]>
Commit | Line | Data |
---|---|---|
0b4e3aa0 A |
1 | /* |
2 | * Copyright (c) 2001 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * "Portions Copyright (c) 1999 Apple Computer, Inc. All Rights | |
7 | * Reserved. This file contains Original Code and/or Modifications of | |
8 | * Original Code as defined in and that are subject to the Apple Public | |
9 | * Source License Version 1.0 (the 'License'). You may not use this file | |
10 | * except in compliance with the License. Please obtain a copy of the | |
11 | * License at http://www.apple.com/publicsource and read it before using | |
12 | * this file. | |
13 | * | |
14 | * The Original Code and all software distributed under the License are | |
15 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
16 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
17 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
19 | * License for the specific language governing rights and limitations | |
20 | * under the License." | |
21 | * | |
22 | * @APPLE_LICENSE_HEADER_END@ | |
23 | */ | |
24 | /* | |
25 | * History: | |
26 | * 2001-05-30 gvdl Initial implementation of the vtable patcher. | |
27 | */ | |
28 | // 45678901234567890123456789012345678901234567890123456789012345678901234567890 | |
29 | ||
30 | #include <mach-o/fat.h> | |
31 | #include <mach-o/loader.h> | |
32 | #include <mach-o/nlist.h> | |
33 | #include <mach-o/reloc.h> | |
34 | ||
35 | #if KERNEL | |
36 | ||
37 | #include <stdarg.h> | |
38 | #include <string.h> | |
39 | ||
40 | #include <sys/systm.h> | |
41 | ||
42 | #include <libkern/OSTypes.h> | |
43 | ||
44 | #include <libsa/stdlib.h> | |
45 | #include <libsa/mach/mach.h> | |
46 | ||
47 | #include "mach_loader.h" | |
48 | ||
49 | #include <vm/vm_kern.h> | |
50 | ||
51 | enum { false = 0, true = 1 }; | |
52 | ||
53 | #define vm_page_size page_size | |
54 | ||
55 | extern load_return_t fatfile_getarch( | |
56 | void * vp, // normally a (struct vnode *) | |
57 | vm_offset_t data_ptr, | |
58 | struct fat_arch * archret); | |
59 | ||
60 | #else /* !KERNEL */ | |
61 | #include <unistd.h> | |
62 | ||
63 | #include <stdio.h> | |
64 | #include <stdlib.h> | |
65 | #include <string.h> | |
66 | ||
67 | #include <sys/errno.h> | |
68 | #include <sys/fcntl.h> | |
69 | #include <sys/stat.h> | |
70 | #include <sys/mman.h> | |
71 | ||
72 | #include <mach/mach.h> | |
73 | #include <mach/mach_error.h> | |
74 | ||
75 | #include <mach-o/arch.h> | |
76 | ||
77 | #include <CoreFoundation/CoreFoundation.h> | |
78 | ||
79 | #endif /* KERNEL */ | |
80 | ||
81 | #include "kld_patch.h" | |
82 | ||
83 | #if 0 | |
84 | static __inline__ void DIE(void) { IODelay(2000000000); } | |
85 | ||
86 | #define LOG_DELAY() IODelay(200000) | |
87 | #define DEBUG_LOG(x) do { IOLog x; LOG_DELAY(); } while(0) | |
88 | #else | |
89 | ||
90 | #define DIE() | |
91 | #define LOG_DELAY() | |
92 | #define DEBUG_LOG(x) | |
93 | ||
94 | #endif | |
95 | ||
96 | // OSObject symbol prefixes and suffixes | |
97 | #define kVTablePrefix "___vt" | |
98 | #define kReservedPrefix "__RESERVED" | |
99 | #define kSuperClassSuffix ".superClass" | |
100 | #define kGMetaSuffix ".gMetaClass" | |
101 | #define kLinkEditSegName SEG_LINKEDIT | |
102 | ||
103 | // GCC 2.95 drops 2 leading constants in the vtable | |
104 | #define kVTablePreambleLen 2 | |
105 | ||
106 | // Last address that I'm willing to try find vm in | |
107 | #define kTopAddr ((unsigned char *) (1024 * 1024 * 1024)) | |
108 | ||
109 | // Size in bytes that Data Ref object's get increased in size | |
110 | // Must be a power of 2 | |
111 | #define kDataCapacityIncrement 128 | |
112 | ||
113 | // My usual set of helper macros. I personally find these macros | |
114 | // easier to read in the code rather than an explicit error condition | |
115 | // check. If I don't make it easy then I may get lazy ond not check | |
116 | // everything. I'm sorry if you find this code harder to read. | |
117 | ||
118 | // break_if will evaluate the expression and if it is true | |
119 | // then it will print the msg, which is enclosed in parens | |
120 | // and then break. Usually used in loops are do { } while (0) | |
121 | #define break_if(expr, msg) \ | |
122 | if (expr) { \ | |
123 | errprintf msg; \ | |
124 | break; \ | |
125 | } | |
126 | ||
127 | // return_if will evaluate expr and if true it will log the | |
128 | // msg, which is enclosed in parens, and then it will return | |
129 | // with the return code of ret. | |
130 | #define return_if(expr, ret, msg) do { \ | |
131 | if (expr) { \ | |
132 | errprintf msg; \ | |
133 | return ret; \ | |
134 | } \ | |
135 | } while (0) | |
136 | ||
137 | #ifndef MIN | |
138 | #define MIN(a,b) (((a)<(b))?(a):(b)) | |
139 | #endif /* MIN */ | |
140 | #ifndef MAX | |
141 | #define MAX(a,b) (((a)>(b))?(a):(b)) | |
142 | #endif /* MAX */ | |
143 | ||
144 | typedef struct Data { | |
145 | unsigned long fLength, fCapacity; | |
146 | unsigned char *fData; | |
147 | } Data, *DataRef; | |
148 | ||
149 | struct sectionRecord { | |
150 | const struct section *fSection; | |
151 | DataRef fRelocCache; | |
152 | }; | |
153 | ||
154 | enum patchState { | |
155 | kSymbolIdentical, | |
156 | kSymbolLocal, | |
157 | kSymbolPadUpdate, | |
158 | kSymbolSuperUpdate, | |
159 | kSymbolMismatch | |
160 | }; | |
161 | ||
162 | struct patchRecord { | |
163 | struct nlist *fSymbol; | |
164 | enum patchState fType; | |
165 | }; | |
166 | ||
167 | struct relocRecord { | |
168 | void *fValue; | |
169 | const struct nlist *fSymbol; | |
170 | struct relocation_info *fRInfo; | |
171 | void *reserved; | |
172 | }; | |
173 | ||
174 | struct metaClassRecord { | |
175 | char *fSuperName; | |
176 | struct fileRecord *fFile; | |
177 | const struct nlist *fVTableSym; | |
178 | struct patchRecord *fPatchedVTable; | |
179 | char fClassName[1]; | |
180 | }; | |
181 | ||
182 | struct fileRecord { | |
183 | size_t fMapSize, fMachOSize; | |
184 | const char *fPath; | |
185 | unsigned char *fMap, *fMachO, *fPadEnd; | |
186 | DataRef fClassList; | |
187 | DataRef fSectData; | |
188 | DataRef fNewSymbols, fNewStrings; | |
189 | struct symtab_command *fSymtab; | |
190 | struct sectionRecord *fSections; | |
191 | char *fStringBase; | |
192 | struct nlist *fSymbolBase; | |
193 | const struct nlist *fLocalSyms; | |
194 | unsigned int fNSects; | |
195 | int fNLocal; | |
196 | int fNewStringsLen; | |
197 | Boolean fIsKernel, fNoKernelExecutable, fIsKmem; | |
198 | Boolean fImageDirty, fSymbolsDirty; | |
199 | }; | |
200 | ||
201 | static DataRef sFilesTable; | |
202 | static struct fileRecord *sKernelFile; | |
203 | ||
204 | static DataRef sMergedFiles; | |
205 | static DataRef sMergeMetaClasses; | |
206 | static Boolean sMergedKernel; | |
207 | ||
208 | static void errprintf(const char *fmt, ...) | |
209 | { | |
210 | extern void kld_error_vprintf(const char *format, va_list ap); | |
211 | ||
212 | va_list ap; | |
213 | ||
214 | va_start(ap, fmt); | |
215 | kld_error_vprintf(fmt, ap); | |
216 | va_end(ap); | |
217 | ||
218 | DIE(); | |
219 | } | |
220 | ||
221 | static __inline__ unsigned long DataGetLength(DataRef data) | |
222 | { | |
223 | return data->fLength; | |
224 | } | |
225 | ||
226 | static __inline__ unsigned char *DataGetPtr(DataRef data) | |
227 | { | |
228 | return data->fData; | |
229 | } | |
230 | ||
231 | ||
232 | static __inline__ Boolean DataContainsAddr(DataRef data, void *vAddr) | |
233 | { | |
234 | unsigned char *addr = vAddr; | |
235 | ||
236 | return (data->fData <= addr) && (addr < data->fData + data->fLength); | |
237 | } | |
238 | ||
239 | static __inline__ Boolean DataAddLength(DataRef data, unsigned long length) | |
240 | { | |
241 | static Boolean DataSetLength(DataRef data, unsigned long length); | |
242 | return DataSetLength(data, data->fLength + length); | |
243 | } | |
244 | ||
245 | static __inline__ Boolean | |
246 | DataAppendBytes(DataRef data, const void *addr, unsigned int len) | |
247 | { | |
248 | unsigned long size = DataGetLength(data); | |
249 | ||
250 | if (!DataAddLength(data, len)) | |
251 | return false; | |
252 | ||
253 | bcopy(addr, DataGetPtr(data) + size, len); | |
254 | return true; | |
255 | } | |
256 | ||
257 | static __inline__ Boolean DataAppendData(DataRef dst, DataRef src) | |
258 | { | |
259 | return DataAppendBytes(dst, DataGetPtr(src), DataGetLength(src)); | |
260 | } | |
261 | ||
262 | static Boolean DataSetLength(DataRef data, unsigned long length) | |
263 | { | |
264 | // Don't bother to ever shrink a data object. | |
265 | if (length > data->fCapacity) { | |
266 | unsigned char *newData; | |
267 | unsigned long newCapacity; | |
268 | ||
269 | newCapacity = length + kDataCapacityIncrement - 1; | |
270 | newCapacity &= ~(kDataCapacityIncrement - 1); | |
271 | newData = (unsigned char *) realloc(data->fData, newCapacity); | |
272 | if (!newData) | |
273 | return false; | |
274 | ||
275 | bzero(newData + data->fCapacity, newCapacity - data->fCapacity); | |
276 | data->fData = newData; | |
277 | data->fCapacity = newCapacity; | |
278 | } | |
279 | ||
280 | data->fLength = length; | |
281 | return true; | |
282 | } | |
283 | ||
284 | static DataRef DataCreate(unsigned long length) | |
285 | { | |
286 | DataRef data = (DataRef) malloc(sizeof(Data)); | |
287 | ||
288 | if (data) { | |
289 | if (!length) | |
290 | data->fCapacity = kDataCapacityIncrement; | |
291 | else { | |
292 | data->fCapacity = length + kDataCapacityIncrement - 1; | |
293 | data->fCapacity &= ~(kDataCapacityIncrement - 1); | |
294 | } | |
295 | ||
296 | data->fData = (unsigned char *) malloc(data->fCapacity); | |
297 | if (!data->fData) { | |
298 | free(data); | |
299 | return NULL; | |
300 | } | |
301 | ||
302 | bzero(data->fData, data->fCapacity); | |
303 | data->fLength = length; | |
304 | } | |
305 | return data; | |
306 | } | |
307 | ||
308 | static void DataRelease(DataRef data) | |
309 | { | |
310 | if (data) { | |
311 | if (data->fData) | |
