]> git.saurik.com Git - apple/xnu.git/blame - osfmk/i386/i386_vm_init.c
xnu-1504.7.4.tar.gz
[apple/xnu.git] / osfmk / i386 / i386_vm_init.c
CommitLineData
55e303ae 1/*
b0d623f7 2 * Copyright (c) 2003-2008 Apple Computer, Inc. All rights reserved.
55e303ae 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
55e303ae 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
55e303ae
A
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
55e303ae
A
57#include <platforms.h>
58#include <mach_kdb.h>
55e303ae
A
59
60#include <mach/i386/vm_param.h>
61
62#include <string.h>
63#include <mach/vm_param.h>
64#include <mach/vm_prot.h>
65#include <mach/machine.h>
66#include <mach/time_value.h>
55e303ae
A
67#include <kern/spl.h>
68#include <kern/assert.h>
69#include <kern/debug.h>
70#include <kern/misc_protos.h>
71#include <kern/cpu_data.h>
72#include <kern/processor.h>
73#include <vm/vm_page.h>
74#include <vm/pmap.h>
75#include <vm/vm_kern.h>
76#include <i386/pmap.h>
55e303ae 77#include <i386/misc_protos.h>
b0d623f7 78#include <i386/ipl.h>
91447636 79#include <i386/cpuid.h>
55e303ae 80#include <mach/thread_status.h>
0c530ab8 81#include <pexpert/i386/efi.h>
b0d623f7
A
82#include <i386/i386_lowmem.h>
83#include <i386/lowglobals.h>
84
85#include <mach-o/loader.h>
86#include <libkern/kernel_mach_header.h>
87
88#if DEBUG
89#define DBG(x...) kprintf("DBG: " x)
90#define PRINT_PMAP_MEMORY_TABLE
91#else
92#define DBG(x...)
93#endif
55e303ae
A
94
95vm_size_t mem_size = 0;
55e303ae 96vm_offset_t first_avail = 0;/* first after page tables */
55e303ae 97
0c530ab8
A
98uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */
99uint64_t mem_actual;
100uint64_t sane_size = 0; /* Memory size to use for defaults calculations */
101
102#define MAXBOUNCEPOOL (128 * 1024 * 1024)
103#define MAXLORESERVE ( 32 * 1024 * 1024)
104
b0d623f7 105extern unsigned int bsd_mbuf_cluster_reserve(void);
0c530ab8
A
106
107
108uint32_t bounce_pool_base = 0;
109uint32_t bounce_pool_size = 0;
4452a7af 110
0c530ab8
A
111static void reserve_bouncepool(uint32_t);
112
113
2d21ac55 114pmap_paddr_t avail_start, avail_end;
55e303ae 115vm_offset_t virtual_avail, virtual_end;
0c530ab8 116static pmap_paddr_t avail_remaining;
91447636 117vm_offset_t static_memory_end = 0;
55e303ae 118
b0d623f7 119vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end;
0c530ab8 120
b0d623f7
A
121boolean_t kernel_text_ps_4K = TRUE;
122boolean_t wpkernel = TRUE;
0c530ab8 123
b0d623f7 124extern void *KPTphys;
0c530ab8 125
b0d623f7
A
126/*
127 * _mh_execute_header is the mach_header for the currently executing kernel
128 */
129void *sectTEXTB; unsigned long sectSizeTEXT;
130void *sectDATAB; unsigned long sectSizeDATA;
131void *sectOBJCB; unsigned long sectSizeOBJC;
132void *sectLINKB; unsigned long sectSizeLINK;
133void *sectPRELINKB; unsigned long sectSizePRELINK;
134void *sectHIBB; unsigned long sectSizeHIB;
135void *sectINITPTB; unsigned long sectSizeINITPT;
136extern int srv;
137
138extern uint64_t firmware_Conventional_bytes;
139extern uint64_t firmware_RuntimeServices_bytes;
140extern uint64_t firmware_ACPIReclaim_bytes;
141extern uint64_t firmware_ACPINVS_bytes;
142extern uint64_t firmware_PalCode_bytes;
143extern uint64_t firmware_Reserved_bytes;
144extern uint64_t firmware_Unusable_bytes;
145extern uint64_t firmware_other_bytes;
146uint64_t firmware_MMIO_bytes;
55e303ae
A
147
148/*
149 * Basic VM initialization.
