | vm_page_wire(m); | |
979 | } | |
980 | ||
981 | vm_page_unlock_queues(); | |
982 | vm_object_unlock(object); | |
983 | if(m->dirty || m->object->internal) { | |
984 | CLUSTER_STAT(pages_at_lower_offsets++;) | |
985 | } | |
986 | ||
987 | } | |
988 | cluster_start += PAGE_SIZE_64; | |
989 | } | |
990 | assert(cluster_start >= cluster_lower_bound); | |
991 | assert(cluster_start <= offset); | |
992 | /* | |
993 | * Search forward for adjacent eligible pages to clean in | |
994 | * this operation. | |
995 | */ | |
996 | for (cluster_end = offset + PAGE_SIZE_64; | |
997 | cluster_end < cluster_upper_bound; | |
998 | cluster_end += PAGE_SIZE_64) { | |
999 | assert(cluster_size > PAGE_SIZE); | |
1000 | ||
1001 | vm_object_lock(object); | |
1002 | vm_page_lock_queues(); | |
1003 | ||
1004 | if ((friend = vm_pageout_cluster_page(object, cluster_end, | |
1005 | precious_clean)) == VM_PAGE_NULL) { | |
1006 | vm_page_unlock_queues(); | |
1007 | vm_object_unlock(object); | |
1008 | break; | |
1009 | } | |
1010 | new_offset = (cluster_end + object->paging_offset) | |
1011 | & (cluster_size - 1); | |
1012 | ||
1013 | assert(new_offset < cluster_size); | |
1014 | m->list_req_pending = TRUE; | |
1015 | m->cleaning = TRUE; | |
1016 | /* do nothing except advance the write request, all we really need to */ | |
1017 | /* do is push the target page and let the code at the other end decide */ | |
1018 | /* what is really the right size */ | |
1019 | if (vm_page_free_count <= vm_page_free_reserved) { | |
1020 | m->busy = TRUE; | |
1021 | m->pageout = TRUE; | |
1022 | vm_page_wire(m); | |
1023 | } | |
1024 | ||
1025 | vm_page_unlock_queues(); | |
1026 | vm_object_unlock(object); | |
1027 | ||
1028 | if(m->dirty || m->object->internal) { | |
1029 | CLUSTER_STAT(pages_at_higher_offsets++;) | |
1030 | } | |
1031 | } | |
1032 | assert(cluster_end <= cluster_upper_bound); | |
1033 | assert(cluster_end >= offset + PAGE_SIZE); | |
1034 | ||
1035 | /* | |
1036 | * (offset - cluster_offset) is beginning of cluster_object | |
1037 | * relative to vm_object start. | |
1038 | */ | |
1039 | offset_within_cluster = cluster_start - (offset - cluster_offset); | |
1040 | length_of_data = cluster_end - cluster_start; | |
1041 | ||
1042 | assert(offset_within_cluster < cluster_size); | |
1043 | assert((offset_within_cluster + length_of_data) <= cluster_size); | |
1044 | ||
1045 | rc = KERN_SUCCESS; | |
1046 | assert(rc == KERN_SUCCESS); | |
1047 | ||
1048 | pages_in_cluster = length_of_data/PAGE_SIZE; | |
1c79356b A |
1049 | |
1050 | #if MACH_CLUSTER_STATS | |
1051 | (cluster_stats[pages_at_lower_offsets].pages_at_lower_offsets)++; | |
1052 | (cluster_stats[pages_at_higher_offsets].pages_at_higher_offsets)++; | |
1053 | (cluster_stats[pages_in_cluster].pages_in_cluster)++; | |
1054 | #endif /* MACH_CLUSTER_STATS */ | |
1055 | ||
1056 | /* | |
1057 | * Send the data to the pager. | |
1058 | */ | |
1059 | paging_offset = cluster_start + object->paging_offset; | |
0b4e3aa0 | 1060 | |
1c79356b | 1061 | rc = memory_object_data_return(object->pager, |
1c79356b | 1062 | paging_offset, |
1c79356b A |
1063 | length_of_data, |
1064 | !precious_clean, | |
1065 | FALSE); | |
0b4e3aa0 | 1066 | |
1c79356b A |
1067 | vm_object_lock(object); |
1068 | vm_object_paging_end(object); | |
1069 | ||
1070 | if (holding_page) { | |
1071 | assert(!object->pager_trusted); | |
1072 | VM_PAGE_FREE(holding_page); | |
1073 | vm_object_paging_end(object); | |
1074 | } | |
1075 | ||
1076 | vm_object_unlock(object); | |
1077 | } | |
1078 | ||
1c79356b A |
1079 | /* |
1080 | * Trusted pager throttle. | |
1081 | * Object must be unlocked, page queues must be unlocked. | |
1082 | */ | |
1083 | void | |
1084 | vm_pageout_throttle( | |
1085 | register vm_page_t m) | |
1086 | { | |
1087 | vm_page_lock_queues(); | |
1088 | assert(!m->laundry); | |
1089 | m->laundry = TRUE; | |
1090 | while (vm_page_laundry_count >= vm_page_laundry_max) { | |
1091 | /* | |
1092 | * Set the threshold for when vm_page_free() | |
1093 | * should wake us up. | |
1094 | */ | |
1095 | vm_page_laundry_min = vm_page_laundry_max/2; | |
0b4e3aa0 | 1096 | |
1c79356b A |
1097 | assert_wait((event_t) &vm_page_laundry_count, THREAD_UNINT); |
1098 | vm_page_unlock_queues(); | |
1099 | ||
1100 | /* | |
1101 | * Pause to let the default pager catch up. | |
1102 | */ | |
1103 | thread_block((void (*)(void)) 0); | |
1104 | vm_page_lock_queues(); | |
1105 | } | |
1106 | vm_page_laundry_count++; | |
1107 | vm_page_unlock_queues(); | |
1108 | } | |
1109 | ||
1110 | /* | |
1111 | * The global variable vm_pageout_clean_active_pages controls whether | |
1112 | * active pages are considered valid to be cleaned in place during a | |
1113 | * clustered pageout. Performance measurements are necessary to determine | |
1114 | * the best policy. | |
1115 | */ | |
1116 | int vm_pageout_clean_active_pages = 1; | |
1117 | /* | |
1118 | * vm_pageout_cluster_page: [Internal] | |
1119 | * | |
1120 | * return a vm_page_t to the page at (object,offset) if it is appropriate | |
1121 | * to clean in place. Pages that are non-existent, busy, absent, already | |
1122 | * cleaning, or not dirty are not eligible to be cleaned as an adjacent | |
1123 | * page in a cluster. | |
1124 | * | |
1125 | * The object must be locked on entry, and remains locked throughout | |
1126 | * this call. | |
1127 | */ | |
1128 | ||
1129 | vm_page_t | |
1130 | vm_pageout_cluster_page( | |
1131 | vm_object_t object, | |
1132 | vm_object_offset_t offset, | |
1133 | boolean_t precious_clean) | |
1134 | { | |
1135 | vm_page_t m; | |
1136 | ||
1137 | XPR(XPR_VM_PAGEOUT, | |
1138 | "vm_pageout_cluster_page, object 0x%X offset 0x%X\n", | |
1139 | (integer_t)object, offset, 0, 0, 0); | |
1140 | ||
1141 | if ((m = vm_page_lookup(object, offset)) == VM_PAGE_NULL) | |
1142 | return(VM_PAGE_NULL); | |
1143 | ||
1144 | if (m->busy || m->absent || m->cleaning || | |
1c79356b A |
1145 | (m->wire_count != 0) || m->error) |
1146 | return(VM_PAGE_NULL); | |
1147 | ||
1148 | if (vm_pageout_clean_active_pages) { | |
1149 | if (!m->active && !m->inactive) return(VM_PAGE_NULL); | |
1150 | } else { | |
1151 | if (!m->inactive) return(VM_PAGE_NULL); | |
1152 | } | |
1153 | ||
1154 | assert(!m->private); | |
1155 | assert(!m->fictitious); | |
1156 | ||
d7e50217 | 1157 | if (!m->dirty) m->dirty = pmap_is_modified(m->phys_page); |
1c79356b A |
1158 | |
1159 | if (precious_clean) { | |
1160 | if (!m->precious || !m->dirty) | |
1161 | return(VM_PAGE_NULL); | |
1162 | } else { | |
1163 | if (!m->dirty) | |
1164 | return(VM_PAGE_NULL); | |
1165 | } | |
1166 | return(m); | |
1167 | } | |
1168 | ||
1169 | /* | |
1170 | * vm_pageout_scan does the dirty work for the pageout daemon. | |
1171 | * It returns with vm_page_queue_free_lock held and | |
1172 | * vm_page_free_wanted == 0. | |
1173 | */ | |
1174 | extern void vm_pageout_scan_continue(void); /* forward; */ | |
1175 | ||
1176 | void | |
1177 | vm_pageout_scan(void) | |
1178 | { | |
1179 | unsigned int burst_count; | |
1180 | boolean_t now = FALSE; | |
1181 | unsigned int laundry_pages; | |
1182 | boolean_t need_more_inactive_pages; | |
1183 | unsigned int loop_detect; | |
1184 | ||
1185 | XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0); | |
1186 | ||
1187 | /*???*/ /* | |
1188 | * We want to gradually dribble pages from the active queue | |
1189 | * to the inactive queue. If we let the inactive queue get | |
1190 | * very small, and then suddenly dump many pages into it, | |
1191 | * those pages won't get a sufficient chance to be referenced | |
1192 | * before we start taking them from the inactive queue. | |
1193 | * | |
1194 | * We must limit the rate at which we send pages to the pagers. | |
1195 | * data_write messages consume memory, for message buffers and | |
1196 | * for map-copy objects. If we get too far ahead of the pagers, | |
1197 | * we can potentially run out of memory. | |
1198 | * | |
1199 | * We can use the laundry count to limit directly the number | |
1200 | * of pages outstanding to the default pager. A similar | |
1201 | * strategy for external pagers doesn't work, because | |
1202 | * external pagers don't have to deallocate the pages sent them, | |
1203 | * and because we might have to send pages to external pagers | |
1204 | * even if they aren't processing writes. So we also | |
1205 | * use a burst count to limit writes to external pagers. | |
1206 | * | |
1207 | * When memory is very tight, we can't rely on external pagers to | |
1208 | * clean pages. They probably aren't running, because they | |
1209 | * aren't vm-privileged. If we kept sending dirty pages to them, | |
1210 | * we could exhaust the free list. However, we can't just ignore | |
1211 | * pages belonging to external objects, because there might be no | |
1212 | * pages belonging to internal objects. Hence, we get the page | |
1213 | * into an internal object and then immediately double-page it, | |
1214 | * sending it to the default pager. | |
1215 | * | |
1216 | * consider_zone_gc should be last, because the other operations | |
1217 | * might return memory to zones. | |
1218 | */ | |
1219 | ||
0b4e3aa0 | 1220 | |
1c79356b A |
1221 | Restart: |
1222 | ||
0b4e3aa0 | 1223 | #if THREAD_SWAPPER |
1c79356b A |
1224 | mutex_lock(&vm_page_queue_free_lock); |
1225 | now = (vm_page_free_count < vm_page_free_min); | |
1226 | mutex_unlock(&vm_page_queue_free_lock); | |
0b4e3aa0 | 1227 | |
1c79356b A |
1228 | swapout_threads(now); |
1229 | #endif /* THREAD_SWAPPER */ | |
1230 | ||
1231 | stack_collect(); | |
1232 | consider_task_collect(); | |
1233 | consider_thread_collect(); | |
1c79356b A |
1234 | consider_zone_gc(); |
1235 | consider_machine_collect(); | |
1236 | ||
1237 | loop_detect = vm_page_active_count + vm_page_inactive_count; | |
1238 | #if 0 | |
1239 | if (vm_page_free_count <= vm_page_free_reserved) { | |
1240 | need_more_inactive_pages = TRUE; | |
1241 | } else { | |
1242 | need_more_inactive_pages = FALSE; | |
1243 | } | |
1244 | #else | |
1245 | need_more_inactive_pages = FALSE; | |
1246 | #endif | |
1247 | ||
1248 | for (burst_count = 0;;) { | |
1249 | register vm_page_t m; | |
1250 | register vm_object_t object; | |
1c79356b A |
1251 | |
1252 | /* | |
1253 | * Recalculate vm_page_inactivate_target. | |
1254 | */ | |
1255 | ||
1256 | vm_page_lock_queues(); | |
1257 | vm_page_inactive_target = | |
1258 | VM_PAGE_INACTIVE_TARGET(vm_page_active_count + | |
1259 | vm_page_inactive_count); | |
1260 | ||
1261 | /* | |
1262 | * Move pages from active to inactive. | |
1263 | */ | |
1264 | ||
1265 | while ((vm_page_inactive_count < vm_page_inactive_target || | |
1266 | need_more_inactive_pages) && | |
1267 | !queue_empty(&vm_page_queue_active)) { | |
1268 | register vm_object_t object; | |
1269 | ||
1270 | vm_pageout_active++; | |
1271 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
1272 | ||
1273 | /* | |
1274 | * If we're getting really low on memory, | |
1275 | * try selecting a page that will go | |
1276 | * directly to the default_pager. | |
1277 | * If there are no such pages, we have to | |
1278 | * page out a page backed by an EMM, | |
1279 | * so that the default_pager can recover | |
1280 | * it eventually. | |
1281 | */ | |
1282 | if (need_more_inactive_pages && | |
1283 | (IP_VALID(memory_manager_default))) { | |
1284 | vm_pageout_scan_active_emm_throttle++; | |
1285 | do { | |
1286 | assert(m->active && !m->inactive); | |
1287 | object = m->object; | |
1288 | ||
1289 | if (vm_object_lock_try(object)) { | |
1290 | #if 0 | |
1291 | if (object->pager_trusted || | |
1292 | object->internal) { | |
1293 | /* found one ! */ | |
1294 | vm_pageout_scan_active_emm_throttle_success++; | |
1295 | goto object_locked_active; | |
1296 | } | |
1297 | #else | |
1298 | vm_pageout_scan_active_emm_throttle_success++; | |
1299 | goto object_locked_active; | |
1300 | #endif | |
1301 | vm_object_unlock(object); | |
1302 | } | |
1303 | m = (vm_page_t) queue_next(&m->pageq); | |
1304 | } while (!queue_end(&vm_page_queue_active, | |
1305 | (queue_entry_t) m)); | |
1306 | if (queue_end(&vm_page_queue_active, | |
1307 | (queue_entry_t) m)) { | |
1308 | vm_pageout_scan_active_emm_throttle_failure++; | |
1309 | m = (vm_page_t) | |
1310 | queue_first(&vm_page_queue_active); | |
1311 | } | |
1312 | } | |
1313 | ||
1314 | assert(m->active && !m->inactive); | |
1315 | ||
1316 | object = m->object; | |
1317 | if (!vm_object_lock_try(object)) { | |
1318 | /* | |
1319 | * Move page to end and continue. | |
1320 | */ | |
1321 | ||
1322 | queue_remove(&vm_page_queue_active, m, | |
1323 | vm_page_t, pageq); | |
1324 | queue_enter(&vm_page_queue_active, m, | |
1325 | vm_page_t, pageq); | |
1326 | vm_page_unlock_queues(); | |
0b4e3aa0 | 1327 | |
1c79356b A |
1328 | mutex_pause(); |
1329 | vm_page_lock_queues(); | |
1330 | continue; | |
1331 | } | |
1332 | ||
1333 | object_locked_active: | |
1334 | /* | |
1335 | * If the page is busy, then we pull it | |
1336 | * off the active queue and leave it alone. | |
1337 | */ | |
1338 | ||
1339 | if (m->busy) { | |
1340 | vm_object_unlock(object); | |
1341 | queue_remove(&vm_page_queue_active, m, | |
1342 | vm_page_t, pageq); | |
1343 | m->active = FALSE; | |
1344 | if (!m->fictitious) | |
1345 | vm_page_active_count--; | |
1346 | continue; | |
1347 | } | |
1348 | ||
1349 | /* | |
1350 | * Deactivate the page while holding the object | |
1351 | * locked, so we know the page is still not busy. | |
1352 | * This should prevent races between pmap_enter | |
1353 | * and pmap_clear_reference. The page might be | |
1354 | * absent or fictitious, but vm_page_deactivate | |
1355 | * can handle that. | |
1356 | */ | |
1357 | ||
1358 | vm_page_deactivate(m); | |
1359 | vm_object_unlock(object); | |
1360 | } | |
1361 | ||
1362 | /* | |
1363 | * We are done if we have met our target *and* | |
1364 | * nobody is still waiting for a page. | |
1365 | */ | |
0b4e3aa0 A |
1366 | if (vm_page_free_count >= vm_page_free_target) { |
1367 | mutex_lock(&vm_page_queue_free_lock); | |
1368 | if ((vm_page_free_count >= vm_page_free_target) && | |
1369 | (vm_page_free_wanted == 0)) { | |
1370 | vm_page_unlock_queues(); | |
1371 | break; | |
1372 | } | |
1373 | mutex_unlock(&vm_page_queue_free_lock); | |
1c79356b | 1374 | } |
1c79356b A |
1375 | /* |
1376 | * Sometimes we have to pause: | |
1377 | * 1) No inactive pages - nothing to do. | |
1378 | * 2) Flow control - wait for untrusted pagers to catch up. | |
1379 | */ | |
1380 | ||
9bccf70c A |
1381 | if ((queue_empty(&vm_page_queue_inactive) && |
1382 | (queue_empty(&vm_page_queue_zf))) || | |
1c79356b A |
1383 | ((--loop_detect) == 0) || |
1384 | (burst_count >= vm_pageout_burst_max)) { | |
1385 | unsigned int pages, msecs; | |
1386 | int wait_result; | |
1387 | ||
1388 | consider_machine_adjust(); | |
1389 | /* | |
1390 | * vm_pageout_burst_wait is msecs/page. | |
