]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_object.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Virtual memory object module. | |
63 | */ | |
64 | ||
2d21ac55 | 65 | #include <debug.h> |
1c79356b A |
66 | #include <mach_pagemap.h> |
67 | #include <task_swapper.h> | |
68 | ||
0b4e3aa0 | 69 | #include <mach/mach_types.h> |
1c79356b A |
70 | #include <mach/memory_object.h> |
71 | #include <mach/memory_object_default.h> | |
72 | #include <mach/memory_object_control_server.h> | |
73 | #include <mach/vm_param.h> | |
91447636 A |
74 | |
75 | #include <ipc/ipc_types.h> | |
1c79356b | 76 | #include <ipc/ipc_port.h> |
91447636 A |
77 | |
78 | #include <kern/kern_types.h> | |
1c79356b A |
79 | #include <kern/assert.h> |
80 | #include <kern/lock.h> | |
81 | #include <kern/queue.h> | |
82 | #include <kern/xpr.h> | |
83 | #include <kern/zalloc.h> | |
84 | #include <kern/host.h> | |
85 | #include <kern/host_statistics.h> | |
86 | #include <kern/processor.h> | |
91447636 A |
87 | #include <kern/misc_protos.h> |
88 | ||
1c79356b A |
89 | #include <vm/memory_object.h> |
90 | #include <vm/vm_fault.h> | |
91 | #include <vm/vm_map.h> | |
92 | #include <vm/vm_object.h> | |
93 | #include <vm/vm_page.h> | |
94 | #include <vm/vm_pageout.h> | |
91447636 | 95 | #include <vm/vm_protos.h> |
2d21ac55 | 96 | #include <vm/vm_purgeable_internal.h> |
1c79356b | 97 | |
1c79356b A |
98 | /* |
99 | * Virtual memory objects maintain the actual data | |
100 | * associated with allocated virtual memory. A given | |
101 | * page of memory exists within exactly one object. | |
102 | * | |
103 | * An object is only deallocated when all "references" | |
0b4e3aa0 | 104 | * are given up. |
1c79356b A |
105 | * |
106 | * Associated with each object is a list of all resident | |
107 | * memory pages belonging to that object; this list is | |
108 | * maintained by the "vm_page" module, but locked by the object's | |
109 | * lock. | |
110 | * | |
0b4e3aa0 | 111 | * Each object also records the memory object reference |
1c79356b | 112 | * that is used by the kernel to request and write |
0b4e3aa0 | 113 | * back data (the memory object, field "pager"), etc... |
1c79356b A |
114 | * |
115 | * Virtual memory objects are allocated to provide | |
116 | * zero-filled memory (vm_allocate) or map a user-defined | |
117 | * memory object into a virtual address space (vm_map). | |
118 | * | |
119 | * Virtual memory objects that refer to a user-defined | |
120 | * memory object are called "permanent", because all changes | |
121 | * made in virtual memory are reflected back to the | |
122 | * memory manager, which may then store it permanently. | |
123 | * Other virtual memory objects are called "temporary", | |
124 | * meaning that changes need be written back only when | |
125 | * necessary to reclaim pages, and that storage associated | |
126 | * with the object can be discarded once it is no longer | |
127 | * mapped. | |
128 | * | |
129 | * A permanent memory object may be mapped into more | |
130 | * than one virtual address space. Moreover, two threads | |
131 | * may attempt to make the first mapping of a memory | |
132 | * object concurrently. Only one thread is allowed to | |
133 | * complete this mapping; all others wait for the | |
134 | * "pager_initialized" field is asserted, indicating | |
135 | * that the first thread has initialized all of the | |
136 | * necessary fields in the virtual memory object structure. | |
137 | * | |
138 | * The kernel relies on a *default memory manager* to | |
139 | * provide backing storage for the zero-filled virtual | |
0b4e3aa0 | 140 | * memory objects. The pager memory objects associated |
1c79356b | 141 | * with these temporary virtual memory objects are only |
0b4e3aa0 A |
142 | * requested from the default memory manager when it |
143 | * becomes necessary. Virtual memory objects | |
1c79356b A |
144 | * that depend on the default memory manager are called |
145 | * "internal". The "pager_created" field is provided to | |
146 | * indicate whether these ports have ever been allocated. | |
147 | * | |
148 | * The kernel may also create virtual memory objects to | |
149 | * hold changed pages after a copy-on-write operation. | |
150 | * In this case, the virtual memory object (and its | |
151 | * backing storage -- its memory object) only contain | |
152 | * those pages that have been changed. The "shadow" | |
153 | * field refers to the virtual memory object that contains | |
154 | * the remainder of the contents. The "shadow_offset" | |
155 | * field indicates where in the "shadow" these contents begin. | |
156 | * The "copy" field refers to a virtual memory object | |
157 | * to which changed pages must be copied before changing | |
158 | * this object, in order to implement another form | |
159 | * of copy-on-write optimization. | |
160 | * | |
161 | * The virtual memory object structure also records | |
162 | * the attributes associated with its memory object. | |
163 | * The "pager_ready", "can_persist" and "copy_strategy" | |
164 | * fields represent those attributes. The "cached_list" | |
165 | * field is used in the implementation of the persistence | |
166 | * attribute. | |
167 | * | |
168 | * ZZZ Continue this comment. | |
169 | */ | |
170 | ||
171 | /* Forward declarations for internal functions. */ | |
0b4e3aa0 | 172 | static kern_return_t vm_object_terminate( |
1c79356b A |
173 | vm_object_t object); |
174 | ||
175 | extern void vm_object_remove( | |
176 | vm_object_t object); | |
177 | ||
0b4e3aa0 | 178 | static vm_object_t vm_object_cache_trim( |
1c79356b A |
179 | boolean_t called_from_vm_object_deallocate); |
180 | ||
0b4e3aa0 | 181 | static void vm_object_deactivate_all_pages( |
1c79356b A |
182 | vm_object_t object); |
183 | ||
0b4e3aa0 | 184 | static kern_return_t vm_object_copy_call( |
1c79356b A |
185 | vm_object_t src_object, |
186 | vm_object_offset_t src_offset, | |
187 | vm_object_size_t size, | |
188 | vm_object_t *_result_object); | |
189 | ||
0b4e3aa0 | 190 | static void vm_object_do_collapse( |
1c79356b A |
191 | vm_object_t object, |
192 | vm_object_t backing_object); | |
193 | ||
0b4e3aa0 | 194 | static void vm_object_do_bypass( |
1c79356b A |
195 | vm_object_t object, |
196 | vm_object_t backing_object); | |
197 | ||
0b4e3aa0 A |
198 | static void vm_object_release_pager( |
199 | memory_object_t pager); | |
1c79356b | 200 | |
0b4e3aa0 | 201 | static zone_t vm_object_zone; /* vm backing store zone */ |
1c79356b A |
202 | |
203 | /* | |
204 | * All wired-down kernel memory belongs to a single virtual | |
205 | * memory object (kernel_object) to avoid wasting data structures. | |
206 | */ | |
0b4e3aa0 | 207 | static struct vm_object kernel_object_store; |
0c530ab8 | 208 | vm_object_t kernel_object; |
1c79356b | 209 | |
2d21ac55 | 210 | |
1c79356b A |
211 | /* |
212 | * The submap object is used as a placeholder for vm_map_submap | |
213 | * operations. The object is declared in vm_map.c because it | |
214 | * is exported by the vm_map module. The storage is declared | |
215 | * here because it must be initialized here. | |
216 | */ | |
0b4e3aa0 | 217 | static struct vm_object vm_submap_object_store; |
1c79356b A |
218 | |
219 | /* | |
220 | * Virtual memory objects are initialized from | |
221 | * a template (see vm_object_allocate). | |
222 | * | |
223 | * When adding a new field to the virtual memory | |
224 | * object structure, be sure to add initialization | |
0b4e3aa0 | 225 | * (see _vm_object_allocate()). |
1c79356b | 226 | */ |
0b4e3aa0 | 227 | static struct vm_object vm_object_template; |
1c79356b A |
228 | |
229 | /* | |
230 | * Virtual memory objects that are not referenced by | |
231 | * any address maps, but that are allowed to persist | |
232 | * (an attribute specified by the associated memory manager), | |
233 | * are kept in a queue (vm_object_cached_list). | |
234 | * | |
235 | * When an object from this queue is referenced again, | |
236 | * for example to make another address space mapping, | |
237 | * it must be removed from the queue. That is, the | |
238 | * queue contains *only* objects with zero references. | |
239 | * | |
240 | * The kernel may choose to terminate objects from this | |
241 | * queue in order to reclaim storage. The current policy | |
