]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | * | |
25 | */ | |
26 | /* | |
27 | * File: kern/sync_sema.c | |
28 | * Author: Joseph CaraDonna | |
29 | * | |
30 | * Contains RT distributed semaphore synchronization services. | |
31 | */ | |
32 | ||
33 | #include <mach/mach_types.h> | |
34 | #include <mach/kern_return.h> | |
35 | #include <mach/semaphore.h> | |
36 | #include <mach/sync_policy.h> | |
37 | ||
38 | #include <kern/misc_protos.h> | |
39 | #include <kern/sync_sema.h> | |
40 | #include <kern/spl.h> | |
41 | #include <kern/ipc_kobject.h> | |
42 | #include <kern/ipc_sync.h> | |
43 | #include <kern/ipc_tt.h> | |
44 | #include <kern/thread.h> | |
45 | #include <kern/clock.h> | |
46 | #include <ipc/ipc_port.h> | |
47 | #include <ipc/ipc_space.h> | |
48 | #include <kern/host.h> | |
49 | #include <kern/wait_queue.h> | |
50 | #include <kern/zalloc.h> | |
51 | #include <kern/mach_param.h> | |
52 | ||
53 | unsigned int semaphore_event; | |
54 | #define SEMAPHORE_EVENT ((event_t)&semaphore_event) | |
55 | ||
56 | zone_t semaphore_zone; | |
57 | unsigned int semaphore_max = SEMAPHORE_MAX; | |
58 | ||
59 | /* | |
60 | * ROUTINE: semaphore_init [private] | |
61 | * | |
62 | * Initialize the semaphore mechanisms. | |
63 | * Right now, we only need to initialize the semaphore zone. | |
64 | */ | |
65 | void | |
66 | semaphore_init(void) | |
67 | { | |
68 | semaphore_zone = zinit(sizeof(struct semaphore), | |
69 | semaphore_max * sizeof(struct semaphore), | |
70 | sizeof(struct semaphore), | |
71 | "semaphores"); | |
72 | } | |
73 | ||
74 | /* | |
75 | * Routine: semaphore_create | |
76 | * | |
77 | * Creates a semaphore. | |
78 | * The port representing the semaphore is returned as a parameter. | |
79 | */ | |
80 | kern_return_t | |
81 | semaphore_create( | |
82 | task_t task, | |
83 | semaphore_t *new_semaphore, | |
84 | int policy, | |
85 | int value) | |
86 | { | |
87 | semaphore_t s = SEMAPHORE_NULL; | |
88 | ||
89 | ||
90 | ||
91 | if (task == TASK_NULL || value < 0 || policy > SYNC_POLICY_MAX) { | |
92 | *new_semaphore = SEMAPHORE_NULL; | |
93 | return KERN_INVALID_ARGUMENT; | |
94 | } | |
95 | ||
96 | s = (semaphore_t) zalloc (semaphore_zone); | |
97 | ||
98 | if (s == SEMAPHORE_NULL) { | |
99 | *new_semaphore = SEMAPHORE_NULL; | |
100 | return KERN_RESOURCE_SHORTAGE; | |
101 | } | |
102 | ||
103 | wait_queue_init(&s->wait_queue, policy); /* also inits lock */ | |
104 | s->count = value; | |
105 | s->ref_count = 1; | |
106 | ||
107 | /* | |
108 | * Create and initialize the semaphore port | |
109 | */ | |
110 | s->port = ipc_port_alloc_kernel(); | |
111 | if (s->port == IP_NULL) { | |
112 | /* This will deallocate the semaphore */ | |
113 | semaphore_dereference(s); | |
114 | *new_semaphore = SEMAPHORE_NULL; | |
115 | return KERN_RESOURCE_SHORTAGE; | |
116 | } | |
117 | ||
118 | ipc_kobject_set (s->port, (ipc_kobject_t) s, IKOT_SEMAPHORE); | |
119 | ||
120 | /* | |
121 | * Associate the new semaphore with the task by adding | |
122 | * the new semaphore to the task's semaphore list. | |
123 | * | |
124 | * Associate the task with the new semaphore by having the | |
125 | * semaphores task pointer point to the owning task's structure. | |
126 | */ | |
127 | task_lock(task); | |
128 | enqueue_head(&task->semaphore_list, (queue_entry_t) s); | |
129 | task->semaphores_owned++; | |
130 | s->owner = task; | |
131 | s->active = TRUE; | |
132 | task_unlock(task); | |
133 | ||
134 | *new_semaphore = s; | |
135 | ||
136 | return KERN_SUCCESS; | |
137 | } | |
138 | ||
139 | /* | |
140 | * Routine: semaphore_destroy | |
141 | * | |
142 | * Destroys a semaphore. This call will only succeed if the | |
143 | * specified task is the SAME task name specified at the semaphore's | |
144 | * creation. | |