1391 | * If there is nothing for us to do, we wait | |
1392 | * at least vm_pageout_empty_wait msecs. | |
1393 | */ | |
1394 | pages = burst_count; | |
1395 | ||
1396 | if (loop_detect == 0) { | |
1397 | printf("Warning: No physical memory suitable for pageout or reclaim, pageout thread temporarily going to sleep\n"); | |
1398 | msecs = vm_free_page_pause; | |
1399 | } | |
1400 | else { | |
1401 | msecs = burst_count * vm_pageout_burst_wait; | |
1402 | } | |
1403 | ||
1404 | if (queue_empty(&vm_page_queue_inactive) && | |
9bccf70c | 1405 | queue_empty(&vm_page_queue_zf) && |
1c79356b A |
1406 | (msecs < vm_pageout_empty_wait)) |
1407 | msecs = vm_pageout_empty_wait; | |
1408 | vm_page_unlock_queues(); | |
0b4e3aa0 | 1409 | |
1c79356b A |
1410 | assert_wait_timeout(msecs, THREAD_INTERRUPTIBLE); |
1411 | counter(c_vm_pageout_scan_block++); | |
1412 | ||
1413 | /* | |
1414 | * Unfortunately, we don't have call_continuation | |
1415 | * so we can't rely on tail-recursion. | |
1416 | */ | |
1417 | wait_result = thread_block((void (*)(void)) 0); | |
1418 | if (wait_result != THREAD_TIMED_OUT) | |
1419 | thread_cancel_timer(); | |
1420 | vm_pageout_scan_continue(); | |
0b4e3aa0 | 1421 | |
1c79356b A |
1422 | goto Restart; |
1423 | /*NOTREACHED*/ | |
1424 | } | |
1425 | ||
1426 | vm_pageout_inactive++; | |
9bccf70c A |
1427 | |
1428 | if (vm_zf_count < vm_accellerate_zf_pageout_trigger) { | |
1429 | vm_zf_iterator = 0; | |
1430 | } else { | |
1431 | last_page_zf = 0; | |
1432 | if((vm_zf_iterator+=1) >= vm_zf_iterator_count) { | |
1433 | vm_zf_iterator = 0; | |
1434 | } | |
1435 | } | |
1436 | if(queue_empty(&vm_page_queue_zf) || | |
1437 | (((last_page_zf) || (vm_zf_iterator == 0)) && | |
1438 | !queue_empty(&vm_page_queue_inactive))) { | |
1439 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
1440 | last_page_zf = 0; | |
1441 | } else { | |
1442 | m = (vm_page_t) queue_first(&vm_page_queue_zf); | |
1443 | last_page_zf = 1; | |
1444 | } | |
1c79356b A |
1445 | |
1446 | if ((vm_page_free_count <= vm_page_free_reserved) && | |
1447 | (IP_VALID(memory_manager_default))) { | |
1448 | /* | |
1449 | * We're really low on memory. Try to select a page that | |
1450 | * would go directly to the default_pager. | |
1451 | * If there are no such pages, we have to page out a | |
1452 | * page backed by an EMM, so that the default_pager | |
1453 | * can recover it eventually. | |
1454 | */ | |
1455 | vm_pageout_scan_inactive_emm_throttle++; | |
1456 | do { | |
1457 | assert(!m->active && m->inactive); | |
1458 | object = m->object; | |
1459 | ||
1460 | if (vm_object_lock_try(object)) { | |
1461 | #if 0 | |
1462 | if (object->pager_trusted || | |
1463 | object->internal) { | |
1464 | /* found one ! */ | |
1465 | vm_pageout_scan_inactive_emm_throttle_success++; | |
1466 | goto object_locked_inactive; | |
1467 | } | |
1468 | #else | |
1469 | vm_pageout_scan_inactive_emm_throttle_success++; | |
1470 | goto object_locked_inactive; | |
1471 | #endif /* 0 */ | |
1472 | vm_object_unlock(object); | |
1473 | } | |
1474 | m = (vm_page_t) queue_next(&m->pageq); | |
9bccf70c A |
1475 | } while ((!queue_end(&vm_page_queue_zf, |
1476 | (queue_entry_t) m)) | |
1477 | && (!queue_end(&vm_page_queue_inactive, | |
1478 | (queue_entry_t) m))); | |
1479 | ||
1480 | if ((queue_end(&vm_page_queue_zf, | |
1481 | (queue_entry_t) m)) | |
1482 | || (queue_end(&vm_page_queue_inactive, | |
1483 | (queue_entry_t) m))) { | |
1c79356b A |
1484 | vm_pageout_scan_inactive_emm_throttle_failure++; |
1485 | /* | |
1486 | * We should check the "active" queue | |
1487 | * for good candidates to page out. | |
1488 | */ | |
1489 | need_more_inactive_pages = TRUE; | |
1490 | ||
9bccf70c A |
1491 | if(last_page_zf == 0) { |
1492 | last_page_zf = 1; | |
1493 | vm_zf_iterator = vm_zf_iterator_count - 1; | |
1494 | } else { | |
1495 | last_page_zf = 0; | |
1496 | vm_zf_iterator = vm_zf_iterator_count - 2; | |
1497 | } | |
1498 | vm_page_unlock_queues(); | |
1499 | goto Restart; | |
1c79356b A |
1500 | } |
1501 | } | |
1502 | ||
1503 | assert(!m->active && m->inactive); | |
1504 | object = m->object; | |
1505 | ||
1506 | /* | |
1507 | * Try to lock object; since we've got the | |
1508 | * page queues lock, we can only try for this one. | |
1509 | */ | |
1510 | ||
1511 | if (!vm_object_lock_try(object)) { | |
1512 | /* | |
1513 | * Move page to end and continue. | |
0b4e3aa0 | 1514 | * Don't re-issue ticket |
1c79356b | 1515 | */ |
9bccf70c A |
1516 | if(m->zero_fill) { |
1517 | queue_remove(&vm_page_queue_zf, m, | |
1518 | vm_page_t, pageq); | |
1519 | queue_enter(&vm_page_queue_zf, m, | |
1520 | vm_page_t, pageq); | |
1521 | } else { | |
1522 | queue_remove(&vm_page_queue_inactive, m, | |
1c79356b | 1523 | vm_page_t, pageq); |
9bccf70c | 1524 | queue_enter(&vm_page_queue_inactive, m, |
1c79356b | 1525 | vm_page_t, pageq); |
9bccf70c | 1526 | } |
1c79356b | 1527 | vm_page_unlock_queues(); |
0b4e3aa0 | 1528 | |
1c79356b A |
1529 | mutex_pause(); |
1530 | vm_pageout_inactive_nolock++; | |
1531 | continue; | |
1532 | } | |
1533 | ||
1534 | object_locked_inactive: | |
1535 | /* | |
1536 | * Paging out pages of objects which pager is being | |
1537 | * created by another thread must be avoided, because | |
1538 | * this thread may claim for memory, thus leading to a | |
1539 | * possible dead lock between it and the pageout thread | |
1540 | * which will wait for pager creation, if such pages are | |
1541 | * finally chosen. The remaining assumption is that there | |
1542 | * will finally be enough available pages in the inactive | |
1543 | * pool to page out in order to satisfy all memory claimed | |
1544 | * by the thread which concurrently creates the pager. | |
1545 | */ | |
1546 | ||
1547 | if (!object->pager_initialized && object->pager_created) { | |
1548 | /* | |
1549 | * Move page to end and continue, hoping that | |
1550 | * there will be enough other inactive pages to | |
1551 | * page out so that the thread which currently | |
1552 | * initializes the pager will succeed. | |
0b4e3aa0 A |
1553 | * Don't re-grant the ticket, the page should |
1554 | * pulled from the queue and paged out whenever | |
1555 | * one of its logically adjacent fellows is | |
1556 | * targeted. | |
1c79356b | 1557 | */ |
9bccf70c A |
1558 | if(m->zero_fill) { |
1559 | queue_remove(&vm_page_queue_zf, m, | |
1560 | vm_page_t, pageq); | |
1561 | queue_enter(&vm_page_queue_zf, m, | |
1562 | vm_page_t, pageq); | |
1563 | last_page_zf = 1; | |
1564 | vm_zf_iterator = vm_zf_iterator_count - 1; | |
1565 | } else { | |
1566 | queue_remove(&vm_page_queue_inactive, m, | |
1567 | vm_page_t, pageq); | |
1568 | queue_enter(&vm_page_queue_inactive, m, | |
1569 | vm_page_t, pageq); | |
1570 | last_page_zf = 0; | |
1571 | vm_zf_iterator = 1; | |
1572 | } | |
1c79356b A |
1573 | vm_page_unlock_queues(); |
1574 | vm_object_unlock(object); | |
1575 | vm_pageout_inactive_avoid++; | |
1576 | continue; | |
1577 | } | |
1578 | ||
1579 | /* | |
1580 | * Remove the page from the inactive list. | |
1581 | */ | |
1582 | ||
9bccf70c A |
1583 | if(m->zero_fill) { |
1584 | queue_remove(&vm_page_queue_zf, m, vm_page_t, pageq); | |
1585 | } else { | |
1586 | queue_remove(&vm_page_queue_inactive, m, vm_page_t, pageq); | |
1587 | } | |
1c79356b A |
1588 | m->inactive = FALSE; |
1589 | if (!m->fictitious) | |
1590 | vm_page_inactive_count--; | |
1591 | ||
1592 | if (m->busy || !object->alive) { | |
1593 | /* | |
1594 | * Somebody is already playing with this page. | |
1595 | * Leave it off the pageout queues. | |
1596 | */ | |
1597 | ||
1598 | vm_page_unlock_queues(); | |
1599 | vm_object_unlock(object); | |
1600 | vm_pageout_inactive_busy++; | |
1601 | continue; | |
1602 | } | |
1603 | ||
1604 | /* | |
1605 | * If it's absent or in error, we can reclaim the page. | |
1606 | */ | |
1607 | ||
1608 | if (m->absent || m->error) { | |
1609 | vm_pageout_inactive_absent++; | |
1610 | reclaim_page: | |
1611 | vm_page_free(m); | |
1612 | vm_page_unlock_queues(); | |
1613 | vm_object_unlock(object); | |
1614 | continue; | |
1615 | } | |
1616 | ||
1617 | assert(!m->private); | |
1618 | assert(!m->fictitious); | |
1619 | ||
1620 | /* | |
1621 | * If already cleaning this page in place, convert from | |
1622 | * "adjacent" to "target". We can leave the page mapped, | |
1623 | * and vm_pageout_object_terminate will determine whether | |
1624 | * to free or reactivate. | |
1625 | */ | |
1626 | ||
1627 | if (m->cleaning) { | |
1628 | #if MACH_CLUSTER_STATS | |
1629 | vm_pageout_cluster_conversions++; | |
1630 | #endif | |
0b4e3aa0 A |
1631 | m->busy = TRUE; |
1632 | m->pageout = TRUE; | |
1633 | m->dump_cleaning = TRUE; | |
1634 | vm_page_wire(m); | |
1c79356b A |
1635 | vm_object_unlock(object); |
1636 | vm_page_unlock_queues(); | |
1637 | continue; | |
1638 | } | |
1639 | ||
1640 | /* | |
1641 | * If it's being used, reactivate. | |
1642 | * (Fictitious pages are either busy or absent.) | |
1643 | */ | |
1644 | ||
d7e50217 | 1645 | if (m->reference || pmap_is_referenced(m->phys_page)) { |
1c79356b A |
1646 | vm_pageout_inactive_used++; |
1647 | reactivate_page: | |
1648 | #if ADVISORY_PAGEOUT | |
1649 | if (m->discard_request) { | |
1650 | m->discard_request = FALSE; | |
1651 | } | |
1652 | #endif /* ADVISORY_PAGEOUT */ | |
9bccf70c | 1653 | last_page_zf = 0; |
1c79356b A |
1654 | vm_object_unlock(object); |
1655 | vm_page_activate(m); | |
1656 | VM_STAT(reactivations++); | |
1657 | vm_page_unlock_queues(); | |
1658 | continue; | |
1659 | } | |
1660 | ||
1c79356b A |
1661 | #if ADVISORY_PAGEOUT |
1662 | if (object->advisory_pageout) { | |
1663 | boolean_t do_throttle; | |
0b4e3aa0 | 1664 | memory_object_t pager; |
1c79356b A |
1665 | vm_object_offset_t discard_offset; |
1666 | ||
1667 | if (m->discard_request) { | |
1668 | vm_stat_discard_failure++; | |
1669 | goto mandatory_pageout; | |
1670 | } | |
1671 | ||
1672 | assert(object->pager_initialized); | |
1673 | m->discard_request = TRUE; | |
0b4e3aa0 | 1674 | pager = object->pager; |
1c79356b A |
1675 | |
1676 | /* system-wide throttle */ | |
1677 | do_throttle = (vm_page_free_count <= | |
1678 | vm_page_free_reserved); | |
0b4e3aa0 A |
1679 | |
1680 | #if 0 | |
1681 | /* | |
1682 | * JMM - Do we need a replacement throttle | |
1683 | * mechanism for pagers? | |
1684 | */ | |
1c79356b A |
1685 | if (!do_throttle) { |
1686 | /* throttle on this pager */ | |
1687 | /* XXX lock ordering ? */ | |
1688 | ip_lock(port); | |
1689 | do_throttle= imq_full(&port->ip_messages); | |
1690 | ip_unlock(port); | |
1691 | } | |
0b4e3aa0 A |
1692 | #endif |
1693 | ||
1c79356b A |
1694 | if (do_throttle) { |
1695 | vm_stat_discard_throttle++; | |
1696 | #if 0 | |
1697 | /* ignore this page and skip to next */ | |
1698 | vm_page_unlock_queues(); | |
1699 | vm_object_unlock(object); | |
1700 | continue; | |
1701 | #else | |
1702 | /* force mandatory pageout */ | |
1703 | goto mandatory_pageout; | |
1704 | #endif | |
1705 | } | |
1706 | ||
1707 | /* proceed with discard_request */ | |
1708 | vm_page_activate(m); | |
1709 | vm_stat_discard++; | |
1710 | VM_STAT(reactivations++); | |
1711 | discard_offset = m->offset + object->paging_offset; | |
1712 | vm_stat_discard_sent++; | |
1713 | vm_page_unlock_queues(); | |
1714 | vm_object_unlock(object); | |
0b4e3aa0 | 1715 | |
1c79356b A |
1716 | /* |
1717 | memory_object_discard_request(object->pager, | |
1c79356b A |
1718 | discard_offset, |
1719 | PAGE_SIZE); | |
1720 | */ | |
1721 | continue; | |
1722 | } | |
1723 | mandatory_pageout: | |
1724 | #endif /* ADVISORY_PAGEOUT */ | |
1725 | ||
1726 | XPR(XPR_VM_PAGEOUT, | |
1727 | "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n", | |
1728 | (integer_t)object, (integer_t)m->offset, (integer_t)m, 0,0); | |
1729 | ||
1730 | /* | |
1731 | * Eliminate all mappings. | |
1732 | */ | |
1733 | ||
1734 | m->busy = TRUE; | |
d7e50217 | 1735 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
0b4e3aa0 | 1736 | |
1c79356b | 1737 | if (!m->dirty) |
d7e50217 | 1738 | m->dirty = pmap_is_modified(m->phys_page); |
1c79356b A |
1739 | /* |
1740 | * If it's clean and not precious, we can free the page. | |
1741 | */ | |
1742 | ||
1743 | if (!m->dirty && !m->precious) { | |
1744 | vm_pageout_inactive_clean++; | |
1745 | goto reclaim_page; | |
1746 | } | |
1747 | vm_page_unlock_queues(); | |
1748 | ||
1749 | /* | |
1750 | * If there is no memory object for the page, create | |
1751 | * one and hand it to the default pager. | |
1752 | */ | |
1753 | ||
1754 | if (!object->pager_initialized) | |
1755 | vm_object_collapse(object); | |
1756 | if (!object->pager_initialized) | |
1757 | vm_object_pager_create(object); | |
1758 | if (!object->pager_initialized) { | |
1759 | /* | |
1760 | * Still no pager for the object. | |
1761 | * Reactivate the page. | |
1762 | * | |
1763 | * Should only happen if there is no | |
1764 | * default pager. | |
1765 | */ | |
1766 | vm_page_lock_queues(); | |
1767 | vm_page_activate(m); | |
1768 | vm_page_unlock_queues(); | |
1769 | ||
1770 | /* | |
1771 | * And we are done with it. | |
1772 | */ | |
1773 | PAGE_WAKEUP_DONE(m); | |
1774 | vm_object_unlock(object); | |
1775 | ||
1776 | /* | |
1777 | * break here to get back to the preemption | |
1778 | * point in the outer loop so that we don't | |
1779 | * spin forever if there is no default pager. | |
1780 | */ | |
1781 | vm_pageout_dirty_no_pager++; | |
1782 | /* | |
1783 | * Well there's no pager, but we can still reclaim | |
1784 | * free pages out of the inactive list. Go back | |
1785 | * to top of loop and look for suitable pages. | |
1786 | */ | |
1787 | continue; | |
1788 | } | |
1789 | ||
0b4e3aa0 A |
1790 | if ((object->pager_initialized) && |
1791 | (object->pager == MEMORY_OBJECT_NULL)) { | |
1c79356b A |
1792 | /* |
1793 | * This pager has been destroyed by either | |
1794 | * memory_object_destroy or vm_object_destroy, and | |
1795 | * so there is nowhere for the page to go. | |
1796 | * Just free the page. | |
1797 | */ | |
1798 | VM_PAGE_FREE(m); | |
1799 | vm_object_unlock(object); | |
1800 | continue; | |
1801 | } | |
1802 | ||
1803 | vm_pageout_inactive_dirty++; | |
1804 | /* | |
1805 | if (!object->internal) | |
1806 | burst_count++; | |
1807 | */ | |
1808 | vm_object_paging_begin(object); | |
1809 | vm_object_unlock(object); | |
1810 | vm_pageout_cluster(m); /* flush it */ | |
1811 | } | |
1812 | consider_machine_adjust(); | |
1813 | } | |
1814 | ||
1815 | counter(unsigned int c_vm_pageout_scan_continue = 0;) | |
1816 | ||
1817 | void | |
1818 | vm_pageout_scan_continue(void) | |
1819 | { | |
1820 | /* | |
1821 | * We just paused to let the pagers catch up. | |
1822 | * If vm_page_laundry_count is still high, | |
1823 | * then we aren't waiting long enough. | |
1824 | * If we have paused some vm_pageout_pause_max times without | |
1825 | * adjusting vm_pageout_burst_wait, it might be too big, | |