242 | * is to permit a fixed maximum number of unreferenced | |
243 | * objects (vm_object_cached_max). | |
244 | * | |
245 | * A spin lock (accessed by routines | |
246 | * vm_object_cache_{lock,lock_try,unlock}) governs the | |
247 | * object cache. It must be held when objects are | |
248 | * added to or removed from the cache (in vm_object_terminate). | |
249 | * The routines that acquire a reference to a virtual | |
250 | * memory object based on one of the memory object ports | |
251 | * must also lock the cache. | |
252 | * | |
253 | * Ideally, the object cache should be more isolated | |
254 | * from the reference mechanism, so that the lock need | |
255 | * not be held to make simple references. | |
256 | */ | |
0b4e3aa0 | 257 | static queue_head_t vm_object_cached_list; |
9bccf70c | 258 | static int vm_object_cached_count=0; |
0b4e3aa0 A |
259 | static int vm_object_cached_high; /* highest # cached objects */ |
260 | static int vm_object_cached_max = 512; /* may be patched*/ | |
1c79356b | 261 | |
0b4e3aa0 | 262 | static decl_mutex_data(,vm_object_cached_lock_data) |
1c79356b A |
263 | |
264 | #define vm_object_cache_lock() \ | |
265 | mutex_lock(&vm_object_cached_lock_data) | |
266 | #define vm_object_cache_lock_try() \ | |
267 | mutex_try(&vm_object_cached_lock_data) | |
268 | #define vm_object_cache_unlock() \ | |
269 | mutex_unlock(&vm_object_cached_lock_data) | |
270 | ||
271 | #define VM_OBJECT_HASH_COUNT 1024 | |
0b4e3aa0 A |
272 | static queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT]; |
273 | static struct zone *vm_object_hash_zone; | |
1c79356b A |
274 | |
275 | struct vm_object_hash_entry { | |
276 | queue_chain_t hash_link; /* hash chain link */ | |
0b4e3aa0 | 277 | memory_object_t pager; /* pager we represent */ |
1c79356b A |
278 | vm_object_t object; /* corresponding object */ |
279 | boolean_t waiting; /* someone waiting for | |
280 | * termination */ | |
281 | }; | |
282 | ||
283 | typedef struct vm_object_hash_entry *vm_object_hash_entry_t; | |
284 | #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0) | |
285 | ||
286 | #define VM_OBJECT_HASH_SHIFT 8 | |
287 | #define vm_object_hash(pager) \ | |
288 | ((((unsigned)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT) | |
289 | ||
91447636 A |
290 | void vm_object_hash_entry_free( |
291 | vm_object_hash_entry_t entry); | |
292 | ||
8f6c56a5 A |
293 | static void vm_object_reap(vm_object_t object); |
294 | static void vm_object_reap_async(vm_object_t object); | |
295 | static void vm_object_reaper_thread(void); | |
296 | static queue_head_t vm_object_reaper_queue; /* protected by vm_object_cache_lock() */ | |
297 | unsigned int vm_object_reap_count = 0; | |
298 | unsigned int vm_object_reap_count_async = 0; | |
299 | ||
1c79356b A |
300 | /* |
301 | * vm_object_hash_lookup looks up a pager in the hashtable | |
302 | * and returns the corresponding entry, with optional removal. | |
303 | */ | |
304 | ||
0b4e3aa0 | 305 | static vm_object_hash_entry_t |
1c79356b | 306 | vm_object_hash_lookup( |
0b4e3aa0 | 307 | memory_object_t pager, |
1c79356b A |
308 | boolean_t remove_entry) |
309 | { | |
310 | register queue_t bucket; | |
311 | register vm_object_hash_entry_t entry; | |
312 | ||
313 | bucket = &vm_object_hashtable[vm_object_hash(pager)]; | |
314 | ||
315 | entry = (vm_object_hash_entry_t)queue_first(bucket); | |
316 | while (!queue_end(bucket, (queue_entry_t)entry)) { | |
317 | if (entry->pager == pager && !remove_entry) | |
318 | return(entry); | |
319 | else if (entry->pager == pager) { | |
320 | queue_remove(bucket, entry, | |
321 | vm_object_hash_entry_t, hash_link); | |
322 | return(entry); | |
323 | } | |
324 | ||
325 | entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link); | |
326 | } | |
327 | ||
328 | return(VM_OBJECT_HASH_ENTRY_NULL); | |
329 | } | |
330 | ||
331 | /* | |
332 | * vm_object_hash_enter enters the specified | |
333 | * pager / cache object association in the hashtable. | |
334 | */ | |
335 | ||
0b4e3aa0 | 336 | static void |
1c79356b A |
337 | vm_object_hash_insert( |
338 | vm_object_hash_entry_t entry) | |
339 | { | |
340 | register queue_t bucket; | |
341 | ||
342 | bucket = &vm_object_hashtable[vm_object_hash(entry->pager)]; | |
343 | ||
344 | queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link); | |
345 | } | |
346 | ||
0b4e3aa0 | 347 | static vm_object_hash_entry_t |
1c79356b | 348 | vm_object_hash_entry_alloc( |
0b4e3aa0 | 349 | memory_object_t pager) |
1c79356b A |
350 | { |
351 | vm_object_hash_entry_t entry; | |
352 | ||
353 | entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone); | |
354 | entry->pager = pager; | |
355 | entry->object = VM_OBJECT_NULL; | |
356 | entry->waiting = FALSE; | |
357 | ||
358 | return(entry); | |
359 | } | |
360 | ||
361 | void | |
362 | vm_object_hash_entry_free( | |
363 | vm_object_hash_entry_t entry) | |
364 | { | |
91447636 | 365 | zfree(vm_object_hash_zone, entry); |
1c79356b A |
366 | } |
367 | ||
368 | /* | |
369 | * vm_object_allocate: | |
370 | * | |
371 | * Returns a new object with the given size. | |
372 | */ | |
373 | ||
91447636 | 374 | __private_extern__ void |
1c79356b A |
375 | _vm_object_allocate( |
376 | vm_object_size_t size, | |
377 | vm_object_t object) | |
378 | { | |
379 | XPR(XPR_VM_OBJECT, | |
380 | "vm_object_allocate, object 0x%X size 0x%X\n", | |
381 | (integer_t)object, size, 0,0,0); | |
382 | ||
383 | *object = vm_object_template; | |
384 | queue_init(&object->memq); | |
385 | queue_init(&object->msr_q); | |
91447636 | 386 | #ifdef UPL_DEBUG |
1c79356b | 387 | queue_init(&object->uplq); |
91447636 | 388 | #endif /* UPL_DEBUG */ |
1c79356b A |
389 | vm_object_lock_init(object); |
390 | object->size = size; | |
391 | } | |
392 | ||
0b4e3aa0 | 393 | __private_extern__ vm_object_t |
1c79356b A |
394 | vm_object_allocate( |
395 | vm_object_size_t size) | |
396 | { | |
397 | register vm_object_t object; | |
1c79356b A |
398 | |
399 | object = (vm_object_t) zalloc(vm_object_zone); | |
400 | ||
0b4e3aa0 A |
401 | // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */ |
402 | ||
403 | if (object != VM_OBJECT_NULL) | |
404 | _vm_object_allocate(size, object); | |
1c79356b A |
405 | |
406 | return object; | |
407 | } | |
408 | ||
2d21ac55 A |
409 | |
410 | lck_grp_t vm_object_lck_grp; | |
411 | lck_grp_attr_t vm_object_lck_grp_attr; | |
412 | lck_attr_t vm_object_lck_attr; | |
413 | lck_attr_t kernel_object_lck_attr; | |
414 | ||
1c79356b A |
415 | /* |
416 | * vm_object_bootstrap: | |
417 | * | |
418 | * Initialize the VM objects module. | |
419 | */ | |
0b4e3aa0 | 420 | __private_extern__ void |
1c79356b A |
421 | vm_object_bootstrap(void) |
422 | { | |
91447636 | 423 | register int i; |
1c79356b A |
424 | |
425 | vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object), | |
55e303ae A |
426 | round_page_32(512*1024), |
427 | round_page_32(12*1024), | |
1c79356b A |
428 | "vm objects"); |
429 | ||
6601e61a | 430 | queue_init(&vm_object_reaper_queue); |
1c79356b | 431 | queue_init(&vm_object_cached_list); |
91447636 | 432 | mutex_init(&vm_object_cached_lock_data, 0); |
1c79356b A |
433 | |
434 | vm_object_hash_zone = | |
435 | zinit((vm_size_t) sizeof (struct vm_object_hash_entry), | |
55e303ae A |
436 | round_page_32(512*1024), |
437 | round_page_32(12*1024), | |
1c79356b A |
438 | "vm object hash entries"); |
439 | ||
440 | for (i = 0; i < VM_OBJECT_HASH_COUNT; i++) | |
441 | queue_init(&vm_object_hashtable[i]); | |
442 | ||
2d21ac55 A |
443 | vm_object_init_lck_grp(); |
444 | ||
1c79356b A |
445 | /* |
446 | * Fill in a template object, for quick initialization | |
447 | */ | |
448 | ||
449 | /* memq; Lock; init after allocation */ | |
2d21ac55 A |
450 | vm_object_template.memq.prev = NULL; |
451 | vm_object_template.memq.next = NULL; | |
452 | #if 0 | |
453 | /* | |
454 | * We can't call vm_object_lock_init() here because that will | |
455 | * allocate some memory and VM is not fully initialized yet. | |
456 | * The lock will be initialized for each allocate object in | |
457 | * _vm_object_allocate(), so we don't need to initialize it in | |
458 | * the vm_object_template. | |
459 | */ | |
460 | vm_object_lock_init(&vm_object_template); | |