145 | * | |
146 | * All threads currently blocked on the semaphore are awoken. These | |
147 | * threads will return with the KERN_TERMINATED error. | |
148 | */ | |
149 | kern_return_t | |
150 | semaphore_destroy( | |
151 | task_t task, | |
152 | semaphore_t semaphore) | |
153 | { | |
154 | int old_count; | |
155 | thread_t thread; | |
156 | spl_t spl_level; | |
157 | ||
158 | ||
159 | if (task == TASK_NULL || semaphore == SEMAPHORE_NULL) | |
160 | return KERN_INVALID_ARGUMENT; | |
161 | ||
162 | /* | |
163 | * Disown semaphore | |
164 | */ | |
165 | task_lock(task); | |
166 | if (semaphore->owner != task) { | |
167 | task_unlock(task); | |
168 | return KERN_INVALID_ARGUMENT; | |
169 | } | |
170 | remqueue(&task->semaphore_list, (queue_entry_t) semaphore); | |
171 | semaphore->owner = TASK_NULL; | |
172 | task->semaphores_owned--; | |
173 | task_unlock(task); | |
174 | ||
175 | spl_level = splsched(); | |
176 | semaphore_lock(semaphore); | |
177 | ||
178 | /* | |
179 | * Deactivate semaphore | |
180 | */ | |
181 | assert(semaphore->active); | |
182 | semaphore->active = FALSE; | |
183 | ||
184 | /* | |
185 | * Wakeup blocked threads | |
186 | */ | |
187 | old_count = semaphore->count; | |
188 | semaphore->count = 0; | |
189 | ||
190 | if (old_count < 0) { | |
191 | wait_queue_wakeup_all_locked(&semaphore->wait_queue, | |
192 | SEMAPHORE_EVENT, | |
193 | THREAD_RESTART, | |
194 | TRUE); /* unlock? */ | |
195 | } else { | |
196 | semaphore_unlock(semaphore); | |
197 | } | |
198 | splx(spl_level); | |
199 | ||
200 | /* | |
201 | * Deallocate | |
202 | * | |
203 | * Drop the semaphore reference, which in turn deallocates the | |
204 | * semaphore structure if the reference count goes to zero. | |
205 | */ | |
206 | ipc_port_dealloc_kernel(semaphore->port); | |
207 | semaphore_dereference(semaphore); | |
208 | return KERN_SUCCESS; | |
209 | } | |
210 | ||
211 | /* | |
212 | * Routine: semaphore_signal_internal | |
213 | * | |
214 | * Signals the semaphore as direct. | |
215 | * Assumptions: | |
216 | * Semaphore is locked. | |
217 | */ | |
218 | kern_return_t | |
219 | semaphore_signal_internal( | |
220 | semaphore_t semaphore, | |
221 | thread_act_t thread_act, | |
222 | int options) | |
223 | { | |
224 | kern_return_t kr; | |
225 | spl_t spl_level; | |
226 | ||
227 | spl_level = splsched(); | |
228 | semaphore_lock(semaphore); | |
229 | ||
230 | if (!semaphore->active) { | |
231 | semaphore_unlock(semaphore); | |
232 | splx(spl_level); | |
233 | return KERN_TERMINATED; | |
234 | } | |
235 | ||
236 | if (thread_act != THR_ACT_NULL) { | |
237 | if (semaphore->count < 0) { | |
238 | kr = wait_queue_wakeup_thread_locked( | |
239 | &semaphore->wait_queue, | |
240 | SEMAPHORE_EVENT, | |
241 | thread_act->thread, | |
242 | THREAD_AWAKENED, | |
243 | TRUE); /* unlock? */ | |
244 | } else { | |
245 | semaphore_unlock(semaphore); | |
246 | kr = KERN_NOT_WAITING; | |
247 | } | |
248 | splx(spl_level); | |
249 | return kr; | |
250 | } | |
251 | ||
252 | if (options & SEMAPHORE_SIGNAL_ALL) { | |
253 | int old_count = semaphore->count; | |
254 | ||
255 | if (old_count < 0) { | |
256 | semaphore->count = 0; /* always reset */ | |
257 | kr = wait_queue_wakeup_all_locked( | |
258 | &semaphore->wait_queue, | |
259 | SEMAPHORE_EVENT, | |
260 | THREAD_AWAKENED, | |
261 | TRUE); /* unlock? */ | |
262 | } else { | |
263 | if (options & SEMAPHORE_SIGNAL_PREPOST) | |
264 | semaphore->count++; | |
265 | semaphore_unlock(semaphore); | |
266 | kr = KERN_SUCCESS; | |
267 | } | |
268 | splx(spl_level); | |
269 | return kr; | |
270 | } | |
271 | ||
272 | if (semaphore->count < 0) { | |
273 | if (wait_queue_wakeup_one_locked( | |
274 | &semaphore->wait_queue, | |
275 | SEMAPHORE_EVENT, | |
276 | THREAD_AWAKENED, | |