1826 | * so we decrease it. | |
1827 | */ | |
1828 | ||
1829 | vm_page_lock_queues(); | |
1830 | counter(++c_vm_pageout_scan_continue); | |
1831 | if (vm_page_laundry_count > vm_pageout_burst_min) { | |
1832 | vm_pageout_burst_wait++; | |
1833 | vm_pageout_pause_count = 0; | |
1834 | } else if (++vm_pageout_pause_count > vm_pageout_pause_max) { | |
1835 | vm_pageout_burst_wait = (vm_pageout_burst_wait * 3) / 4; | |
1836 | if (vm_pageout_burst_wait < 1) | |
1837 | vm_pageout_burst_wait = 1; | |
1838 | vm_pageout_pause_count = 0; | |
1839 | } | |
1840 | vm_page_unlock_queues(); | |
1841 | } | |
1842 | ||
1843 | void vm_page_free_reserve(int pages); | |
1844 | int vm_page_free_count_init; | |
1845 | ||
1846 | void | |
1847 | vm_page_free_reserve( | |
1848 | int pages) | |
1849 | { | |
1850 | int free_after_reserve; | |
1851 | ||
1852 | vm_page_free_reserved += pages; | |
1853 | ||
1854 | free_after_reserve = vm_page_free_count_init - vm_page_free_reserved; | |
1855 | ||
1856 | vm_page_free_min = vm_page_free_reserved + | |
1857 | VM_PAGE_FREE_MIN(free_after_reserve); | |
1858 | ||
1859 | vm_page_free_target = vm_page_free_reserved + | |
1860 | VM_PAGE_FREE_TARGET(free_after_reserve); | |
1861 | ||
1862 | if (vm_page_free_target < vm_page_free_min + 5) | |
1863 | vm_page_free_target = vm_page_free_min + 5; | |
1864 | } | |
1865 | ||
1866 | /* | |
1867 | * vm_pageout is the high level pageout daemon. | |
1868 | */ | |
1869 | ||
1870 | ||
1871 | void | |
1872 | vm_pageout(void) | |
1873 | { | |
1874 | thread_t self = current_thread(); | |
0b4e3aa0 | 1875 | spl_t s; |
1c79356b A |
1876 | |
1877 | /* | |
1878 | * Set thread privileges. | |
1879 | */ | |
1880 | self->vm_privilege = TRUE; | |
1881 | stack_privilege(self); | |
0b4e3aa0 A |
1882 | |
1883 | s = splsched(); | |
1884 | thread_lock(self); | |
0b4e3aa0 | 1885 | self->priority = BASEPRI_PREEMPT - 1; |
9bccf70c | 1886 | set_sched_pri(self, self->priority); |
0b4e3aa0 A |
1887 | thread_unlock(self); |
1888 | splx(s); | |
1c79356b A |
1889 | |
1890 | /* | |
1891 | * Initialize some paging parameters. | |
1892 | */ | |
1893 | ||
1894 | if (vm_page_laundry_max == 0) | |
1895 | vm_page_laundry_max = VM_PAGE_LAUNDRY_MAX; | |
1896 | ||
1897 | if (vm_pageout_burst_max == 0) | |
1898 | vm_pageout_burst_max = VM_PAGEOUT_BURST_MAX; | |
1899 | ||
1900 | if (vm_pageout_burst_wait == 0) | |
1901 | vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT; | |
1902 | ||
1903 | if (vm_pageout_empty_wait == 0) | |
1904 | vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT; | |
1905 | ||
1906 | vm_page_free_count_init = vm_page_free_count; | |
9bccf70c | 1907 | vm_zf_iterator = 0; |
1c79356b A |
1908 | /* |
1909 | * even if we've already called vm_page_free_reserve | |
1910 | * call it again here to insure that the targets are | |
1911 | * accurately calculated (it uses vm_page_free_count_init) | |
1912 | * calling it with an arg of 0 will not change the reserve | |
1913 | * but will re-calculate free_min and free_target | |
1914 | */ | |
1915 | if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED) | |
1916 | vm_page_free_reserve(VM_PAGE_FREE_RESERVED - vm_page_free_reserved); | |
1917 | else | |
1918 | vm_page_free_reserve(0); | |
1919 | ||
1920 | /* | |
1921 | * vm_pageout_scan will set vm_page_inactive_target. | |
1922 | * | |
1923 | * The pageout daemon is never done, so loop forever. | |
1924 | * We should call vm_pageout_scan at least once each | |
1925 | * time we are woken, even if vm_page_free_wanted is | |
1926 | * zero, to check vm_page_free_target and | |
1927 | * vm_page_inactive_target. | |
1928 | */ | |
1929 | for (;;) { | |
0b4e3aa0 | 1930 | vm_pageout_scan_event_counter++; |
1c79356b A |
1931 | vm_pageout_scan(); |
1932 | /* we hold vm_page_queue_free_lock now */ | |
1933 | assert(vm_page_free_wanted == 0); | |
1934 | assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT); | |
1935 | mutex_unlock(&vm_page_queue_free_lock); | |
1936 | counter(c_vm_pageout_block++); | |
1937 | thread_block((void (*)(void)) 0); | |
1938 | } | |
1939 | /*NOTREACHED*/ | |
1940 | } | |
1941 | ||
9bccf70c A |
1942 | kern_return_t |
1943 | vm_pageout_emergency_availability_request() | |
1944 | { | |
1945 | vm_page_t m; | |
1946 | vm_object_t object; | |
1947 | ||
1948 | vm_page_lock_queues(); | |
1949 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
1950 | ||
1951 | while (!queue_end(&vm_page_queue_inactive, (queue_entry_t) m)) { | |
1952 | if(m->fictitious) { | |
1953 | m = (vm_page_t) queue_next(&m->pageq); | |
1954 | continue; | |
1955 | } | |
1956 | if (!m->dirty) | |
d7e50217 | 1957 | m->dirty = pmap_is_modified(m->phys_page); |
9bccf70c A |
1958 | if(m->dirty || m->busy || m->wire_count || m->absent |
1959 | || m->precious || m->cleaning | |
1960 | || m->dump_cleaning || m->error | |
1961 | || m->pageout || m->laundry | |
1962 | || m->list_req_pending | |
1963 | || m->overwriting) { | |
1964 | m = (vm_page_t) queue_next(&m->pageq); | |
1965 | continue; | |
1966 | } | |
1967 | object = m->object; | |
1968 | ||
1969 | if (vm_object_lock_try(object)) { | |
1970 | if((!object->alive) || | |
1971 | (object->pageout)) { | |
1972 | vm_object_unlock(object); | |
1973 | m = (vm_page_t) queue_next(&m->pageq); | |
1974 | continue; | |
1975 | } | |
1976 | m->busy = TRUE; | |
d7e50217 | 1977 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
9bccf70c A |
1978 | vm_page_free(m); |
1979 | vm_object_unlock(object); | |
1980 | vm_page_unlock_queues(); | |
1981 | return KERN_SUCCESS; | |
1982 | } | |
1983 | m = (vm_page_t) queue_next(&m->pageq); | |
1984 | } | |
1985 | ||
1986 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
1987 | ||
1988 | while (!queue_end(&vm_page_queue_active, (queue_entry_t) m)) { | |
1989 | if(m->fictitious) { | |
1990 | m = (vm_page_t) queue_next(&m->pageq); | |
1991 | continue; | |
1992 | } | |
1993 | if (!m->dirty) | |
d7e50217 | 1994 | m->dirty = pmap_is_modified(m->phys_page); |
9bccf70c A |
1995 | if(m->dirty || m->busy || m->wire_count || m->absent |
1996 | || m->precious || m->cleaning | |
1997 | || m->dump_cleaning || m->error | |
1998 | || m->pageout || m->laundry | |
1999 | || m->list_req_pending | |
2000 | || m->overwriting) { | |
2001 | m = (vm_page_t) queue_next(&m->pageq); | |
2002 | continue; | |
2003 | } | |
2004 | object = m->object; | |
2005 | ||
2006 | if (vm_object_lock_try(object)) { | |
2007 | if((!object->alive) || | |
2008 | (object->pageout)) { | |
2009 | vm_object_unlock(object); | |
2010 | m = (vm_page_t) queue_next(&m->pageq); | |
2011 | continue; | |
2012 | } | |
2013 | m->busy = TRUE; | |
d7e50217 | 2014 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
9bccf70c A |
2015 | vm_page_free(m); |
2016 | vm_object_unlock(object); | |
2017 | vm_page_unlock_queues(); | |
2018 | return KERN_SUCCESS; | |
2019 | } | |
2020 | m = (vm_page_t) queue_next(&m->pageq); | |
2021 | } | |
2022 | vm_page_unlock_queues(); | |
2023 | return KERN_FAILURE; | |
2024 | } | |
2025 | ||
1c79356b | 2026 | |
0b4e3aa0 A |
2027 | static upl_t |
2028 | upl_create( | |
d7e50217 | 2029 | int flags, |
9bccf70c | 2030 | vm_size_t size) |
0b4e3aa0 A |
2031 | { |
2032 | upl_t upl; | |
d7e50217 | 2033 | int page_field_size; /* bit field in word size buf */ |
0b4e3aa0 | 2034 | |
d7e50217 A |
2035 | page_field_size = 0; |
2036 | if (flags & UPL_CREATE_LITE) { | |
2037 | page_field_size = ((size/PAGE_SIZE) + 7) >> 3; | |
2038 | page_field_size = (page_field_size + 3) & 0xFFFFFFFC; | |
2039 | } | |
2040 | if(flags & UPL_CREATE_INTERNAL) { | |
0b4e3aa0 | 2041 | upl = (upl_t)kalloc(sizeof(struct upl) |
d7e50217 A |
2042 | + (sizeof(struct upl_page_info)*(size/PAGE_SIZE)) |
2043 | + page_field_size); | |
0b4e3aa0 | 2044 | } else { |
d7e50217 | 2045 | upl = (upl_t)kalloc(sizeof(struct upl) + page_field_size); |
0b4e3aa0 A |
2046 | } |
2047 | upl->flags = 0; | |
2048 | upl->src_object = NULL; | |
2049 | upl->kaddr = (vm_offset_t)0; | |
2050 | upl->size = 0; | |
2051 | upl->map_object = NULL; | |
2052 | upl->ref_count = 1; | |
2053 | upl_lock_init(upl); | |
2054 | #ifdef UBC_DEBUG | |
2055 | upl->ubc_alias1 = 0; | |
2056 | upl->ubc_alias2 = 0; | |
2057 | #endif /* UBC_DEBUG */ | |
2058 | return(upl); | |
2059 | } | |
2060 | ||
2061 | static void | |
2062 | upl_destroy( | |
2063 | upl_t upl) | |
2064 | { | |
d7e50217 | 2065 | int page_field_size; /* bit field in word size buf */ |
0b4e3aa0 A |
2066 | |
2067 | #ifdef UBC_DEBUG | |
2068 | { | |
2069 | upl_t upl_ele; | |
d7e50217 A |
2070 | vm_object_t object; |
2071 | if (upl->map_object->pageout) { | |
2072 | object = upl->map_object->shadow; | |
2073 | } else { | |
2074 | object = upl->map_object; | |
2075 | } | |
2076 | vm_object_lock(object); | |
2077 | queue_iterate(&object->uplq, upl_ele, upl_t, uplq) { | |
0b4e3aa0 | 2078 | if(upl_ele == upl) { |
d7e50217 A |
2079 | queue_remove(&object->uplq, |
2080 | upl_ele, upl_t, uplq); | |
0b4e3aa0 A |
2081 | break; |
2082 | } | |
2083 | } | |
d7e50217 | 2084 | vm_object_unlock(object); |
0b4e3aa0 A |
2085 | } |
2086 | #endif /* UBC_DEBUG */ | |
d7e50217 A |
2087 | /* drop a reference on the map_object whether or */ |
2088 | /* not a pageout object is inserted */ | |
2089 | if(upl->map_object->pageout) | |
0b4e3aa0 | 2090 | vm_object_deallocate(upl->map_object); |
d7e50217 A |
2091 | |
2092 | page_field_size = 0; | |
2093 | if (upl->flags & UPL_LITE) { | |
2094 | page_field_size = ((upl->size/PAGE_SIZE) + 7) >> 3; | |
2095 | page_field_size = (page_field_size + 3) & 0xFFFFFFFC; | |
2096 | } | |
0b4e3aa0 A |
2097 | if(upl->flags & UPL_INTERNAL) { |
2098 | kfree((vm_offset_t)upl, | |
2099 | sizeof(struct upl) + | |
d7e50217 A |
2100 | (sizeof(struct upl_page_info) * (upl->size/PAGE_SIZE)) |
2101 | + page_field_size); | |
0b4e3aa0 | 2102 | } else { |
d7e50217 | 2103 | kfree((vm_offset_t)upl, sizeof(struct upl) + page_field_size); |
0b4e3aa0 A |
2104 | } |
2105 | } | |
2106 | ||
2107 | __private_extern__ void | |
2108 | uc_upl_dealloc( | |
1c79356b A |
2109 | upl_t upl) |
2110 | { | |
2111 | upl->ref_count -= 1; | |
2112 | if(upl->ref_count == 0) { | |
2113 | upl_destroy(upl); | |
2114 | } | |
2115 | } | |
2116 | ||
0b4e3aa0 A |
2117 | void |
2118 | upl_deallocate( | |
2119 | upl_t upl) | |
2120 | { | |
2121 | ||
2122 | upl->ref_count -= 1; | |
2123 | if(upl->ref_count == 0) { | |
2124 | upl_destroy(upl); | |
2125 | } | |
2126 | } | |
1c79356b A |
2127 | |
2128 | /* | |
0b4e3aa0 | 2129 | * Routine: vm_object_upl_request |
1c79356b A |
2130 | * Purpose: |
2131 | * Cause the population of a portion of a vm_object. | |
2132 | * Depending on the nature of the request, the pages | |
2133 | * returned may be contain valid data or be uninitialized. | |
2134 | * A page list structure, listing the physical pages | |
2135 | * will be returned upon request. | |
2136 | * This function is called by the file system or any other | |
2137 | * supplier of backing store to a pager. | |
2138 | * IMPORTANT NOTE: The caller must still respect the relationship | |
2139 | * between the vm_object and its backing memory object. The | |
2140 | * caller MUST NOT substitute changes in the backing file | |
2141 | * without first doing a memory_object_lock_request on the | |
2142 | * target range unless it is know that the pages are not | |
2143 | * shared with another entity at the pager level. | |
2144 | * Copy_in_to: | |
2145 | * if a page list structure is present | |
2146 | * return the mapped physical pages, where a | |
2147 | * page is not present, return a non-initialized | |
2148 | * one. If the no_sync bit is turned on, don't | |
2149 | * call the pager unlock to synchronize with other | |
2150 | * possible copies of the page. Leave pages busy | |
2151 | * in the original object, if a page list structure | |
2152 | * was specified. When a commit of the page list | |
2153 | * pages is done, the dirty bit will be set for each one. | |
2154 | * Copy_out_from: | |
2155 | * If a page list structure is present, return | |
2156 | * all mapped pages. Where a page does not exist | |
2157 | * map a zero filled one. Leave pages busy in | |
2158 | * the original object. If a page list structure | |
2159 | * is not specified, this call is a no-op. | |
2160 | * | |
2161 | * Note: access of default pager objects has a rather interesting | |
2162 | * twist. The caller of this routine, presumably the file system | |
2163 | * page cache handling code, will never actually make a request | |
2164 | * against a default pager backed object. Only the default | |
2165 | * pager will make requests on backing store related vm_objects | |
2166 | * In this way the default pager can maintain the relationship | |
2167 | * between backing store files (abstract memory objects) and | |
2168 | * the vm_objects (cache objects), they support. | |
2169 | * | |
2170 | */ | |
0b4e3aa0 A |
2171 | __private_extern__ kern_return_t |
2172 | vm_object_upl_request( | |
1c79356b | 2173 | vm_object_t object, |
0b4e3aa0 A |
2174 | vm_object_offset_t offset, |
2175 | vm_size_t size, | |
1c79356b | 2176 | upl_t *upl_ptr, |
0b4e3aa0 A |
2177 | upl_page_info_array_t user_page_list, |
2178 | unsigned int *page_list_count, | |
2179 | int cntrl_flags) | |
1c79356b A |
2180 | { |
2181 | vm_page_t dst_page; | |
2182 | vm_object_offset_t dst_offset = offset; | |
1c79356b A |
2183 | vm_size_t xfer_size = size; |
2184 | boolean_t do_m_lock = FALSE; | |
2185 | boolean_t dirty; | |
2186 | upl_t upl = NULL; | |
2187 | int entry; | |
2188 | boolean_t encountered_lrp = FALSE; | |
2189 | ||
2190 | vm_page_t alias_page = NULL; | |
0b4e3aa0 | 2191 | int page_ticket; |
d7e50217 | 2192 | wpl_array_t lite_list; |
0b4e3aa0 A |
2193 | |
2194 | page_ticket = (cntrl_flags & UPL_PAGE_TICKET_MASK) | |
2195 | >> UPL_PAGE_TICKET_SHIFT; | |
2196 | ||
d7e50217 A |
2197 | if(((size/PAGE_SIZE) > MAX_UPL_TRANSFER) && !object->phys_contiguous) { |
2198 | size = MAX_UPL_TRANSFER * PAGE_SIZE; | |
0b4e3aa0 | 2199 | } |
1c79356b A |
2200 | |
2201 | if(cntrl_flags & UPL_SET_INTERNAL) | |
0b4e3aa0 A |
2202 | if(page_list_count != NULL) |
2203 | *page_list_count = MAX_UPL_TRANSFER; | |
2204 | if(((cntrl_flags & UPL_SET_INTERNAL) && !(object->phys_contiguous)) && | |
2205 | ((page_list_count != NULL) && (*page_list_count != 0) | |
2206 | && *page_list_count < (size/page_size))) | |
1c79356b A |
2207 | return KERN_INVALID_ARGUMENT; |
2208 | ||
2209 | if((!object->internal) && (object->paging_offset != 0)) | |
0b4e3aa0 | 2210 | panic("vm_object_upl_request: vnode object with non-zero paging offset\n"); |
1c79356b A |
2211 | |
2212 | if((cntrl_flags & UPL_COPYOUT_FROM) && (upl_ptr == NULL)) { | |
2213 | return KERN_SUCCESS; | |
2214 | } | |
d7e50217 | 2215 | |
1c79356b | 2216 | if(upl_ptr) { |
0b4e3aa0 | 2217 | if(cntrl_flags & UPL_SET_INTERNAL) { |
d7e50217 A |
2218 | if(cntrl_flags & UPL_SET_LITE) { |
2219 | vm_offset_t page_field_size; | |
2220 | upl = upl_create( | |