461 | #endif | |
1c79356b | 462 | vm_object_template.size = 0; |
91447636 | 463 | vm_object_template.memq_hint = VM_PAGE_NULL; |
1c79356b A |
464 | vm_object_template.ref_count = 1; |
465 | #if TASK_SWAPPER | |
466 | vm_object_template.res_count = 1; | |
467 | #endif /* TASK_SWAPPER */ | |
468 | vm_object_template.resident_page_count = 0; | |
469 | vm_object_template.copy = VM_OBJECT_NULL; | |
470 | vm_object_template.shadow = VM_OBJECT_NULL; | |
471 | vm_object_template.shadow_offset = (vm_object_offset_t) 0; | |
0b4e3aa0 | 472 | vm_object_template.pager = MEMORY_OBJECT_NULL; |
1c79356b | 473 | vm_object_template.paging_offset = 0; |
91447636 | 474 | vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL; |
1c79356b | 475 | vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC; |
1c79356b A |
476 | vm_object_template.paging_in_progress = 0; |
477 | ||
478 | /* Begin bitfields */ | |
479 | vm_object_template.all_wanted = 0; /* all bits FALSE */ | |
480 | vm_object_template.pager_created = FALSE; | |
481 | vm_object_template.pager_initialized = FALSE; | |
482 | vm_object_template.pager_ready = FALSE; | |
483 | vm_object_template.pager_trusted = FALSE; | |
484 | vm_object_template.can_persist = FALSE; | |
485 | vm_object_template.internal = TRUE; | |
486 | vm_object_template.temporary = TRUE; | |
487 | vm_object_template.private = FALSE; | |
488 | vm_object_template.pageout = FALSE; | |
489 | vm_object_template.alive = TRUE; | |
2d21ac55 A |
490 | vm_object_template.purgable = VM_PURGABLE_DENY; |
491 | vm_object_template.shadowed = FALSE; | |
1c79356b A |
492 | vm_object_template.silent_overwrite = FALSE; |
493 | vm_object_template.advisory_pageout = FALSE; | |
2d21ac55 | 494 | vm_object_template.true_share = FALSE; |
1c79356b | 495 | vm_object_template.terminating = FALSE; |
2d21ac55 | 496 | vm_object_template.named = FALSE; |
1c79356b A |
497 | vm_object_template.shadow_severed = FALSE; |
498 | vm_object_template.phys_contiguous = FALSE; | |
0b4e3aa0 | 499 | vm_object_template.nophyscache = FALSE; |
1c79356b A |
500 | /* End bitfields */ |
501 | ||
2d21ac55 A |
502 | vm_object_template.cached_list.prev = NULL; |
503 | vm_object_template.cached_list.next = NULL; | |
504 | vm_object_template.msr_q.prev = NULL; | |
505 | vm_object_template.msr_q.next = NULL; | |
506 | ||
1c79356b | 507 | vm_object_template.last_alloc = (vm_object_offset_t) 0; |
2d21ac55 A |
508 | vm_object_template.sequential = (vm_object_offset_t) 0; |
509 | vm_object_template.pages_created = 0; | |
510 | vm_object_template.pages_used = 0; | |
511 | ||
1c79356b A |
512 | #if MACH_PAGEMAP |
513 | vm_object_template.existence_map = VM_EXTERNAL_NULL; | |
514 | #endif /* MACH_PAGEMAP */ | |
2d21ac55 | 515 | vm_object_template.cow_hint = ~(vm_offset_t)0; |
1c79356b A |
516 | #if MACH_ASSERT |
517 | vm_object_template.paging_object = VM_OBJECT_NULL; | |
518 | #endif /* MACH_ASSERT */ | |
519 | ||
2d21ac55 A |
520 | /* cache bitfields */ |
521 | vm_object_template.wimg_bits = VM_WIMG_DEFAULT; | |
522 | vm_object_template.code_signed = FALSE; | |
523 | vm_object_template.not_in_use = 0; | |
524 | #ifdef UPL_DEBUG | |
525 | vm_object_template.uplq.prev = NULL; | |
526 | vm_object_template.uplq.next = NULL; | |
527 | #endif /* UPL_DEBUG */ | |
528 | #ifdef VM_PIP_DEBUG | |
529 | bzero(&vm_object_template.pip_holders, | |
530 | sizeof (vm_object_template.pip_holders)); | |
531 | #endif /* VM_PIP_DEBUG */ | |
532 | ||
533 | vm_object_template.objq.next=NULL; | |
534 | vm_object_template.objq.prev=NULL; | |
535 | ||
536 | ||
1c79356b A |
537 | /* |
538 | * Initialize the "kernel object" | |
539 | */ | |
540 | ||
541 | kernel_object = &kernel_object_store; | |
542 | ||
543 | /* | |
544 | * Note that in the following size specifications, we need to add 1 because | |
55e303ae | 545 | * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size. |
1c79356b | 546 | */ |
55e303ae A |
547 | |
548 | #ifdef ppc | |
549 | _vm_object_allocate((vm_last_addr - VM_MIN_KERNEL_ADDRESS) + 1, | |
550 | kernel_object); | |
551 | #else | |
1c79356b A |
552 | _vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1, |
553 | kernel_object); | |
55e303ae A |
554 | #endif |
555 | kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
1c79356b A |
556 | |
557 | /* | |
558 | * Initialize the "submap object". Make it as large as the | |
559 | * kernel object so that no limit is imposed on submap sizes. | |
560 | */ | |
561 | ||
562 | vm_submap_object = &vm_submap_object_store; | |
55e303ae A |
563 | #ifdef ppc |
564 | _vm_object_allocate((vm_last_addr - VM_MIN_KERNEL_ADDRESS) + 1, | |
565 | vm_submap_object); | |
566 | #else | |
1c79356b A |
567 | _vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1, |
568 | vm_submap_object); | |
55e303ae A |
569 | #endif |
570 | vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
571 | ||
1c79356b A |
572 | /* |
573 | * Create an "extra" reference to this object so that we never | |
574 | * try to deallocate it; zfree doesn't like to be called with | |
575 | * non-zone memory. | |
576 | */ | |
577 | vm_object_reference(vm_submap_object); | |
578 | ||
579 | #if MACH_PAGEMAP | |
580 | vm_external_module_initialize(); | |
581 | #endif /* MACH_PAGEMAP */ | |
582 | } | |
583 | ||
8f6c56a5 A |
584 | void |
585 | vm_object_reaper_init(void) | |
586 | { | |
587 | kern_return_t kr; | |
588 | thread_t thread; | |
589 | ||
8f6c56a5 A |
590 | kr = kernel_thread_start_priority( |
591 | (thread_continue_t) vm_object_reaper_thread, | |
592 | NULL, | |
593 | BASEPRI_PREEMPT - 1, | |
594 | &thread); | |
595 | if (kr != KERN_SUCCESS) { | |
2d21ac55 | 596 | panic("failed to launch vm_object_reaper_thread kr=0x%x", kr); |
8f6c56a5 A |
597 | } |
598 | thread_deallocate(thread); | |
599 | } | |
600 | ||
0b4e3aa0 | 601 | __private_extern__ void |
1c79356b A |
602 | vm_object_init(void) |
603 | { | |
604 | /* | |
605 | * Finish initializing the kernel object. | |
606 | */ | |
607 | } | |
608 | ||
2d21ac55 A |
609 | |
610 | __private_extern__ void | |
611 | vm_object_init_lck_grp(void) | |
612 | { | |
613 | /* | |
614 | * initialze the vm_object lock world | |
615 | */ | |
616 | lck_grp_attr_setdefault(&vm_object_lck_grp_attr); | |
617 | lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr); | |
618 | lck_attr_setdefault(&vm_object_lck_attr); | |
619 | lck_attr_setdefault(&kernel_object_lck_attr); | |
620 | lck_attr_cleardebug(&kernel_object_lck_attr); | |
621 | } | |
622 | ||
1c79356b A |
623 | |
624 | #define MIGHT_NOT_CACHE_SHADOWS 1 | |
625 | #if MIGHT_NOT_CACHE_SHADOWS | |
0b4e3aa0 | 626 | static int cache_shadows = TRUE; |
1c79356b A |
627 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ |
628 | ||
629 | /* | |
630 | * vm_object_deallocate: | |
631 | * | |
632 | * Release a reference to the specified object, | |
633 | * gained either through a vm_object_allocate | |
634 | * or a vm_object_reference call. When all references | |
635 | * are gone, storage associated with this object | |
636 | * may be relinquished. | |
637 | * | |
638 | * No object may be locked. | |
639 | */ | |
2d21ac55 A |
640 | unsigned long vm_object_deallocate_shared_successes = 0; |
641 | unsigned long vm_object_deallocate_shared_failures = 0; | |
642 | unsigned long vm_object_deallocate_shared_swap_failures = 0; | |
0b4e3aa0 | 643 | __private_extern__ void |
1c79356b A |
644 | vm_object_deallocate( |
645 | register vm_object_t object) | |
646 | { | |
2d21ac55 A |
647 | boolean_t retry_cache_trim = FALSE; |
648 | vm_object_t shadow = VM_OBJECT_NULL; | |
649 | uint32_t try_failed_count = 0; | |
1c79356b A |
650 | |
651 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ | |
652 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ | |
653 | ||
2d21ac55 A |
654 | if (object == VM_OBJECT_NULL) |
655 | return; | |
656 | ||
657 | if (object == kernel_object) { | |
658 | vm_object_lock(kernel_object); | |
659 | kernel_object->ref_count--; | |
660 | if (kernel_object->ref_count == 0) { | |
661 | panic("vm_object_deallocate: losing kernel_object\n"); | |
662 | } | |
663 | vm_object_unlock(kernel_object); | |
664 | return; | |
665 | } | |
666 | ||
667 | if (object->ref_count > 2 || | |
668 | (!object->named && object->ref_count > 1)) { | |
669 | UInt32 original_ref_count; | |
