]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
d7e50217 | 6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. |
1c79356b | 7 | * |
d7e50217 A |
8 | * This file contains Original Code and/or Modifications of Original Code |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
d7e50217 A |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
1c79356b A |
22 | * |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * @OSF_FREE_COPYRIGHT@ | |
27 | */ | |
28 | /* | |
29 | * Mach Operating System | |
30 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
31 | * All Rights Reserved. | |
32 | * | |
33 | * Permission to use, copy, modify and distribute this software and its | |
34 | * documentation is hereby granted, provided that both the copyright | |
35 | * notice and this permission notice appear in all copies of the | |
36 | * software, derivative works or modified versions, and any portions | |
37 | * thereof, and that both notices appear in supporting documentation. | |
38 | * | |
39 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
40 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
41 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
42 | * | |
43 | * Carnegie Mellon requests users of this software to return to | |
44 | * | |
45 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
46 | * School of Computer Science | |
47 | * Carnegie Mellon University | |
48 | * Pittsburgh PA 15213-3890 | |
49 | * | |
50 | * any improvements or extensions that they make and grant Carnegie Mellon | |
51 | * the rights to redistribute these changes. | |
52 | */ | |
53 | /* | |
54 | */ | |
55 | /* | |
56 | * File: sched_prim.c | |
57 | * Author: Avadis Tevanian, Jr. | |
58 | * Date: 1986 | |
59 | * | |
60 | * Scheduling primitives | |
61 | * | |
62 | */ | |
63 | ||
64 | #include <debug.h> | |
65 | #include <cpus.h> | |
66 | #include <mach_kdb.h> | |
67 | #include <simple_clock.h> | |
68 | #include <power_save.h> | |
69 | #include <task_swapper.h> | |
70 | ||
71 | #include <ddb/db_output.h> | |
72 | #include <mach/machine.h> | |
73 | #include <machine/machine_routines.h> | |
74 | #include <machine/sched_param.h> | |
75 | #include <kern/ast.h> | |
76 | #include <kern/clock.h> | |
77 | #include <kern/counters.h> | |
78 | #include <kern/cpu_number.h> | |
79 | #include <kern/cpu_data.h> | |
80 | #include <kern/etap_macros.h> | |
81 | #include <kern/lock.h> | |
82 | #include <kern/macro_help.h> | |
83 | #include <kern/machine.h> | |
84 | #include <kern/misc_protos.h> | |
85 | #include <kern/processor.h> | |
86 | #include <kern/queue.h> | |
87 | #include <kern/sched.h> | |
88 | #include <kern/sched_prim.h> | |
89 | #include <kern/syscall_subr.h> | |
90 | #include <kern/task.h> | |
91 | #include <kern/thread.h> | |
92 | #include <kern/thread_swap.h> | |
93 | #include <vm/pmap.h> | |
94 | #include <vm/vm_kern.h> | |
95 | #include <vm/vm_map.h> | |
96 | #include <mach/policy.h> | |
97 | #include <mach/sync_policy.h> | |
1c79356b A |
98 | #include <kern/mk_sp.h> /*** ??? fix so this can be removed ***/ |
99 | #include <sys/kdebug.h> | |
100 | ||
101 | #if TASK_SWAPPER | |
102 | #include <kern/task_swap.h> | |
103 | extern int task_swap_on; | |
104 | #endif /* TASK_SWAPPER */ | |
105 | ||
106 | extern int hz; | |
107 | ||
0b4e3aa0 | 108 | #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */ |
1c79356b A |
109 | int default_preemption_rate = DEFAULT_PREEMPTION_RATE; |
110 | ||
0b4e3aa0 A |
111 | #define MAX_UNSAFE_QUANTA 800 |
112 | int max_unsafe_quanta = MAX_UNSAFE_QUANTA; | |
113 | ||
114 | #define MAX_POLL_QUANTA 2 | |
115 | int max_poll_quanta = MAX_POLL_QUANTA; | |
116 | ||
117 | #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */ | |
118 | int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT; | |
119 | ||
0b4e3aa0 | 120 | uint32_t std_quantum_us; |
1c79356b A |
121 | |
122 | unsigned sched_tick; | |
123 | ||
124 | #if SIMPLE_CLOCK | |
125 | int sched_usec; | |
126 | #endif /* SIMPLE_CLOCK */ | |
127 | ||
128 | /* Forwards */ | |
1c79356b A |
129 | void wait_queues_init(void); |
130 | ||
1c79356b A |
131 | thread_t choose_pset_thread( |
132 | processor_t myprocessor, | |
133 | processor_set_t pset); | |
134 | ||
135 | thread_t choose_thread( | |
136 | processor_t myprocessor); | |
137 | ||
9bccf70c | 138 | boolean_t run_queue_enqueue( |
1c79356b A |
139 | run_queue_t runq, |
140 | thread_t thread, | |
141 | boolean_t tail); | |
142 | ||
1c79356b A |
143 | void do_thread_scan(void); |
144 | ||
1c79356b A |
145 | #if DEBUG |
146 | void dump_run_queues( | |
147 | run_queue_t rq); | |
148 | void dump_run_queue_struct( | |
149 | run_queue_t rq); | |
150 | void dump_processor( | |
151 | processor_t p); | |
152 | void dump_processor_set( | |
153 | processor_set_t ps); | |
154 | ||
155 | void checkrq( | |
156 | run_queue_t rq, | |
157 | char *msg); | |
158 | ||
159 | void thread_check( | |
160 | thread_t thread, | |
161 | run_queue_t runq); | |
1c79356b | 162 | |
0b4e3aa0 | 163 | static |
1c79356b A |
164 | boolean_t thread_runnable( |
165 | thread_t thread); | |
166 | ||
0b4e3aa0 A |
167 | #endif /*DEBUG*/ |
168 | ||
169 | ||
1c79356b A |
170 | /* |
171 | * State machine | |
172 | * | |
173 | * states are combinations of: | |
174 | * R running | |
175 | * W waiting (or on wait queue) | |
176 | * N non-interruptible | |
177 | * O swapped out | |
178 | * I being swapped in | |
179 | * | |
180 | * init action | |
181 | * assert_wait thread_block clear_wait swapout swapin | |
182 | * | |
183 | * R RW, RWN R; setrun - - | |
184 | * RN RWN RN; setrun - - | |
185 | * | |
186 | * RW W R - | |
187 | * RWN WN RN - | |
188 | * | |
189 | * W R; setrun WO | |
190 | * WN RN; setrun - | |
191 | * | |
192 | * RO - - R | |
193 | * | |
194 | */ | |
195 | ||
196 | /* | |
197 | * Waiting protocols and implementation: | |
198 | * | |
199 | * Each thread may be waiting for exactly one event; this event | |
200 | * is set using assert_wait(). That thread may be awakened either | |
201 | * by performing a thread_wakeup_prim() on its event, | |
202 | * or by directly waking that thread up with clear_wait(). | |
203 | * | |
204 | * The implementation of wait events uses a hash table. Each | |
205 | * bucket is queue of threads having the same hash function | |
206 | * value; the chain for the queue (linked list) is the run queue | |
207 | * field. [It is not possible to be waiting and runnable at the | |
208 | * same time.] | |
209 | * | |
210 | * Locks on both the thread and on the hash buckets govern the | |
211 | * wait event field and the queue chain field. Because wakeup | |
212 | * operations only have the event as an argument, the event hash | |
213 | * bucket must be locked before any thread. | |
214 | * | |
215 | * Scheduling operations may also occur at interrupt level; therefore, | |
216 | * interrupts below splsched() must be prevented when holding | |
217 | * thread or hash bucket locks. | |
218 | * | |
219 | * The wait event hash table declarations are as follows: | |
220 | */ | |
221 | ||
222 | #define NUMQUEUES 59 | |
223 | ||
224 | struct wait_queue wait_queues[NUMQUEUES]; | |
225 | ||
226 | #define wait_hash(event) \ | |
227 | ((((int)(event) < 0)? ~(int)(event): (int)(event)) % NUMQUEUES) | |
228 | ||
229 | void | |
230 | sched_init(void) | |
231 | { | |
232 | /* | |
0b4e3aa0 A |
233 | * Calculate the timeslicing quantum |
234 | * in us. | |
1c79356b A |
235 | */ |
236 | if (default_preemption_rate < 1) | |
237 | default_preemption_rate = DEFAULT_PREEMPTION_RATE; | |
0b4e3aa0 | 238 | std_quantum_us = (1000 * 1000) / default_preemption_rate; |
1c79356b | 239 | |
0b4e3aa0 | 240 | printf("standard timeslicing quantum is %d us\n", std_quantum_us); |
1c79356b A |
241 | |
242 | wait_queues_init(); | |
243 | pset_sys_bootstrap(); /* initialize processor mgmt. */ | |
244 | processor_action(); | |
245 | sched_tick = 0; | |
246 | #if SIMPLE_CLOCK | |
247 | sched_usec = 0; | |
248 | #endif /* SIMPLE_CLOCK */ | |
249 | ast_init(); | |
1c79356b A |
250 | } |
251 | ||
252 | void | |
253 | wait_queues_init(void) | |
254 | { | |
255 | register int i; | |
256 | ||
257 | for (i = 0; i < NUMQUEUES; i++) { | |
258 | wait_queue_init(&wait_queues[i], SYNC_POLICY_FIFO); | |
259 | } | |
260 | } | |
261 | ||
262 | /* | |
0b4e3aa0 | 263 | * Thread wait timer expiration. |
1c79356b A |
264 | */ |
265 | void | |
266 | thread_timer_expire( | |
267 | timer_call_param_t p0, | |
268 | timer_call_param_t p1) | |
269 | { | |
270 | thread_t thread = p0; | |
271 | spl_t s; | |
272 | ||
273 | s = splsched(); | |
274 | wake_lock(thread); | |
0b4e3aa0 A |
275 | if (--thread->wait_timer_active == 1) { |
276 | if (thread->wait_timer_is_set) { | |
277 | thread->wait_timer_is_set = FALSE; | |
278 | thread_lock(thread); | |
279 | if (thread->active) | |
280 | clear_wait_internal(thread, THREAD_TIMED_OUT); | |
281 | thread_unlock(thread); | |
282 | } | |
1c79356b A |
283 | } |
284 | else | |
0b4e3aa0 | 285 | if (thread->wait_timer_active == 0) |
1c79356b A |
286 | thread_wakeup_one(&thread->wait_timer_active); |
287 | wake_unlock(thread); | |
288 | splx(s); | |
289 | } | |
290 | ||
291 | /* | |
292 | * thread_set_timer: | |
293 | * | |
294 | * Set a timer for the current thread, if the thread | |
295 | * is ready to wait. Must be called between assert_wait() | |
296 | * and thread_block(). | |
297 | */ | |
298 | void | |
299 | thread_set_timer( | |
0b4e3aa0 A |
300 | uint32_t interval, |
301 | uint32_t scale_factor) | |
1c79356b A |
302 | { |
303 | thread_t thread = current_thread(); | |
0b4e3aa0 | 304 | uint64_t deadline; |
1c79356b A |
305 | spl_t s; |
306 | ||
307 | s = splsched(); | |
308 | wake_lock(thread); | |
309 | thread_lock(thread); | |
310 | if ((thread->state & TH_WAIT) != 0) { | |
311 | clock_interval_to_deadline(interval, scale_factor, &deadline); | |
312 | timer_call_enter(&thread->wait_timer, deadline); | |
313 | assert(!thread->wait_timer_is_set); | |
314 | thread->wait_timer_active++; | |
315 | thread->wait_timer_is_set = TRUE; | |
316 | } | |
317 | thread_unlock(thread); | |
318 | wake_unlock(thread); | |
319 | splx(s); | |
320 | } | |
321 | ||
322 | void | |
323 | thread_set_timer_deadline( | |
0b4e3aa0 | 324 | uint64_t deadline) |
1c79356b A |
325 | { |
326 | thread_t thread = current_thread(); | |
327 | spl_t s; | |
328 | ||
329 | s = splsched(); | |
330 | wake_lock(thread); | |
331 | thread_lock(thread); | |
332 | if ((thread->state & TH_WAIT) != 0) { | |
333 | timer_call_enter(&thread->wait_timer, deadline); | |
334 | assert(!thread->wait_timer_is_set); | |
335 | thread->wait_timer_active++; | |
336 | thread->wait_timer_is_set = TRUE; | |
337 | } | |
338 | thread_unlock(thread); | |
339 | wake_unlock(thread); | |
340 | splx(s); | |
341 | } | |
342 | ||
343 | void | |
344 | thread_cancel_timer(void) | |
345 | { | |
346 | thread_t thread = current_thread(); | |
347 | spl_t s; | |
348 | ||
349 | s = splsched(); | |
350 | wake_lock(thread); | |
351 | if (thread->wait_timer_is_set) { | |
352 | if (timer_call_cancel(&thread->wait_timer)) | |
353 | thread->wait_timer_active--; | |
354 | thread->wait_timer_is_set = FALSE; | |
355 | } | |
356 | wake_unlock(thread); | |
357 | splx(s); | |
358 | } | |
359 | ||
1c79356b A |
360 | /* |
361 | * Set up thread timeout element when thread is created. | |
362 | */ | |
363 | void | |
364 | thread_timer_setup( | |
365 | thread_t thread) | |
366 | { | |
0b4e3aa0 A |
367 | extern void thread_depress_expire( |
368 | timer_call_param_t p0, | |
369 | timer_call_param_t p1); | |
370 | ||
1c79356b A |
371 | timer_call_setup(&thread->wait_timer, thread_timer_expire, thread); |
372 | thread->wait_timer_is_set = FALSE; | |
373 | thread->wait_timer_active = 1; | |
1c79356b | 374 | |
0b4e3aa0 A |
375 | timer_call_setup(&thread->depress_timer, thread_depress_expire, thread); |
376 | thread->depress_timer_active = 1; | |
377 | ||
378 | thread->ref_count++; | |
1c79356b A |
379 | } |
380 | ||
381 | void | |
382 | thread_timer_terminate(void) | |
383 | { | |
384 | thread_t thread = current_thread(); | |
9bccf70c | 385 | wait_result_t res; |
1c79356b A |
386 | spl_t s; |
387 | ||
388 | s = splsched(); | |
389 | wake_lock(thread); | |
390 | if (thread->wait_timer_is_set) { | |
391 | if (timer_call_cancel(&thread->wait_timer)) | |
392 | thread->wait_timer_active--; | |
393 | thread->wait_timer_is_set = FALSE; | |
394 | } | |
395 | ||
396 | thread->wait_timer_active--; | |
397 | ||
398 | while (thread->wait_timer_active > 0) { | |
9bccf70c A |
399 | res = assert_wait((event_t)&thread->wait_timer_active, THREAD_UNINT); |
400 | assert(res == THREAD_WAITING); | |
1c79356b A |
401 | wake_unlock(thread); |
402 | splx(s); | |
403 | ||
9bccf70c A |
404 | res = thread_block(THREAD_CONTINUE_NULL); |
405 | assert(res == THREAD_AWAKENED); | |