2221 | UPL_CREATE_INTERNAL | UPL_CREATE_LITE, | |
2222 | size); | |
2223 | user_page_list = (upl_page_info_t *) | |
2224 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
2225 | lite_list = (wpl_array_t) | |
2226 | (((vm_offset_t)user_page_list) + | |
2227 | ((size/PAGE_SIZE) * | |
2228 | sizeof(upl_page_info_t))); | |
2229 | page_field_size = ((size/PAGE_SIZE) + 7) >> 3; | |
2230 | page_field_size = | |
2231 | (page_field_size + 3) & 0xFFFFFFFC; | |
2232 | bzero((char *)lite_list, page_field_size); | |
2233 | upl->flags = | |
2234 | UPL_LITE | UPL_INTERNAL; | |
2235 | } else { | |
2236 | upl = upl_create(UPL_CREATE_INTERNAL, size); | |
2237 | user_page_list = (upl_page_info_t *) | |
2238 | (((vm_offset_t)upl) | |
2239 | + sizeof(struct upl)); | |
2240 | upl->flags = UPL_INTERNAL; | |
2241 | } | |
1c79356b | 2242 | } else { |
d7e50217 A |
2243 | if(cntrl_flags & UPL_SET_LITE) { |
2244 | vm_offset_t page_field_size; | |
2245 | upl = upl_create(UPL_CREATE_LITE, size); | |
2246 | lite_list = (wpl_array_t) | |
2247 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
2248 | page_field_size = ((size/PAGE_SIZE) + 7) >> 3; | |
2249 | page_field_size = | |
2250 | (page_field_size + 3) & 0xFFFFFFFC; | |
2251 | bzero((char *)lite_list, page_field_size); | |
2252 | upl->flags = UPL_LITE; | |
2253 | } else { | |
2254 | upl = upl_create(UPL_CREATE_EXTERNAL, size); | |
2255 | upl->flags = 0; | |
2256 | } | |
0b4e3aa0 | 2257 | } |
d7e50217 | 2258 | |
0b4e3aa0 A |
2259 | if(object->phys_contiguous) { |
2260 | upl->size = size; | |
2261 | upl->offset = offset + object->paging_offset; | |
2262 | *upl_ptr = upl; | |
2263 | if(user_page_list) { | |
2264 | user_page_list[0].phys_addr = | |
d7e50217 | 2265 | (offset + object->shadow_offset)>>12; |
0b4e3aa0 | 2266 | user_page_list[0].device = TRUE; |
1c79356b | 2267 | } |
d7e50217 A |
2268 | upl->map_object = object; |
2269 | /* don't need any shadow mappings for this one */ | |
2270 | /* since it is already I/O memory */ | |
2271 | upl->flags |= UPL_DEVICE_MEMORY; | |
2272 | ||
2273 | vm_object_lock(object); | |
2274 | vm_object_paging_begin(object); | |
2275 | vm_object_unlock(object); | |
2276 | ||
2277 | if(page_list_count != NULL) { | |
2278 | if (upl->flags & UPL_INTERNAL) { | |
2279 | *page_list_count = 0; | |
2280 | } else { | |
2281 | *page_list_count = 1; | |
2282 | } | |
2283 | } | |
2284 | return KERN_SUCCESS; | |
2285 | } | |
2286 | ||
2287 | if(cntrl_flags & UPL_SET_LITE) { | |
2288 | upl->map_object = object; | |
2289 | } else { | |
0b4e3aa0 A |
2290 | upl->map_object = vm_object_allocate(size); |
2291 | vm_object_lock(upl->map_object); | |
2292 | upl->map_object->shadow = object; | |
0b4e3aa0 A |
2293 | upl->map_object->pageout = TRUE; |
2294 | upl->map_object->can_persist = FALSE; | |
d7e50217 A |
2295 | upl->map_object->copy_strategy = |
2296 | MEMORY_OBJECT_COPY_NONE; | |
0b4e3aa0 | 2297 | upl->map_object->shadow_offset = offset; |
d7e50217 | 2298 | upl->map_object->wimg_bits = object->wimg_bits; |
0b4e3aa0 | 2299 | vm_object_unlock(upl->map_object); |
0b4e3aa0 | 2300 | } |
1c79356b A |
2301 | upl->size = size; |
2302 | upl->offset = offset + object->paging_offset; | |
1c79356b A |
2303 | *upl_ptr = upl; |
2304 | } | |
d7e50217 A |
2305 | if (!(cntrl_flags & UPL_SET_LITE)) { |
2306 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
2307 | } | |
1c79356b A |
2308 | vm_object_lock(object); |
2309 | #ifdef UBC_DEBUG | |
2310 | if(upl_ptr) | |
2311 | queue_enter(&object->uplq, upl, upl_t, uplq); | |
2312 | #endif /* UBC_DEBUG */ | |
2313 | vm_object_paging_begin(object); | |
2314 | entry = 0; | |
2315 | if(cntrl_flags & UPL_COPYOUT_FROM) { | |
2316 | upl->flags |= UPL_PAGE_SYNC_DONE; | |
2317 | while (xfer_size) { | |
d7e50217 A |
2318 | if((alias_page == NULL) && |
2319 | !(cntrl_flags & UPL_SET_LITE)) { | |
1c79356b A |
2320 | vm_object_unlock(object); |
2321 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
2322 | vm_object_lock(object); | |
2323 | } | |
2324 | if(((dst_page = vm_page_lookup(object, | |
2325 | dst_offset)) == VM_PAGE_NULL) || | |
2326 | dst_page->fictitious || | |
2327 | dst_page->absent || | |
2328 | dst_page->error || | |
2329 | (dst_page->wire_count != 0 && | |
2330 | !dst_page->pageout) || | |
2331 | ((!(dst_page->dirty || dst_page->precious || | |
d7e50217 | 2332 | pmap_is_modified(dst_page->phys_page))) |
0b4e3aa0 A |
2333 | && (cntrl_flags & UPL_RET_ONLY_DIRTY)) || |
2334 | ((!(dst_page->inactive)) | |
2335 | && (dst_page->page_ticket != page_ticket) | |
2336 | && ((dst_page->page_ticket+1) != page_ticket) | |
d7e50217 | 2337 | && (cntrl_flags & UPL_FOR_PAGEOUT)) || |
0b4e3aa0 A |
2338 | ((!dst_page->list_req_pending) && |
2339 | (cntrl_flags & UPL_RET_ONLY_DIRTY) && | |
d7e50217 A |
2340 | pmap_is_referenced(dst_page->phys_page))) { |
2341 | if(user_page_list) { | |
1c79356b | 2342 | user_page_list[entry].phys_addr = 0; |
d7e50217 A |
2343 | user_page_list[entry].device = FALSE; |
2344 | } | |
1c79356b A |
2345 | } else { |
2346 | ||
2347 | if(dst_page->busy && | |
2348 | (!(dst_page->list_req_pending && | |
2349 | dst_page->pageout))) { | |
2350 | if(cntrl_flags & UPL_NOBLOCK) { | |
d7e50217 A |
2351 | if(user_page_list) { |
2352 | user_page_list[entry].phys_addr = 0; | |
2353 | user_page_list[entry].device = FALSE; | |
2354 | } | |
1c79356b A |
2355 | entry++; |
2356 | dst_offset += PAGE_SIZE_64; | |
2357 | xfer_size -= PAGE_SIZE; | |
2358 | continue; | |
2359 | } | |
2360 | /*someone else is playing with the */ | |
2361 | /* page. We will have to wait. */ | |
9bccf70c | 2362 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
1c79356b A |
2363 | continue; |
2364 | } | |
2365 | /* Someone else already cleaning the page? */ | |
2366 | if((dst_page->cleaning || dst_page->absent || | |
1c79356b A |
2367 | dst_page->wire_count != 0) && |
2368 | !dst_page->list_req_pending) { | |
d7e50217 | 2369 | if(user_page_list) { |
1c79356b | 2370 | user_page_list[entry].phys_addr = 0; |
d7e50217 A |
2371 | user_page_list[entry].device = FALSE; |
2372 | } | |
1c79356b A |
2373 | entry++; |
2374 | dst_offset += PAGE_SIZE_64; | |
2375 | xfer_size -= PAGE_SIZE; | |
2376 | continue; | |
2377 | } | |
2378 | /* eliminate all mappings from the */ | |
2379 | /* original object and its prodigy */ | |
2380 | ||
2381 | vm_page_lock_queues(); | |
9bccf70c | 2382 | if( !(cntrl_flags & UPL_FILE_IO)) { |
d7e50217 | 2383 | pmap_page_protect(dst_page->phys_page, VM_PROT_NONE); |
9bccf70c | 2384 | } |
1c79356b A |
2385 | /* pageout statistics gathering. count */ |
2386 | /* all the pages we will page out that */ | |
2387 | /* were not counted in the initial */ | |
2388 | /* vm_pageout_scan work */ | |
2389 | if(dst_page->list_req_pending) | |
2390 | encountered_lrp = TRUE; | |
2391 | if((dst_page->dirty || | |
2392 | (dst_page->object->internal && | |
2393 | dst_page->precious)) && | |
2394 | (dst_page->list_req_pending | |
2395 | == FALSE)) { | |
2396 | if(encountered_lrp) { | |
2397 | CLUSTER_STAT | |
2398 | (pages_at_higher_offsets++;) | |
2399 | } else { | |
2400 | CLUSTER_STAT | |
2401 | (pages_at_lower_offsets++;) | |
2402 | } | |
2403 | } | |
2404 | ||
2405 | /* Turn off busy indication on pending */ | |
2406 | /* pageout. Note: we can only get here */ | |
2407 | /* in the request pending case. */ | |
2408 | dst_page->list_req_pending = FALSE; | |
2409 | dst_page->busy = FALSE; | |
2410 | dst_page->cleaning = FALSE; | |
2411 | ||
d7e50217 | 2412 | dirty = pmap_is_modified(dst_page->phys_page); |
1c79356b A |
2413 | dirty = dirty ? TRUE : dst_page->dirty; |
2414 | ||
d7e50217 A |
2415 | if(cntrl_flags & UPL_SET_LITE) { |
2416 | int pg_num; | |
2417 | pg_num = (dst_offset-offset)/PAGE_SIZE; | |
2418 | lite_list[pg_num>>5] |= | |
2419 | 1 << (pg_num & 31); | |
2420 | pmap_clear_modify(dst_page->phys_page); | |
2421 | /* | |
2422 | * Record that this page has been | |
2423 | * written out | |
2424 | */ | |
2425 | #if MACH_PAGEMAP | |
2426 | vm_external_state_set( | |
2427 | object->existence_map, | |
2428 | dst_page->offset); | |
2429 | #endif /*MACH_PAGEMAP*/ | |
2430 | ||
2431 | /* | |
2432 | * Mark original page as cleaning | |
2433 | * in place. | |
2434 | */ | |
2435 | dst_page->cleaning = TRUE; | |
2436 | dst_page->dirty = TRUE; | |
2437 | dst_page->precious = FALSE; | |
2438 | } else { | |
2439 | /* use pageclean setup, it is more */ | |
2440 | /* convenient even for the pageout */ | |
2441 | /* cases here */ | |
2442 | vm_pageclean_setup(dst_page, | |
2443 | alias_page, upl->map_object, | |
2444 | size - xfer_size); | |
2445 | ||
2446 | alias_page->absent = FALSE; | |
2447 | alias_page = NULL; | |
2448 | } | |
1c79356b A |
2449 | |
2450 | if(!dirty) { | |
2451 | dst_page->dirty = FALSE; | |
2452 | dst_page->precious = TRUE; | |
2453 | } | |
2454 | ||
2455 | if(dst_page->pageout) | |
2456 | dst_page->busy = TRUE; | |
2457 | ||
0b4e3aa0 | 2458 | if((!(cntrl_flags & UPL_CLEAN_IN_PLACE)) |
d7e50217 | 2459 | || (cntrl_flags & UPL_FOR_PAGEOUT)) { |
1c79356b A |
2460 | /* deny access to the target page */ |
2461 | /* while it is being worked on */ | |
2462 | if((!dst_page->pageout) && | |
2463 | (dst_page->wire_count == 0)) { | |
2464 | dst_page->busy = TRUE; | |
2465 | dst_page->pageout = TRUE; | |
2466 | vm_page_wire(dst_page); | |
2467 | } | |
2468 | } | |
2469 | if(user_page_list) { | |
2470 | user_page_list[entry].phys_addr | |
d7e50217 | 2471 | = dst_page->phys_page; |
1c79356b A |
2472 | user_page_list[entry].dirty = |
2473 | dst_page->dirty; | |
2474 | user_page_list[entry].pageout = | |
2475 | dst_page->pageout; | |
2476 | user_page_list[entry].absent = | |
2477 | dst_page->absent; | |
2478 | user_page_list[entry].precious = | |
2479 | dst_page->precious; | |
d7e50217 A |
2480 | user_page_list[entry].device = |
2481 | FALSE; | |
1c79356b A |
2482 | } |
2483 | ||
2484 | vm_page_unlock_queues(); | |
2485 | } | |
2486 | entry++; | |
2487 | dst_offset += PAGE_SIZE_64; | |
2488 | xfer_size -= PAGE_SIZE; | |
2489 | } | |
2490 | } else { | |
2491 | while (xfer_size) { | |
d7e50217 A |
2492 | if((alias_page == NULL) && |
2493 | !(cntrl_flags & UPL_SET_LITE)) { | |
1c79356b A |
2494 | vm_object_unlock(object); |
2495 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
2496 | vm_object_lock(object); | |
2497 | } | |
2498 | dst_page = vm_page_lookup(object, dst_offset); | |
2499 | if(dst_page != VM_PAGE_NULL) { | |
9bccf70c A |
2500 | if((cntrl_flags & UPL_RET_ONLY_ABSENT) && |
2501 | !((dst_page->list_req_pending) | |
2502 | && (dst_page->absent))) { | |
2503 | /* we are doing extended range */ | |
2504 | /* requests. we want to grab */ | |
2505 | /* pages around some which are */ | |
2506 | /* already present. */ | |
d7e50217 | 2507 | if(user_page_list) { |
9bccf70c | 2508 | user_page_list[entry].phys_addr = 0; |
d7e50217 A |
2509 | user_page_list[entry].device = FALSE; |
2510 | } | |
9bccf70c A |
2511 | entry++; |
2512 | dst_offset += PAGE_SIZE_64; | |
2513 | xfer_size -= PAGE_SIZE; | |
2514 | continue; | |
2515 | } | |
0b4e3aa0 A |
2516 | if((dst_page->cleaning) && |
2517 | !(dst_page->list_req_pending)) { | |
2518 | /*someone else is writing to the */ | |
2519 | /* page. We will have to wait. */ | |
9bccf70c | 2520 | PAGE_SLEEP(object,dst_page,THREAD_UNINT); |
0b4e3aa0 A |
2521 | continue; |
2522 | } | |
2523 | if ((dst_page->fictitious && | |
2524 | dst_page->list_req_pending)) { | |
2525 | /* dump the fictitious page */ | |
2526 | dst_page->list_req_pending = FALSE; | |
2527 | dst_page->clustered = FALSE; | |
2528 | vm_page_lock_queues(); | |
2529 | vm_page_free(dst_page); | |
2530 | vm_page_unlock_queues(); | |
2531 | } else if ((dst_page->absent && | |
2532 | dst_page->list_req_pending)) { | |
2533 | /* the default_pager case */ | |
2534 | dst_page->list_req_pending = FALSE; | |
2535 | dst_page->busy = FALSE; | |
2536 | dst_page->clustered = FALSE; | |
2537 | } | |
1c79356b | 2538 | } |
0b4e3aa0 A |
2539 | if((dst_page = vm_page_lookup(object, dst_offset)) == |
2540 | VM_PAGE_NULL) { | |
2541 | if(object->private) { | |
2542 | /* | |
2543 | * This is a nasty wrinkle for users | |
2544 | * of upl who encounter device or | |
2545 | * private memory however, it is | |
2546 | * unavoidable, only a fault can | |
2547 | * reslove the actual backing | |
2548 | * physical page by asking the | |
2549 | * backing device. | |
2550 | */ | |
d7e50217 A |
2551 | if(user_page_list) { |
2552 | user_page_list[entry].phys_addr = 0; | |
2553 | user_page_list[entry].device = FALSE; | |
2554 | } | |
0b4e3aa0 A |
2555 | entry++; |
2556 | dst_offset += PAGE_SIZE_64; | |
2557 | xfer_size -= PAGE_SIZE; | |
2558 | continue; | |
2559 | } | |
1c79356b A |
2560 | /* need to allocate a page */ |
2561 | dst_page = vm_page_alloc(object, dst_offset); | |
2562 | if (dst_page == VM_PAGE_NULL) { | |
0b4e3aa0 A |
2563 | vm_object_unlock(object); |
2564 | VM_PAGE_WAIT(); | |
2565 | vm_object_lock(object); | |
2566 | continue; | |
1c79356b A |
2567 | } |
2568 | dst_page->busy = FALSE; | |
2569 | #if 0 | |
2570 | if(cntrl_flags & UPL_NO_SYNC) { | |
2571 | dst_page->page_lock = 0; | |
2572 | dst_page->unlock_request = 0; | |
2573 | } | |
2574 | #endif | |
2575 | dst_page->absent = TRUE; | |
2576 | object->absent_count++; | |
2577 | } | |
2578 | #if 1 | |
2579 | if(cntrl_flags & UPL_NO_SYNC) { | |
2580 | dst_page->page_lock = 0; | |
2581 | dst_page->unlock_request = 0; | |
2582 | } | |
2583 | #endif /* 1 */ | |
2584 | dst_page->overwriting = TRUE; | |
2585 | if(dst_page->fictitious) { | |
2586 | panic("need corner case for fictitious page"); | |
2587 | } | |
2588 | if(dst_page->page_lock) { | |
2589 | do_m_lock = TRUE; | |
2590 | } | |
2591 | if(upl_ptr) { | |
2592 | ||
2593 | /* eliminate all mappings from the */ | |
2594 | /* original object and its prodigy */ | |
2595 | ||
2596 | if(dst_page->busy) { | |
2597 | /*someone else is playing with the */ | |
2598 | /* page. We will have to wait. */ | |
9bccf70c | 2599 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
1c79356b A |
2600 | continue; |
2601 | } | |
2602 | ||
2603 | vm_page_lock_queues(); | |
9bccf70c | 2604 | if( !(cntrl_flags & UPL_FILE_IO)) { |
d7e50217 | 2605 | pmap_page_protect(dst_page->phys_page, VM_PROT_NONE); |
9bccf70c | 2606 | } |
d7e50217 | 2607 | dirty = pmap_is_modified(dst_page->phys_page); |
1c79356b A |
2608 | dirty = dirty ? TRUE : dst_page->dirty; |
2609 | ||
d7e50217 A |
2610 | if(cntrl_flags & UPL_SET_LITE) { |
2611 | int pg_num; | |
2612 | pg_num = (dst_offset-offset)/PAGE_SIZE; | |
2613 | lite_list[pg_num>>5] |= | |
2614 | 1 << (pg_num & 31); | |
2615 | pmap_clear_modify(dst_page->phys_page); | |
2616 | /* | |
2617 | * Record that this page has been | |
2618 | * written out | |
2619 | */ | |
2620 | #if MACH_PAGEMAP | |
2621 | vm_external_state_set( | |
2622 | object->existence_map, | |
2623 | dst_page->offset); | |
2624 | #endif /*MACH_PAGEMAP*/ | |
2625 | ||
2626 | /* | |