670 | volatile UInt32 *ref_count_p; | |
671 | Boolean atomic_swap; | |
672 | ||
673 | /* | |
674 | * The object currently looks like it is not being | |
675 | * kept alive solely by the reference we're about to release. | |
676 | * Let's try and release our reference without taking | |
677 | * all the locks we would need if we had to terminate the | |
678 | * object (cache lock + exclusive object lock). | |
679 | * Lock the object "shared" to make sure we don't race with | |
680 | * anyone holding it "exclusive". | |
681 | */ | |
682 | vm_object_lock_shared(object); | |
683 | ref_count_p = (volatile UInt32 *) &object->ref_count; | |
684 | original_ref_count = object->ref_count; | |
685 | /* | |
686 | * Test again as "ref_count" could have changed. | |
687 | * "named" shouldn't change. | |
688 | */ | |
689 | if (original_ref_count > 2 || | |
690 | (!object->named && original_ref_count > 1)) { | |
691 | atomic_swap = OSCompareAndSwap( | |
692 | original_ref_count, | |
693 | original_ref_count - 1, | |
694 | (UInt32 *) &object->ref_count); | |
695 | if (atomic_swap == FALSE) { | |
696 | vm_object_deallocate_shared_swap_failures++; | |
697 | } | |
698 | ||
699 | } else { | |
700 | atomic_swap = FALSE; | |
701 | } | |
702 | vm_object_unlock(object); | |
703 | ||
704 | if (atomic_swap) { | |
705 | /* ref_count was updated atomically ! */ | |
706 | vm_object_deallocate_shared_successes++; | |
707 | return; | |
708 | } | |
709 | ||
710 | /* | |
711 | * Someone else updated the ref_count at the same | |
712 | * time and we lost the race. Fall back to the usual | |
713 | * slow but safe path... | |
714 | */ | |
715 | vm_object_deallocate_shared_failures++; | |
716 | } | |
1c79356b A |
717 | |
718 | while (object != VM_OBJECT_NULL) { | |
719 | ||
720 | /* | |
721 | * The cache holds a reference (uncounted) to | |
722 | * the object; we must lock it before removing | |
723 | * the object. | |
724 | */ | |
55e303ae A |
725 | for (;;) { |
726 | vm_object_cache_lock(); | |
1c79356b | 727 | |
55e303ae A |
728 | /* |
729 | * if we try to take a regular lock here | |
730 | * we risk deadlocking against someone | |
731 | * holding a lock on this object while | |
732 | * trying to vm_object_deallocate a different | |
733 | * object | |
734 | */ | |
735 | if (vm_object_lock_try(object)) | |
736 | break; | |
737 | vm_object_cache_unlock(); | |
2d21ac55 A |
738 | try_failed_count++; |
739 | ||
740 | mutex_pause(try_failed_count); /* wait a bit */ | |
55e303ae | 741 | } |
0b4e3aa0 A |
742 | assert(object->ref_count > 0); |
743 | ||
744 | /* | |
745 | * If the object has a named reference, and only | |
746 | * that reference would remain, inform the pager | |
747 | * about the last "mapping" reference going away. | |
748 | */ | |
749 | if ((object->ref_count == 2) && (object->named)) { | |
750 | memory_object_t pager = object->pager; | |
751 | ||
752 | /* Notify the Pager that there are no */ | |
753 | /* more mappers for this object */ | |
754 | ||
755 | if (pager != MEMORY_OBJECT_NULL) { | |
756 | vm_object_unlock(object); | |
757 | vm_object_cache_unlock(); | |
758 | ||
759 | memory_object_unmap(pager); | |
760 | ||
2d21ac55 | 761 | try_failed_count = 0; |
55e303ae A |
762 | for (;;) { |
763 | vm_object_cache_lock(); | |
764 | ||
765 | /* | |
766 | * if we try to take a regular lock here | |
767 | * we risk deadlocking against someone | |
768 | * holding a lock on this object while | |
769 | * trying to vm_object_deallocate a different | |
770 | * object | |
771 | */ | |
772 | if (vm_object_lock_try(object)) | |
773 | break; | |
774 | vm_object_cache_unlock(); | |
2d21ac55 A |
775 | try_failed_count++; |
776 | ||
777 | mutex_pause(try_failed_count); /* wait a bit */ | |
55e303ae | 778 | } |
0b4e3aa0 A |
779 | assert(object->ref_count > 0); |
780 | } | |
781 | } | |
1c79356b A |
782 | |
783 | /* | |
784 | * Lose the reference. If other references | |
785 | * remain, then we are done, unless we need | |
786 | * to retry a cache trim. | |
787 | * If it is the last reference, then keep it | |
788 | * until any pending initialization is completed. | |
789 | */ | |
790 | ||
0b4e3aa0 A |
791 | /* if the object is terminating, it cannot go into */ |
792 | /* the cache and we obviously should not call */ | |
793 | /* terminate again. */ | |
794 | ||
795 | if ((object->ref_count > 1) || object->terminating) { | |
2d21ac55 | 796 | vm_object_lock_assert_exclusive(object); |
1c79356b | 797 | object->ref_count--; |
1c79356b | 798 | vm_object_res_deallocate(object); |
1c79356b | 799 | vm_object_cache_unlock(); |
91447636 A |
800 | |
801 | if (object->ref_count == 1 && | |
802 | object->shadow != VM_OBJECT_NULL) { | |
803 | /* | |
0c530ab8 A |
804 | * There's only one reference left on this |
805 | * VM object. We can't tell if it's a valid | |
806 | * one (from a mapping for example) or if this | |
807 | * object is just part of a possibly stale and | |
808 | * useless shadow chain. | |
809 | * We would like to try and collapse it into | |
810 | * its parent, but we don't have any pointers | |
811 | * back to this parent object. | |
91447636 A |
812 | * But we can try and collapse this object with |
813 | * its own shadows, in case these are useless | |
814 | * too... | |
0c530ab8 A |
815 | * We can't bypass this object though, since we |
816 | * don't know if this last reference on it is | |
817 | * meaningful or not. | |
91447636 | 818 | */ |
0c530ab8 | 819 | vm_object_collapse(object, 0, FALSE); |
91447636 A |
820 | } |
821 | ||
822 | vm_object_unlock(object); | |
1c79356b A |
823 | if (retry_cache_trim && |
824 | ((object = vm_object_cache_trim(TRUE)) != | |
825 | VM_OBJECT_NULL)) { | |
826 | continue; | |
827 | } | |
828 | return; | |
829 | } | |
830 | ||
831 | /* | |
832 | * We have to wait for initialization | |
833 | * before destroying or caching the object. | |
834 | */ | |
835 | ||
836 | if (object->pager_created && ! object->pager_initialized) { | |
837 | assert(! object->can_persist); | |
838 | vm_object_assert_wait(object, | |
839 | VM_OBJECT_EVENT_INITIALIZED, | |
840 | THREAD_UNINT); | |
841 | vm_object_unlock(object); | |
842 | vm_object_cache_unlock(); | |
9bccf70c | 843 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
844 | continue; |
845 | } | |
846 | ||
847 | /* | |
848 | * If this object can persist, then enter it in | |
849 | * the cache. Otherwise, terminate it. | |
850 | * | |
851 | * NOTE: Only permanent objects are cached, and | |
852 | * permanent objects cannot have shadows. This | |
853 | * affects the residence counting logic in a minor | |
854 | * way (can do it in-line, mostly). | |
855 | */ | |
856 | ||
0b4e3aa0 | 857 | if ((object->can_persist) && (object->alive)) { |
1c79356b A |
858 | /* |
859 | * Now it is safe to decrement reference count, | |
860 | * and to return if reference count is > 0. | |
861 | */ | |
2d21ac55 | 862 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
863 | if (--object->ref_count > 0) { |
864 | vm_object_res_deallocate(object); | |
865 | vm_object_unlock(object); | |
866 | vm_object_cache_unlock(); | |
867 | if (retry_cache_trim && | |
868 | ((object = vm_object_cache_trim(TRUE)) != | |
869 | VM_OBJECT_NULL)) { | |
870 | continue; | |
871 | } | |
872 | return; | |
873 | } | |
874 | ||
875 | #if MIGHT_NOT_CACHE_SHADOWS | |
876 | /* | |
877 | * Remove shadow now if we don't | |
878 | * want to cache shadows. | |
879 | */ | |
880 | if (! cache_shadows) { | |
881 | shadow = object->shadow; | |
882 | object->shadow = VM_OBJECT_NULL; | |
883 | } | |
884 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
885 | ||
886 | /* | |
887 | * Enter the object onto the queue of | |
888 | * cached objects, and deactivate | |
889 | * all of its pages. | |
890 | */ | |
891 | assert(object->shadow == VM_OBJECT_NULL); | |
892 | VM_OBJ_RES_DECR(object); | |
893 | XPR(XPR_VM_OBJECT, | |
894 | "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n", | |
895 | (integer_t)object, | |
896 | (integer_t)vm_object_cached_list.next, | |
897 | (integer_t)vm_object_cached_list.prev,0,0); | |
898 | ||
899 | vm_object_cached_count++; | |
900 | if (vm_object_cached_count > vm_object_cached_high) | |
901 | vm_object_cached_high = vm_object_cached_count; | |