1c79356b A |
406 | |
407 | s = splsched(); | |
408 | wake_lock(thread); | |
409 | } | |
410 | ||
0b4e3aa0 A |
411 | thread->depress_timer_active--; |
412 | ||
413 | while (thread->depress_timer_active > 0) { | |
9bccf70c A |
414 | res = assert_wait((event_t)&thread->depress_timer_active, THREAD_UNINT); |
415 | assert(res == THREAD_WAITING); | |
0b4e3aa0 A |
416 | wake_unlock(thread); |
417 | splx(s); | |
418 | ||
9bccf70c A |
419 | res = thread_block(THREAD_CONTINUE_NULL); |
420 | assert(res == THREAD_AWAKENED); | |
0b4e3aa0 A |
421 | |
422 | s = splsched(); | |
423 | wake_lock(thread); | |
424 | } | |
425 | ||
1c79356b A |
426 | wake_unlock(thread); |
427 | splx(s); | |
428 | ||
429 | thread_deallocate(thread); | |
430 | } | |
431 | ||
432 | /* | |
433 | * Routine: thread_go_locked | |
434 | * Purpose: | |
435 | * Start a thread running. | |
436 | * Conditions: | |
437 | * thread lock held, IPC locks may be held. | |
438 | * thread must have been pulled from wait queue under same lock hold. | |
9bccf70c A |
439 | * Returns: |
440 | * KERN_SUCCESS - Thread was set running | |
441 | * KERN_NOT_WAITING - Thread was not waiting | |
1c79356b | 442 | */ |
9bccf70c | 443 | kern_return_t |
1c79356b A |
444 | thread_go_locked( |
445 | thread_t thread, | |
9bccf70c | 446 | wait_result_t result) |
1c79356b | 447 | { |
1c79356b | 448 | assert(thread->at_safe_point == FALSE); |
9bccf70c | 449 | assert(thread->wait_event == NO_EVENT64); |
1c79356b A |
450 | assert(thread->wait_queue == WAIT_QUEUE_NULL); |
451 | ||
9bccf70c | 452 | if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) { |
1c79356b A |
453 | thread->state &= ~(TH_WAIT|TH_UNINT); |
454 | if (!(thread->state & TH_RUN)) { | |
455 | thread->state |= TH_RUN; | |
0b4e3aa0 | 456 | |
9bccf70c A |
457 | if (thread->active_callout) |
458 | call_thread_unblock(); | |
459 | ||
460 | if (!(thread->state & TH_IDLE)) { | |
461 | _mk_sp_thread_unblock(thread); | |
462 | hw_atomic_add(&thread->processor_set->run_count, 1); | |
463 | } | |
1c79356b | 464 | } |
0b4e3aa0 | 465 | |
1c79356b | 466 | thread->wait_result = result; |
9bccf70c | 467 | return KERN_SUCCESS; |
1c79356b | 468 | } |
9bccf70c | 469 | return KERN_NOT_WAITING; |
1c79356b A |
470 | } |
471 | ||
9bccf70c A |
472 | /* |
473 | * Routine: thread_mark_wait_locked | |
474 | * Purpose: | |
475 | * Mark a thread as waiting. If, given the circumstances, | |
476 | * it doesn't want to wait (i.e. already aborted), then | |
477 | * indicate that in the return value. | |
478 | * Conditions: | |
479 | * at splsched() and thread is locked. | |
480 | */ | |
481 | __private_extern__ | |
482 | wait_result_t | |
1c79356b | 483 | thread_mark_wait_locked( |
9bccf70c A |
484 | thread_t thread, |
485 | wait_interrupt_t interruptible) | |
1c79356b | 486 | { |
9bccf70c A |
487 | wait_result_t wait_result; |
488 | boolean_t at_safe_point; | |
1c79356b A |
489 | |
490 | assert(thread == current_thread()); | |
491 | ||
9bccf70c A |
492 | /* |
493 | * The thread may have certain types of interrupts/aborts masked | |
494 | * off. Even if the wait location says these types of interrupts | |
495 | * are OK, we have to honor mask settings (outer-scoped code may | |
496 | * not be able to handle aborts at the moment). | |
497 | */ | |
498 | if (interruptible > thread->interrupt_level) | |
499 | interruptible = thread->interrupt_level; | |
500 | ||
501 | at_safe_point = (interruptible == THREAD_ABORTSAFE); | |
502 | ||
503 | if ((interruptible == THREAD_UNINT) || | |
504 | !(thread->state & TH_ABORT) || | |
505 | (!at_safe_point && (thread->state & TH_ABORT_SAFELY))) { | |
506 | thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT); | |
507 | thread->at_safe_point = at_safe_point; | |
508 | thread->sleep_stamp = sched_tick; | |
509 | return (thread->wait_result = THREAD_WAITING); | |
510 | } else if (thread->state & TH_ABORT_SAFELY) { | |
511 | thread->state &= ~(TH_ABORT|TH_ABORT_SAFELY); | |
512 | } | |
513 | return (thread->wait_result = THREAD_INTERRUPTED); | |
1c79356b A |
514 | } |
515 | ||
9bccf70c A |
516 | /* |
517 | * Routine: thread_interrupt_level | |
518 | * Purpose: | |
519 | * Set the maximum interruptible state for the | |
520 | * current thread. The effective value of any | |
521 | * interruptible flag passed into assert_wait | |
522 | * will never exceed this. | |
523 | * | |
524 | * Useful for code that must not be interrupted, | |
525 | * but which calls code that doesn't know that. | |
526 | * Returns: | |
527 | * The old interrupt level for the thread. | |
528 | */ | |
529 | __private_extern__ | |
530 | wait_interrupt_t | |
531 | thread_interrupt_level( | |
532 | wait_interrupt_t new_level) | |
533 | { | |
534 | thread_t thread = current_thread(); | |
535 | wait_interrupt_t result = thread->interrupt_level; | |
1c79356b | 536 | |
9bccf70c A |
537 | thread->interrupt_level = new_level; |
538 | return result; | |
539 | } | |
1c79356b A |
540 | |
541 | /* | |
542 | * Routine: assert_wait_timeout | |
543 | * Purpose: | |
544 | * Assert that the thread intends to block, | |
545 | * waiting for a timeout (no user known event). | |
546 | */ | |
547 | unsigned int assert_wait_timeout_event; | |
548 | ||
9bccf70c | 549 | wait_result_t |
1c79356b | 550 | assert_wait_timeout( |
9bccf70c A |
551 | mach_msg_timeout_t msecs, |
552 | wait_interrupt_t interruptible) | |
1c79356b | 553 | { |
9bccf70c | 554 | wait_result_t res; |
1c79356b | 555 | |
9bccf70c A |
556 | res = assert_wait((event_t)&assert_wait_timeout_event, interruptible); |
557 | if (res == THREAD_WAITING) | |
558 | thread_set_timer(msecs, 1000*NSEC_PER_USEC); | |
559 | return res; | |
1c79356b A |
560 | } |
561 | ||
562 | /* | |
563 | * Check to see if an assert wait is possible, without actually doing one. | |
564 | * This is used by debug code in locks and elsewhere to verify that it is | |
565 | * always OK to block when trying to take a blocking lock (since waiting | |
566 | * for the actual assert_wait to catch the case may make it hard to detect | |
567 | * this case. | |
568 | */ | |
569 | boolean_t | |
570 | assert_wait_possible(void) | |
571 | { | |
572 | ||
573 | thread_t thread; | |
574 | extern unsigned int debug_mode; | |
575 | ||
576 | #if DEBUG | |
577 | if(debug_mode) return TRUE; /* Always succeed in debug mode */ | |
578 | #endif | |
579 | ||
580 | thread = current_thread(); | |
581 | ||
582 | return (thread == NULL || wait_queue_assert_possible(thread)); | |
583 | } | |
584 | ||
585 | /* | |
586 | * assert_wait: | |
587 | * | |
588 | * Assert that the current thread is about to go to | |
589 | * sleep until the specified event occurs. | |
590 | */ | |
9bccf70c | 591 | wait_result_t |
1c79356b A |
592 | assert_wait( |
593 | event_t event, | |
9bccf70c | 594 | wait_interrupt_t interruptible) |
1c79356b A |
595 | { |
596 | register wait_queue_t wq; | |
597 | register int index; | |
598 | ||
599 | assert(event != NO_EVENT); | |
600 | assert(assert_wait_possible()); | |
601 | ||
602 | index = wait_hash(event); | |
603 | wq = &wait_queues[index]; | |
9bccf70c A |
604 | return wait_queue_assert_wait(wq, event, interruptible); |
605 | } | |
606 | ||
607 | ||
608 | /* | |
609 | * thread_sleep_fast_usimple_lock: | |
610 | * | |
611 | * Cause the current thread to wait until the specified event | |
612 | * occurs. The specified simple_lock is unlocked before releasing | |
613 | * the cpu and re-acquired as part of waking up. | |
614 | * | |
615 | * This is the simple lock sleep interface for components that use a | |
616 | * faster version of simple_lock() than is provided by usimple_lock(). | |
617 | */ | |
618 | __private_extern__ wait_result_t | |
619 | thread_sleep_fast_usimple_lock( | |
620 | event_t event, | |
621 | simple_lock_t lock, | |
622 | wait_interrupt_t interruptible) | |
623 | { | |
624 | wait_result_t res; | |
625 | ||
626 | res = assert_wait(event, interruptible); | |
627 | if (res == THREAD_WAITING) { | |
628 | simple_unlock(lock); | |
629 | res = thread_block(THREAD_CONTINUE_NULL); | |
630 | simple_lock(lock); | |
631 | } | |
632 | return res; | |
1c79356b A |
633 | } |
634 | ||
9bccf70c A |
635 | |
636 | /* | |
637 | * thread_sleep_usimple_lock: | |
638 | * | |
639 | * Cause the current thread to wait until the specified event | |
640 | * occurs. The specified usimple_lock is unlocked before releasing | |
641 | * the cpu and re-acquired as part of waking up. | |
642 | * | |
643 | * This is the simple lock sleep interface for components where | |
644 | * simple_lock() is defined in terms of usimple_lock(). | |
645 | */ | |
646 | wait_result_t | |
647 | thread_sleep_usimple_lock( | |
648 | event_t event, | |
649 | usimple_lock_t lock, | |
650 | wait_interrupt_t interruptible) | |
651 | { | |
652 | wait_result_t res; | |
653 | ||
654 | res = assert_wait(event, interruptible); | |
655 | if (res == THREAD_WAITING) { | |
656 | usimple_unlock(lock); | |
657 | res = thread_block(THREAD_CONTINUE_NULL); | |
658 | usimple_lock(lock); | |
659 | } | |
660 | return res; | |
661 | } | |
662 | ||
663 | /* | |
664 | * thread_sleep_mutex: | |
665 | * | |
666 | * Cause the current thread to wait until the specified event | |
667 | * occurs. The specified mutex is unlocked before releasing | |
668 | * the cpu. The mutex will be re-acquired before returning. | |
669 | * | |
670 | * JMM - Add hint to make sure mutex is available before rousting | |
671 | */ | |
672 | wait_result_t | |
673 | thread_sleep_mutex( | |
674 | event_t event, | |
675 | mutex_t *mutex, | |
676 | wait_interrupt_t interruptible) | |
677 | { | |
678 | wait_result_t res; | |
679 | ||
680 | res = assert_wait(event, interruptible); | |
681 | if (res == THREAD_WAITING) { | |
682 | mutex_unlock(mutex); | |
683 | res = thread_block(THREAD_CONTINUE_NULL); | |
684 | mutex_lock(mutex); | |
685 | } | |
686 | return res; | |
687 | } | |
1c79356b | 688 | |
9bccf70c A |
689 | /* |
690 | * thread_sleep_mutex_deadline: | |
691 | * | |
692 | * Cause the current thread to wait until the specified event | |
693 | * (or deadline) occurs. The specified mutex is unlocked before | |
694 | * releasing the cpu. The mutex will be re-acquired before returning. | |
695 | * | |
696 | * JMM - Add hint to make sure mutex is available before rousting | |
697 | */ | |
698 | wait_result_t | |
699 | thread_sleep_mutex_deadline( | |
700 | event_t event, | |
701 | mutex_t *mutex, | |
702 | uint64_t deadline, | |
703 | wait_interrupt_t interruptible) | |
704 | { | |
705 | wait_result_t res; | |
706 | ||
707 | res = assert_wait(event, interruptible); | |
708 | if (res == THREAD_WAITING) { | |
709 | mutex_unlock(mutex); | |
710 | thread_set_timer_deadline(deadline); | |
711 | res = thread_block(THREAD_CONTINUE_NULL); | |
712 | if (res != THREAD_TIMED_OUT) | |
713 | thread_cancel_timer(); | |
714 | mutex_lock(mutex); | |
715 | } | |
716 | return res; | |
717 | } | |
718 | ||
719 | /* | |
720 | * thread_sleep_lock_write: | |
721 | * | |
722 | * Cause the current thread to wait until the specified event | |
723 | * occurs. The specified (write) lock is unlocked before releasing | |
724 | * the cpu. The (write) lock will be re-acquired before returning. | |
725 | * | |
726 | * JMM - Add hint to make sure mutex is available before rousting | |
727 | */ | |
728 | wait_result_t | |
729 | thread_sleep_lock_write( | |
730 | event_t event, | |
731 | lock_t *lock, | |
732 | wait_interrupt_t interruptible) | |
733 | { | |
734 | wait_result_t res; | |
735 | ||
736 | res = assert_wait(event, interruptible); | |
737 | if (res == THREAD_WAITING) { | |
738 | lock_write_done(lock); | |
739 | res = thread_block(THREAD_CONTINUE_NULL); | |
740 | lock_write(lock); | |
741 | } | |
742 | return res; | |
743 | } | |
744 | ||
745 | ||
746 | /* | |
747 | * thread_sleep_funnel: | |
748 | * | |
749 | * Cause the current thread to wait until the specified event | |
750 | * occurs. If the thread is funnelled, the funnel will be released | |
751 | * before giving up the cpu. The funnel will be re-acquired before returning. | |
752 | * | |
753 | * JMM - Right now the funnel is dropped and re-acquired inside | |
754 | * thread_block(). At some point, this may give thread_block() a hint. | |
755 | */ | |
756 | wait_result_t | |
757 | thread_sleep_funnel( | |
758 | event_t event, | |
759 | wait_interrupt_t interruptible) | |
760 | { | |
761 | wait_result_t res; | |
762 | ||
763 | res = assert_wait(event, interruptible); | |
764 | if (res == THREAD_WAITING) { | |
765 | res = thread_block(THREAD_CONTINUE_NULL); | |
766 | } | |
767 | return res; | |
768 | } | |
769 | ||
1c79356b A |
770 | /* |
771 | * thread_[un]stop(thread) | |
772 | * Once a thread has blocked interruptibly (via assert_wait) prevent | |
773 | * it from running until thread_unstop. | |