2627 | * Mark original page as cleaning | |
2628 | * in place. | |
2629 | */ | |
2630 | dst_page->cleaning = TRUE; | |
2631 | dst_page->dirty = TRUE; | |
2632 | dst_page->precious = FALSE; | |
2633 | } else { | |
2634 | /* use pageclean setup, it is more */ | |
2635 | /* convenient even for the pageout */ | |
2636 | /* cases here */ | |
2637 | vm_pageclean_setup(dst_page, | |
2638 | alias_page, upl->map_object, | |
2639 | size - xfer_size); | |
2640 | ||
2641 | alias_page->absent = FALSE; | |
2642 | alias_page = NULL; | |
2643 | } | |
1c79356b A |
2644 | |
2645 | if(cntrl_flags & UPL_CLEAN_IN_PLACE) { | |
2646 | /* clean in place for read implies */ | |
2647 | /* that a write will be done on all */ | |
2648 | /* the pages that are dirty before */ | |
2649 | /* a upl commit is done. The caller */ | |
2650 | /* is obligated to preserve the */ | |
2651 | /* contents of all pages marked */ | |
2652 | /* dirty. */ | |
2653 | upl->flags |= UPL_CLEAR_DIRTY; | |
2654 | } | |
2655 | ||
2656 | if(!dirty) { | |
2657 | dst_page->dirty = FALSE; | |
2658 | dst_page->precious = TRUE; | |
2659 | } | |
2660 | ||
2661 | if (dst_page->wire_count == 0) { | |
2662 | /* deny access to the target page while */ | |
2663 | /* it is being worked on */ | |
2664 | dst_page->busy = TRUE; | |
2665 | } else { | |
2666 | vm_page_wire(dst_page); | |
2667 | } | |
2668 | /* expect the page to be used */ | |
2669 | dst_page->reference = TRUE; | |
2670 | dst_page->precious = | |
2671 | (cntrl_flags & UPL_PRECIOUS) | |
2672 | ? TRUE : FALSE; | |
1c79356b A |
2673 | if(user_page_list) { |
2674 | user_page_list[entry].phys_addr | |
d7e50217 | 2675 | = dst_page->phys_page; |
1c79356b | 2676 | user_page_list[entry].dirty = |
0b4e3aa0 | 2677 | dst_page->dirty; |
1c79356b A |
2678 | user_page_list[entry].pageout = |
2679 | dst_page->pageout; | |
2680 | user_page_list[entry].absent = | |
2681 | dst_page->absent; | |
2682 | user_page_list[entry].precious = | |
2683 | dst_page->precious; | |
d7e50217 A |
2684 | user_page_list[entry].device = |
2685 | FALSE; | |
1c79356b A |
2686 | } |
2687 | vm_page_unlock_queues(); | |
2688 | } | |
d7e50217 | 2689 | |
1c79356b A |
2690 | entry++; |
2691 | dst_offset += PAGE_SIZE_64; | |
2692 | xfer_size -= PAGE_SIZE; | |
2693 | } | |
2694 | } | |
0b4e3aa0 A |
2695 | |
2696 | if (upl->flags & UPL_INTERNAL) { | |
2697 | if(page_list_count != NULL) | |
2698 | *page_list_count = 0; | |
2699 | } else if (*page_list_count > entry) { | |
2700 | if(page_list_count != NULL) | |
2701 | *page_list_count = entry; | |
2702 | } | |
2703 | ||
1c79356b A |
2704 | if(alias_page != NULL) { |
2705 | vm_page_lock_queues(); | |
2706 | vm_page_free(alias_page); | |
2707 | vm_page_unlock_queues(); | |
2708 | } | |
0b4e3aa0 | 2709 | |
1c79356b A |
2710 | if(do_m_lock) { |
2711 | vm_prot_t access_required; | |
2712 | /* call back all associated pages from other users of the pager */ | |
2713 | /* all future updates will be on data which is based on the */ | |
2714 | /* changes we are going to make here. Note: it is assumed that */ | |
2715 | /* we already hold copies of the data so we will not be seeing */ | |
2716 | /* an avalanche of incoming data from the pager */ | |
2717 | access_required = (cntrl_flags & UPL_COPYOUT_FROM) | |
2718 | ? VM_PROT_READ : VM_PROT_WRITE; | |
2719 | while (TRUE) { | |
2720 | kern_return_t rc; | |
1c79356b A |
2721 | |
2722 | if(!object->pager_ready) { | |
9bccf70c A |
2723 | wait_result_t wait_result; |
2724 | ||
2725 | wait_result = vm_object_sleep(object, | |
2726 | VM_OBJECT_EVENT_PAGER_READY, | |
2727 | THREAD_UNINT); | |
2728 | if (wait_result != THREAD_AWAKENED) { | |
2729 | vm_object_unlock(object); | |
2730 | return(KERN_FAILURE); | |
1c79356b | 2731 | } |
1c79356b A |
2732 | continue; |
2733 | } | |
2734 | ||
2735 | vm_object_unlock(object); | |
2736 | ||
2737 | if (rc = memory_object_data_unlock( | |
2738 | object->pager, | |
1c79356b A |
2739 | dst_offset + object->paging_offset, |
2740 | size, | |
2741 | access_required)) { | |
2742 | if (rc == MACH_SEND_INTERRUPTED) | |
2743 | continue; | |
2744 | else | |
2745 | return KERN_FAILURE; | |
2746 | } | |
2747 | break; | |
2748 | ||
2749 | } | |
2750 | /* lets wait on the last page requested */ | |
2751 | /* NOTE: we will have to update lock completed routine to signal */ | |
2752 | if(dst_page != VM_PAGE_NULL && | |
2753 | (access_required & dst_page->page_lock) != access_required) { | |
2754 | PAGE_ASSERT_WAIT(dst_page, THREAD_UNINT); | |
2755 | thread_block((void (*)(void))0); | |
2756 | vm_object_lock(object); | |
2757 | } | |
2758 | } | |
2759 | vm_object_unlock(object); | |
2760 | return KERN_SUCCESS; | |
2761 | } | |
2762 | ||
0b4e3aa0 | 2763 | /* JMM - Backward compatability for now */ |
1c79356b | 2764 | kern_return_t |
0b4e3aa0 A |
2765 | vm_fault_list_request( |
2766 | memory_object_control_t control, | |
1c79356b A |
2767 | vm_object_offset_t offset, |
2768 | vm_size_t size, | |
0b4e3aa0 | 2769 | upl_t *upl_ptr, |
1c79356b A |
2770 | upl_page_info_t **user_page_list_ptr, |
2771 | int page_list_count, | |
2772 | int cntrl_flags) | |
2773 | { | |
0b4e3aa0 A |
2774 | int local_list_count; |
2775 | upl_page_info_t *user_page_list; | |
2776 | kern_return_t kr; | |
2777 | ||
2778 | if (user_page_list_ptr != NULL) { | |
2779 | local_list_count = page_list_count; | |
2780 | user_page_list = *user_page_list_ptr; | |
2781 | } else { | |
2782 | local_list_count = 0; | |
2783 | user_page_list = NULL; | |
2784 | } | |
2785 | kr = memory_object_upl_request(control, | |
2786 | offset, | |
2787 | size, | |
2788 | upl_ptr, | |
2789 | user_page_list, | |
2790 | &local_list_count, | |
2791 | cntrl_flags); | |
2792 | ||
2793 | if(kr != KERN_SUCCESS) | |
2794 | return kr; | |
2795 | ||
2796 | if ((user_page_list_ptr != NULL) && (cntrl_flags & UPL_INTERNAL)) { | |
2797 | *user_page_list_ptr = UPL_GET_INTERNAL_PAGE_LIST(*upl_ptr); | |
2798 | } | |
2799 | ||
2800 | return KERN_SUCCESS; | |
2801 | } | |
2802 | ||
2803 | ||
2804 | ||
2805 | /* | |
2806 | * Routine: vm_object_super_upl_request | |
2807 | * Purpose: | |
2808 | * Cause the population of a portion of a vm_object | |
2809 | * in much the same way as memory_object_upl_request. | |
2810 | * Depending on the nature of the request, the pages | |
2811 | * returned may be contain valid data or be uninitialized. | |
2812 | * However, the region may be expanded up to the super | |
2813 | * cluster size provided. | |
2814 | */ | |
2815 | ||
2816 | __private_extern__ kern_return_t | |
2817 | vm_object_super_upl_request( | |
2818 | vm_object_t object, | |
2819 | vm_object_offset_t offset, | |
2820 | vm_size_t size, | |
2821 | vm_size_t super_cluster, | |
2822 | upl_t *upl, | |
2823 | upl_page_info_t *user_page_list, | |
2824 | unsigned int *page_list_count, | |
2825 | int cntrl_flags) | |
2826 | { | |
2827 | vm_page_t target_page; | |
2828 | int ticket; | |
2829 | ||
1c79356b A |
2830 | if(object->paging_offset > offset) |
2831 | return KERN_FAILURE; | |
0b4e3aa0 | 2832 | |
1c79356b | 2833 | offset = offset - object->paging_offset; |
d7e50217 | 2834 | if(cntrl_flags & UPL_FOR_PAGEOUT) { |
0b4e3aa0 A |
2835 | if((target_page = vm_page_lookup(object, offset)) |
2836 | != VM_PAGE_NULL) { | |
2837 | ticket = target_page->page_ticket; | |
2838 | cntrl_flags = cntrl_flags & ~(int)UPL_PAGE_TICKET_MASK; | |
2839 | cntrl_flags = cntrl_flags | | |
2840 | ((ticket << UPL_PAGE_TICKET_SHIFT) | |
2841 | & UPL_PAGE_TICKET_MASK); | |
2842 | } | |
2843 | } | |
2844 | ||
1c79356b A |
2845 | |
2846 | /* turns off super cluster exercised by the default_pager */ | |
2847 | /* | |
2848 | super_cluster = size; | |
2849 | */ | |
2850 | if ((super_cluster > size) && | |
2851 | (vm_page_free_count > vm_page_free_reserved)) { | |
2852 | ||
2853 | vm_object_offset_t base_offset; | |
2854 | vm_size_t super_size; | |
2855 | ||
2856 | base_offset = (offset & | |
2857 | ~((vm_object_offset_t) super_cluster - 1)); | |
2858 | super_size = (offset+size) > (base_offset + super_cluster) ? | |
2859 | super_cluster<<1 : super_cluster; | |
2860 | super_size = ((base_offset + super_size) > object->size) ? | |
2861 | (object->size - base_offset) : super_size; | |
2862 | if(offset > (base_offset + super_size)) | |
0b4e3aa0 | 2863 | panic("vm_object_super_upl_request: Missed target pageout 0x%x,0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", offset, base_offset, super_size, super_cluster, size, object->paging_offset); |
1c79356b A |
2864 | /* apparently there is a case where the vm requests a */ |
2865 | /* page to be written out who's offset is beyond the */ | |
2866 | /* object size */ | |
2867 | if((offset + size) > (base_offset + super_size)) | |
2868 | super_size = (offset + size) - base_offset; | |
2869 | ||
2870 | offset = base_offset; | |
2871 | size = super_size; | |
2872 | } | |
0b4e3aa0 A |
2873 | vm_object_upl_request(object, offset, size, |
2874 | upl, user_page_list, page_list_count, | |
2875 | cntrl_flags); | |
1c79356b A |
2876 | } |
2877 | ||
2878 | ||
2879 | kern_return_t | |
0b4e3aa0 | 2880 | vm_upl_map( |
1c79356b A |
2881 | vm_map_t map, |
2882 | upl_t upl, | |
2883 | vm_offset_t *dst_addr) | |
2884 | { | |
2885 | vm_size_t size; | |
2886 | vm_object_offset_t offset; | |
2887 | vm_offset_t addr; | |
2888 | vm_page_t m; | |
2889 | kern_return_t kr; | |
2890 | ||
0b4e3aa0 A |
2891 | if (upl == UPL_NULL) |
2892 | return KERN_INVALID_ARGUMENT; | |
2893 | ||
2894 | upl_lock(upl); | |
2895 | ||
1c79356b | 2896 | /* check to see if already mapped */ |
0b4e3aa0 A |
2897 | if(UPL_PAGE_LIST_MAPPED & upl->flags) { |
2898 | upl_unlock(upl); | |
1c79356b | 2899 | return KERN_FAILURE; |
0b4e3aa0 | 2900 | } |
1c79356b | 2901 | |
d7e50217 A |
2902 | if((!(upl->map_object->pageout)) && |
2903 | !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || | |
2904 | (upl->map_object->phys_contiguous))) { | |
2905 | vm_object_t object; | |
2906 | vm_page_t alias_page; | |
2907 | vm_object_offset_t new_offset; | |
2908 | int pg_num; | |
2909 | wpl_array_t lite_list; | |
2910 | ||
2911 | if(upl->flags & UPL_INTERNAL) { | |
2912 | lite_list = (wpl_array_t) | |
2913 | ((((vm_offset_t)upl) + sizeof(struct upl)) | |
2914 | + ((upl->size/PAGE_SIZE) | |
2915 | * sizeof(upl_page_info_t))); | |
2916 | } else { | |
2917 | lite_list = (wpl_array_t) | |
2918 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
2919 | } | |
2920 | object = upl->map_object; | |
2921 | upl->map_object = vm_object_allocate(upl->size); | |
2922 | vm_object_lock(upl->map_object); | |
2923 | upl->map_object->shadow = object; | |
2924 | upl->map_object->pageout = TRUE; | |
2925 | upl->map_object->can_persist = FALSE; | |
2926 | upl->map_object->copy_strategy = | |
2927 | MEMORY_OBJECT_COPY_NONE; | |
2928 | upl->map_object->shadow_offset = | |
2929 | upl->offset - object->paging_offset; | |
2930 | upl->map_object->wimg_bits = object->wimg_bits; | |
2931 | vm_object_unlock(upl->map_object); | |
2932 | offset = upl->map_object->shadow_offset; | |
2933 | new_offset = 0; | |
2934 | size = upl->size; | |
2935 | vm_object_lock(object); | |
2936 | while(size) { | |
2937 | pg_num = (new_offset)/PAGE_SIZE; | |
2938 | if(lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
2939 | vm_object_unlock(object); | |
2940 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
2941 | vm_object_lock(object); | |
2942 | m = vm_page_lookup(object, offset); | |
2943 | if (m == VM_PAGE_NULL) { | |
2944 | panic("vm_upl_map: page missing\n"); | |
2945 | } | |
2946 | ||
2947 | vm_object_paging_begin(object); | |
2948 | ||
2949 | /* | |
2950 | * Convert the fictitious page to a private | |
2951 | * shadow of the real page. | |
2952 | */ | |
2953 | assert(alias_page->fictitious); | |
2954 | alias_page->fictitious = FALSE; | |
2955 | alias_page->private = TRUE; | |
2956 | alias_page->pageout = TRUE; | |
2957 | alias_page->phys_page = m->phys_page; | |
2958 | vm_page_wire(alias_page); | |
2959 | ||
2960 | vm_page_insert(alias_page, | |
2961 | upl->map_object, new_offset); | |
2962 | assert(!alias_page->wanted); | |
2963 | alias_page->busy = FALSE; | |
2964 | alias_page->absent = FALSE; | |
2965 | } | |
2966 | ||
2967 | size -= PAGE_SIZE; | |
2968 | offset += PAGE_SIZE_64; | |
2969 | new_offset += PAGE_SIZE_64; | |
2970 | } | |
2971 | vm_object_unlock(object); | |
2972 | } | |
2973 | ||
1c79356b A |
2974 | offset = 0; /* Always map the entire object */ |
2975 | size = upl->size; | |
2976 | ||
2977 | vm_object_lock(upl->map_object); | |
2978 | upl->map_object->ref_count++; | |
2979 | vm_object_res_reference(upl->map_object); | |
2980 | vm_object_unlock(upl->map_object); | |
2981 | ||
2982 | *dst_addr = 0; | |
2983 | ||
2984 | ||
2985 | /* NEED A UPL_MAP ALIAS */ | |
2986 | kr = vm_map_enter(map, dst_addr, size, (vm_offset_t) 0, TRUE, | |
2987 | upl->map_object, offset, FALSE, | |
2988 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
2989 | ||
0b4e3aa0 A |
2990 | if (kr != KERN_SUCCESS) { |
2991 | upl_unlock(upl); | |
1c79356b | 2992 | return(kr); |
0b4e3aa0 | 2993 | } |
1c79356b A |
2994 | |
2995 | for(addr=*dst_addr; size > 0; size-=PAGE_SIZE,addr+=PAGE_SIZE) { | |
2996 | m = vm_page_lookup(upl->map_object, offset); | |
2997 | if(m) { | |
9bccf70c A |
2998 | unsigned int cache_attr; |
2999 | cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK; | |
3000 | ||
3001 | PMAP_ENTER(map->pmap, addr, | |
3002 | m, VM_PROT_ALL, | |
3003 | cache_attr, TRUE); | |
1c79356b A |
3004 | } |
3005 | offset+=PAGE_SIZE_64; | |
3006 | } | |
0b4e3aa0 | 3007 | upl->ref_count++; /* hold a reference for the mapping */ |
1c79356b A |
3008 | upl->flags |= UPL_PAGE_LIST_MAPPED; |
3009 | upl->kaddr = *dst_addr; | |
0b4e3aa0 | 3010 | upl_unlock(upl); |
1c79356b A |
3011 | return KERN_SUCCESS; |
3012 | } | |
3013 | ||
3014 | ||
3015 | kern_return_t | |
0b4e3aa0 | 3016 | vm_upl_unmap( |
1c79356b A |
3017 | vm_map_t map, |
3018 | upl_t upl) | |
3019 | { | |
0b4e3aa0 | 3020 | vm_address_t addr; |
1c79356b A |
3021 | vm_size_t size; |
3022 | ||
0b4e3aa0 A |
3023 | if (upl == UPL_NULL) |
3024 | return KERN_INVALID_ARGUMENT; | |
3025 | ||
3026 | upl_lock(upl); | |
1c79356b | 3027 | if(upl->flags & UPL_PAGE_LIST_MAPPED) { |
0b4e3aa0 | 3028 | addr = upl->kaddr; |
1c79356b | 3029 | size = upl->size; |
0b4e3aa0 A |
3030 | assert(upl->ref_count > 1); |
3031 | upl->ref_count--; /* removing mapping ref */ | |
1c79356b A |
3032 | upl->flags &= ~UPL_PAGE_LIST_MAPPED; |
3033 | upl->kaddr = (vm_offset_t) 0; | |
0b4e3aa0 A |
3034 | upl_unlock(upl); |
3035 | ||
3036 | vm_deallocate(map, addr, size); | |
1c79356b | 3037 | return KERN_SUCCESS; |
1c79356b | 3038 | } |
0b4e3aa0 A |
3039 | upl_unlock(upl); |
3040 | return KERN_FAILURE; | |
1c79356b A |
3041 | } |
3042 | ||
3043 | kern_return_t | |
0b4e3aa0 | 3044 | upl_commit_range( |
1c79356b A |
3045 | upl_t upl, |
3046 | vm_offset_t offset, | |
3047 | vm_size_t size, | |