902 | queue_enter(&vm_object_cached_list, object, | |
903 | vm_object_t, cached_list); | |
904 | vm_object_cache_unlock(); | |
0b4e3aa0 | 905 | vm_object_deactivate_all_pages(object); |
1c79356b A |
906 | vm_object_unlock(object); |
907 | ||
908 | #if MIGHT_NOT_CACHE_SHADOWS | |
909 | /* | |
910 | * If we have a shadow that we need | |
911 | * to deallocate, do so now, remembering | |
912 | * to trim the cache later. | |
913 | */ | |
914 | if (! cache_shadows && shadow != VM_OBJECT_NULL) { | |
915 | object = shadow; | |
916 | retry_cache_trim = TRUE; | |
917 | continue; | |
918 | } | |
919 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
920 | ||
921 | /* | |
922 | * Trim the cache. If the cache trim | |
923 | * returns with a shadow for us to deallocate, | |
924 | * then remember to retry the cache trim | |
925 | * when we are done deallocating the shadow. | |
926 | * Otherwise, we are done. | |
927 | */ | |
928 | ||
929 | object = vm_object_cache_trim(TRUE); | |
930 | if (object == VM_OBJECT_NULL) { | |
931 | return; | |
932 | } | |
933 | retry_cache_trim = TRUE; | |
934 | ||
935 | } else { | |
936 | /* | |
937 | * This object is not cachable; terminate it. | |
938 | */ | |
939 | XPR(XPR_VM_OBJECT, | |
91447636 A |
940 | "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n", |
941 | (integer_t)object, object->resident_page_count, | |
942 | object->paging_in_progress, | |
943 | (void *)current_thread(),object->ref_count); | |
1c79356b A |
944 | |
945 | VM_OBJ_RES_DECR(object); /* XXX ? */ | |
946 | /* | |
947 | * Terminate this object. If it had a shadow, | |
948 | * then deallocate it; otherwise, if we need | |
949 | * to retry a cache trim, do so now; otherwise, | |
950 | * we are done. "pageout" objects have a shadow, | |
951 | * but maintain a "paging reference" rather than | |
952 | * a normal reference. | |
953 | */ | |
954 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
955 | if(vm_object_terminate(object) != KERN_SUCCESS) { | |
956 | return; | |
957 | } | |
958 | if (shadow != VM_OBJECT_NULL) { | |
959 | object = shadow; | |
960 | continue; | |
961 | } | |
962 | if (retry_cache_trim && | |
963 | ((object = vm_object_cache_trim(TRUE)) != | |
964 | VM_OBJECT_NULL)) { | |
965 | continue; | |
966 | } | |
967 | return; | |
968 | } | |
969 | } | |
970 | assert(! retry_cache_trim); | |
971 | } | |
972 | ||
973 | /* | |
974 | * Check to see whether we really need to trim | |
975 | * down the cache. If so, remove an object from | |
976 | * the cache, terminate it, and repeat. | |
977 | * | |
978 | * Called with, and returns with, cache lock unlocked. | |
979 | */ | |
980 | vm_object_t | |
981 | vm_object_cache_trim( | |
982 | boolean_t called_from_vm_object_deallocate) | |
983 | { | |
984 | register vm_object_t object = VM_OBJECT_NULL; | |
985 | vm_object_t shadow; | |
986 | ||
987 | for (;;) { | |
988 | ||
989 | /* | |
990 | * If we no longer need to trim the cache, | |
991 | * then we are done. | |
992 | */ | |
993 | ||
994 | vm_object_cache_lock(); | |
995 | if (vm_object_cached_count <= vm_object_cached_max) { | |
996 | vm_object_cache_unlock(); | |
997 | return VM_OBJECT_NULL; | |
998 | } | |
999 | ||
1000 | /* | |
1001 | * We must trim down the cache, so remove | |
1002 | * the first object in the cache. | |
1003 | */ | |
1004 | XPR(XPR_VM_OBJECT, | |
1005 | "vm_object_cache_trim: removing from front of cache (%x, %x)\n", | |
1006 | (integer_t)vm_object_cached_list.next, | |
1007 | (integer_t)vm_object_cached_list.prev, 0, 0, 0); | |
1008 | ||
1009 | object = (vm_object_t) queue_first(&vm_object_cached_list); | |
9bccf70c A |
1010 | if(object == (vm_object_t) &vm_object_cached_list) { |
1011 | /* something's wrong with the calling parameter or */ | |
1012 | /* the value of vm_object_cached_count, just fix */ | |
1013 | /* and return */ | |
1014 | if(vm_object_cached_max < 0) | |
1015 | vm_object_cached_max = 0; | |
1016 | vm_object_cached_count = 0; | |
1017 | vm_object_cache_unlock(); | |
1018 | return VM_OBJECT_NULL; | |
1019 | } | |
1c79356b A |
1020 | vm_object_lock(object); |
1021 | queue_remove(&vm_object_cached_list, object, vm_object_t, | |
1022 | cached_list); | |
1023 | vm_object_cached_count--; | |
1024 | ||
1025 | /* | |
1026 | * Since this object is in the cache, we know | |
1027 | * that it is initialized and has no references. | |
1028 | * Take a reference to avoid recursive deallocations. | |
1029 | */ | |
1030 | ||
1031 | assert(object->pager_initialized); | |
1032 | assert(object->ref_count == 0); | |
2d21ac55 | 1033 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
1034 | object->ref_count++; |
1035 | ||
1036 | /* | |
1037 | * Terminate the object. | |
1038 | * If the object had a shadow, we let vm_object_deallocate | |
1039 | * deallocate it. "pageout" objects have a shadow, but | |
1040 | * maintain a "paging reference" rather than a normal | |
1041 | * reference. | |
1042 | * (We are careful here to limit recursion.) | |
1043 | */ | |
1044 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
1045 | if(vm_object_terminate(object) != KERN_SUCCESS) | |
1046 | continue; | |
1047 | if (shadow != VM_OBJECT_NULL) { | |
1048 | if (called_from_vm_object_deallocate) { | |
1049 | return shadow; | |
1050 | } else { | |
1051 | vm_object_deallocate(shadow); | |
1052 | } | |
1053 | } | |
1054 | } | |
1055 | } | |
1056 | ||
2d21ac55 A |
1057 | #define VM_OBJ_TERM_STATS DEBUG |
1058 | #if VM_OBJ_TERM_STATS | |
1059 | uint32_t vm_object_terminate_pages_freed = 0; | |
1060 | uint32_t vm_object_terminate_pages_removed = 0; | |
1061 | uint32_t vm_object_terminate_batches = 0; | |
1062 | uint32_t vm_object_terminate_biggest_batch = 0; | |
1063 | #endif /* VM_OBJ_TERM_STATS */ | |
1064 | ||
1065 | #define V_O_T_MAX_BATCH 256 | |
1c79356b A |
1066 | |
1067 | /* | |
1068 | * Routine: vm_object_terminate | |
1069 | * Purpose: | |
1070 | * Free all resources associated with a vm_object. | |
1071 | * In/out conditions: | |
0b4e3aa0 | 1072 | * Upon entry, the object must be locked, |
1c79356b A |
1073 | * and the object must have exactly one reference. |
1074 | * | |
1075 | * The shadow object reference is left alone. | |
1076 | * | |
1077 | * The object must be unlocked if its found that pages | |
1078 | * must be flushed to a backing object. If someone | |
1079 | * manages to map the object while it is being flushed | |
1080 | * the object is returned unlocked and unchanged. Otherwise, | |
1081 | * upon exit, the cache will be unlocked, and the | |
1082 | * object will cease to exist. | |
1083 | */ | |
0b4e3aa0 | 1084 | static kern_return_t |
1c79356b A |
1085 | vm_object_terminate( |
1086 | register vm_object_t object) | |
1087 | { | |
1088 | register vm_page_t p; | |
1089 | vm_object_t shadow_object; | |
2d21ac55 A |
1090 | vm_page_t local_free_q; |
1091 | int loop_count; | |
1092 | #if VM_OBJ_TERM_STATS | |
1093 | uint32_t local_free_count; | |
1094 | uint32_t pages_removed; | |
1095 | #endif /* VM_OBJ_TERM_STATS */ | |
1096 | ||
1097 | #if VM_OBJ_TERM_STATS | |
1098 | #define VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count) \ | |
1099 | MACRO_BEGIN \ | |
1100 | if (_pages_removed) { \ | |
1101 | hw_atomic_add(&vm_object_terminate_batches, 1); \ | |
1102 | hw_atomic_add(&vm_object_terminate_pages_removed, \ | |
1103 | _pages_removed); \ | |
1104 | hw_atomic_add(&vm_object_terminate_pages_freed, \ | |
1105 | _local_free_count); \ | |
1106 | if (_local_free_count > \ | |
1107 | vm_object_terminate_biggest_batch) { \ | |
1108 | vm_object_terminate_biggest_batch = \ | |
1109 | _local_free_count; \ | |
1110 | } \ | |
1111 | _local_free_count = 0; \ | |
1112 | } \ | |
1113 | MACRO_END | |
1114 | #else /* VM_OBJ_TERM_STATS */ | |
1115 | #define VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count) | |
1116 | #endif /* VM_OBJ_TERM_STATS */ | |
1117 | ||
1118 | #define VM_OBJ_TERM_FREELIST(_pages_removed, _local_free_count, _local_free_q) \ | |
1119 | MACRO_BEGIN \ | |
1120 | VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count); \ | |
1121 | if (_local_free_q) { \ | |
1122 | vm_page_free_list(_local_free_q); \ | |
1123 | _local_free_q = VM_PAGE_NULL; \ | |
1124 | } \ | |
1125 | MACRO_END | |
1126 | ||
1127 | ||
1c79356b A |
1128 | |