312 | free(data->fData); | |
313 | data->fData = 0; | |
314 | free(data); | |
315 | } | |
316 | } | |
317 | ||
318 | static const char * | |
319 | symbolname(const struct fileRecord *file, const struct nlist *sym) | |
320 | { | |
321 | unsigned long strsize; | |
322 | long strx = sym->n_un.n_strx; | |
323 | ||
324 | if (strx >= 0) | |
325 | return file->fStringBase + strx; | |
326 | ||
327 | strsize = file->fSymtab->strsize; | |
328 | strx = -strx; | |
329 | if (strx < strsize) | |
330 | return file->fStringBase + strx; | |
331 | ||
332 | strx -= strsize; | |
333 | return (char *) DataGetPtr(file->fNewStrings) + strx; | |
334 | } | |
335 | ||
336 | static struct fileRecord *getFile(const char *path) | |
337 | { | |
338 | if (sFilesTable) { | |
339 | int i, nfiles; | |
340 | struct fileRecord **files; | |
341 | ||
342 | // Check to see if we have already merged this file | |
343 | nfiles = DataGetLength(sFilesTable) / sizeof(struct fileRecord *); | |
344 | files = (struct fileRecord **) DataGetPtr(sFilesTable); | |
345 | for (i = 0; i < nfiles; i++) { | |
346 | if (!strcmp(path, files[i]->fPath)) | |
347 | return files[i]; | |
348 | } | |
349 | } | |
350 | ||
351 | return NULL; | |
352 | } | |
353 | ||
354 | static struct fileRecord * addFile(struct fileRecord *file) | |
355 | { | |
356 | struct fileRecord *newFile; | |
357 | ||
358 | if (!sFilesTable) { | |
359 | sFilesTable = DataCreate(0); | |
360 | if (!sFilesTable) | |
361 | return NULL; | |
362 | } | |
363 | ||
364 | newFile = (struct fileRecord *) malloc(sizeof(struct fileRecord)); | |
365 | if (!newFile) | |
366 | return NULL; | |
367 | ||
368 | if (!DataAppendBytes(sFilesTable, &newFile, sizeof(newFile))) { | |
369 | free(newFile); | |
370 | return NULL; | |
371 | } | |
372 | ||
373 | bcopy(file, newFile, sizeof(struct fileRecord)); | |
374 | return newFile; | |
375 | } | |
376 | ||
377 | // @@@ gvdl: need to clean up the sMergeMetaClasses | |
378 | // @@@ gvdl: I had better fix the object file up again | |
379 | static void removeFile(struct fileRecord *file) | |
380 | { | |
381 | if (file->fClassList) { | |
382 | DataRelease(file->fClassList); | |
383 | file->fClassList = 0; | |
384 | } | |
385 | ||
386 | if (file->fSectData) { | |
387 | struct sectionRecord *section; | |
388 | unsigned int i, nsect; | |
389 | ||
390 | nsect = file->fNSects; | |
391 | section = file->fSections; | |
392 | for (i = 0; i < nsect; i++, section++) { | |
393 | if (section->fRelocCache) { | |
394 | DataRelease(section->fRelocCache); | |
395 | section->fRelocCache = 0; | |
396 | } | |
397 | } | |
398 | ||
399 | DataRelease(file->fSectData); | |
400 | file->fSectData = 0; | |
401 | file->fSections = 0; | |
402 | file->fNSects = 0; | |
403 | } | |
404 | ||
405 | if (file->fMap) { | |
406 | #if KERNEL | |
407 | if (file->fIsKmem) | |
408 | kmem_free(kernel_map, (vm_address_t) file->fMap, file->fMapSize); | |
409 | #else /* !KERNEL */ | |
410 | if (file->fPadEnd) { | |
411 | vm_address_t padVM; | |
412 | vm_size_t padSize; | |
413 | ||
414 | padVM = round_page((vm_address_t) file->fMap + file->fMapSize); | |
415 | padSize = (vm_size_t) ((vm_address_t) file->fPadEnd - padVM); | |
416 | (void) vm_deallocate(mach_task_self(), padVM, padSize); | |
417 | file->fPadEnd = 0; | |
418 | } | |
419 | ||
420 | (void) munmap((caddr_t) file->fMap, file->fMapSize); | |
421 | #endif /* !KERNEL */ | |
422 | file->fMap = 0; | |
423 | } | |
424 | ||
425 | file->fPath = 0; | |
426 | } | |
427 | ||
428 | #if !KERNEL | |
429 | static Boolean | |
430 | mapObjectFile(struct fileRecord *file) | |
431 | { | |
432 | Boolean result = false; | |
433 | static unsigned char *sFileMapBaseAddr; | |
434 | ||
435 | int fd = 0; | |
436 | ||
437 | if (!sFileMapBaseAddr) { | |
438 | kern_return_t ret; | |
439 | vm_address_t probeAddr; | |
440 | ||
441 | // If we don't already have a base addr find any random chunk | |
442 | // of 32 meg of VM and to use the 16 meg boundrary as a base. | |
443 | ret = vm_allocate(mach_task_self(), &probeAddr, | |
444 | 32 * 1024 * 1024, VM_FLAGS_ANYWHERE); | |
445 | return_if(KERN_SUCCESS != ret, false, | |
446 | ("Unable to allocate base memory %s\n", mach_error_string(ret))); | |
447 | (void) vm_deallocate(mach_task_self(), probeAddr, 32 * 1024 * 1024); | |
448 | ||
449 | // Now round to the next 16 Meg boundrary | |
450 | probeAddr = (probeAddr + (16 * 1024 * 1024 - 1)) | |
451 | & ~(16 * 1024 * 1024 - 1); | |
452 | sFileMapBaseAddr = (unsigned char *) probeAddr; | |
453 | } | |
454 | ||
455 | fd = open(file->fPath, O_RDONLY, 0); | |
456 | return_if(fd == -1, false, ("Can't open %s for reading - %s\n", | |
457 | file->fPath, strerror(errno))); | |
458 | ||
459 | do { | |
460 | kern_return_t ret; | |
461 | struct stat sb; | |
462 | int retaddr = -1; | |
463 | ||
464 | break_if(fstat(fd, &sb) == -1, | |
465 | ("Can't stat %s - %s\n", file->fPath, strerror(errno))); | |
466 | ||
467 | file->fMapSize = sb.st_size; | |
468 | file->fMap = sFileMapBaseAddr; | |
469 | ret = KERN_SUCCESS; | |
470 | while (file->fMap < kTopAddr) { | |
471 | vm_address_t padVM; | |
472 | vm_address_t padVMEnd; | |
473 | vm_size_t padSize; | |
474 | ||
475 | padVM = round_page((vm_address_t) file->fMap + file->fMapSize); | |
476 | retaddr = (int) mmap(file->fMap, file->fMapSize, | |
477 | PROT_READ|PROT_WRITE, | |
478 | MAP_FIXED|MAP_FILE|MAP_PRIVATE, | |
479 | fd, 0); | |
480 | if (-1 == retaddr) { | |
481 | break_if(ENOMEM != errno, | |
482 | ("mmap failed %d - %s\n", errno, strerror(errno))); | |
483 | ||
484 | file->fMap = (unsigned char *) padVM; | |
485 | continue; | |
486 | } | |
487 | ||
488 | ||
489 | // Round up padVM to the next page after the file and assign at | |
490 | // least another fMapSize more room rounded up to the next page | |
491 | // boundary. | |
492 | padVMEnd = round_page(padVM + file->fMapSize); | |
493 | padSize = padVMEnd - padVM; | |
494 | ret = vm_allocate( | |
495 | mach_task_self(), &padVM, padSize, VM_FLAGS_FIXED); | |
496 | if (KERN_SUCCESS == ret) { | |
497 | file->fPadEnd = (unsigned char *) padVMEnd; | |
498 | break; | |
499 | } | |
500 | else { | |
501 | munmap(file->fMap, file->fMapSize); | |
502 | break_if(KERN_INVALID_ADDRESS != ret, | |
503 | ("Unable to allocate pad vm for %s - %s\n", | |
504 | file->fPath, mach_error_string(ret))); | |
505 | ||
506 | file->fMap = (unsigned char *) padVMEnd; | |
507 | continue; // try again wherever the vm system wants | |
508 | } | |
509 | } | |
510 | ||
511 | if (-1 == retaddr || KERN_SUCCESS != ret) | |
512 | break; | |
513 | ||
514 | break_if(file->fMap >= kTopAddr, | |
515 | ("Unable to map memory %s\n", file->fPath)); | |
516 | ||
517 | sFileMapBaseAddr = file->fPadEnd; | |
518 | result = true; | |
519 | } while(0); | |
520 | ||
521 | close(fd); | |
522 | return result; | |
523 | } | |
524 | #endif /* !KERNEL */ | |
525 | ||
526 | static Boolean findBestArch(struct fileRecord *file) | |
527 | { | |
528 | unsigned long magic; | |
529 | struct fat_header *fat; | |
530 | ||
531 | ||
532 | file->fMachOSize = file->fMapSize; | |
533 | file->fMachO = file->fMap; | |
534 | magic = ((const struct mach_header *) file->fMachO)->magic; | |
535 | fat = (struct fat_header *) file->fMachO; | |
536 | ||
537 | // Try to figure out what type of file this is | |
538 | return_if(file->fMapSize < sizeof(unsigned long), false, | |
539 | ("%s isn't a valid object file - no magic\n", file->fPath)); | |
540 | ||
541 | #if KERNEL | |
542 | ||
543 | // CIGAM is byte-swapped MAGIC | |
544 | if (magic == FAT_MAGIC || magic == FAT_CIGAM) { | |
545 | ||
546 | load_return_t load_return; | |
547 | struct fat_arch fatinfo; | |
548 | ||
549 | load_return = fatfile_getarch(NULL, (vm_address_t) fat, &fatinfo); | |
550 | return_if(load_return != LOAD_SUCCESS, false, | |
551 | ("Extension \"%s\": has no code for this computer\n", file->fPath)); | |
552 | ||
553 | file->fMachO = file->fMap + fatinfo.offset; | |
554 | file->fMachOSize = fatinfo.size; | |
555 | magic = ((const struct mach_header *) file->fMachO)->magic; | |
556 | } | |
557 | ||
558 | #else /* !KERNEL */ | |
559 | ||
560 | // Do we need to in-place swap the endianness of the fat header? | |
561 | if (magic == FAT_CIGAM) { | |
562 | unsigned long i; | |
563 | struct fat_arch *arch; | |
564 | ||
565 | fat->nfat_arch = NXSwapBigLongToHost(fat->nfat_arch); | |
566 | return_if(file->fMapSize < sizeof(struct fat_header) | |
567 | + fat->nfat_arch * sizeof(struct fat_arch), | |
568 | false, ("%s is too fat\n", file->fPath)); | |
569 | ||
570 | arch = (struct fat_arch *) &fat[1]; | |
571 | for (i = 0; i < fat->nfat_arch; i++) { | |
572 | arch[i].cputype = NXSwapBigLongToHost(arch[i].cputype); | |
573 | arch[i].cpusubtype = NXSwapBigLongToHost(arch[i].cpusubtype); | |
574 | arch[i].offset = NXSwapBigLongToHost(arch[i].offset); | |
575 | arch[i].size = NXSwapBigLongToHost(arch[i].size); | |
576 | arch[i].align = NXSwapBigLongToHost(arch[i].align); | |
577 | } | |
578 | ||
579 | magic = NXSwapBigLongToHost(fat->magic); | |
580 | } | |
581 | ||
582 | // Now see if we can find any valid architectures | |
583 | if (magic == FAT_MAGIC) { | |
584 | const NXArchInfo *myArch; | |
585 | unsigned long fatsize; | |
586 | struct fat_arch *arch; | |
587 | ||
588 | fatsize = sizeof(struct fat_header) | |
589 | + fat->nfat_arch * sizeof(struct fat_arch); | |
590 | return_if(file->fMapSize < fatsize, | |
591 | false, ("%s isn't a valid fat file\n", file->fPath)); | |
592 | ||
593 | myArch = NXGetLocalArchInfo(); | |
594 | arch = NXFindBestFatArch(myArch->cputype, myArch->cpusubtype, | |
595 | (struct fat_arch *) &fat[1], fat->nfat_arch); | |
596 | return_if(!arch, | |
597 | false, ("%s hasn't got arch for %s\n", file->fPath, myArch->name)); | |
598 | return_if(arch->offset + arch->size > file->fMapSize, | |
599 | false, ("%s's %s arch is incomplete\n", file->fPath, myArch->name)); | |
600 | file->fMachO = file->fMap + arch->offset; | |