774 | * | |
775 | * If someone else has already stopped the thread, wait for the | |
776 | * stop to be cleared, and then stop it again. | |
777 | * | |
778 | * Return FALSE if interrupted. | |
779 | * | |
780 | * NOTE: thread_hold/thread_suspend should be called on the activation | |
781 | * before calling thread_stop. TH_SUSP is only recognized when | |
782 | * a thread blocks and only prevents clear_wait/thread_wakeup | |
783 | * from restarting an interruptible wait. The wake_active flag is | |
784 | * used to indicate that someone is waiting on the thread. | |
785 | */ | |
786 | boolean_t | |
787 | thread_stop( | |
9bccf70c | 788 | thread_t thread) |
1c79356b | 789 | { |
9bccf70c | 790 | spl_t s = splsched(); |
1c79356b | 791 | |
1c79356b A |
792 | wake_lock(thread); |
793 | ||
794 | while (thread->state & TH_SUSP) { | |
9bccf70c | 795 | wait_result_t result; |
e7c99d92 | 796 | |
1c79356b | 797 | thread->wake_active = TRUE; |
9bccf70c | 798 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
1c79356b A |
799 | wake_unlock(thread); |
800 | splx(s); | |
801 | ||
9bccf70c A |
802 | if (result == THREAD_WAITING) |
803 | result = thread_block(THREAD_CONTINUE_NULL); | |
804 | ||
805 | if (result != THREAD_AWAKENED) | |
1c79356b A |
806 | return (FALSE); |
807 | ||
808 | s = splsched(); | |
809 | wake_lock(thread); | |
810 | } | |
9bccf70c | 811 | |
1c79356b A |
812 | thread_lock(thread); |
813 | thread->state |= TH_SUSP; | |
1c79356b | 814 | |
9bccf70c A |
815 | while (thread->state & TH_RUN) { |
816 | wait_result_t result; | |
817 | processor_t processor = thread->last_processor; | |
818 | ||
819 | if ( processor != PROCESSOR_NULL && | |
820 | processor->state == PROCESSOR_RUNNING && | |
821 | processor->cpu_data->active_thread == thread ) | |
822 | cause_ast_check(processor); | |
823 | thread_unlock(thread); | |
824 | ||
825 | thread->wake_active = TRUE; | |
826 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); | |
827 | wake_unlock(thread); | |
828 | splx(s); | |
829 | ||
830 | if (result == THREAD_WAITING) | |
831 | result = thread_block(THREAD_CONTINUE_NULL); | |
832 | ||
833 | if (result != THREAD_AWAKENED) { | |
834 | thread_unstop(thread); | |
835 | return (FALSE); | |
836 | } | |
837 | ||
838 | s = splsched(); | |
839 | wake_lock(thread); | |
840 | thread_lock(thread); | |
841 | } | |
842 | ||
843 | thread_unlock(thread); | |
1c79356b A |
844 | wake_unlock(thread); |
845 | splx(s); | |
846 | ||
847 | return (TRUE); | |
848 | } | |
849 | ||
850 | /* | |
851 | * Clear TH_SUSP and if the thread has been stopped and is now runnable, | |
852 | * put it back on the run queue. | |
853 | */ | |
854 | void | |
855 | thread_unstop( | |
9bccf70c | 856 | thread_t thread) |
1c79356b | 857 | { |
9bccf70c | 858 | spl_t s = splsched(); |
1c79356b | 859 | |
1c79356b A |
860 | wake_lock(thread); |
861 | thread_lock(thread); | |
862 | ||
9bccf70c | 863 | if ((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) == TH_SUSP) { |
0b4e3aa0 A |
864 | thread->state &= ~TH_SUSP; |
865 | thread->state |= TH_RUN; | |
866 | ||
9bccf70c | 867 | assert(!(thread->state & TH_IDLE)); |
0b4e3aa0 | 868 | _mk_sp_thread_unblock(thread); |
9bccf70c | 869 | hw_atomic_add(&thread->processor_set->run_count, 1); |
1c79356b A |
870 | } |
871 | else | |
872 | if (thread->state & TH_SUSP) { | |
873 | thread->state &= ~TH_SUSP; | |
874 | ||
875 | if (thread->wake_active) { | |
876 | thread->wake_active = FALSE; | |
877 | thread_unlock(thread); | |
878 | wake_unlock(thread); | |
879 | splx(s); | |
1c79356b | 880 | |
9bccf70c | 881 | thread_wakeup(&thread->wake_active); |
1c79356b A |
882 | return; |
883 | } | |
884 | } | |
885 | ||
886 | thread_unlock(thread); | |
887 | wake_unlock(thread); | |
888 | splx(s); | |
889 | } | |
890 | ||
891 | /* | |
892 | * Wait for the thread's RUN bit to clear | |
893 | */ | |
894 | boolean_t | |
895 | thread_wait( | |
9bccf70c | 896 | thread_t thread) |
1c79356b | 897 | { |
9bccf70c | 898 | spl_t s = splsched(); |
1c79356b | 899 | |
1c79356b | 900 | wake_lock(thread); |
9bccf70c | 901 | thread_lock(thread); |
1c79356b | 902 | |
9bccf70c A |
903 | while (thread->state & TH_RUN) { |
904 | wait_result_t result; | |
905 | processor_t processor = thread->last_processor; | |
e7c99d92 | 906 | |
9bccf70c A |
907 | if ( processor != PROCESSOR_NULL && |
908 | processor->state == PROCESSOR_RUNNING && | |
909 | processor->cpu_data->active_thread == thread ) | |
910 | cause_ast_check(processor); | |
911 | thread_unlock(thread); | |
1c79356b A |
912 | |
913 | thread->wake_active = TRUE; | |
9bccf70c | 914 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
1c79356b A |
915 | wake_unlock(thread); |
916 | splx(s); | |
917 | ||
9bccf70c A |
918 | if (result == THREAD_WAITING) |
919 | result = thread_block(THREAD_CONTINUE_NULL); | |
920 | ||
921 | if (result != THREAD_AWAKENED) | |
922 | return (FALSE); | |
1c79356b A |
923 | |
924 | s = splsched(); | |
925 | wake_lock(thread); | |
9bccf70c | 926 | thread_lock(thread); |
1c79356b | 927 | } |
0b4e3aa0 | 928 | |
9bccf70c | 929 | thread_unlock(thread); |
1c79356b A |
930 | wake_unlock(thread); |
931 | splx(s); | |
0b4e3aa0 A |
932 | |
933 | return (TRUE); | |
1c79356b A |
934 | } |
935 | ||
1c79356b A |
936 | /* |
937 | * Routine: clear_wait_internal | |
938 | * | |
939 | * Clear the wait condition for the specified thread. | |
940 | * Start the thread executing if that is appropriate. | |
941 | * Arguments: | |
942 | * thread thread to awaken | |
943 | * result Wakeup result the thread should see | |
944 | * Conditions: | |
945 | * At splsched | |
946 | * the thread is locked. | |
9bccf70c A |
947 | * Returns: |
948 | * KERN_SUCCESS thread was rousted out a wait | |
949 | * KERN_FAILURE thread was waiting but could not be rousted | |
950 | * KERN_NOT_WAITING thread was not waiting | |
1c79356b | 951 | */ |
9bccf70c | 952 | __private_extern__ kern_return_t |
1c79356b | 953 | clear_wait_internal( |
9bccf70c A |
954 | thread_t thread, |
955 | wait_result_t result) | |
1c79356b | 956 | { |
9bccf70c A |
957 | wait_queue_t wq = thread->wait_queue; |
958 | kern_return_t ret; | |
959 | int loop_count; | |
960 | ||
961 | loop_count = 0; | |
962 | do { | |
963 | if ((result == THREAD_INTERRUPTED) && (thread->state & TH_UNINT)) | |
964 | return KERN_FAILURE; | |
965 | ||
966 | if (wq != WAIT_QUEUE_NULL) { | |
967 | if (wait_queue_lock_try(wq)) { | |
968 | wait_queue_pull_thread_locked(wq, thread, TRUE); | |
969 | /* wait queue unlocked, thread still locked */ | |
970 | } else { | |
971 | thread_unlock(thread); | |
972 | delay(1); | |
973 | thread_lock(thread); | |
974 | ||
975 | if (wq != thread->wait_queue) { | |
976 | return KERN_NOT_WAITING; /* we know it moved */ | |
977 | } | |
978 | continue; | |
979 | } | |
1c79356b | 980 | } |
9bccf70c A |
981 | ret = thread_go_locked(thread, result); |
982 | return ret; | |
983 | } while (++loop_count < LockTimeOut); | |
984 | panic("clear_wait_internal: deadlock: thread=0x%x, wq=0x%x, cpu=%d\n", | |
985 | thread, wq, cpu_number()); | |
986 | return KERN_FAILURE; | |
1c79356b A |
987 | } |
988 | ||
989 | ||
990 | /* | |
991 | * clear_wait: | |
992 | * | |
993 | * Clear the wait condition for the specified thread. Start the thread | |
994 | * executing if that is appropriate. | |
995 | * | |
996 | * parameters: | |
997 | * thread thread to awaken | |
998 | * result Wakeup result the thread should see | |
999 | */ | |
9bccf70c | 1000 | kern_return_t |
1c79356b | 1001 | clear_wait( |
9bccf70c A |
1002 | thread_t thread, |
1003 | wait_result_t result) | |
1c79356b | 1004 | { |
9bccf70c | 1005 | kern_return_t ret; |
1c79356b A |
1006 | spl_t s; |
1007 | ||
1008 | s = splsched(); | |
1009 | thread_lock(thread); | |
9bccf70c | 1010 | ret = clear_wait_internal(thread, result); |
1c79356b A |
1011 | thread_unlock(thread); |
1012 | splx(s); | |
9bccf70c | 1013 | return ret; |
1c79356b A |
1014 | } |
1015 | ||
1016 | ||
1017 | /* | |
1018 | * thread_wakeup_prim: | |
1019 | * | |
1020 | * Common routine for thread_wakeup, thread_wakeup_with_result, | |
1021 | * and thread_wakeup_one. | |
1022 | * | |
1023 | */ | |
9bccf70c | 1024 | kern_return_t |
1c79356b A |
1025 | thread_wakeup_prim( |
1026 | event_t event, | |
1027 | boolean_t one_thread, | |
9bccf70c | 1028 | wait_result_t result) |
1c79356b A |
1029 | { |
1030 | register wait_queue_t wq; | |
1031 | register int index; | |
1032 | ||
1033 | index = wait_hash(event); | |
1034 | wq = &wait_queues[index]; | |
1035 | if (one_thread) | |
9bccf70c | 1036 | return (wait_queue_wakeup_one(wq, event, result)); |
1c79356b | 1037 | else |
9bccf70c | 1038 | return (wait_queue_wakeup_all(wq, event, result)); |
1c79356b A |
1039 | } |
1040 | ||
1041 | /* | |
1042 | * thread_bind: | |
1043 | * | |
1044 | * Force a thread to execute on the specified processor. | |
1045 | * If the thread is currently executing, it may wait until its | |
1046 | * time slice is up before switching onto the specified processor. | |
1047 | * | |
1048 | * A processor of PROCESSOR_NULL causes the thread to be unbound. | |
1049 | * xxx - DO NOT export this to users. | |
1050 | */ | |
1051 | void | |
1052 | thread_bind( | |
1053 | register thread_t thread, | |
1054 | processor_t processor) | |
1055 | { | |
1056 | spl_t s; | |
1057 | ||
1058 | s = splsched(); | |
1059 | thread_lock(thread); | |
1060 | thread_bind_locked(thread, processor); | |
1061 | thread_unlock(thread); | |
1062 | splx(s); | |
1063 | } | |
1064 | ||
1065 | /* | |
1066 | * Select a thread for this processor (the current processor) to run. | |
1067 | * May select the current thread, which must already be locked. | |
1068 | */ | |
1069 | thread_t | |
1070 | thread_select( | |
1071 | register processor_t myprocessor) | |
1072 | { | |
1073 | register thread_t thread; | |
1074 | processor_set_t pset; | |
1075 | register run_queue_t runq = &myprocessor->runq; | |
1076 | boolean_t other_runnable; | |
1c79356b A |
1077 | |
1078 | /* | |
1079 | * Check for other non-idle runnable threads. | |
1080 | */ | |
1c79356b | 1081 | pset = myprocessor->processor_set; |
9bccf70c | 1082 | thread = myprocessor->cpu_data->active_thread; |
0b4e3aa0 A |
1083 | |
1084 | /* Update the thread's priority */ | |
1085 | if (thread->sched_stamp != sched_tick) | |
1086 | update_priority(thread); | |
1c79356b | 1087 | |
9bccf70c A |
1088 | myprocessor->current_pri = thread->sched_pri; |
1089 | ||
1c79356b A |
1090 | simple_lock(&runq->lock); |
1091 | simple_lock(&pset->runq.lock); | |
1092 | ||
1093 | other_runnable = runq->count > 0 || pset->runq.count > 0; | |
1094 | ||
1095 | if ( thread->state == TH_RUN && | |
1096 | (!other_runnable || | |
1097 | (runq->highq < thread->sched_pri && | |
1098 | pset->runq.highq < thread->sched_pri)) && | |
1099 | thread->processor_set == pset && | |
1100 | (thread->bound_processor == PROCESSOR_NULL || | |
1101 | thread->bound_processor == myprocessor) ) { | |
1102 | ||
1103 | /* I am the highest priority runnable (non-idle) thread */ | |
1104 | simple_unlock(&pset->runq.lock); | |
1105 | simple_unlock(&runq->lock); | |
1106 | ||
0b4e3aa0 A |
1107 | myprocessor->slice_quanta = |
1108 | (thread->sched_mode & TH_MODE_TIMESHARE)? pset->set_quanta: 1; | |
1c79356b A |
1109 | } |
1110 | else | |
9bccf70c | 1111 | if (other_runnable) |
1c79356b | 1112 | thread = choose_thread(myprocessor); |
1c79356b A |
1113 | else { |
1114 | simple_unlock(&pset->runq.lock); | |
1115 | simple_unlock(&runq->lock); | |
1116 | ||
1117 | /* | |
1118 | * Nothing is runnable, so set this processor idle if it | |
1119 | * was running. If it was in an assignment or shutdown, | |
1120 | * leave it alone. Return its idle thread. | |
1121 | */ | |
9bccf70c | 1122 | simple_lock(&pset->sched_lock); |
1c79356b | 1123 | if (myprocessor->state == PROCESSOR_RUNNING) { |
9bccf70c | 1124 | remqueue(&pset->active_queue, (queue_entry_t)myprocessor); |
1c79356b | 1125 | myprocessor->state = PROCESSOR_IDLE; |
9bccf70c | 1126 | |
1c79356b | 1127 | if (myprocessor == master_processor) |
9bccf70c | 1128 | enqueue_tail(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b | 1129 | else |
9bccf70c | 1130 | enqueue_head(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b A |
1131 | |
1132 | pset->idle_count++; | |
1133 | } | |
9bccf70c | 1134 | simple_unlock(&pset->sched_lock); |
1c79356b A |
1135 | |
1136 | thread = myprocessor->idle_thread; | |
1137 | } | |
1138 | ||
1139 | return (thread); | |
1140 | } | |
1141 | ||
1142 | ||
1143 | /* | |
1144 | * Stop running the current thread and start running the new thread. | |
1145 | * If continuation is non-zero, and the current thread is blocked, | |
1146 | * then it will resume by executing continuation on a new stack. | |
1147 | * Returns TRUE if the hand-off succeeds. | |