277 | FALSE) == KERN_SUCCESS) { | |
278 | semaphore_unlock(semaphore); | |
279 | splx(spl_level); | |
280 | return KERN_SUCCESS; | |
281 | } else | |
282 | semaphore->count = 0; /* all waiters gone */ | |
283 | } | |
284 | ||
285 | if (options & SEMAPHORE_SIGNAL_PREPOST) { | |
286 | semaphore->count++; | |
287 | } | |
288 | ||
289 | semaphore_unlock(semaphore); | |
290 | splx(spl_level); | |
291 | return KERN_NOT_WAITING; | |
292 | } | |
293 | ||
294 | /* | |
295 | * Routine: semaphore_signal_thread | |
296 | * | |
297 | * If the specified thread_act is blocked on the semaphore, it is | |
298 | * woken up. If a NULL thread_act was supplied, then any one | |
299 | * thread is woken up. Otherwise the caller gets KERN_NOT_WAITING | |
300 | * and the semaphore is unchanged. | |
301 | */ | |
302 | kern_return_t | |
303 | semaphore_signal_thread( | |
304 | semaphore_t semaphore, | |
305 | thread_act_t thread_act) | |
306 | { | |
307 | kern_return_t ret; | |
308 | ||
309 | if (semaphore == SEMAPHORE_NULL) | |
310 | return KERN_INVALID_ARGUMENT; | |
311 | ||
312 | ret = semaphore_signal_internal(semaphore, | |
313 | thread_act, | |
314 | SEMAPHORE_OPTION_NONE); | |
315 | return ret; | |
316 | } | |
317 | ||
318 | /* | |
319 | * Routine: semaphore_signal_thread_trap | |
320 | * | |
321 | * Trap interface to the semaphore_signal_thread function. | |
322 | */ | |
323 | kern_return_t | |
324 | semaphore_signal_thread_trap( | |
325 | mach_port_name_t sema_name, | |
326 | mach_port_name_t thread_name) | |
327 | { | |
328 | ||
329 | semaphore_t semaphore; | |
330 | thread_act_t thread_act; | |
331 | kern_return_t kr; | |
332 | ||
333 | /* | |
334 | * MACH_PORT_NULL is not an error. It means that we want to | |
335 | * select any one thread that is already waiting, but not to | |
336 | * pre-post the semaphore. | |
337 | */ | |
338 | if (thread_name != MACH_PORT_NULL) { | |
339 | thread_act = port_name_to_act(thread_name); | |
340 | if (thread_act == THR_ACT_NULL) | |
341 | return KERN_INVALID_ARGUMENT; | |
342 | } else | |
343 | thread_act = THR_ACT_NULL; | |
344 | ||
345 | kr = port_name_to_semaphore(sema_name, &semaphore); | |
346 | if (kr != KERN_SUCCESS) { | |
347 | act_deallocate(thread_act); | |
348 | return kr; | |
349 | } | |
350 | kr = semaphore_signal_internal(semaphore, | |
351 | thread_act, | |
352 | SEMAPHORE_OPTION_NONE); | |
353 | semaphore_dereference(semaphore); | |
354 | act_deallocate(thread_act); | |
355 | return kr; | |
356 | } | |
357 | ||
358 | ||
359 | ||
360 | /* | |
361 | * Routine: semaphore_signal | |
362 | * | |
363 | * Traditional (in-kernel client and MIG interface) semaphore | |
364 | * signal routine. Most users will access the trap version. | |
365 | * | |
366 | * This interface in not defined to return info about whether | |
367 | * this call found a thread waiting or not. The internal | |
368 | * routines (and future external routines) do. We have to | |
369 | * convert those into plain KERN_SUCCESS returns. | |
370 | */ | |
371 | kern_return_t | |
372 | semaphore_signal( | |
373 | semaphore_t semaphore) | |
374 | { | |
375 | kern_return_t kr; | |
376 | ||
377 | if (semaphore == SEMAPHORE_NULL) | |
378 | return KERN_INVALID_ARGUMENT; | |
379 | ||
380 | kr = semaphore_signal_internal(semaphore, | |
381 | THR_ACT_NULL, | |
382 | SEMAPHORE_SIGNAL_PREPOST); | |
383 | if (kr == KERN_NOT_WAITING) | |
384 | return KERN_SUCCESS; | |
385 | return kr; | |
386 | } | |
387 | ||
388 | /* | |
389 | * Routine: semaphore_signal_trap | |
390 | * | |
391 | * Trap interface to the semaphore_signal function. | |
392 | */ | |
393 | kern_return_t | |
394 | semaphore_signal_trap( | |
395 | mach_port_name_t sema_name) | |
396 | { | |
397 | ||
398 | semaphore_t semaphore; | |