3048 | int flags, | |
0b4e3aa0 A |
3049 | upl_page_info_t *page_list, |
3050 | mach_msg_type_number_t count, | |
3051 | boolean_t *empty) | |
1c79356b A |
3052 | { |
3053 | vm_size_t xfer_size = size; | |
d7e50217 | 3054 | vm_object_t shadow_object; |
1c79356b A |
3055 | vm_object_t object = upl->map_object; |
3056 | vm_object_offset_t target_offset; | |
1c79356b | 3057 | int entry; |
d7e50217 A |
3058 | wpl_array_t lite_list; |
3059 | int occupied; | |
1c79356b | 3060 | |
0b4e3aa0 A |
3061 | *empty = FALSE; |
3062 | ||
3063 | if (upl == UPL_NULL) | |
3064 | return KERN_INVALID_ARGUMENT; | |
3065 | ||
3066 | if (count == 0) | |
3067 | page_list = NULL; | |
3068 | ||
d7e50217 A |
3069 | if(object->pageout) { |
3070 | shadow_object = object->shadow; | |
3071 | } else { | |
3072 | shadow_object = object; | |
3073 | } | |
3074 | ||
0b4e3aa0 | 3075 | upl_lock(upl); |
d7e50217 A |
3076 | |
3077 | ||
1c79356b A |
3078 | if(upl->flags & UPL_DEVICE_MEMORY) { |
3079 | xfer_size = 0; | |
3080 | } else if ((offset + size) > upl->size) { | |
0b4e3aa0 | 3081 | upl_unlock(upl); |
1c79356b A |
3082 | return KERN_FAILURE; |
3083 | } | |
3084 | ||
d7e50217 A |
3085 | if(upl->flags & UPL_INTERNAL) { |
3086 | lite_list = (wpl_array_t) | |
3087 | ((((vm_offset_t)upl) + sizeof(struct upl)) | |
3088 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
3089 | } else { | |
3090 | lite_list = (wpl_array_t) | |
3091 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
3092 | } | |
3093 | ||
1c79356b A |
3094 | vm_object_lock(shadow_object); |
3095 | ||
3096 | entry = offset/PAGE_SIZE; | |
3097 | target_offset = (vm_object_offset_t)offset; | |
3098 | while(xfer_size) { | |
3099 | vm_page_t t,m; | |
3100 | upl_page_info_t *p; | |
3101 | ||
d7e50217 A |
3102 | m = VM_PAGE_NULL; |
3103 | if(upl->flags & UPL_LITE) { | |
3104 | int pg_num; | |
3105 | pg_num = target_offset/PAGE_SIZE; | |
3106 | if(lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
3107 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); | |
3108 | m = vm_page_lookup(shadow_object, | |
3109 | target_offset + (upl->offset - | |
3110 | shadow_object->paging_offset)); | |
3111 | } | |
3112 | } | |
3113 | if(object->pageout) { | |
3114 | if ((t = vm_page_lookup(object, target_offset)) | |
3115 | != NULL) { | |
3116 | t->pageout = FALSE; | |
3117 | VM_PAGE_FREE(t); | |
3118 | if(m == NULL) { | |
3119 | m = vm_page_lookup( | |
3120 | shadow_object, | |
3121 | target_offset + | |
3122 | object->shadow_offset); | |
1c79356b | 3123 | } |
d7e50217 A |
3124 | if(m != VM_PAGE_NULL) |
3125 | vm_object_paging_end(m->object); | |
3126 | } | |
3127 | } | |
3128 | ||
3129 | if(m != VM_PAGE_NULL) { | |
3130 | if(upl->flags & UPL_IO_WIRE) { | |
3131 | vm_page_lock_queues(); | |
3132 | vm_page_unwire(m); | |
3133 | vm_page_unlock_queues(); | |
3134 | if(page_list) { | |
1c79356b | 3135 | page_list[entry].phys_addr = 0; |
d7e50217 A |
3136 | } |
3137 | if (flags & UPL_COMMIT_SET_DIRTY) { | |
3138 | m->dirty = TRUE; | |
3139 | } else if ((upl->flags & UPL_CLEAR_DIRTY) || | |
3140 | (flags & UPL_COMMIT_CLEAR_DIRTY)) { | |
3141 | pmap_clear_modify(m->phys_page); | |
3142 | m->dirty = FALSE; | |
3143 | } | |
3144 | if (flags & UPL_COMMIT_INACTIVATE) { | |
3145 | vm_page_deactivate(m); | |
3146 | m->reference = FALSE; | |
3147 | pmap_clear_reference(m->phys_page); | |
3148 | } | |
3149 | target_offset += PAGE_SIZE_64; | |
3150 | xfer_size -= PAGE_SIZE; | |
3151 | entry++; | |
3152 | continue; | |
3153 | } | |
3154 | vm_page_lock_queues(); | |
3155 | if ((upl->flags & UPL_CLEAR_DIRTY) || | |
3156 | (flags & UPL_COMMIT_CLEAR_DIRTY)) { | |
3157 | pmap_clear_modify(m->phys_page); | |
3158 | m->dirty = FALSE; | |
3159 | } | |
3160 | if(page_list) { | |
3161 | p = &(page_list[entry]); | |
3162 | if(p->phys_addr && p->pageout && !m->pageout) { | |
3163 | m->busy = TRUE; | |
3164 | m->pageout = TRUE; | |
3165 | vm_page_wire(m); | |
3166 | } else if (page_list[entry].phys_addr && | |
3167 | !p->pageout && m->pageout && | |
3168 | !m->dump_cleaning) { | |
3169 | m->pageout = FALSE; | |
3170 | m->absent = FALSE; | |
3171 | m->overwriting = FALSE; | |
3172 | vm_page_unwire(m); | |
3173 | PAGE_WAKEUP_DONE(m); | |
3174 | } | |
3175 | page_list[entry].phys_addr = 0; | |
3176 | } | |
3177 | m->dump_cleaning = FALSE; | |
3178 | if(m->laundry) { | |
3179 | vm_page_laundry_count--; | |
3180 | m->laundry = FALSE; | |
3181 | if (vm_page_laundry_count < vm_page_laundry_min) { | |
3182 | vm_page_laundry_min = 0; | |
3183 | thread_wakeup((event_t) | |
3184 | &vm_page_laundry_count); | |
3185 | } | |
3186 | } | |
3187 | if(m->pageout) { | |
3188 | m->cleaning = FALSE; | |
3189 | m->pageout = FALSE; | |
1c79356b | 3190 | #if MACH_CLUSTER_STATS |
d7e50217 | 3191 | if (m->wanted) vm_pageout_target_collisions++; |
1c79356b | 3192 | #endif |
d7e50217 A |
3193 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
3194 | m->dirty = pmap_is_modified(m->phys_page); | |
3195 | if(m->dirty) { | |
3196 | CLUSTER_STAT( | |
3197 | vm_pageout_target_page_dirtied++;) | |
3198 | vm_page_unwire(m);/* reactivates */ | |
3199 | VM_STAT(reactivations++); | |
3200 | PAGE_WAKEUP_DONE(m); | |
3201 | } else { | |
3202 | CLUSTER_STAT( | |
3203 | vm_pageout_target_page_freed++;) | |
3204 | vm_page_free(m);/* clears busy, etc. */ | |
3205 | VM_STAT(pageouts++); | |
3206 | } | |
3207 | vm_page_unlock_queues(); | |
3208 | target_offset += PAGE_SIZE_64; | |
3209 | xfer_size -= PAGE_SIZE; | |
3210 | entry++; | |
3211 | continue; | |
3212 | } | |
3213 | if (flags & UPL_COMMIT_INACTIVATE) { | |
3214 | vm_page_deactivate(m); | |
3215 | m->reference = FALSE; | |
3216 | pmap_clear_reference(m->phys_page); | |
3217 | } else if (!m->active && !m->inactive) { | |
3218 | if (m->reference) | |
3219 | vm_page_activate(m); | |
3220 | else | |
3221 | vm_page_deactivate(m); | |
3222 | } | |
1c79356b | 3223 | #if MACH_CLUSTER_STATS |
d7e50217 | 3224 | m->dirty = pmap_is_modified(m->phys_page); |
1c79356b | 3225 | |
d7e50217 A |
3226 | if (m->dirty) vm_pageout_cluster_dirtied++; |
3227 | else vm_pageout_cluster_cleaned++; | |
3228 | if (m->wanted) vm_pageout_cluster_collisions++; | |
1c79356b | 3229 | #else |
d7e50217 | 3230 | m->dirty = 0; |
1c79356b A |
3231 | #endif |
3232 | ||
d7e50217 A |
3233 | if((m->busy) && (m->cleaning)) { |
3234 | /* the request_page_list case */ | |
3235 | if(m->absent) { | |
3236 | m->absent = FALSE; | |
3237 | if(shadow_object->absent_count == 1) | |
1c79356b | 3238 | vm_object_absent_release(shadow_object); |
d7e50217 | 3239 | else |
1c79356b | 3240 | shadow_object->absent_count--; |
1c79356b | 3241 | } |
d7e50217 A |
3242 | m->overwriting = FALSE; |
3243 | m->busy = FALSE; | |
3244 | m->dirty = FALSE; | |
3245 | } else if (m->overwriting) { | |
3246 | /* alternate request page list, write to | |
3247 | /* page_list case. Occurs when the original | |
3248 | /* page was wired at the time of the list | |
3249 | /* request */ | |
3250 | assert(m->wire_count != 0); | |
3251 | vm_page_unwire(m);/* reactivates */ | |
3252 | m->overwriting = FALSE; | |
3253 | } | |
3254 | m->cleaning = FALSE; | |
3255 | /* It is a part of the semantic of COPYOUT_FROM */ | |
3256 | /* UPLs that a commit implies cache sync */ | |
3257 | /* between the vm page and the backing store */ | |
3258 | /* this can be used to strip the precious bit */ | |
3259 | /* as well as clean */ | |
3260 | if (upl->flags & UPL_PAGE_SYNC_DONE) | |
3261 | m->precious = FALSE; | |
3262 | ||
3263 | if (flags & UPL_COMMIT_SET_DIRTY) { | |
3264 | m->dirty = TRUE; | |
3265 | } | |
3266 | /* | |
3267 | * Wakeup any thread waiting for the page to be un-cleaning. | |
3268 | */ | |
3269 | PAGE_WAKEUP(m); | |
3270 | vm_page_unlock_queues(); | |
3271 | ||
1c79356b A |
3272 | } |
3273 | target_offset += PAGE_SIZE_64; | |
3274 | xfer_size -= PAGE_SIZE; | |
3275 | entry++; | |
3276 | } | |
3277 | ||
d7e50217 A |
3278 | occupied = 1; |
3279 | if (upl->flags & UPL_DEVICE_MEMORY) { | |
3280 | occupied = 0; | |
3281 | } else if (upl->flags & UPL_LITE) { | |
3282 | int pg_num; | |
3283 | int i; | |
3284 | pg_num = upl->size/PAGE_SIZE; | |
3285 | pg_num = (pg_num + 31) >> 5; | |
3286 | occupied = 0; | |
3287 | for(i= 0; i<pg_num; i++) { | |
3288 | if(lite_list[i] != 0) { | |
3289 | occupied = 1; | |
3290 | break; | |
3291 | } | |
3292 | } | |
3293 | } else { | |
3294 | if(queue_empty(&upl->map_object->memq)) { | |
3295 | occupied = 0; | |
3296 | } | |
3297 | } | |
3298 | ||
3299 | if(occupied == 0) { | |
3300 | if(upl->flags & UPL_COMMIT_NOTIFY_EMPTY) { | |
0b4e3aa0 | 3301 | *empty = TRUE; |
d7e50217 A |
3302 | } |
3303 | if(object == shadow_object) | |
3304 | vm_object_paging_end(shadow_object); | |
1c79356b | 3305 | } |
d7e50217 | 3306 | vm_object_unlock(shadow_object); |
0b4e3aa0 A |
3307 | upl_unlock(upl); |
3308 | ||
1c79356b A |
3309 | return KERN_SUCCESS; |
3310 | } | |
3311 | ||
0b4e3aa0 A |
3312 | kern_return_t |
3313 | upl_abort_range( | |
1c79356b A |
3314 | upl_t upl, |
3315 | vm_offset_t offset, | |
3316 | vm_size_t size, | |
0b4e3aa0 A |
3317 | int error, |
3318 | boolean_t *empty) | |
1c79356b A |
3319 | { |
3320 | vm_size_t xfer_size = size; | |
d7e50217 | 3321 | vm_object_t shadow_object; |
1c79356b A |
3322 | vm_object_t object = upl->map_object; |
3323 | vm_object_offset_t target_offset; | |
3324 | vm_object_offset_t page_offset; | |
3325 | int entry; | |
d7e50217 A |
3326 | wpl_array_t lite_list; |
3327 | int occupied; | |
1c79356b | 3328 | |
0b4e3aa0 A |
3329 | *empty = FALSE; |
3330 | ||
3331 | if (upl == UPL_NULL) | |
3332 | return KERN_INVALID_ARGUMENT; | |
3333 | ||
d7e50217 A |
3334 | if (upl->flags & UPL_IO_WIRE) { |
3335 | return upl_commit_range(upl, | |
3336 | offset, size, 0, | |
3337 | NULL, 0, empty); | |
3338 | } | |
3339 | ||
3340 | if(object->pageout) { | |
3341 | shadow_object = object->shadow; | |
3342 | } else { | |
3343 | shadow_object = object; | |
3344 | } | |
3345 | ||
0b4e3aa0 | 3346 | upl_lock(upl); |
1c79356b A |
3347 | if(upl->flags & UPL_DEVICE_MEMORY) { |
3348 | xfer_size = 0; | |
3349 | } else if ((offset + size) > upl->size) { | |
0b4e3aa0 | 3350 | upl_unlock(upl); |
1c79356b A |
3351 | return KERN_FAILURE; |
3352 | } | |
3353 | ||
1c79356b A |
3354 | vm_object_lock(shadow_object); |
3355 | ||
d7e50217 A |
3356 | if(upl->flags & UPL_INTERNAL) { |
3357 | lite_list = (wpl_array_t) | |
3358 | ((((vm_offset_t)upl) + sizeof(struct upl)) | |
3359 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
3360 | } else { | |
3361 | lite_list = (wpl_array_t) | |
3362 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
3363 | } | |
3364 | ||
1c79356b A |
3365 | entry = offset/PAGE_SIZE; |
3366 | target_offset = (vm_object_offset_t)offset; | |
3367 | while(xfer_size) { | |
3368 | vm_page_t t,m; | |
3369 | upl_page_info_t *p; | |
3370 | ||
d7e50217 A |
3371 | m = VM_PAGE_NULL; |
3372 | if(upl->flags & UPL_LITE) { | |
3373 | int pg_num; | |
3374 | pg_num = target_offset/PAGE_SIZE; | |
3375 | if(lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
3376 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); | |
3377 | m = vm_page_lookup(shadow_object, | |
3378 | target_offset + (upl->offset - | |
3379 | shadow_object->paging_offset)); | |
3380 | } | |
3381 | } | |
3382 | if(object->pageout) { | |
3383 | if ((t = vm_page_lookup(object, target_offset)) | |
3384 | != NULL) { | |
3385 | t->pageout = FALSE; | |
3386 | VM_PAGE_FREE(t); | |
3387 | if(m == NULL) { | |
3388 | m = vm_page_lookup( | |
3389 | shadow_object, | |
3390 | target_offset + | |
3391 | object->shadow_offset); | |
3392 | } | |
3393 | if(m != VM_PAGE_NULL) | |
3394 | vm_object_paging_end(m->object); | |
3395 | } | |
3396 | } | |
3397 | if(m != VM_PAGE_NULL) { | |
1c79356b A |
3398 | vm_page_lock_queues(); |
3399 | if(m->absent) { | |
3400 | /* COPYOUT = FALSE case */ | |
3401 | /* check for error conditions which must */ | |
3402 | /* be passed back to the pages customer */ | |
3403 | if(error & UPL_ABORT_RESTART) { | |
3404 | m->restart = TRUE; | |
3405 | m->absent = FALSE; | |
3406 | vm_object_absent_release(m->object); | |
3407 | m->page_error = KERN_MEMORY_ERROR; | |
3408 | m->error = TRUE; | |
3409 | } else if(error & UPL_ABORT_UNAVAILABLE) { | |
3410 | m->restart = FALSE; | |
3411 | m->unusual = TRUE; | |
3412 | m->clustered = FALSE; | |
3413 | } else if(error & UPL_ABORT_ERROR) { | |
3414 | m->restart = FALSE; | |
3415 | m->absent = FALSE; | |
3416 | vm_object_absent_release(m->object); | |
3417 | m->page_error = KERN_MEMORY_ERROR; | |
3418 | m->error = TRUE; | |
3419 | } else if(error & UPL_ABORT_DUMP_PAGES) { | |
3420 | m->clustered = TRUE; | |
3421 | } else { | |
3422 | m->clustered = TRUE; | |
3423 | } | |
3424 | ||
3425 | ||
3426 | m->cleaning = FALSE; | |
3427 | m->overwriting = FALSE; | |
3428 | PAGE_WAKEUP_DONE(m); | |
3429 | if(m->clustered) { | |
3430 | vm_page_free(m); | |
3431 | } else { | |
3432 | vm_page_activate(m); | |
3433 | } | |
3434 | ||
3435 | vm_page_unlock_queues(); | |
3436 | target_offset += PAGE_SIZE_64; | |
3437 | xfer_size -= PAGE_SIZE; | |
3438 | entry++; | |
3439 | continue; | |
3440 | } | |
3441 | /* | |
d7e50217 A |
3442 | * Handle the trusted pager throttle. |
3443 | */ | |
3444 | if (m->laundry) { | |
1c79356b A |
3445 | vm_page_laundry_count--; |
3446 | m->laundry = FALSE; | |
3447 | if (vm_page_laundry_count | |
d7e50217 | 3448 | < vm_page_laundry_min) { |
1c79356b A |
3449 | vm_page_laundry_min = 0; |
3450 | thread_wakeup((event_t) | |
3451 | &vm_page_laundry_count); | |
3452 | } | |
3453 | } | |
3454 | if(m->pageout) { | |
3455 | assert(m->busy); | |
3456 | assert(m->wire_count == 1); | |
3457 | m->pageout = FALSE; | |
3458 | vm_page_unwire(m); | |
3459 | } | |
0b4e3aa0 | 3460 | m->dump_cleaning = FALSE; |
1c79356b A |
3461 | m->cleaning = FALSE; |
3462 | m->busy = FALSE; | |
3463 | m->overwriting = FALSE; | |
3464 | #if MACH_PAGEMAP | |
3465 | vm_external_state_clr( | |
3466 | m->object->existence_map, m->offset); | |
3467 | #endif /* MACH_PAGEMAP */ | |
3468 | if(error & UPL_ABORT_DUMP_PAGES) { | |
3469 | vm_page_free(m); | |
d7e50217 | 3470 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
1c79356b A |
3471 | } else { |
3472 | PAGE_WAKEUP(m); | |
3473 | } | |
3474 | vm_page_unlock_queues(); | |
3475 | } | |
d7e50217 A |
3476 | target_offset += PAGE_SIZE_64; |
3477 | xfer_size -= PAGE_SIZE; | |
3478 | entry++; | |
1c79356b | 3479 | } |
d7e50217 A |
3480 | occupied = 1; |
3481 | if (upl->flags & UPL_DEVICE_MEMORY) { | |
3482 | occupied = 0; | |
3483 | } else if (upl->flags & UPL_LITE) { | |
3484 | int pg_num; | |
3485 | int i; | |
3486 | pg_num = upl->size/PAGE_SIZE; | |
3487 | pg_num = (pg_num + 31) >> 5; | |
3488 | occupied = 0; | |
3489 | for(i= 0; i<pg_num; i++) { | |
3490 | if(lite_list[i] != 0) { | |
3491 | occupied = 1; | |
3492 | break; | |
3493 | } | |
3494 | } | |
3495 | } else { | |
3496 | if(queue_empty(&upl->map_object->memq)) { | |