601 | file->fMachOSize = arch->size; | |
602 | magic = ((const struct mach_header *) file->fMachO)->magic; | |
603 | } | |
604 | ||
605 | #endif /* KERNEL */ | |
606 | ||
607 | return_if(magic != MH_MAGIC, | |
608 | false, ("%s isn't a valid mach-o\n", file->fPath)); | |
609 | ||
610 | return true; | |
611 | } | |
612 | ||
613 | static Boolean | |
614 | parseSegments(struct fileRecord *file, struct segment_command *seg) | |
615 | { | |
616 | struct sectionRecord *sections; | |
617 | int i, nsects = seg->nsects; | |
618 | const struct segmentMap { | |
619 | struct segment_command seg; | |
620 | const struct section sect[1]; | |
621 | } *segMap; | |
622 | ||
623 | if (!nsects) { | |
624 | #if KERNEL | |
625 | // We don't need to look for the LinkEdit segment unless | |
626 | // we are running in the kernel environment. | |
627 | if (!strcmp(kLinkEditSegName, seg->segname)) { | |
628 | // Grab symbol table from linkedit we will need this later | |
629 | file->fSymbolBase = (void *) seg; | |
630 | } | |
631 | #endif | |
632 | ||
633 | return true; // Nothing more to do, so that was easy. | |
634 | } | |
635 | ||
636 | if (!file->fSectData) { | |
637 | file->fSectData = DataCreate(0); | |
638 | if (!file->fSectData) | |
639 | return false; | |
640 | } | |
641 | ||
642 | // Increase length of section DataRef and cache data pointer | |
643 | if (!DataAddLength(file->fSectData, nsects * sizeof(struct sectionRecord))) | |
644 | return false; | |
645 | file->fSections = (struct sectionRecord *) DataGetPtr(file->fSectData); | |
646 | ||
647 | // Initialise the new sections | |
648 | sections = &file->fSections[file->fNSects]; | |
649 | file->fNSects += nsects; | |
650 | for (i = 0, segMap = (struct segmentMap *) seg; i < nsects; i++) | |
651 | sections[i].fSection = &segMap->sect[i]; | |
652 | ||
653 | return true; | |
654 | } | |
655 | ||
656 | // @@@ gvdl: These functions need to be hashed they are | |
657 | // going to be way too slow for production code. | |
658 | static const struct nlist * | |
659 | findSymbolByAddress(const struct fileRecord *file, void *entry) | |
660 | { | |
661 | // not quite so dumb linear search of all symbols | |
662 | const struct nlist *sym; | |
663 | int i, nsyms; | |
664 | ||
665 | // First try to find the symbol in the most likely place which is the | |
666 | // extern symbols | |
667 | sym = file->fLocalSyms; | |
668 | for (i = 0, nsyms = file->fNLocal; i < nsyms; i++, sym++) { | |
669 | if (sym->n_value == (unsigned long) entry && !(sym->n_type & N_STAB) ) | |
670 | return sym; | |
671 | } | |
672 | ||
673 | // Didn't find it in the external symbols so try to local symbols before | |
674 | // giving up. | |
675 | sym = file->fSymbolBase; | |
676 | for (i = 0, nsyms = file->fSymtab->nsyms; i < nsyms; i++, sym++) { | |
677 | if ( (sym->n_type & N_EXT) ) | |
678 | return NULL; | |
679 | if ( sym->n_value == (unsigned long) entry && !(sym->n_type & N_STAB) ) | |
680 | return sym; | |
681 | } | |
682 | ||
683 | return NULL; | |
684 | } | |
685 | ||
686 | struct searchContext { | |
687 | const char *fSymname; | |
688 | const char *fStrbase; | |
689 | }; | |
690 | ||
691 | static int symbolSearch(const void *vKey, const void *vSym) | |
692 | { | |
693 | const struct searchContext *key = (const struct searchContext *) vKey; | |
694 | const struct nlist *sym = (const struct nlist *) vSym; | |
695 | ||
696 | return strcmp(key->fSymname, key->fStrbase + sym->n_un.n_strx); | |
697 | } | |
698 | ||
699 | static const struct nlist * | |
700 | findSymbolByName(struct fileRecord *file, const char *symname) | |
701 | { | |
702 | struct searchContext context; | |
703 | ||
704 | context.fSymname = symname; | |
705 | context.fStrbase = file->fStringBase; | |
706 | return (struct nlist *) | |
707 | bsearch(&context, | |
708 | file->fLocalSyms, file->fNLocal, sizeof(struct nlist), | |
709 | symbolSearch); | |
710 | } | |
711 | ||
712 | static Boolean | |
713 | relocateSection(const struct fileRecord *file, struct sectionRecord *sectionRec) | |
714 | { | |
715 | const struct nlist *symbol; | |
716 | const struct section *section; | |
717 | struct relocRecord *rec; | |
718 | struct relocation_info *rinfo; | |
719 | unsigned long i; | |
720 | unsigned long r_address, r_symbolnum, r_length; | |
721 | enum reloc_type_generic r_type; | |
722 | UInt8 *sectionBase; | |
723 | void **entry; | |
724 | ||
725 | sectionRec->fRelocCache = DataCreate( | |
726 | sectionRec->fSection->nreloc * sizeof(struct relocRecord)); | |
727 | if (!sectionRec->fRelocCache) | |
728 | return false; | |
729 | ||
730 | section = sectionRec->fSection; | |
731 | sectionBase = file->fMachO + section->offset; | |
732 | ||
733 | rec = (struct relocRecord *) DataGetPtr(sectionRec->fRelocCache); | |
734 | rinfo = (struct relocation_info *) (file->fMachO + section->reloff); | |
735 | for (i = 0; i < section->nreloc; i++, rec++, rinfo++) { | |
736 | ||
737 | // Totally uninterested in scattered relocation entries | |
738 | if ( (rinfo->r_address & R_SCATTERED) ) | |
739 | continue; | |
740 | ||
741 | r_address = rinfo->r_address; | |
742 | entry = (void **) (sectionBase + r_address); | |
743 | ||
744 | /* | |
745 | * The r_address field is really an offset into the contents of the | |
746 | * section and must reference something inside the section (Note | |
747 | * that this is not the case for PPC_RELOC_PAIR entries but this | |
748 | * can't be one with the above checks). | |
749 | */ | |
750 | return_if(r_address >= section->size, false, | |
751 | ("Invalid relocation entry in %s - not in section\n", file->fPath)); | |
752 | ||
753 | // If we don't have a VANILLA entry or the Vanilla entry isn't | |
754 | // a 'long' then ignore the entry and try the next. | |
755 | r_type = (enum reloc_type_generic) rinfo->r_type; | |
756 | r_length = rinfo->r_length; | |
757 | if (r_type != GENERIC_RELOC_VANILLA || r_length != 2) | |
758 | continue; | |
759 | ||
760 | r_symbolnum = rinfo->r_symbolnum; | |
761 | ||
762 | /* | |
763 | * If rinfo->r_extern is set this relocation entry is an external entry | |
764 | * else it is a local entry. | |
765 | */ | |
766 | if (rinfo->r_extern) { | |
767 | /* | |
768 | * This is an external relocation entry. | |
769 | * r_symbolnum is an index into the input file's symbol table | |
770 | * of the symbol being refered to. The symbol must be | |
771 | * undefined to be used in an external relocation entry. | |
772 | */ | |
773 | return_if(r_symbolnum >= file->fSymtab->nsyms, false, | |
774 | ("Invalid relocation entry in %s - no symbol\n", file->fPath)); | |
775 | ||
776 | /* | |
777 | * If this is an indirect symbol resolve indirection (all chains | |
778 | * of indirect symbols have been resolved so that they point at | |
779 | * a symbol that is not an indirect symbol). | |
780 | */ | |
781 | symbol = file->fSymbolBase; | |
782 | if ((symbol[r_symbolnum].n_type & N_TYPE) == N_INDR) | |
783 | r_symbolnum = symbol[r_symbolnum].n_value; | |
784 | symbol = &symbol[r_symbolnum]; | |
785 | ||
786 | return_if(symbol->n_type != (N_EXT | N_UNDF), false, | |
787 | ("Invalid relocation entry in %s - extern\n", file->fPath)); | |
788 | } | |
789 | else { | |
790 | /* | |
791 | * If the symbol is not in any section then it can't be a | |
792 | * pointer to a local segment and I don't care about it. | |
793 | */ | |
794 | if (r_symbolnum == R_ABS) | |
795 | continue; | |
796 | ||
797 | // Note segment references are offset by 1 from 0. | |
798 | return_if(r_symbolnum > file->fNSects, false, | |
799 | ("Invalid relocation entry in %s - local\n", file->fPath)); | |
800 | ||
801 | // Find the symbol, if any, that backs this entry | |
802 | symbol = findSymbolByAddress(file, *entry); | |
803 | } | |
804 | ||
805 | rec->fValue = *entry; // Save the previous value | |
806 | rec->fRInfo = rinfo; // Save a pointer to the reloc | |
807 | rec->fSymbol = symbol; // Record the current symbol | |
808 | ||
809 | *entry = (void *) rec; // Save pointer to record in object image | |
810 | } | |
811 | ||
812 | ((struct fileRecord *) file)->fImageDirty = true; | |
813 | ||
814 | return true; | |
815 | } | |
816 | ||
817 | static const struct nlist * | |
818 | findSymbolRefAtLocation(const struct fileRecord *file, | |
819 | struct sectionRecord *sctn, void **loc) | |
820 | { | |
821 | if (file->fIsKernel) { | |
822 | if (*loc) | |
823 | return findSymbolByAddress(file, *loc); | |
824 | } | |
825 | else if (sctn->fRelocCache || relocateSection(file, sctn)) { | |
826 | struct relocRecord *reloc = (struct relocRecord *) *loc; | |
827 | ||
828 | if (DataContainsAddr(sctn->fRelocCache, reloc)) | |
829 | return reloc->fSymbol; | |
830 | } | |
831 | ||
832 | return NULL; | |
833 | } | |
834 | ||
835 | static Boolean | |
836 | addClass(struct fileRecord *file, | |
837 | struct metaClassRecord *inClass, | |
838 | const char *cname) | |
839 | { | |
840 | struct metaClassRecord *newClass = NULL; | |
841 | struct metaClassRecord **fileClasses = NULL; | |
842 | int len; | |
843 | ||
844 | if (!file->fIsKernel) { // @@@ gvdl: | |
845 | DEBUG_LOG(("Adding Class %s\n", cname)); | |
846 | } | |
847 | ||
848 | if (!file->fClassList) { | |
849 | file->fClassList = DataCreate(0); | |
850 | if (!file->fClassList) | |
851 | return false; | |
852 | } | |
853 | ||
854 | do { | |
855 | // Attempt to allocate all necessary resource first | |
856 | len = strlen(cname) + 1 | |
857 | + (int) (&((struct metaClassRecord *) 0)->fClassName); | |
858 | newClass = (struct metaClassRecord *) malloc(len); | |
859 | if (!newClass) | |
860 | break; | |
861 | ||
862 | if (!DataAddLength(file->fClassList, sizeof(struct metaClassRecord *))) | |
863 | break; | |
864 | fileClasses = (struct metaClassRecord **) | |
865 | (DataGetPtr(file->fClassList) + DataGetLength(file->fClassList)); | |
866 | ||
867 | // Copy the meta Class structure and string name into newClass | |
868 | // and insert object at end of the file->fClassList and sMergeMetaClasses | |