150 */
151void
0c530ab8
A
152i386_vm_init(uint64_t maxmem,
153 boolean_t IA32e,
154 boot_args *args)
55e303ae 155{
91447636 156 pmap_memory_region_t *pmptr;
0c530ab8
A
157 pmap_memory_region_t *prev_pmptr;
158 EfiMemoryRange *mptr;
159 unsigned int mcount;
160 unsigned int msize;
91447636
A
161 ppnum_t fap;
162 unsigned int i;
0c530ab8
A
163 unsigned int safeboot;
164 ppnum_t maxpg = 0;
165 uint32_t pmap_type;
166 uint32_t maxbouncepoolsize;
167 uint32_t maxloreserve;
168 uint32_t maxdmaaddr;
55e303ae 169
0c530ab8
A
170 /*
171 * Now retrieve addresses for end, edata, and etext
55e303ae
A
172 * from MACH-O headers.
173 */
174
175 sectTEXTB = (void *) getsegdatafromheader(
176 &_mh_execute_header, "__TEXT", &sectSizeTEXT);
177 sectDATAB = (void *) getsegdatafromheader(
178 &_mh_execute_header, "__DATA", &sectSizeDATA);
179 sectOBJCB = (void *) getsegdatafromheader(
180 &_mh_execute_header, "__OBJC", &sectSizeOBJC);
181 sectLINKB = (void *) getsegdatafromheader(
182 &_mh_execute_header, "__LINKEDIT", &sectSizeLINK);
91447636
A
183 sectHIBB = (void *)getsegdatafromheader(
184 &_mh_execute_header, "__HIB", &sectSizeHIB);
b0d623f7
A
185 sectINITPTB = (void *)getsegdatafromheader(
186 &_mh_execute_header, "__INITPT", &sectSizeINITPT);
55e303ae 187 sectPRELINKB = (void *) getsegdatafromheader(
b0d623f7 188 &_mh_execute_header, "__PRELINK_TEXT", &sectSizePRELINK);
55e303ae 189
b0d623f7
A
190 sHIB = (vm_offset_t) sectHIBB;
191 eHIB = (vm_offset_t) sectHIBB + sectSizeHIB;
192 /* Zero-padded from ehib to stext if text is 2M-aligned */
193 stext = (vm_offset_t) sectTEXTB;
55e303ae 194 etext = (vm_offset_t) sectTEXTB + sectSizeTEXT;
b0d623f7
A
195 /* Zero-padded from etext to sdata if text is 2M-aligned */
196 sdata = (vm_offset_t) sectDATAB;
55e303ae 197 edata = (vm_offset_t) sectDATAB + sectSizeDATA;
55e303ae 198
b0d623f7
A
199#if DEBUG
200 kprintf("sectTEXTB = %p\n", sectTEXTB);
201 kprintf("sectDATAB = %p\n", sectDATAB);
202 kprintf("sectOBJCB = %p\n", sectOBJCB);
203 kprintf("sectLINKB = %p\n", sectLINKB);
204 kprintf("sectHIBB = %p\n", sectHIBB);
205 kprintf("sectPRELINKB = %p\n", sectPRELINKB);
206 kprintf("eHIB = %p\n", (void *) eHIB);
207 kprintf("stext = %p\n", (void *) stext);
208 kprintf("etext = %p\n", (void *) etext);
209 kprintf("sdata = %p\n", (void *) sdata);
210 kprintf("edata = %p\n", (void *) edata);
211#endif
212
55e303ae
A
213 vm_set_page_size();
214
55e303ae
A
215 /*
216 * Compute the memory size.