9bccf70c | 1148 | * |
1c79356b A |
1149 | * Assumes splsched. |
1150 | */ | |
1151 | ||
1c79356b A |
1152 | static thread_t |
1153 | __current_thread(void) | |
1154 | { | |
1155 | return (current_thread()); | |
1156 | } | |
1157 | ||
1158 | boolean_t | |
1159 | thread_invoke( | |
1160 | register thread_t old_thread, | |
1161 | register thread_t new_thread, | |
1162 | int reason, | |
9bccf70c | 1163 | thread_continue_t old_cont) |
1c79356b | 1164 | { |
9bccf70c A |
1165 | thread_continue_t new_cont; |
1166 | processor_t processor; | |
1c79356b | 1167 | |
9bccf70c | 1168 | if (get_preemption_level() != 0) |
0b4e3aa0 | 1169 | panic("thread_invoke: preemption_level %d\n", |
9bccf70c | 1170 | get_preemption_level()); |
0b4e3aa0 | 1171 | |
1c79356b | 1172 | /* |
9bccf70c | 1173 | * Mark thread interruptible. |
1c79356b A |
1174 | */ |
1175 | thread_lock(new_thread); | |
1176 | new_thread->state &= ~TH_UNINT; | |
1177 | ||
1c79356b A |
1178 | assert(thread_runnable(new_thread)); |
1179 | ||
9bccf70c | 1180 | assert(old_thread->continuation == NULL); |
1c79356b | 1181 | |
9bccf70c A |
1182 | /* |
1183 | * Allow time constraint threads to hang onto | |
1184 | * a stack. | |
1185 | */ | |
0b4e3aa0 A |
1186 | if ( (old_thread->sched_mode & TH_MODE_REALTIME) && |
1187 | !old_thread->stack_privilege ) { | |
1188 | old_thread->stack_privilege = old_thread->kernel_stack; | |
1c79356b A |
1189 | } |
1190 | ||
9bccf70c A |
1191 | if (old_cont != NULL) { |
1192 | if (new_thread->state & TH_STACK_HANDOFF) { | |
1193 | /* | |
1194 | * If the old thread is using a privileged stack, | |
1195 | * check to see whether we can exchange it with | |
1196 | * that of the new thread. | |
1197 | */ | |
1198 | if ( old_thread->kernel_stack == old_thread->stack_privilege && | |
1199 | !new_thread->stack_privilege) | |
1200 | goto need_stack; | |
1c79356b | 1201 | |
9bccf70c A |
1202 | new_thread->state &= ~TH_STACK_HANDOFF; |
1203 | new_cont = new_thread->continuation; | |
1204 | new_thread->continuation = NULL; | |
1c79356b | 1205 | |
9bccf70c A |
1206 | /* |
1207 | * Set up ast context of new thread and switch | |
1208 | * to its timer. | |
1209 | */ | |
1210 | processor = current_processor(); | |
1211 | new_thread->last_processor = processor; | |
1212 | processor->current_pri = new_thread->sched_pri; | |
1213 | ast_context(new_thread->top_act, processor->slot_num); | |
1214 | timer_switch(&new_thread->system_timer); | |
1215 | thread_unlock(new_thread); | |
0b4e3aa0 | 1216 | |
9bccf70c | 1217 | current_task()->csw++; |
1c79356b | 1218 | |
9bccf70c A |
1219 | old_thread->reason = reason; |
1220 | old_thread->continuation = old_cont; | |
0b4e3aa0 | 1221 | |
9bccf70c | 1222 | _mk_sp_thread_done(old_thread, new_thread, processor); |
1c79356b | 1223 | |
9bccf70c A |
1224 | stack_handoff(old_thread, new_thread); |
1225 | ||
1226 | _mk_sp_thread_begin(new_thread, processor); | |
1c79356b | 1227 | |
1c79356b A |
1228 | wake_lock(old_thread); |
1229 | thread_lock(old_thread); | |
1c79356b | 1230 | |
9bccf70c A |
1231 | /* |
1232 | * Inline thread_dispatch but | |
1233 | * don't free stack. | |
1234 | */ | |
1235 | ||
1236 | switch (old_thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_IDLE)) { | |
1237 | ||
1238 | case TH_RUN | TH_UNINT: | |
1239 | case TH_RUN: | |
1240 | /* | |
1241 | * Still running, put back | |
1242 | * onto a run queue. | |
1243 | */ | |
1244 | old_thread->state |= TH_STACK_HANDOFF; | |
1245 | _mk_sp_thread_dispatch(old_thread); | |
1246 | ||
1247 | thread_unlock(old_thread); | |
1248 | wake_unlock(old_thread); | |
1249 | break; | |
1c79356b | 1250 | |
9bccf70c A |
1251 | case TH_RUN | TH_WAIT | TH_UNINT: |
1252 | case TH_RUN | TH_WAIT: | |
1253 | { | |
1254 | boolean_t reap, wake, callblock; | |
1c79356b | 1255 | |
9bccf70c A |
1256 | /* |
1257 | * Waiting. | |
1258 | */ | |
1259 | old_thread->sleep_stamp = sched_tick; | |
1260 | old_thread->state |= TH_STACK_HANDOFF; | |
1261 | old_thread->state &= ~TH_RUN; | |
1262 | hw_atomic_sub(&old_thread->processor_set->run_count, 1); | |
1263 | callblock = old_thread->active_callout; | |
1264 | wake = old_thread->wake_active; | |
1265 | old_thread->wake_active = FALSE; | |
1266 | reap = (old_thread->state & TH_TERMINATE)? TRUE: FALSE; | |
1267 | ||
1268 | thread_unlock(old_thread); | |
1269 | wake_unlock(old_thread); | |
1270 | ||
1271 | if (callblock) | |
1272 | call_thread_block(); | |
1273 | ||
1274 | if (wake) | |
1275 | thread_wakeup((event_t)&old_thread->wake_active); | |
1276 | ||
1277 | if (reap) | |
1278 | thread_reaper_enqueue(old_thread); | |
1279 | break; | |
1280 | } | |
1c79356b | 1281 | |
9bccf70c A |
1282 | case TH_RUN | TH_IDLE: |
1283 | /* | |
1284 | * The idle threads don't go | |
1285 | * onto a run queue. | |
1286 | */ | |
1287 | old_thread->state |= TH_STACK_HANDOFF; | |
1288 | thread_unlock(old_thread); | |
1289 | wake_unlock(old_thread); | |
1290 | break; | |
1c79356b | 1291 | |
9bccf70c A |
1292 | default: |
1293 | panic("thread_invoke: state 0x%x\n", old_thread->state); | |
1294 | } | |
1c79356b | 1295 | |
9bccf70c | 1296 | counter_always(c_thread_invoke_hits++); |
1c79356b | 1297 | |
9bccf70c A |
1298 | if (new_thread->funnel_state & TH_FN_REFUNNEL) { |
1299 | kern_return_t wait_result = new_thread->wait_result; | |
1c79356b | 1300 | |
9bccf70c A |
1301 | new_thread->funnel_state = 0; |
1302 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, | |
1303 | new_thread->funnel_lock, 2, 0, 0, 0); | |
1304 | funnel_lock(new_thread->funnel_lock); | |
1305 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, | |
1306 | new_thread->funnel_lock, 2, 0, 0, 0); | |
1307 | new_thread->funnel_state = TH_FN_OWNED; | |
1308 | new_thread->wait_result = wait_result; | |
1309 | } | |
1310 | (void) spllo(); | |
1c79356b | 1311 | |
9bccf70c A |
1312 | assert(new_cont); |
1313 | call_continuation(new_cont); | |
1314 | /*NOTREACHED*/ | |
1315 | return (TRUE); | |
1c79356b | 1316 | } |
9bccf70c A |
1317 | else |
1318 | if (new_thread->state & TH_STACK_ALLOC) { | |
1319 | /* | |
1320 | * Waiting for a stack | |
1321 | */ | |
1c79356b | 1322 | counter_always(c_thread_invoke_misses++); |
9bccf70c A |
1323 | thread_unlock(new_thread); |
1324 | return (FALSE); | |
1325 | } | |
1326 | else | |
1327 | if (new_thread == old_thread) { | |
1328 | /* same thread but with continuation */ | |
1329 | counter(++c_thread_invoke_same); | |
1330 | thread_unlock(new_thread); | |
1331 | ||
1332 | if (new_thread->funnel_state & TH_FN_REFUNNEL) { | |
1333 | kern_return_t wait_result = new_thread->wait_result; | |
1334 | ||
1335 | new_thread->funnel_state = 0; | |
1336 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, | |
1337 | new_thread->funnel_lock, 3, 0, 0, 0); | |
1338 | funnel_lock(new_thread->funnel_lock); | |
1339 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, | |
1340 | new_thread->funnel_lock, 3, 0, 0, 0); | |
1341 | new_thread->funnel_state = TH_FN_OWNED; | |
1342 | new_thread->wait_result = wait_result; | |
1343 | } | |
1344 | (void) spllo(); | |
1345 | call_continuation(old_cont); | |
1346 | /*NOTREACHED*/ | |
1347 | } | |
1c79356b | 1348 | } |
9bccf70c A |
1349 | else { |
1350 | /* | |
1351 | * Check that the new thread has a stack | |
1352 | */ | |
1353 | if (new_thread->state & TH_STACK_HANDOFF) { | |
1354 | need_stack: | |
1355 | if (!stack_alloc_try(new_thread, thread_continue)) { | |
1356 | counter_always(c_thread_invoke_misses++); | |
1357 | thread_swapin(new_thread); | |
1358 | return (FALSE); | |
1359 | } | |
1c79356b | 1360 | |
9bccf70c A |
1361 | new_thread->state &= ~TH_STACK_HANDOFF; |
1362 | } | |
1363 | else | |
1364 | if (new_thread->state & TH_STACK_ALLOC) { | |
1365 | /* | |
1366 | * Waiting for a stack | |
1367 | */ | |
1368 | counter_always(c_thread_invoke_misses++); | |
1369 | thread_unlock(new_thread); | |
1370 | return (FALSE); | |
1371 | } | |
1372 | else | |
1373 | if (old_thread == new_thread) { | |
1374 | counter(++c_thread_invoke_same); | |
1375 | thread_unlock(new_thread); | |
1376 | return (TRUE); | |
1377 | } | |
1378 | } | |
1c79356b A |
1379 | |
1380 | /* | |
9bccf70c | 1381 | * Set up ast context of new thread and switch to its timer. |
1c79356b | 1382 | */ |
9bccf70c A |
1383 | processor = current_processor(); |
1384 | new_thread->last_processor = processor; | |
1385 | processor->current_pri = new_thread->sched_pri; | |
1386 | ast_context(new_thread->top_act, processor->slot_num); | |
1c79356b A |
1387 | timer_switch(&new_thread->system_timer); |
1388 | assert(thread_runnable(new_thread)); | |
1c79356b A |
1389 | thread_unlock(new_thread); |
1390 | ||
1391 | counter_always(c_thread_invoke_csw++); | |
1392 | current_task()->csw++; | |
1393 | ||
1c79356b | 1394 | assert(old_thread->runq == RUN_QUEUE_NULL); |
9bccf70c A |
1395 | old_thread->reason = reason; |
1396 | old_thread->continuation = old_cont; | |
1c79356b | 1397 | |
9bccf70c | 1398 | _mk_sp_thread_done(old_thread, new_thread, processor); |
1c79356b A |
1399 | |
1400 | /* | |
1401 | * switch_context is machine-dependent. It does the | |
1402 | * machine-dependent components of a context-switch, like | |
1403 | * changing address spaces. It updates active_threads. | |
1404 | */ | |
9bccf70c | 1405 | old_thread = switch_context(old_thread, old_cont, new_thread); |
1c79356b A |
1406 | |
1407 | /* Now on new thread's stack. Set a local variable to refer to it. */ | |
1408 | new_thread = __current_thread(); | |
1409 | assert(old_thread != new_thread); | |
1410 | ||
1c79356b | 1411 | assert(thread_runnable(new_thread)); |
9bccf70c | 1412 | _mk_sp_thread_begin(new_thread, new_thread->last_processor); |
1c79356b A |
1413 | |
1414 | /* | |
1415 | * We're back. Now old_thread is the thread that resumed | |
1416 | * us, and we have to dispatch it. | |
1417 | */ | |
1c79356b | 1418 | thread_dispatch(old_thread); |
9bccf70c A |
1419 | |
1420 | if (old_cont) { | |
1421 | if (new_thread->funnel_state & TH_FN_REFUNNEL) { | |
1422 | kern_return_t wait_result = new_thread->wait_result; | |
1423 | ||
1424 | new_thread->funnel_state = 0; | |
1425 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, | |
1426 | new_thread->funnel_lock, 3, 0, 0, 0); | |
1427 | funnel_lock(new_thread->funnel_lock); | |
1428 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, | |
1429 | new_thread->funnel_lock, 3, 0, 0, 0); | |
1430 | new_thread->funnel_state = TH_FN_OWNED; | |
1431 | new_thread->wait_result = wait_result; | |
1432 | } | |
1433 | (void) spllo(); | |
1434 | call_continuation(old_cont); | |
1435 | /*NOTREACHED*/ | |
1c79356b A |
1436 | } |
1437 | ||
9bccf70c | 1438 | return (TRUE); |
1c79356b A |
1439 | } |
1440 | ||
1441 | /* | |
1442 | * thread_continue: | |
1443 | * | |
9bccf70c | 1444 | * Called when a thread gets a new stack, at splsched(); |
1c79356b A |
1445 | */ |
1446 | void | |
1447 | thread_continue( | |
0b4e3aa0 | 1448 | register thread_t old_thread) |
1c79356b | 1449 | { |
9bccf70c A |
1450 | register thread_t self = current_thread(); |
1451 | register thread_continue_t continuation; | |
1452 | ||
1453 | continuation = self->continuation; | |
1454 | self->continuation = NULL; | |
1455 | ||
1456 | _mk_sp_thread_begin(self, self->last_processor); | |
1c79356b A |
1457 | |
1458 | /* | |
1459 | * We must dispatch the old thread and then | |
1460 | * call the current thread's continuation. | |
1461 | * There might not be an old thread, if we are | |
1462 | * the first thread to run on this processor. | |
1463 | */ | |
0b4e3aa0 | 1464 | if (old_thread != THREAD_NULL) |
1c79356b | 1465 | thread_dispatch(old_thread); |
1c79356b A |
1466 | |
1467 | if (self->funnel_state & TH_FN_REFUNNEL) { | |
9bccf70c | 1468 | kern_return_t wait_result = self->wait_result; |
0b4e3aa0 A |
1469 | |
1470 | self->funnel_state = 0; | |
0b4e3aa0 A |
1471 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, self->funnel_lock, 4, 0, 0, 0); |
1472 | funnel_lock(self->funnel_lock); | |
1473 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, self->funnel_lock, 4, 0, 0, 0); | |
0b4e3aa0 | 1474 | self->funnel_state = TH_FN_OWNED; |
9bccf70c | 1475 | self->wait_result = wait_result; |
1c79356b | 1476 | } |
9bccf70c | 1477 | (void)spllo(); |
1c79356b | 1478 | assert(continuation); |
9bccf70c | 1479 | call_continuation(continuation); |
1c79356b A |
1480 | /*NOTREACHED*/ |
1481 | } | |
1482 | ||
1483 | #if MACH_LDEBUG || MACH_KDB | |
1484 | ||
1485 | #define THREAD_LOG_SIZE 300 | |
1486 | ||
1487 | struct t64 { | |
1488 | unsigned long h; | |
1489 | unsigned long l; | |
1490 | }; | |
1491 | ||
1492 | struct { | |
1493 | struct t64 stamp; | |
1494 | thread_t thread; | |
1495 | long info1; | |
1496 | long info2; | |
1497 | long info3; | |
1498 | char * action; | |
1499 | } thread_log[THREAD_LOG_SIZE]; | |