869 | *newClass = *inClass; | |
870 | strcpy(newClass->fClassName, cname); | |
871 | fileClasses[-1] = newClass; | |
872 | ||
873 | return true; | |
874 | } while (0); | |
875 | ||
876 | if (fileClasses) | |
877 | DataAddLength(file->fClassList, -sizeof(struct metaClassRecord *)); | |
878 | ||
879 | if (newClass) | |
880 | free(newClass); | |
881 | ||
882 | return false; | |
883 | } | |
884 | ||
885 | static struct metaClassRecord *getClass(DataRef classList, const char *cname) | |
886 | { | |
887 | if (classList) { | |
888 | int i, nclass; | |
889 | struct metaClassRecord **classes, *thisClass; | |
890 | ||
891 | nclass = DataGetLength(classList) / sizeof(struct metaClassRecord *); | |
892 | classes = (struct metaClassRecord **) DataGetPtr(classList); | |
893 | for (i = 0; i < nclass; i++) { | |
894 | thisClass = classes[i]; | |
895 | if (!strcmp(thisClass->fClassName, cname)) | |
896 | return thisClass; | |
897 | } | |
898 | } | |
899 | ||
900 | return NULL; | |
901 | } | |
902 | ||
903 | // Add the class 'cname' to the list of known OSObject based classes | |
904 | // Note 'sym' is the <cname>.superClass symbol. | |
905 | static Boolean | |
906 | recordClass(struct fileRecord *file, const char *cname, const struct nlist *sym) | |
907 | { | |
908 | char *supername = NULL; | |
909 | const char *classname = NULL; | |
910 | struct metaClassRecord newClass; | |
911 | char strbuffer[1024]; | |
912 | ||
913 | // Only do the work actual work to find the super class if we are | |
914 | // not currently working on the kernel. The kernel is the end | |
915 | // of all superclass chains as by definition the kernel is binary | |
916 | // compatible with itself. | |
917 | if (!file->fIsKernel) { | |
918 | const char *dot; | |
919 | const struct nlist *supersym; | |
920 | const struct section *section; | |
921 | struct sectionRecord *sectionRec; | |
922 | unsigned char sectind = sym->n_sect; | |
923 | const char *superstr; | |
924 | void **location; | |
925 | ||
926 | // We can't resolve anything that isn't in a real section | |
927 | // Note that the sectind is starts at one to make room for the | |
928 | // NO_SECT flag but the fNSects field isn't offset so we have a | |
929 | // '>' test. Which means this isn't an OSObject based class | |
930 | if (sectind == NO_SECT || sectind > file->fNSects) | |
931 | return true; | |
932 | ||
933 | sectionRec = file->fSections + sectind - 1; | |
934 | section = sectionRec->fSection; | |
935 | location = (void **) ( file->fMachO + section->offset | |
936 | + sym->n_value - section->addr ); | |
937 | ||
938 | supersym = findSymbolRefAtLocation(file, sectionRec, location); | |
939 | if (!supersym) | |
940 | return true; // No superclass symbol then it isn't an OSObject. | |
941 | ||
942 | // Find string in file and skip leading '_' and find last '.' | |
943 | superstr = symbolname(file, supersym) + 1; | |
944 | dot = strrchr(superstr, '.'); | |
945 | if (!dot || strcmp(dot, kGMetaSuffix)) | |
946 | return true; // Not an OSObject superclass so ignore it. | |
947 | ||
948 | supername = (char *) malloc(dot - superstr + 1); | |
949 | strncpy(supername, superstr, dot - superstr); | |
950 | supername[dot - superstr] = '\0'; | |
951 | } | |
952 | ||
953 | do { | |
954 | break_if(getClass(file->fClassList, cname), | |
955 | ("Duplicate class %s in %s\n", cname, file->fPath)); | |
956 | ||
957 | snprintf(strbuffer, sizeof(strbuffer), "%s%s", kVTablePrefix, cname); | |
958 | newClass.fVTableSym = findSymbolByName(file, strbuffer); | |
959 | break_if(!newClass.fVTableSym, | |
960 | ("Can't find vtable %s in %s\n", cname, file->fPath)); | |
961 | ||
962 | newClass.fFile = file; | |
963 | newClass.fSuperName = supername; | |
964 | newClass.fPatchedVTable = NULL; | |
965 | ||
966 | // Can't use cname as it may be a stack variable | |
967 | // However the vtable's string has the class name as a suffix | |
968 | // so why don't we use that rather than mallocing a string. | |
969 | classname = symbolname(file, newClass.fVTableSym) | |
970 | + sizeof(kVTablePrefix) - 1; | |
971 | break_if(!addClass(file, &newClass, classname), | |
972 | ("recordClass - no memory?\n")); | |
973 | ||
974 | return true; | |
975 | } while (0); | |
976 | ||
977 | if (supername) | |
978 | free(supername); | |
979 | ||
980 | return false; | |
981 | } | |
982 | ||
983 | static Boolean getMetaClassGraph(struct fileRecord *file) | |
984 | { | |
985 | const struct nlist *sym; | |
986 | const char *strbase; | |
987 | int i, nsyms; | |
988 | ||
989 | // Search the symbol table for the local symbols that are generated | |
990 | // by the metaclass system. There are three metaclass variables | |
991 | // that are relevant. | |
992 | // | |
993 | // <ClassName>.metaClass A pointer to the meta class structure. | |
994 | // <ClassName>.superClass A pointer to the super class's meta class. | |
995 | // <ClassName>.gMetaClass The meta class structure itself. | |
996 | // ___vt<ClassName> The VTable for the class <ClassName>. | |
997 | // | |
998 | // In this code I'm going to search for any symbols that | |
999 | // ends in kSuperClassSuffix as this indicates this class is a conforming | |
1000 | // OSObject subclass and will need to be patched, and it also | |
1001 | // contains a pointer to the super class's meta class structure. | |
1002 | strbase = file->fStringBase; | |
1003 | sym = file->fLocalSyms; | |
1004 | for (i = 0, nsyms = file->fNLocal; i < nsyms; i++, sym++) { | |
1005 | const char *symname; | |
1006 | const char *dot; | |
1007 | char classname[1024]; | |
1008 | unsigned char n_type = sym->n_type & (N_TYPE | N_EXT); | |
1009 | ||
1010 | // Check that the symbols is a global and that it has a name. | |
1011 | if (((N_SECT | N_EXT) != n_type && (N_ABS | N_EXT) != n_type) | |
1012 | || !sym->n_un.n_strx) | |
1013 | continue; | |
1014 | ||
1015 | // Only search from the last '.' in the symbol. | |
1016 | // but skip the leading '_' in all symbols first. | |
1017 | symname = strbase + sym->n_un.n_strx + 1; | |
1018 | dot = strrchr(symname, '.'); | |
1019 | if (!dot || strcmp(dot, kSuperClassSuffix)) | |
1020 | continue; | |
1021 | ||
1022 | // Got a candidate so hand it over for class processing. | |
1023 | return_if(dot - symname >= (int) sizeof(classname), | |
1024 | false, ("Symbol %s is too long\n", symname)); | |
1025 | ||
1026 | bcopy(symname, classname, dot - symname); | |
1027 | classname[dot - symname] = '\0'; | |
1028 | if (!recordClass(file, classname, sym)) | |
1029 | return false; | |
1030 | } | |
1031 | ||
1032 | return_if(!file->fClassList, false, ("Internal error, " | |
1033 | "getMetaClassGraph(%s) found no classes", file->fPath)); | |
1034 | ||
1035 | DEBUG_LOG(("Found %d classes in %x for %s\n", | |
1036 | DataGetLength(file->fClassList)/sizeof(void*), | |
1037 | file->fClassList, file->fPath)); | |
1038 | ||
1039 | return true; | |
1040 | } | |
1041 | ||
1042 | static Boolean mergeOSObjectsForFile(const struct fileRecord *file) | |
1043 | { | |
1044 | int i, nmerged; | |
1045 | Boolean foundDuplicates = false; | |
1046 | ||
1047 | DEBUG_LOG(("Merging file %s\n", file->fPath)); // @@@ gvdl: | |
1048 | ||
1049 | if (!file->fClassList) | |
1050 | return true; | |
1051 | ||
1052 | if (!sMergedFiles) { | |
1053 | sMergedFiles = DataCreate(0); | |
1054 | return_if(!sMergedFiles, false, | |
1055 | ("Unable to allocate memory metaclass list\n", file->fPath)); | |
1056 | } | |
1057 | ||
1058 | // Check to see if we have already merged this file | |
1059 | nmerged = DataGetLength(sMergedFiles) / sizeof(struct fileRecord *); | |
1060 | for (i = 0; i < nmerged; i++) { | |
1061 | if (file == ((void **) DataGetPtr(sMergedFiles))[i]) | |
1062 | return true; | |
1063 | } | |
1064 | ||
1065 | if (!sMergeMetaClasses) { | |
1066 | sMergeMetaClasses = DataCreate(0); | |
1067 | return_if(!sMergeMetaClasses, false, | |
1068 | ("Unable to allocate memory metaclass list\n", file->fPath)); | |
1069 | } | |
1070 | else { /* perform a duplicate check */ | |
1071 | int i, j, cnt1, cnt2; | |
1072 | struct metaClassRecord **list1, **list2; | |
1073 | ||
1074 | list1 = (struct metaClassRecord **) DataGetPtr(file->fClassList); | |
1075 | cnt1 = DataGetLength(file->fClassList) / sizeof(*list1); | |
1076 | list2 = (struct metaClassRecord **) DataGetPtr(sMergeMetaClasses); | |
1077 | cnt2 = DataGetLength(sMergeMetaClasses) / sizeof(*list2); | |
1078 | ||
1079 | for (i = 0; i < cnt1; i++) { | |
1080 | for (j = 0; j < cnt2; j++) { | |
1081 | if (!strcmp(list1[i]->fClassName, list2[j]->fClassName)) { | |
1082 | errprintf("duplicate class %s in %s & %s\n", | |
1083 | list1[i]->fClassName, | |
1084 | file->fPath, list2[j]->fFile->fPath); | |
1085 | } | |
1086 | } | |
1087 | } | |
1088 | } | |
1089 | if (foundDuplicates) | |
1090 | return false; | |
1091 | ||
1092 | return_if(!DataAppendBytes(sMergedFiles, &file, sizeof(file)), false, | |
1093 | ("Unable to allocate memory to merge %s\n", file->fPath)); | |
1094 | ||
1095 | return_if(!DataAppendData(sMergeMetaClasses, file->fClassList), false, | |
1096 | ("Unable to allocate memory to merge %s\n", file->fPath)); | |
1097 | ||
1098 | if (file == sKernelFile) | |
1099 | sMergedKernel = true; | |
1100 | ||
1101 | return true; | |
1102 | } | |
1103 | ||
1104 | // Returns a pointer to the base of the section offset by the sections | |
1105 | // base address. The offset is so that we can add nlist::n_values directly | |
1106 | // to this address and get a valid pointer in our memory. | |
1107 | static unsigned char * | |
1108 | getSectionForSymbol(const struct fileRecord *file, const struct nlist *symb, | |
1109 | void ***endP) | |
1110 | { | |
1111 | const struct section *section; | |
1112 | unsigned char sectind; | |
1113 | unsigned char *base; | |
1114 | ||
1115 | sectind = symb->n_sect; // Default to symbols section | |
1116 | if ((symb->n_type & N_TYPE) == N_ABS && file->fIsKernel) { | |