217 */
218
593a1d5f 219 if ((1 == vm_himemory_mode) || PE_parse_boot_argn("-x", &safeboot, sizeof (safeboot))) {
0c530ab8
A
220 maxpg = 1 << (32 - I386_PGSHIFT);
221 }
91447636
A
222 avail_remaining = 0;
223 avail_end = 0;
224 pmptr = pmap_memory_regions;
0c530ab8 225 prev_pmptr = 0;
91447636
A
226 pmap_memory_region_count = pmap_memory_region_current = 0;
227 fap = (ppnum_t) i386_btop(first_avail);
91447636 228
b0d623f7 229 mptr = (EfiMemoryRange *)ml_static_ptovirt((vm_offset_t)args->MemoryMap);
0c530ab8
A
230 if (args->MemoryMapDescriptorSize == 0)
231 panic("Invalid memory map descriptor size");
232 msize = args->MemoryMapDescriptorSize;
233 mcount = args->MemoryMapSize / msize;
234
6601e61a 235#define FOURGIG 0x0000000100000000ULL
0c530ab8
A
236
237 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
238 ppnum_t base, top;
b0d623f7 239 uint64_t region_bytes = 0;
0c530ab8
A
240
241 if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) {
242 kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
243 break;
244 }
245 base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
b0d623f7
A
246 top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1);
247 region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
248 pmap_type = mptr->Type;
0c530ab8
A
249
250 switch (mptr->Type) {
251 case kEfiLoaderCode:
252 case kEfiLoaderData:
253 case kEfiBootServicesCode:
254 case kEfiBootServicesData:
255 case kEfiConventionalMemory:
256 /*
257 * Consolidate usable memory types into one.
258 */
259 pmap_type = kEfiConventionalMemory;
b0d623f7
A
260 sane_size += region_bytes;
261 firmware_Conventional_bytes += region_bytes;
0c530ab8 262 break;
b0d623f7
A
263 /*
264 * sane_size should reflect the total amount of physical
265 * RAM in the system, not just the amount that is
266 * available for the OS to use.
267 * FIXME:Consider deriving this value from SMBIOS tables
268 * rather than reverse engineering the memory map.
269 * Alternatively, see
270 * <rdar://problem/4642773> Memory map should
271 * describe all memory
272 * Firmware on some systems guarantees that the memory
273 * map is complete via the "RomReservedMemoryTracked"
274 * feature field--consult that where possible to
275 * avoid the "round up to 128M" workaround below.
276 */
0c530ab8
A
277
278 case kEfiRuntimeServicesCode:
279 case kEfiRuntimeServicesData:
b0d623f7
A
280 firmware_RuntimeServices_bytes += region_bytes;
281 sane_size += region_bytes;
282 break;
0c530ab8 283 case kEfiACPIReclaimMemory:
b0d623f7
A
284 firmware_ACPIReclaim_bytes += region_bytes;
285 sane_size += region_bytes;
286 break;
0c530ab8 287 case kEfiACPIMemoryNVS:
b0d623f7
A
288 firmware_ACPINVS_bytes += region_bytes;
289 sane_size += region_bytes;
290 break;
0c530ab8 291 case kEfiPalCode:
b0d623f7
A
292 firmware_PalCode_bytes += region_bytes;
293 sane_size += region_bytes;
294 break;
295
0c530ab8 296
b0d623f7
A
297 case kEfiReservedMemoryType:
298 firmware_Reserved_bytes += region_bytes;
299 break;
0c530ab8 300 case kEfiUnusableMemory:
b0d623f7
A
301 firmware_Unusable_bytes += region_bytes;
302 break;
0c530ab8
A
303 case kEfiMemoryMappedIO:
304 case kEfiMemoryMappedIOPortSpace:
b0d623f7
A
305 firmware_MMIO_bytes += region_bytes;
306 break;
0c530ab8 307 default:
b0d623f7
A
308 firmware_other_bytes += region_bytes;
309 break;
0c530ab8
A
310 }
311
b0d623f7
A
312 kprintf("EFI region %d: type %u/%d, base 0x%x, top 0x%x\n",
313 i, mptr->Type, pmap_type, base, top);
0c530ab8
A
314
315 if (maxpg) {
316 if (base >= maxpg)
317 break;
318 top = (top > maxpg) ? maxpg : top;