1500 | ||
1501 | int thread_log_index; | |
1502 | ||
1503 | void check_thread_time(long n); | |
1504 | ||
1505 | ||
1506 | int check_thread_time_crash; | |
1507 | ||
1508 | #if 0 | |
1509 | void | |
1510 | check_thread_time(long us) | |
1511 | { | |
1512 | struct t64 temp; | |
1513 | ||
1514 | if (!check_thread_time_crash) | |
1515 | return; | |
1516 | ||
1517 | temp = thread_log[0].stamp; | |
1518 | cyctm05_diff (&thread_log[1].stamp, &thread_log[0].stamp, &temp); | |
1519 | ||
1520 | if (temp.l >= us && thread_log[1].info != 0x49) /* HACK!!! */ | |
1521 | panic ("check_thread_time"); | |
1522 | } | |
1523 | #endif | |
1524 | ||
1525 | void | |
1526 | log_thread_action(char * action, long info1, long info2, long info3) | |
1527 | { | |
1528 | int i; | |
1529 | spl_t x; | |
1530 | static unsigned int tstamp; | |
1531 | ||
1532 | x = splhigh(); | |
1533 | ||
1534 | for (i = THREAD_LOG_SIZE-1; i > 0; i--) { | |
1535 | thread_log[i] = thread_log[i-1]; | |
1536 | } | |
1537 | ||
1538 | thread_log[0].stamp.h = 0; | |
1539 | thread_log[0].stamp.l = tstamp++; | |
1540 | thread_log[0].thread = current_thread(); | |
1541 | thread_log[0].info1 = info1; | |
1542 | thread_log[0].info2 = info2; | |
1543 | thread_log[0].info3 = info3; | |
1544 | thread_log[0].action = action; | |
1545 | /* strcpy (&thread_log[0].action[0], action);*/ | |
1546 | ||
1547 | splx(x); | |
1548 | } | |
1549 | #endif /* MACH_LDEBUG || MACH_KDB */ | |
1550 | ||
1551 | #if MACH_KDB | |
1552 | #include <ddb/db_output.h> | |
1553 | void db_show_thread_log(void); | |
1554 | ||
1555 | void | |
1556 | db_show_thread_log(void) | |
1557 | { | |
1558 | int i; | |
1559 | ||
1560 | db_printf ("%s %s %s %s %s %s\n", " Thread ", " Info1 ", " Info2 ", | |
1561 | " Info3 ", " Timestamp ", "Action"); | |
1562 | ||
1563 | for (i = 0; i < THREAD_LOG_SIZE; i++) { | |
1564 | db_printf ("%08x %08x %08x %08x %08x/%08x %s\n", | |
1565 | thread_log[i].thread, | |
1566 | thread_log[i].info1, | |
1567 | thread_log[i].info2, | |
1568 | thread_log[i].info3, | |
1569 | thread_log[i].stamp.h, | |
1570 | thread_log[i].stamp.l, | |
1571 | thread_log[i].action); | |
1572 | } | |
1573 | } | |
1574 | #endif /* MACH_KDB */ | |
1575 | ||
1576 | /* | |
1577 | * thread_block_reason: | |
1578 | * | |
0b4e3aa0 A |
1579 | * Block the current thread if a wait has been asserted, |
1580 | * otherwise unconditionally yield the remainder of the | |
1581 | * current quantum unless reason contains AST_BLOCK. | |
1582 | * | |
1c79356b A |
1583 | * If a continuation is specified, then thread_block will |
1584 | * attempt to discard the thread's kernel stack. When the | |
1585 | * thread resumes, it will execute the continuation function | |
1586 | * on a new kernel stack. | |
1587 | */ | |
1588 | counter(mach_counter_t c_thread_block_calls = 0;) | |
1589 | ||
1590 | int | |
1591 | thread_block_reason( | |
9bccf70c A |
1592 | thread_continue_t continuation, |
1593 | ast_t reason) | |
1c79356b A |
1594 | { |
1595 | register thread_t thread = current_thread(); | |
1596 | register processor_t myprocessor; | |
1597 | register thread_t new_thread; | |
1598 | spl_t s; | |
1599 | ||
1600 | counter(++c_thread_block_calls); | |
1601 | ||
1602 | check_simple_locks(); | |
1603 | ||
1c79356b A |
1604 | s = splsched(); |
1605 | ||
1606 | if ((thread->funnel_state & TH_FN_OWNED) && !(reason & AST_PREEMPT)) { | |
9bccf70c A |
1607 | thread->funnel_state = TH_FN_REFUNNEL; |
1608 | KERNEL_DEBUG( | |
1609 | 0x603242c | DBG_FUNC_NONE, thread->funnel_lock, 2, 0, 0, 0); | |
1610 | funnel_unlock(thread->funnel_lock); | |
1c79356b A |
1611 | } |
1612 | ||
1613 | myprocessor = current_processor(); | |
1614 | ||
9bccf70c A |
1615 | /* If we're explicitly yielding, force a subsequent quantum */ |
1616 | if (reason & AST_YIELD) | |
0b4e3aa0 A |
1617 | myprocessor->slice_quanta = 0; |
1618 | ||
9bccf70c A |
1619 | /* We're handling all scheduling AST's */ |
1620 | ast_off(AST_SCHEDULING); | |
1c79356b | 1621 | |
9bccf70c | 1622 | thread_lock(thread); |
1c79356b | 1623 | new_thread = thread_select(myprocessor); |
9bccf70c | 1624 | assert(new_thread && thread_runnable(new_thread)); |
1c79356b A |
1625 | thread_unlock(thread); |
1626 | while (!thread_invoke(thread, new_thread, reason, continuation)) { | |
1627 | thread_lock(thread); | |
1628 | new_thread = thread_select(myprocessor); | |
9bccf70c | 1629 | assert(new_thread && thread_runnable(new_thread)); |
1c79356b A |
1630 | thread_unlock(thread); |
1631 | } | |
1632 | ||
1633 | if (thread->funnel_state & TH_FN_REFUNNEL) { | |
9bccf70c | 1634 | kern_return_t wait_result = thread->wait_result; |
1c79356b | 1635 | |
1c79356b | 1636 | thread->funnel_state = 0; |
9bccf70c A |
1637 | KERNEL_DEBUG( |
1638 | 0x6032428 | DBG_FUNC_NONE, thread->funnel_lock, 5, 0, 0, 0); | |
1c79356b | 1639 | funnel_lock(thread->funnel_lock); |
9bccf70c A |
1640 | KERNEL_DEBUG( |
1641 | 0x6032430 | DBG_FUNC_NONE, thread->funnel_lock, 5, 0, 0, 0); | |
1c79356b | 1642 | thread->funnel_state = TH_FN_OWNED; |
9bccf70c | 1643 | thread->wait_result = wait_result; |
1c79356b A |
1644 | } |
1645 | ||
1646 | splx(s); | |
1647 | ||
9bccf70c | 1648 | return (thread->wait_result); |
1c79356b A |
1649 | } |
1650 | ||
1651 | /* | |
1652 | * thread_block: | |
1653 | * | |
9bccf70c | 1654 | * Block the current thread if a wait has been asserted. |
1c79356b A |
1655 | */ |
1656 | int | |
1657 | thread_block( | |
9bccf70c | 1658 | thread_continue_t continuation) |
1c79356b | 1659 | { |
0b4e3aa0 | 1660 | return thread_block_reason(continuation, AST_NONE); |
1c79356b A |
1661 | } |
1662 | ||
1663 | /* | |
1664 | * thread_run: | |
1665 | * | |
9bccf70c A |
1666 | * Switch directly from the current (old) thread to the |
1667 | * specified thread, handing off our quantum if possible. | |
1668 | * | |
1669 | * New thread must be runnable, and not on a run queue. | |
1c79356b A |
1670 | * |
1671 | * Assumption: | |
1672 | * at splsched. | |
1673 | */ | |
1674 | int | |
1675 | thread_run( | |
9bccf70c A |
1676 | thread_t old_thread, |
1677 | thread_continue_t continuation, | |
1678 | thread_t new_thread) | |
1c79356b | 1679 | { |
9bccf70c A |
1680 | ast_t handoff = AST_HANDOFF; |
1681 | ||
1682 | assert(old_thread == current_thread()); | |
1683 | ||
9bccf70c A |
1684 | if (old_thread->funnel_state & TH_FN_OWNED) { |
1685 | old_thread->funnel_state = TH_FN_REFUNNEL; | |
1686 | KERNEL_DEBUG( | |
1687 | 0x603242c | DBG_FUNC_NONE, old_thread->funnel_lock, 3, 0, 0, 0); | |
1688 | funnel_unlock(old_thread->funnel_lock); | |
1689 | } | |
1690 | ||
1691 | while (!thread_invoke(old_thread, new_thread, handoff, continuation)) { | |
1692 | register processor_t myprocessor = current_processor(); | |
1693 | ||
1c79356b A |
1694 | thread_lock(old_thread); |
1695 | new_thread = thread_select(myprocessor); | |
1696 | thread_unlock(old_thread); | |
9bccf70c A |
1697 | handoff = AST_NONE; |
1698 | } | |
1699 | ||
1700 | /* if we fell thru */ | |
1701 | if (old_thread->funnel_state & TH_FN_REFUNNEL) { | |
1702 | kern_return_t wait_result = old_thread->wait_result; | |
1703 | ||
1704 | old_thread->funnel_state = 0; | |
1705 | KERNEL_DEBUG( | |
1706 | 0x6032428 | DBG_FUNC_NONE, old_thread->funnel_lock, 6, 0, 0, 0); | |
1707 | funnel_lock(old_thread->funnel_lock); | |
1708 | KERNEL_DEBUG( | |
1709 | 0x6032430 | DBG_FUNC_NONE, old_thread->funnel_lock, 6, 0, 0, 0); | |
1710 | old_thread->funnel_state = TH_FN_OWNED; | |
1711 | old_thread->wait_result = wait_result; | |
1c79356b | 1712 | } |
9bccf70c A |
1713 | |
1714 | return (old_thread->wait_result); | |
1c79356b A |
1715 | } |
1716 | ||
1717 | /* | |
1718 | * Dispatches a running thread that is not on a runq. | |
1719 | * Called at splsched. | |
1720 | */ | |
1721 | void | |
1722 | thread_dispatch( | |
1723 | register thread_t thread) | |
1724 | { | |
9bccf70c A |
1725 | wake_lock(thread); |
1726 | thread_lock(thread); | |
1727 | ||
1c79356b A |
1728 | /* |
1729 | * If we are discarding the thread's stack, we must do it | |
1730 | * before the thread has a chance to run. | |
1731 | */ | |
1c79356b | 1732 | #ifndef i386 |
9bccf70c A |
1733 | if (thread->continuation != NULL) { |
1734 | assert((thread->state & TH_STACK_STATE) == 0); | |
1735 | thread->state |= TH_STACK_HANDOFF; | |
1736 | stack_free(thread); | |
1737 | } | |
1c79356b A |
1738 | #endif |
1739 | ||
1740 | switch (thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_IDLE)) { | |
1741 | ||
1742 | case TH_RUN | TH_UNINT: | |
1743 | case TH_RUN: | |
1744 | /* | |
1745 | * No reason to stop. Put back on a run queue. | |
1746 | */ | |
0b4e3aa0 | 1747 | _mk_sp_thread_dispatch(thread); |
1c79356b A |
1748 | break; |
1749 | ||
1750 | case TH_RUN | TH_WAIT | TH_UNINT: | |
1751 | case TH_RUN | TH_WAIT: | |
9bccf70c A |
1752 | { |
1753 | boolean_t reap, wake, callblock; | |
1c79356b A |
1754 | |
1755 | /* | |
1756 | * Waiting | |
1757 | */ | |
9bccf70c | 1758 | thread->sleep_stamp = sched_tick; |
1c79356b | 1759 | thread->state &= ~TH_RUN; |
9bccf70c A |
1760 | hw_atomic_sub(&thread->processor_set->run_count, 1); |
1761 | callblock = thread->active_callout; | |
1762 | wake = thread->wake_active; | |
1763 | thread->wake_active = FALSE; | |
1764 | reap = (thread->state & TH_TERMINATE)? TRUE: FALSE; | |
1c79356b | 1765 | |
9bccf70c A |
1766 | thread_unlock(thread); |
1767 | wake_unlock(thread); | |
1768 | ||
1769 | if (callblock) | |
1770 | call_thread_block(); | |
1771 | ||
1772 | if (wake) | |
1c79356b | 1773 | thread_wakeup((event_t)&thread->wake_active); |
9bccf70c A |
1774 | |
1775 | if (reap) | |
1776 | thread_reaper_enqueue(thread); | |
1777 | ||
1778 | return; | |
1779 | } | |
1c79356b A |
1780 | |
1781 | case TH_RUN | TH_IDLE: | |
1782 | /* | |
9bccf70c A |
1783 | * The idle threads don't go |
1784 | * onto a run queue. | |
1c79356b A |
1785 | */ |
1786 | break; | |
1787 | ||
1788 | default: | |
9bccf70c | 1789 | panic("thread_dispatch: bad thread state 0x%x\n", thread->state); |
1c79356b | 1790 | } |
9bccf70c | 1791 | |
1c79356b A |
1792 | thread_unlock(thread); |
1793 | wake_unlock(thread); | |
1794 | } | |
1795 | ||
1796 | /* | |
1797 | * Enqueue thread on run queue. Thread must be locked, | |
9bccf70c A |
1798 | * and not already be on a run queue. Returns TRUE iff |
1799 | * the particular queue level was empty beforehand. | |
1c79356b | 1800 | */ |
9bccf70c | 1801 | boolean_t |
1c79356b A |
1802 | run_queue_enqueue( |
1803 | register run_queue_t rq, | |
1804 | register thread_t thread, | |
1805 | boolean_t tail) | |
1806 | { | |
9bccf70c A |
1807 | register int whichq = thread->sched_pri; |
1808 | register queue_t queue = &rq->queues[whichq]; | |
1809 | boolean_t result = FALSE; | |
1c79356b | 1810 | |
1c79356b A |
1811 | assert(whichq >= MINPRI && whichq <= MAXPRI); |
1812 | ||
9bccf70c | 1813 | simple_lock(&rq->lock); |
1c79356b | 1814 | assert(thread->runq == RUN_QUEUE_NULL); |
9bccf70c A |
1815 | if (queue_empty(queue)) { |
1816 | enqueue_tail(queue, (queue_entry_t)thread); | |
1817 | ||
1818 | setbit(MAXPRI - whichq, rq->bitmap); | |
1819 | if (whichq > rq->highq) | |
1820 | rq->highq = whichq; | |
1821 | result = TRUE; | |
1822 | } | |
1823 | else | |
1c79356b | 1824 | if (tail) |
9bccf70c | 1825 | enqueue_tail(queue, (queue_entry_t)thread); |
1c79356b | 1826 | else |
9bccf70c | 1827 | enqueue_head(queue, (queue_entry_t)thread); |
1c79356b | 1828 | |
1c79356b | 1829 | thread->runq = rq; |
9bccf70c A |
1830 | if (thread->sched_mode & TH_MODE_PREEMPT) |
1831 | rq->urgency++; | |
1832 | rq->count++; | |
1c79356b A |
1833 | #if DEBUG |
1834 | thread_check(thread, rq); | |
1835 | #endif /* DEBUG */ | |
1836 | simple_unlock(&rq->lock); | |
1837 | ||
9bccf70c | 1838 | return (result); |
1c79356b A |
1839 | } |
1840 | ||
9bccf70c A |
1841 | struct { |
1842 | uint32_t pset_idle_last, | |
1843 | pset_idle_any, | |
1844 | pset_self, | |
1845 | pset_last, | |
1846 | pset_other, | |
1847 | bound_idle, | |
1848 | bound_self, | |
1849 | bound_other; | |
1850 | } dispatch_counts; | |
1851 | ||
1c79356b A |
1852 | /* |
1853 | * thread_setrun: | |
1854 | * | |
9bccf70c A |
1855 | * Dispatch thread for execution, directly onto an idle |
1856 | * processor if possible. Else put on appropriate run | |
1857 | * queue. (local if bound, else processor set) | |
1858 | * | |
1859 | * Thread must be locked. | |
1860 | * | |
1861 | * The tail parameter indicates the proper placement of | |
1862 | * the thread on a run queue. | |
1c79356b A |
1863 | */ |
1864 | void | |
1865 | thread_setrun( | |
1866 | register thread_t new_thread, | |
1c79356b A |
1867 | boolean_t tail) |
1868 | { | |
1869 | register processor_t processor; | |
1c79356b | 1870 | register processor_set_t pset; |
9bccf70c A |
1871 | register thread_t thread; |
1872 | boolean_t try_preempt = FALSE; | |