1129 | XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n", | |
1130 | (integer_t)object, object->ref_count, 0, 0, 0); | |
1131 | ||
2d21ac55 A |
1132 | local_free_q = VM_PAGE_NULL; |
1133 | #if VM_OBJ_TERM_STATS | |
1134 | local_free_count = 0; | |
1135 | pages_removed = 0; | |
1136 | #endif /* VM_OBJ_TERM_STATS */ | |
1137 | ||
1c79356b A |
1138 | if (!object->pageout && (!object->temporary || object->can_persist) |
1139 | && (object->pager != NULL || object->shadow_severed)) { | |
0b4e3aa0 | 1140 | vm_object_cache_unlock(); |
2d21ac55 A |
1141 | loop_count = V_O_T_MAX_BATCH; |
1142 | vm_page_lock_queues(); | |
1c79356b | 1143 | while (!queue_empty(&object->memq)) { |
2d21ac55 A |
1144 | if (--loop_count == 0) { |
1145 | /* | |
1146 | * Free the pages we've reclaimed so far and | |
1147 | * take a little break to avoid hogging | |
1148 | * the page queues lock too long. | |
1149 | */ | |
1150 | VM_OBJ_TERM_FREELIST(pages_removed, | |
1151 | local_free_count, | |
1152 | local_free_q); | |
1153 | mutex_yield(&vm_page_queue_lock); | |
1154 | loop_count = V_O_T_MAX_BATCH; | |
1155 | } | |
1c79356b A |
1156 | /* |
1157 | * Clear pager_trusted bit so that the pages get yanked | |
1158 | * out of the object instead of cleaned in place. This | |
1159 | * prevents a deadlock in XMM and makes more sense anyway. | |
1160 | */ | |
1161 | object->pager_trusted = FALSE; | |
1162 | ||
1163 | p = (vm_page_t) queue_first(&object->memq); | |
1164 | ||
1165 | VM_PAGE_CHECK(p); | |
1166 | ||
1167 | if (p->busy || p->cleaning) { | |
1168 | if(p->cleaning || p->absent) { | |
2d21ac55 A |
1169 | /* free the pages reclaimed so far */ |
1170 | VM_OBJ_TERM_FREELIST(pages_removed, | |
1171 | local_free_count, | |
1172 | local_free_q); | |
1173 | vm_page_unlock_queues(); | |
1c79356b | 1174 | vm_object_paging_wait(object, THREAD_UNINT); |
2d21ac55 | 1175 | vm_page_lock_queues(); |
1c79356b A |
1176 | continue; |
1177 | } else { | |
2d21ac55 | 1178 | panic("vm_object_terminate.3 %p %p", object, p); |
1c79356b A |
1179 | } |
1180 | } | |
1181 | ||
55e303ae | 1182 | p->busy = TRUE; |
1c79356b | 1183 | VM_PAGE_QUEUES_REMOVE(p); |
2d21ac55 A |
1184 | #if VM_OBJ_TERM_STATS |
1185 | pages_removed++; | |
1186 | #endif /* VM_OBJ_TERM_STATS */ | |
1c79356b A |
1187 | |
1188 | if (p->absent || p->private) { | |
1189 | ||
1190 | /* | |
1191 | * For private pages, VM_PAGE_FREE just | |
1192 | * leaves the page structure around for | |
1193 | * its owner to clean up. For absent | |
1194 | * pages, the structure is returned to | |
1195 | * the appropriate pool. | |
1196 | */ | |
1197 | ||
1198 | goto free_page; | |
1199 | } | |
1200 | ||
2d21ac55 A |
1201 | if (p->fictitious) { |
1202 | if (p->phys_page == vm_page_guard_addr) { | |
1203 | goto free_page; | |
1204 | } | |
1205 | panic("vm_object_terminate.4 %p %p", object, p); | |
1206 | } | |
1c79356b | 1207 | |
4a3eedf9 | 1208 | if (!p->dirty && p->wpmapped) |
55e303ae | 1209 | p->dirty = pmap_is_modified(p->phys_page); |
1c79356b | 1210 | |
0b4e3aa0 | 1211 | if ((p->dirty || p->precious) && !p->error && object->alive) { |
2d21ac55 A |
1212 | /* free the pages reclaimed so far */ |
1213 | VM_OBJ_TERM_FREELIST(pages_removed, | |
1214 | local_free_count, | |
1215 | local_free_q); | |
1216 | vm_page_unlock_queues(); | |
1c79356b | 1217 | vm_pageout_cluster(p); /* flush page */ |
1c79356b A |
1218 | vm_object_paging_wait(object, THREAD_UNINT); |
1219 | XPR(XPR_VM_OBJECT, | |
1220 | "vm_object_terminate restart, object 0x%X ref %d\n", | |
1221 | (integer_t)object, object->ref_count, 0, 0, 0); | |
2d21ac55 | 1222 | vm_page_lock_queues(); |
1c79356b A |
1223 | } else { |
1224 | free_page: | |
2d21ac55 A |
1225 | /* |
1226 | * Add this page to our list of reclaimed pages, | |
1227 | * to be freed later. | |
1228 | */ | |
1229 | vm_page_free_prepare(p); | |
1230 | p->pageq.next = (queue_entry_t) local_free_q; | |
1231 | local_free_q = p; | |
1232 | #if VM_OBJ_TERM_STATS | |
1233 | local_free_count++; | |
1234 | #endif /* VM_OBJ_TERM_STATS */ | |
1c79356b A |
1235 | } |
1236 | } | |
2d21ac55 A |
1237 | |
1238 | /* | |
1239 | * Free the remaining reclaimed pages. | |
1240 | */ | |
1241 | VM_OBJ_TERM_FREELIST(pages_removed, | |
1242 | local_free_count, | |
1243 | local_free_q); | |
1244 | vm_page_unlock_queues(); | |
0b4e3aa0 A |
1245 | vm_object_unlock(object); |
1246 | vm_object_cache_lock(); | |
1247 | vm_object_lock(object); | |
1c79356b | 1248 | } |
0b4e3aa0 A |
1249 | |
1250 | /* | |
1251 | * Make sure the object isn't already being terminated | |
1252 | */ | |
1253 | if(object->terminating) { | |
2d21ac55 A |
1254 | vm_object_lock_assert_exclusive(object); |
1255 | object->ref_count--; | |
0b4e3aa0 A |
1256 | assert(object->ref_count > 0); |
1257 | vm_object_cache_unlock(); | |
1258 | vm_object_unlock(object); | |
1259 | return KERN_FAILURE; | |
1260 | } | |
1261 | ||
1262 | /* | |
1263 | * Did somebody get a reference to the object while we were | |
1264 | * cleaning it? | |
1265 | */ | |
1c79356b | 1266 | if(object->ref_count != 1) { |
2d21ac55 A |
1267 | vm_object_lock_assert_exclusive(object); |
1268 | object->ref_count--; | |
0b4e3aa0 | 1269 | assert(object->ref_count > 0); |
1c79356b | 1270 | vm_object_res_deallocate(object); |
0b4e3aa0 | 1271 | vm_object_cache_unlock(); |
1c79356b A |
1272 | vm_object_unlock(object); |
1273 | return KERN_FAILURE; | |
1274 | } | |
1275 | ||
1c79356b A |
1276 | /* |
1277 | * Make sure no one can look us up now. | |
1278 | */ | |
1279 | ||
0b4e3aa0 A |
1280 | object->terminating = TRUE; |
1281 | object->alive = FALSE; | |
1282 | vm_object_remove(object); | |
1c79356b A |
1283 | |
1284 | /* | |
1285 | * Detach the object from its shadow if we are the shadow's | |
55e303ae A |
1286 | * copy. The reference we hold on the shadow must be dropped |
1287 | * by our caller. | |
1c79356b A |
1288 | */ |
1289 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && | |
1290 | !(object->pageout)) { | |
1291 | vm_object_lock(shadow_object); | |
55e303ae A |
1292 | if (shadow_object->copy == object) |
1293 | shadow_object->copy = VM_OBJECT_NULL; | |
1c79356b A |
1294 | vm_object_unlock(shadow_object); |
1295 | } | |
1296 | ||
6601e61a | 1297 | if (object->paging_in_progress != 0) { |
8f6c56a5 A |
1298 | /* |
1299 | * There are still some paging_in_progress references | |
1300 | * on this object, meaning that there are some paging | |
1301 | * or other I/O operations in progress for this VM object. | |
1302 | * Such operations take some paging_in_progress references | |
1303 | * up front to ensure that the object doesn't go away, but | |
1304 | * they may also need to acquire a reference on the VM object, | |
1305 | * to map it in kernel space, for example. That means that | |
1306 | * they may end up releasing the last reference on the VM | |
1307 | * object, triggering its termination, while still holding | |
1308 | * paging_in_progress references. Waiting for these | |
1309 | * pending paging_in_progress references to go away here would | |
1310 | * deadlock. | |
1311 | * | |
1312 | * To avoid deadlocking, we'll let the vm_object_reaper_thread | |
1313 | * complete the VM object termination if it still holds | |
1314 | * paging_in_progress references at this point. | |
1315 | * | |
1316 | * No new paging_in_progress should appear now that the | |
1317 | * VM object is "terminating" and not "alive". | |
1318 | */ | |
1319 | vm_object_reap_async(object); | |
1320 | vm_object_cache_unlock(); | |
1321 | vm_object_unlock(object); | |
6601e61a A |
1322 | /* |
1323 | * Return KERN_FAILURE to let the caller know that we | |
1324 | * haven't completed the termination and it can't drop this | |
1325 | * object's reference on its shadow object yet. | |
1326 | * The reaper thread will take care of that once it has | |
1327 | * completed this object's termination. | |
1328 | */ | |
1329 | return KERN_FAILURE; | |
8f6c56a5 | 1330 | } |
4452a7af | 1331 | |
8f6c56a5 A |
1332 | /* complete the VM object termination */ |
1333 | vm_object_reap(object); | |
1334 | object = VM_OBJECT_NULL; | |
1335 | /* cache lock and object lock were released by vm_object_reap() */ | |
1336 | ||
2d21ac55 A |
1337 | /* |
1338 | * KERN_SUCCESS means that this object has been terminated | |