319 }
320
321 /*
322 * handle each region
323 */
2d21ac55
A
324 if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME ||
325 pmap_type != kEfiConventionalMemory) {
0c530ab8
A
326 prev_pmptr = 0;
327 continue;
328 } else {
329 /*
330 * Usable memory region
331 */
332 if (top < I386_LOWMEM_RESERVED) {
333 prev_pmptr = 0;
334 continue;
335 }
336 if (top < fap) {
337 /*
338 * entire range below first_avail
339 * salvage some low memory pages
340 * we use some very low memory at startup
341 * mark as already allocated here
342 */
343 if (base >= I386_LOWMEM_RESERVED)
344 pmptr->base = base;
345 else
346 pmptr->base = I386_LOWMEM_RESERVED;
347 /*
348 * mark as already mapped
349 */
350 pmptr->alloc = pmptr->end = top;
351 pmptr->type = pmap_type;
352 }
353 else if ( (base < fap) && (top > fap) ) {
354 /*
355 * spans first_avail
356 * put mem below first avail in table but
357 * mark already allocated
358 */
359 pmptr->base = base;
360 pmptr->alloc = pmptr->end = (fap - 1);
361 pmptr->type = pmap_type;
362 /*
363 * we bump these here inline so the accounting
364 * below works correctly
365 */
366 pmptr++;
367 pmap_memory_region_count++;
368 pmptr->alloc = pmptr->base = fap;
369 pmptr->type = pmap_type;
370 pmptr->end = top;
371 }
372 else {
373 /*
374 * entire range useable
375 */
376 pmptr->alloc = pmptr->base = base;
377 pmptr->type = pmap_type;
378 pmptr->end = top;
379 }
380
381 if (i386_ptob(pmptr->end) > avail_end )
382 avail_end = i386_ptob(pmptr->end);
383
384 avail_remaining += (pmptr->end - pmptr->base);
385
386 /*
387 * Consolidate contiguous memory regions, if possible
388 */
389 if (prev_pmptr &&
390 pmptr->type == prev_pmptr->type &&
391 pmptr->base == pmptr->alloc &&
392 pmptr->base == (prev_pmptr->end + 1)) {
393 prev_pmptr->end = pmptr->end;
394 } else {
395 pmap_memory_region_count++;
396 prev_pmptr = pmptr;
397 pmptr++;
398 }
399 }
6601e61a 400 }
0c530ab8 401
91447636 402#ifdef PRINT_PMAP_MEMORY_TABLE
0c530ab8
A
403 {
404 unsigned int j;
405 pmap_memory_region_t *p = pmap_memory_regions;
b0d623f7
A
406 addr64_t region_start, region_end;
407 addr64_t efi_start, efi_end;
0c530ab8 408 for (j=0;j<pmap_memory_region_count;j++, p++) {
b0d623f7
A
409 kprintf("pmap region %d type %d base 0x%llx alloc 0x%llx top 0x%llx\n",
410 j, p->type,
411 (addr64_t) p->base << I386_PGSHIFT,
412 (addr64_t) p->alloc << I386_PGSHIFT,
413 (addr64_t) p->end << I386_PGSHIFT);
414 region_start = (addr64_t) p->base << I386_PGSHIFT;
415 region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1;
416 mptr = (EfiMemoryRange *) ml_static_ptovirt((vm_offset_t)args->MemoryMap);
0c530ab8
A
417 for (i=0; i<mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
418 if (mptr->Type != kEfiLoaderCode &&
419 mptr->Type != kEfiLoaderData &&
420 mptr->Type != kEfiBootServicesCode &&
421 mptr->Type != kEfiBootServicesData &&
422 mptr->Type != kEfiConventionalMemory) {
b0d623f7 423 efi_start = (addr64_t)mptr->PhysicalStart;
0c530ab8
A
424 efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
425 if ((efi_start >= region_start && efi_start <= region_end) ||
426 (efi_end >= region_start && efi_end <= region_end)) {
427 kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
428 }
b0d623f7 429 }
0c530ab8 430 }
b0d623f7 431 }
0c530ab8 432 }
91447636 433#endif
55e303ae 434
91447636 435 avail_start = first_avail;
0c530ab8 436 mem_actual = sane_size;
4452a7af 437
0c530ab8
A
438 /*
439 * For user visible memory size, round up to 128 Mb - accounting for the various stolen memory
440 * not reported by EFI.