399 | kern_return_t kr; | |
400 | ||
401 | kr = port_name_to_semaphore(sema_name, &semaphore); | |
402 | if (kr != KERN_SUCCESS) { | |
403 | return kr; | |
404 | } | |
405 | kr = semaphore_signal_internal(semaphore, | |
406 | THR_ACT_NULL, | |
407 | SEMAPHORE_SIGNAL_PREPOST); | |
408 | semaphore_dereference(semaphore); | |
409 | if (kr == KERN_NOT_WAITING) | |
410 | return KERN_SUCCESS; | |
411 | return kr; | |
412 | } | |
413 | ||
414 | /* | |
415 | * Routine: semaphore_signal_all | |
416 | * | |
417 | * Awakens ALL threads currently blocked on the semaphore. | |
418 | * The semaphore count returns to zero. | |
419 | */ | |
420 | kern_return_t | |
421 | semaphore_signal_all( | |
422 | semaphore_t semaphore) | |
423 | { | |
424 | kern_return_t kr; | |
425 | ||
426 | if (semaphore == SEMAPHORE_NULL) | |
427 | return KERN_INVALID_ARGUMENT; | |
428 | ||
429 | kr = semaphore_signal_internal(semaphore, | |
430 | THR_ACT_NULL, | |
431 | SEMAPHORE_SIGNAL_ALL); | |
432 | if (kr == KERN_NOT_WAITING) | |
433 | return KERN_SUCCESS; | |
434 | return kr; | |
435 | } | |
436 | ||
437 | /* | |
438 | * Routine: semaphore_signal_all_trap | |
439 | * | |
440 | * Trap interface to the semaphore_signal_all function. | |
441 | */ | |
442 | kern_return_t | |
443 | semaphore_signal_all_trap( | |
444 | mach_port_name_t sema_name) | |
445 | { | |
446 | ||
447 | semaphore_t semaphore; | |
448 | kern_return_t kr; | |
449 | ||
450 | kr = port_name_to_semaphore(sema_name, &semaphore); | |
451 | if (kr != KERN_SUCCESS) { | |
452 | return kr; | |
453 | } | |
454 | kr = semaphore_signal_internal(semaphore, | |
455 | THR_ACT_NULL, | |
456 | SEMAPHORE_SIGNAL_ALL); | |
457 | semaphore_dereference(semaphore); | |
458 | if (kr == KERN_NOT_WAITING) | |
459 | return KERN_SUCCESS; | |
460 | return kr; | |
461 | } | |
462 | ||
463 | /* | |
464 | * Routine: semaphore_convert_wait_result | |
465 | * | |
466 | * Generate the return code after a semaphore wait/block. It | |
467 | * takes the wait result as an input and coverts that to an | |
468 | * appropriate result. | |
469 | */ | |
470 | kern_return_t | |
471 | semaphore_convert_wait_result(int wait_result) | |
472 | { | |
473 | switch (wait_result) { | |
474 | case THREAD_AWAKENED: | |
475 | return KERN_SUCCESS; | |
476 | ||
477 | case THREAD_TIMED_OUT: | |
478 | return KERN_OPERATION_TIMED_OUT; | |
479 | ||
480 | case THREAD_INTERRUPTED: | |
481 | return KERN_ABORTED; | |
482 | ||
483 | case THREAD_RESTART: | |
484 | return KERN_TERMINATED; | |
485 | ||
486 | default: | |
487 | panic("semaphore_block\n"); | |
488 | return KERN_FAILURE; | |
489 | } | |
490 | } | |
491 | ||
492 | /* | |
493 | * Routine: semaphore_wait_continue | |
494 | * | |
495 | * Common continuation routine after waiting on a semphore. | |
496 | * It returns directly to user space. | |
497 | */ | |
498 | void | |
499 | semaphore_wait_continue(void) | |
500 | { | |
501 | thread_t self = current_thread(); | |
502 | int wait_result = self->wait_result; | |
503 | void (*caller_cont)(kern_return_t) = self->sth_continuation; | |
504 | ||
505 | assert(self->sth_waitsemaphore != SEMAPHORE_NULL); | |
506 | semaphore_dereference(self->sth_waitsemaphore); | |
507 | if (self->sth_signalsemaphore != SEMAPHORE_NULL) | |
508 | semaphore_dereference(self->sth_signalsemaphore); | |
509 | ||
510 | assert(caller_cont != (void (*)(kern_return_t))0); | |
511 | (*caller_cont)(semaphore_convert_wait_result(wait_result)); | |
512 | } | |
513 | ||
514 | /* | |
515 | * Routine: semaphore_timedwait_continue | |
516 | * | |
517 | * Common continuation routine after doing a timed wait on a | |
518 | * semaphore. It clears the timer before calling the semaphore | |
519 | * routine saved in the thread struct. | |
520 | */ | |
521 | void | |