1339 | * and no longer needs its shadow object but still holds a | |
1340 | * reference on it. | |
1341 | * The caller is responsible for dropping that reference. | |
1342 | * We can't call vm_object_deallocate() here because that | |
1343 | * would create a recursion. | |
1344 | */ | |
8f6c56a5 A |
1345 | return KERN_SUCCESS; |
1346 | } | |
1347 | ||
1348 | /* | |
1349 | * vm_object_reap(): | |
1350 | * | |
1351 | * Complete the termination of a VM object after it's been marked | |
1352 | * as "terminating" and "!alive" by vm_object_terminate(). | |
1353 | * | |
1354 | * The VM object cache and the VM object must be locked by caller. | |
1355 | * The locks will be released on return and the VM object is no longer valid. | |
1356 | */ | |
1357 | void | |
1358 | vm_object_reap( | |
1359 | vm_object_t object) | |
1360 | { | |
1361 | memory_object_t pager; | |
1362 | vm_page_t p; | |
2d21ac55 A |
1363 | vm_page_t local_free_q; |
1364 | int loop_count; | |
1365 | #if VM_OBJ_TERM_STATS | |
1366 | uint32_t local_free_count; | |
1367 | #endif /* VM_OBJ_TERM_STATS */ | |
8f6c56a5 A |
1368 | |
1369 | #if DEBUG | |
1370 | mutex_assert(&vm_object_cached_lock_data, MA_OWNED); | |
8f6c56a5 | 1371 | #endif /* DEBUG */ |
2d21ac55 A |
1372 | vm_object_lock_assert_exclusive(object); |
1373 | assert(object->paging_in_progress == 0); | |
8f6c56a5 A |
1374 | |
1375 | vm_object_reap_count++; | |
1376 | ||
2d21ac55 A |
1377 | local_free_q = VM_PAGE_NULL; |
1378 | #if VM_OBJ_TERM_STATS | |
1379 | local_free_count = 0; | |
1380 | #endif /* VM_OBJ_TERM_STATS */ | |
0b4e3aa0 A |
1381 | |
1382 | pager = object->pager; | |
1383 | object->pager = MEMORY_OBJECT_NULL; | |
1384 | ||
1385 | if (pager != MEMORY_OBJECT_NULL) | |
91447636 | 1386 | memory_object_control_disable(object->pager_control); |
0b4e3aa0 A |
1387 | vm_object_cache_unlock(); |
1388 | ||
2d21ac55 | 1389 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
1390 | object->ref_count--; |
1391 | #if TASK_SWAPPER | |
1392 | assert(object->res_count == 0); | |
1393 | #endif /* TASK_SWAPPER */ | |
1394 | ||
1c79356b A |
1395 | assert (object->ref_count == 0); |
1396 | ||
2d21ac55 A |
1397 | /* remove from purgeable queue if it's on */ |
1398 | if (object->objq.next || object->objq.prev) { | |
1399 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
1400 | assert(queue); | |
1401 | ||
1402 | /* Must take page lock for this - using it to protect token queue */ | |
1403 | vm_page_lock_queues(); | |
1404 | vm_purgeable_token_delete_first(queue); | |
1405 | ||
1406 | assert(queue->debug_count_objects>=0); | |
1407 | vm_page_unlock_queues(); | |
1408 | } | |
1409 | ||
1c79356b A |
1410 | /* |
1411 | * Clean or free the pages, as appropriate. | |
1412 | * It is possible for us to find busy/absent pages, | |
1413 | * if some faults on this object were aborted. | |
1414 | */ | |
1415 | if (object->pageout) { | |
8f6c56a5 | 1416 | assert(object->shadow != VM_OBJECT_NULL); |
1c79356b A |
1417 | |
1418 | vm_pageout_object_terminate(object); | |
1419 | ||
0b4e3aa0 A |
1420 | } else if ((object->temporary && !object->can_persist) || |
1421 | (pager == MEMORY_OBJECT_NULL)) { | |
2d21ac55 A |
1422 | loop_count = V_O_T_MAX_BATCH; |
1423 | vm_page_lock_queues(); | |
1c79356b | 1424 | while (!queue_empty(&object->memq)) { |
2d21ac55 A |
1425 | if (--loop_count == 0) { |
1426 | /* | |
1427 | * Free the pages we reclaimed so far | |
1428 | * and take a little break to avoid | |
1429 | * hogging the page queue lock too long | |
1430 | */ | |
1431 | VM_OBJ_TERM_FREELIST(local_free_count, | |
1432 | local_free_count, | |
1433 | local_free_q); | |
1434 | mutex_yield(&vm_page_queue_lock); | |
1435 | loop_count = V_O_T_MAX_BATCH; | |
1436 | } | |
1c79356b A |
1437 | p = (vm_page_t) queue_first(&object->memq); |
1438 | ||
2d21ac55 A |
1439 | vm_page_free_prepare(p); |
1440 | ||
1441 | assert(p->pageq.next == NULL && p->pageq.prev == NULL); | |
1442 | p->pageq.next = (queue_entry_t) local_free_q; | |
1443 | local_free_q = p; | |
1444 | #if VM_OBJ_TERM_STATS | |
1445 | local_free_count++; | |
1446 | #endif /* VM_OBJ_TERM_STATS */ | |
1c79356b | 1447 | } |
2d21ac55 A |
1448 | /* |
1449 | * Free the remaining reclaimed pages | |
1450 | */ | |
1451 | VM_OBJ_TERM_FREELIST(local_free_count, | |
1452 | local_free_count, | |
1453 | local_free_q); | |
1454 | vm_page_unlock_queues(); | |
1c79356b | 1455 | } else if (!queue_empty(&object->memq)) { |
8f6c56a5 | 1456 | panic("vm_object_reap: queue just emptied isn't"); |
1c79356b A |
1457 | } |
1458 | ||
1459 | assert(object->paging_in_progress == 0); | |
1460 | assert(object->ref_count == 0); | |
1461 | ||
1c79356b | 1462 | /* |
0b4e3aa0 A |
1463 | * If the pager has not already been released by |
1464 | * vm_object_destroy, we need to terminate it and | |
1465 | * release our reference to it here. | |
1c79356b | 1466 | */ |
0b4e3aa0 A |
1467 | if (pager != MEMORY_OBJECT_NULL) { |
1468 | vm_object_unlock(object); | |
1469 | vm_object_release_pager(pager); | |
1470 | vm_object_lock(object); | |
1c79356b | 1471 | } |
0b4e3aa0 | 1472 | |
1c79356b | 1473 | /* kick off anyone waiting on terminating */ |
0b4e3aa0 | 1474 | object->terminating = FALSE; |
1c79356b A |
1475 | vm_object_paging_begin(object); |
1476 | vm_object_paging_end(object); | |
1477 | vm_object_unlock(object); | |
1478 | ||
1479 | #if MACH_PAGEMAP | |
1480 | vm_external_destroy(object->existence_map, object->size); | |
1481 | #endif /* MACH_PAGEMAP */ | |
1482 | ||
6601e61a A |
1483 | object->shadow = VM_OBJECT_NULL; |
1484 | ||
2d21ac55 | 1485 | vm_object_lock_destroy(object); |
1c79356b A |
1486 | /* |
1487 | * Free the space for the object. | |
1488 | */ | |
91447636 | 1489 | zfree(vm_object_zone, object); |
8f6c56a5 A |
1490 | object = VM_OBJECT_NULL; |
1491 | } | |
1492 | ||
1493 | void | |
1494 | vm_object_reap_async( | |
1495 | vm_object_t object) | |
1496 | { | |
1497 | #if DEBUG | |
1498 | mutex_assert(&vm_object_cached_lock_data, MA_OWNED); | |
8f6c56a5 | 1499 | #endif /* DEBUG */ |
2d21ac55 | 1500 | vm_object_lock_assert_exclusive(object); |
8f6c56a5 A |
1501 | |
1502 | vm_object_reap_count_async++; | |
1503 | ||
1504 | /* enqueue the VM object... */ | |
1505 | queue_enter(&vm_object_reaper_queue, object, | |
1506 | vm_object_t, cached_list); | |
1507 | /* ... and wake up the reaper thread */ | |
1508 | thread_wakeup((event_t) &vm_object_reaper_queue); | |
1509 | } | |
1510 | ||
1511 | void | |
1512 | vm_object_reaper_thread(void) | |
1513 | { | |
6601e61a | 1514 | vm_object_t object, shadow_object; |
8f6c56a5 A |
1515 | |
1516 | vm_object_cache_lock(); | |
1517 | ||
1518 | while (!queue_empty(&vm_object_reaper_queue)) { | |
1519 | queue_remove_first(&vm_object_reaper_queue, | |
1520 | object, | |
1521 | vm_object_t, | |
1522 | cached_list); | |
1523 | vm_object_lock(object); | |
1524 | assert(object->terminating); | |
1525 | assert(!object->alive); | |
2d21ac55 A |
1526 | |
1527 | /* | |
1528 | * The pageout daemon might be playing with our pages. | |
1529 | * Now that the object is dead, it won't touch any more | |
1530 | * pages, but some pages might already be on their way out. | |
1531 | * Hence, we wait until the active paging activities have | |
1532 | * ceased before we break the association with the pager | |
1533 | * itself. | |
1534 | */ | |
1535 | while (object->paging_in_progress != 0) { | |
1536 | vm_object_cache_unlock(); | |
1537 | vm_object_wait(object, | |
1538 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
1539 | THREAD_UNINT); | |
1540 | vm_object_cache_lock(); | |
1541 | vm_object_lock(object); | |
1542 | } | |
6601e61a A |
1543 | |
1544 | shadow_object = | |
1545 | object->pageout ? VM_OBJECT_NULL : object->shadow; | |
1546 | ||
8f6c56a5 A |
1547 | vm_object_reap(object); |
1548 | /* cache is unlocked and object is no longer valid */ | |
1549 | object = VM_OBJECT_NULL; | |
1550 | ||
6601e61a A |
1551 | if (shadow_object != VM_OBJECT_NULL) { |
1552 | /* | |
1553 | * Drop the reference "object" was holding on | |
1554 | * its shadow object. | |
1555 | */ | |
1556 | vm_object_deallocate(shadow_object); | |
1557 | shadow_object = VM_OBJECT_NULL; | |
1558 | } | |
1559 | ||
8f6c56a5 A |
1560 | vm_object_cache_lock(); |
1561 | } | |
1562 | ||
1563 | /* wait for more work... */ | |