441 */
442
b0d623f7 443 sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1));
0c530ab8 444
c910b4d9 445 /*
b0d623f7 446 * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 64GB for K64).
c910b4d9
A
447 * Unless overriden by the maxmem= boot-arg
448 * -- which is a non-zero maxmem argument to this function.
449 */
b0d623f7
A
450 if (maxmem == 0 && sane_size > KERNEL_MAXMEM) {
451 maxmem = KERNEL_MAXMEM;
452 printf("Physical memory %lld bytes capped at %dGB\n",
453 sane_size, (uint32_t) (KERNEL_MAXMEM/GB));
c910b4d9 454 }
b0d623f7 455
0c530ab8
A
456 /*
457 * if user set maxmem, reduce memory sizes
458 */
459 if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
b0d623f7 460 ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT);
2d21ac55
A
461 ppnum_t highest_pn = 0;
462 ppnum_t cur_alloc = 0;
463 uint64_t pages_to_use;
464 unsigned cur_region = 0;
465
466 sane_size = maxmem;
467
0c530ab8
A
468 if (avail_remaining > discarded_pages)
469 avail_remaining -= discarded_pages;
470 else
471 avail_remaining = 0;
2d21ac55
A
472
473 pages_to_use = avail_remaining;
474
475 while (cur_region < pmap_memory_region_count && pages_to_use) {
476 for (cur_alloc = pmap_memory_regions[cur_region].alloc;
477 cur_alloc < pmap_memory_regions[cur_region].end && pages_to_use;
478 cur_alloc++) {
479 if (cur_alloc > highest_pn)
480 highest_pn = cur_alloc;
481 pages_to_use--;
482 }
483 if (pages_to_use == 0)
484 pmap_memory_regions[cur_region].end = cur_alloc;
485
486 cur_region++;
487 }
488 pmap_memory_region_count = cur_region;
489
490 avail_end = i386_ptob(highest_pn + 1);
55e303ae 491 }
4452a7af 492
0c530ab8
A
493 /*
494 * mem_size is only a 32 bit container... follow the PPC route
495 * and pin it to a 2 Gbyte maximum
496 */
497 if (sane_size > (FOURGIG >> 1))
498 mem_size = (vm_size_t)(FOURGIG >> 1);
499 else
500 mem_size = (vm_size_t)sane_size;
6601e61a 501 max_mem = sane_size;
5d5c5d0d 502
b0d623f7 503 kprintf("Physical memory %llu MB\n", sane_size/MB);
4452a7af 504
593a1d5f 505 if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr)))
b0d623f7 506 max_valid_dma_address = 4 * GB;
0c530ab8 507 else
b0d623f7 508 max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB;
0c530ab8 509
593a1d5f 510 if (!PE_parse_boot_argn("maxbouncepool", &maxbouncepoolsize, sizeof (maxbouncepoolsize)))
0c530ab8
A
511 maxbouncepoolsize = MAXBOUNCEPOOL;
512 else
513 maxbouncepoolsize = maxbouncepoolsize * (1024 * 1024);
89b3af67 514
b0d623f7
A
515 /* since bsd_mbuf_cluster_reserve() is going to be called, we need to check for server */
516 if (PE_parse_boot_argn("srv", &srv, sizeof (srv))) {
517 srv = 1;
518 }
519
520
4452a7af 521 /*
0c530ab8
A
522 * bsd_mbuf_cluster_reserve depends on sane_size being set
523 * in order to correctly determine the size of the mbuf pool
524 * that will be reserved
4452a7af 525 */
593a1d5f 526 if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof (maxloreserve)))
0c530ab8
A
527 maxloreserve = MAXLORESERVE + bsd_mbuf_cluster_reserve();
528 else