1117 | // Absolute symbol so we have to iterate over our sections | |
1118 | for (sectind = 1; sectind <= file->fNSects; sectind++) { | |
1119 | unsigned long start, end; | |
1120 | ||
1121 | section = file->fSections[sectind - 1].fSection; | |
1122 | start = section->addr; | |
1123 | end = start + section->size; | |
1124 | if (start <= symb->n_value && symb->n_value < end) { | |
1125 | // Found the relevant section | |
1126 | break; | |
1127 | } | |
1128 | } | |
1129 | } | |
1130 | ||
1131 | // Is the vtable in a valid section? | |
1132 | return_if(sectind == NO_SECT || sectind > file->fNSects, | |
1133 | (unsigned char *) -1, | |
1134 | ("%s isn't a valid kext, bad section reference\n", file->fPath)); | |
1135 | ||
1136 | section = file->fSections[sectind - 1].fSection; | |
1137 | ||
1138 | // for when we start walking the vtable so compute offset's now. | |
1139 | base = file->fMachO + section->offset; | |
1140 | *endP = (void **) (base + section->size); | |
1141 | ||
1142 | return base - section->addr; // return with addr offset | |
1143 | } | |
1144 | ||
1145 | static Boolean resolveKernelVTable(struct metaClassRecord *metaClass) | |
1146 | { | |
1147 | const struct fileRecord *file; | |
1148 | struct patchRecord *patchedVTable; | |
1149 | void **curEntry, **vtableEntries, **endSection; | |
1150 | unsigned char *sectionBase; | |
1151 | struct patchRecord *curPatch; | |
1152 | int classSize; | |
1153 | ||
1154 | // Should never occur but it doesn't cost us anything to check. | |
1155 | if (metaClass->fPatchedVTable) | |
1156 | return true; | |
1157 | ||
1158 | DEBUG_LOG(("Kernel vtable %s\n", metaClass->fClassName)); // @@@ gvdl: | |
1159 | ||
1160 | // Do we have a valid vtable to patch? | |
1161 | return_if(!metaClass->fVTableSym, | |
1162 | false, ("Internal error - no class vtable symbol?\n")); | |
1163 | ||
1164 | file = metaClass->fFile; | |
1165 | ||
1166 | // If the metaClass we are being to ask is in the kernel then we | |
1167 | // need to do a quick scan to grab the fPatchList in a reliable format | |
1168 | // however we don't need to check the superclass in the kernel | |
1169 | // as the kernel vtables are always correct wrt themselves. | |
1170 | // Note this ends the superclass chain recursion. | |
1171 | return_if(!file->fIsKernel, | |
1172 | false, ("Internal error - resolveKernelVTable not kernel\n")); | |
1173 | ||
1174 | if (file->fNoKernelExecutable) { | |
1175 | // Oh dear attempt to map the kernel's VM into my memory space | |
1176 | return_if(file->fNoKernelExecutable, false, | |
1177 | ("Internal error - fNoKernelExecutable not implemented yet\n")); | |
1178 | } | |
1179 | ||
1180 | // We are going to need the base and the end | |
1181 | sectionBase = getSectionForSymbol(file, metaClass->fVTableSym, &endSection); | |
1182 | if (-1 == (long) sectionBase) | |
1183 | return false; | |
1184 | ||
1185 | vtableEntries = (void **) (sectionBase + metaClass->fVTableSym->n_value); | |
1186 | curEntry = vtableEntries + kVTablePreambleLen; | |
1187 | for (classSize = 0; curEntry < endSection && *curEntry; classSize++) | |
1188 | curEntry++; | |
1189 | ||
1190 | return_if(*curEntry, false, ("Bad kernel image, short section\n")); | |
1191 | ||
1192 | patchedVTable = (struct patchRecord *) | |
1193 | malloc((classSize + 1) * sizeof(struct patchRecord)); | |
1194 | return_if(!patchedVTable, false, ("resolveKernelVTable - no memory\n")); | |
1195 | ||
1196 | // Copy the vtable of this class into the patch table | |
1197 | curPatch = patchedVTable; | |
1198 | curEntry = vtableEntries + kVTablePreambleLen; | |
1199 | for (; *curEntry; curEntry++, curPatch++) { | |
1200 | curPatch->fSymbol = (struct nlist *) | |
1201 | findSymbolByAddress(file, *curEntry); | |
1202 | curPatch->fType = kSymbolLocal; | |
1203 | } | |
1204 | ||
1205 | // Tag the end of the patch vtable | |
1206 | curPatch->fSymbol = NULL; | |
1207 | metaClass->fPatchedVTable = patchedVTable; | |
1208 | ||
1209 | return true; | |
1210 | } | |
1211 | ||
1212 | // reloc->fPatch must contain a valid pointer on entry | |
1213 | static struct nlist * | |
1214 | getNewSymbol(struct fileRecord *file, | |
1215 | const struct relocRecord *reloc, const char *supername) | |
1216 | { | |
1217 | unsigned int size, i, namelen; | |
1218 | struct nlist **sym; | |
1219 | struct nlist *msym; | |
1220 | const char *strbase; | |
1221 | struct relocation_info *rinfo; | |
1222 | long strx; | |
1223 | ||
1224 | if (!file->fNewSymbols) { | |
1225 | file->fNewSymbols = DataCreate(0); | |
1226 | return_if(!file->fNewSymbols, NULL, | |
1227 | ("Unable to allocate new symbol table for %s\n", file->fPath)); | |
1228 | } | |
1229 | ||
1230 | // Make sure we have a string table as well for the new symbol | |
1231 | if (!file->fNewStrings) { | |
1232 | file->fNewStrings = DataCreate(0); | |
1233 | return_if(!file->fNewStrings, NULL, | |
1234 | ("Unable to allocate string table for %s\n", file->fPath)); | |
1235 | } | |
1236 | ||
1237 | rinfo = (struct relocation_info *) reloc->fRInfo; | |
1238 | size = DataGetLength(file->fNewSymbols) / sizeof(struct nlist *); | |
1239 | sym = (const struct nlist **) DataGetPtr(file->fNewSymbols); | |
1240 | // remember that the n_strx for new symbols names is negated | |
1241 | strbase = (const char *) | |
1242 | DataGetPtr(file->fNewStrings) - file->fSymtab->strsize; | |
1243 | for (i = 0; i < size; i++, sym++) { | |
1244 | const char *symname = strbase - (*sym)->n_un.n_strx; | |
1245 | ||
1246 | if (!strcmp(symname, supername)) { | |
1247 | rinfo->r_symbolnum = i + file->fSymtab->nsyms; | |
1248 | file->fSymbolsDirty = true; | |
1249 | return *sym; | |
1250 | } | |
1251 | } | |
1252 | ||
1253 | // Assert that this is a vaild symbol. I need this condition to be true | |
1254 | // for the later code to make non-zero. So the first time through I'd | |
1255 | // better make sure that it is 0. | |
1256 | return_if(reloc->fSymbol->n_sect, NULL, | |
1257 | ("Undefined symbol entry with non-zero section %s:%s\n", | |
1258 | file->fPath, symbolname(file, reloc->fSymbol))); | |
1259 | ||
1260 | msym = (struct nlist *) malloc(sizeof(struct nlist)); | |
1261 | return_if(!msym, | |
1262 | NULL, ("Unable to create symbol table entry for %s\n", file->fPath)); | |
1263 | ||
1264 | // If we are here we didn't find the symbol so create a new one now | |
1265 | if (!DataAppendBytes(file->fNewSymbols, &msym, sizeof(msym))) { | |
1266 | free(msym); | |
1267 | return_if(true, | |
1268 | NULL, ("Unable to grow symbol table for %s\n", file->fPath)); | |
1269 | } | |
1270 | ||
1271 | namelen = strlen(supername) + 1; | |
1272 | strx = DataGetLength(file->fNewStrings); | |
1273 | if (!DataAppendBytes(file->fNewStrings, supername, namelen)) { | |
1274 | free(msym); | |
1275 | DataAddLength(file->fNewSymbols, -sizeof(struct nlist)); // Undo harm | |
1276 | return_if(true, NULL, | |
1277 | ("Unable to grow string table for %s\n", file->fPath)); | |
1278 | } | |
1279 | ||
1280 | // Offset the string index by the original string table size | |
1281 | // and negate the address to indicate that this is a 'new' symbol | |
1282 | msym->n_un.n_strx = -(strx + file->fSymtab->strsize); | |
1283 | msym->n_type = (N_EXT | N_UNDF); | |
1284 | msym->n_sect = NO_SECT; | |
1285 | msym->n_desc = 0; | |
1286 | msym->n_value = 0; | |
1287 | ||
1288 | // Mark the old symbol as being potentially deletable I can use the | |
1289 | // n_sect field as the input symbol must be of type N_UNDF which means | |
1290 | // that the n_sect field must be set to NO_SECT otherwise it is an | |
1291 | // in valid input file. | |
1292 | ((struct nlist *) reloc->fSymbol)->n_un.n_strx | |
1293 | = -reloc->fSymbol->n_un.n_strx; | |
1294 | ((struct nlist *) reloc->fSymbol)->n_sect = (unsigned char) -1; | |
1295 | ||
1296 | rinfo->r_symbolnum = i + file->fSymtab->nsyms; | |
1297 | file->fSymbolsDirty = true; | |
1298 | return msym; | |
1299 | } | |
1300 | ||
1301 | static struct nlist * | |
1302 | fixOldSymbol(struct fileRecord *file, | |
1303 | const struct relocRecord *reloc, const char *supername) | |
1304 | { | |
1305 | unsigned int namelen; | |
1306 | struct nlist *sym = (struct nlist *) reloc->fSymbol; | |
1307 | const char *oldname = symbolname(file, sym); | |
1308 | ||
1309 | // assert(sym->n_un.n_strx >= 0); | |
1310 | ||
1311 | namelen = strlen(supername); | |
1312 | if (namelen < strlen(oldname)) { | |
1313 | // Overwrite old string in string table | |
1314 | strcpy((char *) oldname, supername); | |
1315 | } | |
1316 | else { | |
1317 | long strx; | |
1318 | ||
1319 | // Make sure we have a string table as well for this symbol | |
1320 | if (!file->fNewStrings) { | |
1321 | file->fNewStrings = DataCreate(0); | |
1322 | return_if(!file->fNewStrings, NULL, | |
1323 | ("Unable to allocate string table for %s\n", file->fPath)); | |
1324 | } | |
1325 | ||
1326 | // Find the end of the fNewStrings data structure; | |
1327 | strx = DataGetLength(file->fNewStrings); | |
1328 | return_if(!DataAppendBytes(file->fNewStrings, supername, namelen + 1), | |
1329 | NULL, ("Unable to grow string table for %s\n", file->fPath)); | |
1330 | ||
1331 | // now add the current table size to the offset | |
1332 | sym->n_un.n_strx = strx + file->fSymtab->strsize; | |
1333 | } | |
1334 | ||
1335 | // Mark the symbol as having been processed by negating it. | |
1336 | // Also note that we have dirtied the file and need to repair the | |
1337 | // symbol table. | |
1338 | sym->n_un.n_strx = -sym->n_un.n_strx; | |
1339 | file->fSymbolsDirty = true; | |
1340 | return sym; | |
1341 | } | |
1342 | ||
1343 | static enum patchState | |
1344 | symbolCompare(const struct fileRecord *file, | |
1345 | const struct nlist *classsym, | |
1346 | const char *supername) | |
1347 | { | |
1348 | const char *classname; | |
1349 | ||
1350 | ||
1351 | // Check to see if the target function is locally defined | |
1352 | // if it is then we can assume this is a local vtable override | |