522 | semaphore_timedwait_continue(void) | |
523 | { | |
524 | thread_t self = current_thread(); | |
525 | int wait_result = self->wait_result; | |
526 | void (*caller_cont)(kern_return_t) = self->sth_continuation; | |
527 | ||
528 | if (wait_result != THREAD_TIMED_OUT) | |
529 | thread_cancel_timer(); | |
530 | ||
531 | assert(self->sth_waitsemaphore != SEMAPHORE_NULL); | |
532 | semaphore_dereference(self->sth_waitsemaphore); | |
533 | if (self->sth_signalsemaphore != SEMAPHORE_NULL) | |
534 | semaphore_dereference(self->sth_signalsemaphore); | |
535 | ||
536 | assert(caller_cont != (void (*)(kern_return_t))0); | |
537 | (*caller_cont)(semaphore_convert_wait_result(wait_result)); | |
538 | } | |
539 | ||
540 | ||
541 | /* | |
542 | * Routine: semaphore_wait_internal | |
543 | * | |
544 | * Decrements the semaphore count by one. If the count is | |
545 | * negative after the decrement, the calling thread blocks | |
546 | * (possibly at a continuation and/or with a timeout). | |
547 | * | |
548 | * Assumptions: | |
549 | * The reference | |
550 | * A reference is held on the signal semaphore. | |
551 | */ | |
552 | kern_return_t | |
553 | semaphore_wait_internal( | |
554 | semaphore_t wait_semaphore, | |
555 | semaphore_t signal_semaphore, | |
556 | mach_timespec_t *wait_timep, | |
557 | void (*caller_cont)(kern_return_t)) | |
558 | { | |
559 | void (*continuation)(void); | |
0b4e3aa0 | 560 | uint64_t abstime, nsinterval; |
1c79356b A |
561 | boolean_t nonblocking; |
562 | int wait_result; | |
563 | spl_t spl_level; | |
564 | kern_return_t kr = KERN_ALREADY_WAITING; | |
565 | ||
566 | spl_level = splsched(); | |
567 | semaphore_lock(wait_semaphore); | |
568 | ||
569 | /* | |
570 | * Decide if we really have to wait. | |
571 | */ | |
572 | nonblocking = (wait_timep != (mach_timespec_t *)0) ? | |
573 | (wait_timep->tv_sec == 0 && wait_timep->tv_nsec == 0) : | |
574 | FALSE; | |
575 | ||
576 | if (!wait_semaphore->active) { | |
577 | kr = KERN_TERMINATED; | |
578 | } else if (wait_semaphore->count > 0) { | |
579 | wait_semaphore->count--; | |
580 | kr = KERN_SUCCESS; | |
581 | } else if (nonblocking) { | |
582 | kr = KERN_OPERATION_TIMED_OUT; | |
583 | } else { | |
584 | wait_semaphore->count = -1; /* we don't keep an actual count */ | |
0b4e3aa0 | 585 | (void)wait_queue_assert_wait_locked(&wait_semaphore->wait_queue, |
1c79356b A |
586 | SEMAPHORE_EVENT, |
587 | THREAD_ABORTSAFE, | |
588 | FALSE); /* unlock? */ | |
589 | } | |
590 | semaphore_unlock(wait_semaphore); | |
591 | splx(spl_level); | |
592 | ||
593 | /* | |
594 | * wait_semaphore is unlocked so we are free to go ahead and | |
595 | * signal the signal_semaphore (if one was provided). | |
596 | */ | |
597 | if (signal_semaphore != SEMAPHORE_NULL) { | |
598 | kern_return_t signal_kr; | |
599 | ||
600 | /* | |
601 | * lock the signal semaphore reference we got and signal it. | |
602 | * This will NOT block (we cannot block after having asserted | |
603 | * our intention to wait above). | |
604 | */ | |
605 | signal_kr = semaphore_signal_internal(signal_semaphore, | |
606 | THR_ACT_NULL, | |
607 | SEMAPHORE_SIGNAL_PREPOST); | |
608 | ||
609 | if (signal_kr == KERN_NOT_WAITING) | |
610 | signal_kr = KERN_SUCCESS; | |
611 | else if (signal_kr == KERN_TERMINATED) { | |
612 | /* | |
613 | * Uh!Oh! The semaphore we were to signal died. | |
614 | * We have to get ourselves out of the wait in | |
615 | * case we get stuck here forever (it is assumed | |
616 | * that the semaphore we were posting is gating | |
617 | * the decision by someone else to post the | |
618 | * semaphore we are waiting on). People will | |
619 | * discover the other dead semaphore soon enough. | |
620 | * If we got out of the wait cleanly (someone | |