529 maxloreserve = maxloreserve * (1024 * 1024);
530
21362eb3 531
0c530ab8
A
532 if (avail_end >= max_valid_dma_address) {
533 if (maxbouncepoolsize)
534 reserve_bouncepool(maxbouncepoolsize);
535
536 if (maxloreserve)
2d21ac55 537 vm_lopage_poolsize = maxloreserve / PAGE_SIZE;
0c530ab8 538 }
2d21ac55 539
0c530ab8
A
540 /*
541 * Initialize kernel physical map.
542 * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
543 */
544 pmap_bootstrap(0, IA32e);
6601e61a
A
545}
546
0c530ab8 547
55e303ae
A
548unsigned int
549pmap_free_pages(void)
550{
b0d623f7 551 return (unsigned int)avail_remaining;
55e303ae
A
552}
553
b0d623f7
A
554#if defined(__LP64__)
555/* On large memory systems, early allocations should prefer memory from the
556 * last region, which is typically all physical memory >4GB. This is used
557 * by pmap_steal_memory and pmap_pre_expand during init only. */
558boolean_t
559pmap_next_page_k64( ppnum_t *pn)
560{
561 if(max_mem >= (32*GB)) {
562 pmap_memory_region_t *last_region = &pmap_memory_regions[pmap_memory_region_count-1];
563 if (last_region->alloc != last_region->end) {
564 *pn = last_region->alloc++;
565 avail_remaining--;
566 return TRUE;
567 }
568 }
569 return pmap_next_page(pn);
570}
571#endif
0c530ab8 572
55e303ae
A
573boolean_t
574pmap_next_page(
575 ppnum_t *pn)
576{
0c530ab8 577 if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) {
b0d623f7
A
578 if (pmap_memory_regions[pmap_memory_region_current].alloc ==
579 pmap_memory_regions[pmap_memory_region_current].end) {
580 pmap_memory_region_current++;
0c530ab8
A
581 continue;
582 }
583 *pn = pmap_memory_regions[pmap_memory_region_current].alloc++;
584 avail_remaining--;
585
586 return TRUE;
91447636
A
587 }
588 return FALSE;
55e303ae
A
589}
590
0c530ab8 591
55e303ae
A
592boolean_t
593pmap_valid_page(
91447636 594 ppnum_t pn)
55e303ae 595{
0c530ab8
A
596 unsigned int i;
597 pmap_memory_region_t *pmptr = pmap_memory_regions;
598
0c530ab8 599 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
2d21ac55 600 if ( (pn >= pmptr->base) && (pn <= pmptr->end) )
0c530ab8
A
601 return TRUE;
602 }
603 return FALSE;
604}
605
606
607static void
608reserve_bouncepool(uint32_t bounce_pool_wanted)
609{
610 pmap_memory_region_t *pmptr = pmap_memory_regions;
611 pmap_memory_region_t *lowest = NULL;
612 unsigned int i;
613 unsigned int pages_needed;
614
615 pages_needed = bounce_pool_wanted / PAGE_SIZE;
616
617 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
2d21ac55 618 if ( (pmptr->end - pmptr->alloc) >= pages_needed ) {
0c530ab8
A
619 if ( (lowest == NULL) || (pmptr->alloc < lowest->alloc) )
620 lowest = pmptr;
621 }
622 }
623 if ( (lowest != NULL) ) {
624 bounce_pool_base = lowest->alloc * PAGE_SIZE;
625 bounce_pool_size = bounce_pool_wanted;
626
627 lowest->alloc += pages_needed;
628 avail_remaining -= pages_needed;
629 }
55e303ae 630}
b0d623f7
A
631
632/*
633 * Called once VM is fully initialized so that we can release unused
634 * sections of low memory to the general pool.