3497 | occupied = 0; | |
3498 | } | |
3499 | } | |
3500 | ||
3501 | if(occupied == 0) { | |
3502 | if(upl->flags & UPL_COMMIT_NOTIFY_EMPTY) { | |
0b4e3aa0 | 3503 | *empty = TRUE; |
d7e50217 A |
3504 | } |
3505 | if(object == shadow_object) | |
3506 | vm_object_paging_end(shadow_object); | |
1c79356b | 3507 | } |
d7e50217 | 3508 | vm_object_unlock(shadow_object); |
0b4e3aa0 | 3509 | upl_unlock(upl); |
1c79356b A |
3510 | return KERN_SUCCESS; |
3511 | } | |
3512 | ||
3513 | kern_return_t | |
0b4e3aa0 | 3514 | upl_abort( |
1c79356b A |
3515 | upl_t upl, |
3516 | int error) | |
3517 | { | |
3518 | vm_object_t object = NULL; | |
3519 | vm_object_t shadow_object = NULL; | |
3520 | vm_object_offset_t offset; | |
3521 | vm_object_offset_t shadow_offset; | |
3522 | vm_object_offset_t target_offset; | |
3523 | int i; | |
d7e50217 | 3524 | wpl_array_t lite_list; |
1c79356b | 3525 | vm_page_t t,m; |
d7e50217 | 3526 | int occupied; |
1c79356b | 3527 | |
0b4e3aa0 A |
3528 | if (upl == UPL_NULL) |
3529 | return KERN_INVALID_ARGUMENT; | |
3530 | ||
d7e50217 A |
3531 | if (upl->flags & UPL_IO_WIRE) { |
3532 | boolean_t empty; | |
3533 | return upl_commit_range(upl, | |
3534 | 0, upl->size, 0, | |
3535 | NULL, 0, &empty); | |
3536 | } | |
3537 | ||
0b4e3aa0 | 3538 | upl_lock(upl); |
1c79356b | 3539 | if(upl->flags & UPL_DEVICE_MEMORY) { |
0b4e3aa0 | 3540 | upl_unlock(upl); |
1c79356b A |
3541 | return KERN_SUCCESS; |
3542 | } | |
0b4e3aa0 | 3543 | |
1c79356b A |
3544 | object = upl->map_object; |
3545 | ||
0b4e3aa0 | 3546 | if (object == NULL) { |
1c79356b | 3547 | panic("upl_abort: upl object is not backed by an object"); |
0b4e3aa0 | 3548 | upl_unlock(upl); |
1c79356b A |
3549 | return KERN_INVALID_ARGUMENT; |
3550 | } | |
3551 | ||
d7e50217 A |
3552 | if(object->pageout) { |
3553 | shadow_object = object->shadow; | |
3554 | shadow_offset = object->shadow_offset; | |
3555 | } else { | |
3556 | shadow_object = object; | |
3557 | shadow_offset = upl->offset - object->paging_offset; | |
3558 | } | |
3559 | ||
3560 | if(upl->flags & UPL_INTERNAL) { | |
3561 | lite_list = (wpl_array_t) | |
3562 | ((((vm_offset_t)upl) + sizeof(struct upl)) | |
3563 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
3564 | } else { | |
3565 | lite_list = (wpl_array_t) | |
3566 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
3567 | } | |
1c79356b A |
3568 | offset = 0; |
3569 | vm_object_lock(shadow_object); | |
3570 | for(i = 0; i<(upl->size); i+=PAGE_SIZE, offset += PAGE_SIZE_64) { | |
d7e50217 A |
3571 | m = VM_PAGE_NULL; |
3572 | target_offset = offset + shadow_offset; | |
3573 | if(upl->flags & UPL_LITE) { | |
3574 | int pg_num; | |
3575 | pg_num = offset/PAGE_SIZE; | |
3576 | if(lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
3577 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); | |
3578 | m = vm_page_lookup( | |
3579 | shadow_object, target_offset); | |
3580 | } | |
3581 | } | |
3582 | if(object->pageout) { | |
3583 | if ((t = vm_page_lookup(object, offset)) != NULL) { | |
3584 | t->pageout = FALSE; | |
3585 | VM_PAGE_FREE(t); | |
3586 | if(m == NULL) { | |
3587 | m = vm_page_lookup( | |
3588 | shadow_object, target_offset); | |
3589 | } | |
3590 | if(m != VM_PAGE_NULL) | |
3591 | vm_object_paging_end(m->object); | |
3592 | } | |
3593 | } | |
3594 | if(m != VM_PAGE_NULL) { | |
1c79356b A |
3595 | vm_page_lock_queues(); |
3596 | if(m->absent) { | |
3597 | /* COPYOUT = FALSE case */ | |
3598 | /* check for error conditions which must */ | |
3599 | /* be passed back to the pages customer */ | |
3600 | if(error & UPL_ABORT_RESTART) { | |
3601 | m->restart = TRUE; | |
3602 | m->absent = FALSE; | |
3603 | vm_object_absent_release(m->object); | |
3604 | m->page_error = KERN_MEMORY_ERROR; | |
3605 | m->error = TRUE; | |
3606 | } else if(error & UPL_ABORT_UNAVAILABLE) { | |
3607 | m->restart = FALSE; | |
3608 | m->unusual = TRUE; | |
3609 | m->clustered = FALSE; | |
3610 | } else if(error & UPL_ABORT_ERROR) { | |
3611 | m->restart = FALSE; | |
3612 | m->absent = FALSE; | |
3613 | vm_object_absent_release(m->object); | |
3614 | m->page_error = KERN_MEMORY_ERROR; | |
3615 | m->error = TRUE; | |
3616 | } else if(error & UPL_ABORT_DUMP_PAGES) { | |
3617 | m->clustered = TRUE; | |
3618 | } else { | |
3619 | m->clustered = TRUE; | |
3620 | } | |
3621 | ||
3622 | m->cleaning = FALSE; | |
3623 | m->overwriting = FALSE; | |
3624 | PAGE_WAKEUP_DONE(m); | |
3625 | if(m->clustered) { | |
3626 | vm_page_free(m); | |
3627 | } else { | |
3628 | vm_page_activate(m); | |
3629 | } | |
3630 | vm_page_unlock_queues(); | |
3631 | continue; | |
3632 | } | |
3633 | /* | |
3634 | * Handle the trusted pager throttle. | |
3635 | */ | |
3636 | if (m->laundry) { | |
3637 | vm_page_laundry_count--; | |
3638 | m->laundry = FALSE; | |
3639 | if (vm_page_laundry_count | |
3640 | < vm_page_laundry_min) { | |
3641 | vm_page_laundry_min = 0; | |
3642 | thread_wakeup((event_t) | |
3643 | &vm_page_laundry_count); | |
3644 | } | |
3645 | } | |
3646 | if(m->pageout) { | |
3647 | assert(m->busy); | |
3648 | assert(m->wire_count == 1); | |
3649 | m->pageout = FALSE; | |
3650 | vm_page_unwire(m); | |
3651 | } | |
0b4e3aa0 | 3652 | m->dump_cleaning = FALSE; |
1c79356b A |
3653 | m->cleaning = FALSE; |
3654 | m->busy = FALSE; | |
3655 | m->overwriting = FALSE; | |
3656 | #if MACH_PAGEMAP | |
3657 | vm_external_state_clr( | |
3658 | m->object->existence_map, m->offset); | |
3659 | #endif /* MACH_PAGEMAP */ | |
3660 | if(error & UPL_ABORT_DUMP_PAGES) { | |
3661 | vm_page_free(m); | |
d7e50217 | 3662 | pmap_page_protect(m->phys_page, VM_PROT_NONE); |
1c79356b A |
3663 | } else { |
3664 | PAGE_WAKEUP(m); | |
3665 | } | |
3666 | vm_page_unlock_queues(); | |
3667 | } | |
1c79356b | 3668 | } |
d7e50217 A |
3669 | occupied = 1; |
3670 | if (upl->flags & UPL_DEVICE_MEMORY) { | |
3671 | occupied = 0; | |
3672 | } else if (upl->flags & UPL_LITE) { | |
3673 | int pg_num; | |
3674 | int i; | |
3675 | pg_num = upl->size/PAGE_SIZE; | |
3676 | pg_num = (pg_num + 31) >> 5; | |
3677 | occupied = 0; | |
3678 | for(i= 0; i<pg_num; i++) { | |
3679 | if(lite_list[i] != 0) { | |
3680 | occupied = 1; | |
3681 | break; | |
3682 | } | |
3683 | } | |
3684 | } else { | |
3685 | if(queue_empty(&upl->map_object->memq)) { | |
3686 | occupied = 0; | |
3687 | } | |
3688 | } | |
1c79356b | 3689 | |
d7e50217 A |
3690 | if(occupied == 0) { |
3691 | if(object == shadow_object) | |
3692 | vm_object_paging_end(shadow_object); | |
1c79356b | 3693 | } |
d7e50217 | 3694 | vm_object_unlock(shadow_object); |
0b4e3aa0 | 3695 | upl_unlock(upl); |
1c79356b A |
3696 | return KERN_SUCCESS; |
3697 | } | |
3698 | ||
3699 | /* an option on commit should be wire */ | |
3700 | kern_return_t | |
0b4e3aa0 A |
3701 | upl_commit( |
3702 | upl_t upl, | |
3703 | upl_page_info_t *page_list, | |
3704 | mach_msg_type_number_t count) | |
1c79356b | 3705 | { |
0b4e3aa0 A |
3706 | if (upl == UPL_NULL) |
3707 | return KERN_INVALID_ARGUMENT; | |
3708 | ||
d7e50217 A |
3709 | if(upl->flags & (UPL_LITE | UPL_IO_WIRE)) { |
3710 | boolean_t empty; | |
3711 | return upl_commit_range(upl, 0, upl->size, 0, | |
3712 | page_list, count, &empty); | |
3713 | } | |
3714 | ||
0b4e3aa0 A |
3715 | if (count == 0) |
3716 | page_list = NULL; | |
3717 | ||
3718 | upl_lock(upl); | |
1c79356b A |
3719 | if (upl->flags & UPL_DEVICE_MEMORY) |
3720 | page_list = NULL; | |
1c79356b | 3721 | |
d7e50217 A |
3722 | if ((upl->flags & UPL_CLEAR_DIRTY) || |
3723 | (upl->flags & UPL_PAGE_SYNC_DONE) || page_list) { | |
1c79356b A |
3724 | vm_object_t shadow_object = upl->map_object->shadow; |
3725 | vm_object_t object = upl->map_object; | |
3726 | vm_object_offset_t target_offset; | |
3727 | vm_size_t xfer_end; | |
3728 | int entry; | |
3729 | ||
3730 | vm_page_t t, m; | |
3731 | upl_page_info_t *p; | |
3732 | ||
3733 | vm_object_lock(shadow_object); | |
3734 | ||
3735 | entry = 0; | |
3736 | target_offset = object->shadow_offset; | |
3737 | xfer_end = upl->size + object->shadow_offset; | |
3738 | ||
3739 | while(target_offset < xfer_end) { | |
3740 | ||
3741 | if ((t = vm_page_lookup(object, | |
3742 | target_offset - object->shadow_offset)) | |
3743 | == NULL) { | |
3744 | target_offset += PAGE_SIZE_64; | |
3745 | entry++; | |
3746 | continue; | |
3747 | } | |
3748 | ||
3749 | m = vm_page_lookup(shadow_object, target_offset); | |
3750 | if(m != VM_PAGE_NULL) { | |
d7e50217 A |
3751 | if (upl->flags & UPL_CLEAR_DIRTY) { |
3752 | pmap_clear_modify(m->phys_page); | |
3753 | m->dirty = FALSE; | |
3754 | } | |
3755 | /* It is a part of the semantic of */ | |
3756 | /* COPYOUT_FROM UPLs that a commit */ | |
3757 | /* implies cache sync between the */ | |
3758 | /* vm page and the backing store */ | |
3759 | /* this can be used to strip the */ | |
3760 | /* precious bit as well as clean */ | |
3761 | if (upl->flags & UPL_PAGE_SYNC_DONE) | |
3762 | m->precious = FALSE; | |
3763 | ||
3764 | if(page_list) { | |
3765 | p = &(page_list[entry]); | |
3766 | if(page_list[entry].phys_addr && | |
1c79356b A |
3767 | p->pageout && !m->pageout) { |
3768 | vm_page_lock_queues(); | |
3769 | m->busy = TRUE; | |
3770 | m->pageout = TRUE; | |
3771 | vm_page_wire(m); | |
3772 | vm_page_unlock_queues(); | |
d7e50217 | 3773 | } else if (page_list[entry].phys_addr && |
0b4e3aa0 A |
3774 | !p->pageout && m->pageout && |
3775 | !m->dump_cleaning) { | |
1c79356b A |
3776 | vm_page_lock_queues(); |
3777 | m->pageout = FALSE; | |
3778 | m->absent = FALSE; | |
3779 | m->overwriting = FALSE; | |
3780 | vm_page_unwire(m); | |
3781 | PAGE_WAKEUP_DONE(m); | |
3782 | vm_page_unlock_queues(); | |
d7e50217 A |
3783 | } |
3784 | page_list[entry].phys_addr = 0; | |
1c79356b | 3785 | } |
1c79356b A |
3786 | } |
3787 | target_offset += PAGE_SIZE_64; | |
3788 | entry++; | |
3789 | } | |
3790 | ||
3791 | vm_object_unlock(shadow_object); | |
3792 | } | |
d7e50217 A |
3793 | if (upl->flags & UPL_DEVICE_MEMORY) { |
3794 | vm_object_lock(upl->map_object->shadow); | |
3795 | if(upl->map_object == upl->map_object->shadow) | |
3796 | vm_object_paging_end(upl->map_object->shadow); | |
3797 | vm_object_unlock(upl->map_object->shadow); | |
3798 | } | |
0b4e3aa0 | 3799 | upl_unlock(upl); |
1c79356b A |
3800 | return KERN_SUCCESS; |
3801 | } | |
3802 | ||
d7e50217 A |
3803 | |
3804 | ||
3805 | kern_return_t | |
3806 | vm_object_iopl_request( | |
3807 | vm_object_t object, | |
3808 | vm_object_offset_t offset, | |
3809 | vm_size_t size, | |
3810 | upl_t *upl_ptr, | |
3811 | upl_page_info_array_t user_page_list, | |
3812 | unsigned int *page_list_count, | |
3813 | int cntrl_flags) | |
3814 | { | |
3815 | vm_page_t dst_page; | |
3816 | vm_object_offset_t dst_offset = offset; | |
3817 | vm_size_t xfer_size = size; | |
3818 | upl_t upl = NULL; | |
3819 | int entry; | |
3820 | wpl_array_t lite_list; | |
3821 | int page_field_size; | |
3822 | ||
3823 | vm_page_t alias_page = NULL; | |
3824 | kern_return_t ret; | |
3825 | vm_prot_t prot; | |
3826 | ||
3827 | ||
3828 | if(cntrl_flags & UPL_COPYOUT_FROM) { | |
3829 | prot = VM_PROT_READ; | |
3830 | } else { | |
3831 | prot = VM_PROT_READ | VM_PROT_WRITE; | |
3832 | } | |
3833 | ||
3834 | if(((size/page_size) > MAX_UPL_TRANSFER) && !object->phys_contiguous) { | |
3835 | size = MAX_UPL_TRANSFER * page_size; | |
3836 | } | |
3837 | ||
3838 | if(cntrl_flags & UPL_SET_INTERNAL) | |
3839 | if(page_list_count != NULL) | |
3840 | *page_list_count = MAX_UPL_TRANSFER; | |
3841 | if(((cntrl_flags & UPL_SET_INTERNAL) && !(object->phys_contiguous)) && | |
3842 | ((page_list_count != NULL) && (*page_list_count != 0) | |
3843 | && *page_list_count < (size/page_size))) | |
3844 | return KERN_INVALID_ARGUMENT; | |
3845 | ||
3846 | if((!object->internal) && (object->paging_offset != 0)) | |
3847 | panic("vm_object_upl_request: vnode object with non-zero paging offset\n"); | |
3848 | ||
3849 | if(object->phys_contiguous) { | |
3850 | /* No paging operations are possible against this memory */ | |
3851 | /* and so no need for map object, ever */ | |
3852 | cntrl_flags |= UPL_SET_LITE; | |
3853 | } | |
3854 | ||
3855 | if(upl_ptr) { | |
3856 | if(cntrl_flags & UPL_SET_INTERNAL) { | |
3857 | if(cntrl_flags & UPL_SET_LITE) { | |
3858 | upl = upl_create( | |
3859 | UPL_CREATE_INTERNAL | UPL_CREATE_LITE, | |
3860 | size); | |
3861 | user_page_list = (upl_page_info_t *) | |
3862 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
3863 | lite_list = (wpl_array_t) | |
3864 | (((vm_offset_t)user_page_list) + | |
3865 | ((size/PAGE_SIZE) * | |
3866 | sizeof(upl_page_info_t))); | |
3867 | page_field_size = ((size/PAGE_SIZE) + 7) >> 3; | |
3868 | page_field_size = | |
3869 | (page_field_size + 3) & 0xFFFFFFFC; | |
3870 | bzero((char *)lite_list, page_field_size); | |
3871 | upl->flags = | |
3872 | UPL_LITE | UPL_INTERNAL | UPL_IO_WIRE; | |
3873 | } else { | |
3874 | upl = upl_create(UPL_CREATE_INTERNAL, size); | |
3875 | user_page_list = (upl_page_info_t *) | |
3876 | (((vm_offset_t)upl) | |
3877 | + sizeof(struct upl)); | |
3878 | upl->flags = UPL_INTERNAL | UPL_IO_WIRE; | |
3879 | } | |
3880 | } else { | |
3881 | if(cntrl_flags & UPL_SET_LITE) { | |
3882 | upl = upl_create(UPL_CREATE_LITE, size); | |
3883 | lite_list = (wpl_array_t) | |
3884 | (((vm_offset_t)upl) + sizeof(struct upl)); | |
3885 | page_field_size = ((size/PAGE_SIZE) + 7) >> 3; | |
3886 | page_field_size = | |
3887 | (page_field_size + 3) & 0xFFFFFFFC; | |
3888 | bzero((char *)lite_list, page_field_size); | |
3889 | upl->flags = UPL_LITE | UPL_IO_WIRE; | |
3890 | } else { | |
3891 | upl = upl_create(UPL_CREATE_EXTERNAL, size); | |
3892 | upl->flags = UPL_IO_WIRE; | |
3893 | } | |
3894 | } | |
3895 | ||
3896 | if(object->phys_contiguous) { | |
3897 | upl->size = size; | |
3898 | upl->offset = offset + object->paging_offset; | |
3899 | *upl_ptr = upl; | |
3900 | if(user_page_list) { | |
3901 | user_page_list[0].phys_addr = | |
3902 | (offset + object->shadow_offset)>>12; | |
3903 | user_page_list[0].device = TRUE; | |
3904 | } | |
3905 | upl->map_object = object; | |
3906 | /* don't need any shadow mappings for this one */ | |
3907 | /* since it is already I/O memory */ | |
3908 | upl->flags |= UPL_DEVICE_MEMORY; | |
3909 | ||
3910 | vm_object_lock(object); | |
3911 | vm_object_paging_begin(object); | |
3912 | vm_object_unlock(object); | |
3913 | ||
3914 | if(page_list_count != NULL) { | |
3915 | if (upl->flags & UPL_INTERNAL) { | |
3916 | *page_list_count = 0; | |
3917 | } else { | |
3918 | *page_list_count = 1; | |
3919 | } | |
3920 | } | |
3921 | return KERN_SUCCESS; | |
3922 | } | |
3923 | ||
3924 | ||
3925 | if(cntrl_flags & UPL_SET_LITE) { | |
3926 | upl->map_object = object; | |
3927 | } else { | |
3928 | upl->map_object = vm_object_allocate(size); | |
3929 | vm_object_lock(upl->map_object); | |
3930 | upl->map_object->shadow = object; | |
3931 | upl->map_object->pageout = TRUE; | |