1353 | if ((classsym->n_type & N_TYPE) != N_UNDF) | |
1354 | return kSymbolLocal; | |
1355 | ||
1356 | // Check to see if both symbols point to the same symbol name | |
1357 | // if so then we are still identical. | |
1358 | classname = symbolname(file, classsym); | |
1359 | if (!strcmp(classname, supername)) | |
1360 | return kSymbolIdentical; | |
1361 | ||
1362 | // Right now we know that the target's vtable entry is different from the | |
1363 | // superclass' vtable entry. This means that we will have to apply a | |
1364 | // patch to the current entry, however before returning lets check to | |
1365 | // see if we have a _RESERVEDnnn field 'cause we can use this as a | |
1366 | // registration point that must align between vtables. | |
1367 | if (!strncmp(supername, kReservedPrefix, sizeof(kReservedPrefix) - 1)) | |
1368 | return kSymbolMismatch; | |
1369 | ||
1370 | // OK, we have a superclass difference where the superclass doesn't | |
1371 | // reference a pad function so assume that the superclass is correct. | |
1372 | if (!strncmp(classname, kReservedPrefix, sizeof(kReservedPrefix) - 1)) | |
1373 | return kSymbolPadUpdate; | |
1374 | else | |
1375 | return kSymbolSuperUpdate; | |
1376 | } | |
1377 | ||
1378 | static Boolean patchVTable(struct metaClassRecord *metaClass) | |
1379 | { | |
1380 | struct metaClassRecord *super = NULL; | |
1381 | struct fileRecord *file; | |
1382 | struct patchRecord *patchedVTable; | |
1383 | struct relocRecord **curReloc, **vtableRelocs, **endSection; | |
1384 | unsigned char *sectionBase; | |
1385 | int classSize; | |
1386 | ||
1387 | // Should never occur but it doesn't cost us anything to check. | |
1388 | if (metaClass->fPatchedVTable) | |
1389 | return true; | |
1390 | ||
1391 | // Do we have a valid vtable to patch? | |
1392 | return_if(!metaClass->fVTableSym, | |
1393 | false, ("Internal error - no class vtable symbol?\n")); | |
1394 | ||
1395 | file = metaClass->fFile; | |
1396 | ||
1397 | // If the metaClass we are being to ask is in the kernel then we | |
1398 | // need to do a quick scan to grab the fPatchList in a reliable format | |
1399 | // however we don't need to check the superclass in the kernel | |
1400 | // as the kernel vtables are always correct wrt themselves. | |
1401 | // Note this ends the superclass chain recursion. | |
1402 | return_if(file->fIsKernel, | |
1403 | false, ("Internal error - patchVTable shouldn't used for kernel\n")); | |
1404 | ||
1405 | if (!metaClass->fSuperName) | |
1406 | return false; | |
1407 | ||
1408 | // The class isn't in the kernel so make sure that the super class | |
1409 | // is patched before patching ouselves. | |
1410 | super = getClass(sMergeMetaClasses, metaClass->fSuperName); | |
1411 | return_if(!super, false, ("Can't find superclass for %s : %s \n", | |
1412 | metaClass->fClassName, metaClass->fSuperName)); | |
1413 | ||
1414 | // Superclass recursion if necessary | |
1415 | if (!super->fPatchedVTable) { | |
1416 | Boolean res; | |
1417 | ||
1418 | if (super->fFile->fIsKernel) | |
1419 | res = resolveKernelVTable(super); | |
1420 | else | |
1421 | res = patchVTable(super); | |
1422 | if (!res) | |
1423 | return false; | |
1424 | } | |
1425 | ||
1426 | DEBUG_LOG(("Patching %s\n", metaClass->fClassName)); // @@@ gvdl: | |
1427 | ||
1428 | // We are going to need the base and the end | |
1429 | ||
1430 | sectionBase = getSectionForSymbol(file, | |
1431 | metaClass->fVTableSym, (void ***) &endSection); | |
1432 | if (-1 == (long) sectionBase) | |
1433 | return false; | |
1434 | ||
1435 | vtableRelocs = (struct relocRecord **) | |
1436 | (sectionBase + metaClass->fVTableSym->n_value); | |
1437 | curReloc = vtableRelocs + kVTablePreambleLen; | |
1438 | for (classSize = 0; curReloc < endSection && *curReloc; classSize++) | |
1439 | curReloc++; | |
1440 | ||
1441 | return_if(*curReloc, false, | |
1442 | ("%s isn't a valid kext, short section\n", file->fPath)); | |
1443 | ||
1444 | patchedVTable = (struct patchRecord *) | |
1445 | malloc((classSize + 1) * sizeof(struct patchRecord)); | |
1446 | return_if(!patchedVTable, false, ("patchedVTable - no memory\n")); | |
1447 | ||
1448 | do { | |
1449 | struct patchRecord *curPatch; | |
1450 | struct nlist *symbol; | |
1451 | ||
1452 | curPatch = patchedVTable; | |
1453 | curReloc = vtableRelocs + kVTablePreambleLen; | |
1454 | ||
1455 | // Grab the super table patches if necessary | |
1456 | // Can't be patching a kernel table as we don't walk super | |
1457 | // class chains in the kernel symbol space. | |
1458 | if (super && super->fPatchedVTable) { | |
1459 | const struct patchRecord *spp; | |
1460 | ||
1461 | spp = super->fPatchedVTable; | |
1462 | ||
1463 | for ( ; spp->fSymbol; curReloc++, spp++, curPatch++) { | |
1464 | const char *supername = | |
1465 | symbolname(super->fFile, spp->fSymbol); | |
1466 | ||
1467 | symbol = (struct nlist *) (*curReloc)->fSymbol; | |
1468 | ||
1469 | curPatch->fType = symbolCompare(file, symbol, supername); | |
1470 | switch (curPatch->fType) { | |
1471 | case kSymbolIdentical: | |
1472 | case kSymbolLocal: | |
1473 | break; | |
1474 | ||
1475 | case kSymbolSuperUpdate: | |
1476 | symbol = getNewSymbol(file, (*curReloc), supername); | |
1477 | break; | |
1478 | ||
1479 | case kSymbolPadUpdate: | |
1480 | symbol = fixOldSymbol(file, (*curReloc), supername); | |
1481 | break; | |
1482 | ||
1483 | case kSymbolMismatch: | |
1484 | errprintf("%s is not compatible with its %s superclass, " | |
1485 | "broken superclass?\n", | |
1486 | metaClass->fClassName, super->fClassName); | |
1487 | goto abortPatch; | |
1488 | ||
1489 | default: | |
1490 | errprintf("Internal error - unknown patch type\n"); | |
1491 | goto abortPatch; | |
1492 | } | |
1493 | if (symbol) { | |
1494 | curPatch->fSymbol = symbol; | |
1495 | (*curReloc)->fSymbol = symbol; | |
1496 | } | |
1497 | else | |
1498 | goto abortPatch; | |
1499 | } | |
1500 | } | |
1501 | ||
1502 | // Copy the remainder of this class' vtable into the patch table | |
1503 | for (; *curReloc; curReloc++, curPatch++) { | |
1504 | // Local reloc symbols | |
1505 | curPatch->fType = kSymbolLocal; | |
1506 | curPatch->fSymbol = (struct nlist *) (*curReloc)->fSymbol; | |
1507 | } | |
1508 | ||
1509 | // Tag the end of the patch vtable | |
1510 | curPatch->fSymbol = NULL; | |
1511 | ||
1512 | metaClass->fPatchedVTable = patchedVTable; | |
1513 | return true; | |
1514 | } while(0); | |
1515 | ||
1516 | abortPatch: | |
1517 | if (patchedVTable) | |
1518 | free(patchedVTable); | |
1519 | ||
1520 | return false; | |
1521 | } | |
1522 | ||
1523 | static Boolean growImage(struct fileRecord *file, vm_size_t delta) | |
1524 | { | |
1525 | #if !KERNEL | |
1526 | file->fMachOSize += delta; | |
1527 | return (file->fMachO + file->fMachOSize <= file->fPadEnd); | |
1528 | #else /* KERNEL */ | |
1529 | vm_address_t startMachO, endMachO, endMap; | |
1530 | vm_offset_t newMachO; | |
1531 | vm_size_t newsize; | |
1532 | unsigned long i, nsect, nclass = 0; | |
1533 | struct metaClassRecord **classes = NULL; | |
1534 | struct sectionRecord *section; | |
1535 | kern_return_t ret; | |
1536 | ||
1537 | startMachO = (vm_address_t) file->fMachO; | |
1538 | endMachO = startMachO + file->fMachOSize + delta; | |
1539 | endMap = (vm_address_t) file->fMap + file->fMapSize; | |
1540 | ||
1541 | // Do we have room in the current mapped image | |
1542 | if (endMachO < round_page(endMap)) { | |
1543 | file->fMachOSize += delta; | |
1544 | return true; | |
1545 | } | |
1546 | ||
1547 | newsize = endMachO - startMachO; | |
1548 | if (newsize < round_page(file->fMapSize)) { | |
1549 | // We have room in the map if we shift the macho image within the | |
1550 | // current map. We will have to patch up pointers into the object. | |
1551 | newMachO = (vm_offset_t) file->fMap; | |
1552 | bcopy((char *) startMachO, (char *) newMachO, file->fMachOSize); | |
1553 | } | |
1554 | else if (file->fIsKmem) { | |
1555 | // kmem_alloced mapping so we can try a kmem_realloc | |
1556 | ret = kmem_realloc(kernel_map, | |
1557 | (vm_address_t) file->fMap, | |
1558 | (vm_size_t) file->fMapSize, | |
1559 | &newMachO, | |
1560 | newsize); | |
1561 | if (KERN_SUCCESS != ret) | |
1562 | return false; | |
1563 | ||
1564 | // If the mapping didn't move then just return | |
1565 | if ((vm_address_t) file->fMap == newMachO) { | |
1566 | file->fMachOSize = file->fMapSize = newsize; | |
1567 | return true; | |
1568 | } | |
1569 | ||
1570 | // We have relocated the kmem image so we are going to have to | |
1571 | // move all of the pointers into the image around. | |
1572 | } | |
1573 | else { | |
1574 | // The image doesn't have room for us and I can't kmem_realloc | |
1575 | // then I just have to bite the bullet and copy the object code | |
1576 | // into a bigger memory segment | |
1577 | ret = kmem_alloc(kernel_map, &newMachO, newsize); | |
1578 | ||
1579 | if (KERN_SUCCESS != ret) | |
1580 | return false; | |
1581 | bcopy((char *) startMachO, (void *) newMachO, file->fMachOSize); | |
1582 | file->fIsKmem = true; | |
1583 | } | |
1584 | ||
1585 | ||
1586 | file->fMap = file->fMachO = (unsigned char *) newMachO; | |
1587 | file->fMapSize = newsize; | |
1588 | file->fMachOSize += delta; // Increment the image size | |
1589 | ||
1590 | // If we are here then we have shifted the object image in memory | |
1591 | // I really should change all of my pointers into the image to machO offsets | |
1592 | // but I have run out of time. So I'm going to very quickly go over the | |
1593 | // cached data structures and add adjustments to the addresses that are | |
1594 | // affected. I wonder how long it will take me to get them all. | |
1595 | // | |
1596 | // For every pointer into the MachO I need to add an adjustment satisfying | |
1597 | // the following simultanous equations | |
1598 | // addr_old = macho_old + fixed_offset | |
1599 | // addr_new = macho_new + fixed_offset therefore: | |