635 * Also complete the set-up of identity-mapped sections of the kernel:
636 * 1) write-protect kernel text
637 * 2) map kernel text using large pages if possible
638 * 3) read and write-protect page zero (for K32)
639 * 4) map the global page at the appropriate virtual address.
640 *
641 * Use of large pages
642 * ------------------
643 * To effectively map and write-protect all kernel text pages, the text
644 * must be 2M-aligned at the base, and the data section above must also be
645 * 2M-aligned. That is, there's padding below and above. This is achieved
646 * through linker directives. Large pages are used only if this alignment
647 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
648 * memory layout is:
649 *
650 * : :
651 * | __DATA |
652 * sdata: ================== 2Meg
653 * | |
654 * | zero-padding |
655 * | |
656 * etext: ------------------
657 * | |
658 * : :
659 * | |
660 * | __TEXT |
661 * | |
662 * : :
663 * | |
664 * stext: ================== 2Meg
665 * | |
666 * | zero-padding |
667 * | |
668 * eHIB: ------------------
669 * | __HIB |
670 * : :
671 *
672 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
673 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
674 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
675 * The now unused level-1 PTE pages are also freed.
676 */
677void
678pmap_lowmem_finalize(void)
679{
680 spl_t spl;
681 int i;
682
683 /* Check the kernel is linked at the expected base address */
684 if (i386_btop(kvtophys((vm_offset_t) &IdlePML4)) !=
685 I386_KERNEL_IMAGE_BASE_PAGE)
686 panic("pmap_lowmem_finalize() unexpected kernel base address");
687
688 /*
689 * Free all pages in pmap regions below the base:
690 * rdar://6332712
691 * We can't free all the pages to VM that EFI reports available.
692 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
693 * There's also a size miscalculation here: pend is one page less
694 * than it should be but this is not fixed to be backwards
695 * compatible.
696 * Due to this current EFI limitation, we take only the first
697 * entry in the memory region table. However, the loop is retained
698 * (with the intended termination criteria commented out) in the
699 * hope that some day we can free all low-memory ranges.
700 */
701 for (i = 0;
702// pmap_memory_regions[i].end <= I386_KERNEL_IMAGE_BASE_PAGE;
703 i < 1;
704 i++) {
705 vm_offset_t pbase = (vm_offset_t)i386_ptob(pmap_memory_regions[i].base);
706 vm_offset_t pend = (vm_offset_t)i386_ptob(pmap_memory_regions[i].end);
707// vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
708
709 DBG("ml_static_mfree(%p,%p) for pmap region %d\n",
710 (void *) ml_static_ptovirt(pbase),
711 (void *) (pend - pbase), i);
712 ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase);
713 }
714
715 /*
716 * If text and data are both 2MB-aligned,
717 * we can map text with large-pages,
718 * unless the -kernel_text_ps_4K boot-arg overrides.
719 */
720 if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) {
721 kprintf("Kernel text is 2MB aligned");
722 kernel_text_ps_4K = FALSE;
723 if (PE_parse_boot_argn("-kernel_text_ps_4K",
724 &kernel_text_ps_4K,
725 sizeof (kernel_text_ps_4K)))
726 kprintf(" but will be mapped with 4K pages\n");
727 else
728 kprintf(" and will be mapped with 2M pages\n");
729 }
730
731 (void) PE_parse_boot_argn("wpkernel", &wpkernel, sizeof (wpkernel));
732 if (wpkernel)
733 kprintf("Kernel text %p-%p to be write-protected\n",
734 (void *) stext, (void *) etext);
735
736 spl = splhigh();
737
738 /*
739 * Scan over text if mappings are to be changed:
740 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
741 * - Change to large-pages if possible and not overriden.