1873 | ast_t preempt = AST_BLOCK; | |
1c79356b | 1874 | |
1c79356b A |
1875 | assert(thread_runnable(new_thread)); |
1876 | ||
1877 | /* | |
1878 | * Update priority if needed. | |
1879 | */ | |
1880 | if (new_thread->sched_stamp != sched_tick) | |
1881 | update_priority(new_thread); | |
1882 | ||
1c79356b | 1883 | /* |
9bccf70c | 1884 | * Check for urgent preemption. |
1c79356b | 1885 | */ |
9bccf70c A |
1886 | if (new_thread->sched_mode & TH_MODE_PREEMPT) |
1887 | preempt |= AST_URGENT; | |
1888 | ||
1889 | assert(new_thread->runq == RUN_QUEUE_NULL); | |
1890 | ||
1c79356b A |
1891 | if ((processor = new_thread->bound_processor) == PROCESSOR_NULL) { |
1892 | /* | |
9bccf70c A |
1893 | * First try to dispatch on |
1894 | * the last processor. | |
1c79356b A |
1895 | */ |
1896 | pset = new_thread->processor_set; | |
9bccf70c A |
1897 | processor = new_thread->last_processor; |
1898 | if ( pset->processor_count > 1 && | |
1899 | processor != PROCESSOR_NULL && | |
1900 | processor->state == PROCESSOR_IDLE ) { | |
1901 | simple_lock(&processor->lock); | |
1902 | simple_lock(&pset->sched_lock); | |
1903 | if ( processor->processor_set == pset && | |
1904 | processor->state == PROCESSOR_IDLE ) { | |
1905 | remqueue(&pset->idle_queue, (queue_entry_t)processor); | |
1c79356b A |
1906 | pset->idle_count--; |
1907 | processor->next_thread = new_thread; | |
1908 | processor->state = PROCESSOR_DISPATCHING; | |
9bccf70c A |
1909 | simple_unlock(&pset->sched_lock); |
1910 | simple_unlock(&processor->lock); | |
1911 | if (processor != current_processor()) | |
1c79356b | 1912 | machine_signal_idle(processor); |
9bccf70c | 1913 | dispatch_counts.pset_idle_last++; |
1c79356b A |
1914 | return; |
1915 | } | |
9bccf70c A |
1916 | simple_unlock(&processor->lock); |
1917 | } | |
1918 | else | |
1919 | simple_lock(&pset->sched_lock); | |
1920 | ||
1921 | /* | |
1922 | * Next pick any idle processor | |
1923 | * in the processor set. | |
1924 | */ | |
1925 | if (pset->idle_count > 0) { | |
1926 | processor = (processor_t)dequeue_head(&pset->idle_queue); | |
1927 | pset->idle_count--; | |
1928 | processor->next_thread = new_thread; | |
1929 | processor->state = PROCESSOR_DISPATCHING; | |
1930 | simple_unlock(&pset->sched_lock); | |
1931 | if (processor != current_processor()) | |
1932 | machine_signal_idle(processor); | |
1933 | dispatch_counts.pset_idle_any++; | |
1934 | return; | |
1935 | } | |
1c79356b | 1936 | |
0b4e3aa0 | 1937 | /* |
9bccf70c | 1938 | * Place thread on run queue. |
0b4e3aa0 | 1939 | */ |
9bccf70c A |
1940 | if (run_queue_enqueue(&pset->runq, new_thread, tail)) |
1941 | try_preempt = TRUE; | |
1942 | ||
1943 | /* | |
1944 | * Update the timesharing quanta. | |
1945 | */ | |
1946 | pset_quanta_update(pset); | |
0b4e3aa0 | 1947 | |
1c79356b | 1948 | /* |
9bccf70c | 1949 | * Preempt check. |
1c79356b | 1950 | */ |
1c79356b | 1951 | processor = current_processor(); |
9bccf70c A |
1952 | thread = processor->cpu_data->active_thread; |
1953 | if (try_preempt) { | |
1954 | /* | |
1955 | * First try the current processor | |
1956 | * if it is a member of the correct | |
1957 | * processor set. | |
1c79356b | 1958 | */ |
9bccf70c A |
1959 | if ( pset == processor->processor_set && |
1960 | csw_needed(thread, processor) ) { | |
1961 | simple_unlock(&pset->sched_lock); | |
1962 | ||
1963 | ast_on(preempt); | |
1964 | dispatch_counts.pset_self++; | |
1965 | return; | |
1966 | } | |
1967 | ||
1968 | /* | |
1969 | * If that failed and we have other | |
1970 | * processors available keep trying. | |
1971 | */ | |
1972 | if ( pset->processor_count > 1 || | |
1973 | pset != processor->processor_set ) { | |
1974 | queue_t active = &pset->active_queue; | |
1975 | processor_t myprocessor, lastprocessor; | |
1976 | queue_entry_t next; | |
1977 | ||
1978 | /* | |
1979 | * Next try the last processor | |
1980 | * dispatched on. | |
1981 | */ | |
1982 | myprocessor = processor; | |
1983 | processor = new_thread->last_processor; | |
1984 | if ( processor != myprocessor && | |
1985 | processor != PROCESSOR_NULL && | |
1986 | processor->processor_set == pset && | |
1987 | processor->state == PROCESSOR_RUNNING && | |
1988 | new_thread->sched_pri > processor->current_pri ) { | |
1989 | cause_ast_check(processor); | |
1990 | simple_unlock(&pset->sched_lock); | |
1991 | dispatch_counts.pset_last++; | |
1992 | return; | |
1993 | } | |
1994 | ||
1995 | /* | |
1996 | * Lastly, pick any other | |
1997 | * available processor. | |
1998 | */ | |
1999 | lastprocessor = processor; | |
2000 | processor = (processor_t)queue_first(active); | |
2001 | while (!queue_end(active, (queue_entry_t)processor)) { | |
2002 | next = queue_next((queue_entry_t)processor); | |
2003 | ||
2004 | if ( processor != myprocessor && | |
2005 | processor != lastprocessor && | |
2006 | new_thread->sched_pri > processor->current_pri ) { | |
2007 | if (!queue_end(active, next)) { | |
2008 | remqueue(active, (queue_entry_t)processor); | |
2009 | enqueue_tail(active, (queue_entry_t)processor); | |
2010 | } | |
2011 | cause_ast_check(processor); | |
2012 | simple_unlock(&pset->sched_lock); | |
2013 | dispatch_counts.pset_other++; | |
2014 | return; | |
2015 | } | |
2016 | ||
2017 | processor = (processor_t)next; | |
2018 | } | |
2019 | } | |
1c79356b | 2020 | } |
9bccf70c A |
2021 | |
2022 | simple_unlock(&pset->sched_lock); | |
1c79356b A |
2023 | } |
2024 | else { | |
2025 | /* | |
2026 | * Bound, can only run on bound processor. Have to lock | |
2027 | * processor here because it may not be the current one. | |
2028 | */ | |
9bccf70c | 2029 | if (processor->state == PROCESSOR_IDLE) { |
1c79356b A |
2030 | simple_lock(&processor->lock); |
2031 | pset = processor->processor_set; | |
9bccf70c | 2032 | simple_lock(&pset->sched_lock); |
1c79356b | 2033 | if (processor->state == PROCESSOR_IDLE) { |
9bccf70c | 2034 | remqueue(&pset->idle_queue, (queue_entry_t)processor); |
1c79356b A |
2035 | pset->idle_count--; |
2036 | processor->next_thread = new_thread; | |
2037 | processor->state = PROCESSOR_DISPATCHING; | |
9bccf70c | 2038 | simple_unlock(&pset->sched_lock); |
1c79356b | 2039 | simple_unlock(&processor->lock); |
9bccf70c | 2040 | if (processor != current_processor()) |
1c79356b | 2041 | machine_signal_idle(processor); |
9bccf70c | 2042 | dispatch_counts.bound_idle++; |
1c79356b A |
2043 | return; |
2044 | } | |
9bccf70c | 2045 | simple_unlock(&pset->sched_lock); |
1c79356b A |
2046 | simple_unlock(&processor->lock); |
2047 | } | |
2048 | ||
9bccf70c A |
2049 | if (run_queue_enqueue(&processor->runq, new_thread, tail)) |
2050 | try_preempt = TRUE; | |
2051 | ||
2052 | if (processor == current_processor()) { | |
2053 | if (try_preempt) { | |
2054 | thread = processor->cpu_data->active_thread; | |
2055 | if (csw_needed(thread, processor)) { | |
2056 | ast_on(preempt); | |
2057 | dispatch_counts.bound_self++; | |
2058 | } | |
2059 | } | |
2060 | } | |
1c79356b | 2061 | else { |
9bccf70c A |
2062 | if (try_preempt) { |
2063 | if ( processor->state == PROCESSOR_RUNNING && | |
2064 | new_thread->sched_pri > processor->current_pri ) { | |
2065 | cause_ast_check(processor); | |
2066 | dispatch_counts.bound_other++; | |
2067 | return; | |
2068 | } | |
2069 | } | |
2070 | ||
2071 | if (processor->state == PROCESSOR_IDLE) { | |
2072 | machine_signal_idle(processor); | |
2073 | dispatch_counts.bound_idle++; | |
2074 | } | |
2075 | } | |
2076 | } | |
2077 | } | |
2078 | ||
2079 | /* | |
2080 | * Called at splsched by a thread on itself. | |
2081 | */ | |
2082 | ast_t | |
2083 | csw_check( | |
2084 | thread_t thread, | |
2085 | processor_t processor) | |
2086 | { | |
2087 | int current_pri = thread->sched_pri; | |
2088 | ast_t result = AST_NONE; | |
2089 | run_queue_t runq; | |
2090 | ||
2091 | if (first_quantum(processor)) { | |
2092 | runq = &processor->processor_set->runq; | |
2093 | if (runq->highq > current_pri) { | |
2094 | if (runq->urgency > 0) | |
2095 | return (AST_BLOCK | AST_URGENT); | |
2096 | ||
2097 | result |= AST_BLOCK; | |
2098 | } | |
2099 | ||
2100 | runq = &processor->runq; | |
2101 | if (runq->highq > current_pri) { | |
2102 | if (runq->urgency > 0) | |
2103 | return (AST_BLOCK | AST_URGENT); | |
2104 | ||
2105 | result |= AST_BLOCK; | |
2106 | } | |
2107 | } | |
2108 | else { | |
2109 | runq = &processor->processor_set->runq; | |
2110 | if (runq->highq >= current_pri) { | |
2111 | if (runq->urgency > 0) | |
2112 | return (AST_BLOCK | AST_URGENT); | |
2113 | ||
2114 | result |= AST_BLOCK; | |
2115 | } | |
2116 | ||
2117 | runq = &processor->runq; | |
2118 | if (runq->highq >= current_pri) { | |
2119 | if (runq->urgency > 0) | |
2120 | return (AST_BLOCK | AST_URGENT); | |
2121 | ||
2122 | result |= AST_BLOCK; | |
2123 | } | |
1c79356b | 2124 | } |
9bccf70c A |
2125 | |
2126 | if (result != AST_NONE) | |
2127 | return (result); | |
2128 | ||
2129 | if (thread->state & TH_SUSP) | |
2130 | result |= AST_BLOCK; | |
2131 | ||
2132 | return (result); | |
1c79356b A |
2133 | } |
2134 | ||
2135 | /* | |
9bccf70c | 2136 | * set_sched_pri: |
1c79356b | 2137 | * |
9bccf70c A |
2138 | * Set the current scheduled priority of the specified thread. |
2139 | * This may cause the thread to change queues. | |
1c79356b A |
2140 | * |
2141 | * The thread *must* be locked by the caller. | |
2142 | */ | |
2143 | void | |
9bccf70c | 2144 | set_sched_pri( |
1c79356b | 2145 | thread_t thread, |
9bccf70c | 2146 | int priority) |
1c79356b | 2147 | { |
9bccf70c A |
2148 | register struct run_queue *rq = rem_runq(thread); |
2149 | ||
2150 | if ( !(thread->sched_mode & TH_MODE_TIMESHARE) && | |
2151 | (priority >= BASEPRI_PREEMPT || | |
2152 | (thread->task_priority < MINPRI_KERNEL && | |
2153 | thread->task_priority >= BASEPRI_BACKGROUND && | |
2154 | priority > thread->task_priority) || | |
2155 | (thread->sched_mode & TH_MODE_FORCEDPREEMPT) ) ) | |
2156 | thread->sched_mode |= TH_MODE_PREEMPT; | |
2157 | else | |
2158 | thread->sched_mode &= ~TH_MODE_PREEMPT; | |
1c79356b | 2159 | |
9bccf70c A |
2160 | thread->sched_pri = priority; |
2161 | if (rq != RUN_QUEUE_NULL) | |
2162 | thread_setrun(thread, TAIL_Q); | |
2163 | else | |
2164 | if ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN) { | |
2165 | processor_t processor = thread->last_processor; | |
2166 | ||
2167 | if (thread == current_thread()) { | |
2168 | ast_t preempt = csw_check(thread, processor); | |
2169 | ||
2170 | if (preempt != AST_NONE) | |
2171 | ast_on(preempt); | |
2172 | processor->current_pri = priority; | |
2173 | } | |
2174 | else | |
2175 | if ( processor != PROCESSOR_NULL && | |
2176 | processor->cpu_data->active_thread == thread ) | |
2177 | cause_ast_check(processor); | |
1c79356b A |
2178 | } |
2179 | } | |
2180 | ||
2181 | /* | |
2182 | * rem_runq: | |
2183 | * | |
2184 | * Remove a thread from its run queue. | |
2185 | * The run queue that the process was on is returned | |
2186 | * (or RUN_QUEUE_NULL if not on a run queue). Thread *must* be locked | |
2187 | * before calling this routine. Unusual locking protocol on runq | |
2188 | * field in thread structure makes this code interesting; see thread.h. | |
2189 | */ | |
2190 | run_queue_t | |
2191 | rem_runq( | |
2192 | thread_t thread) | |
2193 | { | |
2194 | register struct run_queue *rq; | |
2195 | ||
2196 | rq = thread->runq; | |
2197 | /* | |
2198 | * If rq is RUN_QUEUE_NULL, the thread will stay out of the | |
2199 | * run_queues because the caller locked the thread. Otherwise | |
2200 | * the thread is on a runq, but could leave. | |
2201 | */ | |
2202 | if (rq != RUN_QUEUE_NULL) { | |
2203 | simple_lock(&rq->lock); | |
2204 | if (rq == thread->runq) { | |
2205 | /* | |
2206 | * Thread is in a runq and we have a lock on | |
2207 | * that runq. | |
2208 | */ | |
2209 | #if DEBUG | |
2210 | thread_check(thread, rq); | |
2211 | #endif /* DEBUG */ | |
2212 | remqueue(&rq->queues[0], (queue_entry_t)thread); | |
2213 | rq->count--; | |
9bccf70c A |
2214 | if (thread->sched_mode & TH_MODE_PREEMPT) |
2215 | rq->urgency--; | |
2216 | assert(rq->urgency >= 0); | |
1c79356b A |
2217 | |
2218 | if (queue_empty(rq->queues + thread->sched_pri)) { | |
2219 | /* update run queue status */ | |
2220 | if (thread->sched_pri != IDLEPRI) | |
2221 | clrbit(MAXPRI - thread->sched_pri, rq->bitmap); | |
2222 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
2223 | } | |
2224 | thread->runq = RUN_QUEUE_NULL; | |
2225 | simple_unlock(&rq->lock); | |
2226 | } | |
2227 | else { | |
2228 | /* | |
2229 | * The thread left the runq before we could | |
2230 | * lock the runq. It is not on a runq now, and | |
2231 | * can't move again because this routine's | |
2232 | * caller locked the thread. | |
2233 | */ | |
2234 | assert(thread->runq == RUN_QUEUE_NULL); | |