1600 | // addr_new = addr_old + (macho_new - macho_old) | |
1601 | #define REBASE(addr, delta) ( ((vm_address_t) (addr)) += (delta) ) | |
1602 | delta = newMachO - startMachO; | |
1603 | ||
1604 | // Rebase the cached in object 'struct symtab_command' pointer | |
1605 | REBASE(file->fSymtab, delta); | |
1606 | ||
1607 | // Rebase the cached in object 'struct nlist' pointer for all symbols | |
1608 | REBASE(file->fSymbolBase, delta); | |
1609 | ||
1610 | // Rebase the cached in object 'struct nlist' pointer for local symbols | |
1611 | REBASE(file->fLocalSyms, delta); | |
1612 | ||
1613 | // Rebase the cached in object 'char' pointer for the string table | |
1614 | REBASE(file->fStringBase, delta); | |
1615 | ||
1616 | // Ok now we have to go over all of the relocs one last time | |
1617 | // to clean up the pad updates which had their string index negated | |
1618 | // to indicate that we have finished with them. | |
1619 | section = file->fSections; | |
1620 | for (i = 0, nsect = file->fNSects; i < nsect; i++, section++) | |
1621 | REBASE(section->fSection, delta); | |
1622 | ||
1623 | // We only ever grow images that contain class lists so dont bother | |
1624 | // the check if file->fClassList is non-zero 'cause it can't be | |
1625 | // assert(file->fClassList); | |
1626 | nclass = DataGetLength(file->fClassList) | |
1627 | / sizeof(struct metaClassRecord *); | |
1628 | classes = (struct metaClassRecord **) DataGetPtr(file->fClassList); | |
1629 | for (i = 0; i < nclass; i++) { | |
1630 | struct patchRecord *patch; | |
1631 | ||
1632 | for (patch = classes[i]->fPatchedVTable; patch->fSymbol; patch++) { | |
1633 | vm_address_t symAddr = (vm_address_t) patch->fSymbol; | |
1634 | if (symAddr >= startMachO && symAddr < endMachO) | |
1635 | REBASE(patch->fSymbol, delta); | |
1636 | } | |
1637 | } | |
1638 | ||
1639 | ||
1640 | #undef REBASE | |
1641 | ||
1642 | return true; | |
1643 | ||
1644 | #endif /* KERNEL */ | |
1645 | } | |
1646 | ||
1647 | static Boolean | |
1648 | prepareFileForLink(struct fileRecord *file) | |
1649 | { | |
1650 | unsigned long i, last, numnewsyms, newsymsize, newstrsize; | |
1651 | struct sectionRecord *section; | |
1652 | struct nlist **symp, *sym; | |
1653 | ||
1654 | // If we didn't even do a pseudo 'relocate' and dirty the image | |
1655 | // then we can just return now. | |
1656 | if (!file->fImageDirty) | |
1657 | return true; | |
1658 | ||
1659 | DEBUG_LOG(("Linking 2 %s\n", file->fPath)); // @@@ gvdl: | |
1660 | ||
1661 | // We have to go over all of the relocs to repair the damage | |
1662 | // that we have done to the image when we did our 'relocation' | |
1663 | section = file->fSections; | |
1664 | for (i = 0, last = file->fNSects; i < last; i++, section++) { | |
1665 | unsigned char *sectionBase; | |
1666 | struct relocRecord *rec; | |
1667 | unsigned long j, nreloc; | |
1668 | ||
1669 | if (section->fRelocCache) { | |
1670 | sectionBase = file->fMachO + section->fSection->offset; | |
1671 | nreloc = section->fSection->nreloc; | |
1672 | rec = (struct relocRecord *) DataGetPtr(section->fRelocCache); | |
1673 | ||
1674 | // We will need to repair the reloc list | |
1675 | for (j = 0; j < nreloc; j++, rec++) { | |
1676 | void **entry; | |
1677 | struct nlist *sym; | |
1678 | ||
1679 | // Repair Damage to object image | |
1680 | entry = (void **) (sectionBase + rec->fRInfo->r_address); | |
1681 | *entry = rec->fValue; | |
1682 | ||
1683 | // Check if the symbol that this relocation entry points | |
1684 | // to is marked as erasable | |
1685 | sym = (struct nlist *) rec->fSymbol; | |
1686 | if (sym && sym->n_type == (N_EXT | N_UNDF) | |
1687 | && sym->n_sect == (unsigned char) -1) { | |
1688 | // clear mark now | |
1689 | sym->n_un.n_strx = -sym->n_un.n_strx; | |
1690 | sym->n_sect = NO_SECT; | |
1691 | } | |
1692 | } | |
1693 | ||
1694 | // Clean up the fRelocCache we don't need it any more. | |
1695 | DataRelease(section->fRelocCache); | |
1696 | section->fRelocCache = 0; | |
1697 | } | |
1698 | } | |
1699 | file->fImageDirty = false; // Image is clean | |
1700 | ||
1701 | // If we didn't dirty the symbol table then just return | |
1702 | if (!file->fSymbolsDirty) | |
1703 | return true; | |
1704 | ||
1705 | // calculate total file size increase and check against padding | |
1706 | numnewsyms = (file->fNewSymbols)? DataGetLength(file->fNewSymbols) : 0; | |
1707 | numnewsyms /= sizeof(struct nlist *); | |
1708 | newsymsize = numnewsyms * sizeof(struct nlist); | |
1709 | newstrsize = (file->fNewStrings)? DataGetLength(file->fNewStrings) : 0; | |
1710 | newstrsize = (newstrsize + 3) & ~3; // Round to nearest word | |
1711 | ||
1712 | return_if(!growImage(file, newsymsize + newstrsize), | |
1713 | false, ("Unable to patch the extension, no memory\n", file->fPath)); | |
1714 | ||
1715 | // Push out the new symbol table if necessary | |
1716 | if (numnewsyms) { | |
1717 | caddr_t base; | |
1718 | ||
1719 | // Move the string table out of the way of the grown symbol table | |
1720 | // Don't forget the '\0' from end of string table. | |
1721 | base = (caddr_t) file->fStringBase; | |
1722 | bcopy(base, base + newsymsize, file->fSymtab->strsize); | |
1723 | file->fStringBase += newsymsize; | |
1724 | file->fSymtab->stroff += newsymsize; | |
1725 | ||
1726 | // Now append the new symbols to the symbol table. | |
1727 | base = (caddr_t) file->fSymbolBase | |
1728 | + file->fSymtab->nsyms * sizeof(struct nlist); | |
1729 | symp = (struct nlist **) DataGetPtr(file->fNewSymbols); | |
1730 | for (i = 0; i < numnewsyms; i++, base += sizeof(struct nlist), symp++) | |
1731 | bcopy(*symp, base, sizeof(struct nlist)); | |
1732 | file->fSymtab->nsyms += numnewsyms; | |
1733 | ||
1734 | DataRelease(file->fNewSymbols); | |
1735 | file->fNewSymbols = 0; | |
1736 | } | |
1737 | ||
1738 | // Push out the new string table if necessary | |
1739 | if (newstrsize) { | |
1740 | caddr_t base = (caddr_t) file->fStringBase + file->fSymtab->strsize; | |
1741 | unsigned long actuallen = DataGetLength(file->fNewStrings); | |
1742 | ||
1743 | // Set the last word in string table to zero before copying data | |
1744 | *((unsigned long *) ((char *) base + newstrsize - 4)) = 0; | |
1745 | ||
1746 | // Now append the new strings to the end of the file | |
1747 | bcopy((caddr_t) DataGetPtr(file->fNewStrings), base, actuallen); | |
1748 | ||
1749 | file->fSymtab->strsize += newstrsize; | |
1750 | ||
1751 | DataRelease(file->fNewStrings); | |
1752 | file->fNewStrings = 0; | |
1753 | } | |
1754 | ||
1755 | // Repair the symbol table string index values | |
1756 | // I used negative strx's to indicate symbol has been processed | |
1757 | sym = file->fSymbolBase; | |
1758 | for (i = 0, last = file->fSymtab->nsyms; i < last; i++, sym++) { | |
1759 | if (sym->n_un.n_strx < 0) { | |
1760 | if ( sym->n_type != (N_EXT | N_UNDF) | |
1761 | || (unsigned char) -1 != sym->n_sect) | |
1762 | sym->n_un.n_strx = -sym->n_un.n_strx; | |
1763 | else { | |
1764 | // This symbol isn't being used by any vtable's reloc so | |
1765 | // convert it into an N_ABS style of symbol, remove the | |
1766 | // external bit and null out the symbol name. | |
1767 | bzero(sym, sizeof(*sym)); | |
1768 | sym->n_type = N_ABS; /* type flag, see below */ | |
1769 | } | |
1770 | } | |
1771 | } | |
1772 | file->fSymbolsDirty = false; | |
1773 | ||
1774 | return true; | |
1775 | } | |
1776 | ||
1777 | Boolean | |
1778 | #if KERNEL | |
1779 | kld_file_map(const char *pathName, | |
1780 | unsigned char *map, | |
1781 | size_t mapSize, | |
1782 | Boolean isKmem) | |
1783 | #else | |
1784 | kld_file_map(const char *pathName) | |
1785 | #endif /* KERNEL */ | |
1786 | { | |
1787 | struct fileRecord file, *fp = 0; | |
1788 | ||
1789 | // Already done no need to repeat | |
1790 | fp = getFile(pathName); | |
1791 | if (fp) | |
1792 | return true; | |
1793 | ||
1794 | bzero(&file, sizeof(file)); | |
1795 | file.fPath = pathName; | |
1796 | ||
1797 | #if KERNEL | |
1798 | file.fMap = map; | |
1799 | file.fMapSize = mapSize; | |
1800 | file.fIsKmem = isKmem; | |
1801 | #else | |
1802 | if (!mapObjectFile(&file)) | |
1803 | return false; | |
1804 | #endif /* KERNEL */ | |
1805 | ||
1806 | do { | |
1807 | const struct machOMapping { | |
1808 | struct mach_header h; | |
1809 | struct load_command c[1]; | |
1810 | } *machO; | |
1811 | const struct load_command *cmd; | |
1812 | const struct nlist *sym; | |
1813 | unsigned int i, firstlocal, nsyms; | |
1814 | unsigned long strsize; | |
1815 | const char *strbase; | |
1816 | Boolean foundOSObject; | |
1817 | ||
1818 | if (!findBestArch(&file)) | |
1819 | break; | |
1820 | ||
1821 | machO = (const struct machOMapping *) file.fMachO; | |
1822 | if (file.fMachOSize < machO->h.sizeofcmds) | |
1823 | break; | |
1824 | ||
1825 | // If the file type is MH_EXECUTE then this must be a kernel | |
1826 | // as all Kernel extensions must be of type MH_OBJECT | |
1827 | for (i = 0, cmd = &machO->c[0]; i < machO->h.ncmds; i++) { | |
1828 | if (cmd->cmd == LC_SEGMENT) { | |
1829 | return_if(!parseSegments(&file, (struct segment_command *) cmd), | |
1830 | false, ("%s isn't a valid mach-o, bad segment\n", | |
1831 | file.fPath)); | |
1832 | } | |
1833 | else if (cmd->cmd == LC_SYMTAB) | |
1834 | file.fSymtab = (struct symtab_command *) cmd; | |
1835 | ||
1836 | cmd = (struct load_command *) ((UInt8 *) cmd + cmd->cmdsize); | |
1837 | } | |
1838 | break_if(!file.fSymtab, | |
1839 | ("%s isn't a valid mach-o, no symbols\n", file.fPath)); | |
1840 | ||
1841 | // we found a link edit segment so recompute the bases | |
1842 | if (file.fSymbolBase) { | |
1843 | struct segment_command *link = | |
1844 | (struct segment_command *) file.fSymbolBase; | |
1845 | ||
1846 | file.fSymbolBase = (struct nlist *) | |
1847 | (link->vmaddr + (file.fSymtab->symoff - link->fileoff)); | |
1848 | file.fStringBase = (char *) | |
1849 | (link->vmaddr + (file.fSymtab->stroff - link->fileoff)); | |