742 */
743 if (kernel_text_ps_4K && wpkernel) {
744 vm_offset_t myva;
745 for (myva = stext; myva < etext; myva += PAGE_SIZE) {
746 pt_entry_t *ptep;
747
748 ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
749 if (ptep)
750 pmap_store_pte(ptep, *ptep & ~INTEL_PTE_RW);
751 }
752 }
753
754 if (!kernel_text_ps_4K) {
755 vm_offset_t myva;
756
757 /*
758 * Release zero-filled page padding used for 2M-alignment.
759 */
760 DBG("ml_static_mfree(%p,%p) for padding below text\n",
761 (void *) eHIB, (void *) (stext - eHIB));
762 ml_static_mfree(eHIB, stext - eHIB);
763 DBG("ml_static_mfree(%p,%p) for padding above text\n",
764 (void *) etext, (void *) (sdata - etext));
765 ml_static_mfree(etext, sdata - etext);
766
767 /*
768 * Coalesce text pages into large pages.
769 */
770 for (myva = stext; myva < sdata; myva += I386_LPGBYTES) {
771 pt_entry_t *ptep;
772 vm_offset_t pte_phys;
773 pt_entry_t *pdep;
774 pt_entry_t pde;
775
776 pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva);
777 ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
778 DBG("myva: %p pdep: %p ptep: %p\n",
779 (void *) myva, (void *) pdep, (void *) ptep);
780 if ((*ptep & INTEL_PTE_VALID) == 0)
781 continue;
782 pte_phys = (vm_offset_t)(*ptep & PG_FRAME);
783 pde = *pdep & PTMASK; /* page attributes from pde */
784 pde |= INTEL_PTE_PS; /* make it a 2M entry */
785 pde |= pte_phys; /* take page frame from pte */
786
787 if (wpkernel)
788 pde &= ~INTEL_PTE_RW;
789 DBG("pmap_store_pte(%p,0x%llx)\n",
790 (void *)pdep, pde);
791 pmap_store_pte(pdep, pde);
792
793 /*
794 * Free the now-unused level-1 pte.
795 * Note: ptep is a virtual address to the pte in the
796 * recursive map. We can't use this address to free
797 * the page. Instead we need to compute its address
798 * in the Idle PTEs in "low memory".
799 */
800 vm_offset_t vm_ptep = (vm_offset_t) KPTphys
801 + (pte_phys >> PTPGSHIFT);
802 DBG("ml_static_mfree(%p,0x%x) for pte\n",
803 (void *) vm_ptep, PAGE_SIZE);
804 ml_static_mfree(vm_ptep, PAGE_SIZE);
805 }
806
807 /* Change variable read by sysctl machdep.pmap */
808 pmap_kernel_text_ps = I386_LPGBYTES;
809 }
810
811#if defined(__i386__)
812 /* no matter what, kernel page zero is not accessible */
813 pmap_store_pte(pmap_pte(kernel_pmap, 0), INTEL_PTE_INVALID);
814#endif
815
816 /* map lowmem global page into fixed addr */
817 pt_entry_t *pte = NULL;
818 if (0 == (pte = pmap_pte(kernel_pmap,
819 VM_MIN_KERNEL_LOADED_ADDRESS + 0x2000)))
820 panic("lowmem pte");
821 /* make sure it is defined on page boundary */
822 assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
823 pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
824 | INTEL_PTE_REF
825 | INTEL_PTE_MOD
826 | INTEL_PTE_WIRED
827 | INTEL_PTE_VALID
828 | INTEL_PTE_RW);
829 splx(spl);
830 flush_tlb();
831}
832