3932 | upl->map_object->can_persist = FALSE; | |
3933 | upl->map_object->copy_strategy = | |
3934 | MEMORY_OBJECT_COPY_NONE; | |
3935 | upl->map_object->shadow_offset = offset; | |
3936 | upl->map_object->wimg_bits = object->wimg_bits; | |
3937 | vm_object_unlock(upl->map_object); | |
3938 | } | |
3939 | upl->size = size; | |
3940 | upl->offset = offset + object->paging_offset; | |
3941 | *upl_ptr = upl; | |
3942 | } | |
3943 | vm_object_lock(object); | |
3944 | ||
3945 | if (!object->phys_contiguous) { | |
3946 | /* Protect user space from future COW operations */ | |
3947 | object->true_share = TRUE; | |
3948 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) | |
3949 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
3950 | } | |
3951 | ||
3952 | #ifdef UBC_DEBUG | |
3953 | if(upl_ptr) | |
3954 | queue_enter(&object->uplq, upl, upl_t, uplq); | |
3955 | #endif /* UBC_DEBUG */ | |
3956 | vm_object_paging_begin(object); | |
3957 | entry = 0; | |
3958 | while (xfer_size) { | |
3959 | if((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) { | |
3960 | vm_object_unlock(object); | |
3961 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
3962 | vm_object_lock(object); | |
3963 | } | |
3964 | dst_page = vm_page_lookup(object, dst_offset); | |
3965 | if ((dst_page == VM_PAGE_NULL) || (dst_page->busy) || | |
3966 | (dst_page->unusual && (dst_page->error || | |
3967 | dst_page->restart || dst_page->absent || | |
3968 | dst_page->fictitious || | |
3969 | prot & dst_page->page_lock))) { | |
3970 | vm_fault_return_t result; | |
3971 | do { | |
3972 | vm_page_t top_page; | |
3973 | kern_return_t error_code; | |
3974 | int interruptible; | |
3975 | ||
3976 | vm_object_offset_t lo_offset = offset; | |
3977 | vm_object_offset_t hi_offset = offset + size; | |
3978 | ||
3979 | ||
3980 | ||
3981 | if(cntrl_flags & UPL_SET_INTERRUPTIBLE) { | |
3982 | interruptible = THREAD_ABORTSAFE; | |
3983 | } else { | |
3984 | interruptible = THREAD_UNINT; | |
3985 | } | |
3986 | ||
3987 | result = vm_fault_page(object, dst_offset, | |
3988 | prot | VM_PROT_WRITE, FALSE, | |
3989 | interruptible, | |
3990 | lo_offset, hi_offset, | |
3991 | VM_BEHAVIOR_SEQUENTIAL, | |
3992 | &prot, &dst_page, &top_page, | |
3993 | (int *)0, | |
3994 | &error_code, FALSE, FALSE, NULL, 0); | |
3995 | ||
3996 | switch(result) { | |
3997 | case VM_FAULT_SUCCESS: | |
3998 | ||
3999 | PAGE_WAKEUP_DONE(dst_page); | |
4000 | ||
4001 | /* | |
4002 | * Release paging references and | |
4003 | * top-level placeholder page, if any. | |
4004 | */ | |
4005 | ||
4006 | if(top_page != VM_PAGE_NULL) { | |
4007 | vm_object_t local_object; | |
4008 | local_object = | |
4009 | top_page->object; | |
4010 | if(top_page->object | |
4011 | != dst_page->object) { | |
4012 | vm_object_lock( | |
4013 | local_object); | |
4014 | VM_PAGE_FREE(top_page); | |
4015 | vm_object_paging_end( | |
4016 | local_object); | |
4017 | vm_object_unlock( | |
4018 | local_object); | |
4019 | } else { | |
4020 | VM_PAGE_FREE(top_page); | |
4021 | vm_object_paging_end( | |
4022 | local_object); | |
4023 | } | |
4024 | } | |
4025 | ||
4026 | break; | |
4027 | ||
4028 | ||
4029 | case VM_FAULT_RETRY: | |
4030 | vm_object_lock(object); | |
4031 | vm_object_paging_begin(object); | |
4032 | break; | |
4033 | ||
4034 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
4035 | vm_page_more_fictitious(); | |
4036 | vm_object_lock(object); | |
4037 | vm_object_paging_begin(object); | |
4038 | break; | |
4039 | ||
4040 | case VM_FAULT_MEMORY_SHORTAGE: | |
4041 | if (vm_page_wait(interruptible)) { | |
4042 | vm_object_lock(object); | |
4043 | vm_object_paging_begin(object); | |
4044 | break; | |
4045 | } | |
4046 | /* fall thru */ | |
4047 | ||
4048 | case VM_FAULT_INTERRUPTED: | |
4049 | error_code = MACH_SEND_INTERRUPTED; | |
4050 | case VM_FAULT_MEMORY_ERROR: | |
4051 | ret = (error_code ? error_code: | |
4052 | KERN_MEMORY_ERROR); | |
4053 | vm_object_lock(object); | |
4054 | for(; offset < dst_offset; | |
4055 | offset += PAGE_SIZE) { | |
4056 | dst_page = vm_page_lookup( | |
4057 | object, offset); | |
4058 | if(dst_page == VM_PAGE_NULL) | |
4059 | panic("vm_object_iopl_request: Wired pages missing. \n"); | |
4060 | vm_page_lock_queues(); | |
4061 | vm_page_unwire(dst_page); | |
4062 | vm_page_unlock_queues(); | |
4063 | VM_STAT(reactivations++); | |
4064 | } | |
4065 | vm_object_unlock(object); | |
4066 | upl_destroy(upl); | |
4067 | return ret; | |
4068 | } | |
4069 | } while ((result != VM_FAULT_SUCCESS) | |
4070 | || (result == VM_FAULT_INTERRUPTED)); | |
4071 | } | |
4072 | ||
4073 | vm_page_lock_queues(); | |
4074 | vm_page_wire(dst_page); | |
4075 | vm_page_unlock_queues(); | |
4076 | ||
4077 | if(upl_ptr) { | |
4078 | ||
4079 | vm_page_lock_queues(); | |
4080 | if(cntrl_flags & UPL_SET_LITE) { | |
4081 | int pg_num; | |
4082 | pg_num = (dst_offset-offset)/PAGE_SIZE; | |
4083 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); | |
4084 | } else { | |
4085 | /* | |
4086 | * Convert the fictitious page to a | |
4087 | * private shadow of the real page. | |
4088 | */ | |
4089 | assert(alias_page->fictitious); | |
4090 | alias_page->fictitious = FALSE; | |
4091 | alias_page->private = TRUE; | |
4092 | alias_page->pageout = TRUE; | |
4093 | alias_page->phys_page = dst_page->phys_page; | |
4094 | vm_page_wire(alias_page); | |
4095 | ||
4096 | vm_page_insert(alias_page, | |
4097 | upl->map_object, size - xfer_size); | |
4098 | assert(!alias_page->wanted); | |
4099 | alias_page->busy = FALSE; | |
4100 | alias_page->absent = FALSE; | |
4101 | } | |
4102 | ||
4103 | /* expect the page to be used */ | |
4104 | dst_page->reference = TRUE; | |
4105 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) | |
4106 | dst_page->dirty = TRUE; | |
4107 | alias_page = NULL; | |
4108 | ||
4109 | if(user_page_list) { | |
4110 | user_page_list[entry].phys_addr | |
4111 | = dst_page->phys_page; | |
4112 | user_page_list[entry].dirty = | |
4113 | dst_page->dirty; | |
4114 | user_page_list[entry].pageout = | |
4115 | dst_page->pageout; | |
4116 | user_page_list[entry].absent = | |
4117 | dst_page->absent; | |
4118 | user_page_list[entry].precious = | |
4119 | dst_page->precious; | |
4120 | } | |
4121 | vm_page_unlock_queues(); | |
4122 | } | |
4123 | entry++; | |
4124 | dst_offset += PAGE_SIZE_64; | |
4125 | xfer_size -= PAGE_SIZE; | |
4126 | } | |
4127 | ||
4128 | if (upl->flags & UPL_INTERNAL) { | |
4129 | if(page_list_count != NULL) | |
4130 | *page_list_count = 0; | |
4131 | } else if (*page_list_count > entry) { | |
4132 | if(page_list_count != NULL) | |
4133 | *page_list_count = entry; | |
4134 | } | |
4135 | ||
4136 | if(alias_page != NULL) { | |
4137 | vm_page_lock_queues(); | |
4138 | vm_page_free(alias_page); | |
4139 | vm_page_unlock_queues(); | |
4140 | } | |
4141 | ||
4142 | vm_object_unlock(object); | |
4143 | return KERN_SUCCESS; | |
4144 | } | |
1c79356b A |
4145 | vm_size_t |
4146 | upl_get_internal_pagelist_offset() | |
4147 | { | |
4148 | return sizeof(struct upl); | |
4149 | } | |
4150 | ||
4151 | void | |
4152 | upl_set_dirty( | |
4153 | upl_t upl) | |
4154 | { | |
4155 | upl->flags |= UPL_CLEAR_DIRTY; | |
4156 | } | |
4157 | ||
4158 | void | |
4159 | upl_clear_dirty( | |
4160 | upl_t upl) | |
4161 | { | |
4162 | upl->flags &= ~UPL_CLEAR_DIRTY; | |
4163 | } | |
4164 | ||
4165 | ||
4166 | #ifdef MACH_BSD | |
1c79356b A |
4167 | |
4168 | boolean_t upl_page_present(upl_page_info_t *upl, int index) | |
4169 | { | |
4170 | return(UPL_PAGE_PRESENT(upl, index)); | |
4171 | } | |
4172 | boolean_t upl_dirty_page(upl_page_info_t *upl, int index) | |
4173 | { | |
4174 | return(UPL_DIRTY_PAGE(upl, index)); | |
4175 | } | |
4176 | boolean_t upl_valid_page(upl_page_info_t *upl, int index) | |
4177 | { | |
4178 | return(UPL_VALID_PAGE(upl, index)); | |
4179 | } | |
4180 | vm_offset_t upl_phys_page(upl_page_info_t *upl, int index) | |
4181 | { | |
4182 | return((vm_offset_t)UPL_PHYS_PAGE(upl, index)); | |
4183 | } | |
4184 | ||
0b4e3aa0 A |
4185 | void |
4186 | vm_countdirtypages(void) | |
1c79356b A |
4187 | { |
4188 | vm_page_t m; | |
4189 | int dpages; | |
4190 | int pgopages; | |
4191 | int precpages; | |
4192 | ||
4193 | ||
4194 | dpages=0; | |
4195 | pgopages=0; | |
4196 | precpages=0; | |
4197 | ||
4198 | vm_page_lock_queues(); | |
4199 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
4200 | do { | |
4201 | if (m ==(vm_page_t )0) break; | |
4202 | ||
4203 | if(m->dirty) dpages++; | |
4204 | if(m->pageout) pgopages++; | |
4205 | if(m->precious) precpages++; | |
4206 | ||
4207 | m = (vm_page_t) queue_next(&m->pageq); | |
4208 | if (m ==(vm_page_t )0) break; | |
4209 | ||
4210 | } while (!queue_end(&vm_page_queue_inactive,(queue_entry_t) m)); | |
4211 | vm_page_unlock_queues(); | |
9bccf70c A |
4212 | |
4213 | vm_page_lock_queues(); | |
4214 | m = (vm_page_t) queue_first(&vm_page_queue_zf); | |
4215 | do { | |
4216 | if (m ==(vm_page_t )0) break; | |
4217 | ||
4218 | if(m->dirty) dpages++; | |
4219 | if(m->pageout) pgopages++; | |
4220 | if(m->precious) precpages++; | |
4221 | ||
4222 | m = (vm_page_t) queue_next(&m->pageq); | |
4223 | if (m ==(vm_page_t )0) break; | |
4224 | ||
4225 | } while (!queue_end(&vm_page_queue_zf,(queue_entry_t) m)); | |
4226 | vm_page_unlock_queues(); | |
1c79356b A |
4227 | |
4228 | printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
4229 | ||
4230 | dpages=0; | |
4231 | pgopages=0; | |
4232 | precpages=0; | |
4233 | ||
4234 | vm_page_lock_queues(); | |
4235 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
4236 | ||
4237 | do { | |
4238 | if(m == (vm_page_t )0) break; | |
4239 | if(m->dirty) dpages++; | |
4240 | if(m->pageout) pgopages++; | |
4241 | if(m->precious) precpages++; | |
4242 | ||
4243 | m = (vm_page_t) queue_next(&m->pageq); | |
4244 | if(m == (vm_page_t )0) break; | |
4245 | ||
4246 | } while (!queue_end(&vm_page_queue_active,(queue_entry_t) m)); | |
4247 | vm_page_unlock_queues(); | |
4248 | ||
4249 | printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
4250 | ||
4251 | } | |
4252 | #endif /* MACH_BSD */ | |
4253 | ||
4254 | #ifdef UBC_DEBUG | |
4255 | kern_return_t upl_ubc_alias_set(upl_t upl, unsigned int alias1, unsigned int alias2) | |
4256 | { | |
4257 | upl->ubc_alias1 = alias1; | |
4258 | upl->ubc_alias2 = alias2; | |
4259 | return KERN_SUCCESS; | |
4260 | } | |
4261 | int upl_ubc_alias_get(upl_t upl, unsigned int * al, unsigned int * al2) | |
4262 | { | |
4263 | if(al) | |
4264 | *al = upl->ubc_alias1; | |
4265 | if(al2) | |
4266 | *al2 = upl->ubc_alias2; | |
4267 | return KERN_SUCCESS; | |
4268 | } | |
4269 | #endif /* UBC_DEBUG */ | |
4270 | ||
4271 | ||
4272 | ||
4273 | #if MACH_KDB | |
4274 | #include <ddb/db_output.h> | |
4275 | #include <ddb/db_print.h> | |
4276 | #include <vm/vm_print.h> | |
4277 | ||
4278 | #define printf kdbprintf | |
4279 | extern int db_indent; | |
4280 | void db_pageout(void); | |
4281 | ||
4282 | void | |
4283 | db_vm(void) | |
4284 | { | |
4285 | extern int vm_page_gobble_count; | |
1c79356b A |
4286 | |
4287 | iprintf("VM Statistics:\n"); | |
4288 | db_indent += 2; | |
4289 | iprintf("pages:\n"); | |
4290 | db_indent += 2; | |
4291 | iprintf("activ %5d inact %5d free %5d", | |
4292 | vm_page_active_count, vm_page_inactive_count, | |
4293 | vm_page_free_count); | |
4294 | printf(" wire %5d gobbl %5d\n", | |
4295 | vm_page_wire_count, vm_page_gobble_count); | |
0b4e3aa0 A |
4296 | iprintf("laund %5d\n", |
4297 | vm_page_laundry_count); | |
1c79356b A |
4298 | db_indent -= 2; |
4299 | iprintf("target:\n"); | |
4300 | db_indent += 2; | |
4301 | iprintf("min %5d inact %5d free %5d", | |
4302 | vm_page_free_min, vm_page_inactive_target, | |
4303 | vm_page_free_target); | |
4304 | printf(" resrv %5d\n", vm_page_free_reserved); | |
4305 | db_indent -= 2; | |
4306 | ||
4307 | iprintf("burst:\n"); | |
4308 | db_indent += 2; | |
4309 | iprintf("max %5d min %5d wait %5d empty %5d\n", | |
4310 | vm_pageout_burst_max, vm_pageout_burst_min, | |
4311 | vm_pageout_burst_wait, vm_pageout_empty_wait); | |
4312 | db_indent -= 2; | |
4313 | iprintf("pause:\n"); | |
4314 | db_indent += 2; | |
4315 | iprintf("count %5d max %5d\n", | |
4316 | vm_pageout_pause_count, vm_pageout_pause_max); | |
4317 | #if MACH_COUNTERS | |
4318 | iprintf("scan_continue called %8d\n", c_vm_pageout_scan_continue); | |
4319 | #endif /* MACH_COUNTERS */ | |
4320 | db_indent -= 2; | |
4321 | db_pageout(); | |
4322 | db_indent -= 2; | |
4323 | } | |
4324 | ||
4325 | void | |
4326 | db_pageout(void) | |
4327 | { | |
1c79356b A |
4328 | #if MACH_COUNTERS |
4329 | extern int c_laundry_pages_freed; | |
4330 | #endif /* MACH_COUNTERS */ | |
4331 | ||
4332 | iprintf("Pageout Statistics:\n"); | |
4333 | db_indent += 2; | |
4334 | iprintf("active %5d inactv %5d\n", | |
4335 | vm_pageout_active, vm_pageout_inactive); | |
4336 | iprintf("nolock %5d avoid %5d busy %5d absent %5d\n", | |
4337 | vm_pageout_inactive_nolock, vm_pageout_inactive_avoid, | |
4338 | vm_pageout_inactive_busy, vm_pageout_inactive_absent); | |
4339 | iprintf("used %5d clean %5d dirty %5d\n", | |
4340 | vm_pageout_inactive_used, vm_pageout_inactive_clean, | |
4341 | vm_pageout_inactive_dirty); | |
1c79356b A |
4342 | #if MACH_COUNTERS |
4343 | iprintf("laundry_pages_freed %d\n", c_laundry_pages_freed); | |
4344 | #endif /* MACH_COUNTERS */ | |
4345 | #if MACH_CLUSTER_STATS | |
4346 | iprintf("Cluster Statistics:\n"); | |
4347 | db_indent += 2; | |
4348 | iprintf("dirtied %5d cleaned %5d collisions %5d\n", | |
4349 | vm_pageout_cluster_dirtied, vm_pageout_cluster_cleaned, | |
4350 | vm_pageout_cluster_collisions); | |
4351 | iprintf("clusters %5d conversions %5d\n", | |
4352 | vm_pageout_cluster_clusters, vm_pageout_cluster_conversions); | |
4353 | db_indent -= 2; | |
4354 | iprintf("Target Statistics:\n"); | |
4355 | db_indent += 2; | |
4356 | iprintf("collisions %5d page_dirtied %5d page_freed %5d\n", | |
4357 | vm_pageout_target_collisions, vm_pageout_target_page_dirtied, | |
4358 | vm_pageout_target_page_freed); | |
1c79356b A |
4359 | db_indent -= 2; |
4360 | #endif /* MACH_CLUSTER_STATS */ | |
4361 | db_indent -= 2; | |
4362 | } | |
4363 | ||
4364 | #if MACH_CLUSTER_STATS | |
4365 | unsigned long vm_pageout_cluster_dirtied = 0; | |
4366 | unsigned long vm_pageout_cluster_cleaned = 0; | |
4367 | unsigned long vm_pageout_cluster_collisions = 0; | |
4368 | unsigned long vm_pageout_cluster_clusters = 0; | |
4369 | unsigned long vm_pageout_cluster_conversions = 0; | |
4370 | unsigned long vm_pageout_target_collisions = 0; | |
4371 | unsigned long vm_pageout_target_page_dirtied = 0; | |
4372 | unsigned long vm_pageout_target_page_freed = 0; | |
1c79356b A |
4373 | #define CLUSTER_STAT(clause) clause |
4374 | #else /* MACH_CLUSTER_STATS */ | |
4375 | #define CLUSTER_STAT(clause) | |
4376 | #endif /* MACH_CLUSTER_STATS */ | |
4377 | ||
4378 | #endif /* MACH_KDB */ |