1850 | break_if( ( (caddr_t) file.fStringBase + file.fSymtab->strsize | |
1851 | > (caddr_t) link->vmaddr + link->vmsize ), | |
1852 | ("%s isn't a valid mach-o le, bad symbols\n", file.fPath)); | |
1853 | } | |
1854 | else { | |
1855 | file.fSymbolBase = (struct nlist *) | |
1856 | (file.fMachO + file.fSymtab->symoff); | |
1857 | file.fStringBase = (char *) | |
1858 | (file.fMachO + file.fSymtab->stroff); | |
1859 | break_if( ( file.fSymtab->stroff + file.fSymtab->strsize | |
1860 | > file.fMachOSize ), | |
1861 | ("%s isn't a valid mach-o, bad symbols\n", file.fPath)); | |
1862 | } | |
1863 | ||
1864 | // If this file the kernel and do we have an executable image | |
1865 | file.fIsKernel = (MH_EXECUTE == machO->h.filetype); | |
1866 | file.fNoKernelExecutable = (vm_page_size == file.fSymtab->symoff) | |
1867 | && (file.fSections[0].fSection->size == 0); | |
1868 | ||
1869 | // Search for the first non-stab symbol in table | |
1870 | strsize = file.fSymtab->strsize; | |
1871 | strbase = file.fStringBase; | |
1872 | sym = file.fSymbolBase; | |
1873 | firstlocal = 0; | |
1874 | foundOSObject = false; | |
1875 | for (i = 0, nsyms = file.fSymtab->nsyms; i < nsyms; i++, sym++) { | |
1876 | if ((unsigned long) sym->n_un.n_strx > strsize) | |
1877 | break; | |
1878 | ||
1879 | // Find the first exported symbol | |
1880 | if ( !file.fLocalSyms && (sym->n_type & N_EXT) ) { | |
1881 | file.fLocalSyms = sym; | |
1882 | firstlocal = i; | |
1883 | } | |
1884 | ||
1885 | // Find the a OSObject based subclass by searching for symbols | |
1886 | // that have a suffix of '.superClass' | |
1887 | if (!foundOSObject | |
1888 | && ((sym->n_type & (N_TYPE | N_EXT)) == (N_SECT | N_EXT) | |
1889 | || (sym->n_type & (N_TYPE | N_EXT)) == (N_ABS | N_EXT)) | |
1890 | && sym->n_un.n_strx) { | |
1891 | const char *dot; | |
1892 | ||
1893 | // Only search from the last '.' in the symbol. | |
1894 | // but skip the leading '_' in all symbols first. | |
1895 | dot = strrchr(strbase + sym->n_un.n_strx + 1, '.'); | |
1896 | if (dot && !strcmp(dot, kSuperClassSuffix)) | |
1897 | foundOSObject = true; | |
1898 | } | |
1899 | ||
1900 | // Find the last local symbol | |
1901 | if ( !file.fNLocal && sym->n_type == (N_EXT | N_UNDF) ) | |
1902 | file.fNLocal = i - firstlocal; | |
1903 | ||
1904 | } | |
1905 | break_if(i < nsyms, | |
1906 | ("%s isn't a valid mach-o, bad symbol strings\n", file.fPath)); | |
1907 | ||
1908 | break_if(!file.fLocalSyms, ("%s has no symbols?\n", file.fPath)); | |
1909 | ||
1910 | // If we don't have any undefined symbols then all symbols | |
1911 | // must be local so just compute it now if necessary. | |
1912 | if ( !file.fNLocal ) | |
1913 | file.fNLocal = i - firstlocal; | |
1914 | ||
1915 | fp = addFile(&file); | |
1916 | if (!fp) | |
1917 | break; | |
1918 | ||
1919 | if (foundOSObject && !getMetaClassGraph(fp)) | |
1920 | break; | |
1921 | ||
1922 | if (file.fIsKernel) | |
1923 | sKernelFile = fp; | |
1924 | #if KERNEL | |
1925 | if (!sKernelFile) { | |
1926 | extern struct mach_header _mh_execute_header; | |
1927 | extern struct segment_command *getsegbyname(char *seg_name); | |
1928 | ||
1929 | struct segment_command *sg; | |
1930 | size_t kernelSize; | |
1931 | Boolean ret; | |
1932 | ||
1933 | sg = (struct segment_command *) getsegbyname(kLinkEditSegName); | |
1934 | break_if(!sg, ("Can't find kernel link edit segment\n")); | |
1935 | ||
1936 | kernelSize = sg->vmaddr + sg->vmsize - (size_t) &_mh_execute_header; | |
1937 | ret = kld_file_map(kld_basefile_name, | |
1938 | (unsigned char *) &_mh_execute_header, kernelSize, | |
1939 | /* isKmem */ false); | |
1940 | break_if(!ret, ("kld can't map kernel file")); | |
1941 | } | |
1942 | #endif /* KERNEL */ | |
1943 | ||
1944 | return true; | |
1945 | } while(0); | |
1946 | ||
1947 | removeFile(&file); | |
1948 | ||
1949 | return false; | |
1950 | } | |
1951 | ||
1952 | void *kld_file_getaddr(const char *pathName, long *size) | |
1953 | { | |
1954 | struct fileRecord *file = getFile(pathName); | |
1955 | ||
1956 | if (!file) | |
1957 | return 0; | |
1958 | ||
1959 | if (size) | |
1960 | *size = file->fMachOSize; | |
1961 | ||
1962 | return file->fMachO; | |
1963 | } | |
1964 | ||
1965 | void *kld_file_lookupsymbol(const char *pathName, const char *symname) | |
1966 | { | |
1967 | struct fileRecord *file = getFile(pathName); | |
1968 | const struct nlist *sym; | |
1969 | const struct section *section; | |
1970 | unsigned char *sectionBase; | |
1971 | unsigned char sectind; | |
1972 | ||
1973 | return_if(!file, | |
1974 | NULL, ("Unknown file %s\n", pathName)); | |
1975 | ||
1976 | sym = findSymbolByName(file, symname); | |
1977 | ||
1978 | // May be a non-extern symbol so look for it there | |
1979 | if (!sym) { | |
1980 | const char *strbase; | |
1981 | unsigned int i, nsyms; | |
1982 | ||
1983 | sym = file->fSymbolBase; | |
1984 | strbase = file->fStringBase; | |
1985 | for (i = 0, nsyms = file->fSymtab->nsyms; i < nsyms; i++, sym++) { | |
1986 | if ( (sym->n_type & N_EXT) ) { | |
1987 | sym = 0; | |
1988 | break; // Terminate search when we hit an extern | |
1989 | } | |
1990 | if ( (sym->n_type & N_STAB) ) | |
1991 | continue; | |
1992 | if ( !strcmp(symname, strbase + sym->n_un.n_strx) ) | |
1993 | break; | |
1994 | } | |
1995 | } | |
1996 | ||
1997 | return_if(!sym, | |
1998 | NULL, ("Unknown symbol %s in %s\n", symname, pathName)); | |
1999 | ||
2000 | // Is the vtable in a valid section? | |
2001 | sectind = sym->n_sect; | |
2002 | return_if(sectind == NO_SECT || sectind > file->fNSects, NULL, | |
2003 | ("Malformed object file, invalid section reference for %s in %s\n", | |
2004 | symname, pathName)); | |
2005 | ||
2006 | section = file->fSections[sectind - 1].fSection; | |
2007 | sectionBase = file->fMachO + section->offset - section->addr; | |
2008 | ||
2009 | return (void *) (sectionBase + sym->n_value); | |
2010 | } | |
2011 | ||
2012 | Boolean kld_file_merge_OSObjects(const char *pathName) | |
2013 | { | |
2014 | struct fileRecord *file = getFile(pathName); | |
2015 | ||
2016 | return_if(!file, | |
2017 | false, ("Internal error - unable to find file %s\n", pathName)); | |
2018 | ||
2019 | return mergeOSObjectsForFile(file); | |
2020 | } | |
2021 | ||
2022 | Boolean kld_file_patch_OSObjects(const char *pathName) | |
2023 | { | |
2024 | struct fileRecord *file = getFile(pathName); | |
2025 | struct metaClassRecord **classes; | |
2026 | unsigned long i, last; | |
2027 | ||
2028 | return_if(!file, | |
2029 | false, ("Internal error - unable to find file %s\n", pathName)); | |
2030 | ||
2031 | DEBUG_LOG(("Patch file %s\n", pathName)); // @@@ gvdl: | |
2032 | ||
2033 | // If we don't have any classes we can return now. | |
2034 | if (!file->fClassList) | |
2035 | return true; | |
2036 | ||
2037 | // If we haven't alread merged the kernel then do it now | |
2038 | if (!sMergedKernel && sKernelFile) | |
2039 | mergeOSObjectsForFile(sKernelFile); | |
2040 | return_if(!sMergedKernel, false, ("Internal error no kernel?\n")); | |
2041 | ||
2042 | if (!mergeOSObjectsForFile(file)) | |
2043 | return false; | |
2044 | ||
2045 | // Patch all of the classes in this executable | |
2046 | last = DataGetLength(file->fClassList) / sizeof(void *); | |
2047 | classes = (struct metaClassRecord **) DataGetPtr(file->fClassList); | |
2048 | for (i = 0; i < last; i++) { | |
2049 | if (!patchVTable(classes[i])) | |
2050 | return false; | |
2051 | } | |
2052 | ||
2053 | return true; | |
2054 | } | |
2055 | ||
2056 | Boolean kld_file_prepare_for_link() | |
2057 | { | |
2058 | if (sMergedFiles) { | |
2059 | unsigned long i, nmerged = 0; | |
2060 | struct fileRecord **files; | |
2061 | ||
2062 | // Check to see if we have already merged this file | |
2063 | nmerged = DataGetLength(sMergedFiles) / sizeof(struct fileRecord *); | |
2064 | files = (struct fileRecord **) DataGetPtr(sMergedFiles); | |
2065 | for (i = 0; i < nmerged; i++) { | |
2066 | if (!prepareFileForLink(files[i])) | |
2067 | return false; | |
2068 | } | |
2069 | } | |
2070 | ||
2071 | // Clear down the meta class table and merged file lists | |
2072 | DataRelease(sMergeMetaClasses); | |
2073 | DataRelease(sMergedFiles); | |
2074 | sMergedFiles = sMergeMetaClasses = NULL; | |
2075 | sMergedKernel = false; | |
2076 | ||
2077 | return true; | |
2078 | } | |
2079 | ||
2080 | void kld_file_cleanup_all_resources() | |
2081 | { | |
2082 | unsigned long i, nfiles; | |
2083 | ||
2084 | #if KERNEL // @@@ gvdl: | |
2085 | // Debugger("kld_file_cleanup_all_resources"); | |
2086 | #endif | |
2087 | ||
2088 | if (!sFilesTable || !(nfiles = DataGetLength(sFilesTable))) | |
2089 | return; // Nothing to do just return now | |
2090 | ||
2091 | nfiles /= sizeof(struct fileRecord *); | |
2092 | for (i = 0; i < nfiles; i++) | |
2093 | removeFile(((void **) DataGetPtr(sFilesTable))[i]); | |
2094 | ||
2095 | // Don't really have to clean up anything more as the whole | |
2096 | // malloc engine is going to be released and I couldn't be bothered. | |
2097 | } | |
2098 | ||
2099 | #if !KERNEL | |
2100 | Boolean kld_file_debug_dump(const char *pathName, const char *outName) | |
2101 | { | |
2102 | const struct fileRecord *file = getFile(pathName); | |
2103 | int fd; | |
2104 | Boolean ret = false; | |
2105 | ||
2106 | return_if(!file, false, ("Unknown file %s for dumping\n", pathName)); | |
2107 | ||
2108 | fd = open(outName, O_WRONLY|O_CREAT|O_TRUNC, 0666); | |
2109 | return_if(-1 == fd, false, ("Can't create output file %s - %s(%d)\n", | |
2110 | outName, strerror(errno), errno)); | |
2111 | ||
2112 | do { | |
2113 | break_if(-1 == write(fd, file->fMachO, file->fMachOSize), | |
2114 | ("Can't dump output file %s - %s(%d)\n", | |
2115 | outName, strerror(errno), errno)); | |
2116 | ret = true; | |
2117 | } while(0); | |
2118 | ||
2119 | close(fd); | |
2120 | ||
2121 | return ret; | |
2122 | } | |
2123 | #endif /* !KERNEL */ | |
2124 |