2235 | simple_unlock(&rq->lock); | |
2236 | rq = RUN_QUEUE_NULL; | |
2237 | } | |
2238 | } | |
2239 | ||
2240 | return (rq); | |
2241 | } | |
2242 | ||
1c79356b A |
2243 | /* |
2244 | * choose_thread: | |
2245 | * | |
2246 | * Choose a thread to execute. The thread chosen is removed | |
2247 | * from its run queue. Note that this requires only that the runq | |
2248 | * lock be held. | |
2249 | * | |
2250 | * Strategy: | |
2251 | * Check processor runq first; if anything found, run it. | |
2252 | * Else check pset runq; if nothing found, return idle thread. | |
2253 | * | |
2254 | * Second line of strategy is implemented by choose_pset_thread. | |
9bccf70c A |
2255 | * |
2256 | * Called with both the local & pset run queues locked, returned | |
2257 | * unlocked. | |
1c79356b A |
2258 | */ |
2259 | thread_t | |
2260 | choose_thread( | |
2261 | processor_t myprocessor) | |
2262 | { | |
2263 | thread_t thread; | |
2264 | register queue_t q; | |
2265 | register run_queue_t runq; | |
2266 | processor_set_t pset; | |
2267 | ||
2268 | runq = &myprocessor->runq; | |
2269 | pset = myprocessor->processor_set; | |
2270 | ||
1c79356b | 2271 | if (runq->count > 0 && runq->highq >= pset->runq.highq) { |
9bccf70c | 2272 | simple_unlock(&pset->runq.lock); |
1c79356b A |
2273 | q = runq->queues + runq->highq; |
2274 | #if MACH_ASSERT | |
2275 | if (!queue_empty(q)) { | |
2276 | #endif /*MACH_ASSERT*/ | |
2277 | thread = (thread_t)q->next; | |
2278 | ((queue_entry_t)thread)->next->prev = q; | |
2279 | q->next = ((queue_entry_t)thread)->next; | |
2280 | thread->runq = RUN_QUEUE_NULL; | |
2281 | runq->count--; | |
9bccf70c A |
2282 | if (thread->sched_mode & TH_MODE_PREEMPT) |
2283 | runq->urgency--; | |
2284 | assert(runq->urgency >= 0); | |
1c79356b A |
2285 | if (queue_empty(q)) { |
2286 | if (runq->highq != IDLEPRI) | |
2287 | clrbit(MAXPRI - runq->highq, runq->bitmap); | |
2288 | runq->highq = MAXPRI - ffsbit(runq->bitmap); | |
2289 | } | |
2290 | simple_unlock(&runq->lock); | |
2291 | return (thread); | |
2292 | #if MACH_ASSERT | |
2293 | } | |
2294 | panic("choose_thread"); | |
2295 | #endif /*MACH_ASSERT*/ | |
2296 | /*NOTREACHED*/ | |
2297 | } | |
9bccf70c | 2298 | simple_unlock(&myprocessor->runq.lock); |
1c79356b | 2299 | |
1c79356b A |
2300 | return (choose_pset_thread(myprocessor, pset)); |
2301 | } | |
2302 | ||
1c79356b A |
2303 | /* |
2304 | * choose_pset_thread: choose a thread from processor_set runq or | |
2305 | * set processor idle and choose its idle thread. | |
2306 | * | |
1c79356b A |
2307 | * This routine chooses and removes a thread from the runq if there |
2308 | * is one (and returns it), else it sets the processor idle and | |
2309 | * returns its idle thread. | |
9bccf70c A |
2310 | * |
2311 | * Called with both local & pset run queues locked, returned | |
2312 | * unlocked. | |
1c79356b A |
2313 | */ |
2314 | thread_t | |
2315 | choose_pset_thread( | |
2316 | register processor_t myprocessor, | |
2317 | processor_set_t pset) | |
2318 | { | |
2319 | register run_queue_t runq; | |
2320 | register thread_t thread; | |
2321 | register queue_t q; | |
2322 | ||
2323 | runq = &pset->runq; | |
2324 | if (runq->count > 0) { | |
2325 | q = runq->queues + runq->highq; | |
2326 | #if MACH_ASSERT | |
2327 | if (!queue_empty(q)) { | |
2328 | #endif /*MACH_ASSERT*/ | |
2329 | thread = (thread_t)q->next; | |
2330 | ((queue_entry_t)thread)->next->prev = q; | |
2331 | q->next = ((queue_entry_t)thread)->next; | |
2332 | thread->runq = RUN_QUEUE_NULL; | |
2333 | runq->count--; | |
9bccf70c A |
2334 | if (thread->sched_mode & TH_MODE_PREEMPT) |
2335 | runq->urgency--; | |
2336 | assert(runq->urgency >= 0); | |
1c79356b A |
2337 | if (queue_empty(q)) { |
2338 | if (runq->highq != IDLEPRI) | |
2339 | clrbit(MAXPRI - runq->highq, runq->bitmap); | |
2340 | runq->highq = MAXPRI - ffsbit(runq->bitmap); | |
2341 | } | |
9bccf70c | 2342 | pset_quanta_update(pset); |
1c79356b A |
2343 | simple_unlock(&runq->lock); |
2344 | return (thread); | |
2345 | #if MACH_ASSERT | |
2346 | } | |
2347 | panic("choose_pset_thread"); | |
2348 | #endif /*MACH_ASSERT*/ | |
2349 | /*NOTREACHED*/ | |
2350 | } | |
2351 | simple_unlock(&runq->lock); | |
2352 | ||
2353 | /* | |
2354 | * Nothing is runnable, so set this processor idle if it | |
2355 | * was running. If it was in an assignment or shutdown, | |
2356 | * leave it alone. Return its idle thread. | |
2357 | */ | |
9bccf70c | 2358 | simple_lock(&pset->sched_lock); |
1c79356b | 2359 | if (myprocessor->state == PROCESSOR_RUNNING) { |
9bccf70c | 2360 | remqueue(&pset->active_queue, (queue_entry_t)myprocessor); |
1c79356b | 2361 | myprocessor->state = PROCESSOR_IDLE; |
9bccf70c | 2362 | |
1c79356b | 2363 | if (myprocessor == master_processor) |
9bccf70c | 2364 | enqueue_tail(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b | 2365 | else |
9bccf70c | 2366 | enqueue_head(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b A |
2367 | |
2368 | pset->idle_count++; | |
2369 | } | |
9bccf70c | 2370 | simple_unlock(&pset->sched_lock); |
1c79356b A |
2371 | |
2372 | return (myprocessor->idle_thread); | |
2373 | } | |
2374 | ||
2375 | /* | |
2376 | * no_dispatch_count counts number of times processors go non-idle | |
2377 | * without being dispatched. This should be very rare. | |
2378 | */ | |
2379 | int no_dispatch_count = 0; | |
2380 | ||
2381 | /* | |
2382 | * This is the idle thread, which just looks for other threads | |
2383 | * to execute. | |
2384 | */ | |
2385 | void | |
2386 | idle_thread_continue(void) | |
2387 | { | |
2388 | register processor_t myprocessor; | |
2389 | register volatile thread_t *threadp; | |
2390 | register volatile int *gcount; | |
2391 | register volatile int *lcount; | |
2392 | register thread_t new_thread; | |
2393 | register int state; | |
2394 | register processor_set_t pset; | |
2395 | int mycpu; | |
2396 | ||
2397 | mycpu = cpu_number(); | |
9bccf70c | 2398 | myprocessor = cpu_to_processor(mycpu); |
1c79356b A |
2399 | threadp = (volatile thread_t *) &myprocessor->next_thread; |
2400 | lcount = (volatile int *) &myprocessor->runq.count; | |
2401 | ||
2402 | for (;;) { | |
1c79356b A |
2403 | gcount = (volatile int *)&myprocessor->processor_set->runq.count; |
2404 | ||
2405 | (void)splsched(); | |
2406 | while ( (*threadp == (volatile thread_t)THREAD_NULL) && | |
2407 | (*gcount == 0) && (*lcount == 0) ) { | |
2408 | ||
2409 | /* check for ASTs while we wait */ | |
9bccf70c | 2410 | if (need_ast[mycpu] &~ ( AST_SCHEDULING | AST_BSD )) { |
1c79356b | 2411 | /* don't allow scheduling ASTs */ |
9bccf70c | 2412 | need_ast[mycpu] &= ~( AST_SCHEDULING | AST_BSD ); |
0b4e3aa0 | 2413 | ast_taken(AST_ALL, TRUE); /* back at spllo */ |
1c79356b A |
2414 | } |
2415 | else | |
2416 | #ifdef __ppc__ | |
2417 | machine_idle(); | |
2418 | #else | |
2419 | (void)spllo(); | |
2420 | #endif | |
1c79356b A |
2421 | (void)splsched(); |
2422 | } | |
2423 | ||
1c79356b A |
2424 | /* |
2425 | * This is not a switch statement to avoid the | |
2426 | * bounds checking code in the common case. | |
2427 | */ | |
2428 | pset = myprocessor->processor_set; | |
9bccf70c | 2429 | simple_lock(&pset->sched_lock); |
1c79356b A |
2430 | retry: |
2431 | state = myprocessor->state; | |
2432 | if (state == PROCESSOR_DISPATCHING) { | |
2433 | /* | |
2434 | * Commmon case -- cpu dispatched. | |
2435 | */ | |
2436 | new_thread = *threadp; | |
2437 | *threadp = (volatile thread_t) THREAD_NULL; | |
2438 | myprocessor->state = PROCESSOR_RUNNING; | |
9bccf70c A |
2439 | enqueue_tail(&pset->active_queue, (queue_entry_t)myprocessor); |
2440 | simple_unlock(&pset->sched_lock); | |
1c79356b | 2441 | |
1c79356b A |
2442 | if ( myprocessor->runq.highq > new_thread->sched_pri || |
2443 | pset->runq.highq > new_thread->sched_pri ) { | |
9bccf70c A |
2444 | thread_lock(new_thread); |
2445 | thread_setrun(new_thread, HEAD_Q); | |
1c79356b A |
2446 | thread_unlock(new_thread); |
2447 | ||
2448 | counter(c_idle_thread_block++); | |
2449 | thread_block(idle_thread_continue); | |
9bccf70c | 2450 | /* NOTREACHED */ |
1c79356b A |
2451 | } |
2452 | else { | |
1c79356b A |
2453 | counter(c_idle_thread_handoff++); |
2454 | thread_run(myprocessor->idle_thread, | |
2455 | idle_thread_continue, new_thread); | |
9bccf70c | 2456 | /* NOTREACHED */ |
1c79356b A |
2457 | } |
2458 | } | |
2459 | else | |
2460 | if (state == PROCESSOR_IDLE) { | |
2461 | if (myprocessor->state != PROCESSOR_IDLE) { | |
2462 | /* | |
2463 | * Something happened, try again. | |
2464 | */ | |
2465 | goto retry; | |
2466 | } | |
2467 | /* | |
2468 | * Processor was not dispatched (Rare). | |
2469 | * Set it running again. | |
2470 | */ | |
2471 | no_dispatch_count++; | |
2472 | pset->idle_count--; | |
9bccf70c | 2473 | remqueue(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b | 2474 | myprocessor->state = PROCESSOR_RUNNING; |
9bccf70c A |
2475 | enqueue_tail(&pset->active_queue, (queue_entry_t)myprocessor); |
2476 | simple_unlock(&pset->sched_lock); | |
1c79356b A |
2477 | |
2478 | counter(c_idle_thread_block++); | |
2479 | thread_block(idle_thread_continue); | |
9bccf70c | 2480 | /* NOTREACHED */ |
1c79356b A |
2481 | } |
2482 | else | |
2483 | if ( state == PROCESSOR_ASSIGN || | |
2484 | state == PROCESSOR_SHUTDOWN ) { | |
2485 | /* | |
2486 | * Changing processor sets, or going off-line. | |
2487 | * Release next_thread if there is one. Actual | |
2488 | * thread to run is on a runq. | |
2489 | */ | |
2490 | if ((new_thread = (thread_t)*threadp) != THREAD_NULL) { | |
2491 | *threadp = (volatile thread_t) THREAD_NULL; | |
9bccf70c A |
2492 | simple_unlock(&pset->sched_lock); |
2493 | ||
1c79356b | 2494 | thread_lock(new_thread); |
9bccf70c | 2495 | thread_setrun(new_thread, TAIL_Q); |
1c79356b | 2496 | thread_unlock(new_thread); |
9bccf70c A |
2497 | } |
2498 | else | |
2499 | simple_unlock(&pset->sched_lock); | |
1c79356b A |
2500 | |
2501 | counter(c_idle_thread_block++); | |
2502 | thread_block(idle_thread_continue); | |
9bccf70c | 2503 | /* NOTREACHED */ |
1c79356b A |
2504 | } |
2505 | else { | |
9bccf70c | 2506 | simple_unlock(&pset->sched_lock); |
1c79356b | 2507 | |
9bccf70c | 2508 | panic("idle_thread: bad processor state %d\n", cpu_state(mycpu)); |
1c79356b A |
2509 | } |
2510 | ||
2511 | (void)spllo(); | |
2512 | } | |
2513 | } | |
2514 | ||
2515 | void | |
2516 | idle_thread(void) | |
2517 | { | |
2518 | thread_t self = current_thread(); | |
2519 | spl_t s; | |
2520 | ||
2521 | stack_privilege(self); | |
1c79356b A |
2522 | |
2523 | s = splsched(); | |
2524 | thread_lock(self); | |
1c79356b | 2525 | self->priority = IDLEPRI; |
9bccf70c | 2526 | set_sched_pri(self, self->priority); |
1c79356b A |
2527 | thread_unlock(self); |
2528 | splx(s); | |
2529 | ||
2530 | counter(c_idle_thread_block++); | |
9bccf70c | 2531 | thread_block(idle_thread_continue); |
1c79356b A |
2532 | /*NOTREACHED*/ |
2533 | } | |
2534 | ||
0b4e3aa0 A |
2535 | static uint64_t sched_tick_interval, sched_tick_deadline; |
2536 | ||
2537 | void sched_tick_thread(void); | |
2538 | ||
2539 | void | |
2540 | sched_tick_init(void) | |
2541 | { | |
2542 | kernel_thread_with_priority( | |
2543 | kernel_task, MAXPRI_STANDARD, | |
2544 | sched_tick_thread, TRUE, TRUE); | |
2545 | } | |
1c79356b A |
2546 | |
2547 | /* | |
2548 | * sched_tick_thread | |
2549 | * | |
2550 | * Update the priorities of all threads periodically. | |
2551 | */ | |
2552 | void | |
2553 | sched_tick_thread_continue(void) | |
2554 | { | |
0b4e3aa0 | 2555 | uint64_t abstime; |
1c79356b A |
2556 | #if SIMPLE_CLOCK |
2557 | int new_usec; | |
2558 | #endif /* SIMPLE_CLOCK */ | |
2559 | ||
2560 | clock_get_uptime(&abstime); | |
2561 | ||
2562 | sched_tick++; /* age usage one more time */ | |
2563 | #if SIMPLE_CLOCK | |
2564 | /* | |
2565 | * Compensate for clock drift. sched_usec is an | |
2566 | * exponential average of the number of microseconds in | |
2567 | * a second. It decays in the same fashion as cpu_usage. | |
2568 | */ | |
2569 | new_usec = sched_usec_elapsed(); | |
2570 | sched_usec = (5*sched_usec + 3*new_usec)/8; | |
2571 | #endif /* SIMPLE_CLOCK */ | |
2572 | ||
2573 | /* | |
2574 | * Compute the scheduler load factors. | |
2575 | */ | |
2576 | compute_mach_factor(); | |
2577 | ||
2578 | /* | |
2579 | * Scan the run queues for runnable threads that need to | |
2580 | * have their priorities recalculated. | |
2581 | */ | |
2582 | do_thread_scan(); | |
2583 | ||
2584 | clock_deadline_for_periodic_event(sched_tick_interval, abstime, | |
2585 | &sched_tick_deadline); | |
2586 | ||
2587 | assert_wait((event_t)sched_tick_thread_continue, THREAD_INTERRUPTIBLE); | |
2588 | thread_set_timer_deadline(sched_tick_deadline); | |
2589 | thread_block(sched_tick_thread_continue); | |
2590 | /*NOTREACHED*/ | |