621 | * already posted a wakeup to us) then return that | |
622 | * (most important) result. Otherwise, | |
623 | * return the KERN_TERMINATED status. | |
624 | */ | |
625 | thread_t self = current_thread(); | |
626 | ||
627 | clear_wait(self, THREAD_INTERRUPTED); | |
628 | kr = semaphore_convert_wait_result(self->wait_result); | |
629 | if (kr == KERN_ABORTED) | |
630 | kr = KERN_TERMINATED; | |
631 | } | |
632 | } | |
633 | ||
634 | /* | |
635 | * If we had an error, or we didn't really need to wait we can | |
636 | * return now that we have signalled the signal semaphore. | |
637 | */ | |
638 | if (kr != KERN_ALREADY_WAITING) | |
639 | return kr; | |
640 | ||
641 | /* | |
642 | * If it is a timed wait, go ahead and set up the timer. | |
643 | */ | |
644 | if (wait_timep != (mach_timespec_t *)0) { | |
645 | clock_interval_to_absolutetime_interval(wait_timep->tv_sec, | |
646 | NSEC_PER_SEC, | |
647 | &abstime); | |
648 | clock_interval_to_absolutetime_interval(wait_timep->tv_nsec, | |
649 | 1, | |
650 | &nsinterval); | |
0b4e3aa0 | 651 | abstime += nsinterval; |
1c79356b A |
652 | clock_absolutetime_interval_to_deadline(abstime, &abstime); |
653 | thread_set_timer_deadline(abstime); | |
654 | continuation = semaphore_timedwait_continue; | |
655 | } else { | |
656 | continuation = semaphore_wait_continue; | |
657 | } | |
658 | ||
659 | /* | |
660 | * Now, we can block. If the caller supplied a continuation | |
661 | * pointer of his own for after the block, block with the | |
662 | * appropriate semaphore continuation. Thiswill gather the | |
663 | * semaphore results, release references on the semaphore(s), | |
664 | * and then call the caller's continuation. | |
665 | */ | |
666 | if (caller_cont) { | |
667 | thread_t self = current_thread(); | |
668 | ||
669 | self->sth_continuation = caller_cont; | |
670 | self->sth_waitsemaphore = wait_semaphore; | |
671 | self->sth_signalsemaphore = signal_semaphore; | |
672 | wait_result = thread_block(continuation); | |
673 | } else { | |
674 | wait_result = thread_block((void (*)(void))0); | |
675 | } | |
676 | ||
677 | /* | |
678 | * If we came back here (not continuation case) cancel | |
679 | * any pending timers, convert the wait result to an | |
680 | * appropriate semaphore return value, and then return | |
681 | * that. | |
682 | */ | |
683 | if (wait_timep && (wait_result != THREAD_TIMED_OUT)) | |
684 | thread_cancel_timer(); | |
685 | ||
686 | return (semaphore_convert_wait_result(wait_result)); | |
687 | } | |
688 | ||
689 | ||
690 | /* | |
691 | * Routine: semaphore_wait | |
692 | * | |
693 | * Traditional (non-continuation) interface presented to | |
694 | * in-kernel clients to wait on a semaphore. | |
695 | */ | |
696 | kern_return_t | |
697 | semaphore_wait( | |
698 | semaphore_t semaphore) | |
699 | { | |
700 | ||
701 | if (semaphore == SEMAPHORE_NULL) | |
702 | return KERN_INVALID_ARGUMENT; | |
703 | ||
704 | return(semaphore_wait_internal(semaphore, | |
705 | SEMAPHORE_NULL, | |
706 | (mach_timespec_t *)0, | |
707 | (void (*)(kern_return_t))0)); | |
708 | } | |
709 | ||
710 | /* | |
711 | * Trap: semaphore_wait_trap | |
712 | * | |
713 | * Trap version of semaphore wait. Called on behalf of user-level | |
714 | * clients. | |
715 | */ | |
716 | kern_return_t | |
717 | semaphore_wait_trap( | |
718 | mach_port_name_t name) | |
719 | { | |
720 | semaphore_t semaphore; | |
721 | kern_return_t kr; | |
722 | ||
723 | kr = port_name_to_semaphore(name, &semaphore); | |
724 | if (kr != KERN_SUCCESS) | |
725 | return kr; | |
726 | ||
727 | kr = semaphore_wait_internal(semaphore, | |
728 | SEMAPHORE_NULL, | |
729 | (mach_timespec_t *)0, | |
730 | thread_syscall_return); | |
731 | semaphore_dereference(semaphore); | |
732 | return kr; | |
733 | } | |
734 | ||