2591 | } | |
2592 | ||
2593 | void | |
2594 | sched_tick_thread(void) | |
2595 | { | |
2596 | thread_t self = current_thread(); | |
2597 | natural_t rate; | |
2598 | spl_t s; | |
2599 | ||
2600 | stack_privilege(self); | |
1c79356b A |
2601 | |
2602 | rate = (1000 >> SCHED_TICK_SHIFT); | |
2603 | clock_interval_to_absolutetime_interval(rate, USEC_PER_SEC, | |
2604 | &sched_tick_interval); | |
2605 | clock_get_uptime(&sched_tick_deadline); | |
2606 | ||
2607 | thread_block(sched_tick_thread_continue); | |
2608 | /*NOTREACHED*/ | |
2609 | } | |
2610 | ||
2611 | #define MAX_STUCK_THREADS 128 | |
2612 | ||
2613 | /* | |
2614 | * do_thread_scan: scan for stuck threads. A thread is stuck if | |
2615 | * it is runnable but its priority is so low that it has not | |
2616 | * run for several seconds. Its priority should be higher, but | |
2617 | * won't be until it runs and calls update_priority. The scanner | |
2618 | * finds these threads and does the updates. | |
2619 | * | |
2620 | * Scanner runs in two passes. Pass one squirrels likely | |
2621 | * thread ids away in an array (takes out references for them). | |
2622 | * Pass two does the priority updates. This is necessary because | |
2623 | * the run queue lock is required for the candidate scan, but | |
9bccf70c | 2624 | * cannot be held during updates. |
1c79356b A |
2625 | * |
2626 | * Array length should be enough so that restart isn't necessary, | |
9bccf70c | 2627 | * but restart logic is included. |
1c79356b A |
2628 | * |
2629 | */ | |
2630 | thread_t stuck_threads[MAX_STUCK_THREADS]; | |
2631 | int stuck_count = 0; | |
2632 | ||
2633 | /* | |
2634 | * do_runq_scan is the guts of pass 1. It scans a runq for | |
2635 | * stuck threads. A boolean is returned indicating whether | |
2636 | * a retry is needed. | |
2637 | */ | |
2638 | boolean_t | |
2639 | do_runq_scan( | |
2640 | run_queue_t runq) | |
2641 | { | |
2642 | register queue_t q; | |
2643 | register thread_t thread; | |
2644 | register int count; | |
2645 | spl_t s; | |
2646 | boolean_t result = FALSE; | |
2647 | ||
2648 | s = splsched(); | |
2649 | simple_lock(&runq->lock); | |
2650 | if ((count = runq->count) > 0) { | |
2651 | q = runq->queues + runq->highq; | |
2652 | while (count > 0) { | |
2653 | queue_iterate(q, thread, thread_t, links) { | |
0b4e3aa0 A |
2654 | if ( !(thread->state & (TH_WAIT|TH_SUSP)) && |
2655 | (thread->sched_mode & TH_MODE_TIMESHARE) ) { | |
1c79356b A |
2656 | if (thread->sched_stamp != sched_tick) { |
2657 | /* | |
2658 | * Stuck, save its id for later. | |
2659 | */ | |
2660 | if (stuck_count == MAX_STUCK_THREADS) { | |
2661 | /* | |
2662 | * !@#$% No more room. | |
2663 | */ | |
2664 | simple_unlock(&runq->lock); | |
2665 | splx(s); | |
2666 | ||
2667 | return (TRUE); | |
2668 | } | |
2669 | ||
2670 | /* | |
2671 | * Inline version of thread_reference | |
2672 | * XXX - lock ordering problem here: | |
2673 | * thread locks should be taken before runq | |
2674 | * locks: just try and get the thread's locks | |
2675 | * and ignore this thread if we fail, we might | |
2676 | * have better luck next time. | |
2677 | */ | |
9bccf70c | 2678 | if (thread_lock_try(thread)) { |
1c79356b A |
2679 | thread->ref_count++; |
2680 | thread_unlock(thread); | |
2681 | stuck_threads[stuck_count++] = thread; | |
2682 | } | |
2683 | else | |
2684 | result = TRUE; | |
2685 | } | |
2686 | } | |
2687 | ||
2688 | count--; | |
2689 | } | |
2690 | ||
2691 | q--; | |
2692 | } | |
2693 | } | |
2694 | simple_unlock(&runq->lock); | |
2695 | splx(s); | |
2696 | ||
2697 | return (result); | |
2698 | } | |
2699 | ||
2700 | boolean_t thread_scan_enabled = TRUE; | |
2701 | ||
2702 | void | |
2703 | do_thread_scan(void) | |
2704 | { | |
2705 | register boolean_t restart_needed = FALSE; | |
2706 | register thread_t thread; | |
2707 | register processor_set_t pset = &default_pset; | |
2708 | register processor_t processor; | |
2709 | spl_t s; | |
2710 | ||
2711 | if (!thread_scan_enabled) | |
2712 | return; | |
2713 | ||
2714 | do { | |
2715 | restart_needed = do_runq_scan(&pset->runq); | |
2716 | if (!restart_needed) { | |
2717 | simple_lock(&pset->processors_lock); | |
2718 | processor = (processor_t)queue_first(&pset->processors); | |
2719 | while (!queue_end(&pset->processors, (queue_entry_t)processor)) { | |
2720 | if (restart_needed = do_runq_scan(&processor->runq)) | |
2721 | break; | |
2722 | ||
0b4e3aa0 A |
2723 | thread = processor->idle_thread; |
2724 | if (thread->sched_stamp != sched_tick) { | |
2725 | if (stuck_count == MAX_STUCK_THREADS) { | |
2726 | restart_needed = TRUE; | |
2727 | break; | |
2728 | } | |
2729 | ||
2730 | stuck_threads[stuck_count++] = thread; | |
2731 | } | |
2732 | ||
1c79356b A |
2733 | processor = (processor_t)queue_next(&processor->processors); |
2734 | } | |
2735 | simple_unlock(&pset->processors_lock); | |
2736 | } | |
2737 | ||
2738 | /* | |
2739 | * Ok, we now have a collection of candidates -- fix them. | |
2740 | */ | |
2741 | while (stuck_count > 0) { | |
2742 | thread = stuck_threads[--stuck_count]; | |
2743 | stuck_threads[stuck_count] = THREAD_NULL; | |
2744 | s = splsched(); | |
2745 | thread_lock(thread); | |
0b4e3aa0 A |
2746 | if ( (thread->sched_mode & TH_MODE_TIMESHARE) || |
2747 | (thread->state & TH_IDLE) ) { | |
1c79356b | 2748 | if ( !(thread->state & (TH_WAIT|TH_SUSP)) && |
0b4e3aa0 | 2749 | thread->sched_stamp != sched_tick ) |
1c79356b A |
2750 | update_priority(thread); |
2751 | } | |
2752 | thread_unlock(thread); | |
2753 | splx(s); | |
0b4e3aa0 A |
2754 | if (!(thread->state & TH_IDLE)) |
2755 | thread_deallocate(thread); | |
1c79356b | 2756 | } |
9bccf70c A |
2757 | |
2758 | if (restart_needed) | |
2759 | delay(1); /* XXX */ | |
1c79356b A |
2760 | |
2761 | } while (restart_needed); | |
2762 | } | |
2763 | ||
2764 | /* | |
2765 | * Just in case someone doesn't use the macro | |
2766 | */ | |
2767 | #undef thread_wakeup | |
2768 | void | |
2769 | thread_wakeup( | |
2770 | event_t x); | |
2771 | ||
2772 | void | |
2773 | thread_wakeup( | |
2774 | event_t x) | |
2775 | { | |
2776 | thread_wakeup_with_result(x, THREAD_AWAKENED); | |
2777 | } | |
2778 | ||
9bccf70c | 2779 | |
0b4e3aa0 A |
2780 | #if DEBUG |
2781 | ||
2782 | static boolean_t | |
1c79356b | 2783 | thread_runnable( |
0b4e3aa0 | 2784 | thread_t thread) |
1c79356b | 2785 | { |
0b4e3aa0 | 2786 | return ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN); |
1c79356b A |
2787 | } |
2788 | ||
1c79356b A |
2789 | void |
2790 | dump_processor_set( | |
2791 | processor_set_t ps) | |
2792 | { | |
2793 | printf("processor_set: %08x\n",ps); | |
2794 | printf("idle_queue: %08x %08x, idle_count: 0x%x\n", | |
2795 | ps->idle_queue.next,ps->idle_queue.prev,ps->idle_count); | |
2796 | printf("processors: %08x %08x, processor_count: 0x%x\n", | |
2797 | ps->processors.next,ps->processors.prev,ps->processor_count); | |
2798 | printf("tasks: %08x %08x, task_count: 0x%x\n", | |
2799 | ps->tasks.next,ps->tasks.prev,ps->task_count); | |
2800 | printf("threads: %08x %08x, thread_count: 0x%x\n", | |
2801 | ps->threads.next,ps->threads.prev,ps->thread_count); | |
2802 | printf("ref_count: 0x%x, active: %x\n", | |
2803 | ps->ref_count,ps->active); | |
2804 | printf("pset_self: %08x, pset_name_self: %08x\n",ps->pset_self, ps->pset_name_self); | |
0b4e3aa0 | 2805 | printf("set_quanta: 0x%x\n", ps->set_quanta); |
1c79356b A |
2806 | } |
2807 | ||
2808 | #define processor_state(s) (((s)>PROCESSOR_SHUTDOWN)?"*unknown*":states[s]) | |
2809 | ||
2810 | void | |
2811 | dump_processor( | |
2812 | processor_t p) | |
2813 | { | |
2814 | char *states[]={"OFF_LINE","RUNNING","IDLE","DISPATCHING", | |
2815 | "ASSIGN","SHUTDOWN"}; | |
2816 | ||
2817 | printf("processor: %08x\n",p); | |
2818 | printf("processor_queue: %08x %08x\n", | |
2819 | p->processor_queue.next,p->processor_queue.prev); | |
2820 | printf("state: %8s, next_thread: %08x, idle_thread: %08x\n", | |
2821 | processor_state(p->state), p->next_thread, p->idle_thread); | |
0b4e3aa0 | 2822 | printf("slice_quanta: %x\n", p->slice_quanta); |
1c79356b A |
2823 | printf("processor_set: %08x, processor_set_next: %08x\n", |
2824 | p->processor_set, p->processor_set_next); | |
2825 | printf("processors: %08x %08x\n", p->processors.next,p->processors.prev); | |
2826 | printf("processor_self: %08x, slot_num: 0x%x\n", p->processor_self, p->slot_num); | |
2827 | } | |
2828 | ||
2829 | void | |
2830 | dump_run_queue_struct( | |
2831 | run_queue_t rq) | |
2832 | { | |
2833 | char dump_buf[80]; | |
2834 | int i; | |
2835 | ||
2836 | for( i=0; i < NRQS; ) { | |
2837 | int j; | |
2838 | ||
2839 | printf("%6s",(i==0)?"runq:":""); | |
2840 | for( j=0; (j<8) && (i < NRQS); j++,i++ ) { | |
2841 | if( rq->queues[i].next == &rq->queues[i] ) | |
2842 | printf( " --------"); | |
2843 | else | |
2844 | printf(" %08x",rq->queues[i].next); | |
2845 | } | |
2846 | printf("\n"); | |
2847 | } | |
2848 | for( i=0; i < NRQBM; ) { | |
2849 | register unsigned int mask; | |
2850 | char *d=dump_buf; | |
2851 | ||
2852 | mask = ~0; | |
2853 | mask ^= (mask>>1); | |
2854 | ||
2855 | do { | |
2856 | *d++ = ((rq->bitmap[i]&mask)?'r':'e'); | |
2857 | mask >>=1; | |
2858 | } while( mask ); | |
2859 | *d = '\0'; | |
2860 | printf("%8s%s\n",((i==0)?"bitmap:":""),dump_buf); | |
2861 | i++; | |
2862 | } | |
2863 | printf("highq: 0x%x, count: %u\n", rq->highq, rq->count); | |
2864 | } | |
2865 | ||
2866 | void | |
2867 | dump_run_queues( | |
2868 | run_queue_t runq) | |
2869 | { | |
2870 | register queue_t q1; | |
2871 | register int i; | |
2872 | register queue_entry_t e; | |
2873 | ||
2874 | q1 = runq->queues; | |
2875 | for (i = 0; i < NRQS; i++) { | |
2876 | if (q1->next != q1) { | |
2877 | int t_cnt; | |
2878 | ||
2879 | printf("[%u]",i); | |
2880 | for (t_cnt=0, e = q1->next; e != q1; e = e->next) { | |
2881 | printf("\t0x%08x",e); | |
2882 | if( (t_cnt = ++t_cnt%4) == 0 ) | |
2883 | printf("\n"); | |
2884 | } | |
2885 | if( t_cnt ) | |
2886 | printf("\n"); | |
2887 | } | |
2888 | /* else | |
2889 | printf("[%u]\t<empty>\n",i); | |
2890 | */ | |
2891 | q1++; | |
2892 | } | |
2893 | } | |
2894 | ||
2895 | void | |
2896 | checkrq( | |
2897 | run_queue_t rq, | |
2898 | char *msg) | |
2899 | { | |
2900 | register queue_t q1; | |
2901 | register int i, j; | |
2902 | register queue_entry_t e; | |
2903 | register int highq; | |
2904 | ||
2905 | highq = NRQS; | |
2906 | j = 0; | |
2907 | q1 = rq->queues; | |
2908 | for (i = MAXPRI; i >= 0; i--) { | |
2909 | if (q1->next == q1) { | |
2910 | if (q1->prev != q1) { | |
2911 | panic("checkrq: empty at %s", msg); | |
2912 | } | |
2913 | } | |
2914 | else { | |
2915 | if (highq == -1) | |
2916 | highq = i; | |
2917 | ||
2918 | for (e = q1->next; e != q1; e = e->next) { | |
2919 | j++; | |
2920 | if (e->next->prev != e) | |
2921 | panic("checkrq-2 at %s", msg); | |
2922 | if (e->prev->next != e) | |
2923 | panic("checkrq-3 at %s", msg); | |
2924 | } | |
2925 | } | |
2926 | q1++; | |
2927 | } | |
2928 | if (j != rq->count) | |
2929 | panic("checkrq: count wrong at %s", msg); | |
2930 | if (rq->count != 0 && highq > rq->highq) | |
2931 | panic("checkrq: highq wrong at %s", msg); | |
2932 | } | |
2933 | ||
2934 | void | |
2935 | thread_check( | |
2936 | register thread_t thread, | |
2937 | register run_queue_t rq) | |
2938 | { | |
2939 | register int whichq = thread->sched_pri; | |
2940 | register queue_entry_t queue, entry; | |
2941 | ||
2942 | if (whichq < MINPRI || whichq > MAXPRI) | |
2943 | panic("thread_check: bad pri"); | |
2944 | ||
1c79356b A |
2945 | queue = &rq->queues[whichq]; |
2946 | entry = queue_first(queue); | |
2947 | while (!queue_end(queue, entry)) { | |
2948 | if (entry == (queue_entry_t)thread) | |
2949 | return; | |
2950 | ||
2951 | entry = queue_next(entry); | |
2952 | } | |
2953 | ||
2954 | panic("thread_check: not found"); | |
2955 | } | |
2956 | ||
2957 | #endif /* DEBUG */ | |
2958 | ||
2959 | #if MACH_KDB | |
2960 | #include <ddb/db_output.h> | |
2961 | #define printf kdbprintf | |
2962 | extern int db_indent; | |
2963 | void db_sched(void); | |
2964 | ||
2965 | void | |
2966 | db_sched(void) | |
2967 | { | |
2968 | iprintf("Scheduling Statistics:\n"); | |
2969 | db_indent += 2; | |
2970 | iprintf("Thread invocations: csw %d same %d\n", | |
2971 | c_thread_invoke_csw, c_thread_invoke_same); | |
2972 | #if MACH_COUNTERS | |
2973 | iprintf("Thread block: calls %d\n", | |
2974 | c_thread_block_calls); | |
2975 | iprintf("Idle thread:\n\thandoff %d block %d no_dispatch %d\n", | |
2976 | c_idle_thread_handoff, | |
2977 | c_idle_thread_block, no_dispatch_count); | |
2978 | iprintf("Sched thread blocks: %d\n", c_sched_thread_block); | |
2979 | #endif /* MACH_COUNTERS */ | |
2980 | db_indent -= 2; | |
2981 | } | |
2982 | #endif /* MACH_KDB */ |