735 | /* | |
736 | * Routine: semaphore_timedwait | |
737 | * | |
738 | * Traditional (non-continuation) interface presented to | |
739 | * in-kernel clients to wait on a semaphore with a timeout. | |
740 | * | |
741 | * A timeout of {0,0} is considered non-blocking. | |
742 | */ | |
743 | kern_return_t | |
744 | semaphore_timedwait( | |
745 | semaphore_t semaphore, | |
746 | mach_timespec_t wait_time) | |
747 | { | |
748 | if (semaphore == SEMAPHORE_NULL) | |
749 | return KERN_INVALID_ARGUMENT; | |
750 | ||
751 | if(BAD_MACH_TIMESPEC(&wait_time)) | |
752 | return KERN_INVALID_VALUE; | |
753 | ||
754 | return (semaphore_wait_internal(semaphore, | |
755 | SEMAPHORE_NULL, | |
756 | &wait_time, | |
757 | (void(*)(kern_return_t))0)); | |
758 | ||
759 | } | |
760 | ||
761 | /* | |
762 | * Trap: semaphore_timedwait_trap | |
763 | * | |
764 | * Trap version of a semaphore_timedwait. The timeout parameter | |
765 | * is passed in two distinct parts and re-assembled on this side | |
766 | * of the trap interface (to accomodate calling conventions that | |
767 | * pass structures as pointers instead of inline in registers without | |
768 | * having to add a copyin). | |
769 | * | |
770 | * A timeout of {0,0} is considered non-blocking. | |
771 | */ | |
772 | kern_return_t | |
773 | semaphore_timedwait_trap( | |
774 | mach_port_name_t name, | |
775 | unsigned int sec, | |
776 | clock_res_t nsec) | |
777 | { | |
778 | semaphore_t semaphore; | |
779 | mach_timespec_t wait_time; | |
780 | kern_return_t kr; | |
781 | ||
782 | wait_time.tv_sec = sec; | |
783 | wait_time.tv_nsec = nsec; | |
784 | if(BAD_MACH_TIMESPEC(&wait_time)) | |
785 | return KERN_INVALID_VALUE; | |
786 | ||
787 | kr = port_name_to_semaphore(name, &semaphore); | |
788 | if (kr != KERN_SUCCESS) | |
789 | return kr; | |
790 | ||
791 | kr = semaphore_wait_internal(semaphore, | |
792 | SEMAPHORE_NULL, | |
793 | &wait_time, | |
794 | thread_syscall_return); | |
795 | semaphore_dereference(semaphore); | |
796 | return kr; | |
797 | } | |
798 | ||
799 | /* | |
800 | * Routine: semaphore_wait_signal | |
801 | * | |
802 | * Atomically register a wait on a semaphore and THEN signal | |
803 | * another. This is the in-kernel entry point that does not | |
804 | * block at a continuation and does not free a signal_semaphore | |
805 | * reference. | |
806 | */ | |
807 | kern_return_t | |
808 | semaphore_wait_signal( | |
809 | semaphore_t wait_semaphore, | |
810 | semaphore_t signal_semaphore) | |
811 | { | |
812 | if (wait_semaphore == SEMAPHORE_NULL) | |
813 | return KERN_INVALID_ARGUMENT; | |
814 | ||
815 | return(semaphore_wait_internal(wait_semaphore, | |
816 | signal_semaphore, | |
817 | (mach_timespec_t *)0, | |
818 | (void(*)(kern_return_t))0)); | |
819 | } | |
820 | ||
821 | /* | |
822 | * Trap: semaphore_wait_signal_trap | |
823 | * | |
824 | * Atomically register a wait on a semaphore and THEN signal | |
825 | * another. This is the trap version from user space. | |
826 | */ | |
827 | kern_return_t | |
828 | semaphore_wait_signal_trap( | |
829 | mach_port_name_t wait_name, | |
830 | mach_port_name_t signal_name) | |
831 | { | |
832 | semaphore_t wait_semaphore; | |
833 | semaphore_t signal_semaphore; | |
834 | kern_return_t kr; | |
835 | ||
836 | kr = port_name_to_semaphore(signal_name, &signal_semaphore); | |
837 | if (kr != KERN_SUCCESS) | |
838 | return kr; | |
839 | ||
840 | kr = port_name_to_semaphore(wait_name, &wait_semaphore); | |
841 | if (kr != KERN_SUCCESS) { | |
842 | semaphore_dereference(signal_semaphore); | |
843 | return kr; | |
844 | } | |
845 | ||
846 | kr = semaphore_wait_internal(wait_semaphore, | |
847 | signal_semaphore, | |
848 | (mach_timespec_t *)0, | |
849 | thread_syscall_return); | |
850 | ||
851 | semaphore_dereference(wait_semaphore); | |
852 | semaphore_dereference(signal_semaphore); | |
853 | return kr; | |
854 | } | |
855 | ||
856 | ||
857 | /* | |
858 | * Routine: semaphore_timedwait_signal | |
859 | * | |
860 | * Atomically register a wait on a semaphore and THEN signal | |
861 | * another. This is the in-kernel entry point that does not | |
862 | * block at a continuation. | |
863 | * | |
864 | * A timeout of {0,0} is considered non-blocking. | |
865 | */ | |
866 | kern_return_t | |
867 | semaphore_timedwait_signal( | |
868 | semaphore_t wait_semaphore, | |
869 | semaphore_t signal_semaphore, | |
870 | mach_timespec_t wait_time) | |
871 | { | |
872 | if (wait_semaphore == SEMAPHORE_NULL) | |
873 | return KERN_INVALID_ARGUMENT; | |
874 | ||
875 | if(BAD_MACH_TIMESPEC(&wait_time)) | |
876 | return KERN_INVALID_VALUE; | |
877 | ||
878 | return(semaphore_wait_internal(wait_semaphore, | |
879 | signal_semaphore, | |
880 | &wait_time, | |
881 | (void(*)(kern_return_t))0)); | |
882 | } | |
883 | ||
884 | /* | |
885 | * Trap: semaphore_timedwait_signal_trap | |
886 | * | |
887 | * Atomically register a timed wait on a semaphore and THEN signal | |
888 | * another. This is the trap version from user space. | |
889 | */ | |
890 | kern_return_t | |
891 | semaphore_timedwait_signal_trap( | |
892 | mach_port_name_t wait_name, | |
893 | mach_port_name_t signal_name, | |
894 | unsigned int sec, | |
895 | clock_res_t nsec) | |
896 | { | |
897 | semaphore_t wait_semaphore; | |
898 | semaphore_t signal_semaphore; | |
899 | mach_timespec_t wait_time; | |
900 | kern_return_t kr; | |
901 | ||
902 | wait_time.tv_sec = sec; | |
903 | wait_time.tv_nsec = nsec; | |
904 | if(BAD_MACH_TIMESPEC(&wait_time)) | |
905 | return KERN_INVALID_VALUE; | |
906 | ||
907 | kr = port_name_to_semaphore(signal_name, &signal_semaphore); | |
908 | if (kr != KERN_SUCCESS) | |
909 | return kr; | |
910 | ||
911 | kr = port_name_to_semaphore(wait_name, &wait_semaphore); | |
912 | if (kr != KERN_SUCCESS) { | |
913 | semaphore_dereference(signal_semaphore); | |
914 | return kr; | |
915 | } | |
916 | ||
917 | kr = semaphore_wait_internal(wait_semaphore, | |
918 | signal_semaphore, | |
919 | &wait_time, | |
920 | thread_syscall_return); | |
921 | ||
922 | semaphore_dereference(wait_semaphore); | |
923 | semaphore_dereference(signal_semaphore); | |
924 | return kr; | |
925 | } | |
926 | ||
927 | ||
928 | /* | |
929 | * Routine: semaphore_reference | |
930 | * | |
931 | * Take out a reference on a semaphore. This keeps the data structure | |
932 | * in existence (but the semaphore may be deactivated). | |
933 | */ | |
934 | void | |
935 | semaphore_reference( | |
936 | semaphore_t semaphore) | |
937 | { | |
938 | spl_t spl_level; | |
939 | ||
940 | spl_level = splsched(); | |
941 | semaphore_lock(semaphore); | |
942 | ||
943 | semaphore->ref_count++; | |
944 | ||
945 | semaphore_unlock(semaphore); | |
946 | splx(spl_level); | |
947 | } | |
948 | ||
949 | /* | |
950 | * Routine: semaphore_dereference | |
951 | * | |
952 | * Release a reference on a semaphore. If this is the last reference, | |
953 | * the semaphore data structure is deallocated. | |
954 | */ | |
955 | void | |
956 | semaphore_dereference( | |
957 | semaphore_t semaphore) | |
958 | { | |
959 | int ref_count; | |
960 | spl_t spl_level; | |
961 | ||
962 | if (semaphore != NULL) { | |
963 | spl_level = splsched(); | |
964 | semaphore_lock(semaphore); | |
965 | ||
966 | ref_count = --(semaphore->ref_count); | |
967 | ||
968 | semaphore_unlock(semaphore); | |
969 | splx(spl_level); | |
970 | ||
971 | if (ref_count == 0) { | |
972 | assert(wait_queue_empty(&semaphore->wait_queue)); | |
973 | zfree(semaphore_zone, (vm_offset_t)semaphore); | |
974 | } | |
975 | } | |
976 | } |