1564 | assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT); | |
1565 | vm_object_cache_unlock(); | |
1566 | thread_block((thread_continue_t) vm_object_reaper_thread); | |
1567 | /*NOTREACHED*/ | |
1c79356b A |
1568 | } |
1569 | ||
1570 | /* | |
1571 | * Routine: vm_object_pager_wakeup | |
1572 | * Purpose: Wake up anyone waiting for termination of a pager. | |
1573 | */ | |
1574 | ||
0b4e3aa0 | 1575 | static void |
1c79356b | 1576 | vm_object_pager_wakeup( |
0b4e3aa0 | 1577 | memory_object_t pager) |
1c79356b A |
1578 | { |
1579 | vm_object_hash_entry_t entry; | |
1580 | boolean_t waiting = FALSE; | |
1581 | ||
1582 | /* | |
1583 | * If anyone was waiting for the memory_object_terminate | |
1584 | * to be queued, wake them up now. | |
1585 | */ | |
1586 | vm_object_cache_lock(); | |
1587 | entry = vm_object_hash_lookup(pager, TRUE); | |
1588 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
1589 | waiting = entry->waiting; | |
1590 | vm_object_cache_unlock(); | |
1591 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) { | |
1592 | if (waiting) | |
1593 | thread_wakeup((event_t) pager); | |
1594 | vm_object_hash_entry_free(entry); | |
1595 | } | |
1596 | } | |
1597 | ||
1598 | /* | |
0b4e3aa0 A |
1599 | * Routine: vm_object_release_pager |
1600 | * Purpose: Terminate the pager and, upon completion, | |
1601 | * release our last reference to it. | |
1602 | * just like memory_object_terminate, except | |
1603 | * that we wake up anyone blocked in vm_object_enter | |
1604 | * waiting for termination message to be queued | |
1605 | * before calling memory_object_init. | |
1c79356b | 1606 | */ |
0b4e3aa0 A |
1607 | static void |
1608 | vm_object_release_pager( | |
1609 | memory_object_t pager) | |
1c79356b | 1610 | { |
1c79356b | 1611 | |
0b4e3aa0 A |
1612 | /* |
1613 | * Terminate the pager. | |
1614 | */ | |
1c79356b | 1615 | |
0b4e3aa0 | 1616 | (void) memory_object_terminate(pager); |
1c79356b | 1617 | |
0b4e3aa0 A |
1618 | /* |
1619 | * Wakeup anyone waiting for this terminate | |
1620 | */ | |
1621 | vm_object_pager_wakeup(pager); | |
1c79356b | 1622 | |
0b4e3aa0 A |
1623 | /* |
1624 | * Release reference to pager. | |
1625 | */ | |
1626 | memory_object_deallocate(pager); | |
1627 | } | |
1c79356b | 1628 | |
1c79356b | 1629 | /* |
0b4e3aa0 | 1630 | * Routine: vm_object_destroy |
1c79356b | 1631 | * Purpose: |
0b4e3aa0 | 1632 | * Shut down a VM object, despite the |
1c79356b A |
1633 | * presence of address map (or other) references |
1634 | * to the vm_object. | |
1635 | */ | |
1636 | kern_return_t | |
0b4e3aa0 A |
1637 | vm_object_destroy( |
1638 | vm_object_t object, | |
91447636 | 1639 | __unused kern_return_t reason) |
1c79356b | 1640 | { |
0b4e3aa0 | 1641 | memory_object_t old_pager; |
1c79356b A |
1642 | |
1643 | if (object == VM_OBJECT_NULL) | |
1644 | return(KERN_SUCCESS); | |
1645 | ||
1646 | /* | |
0b4e3aa0 | 1647 | * Remove the pager association immediately. |
1c79356b A |
1648 | * |
1649 | * This will prevent the memory manager from further | |
1650 | * meddling. [If it wanted to flush data or make | |
1651 | * other changes, it should have done so before performing | |
1652 | * the destroy call.] | |
1653 | */ | |
1654 | ||
1655 | vm_object_cache_lock(); | |
1656 | vm_object_lock(object); | |
1c79356b A |
1657 | object->can_persist = FALSE; |
1658 | object->named = FALSE; | |
0b4e3aa0 | 1659 | object->alive = FALSE; |
1c79356b A |
1660 | |
1661 | /* | |
0b4e3aa0 | 1662 | * Rip out the pager from the vm_object now... |
1c79356b A |
1663 | */ |
1664 | ||
0b4e3aa0 A |
1665 | vm_object_remove(object); |
1666 | old_pager = object->pager; | |
1667 | object->pager = MEMORY_OBJECT_NULL; | |
1668 | if (old_pager != MEMORY_OBJECT_NULL) | |
91447636 | 1669 | memory_object_control_disable(object->pager_control); |
0b4e3aa0 | 1670 | vm_object_cache_unlock(); |
1c79356b A |
1671 | |
1672 | /* | |
0b4e3aa0 A |
1673 | * Wait for the existing paging activity (that got |
1674 | * through before we nulled out the pager) to subside. | |
1c79356b A |
1675 | */ |
1676 | ||
1677 | vm_object_paging_wait(object, THREAD_UNINT); | |
1678 | vm_object_unlock(object); | |
1679 | ||
1680 | /* | |
0b4e3aa0 | 1681 | * Terminate the object now. |
1c79356b | 1682 | */ |
0b4e3aa0 A |
1683 | if (old_pager != MEMORY_OBJECT_NULL) { |
1684 | vm_object_release_pager(old_pager); | |
1685 | ||
1686 | /* | |
1687 | * JMM - Release the caller's reference. This assumes the | |
1688 | * caller had a reference to release, which is a big (but | |
1689 | * currently valid) assumption if this is driven from the | |
1690 | * vnode pager (it is holding a named reference when making | |
1691 | * this call).. | |
1692 | */ | |
1693 | vm_object_deallocate(object); | |
1c79356b | 1694 | |
1c79356b | 1695 | } |
1c79356b A |
1696 | return(KERN_SUCCESS); |
1697 | } | |
1698 | ||
2d21ac55 A |
1699 | #define VM_OBJ_DEACT_ALL_STATS DEBUG |
1700 | #if VM_OBJ_DEACT_ALL_STATS | |
1701 | uint32_t vm_object_deactivate_all_pages_batches = 0; | |
1702 | uint32_t vm_object_deactivate_all_pages_pages = 0; | |
1703 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1c79356b A |
1704 | /* |
1705 | * vm_object_deactivate_pages | |
1706 | * | |
1707 | * Deactivate all pages in the specified object. (Keep its pages | |
1708 | * in memory even though it is no longer referenced.) | |
1709 | * | |
1710 | * The object must be locked. | |
1711 | */ | |
0b4e3aa0 A |
1712 | static void |
1713 | vm_object_deactivate_all_pages( | |
1c79356b A |
1714 | register vm_object_t object) |
1715 | { | |
1716 | register vm_page_t p; | |
2d21ac55 A |
1717 | int loop_count; |
1718 | #if VM_OBJ_DEACT_ALL_STATS | |
1719 | int pages_count; | |
1720 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1721 | #define V_O_D_A_P_MAX_BATCH 256 | |
1722 | ||
1723 | loop_count = V_O_D_A_P_MAX_BATCH; | |
1724 | #if VM_OBJ_DEACT_ALL_STATS | |
1725 | pages_count = 0; | |
1726 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1727 | vm_page_lock_queues(); | |
1c79356b | 1728 | queue_iterate(&object->memq, p, vm_page_t, listq) { |
2d21ac55 A |
1729 | if (--loop_count == 0) { |
1730 | #if VM_OBJ_DEACT_ALL_STATS | |
1731 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, | |
1732 | 1); | |
1733 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
1734 | pages_count); | |
1735 | pages_count = 0; | |
1736 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1737 | mutex_yield(&vm_page_queue_lock); | |
1738 | loop_count = V_O_D_A_P_MAX_BATCH; | |
1739 | } | |
1740 | if (!p->busy && !p->throttled) { | |
1741 | #if VM_OBJ_DEACT_ALL_STATS | |
1742 | pages_count++; | |
1743 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1c79356b | 1744 | vm_page_deactivate(p); |
2d21ac55 A |
1745 | } |
1746 | } | |
1747 | #if VM_OBJ_DEACT_ALL_STATS | |
1748 | if (pages_count) { | |
1749 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1); | |
1750 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
1751 | pages_count); | |
1752 | pages_count = 0; | |
1c79356b | 1753 | } |
2d21ac55 A |
1754 | #endif /* VM_OBJ_DEACT_ALL_STATS */ |
1755 | vm_page_unlock_queues(); | |
1c79356b A |
1756 | } |
1757 | ||
0b4e3aa0 A |
1758 | __private_extern__ void |
1759 | vm_object_deactivate_pages( | |
1760 | vm_object_t object, | |
1761 | vm_object_offset_t offset, | |
1762 | vm_object_size_t size, | |
1763 | boolean_t kill_page) | |
1764 | { | |
1765 | vm_object_t orig_object; | |
1766 | int pages_moved = 0; | |
1767 | int pages_found = 0; | |
1768 | ||
1769 | /* | |
1770 | * entered with object lock held, acquire a paging reference to | |
1771 | * prevent the memory_object and control ports from | |
1772 | * being destroyed. | |
1773 | */ | |
1774 | orig_object = object; | |
1775 | ||
1776 | for (;;) { | |
1777 | register vm_page_t m; | |
1778 | vm_object_offset_t toffset; | |
1779 | vm_object_size_t tsize; | |
1780 | ||
1781 | vm_object_paging_begin(object); | |
1782 | vm_page_lock_queues(); | |
1783 | ||
1784 | for (tsize = size, toffset = offset; tsize; tsize -= PAGE_SIZE, toffset += PAGE_SIZE) { | |
1785 | ||
1786 | if ((m = vm_page_lookup(object, toffset)) != VM_PAGE_NULL) { | |
1787 | ||
1788 | pages_found++; | |
1789 | ||
1790 | if ((m->wire_count == 0) && (!m->private) && (!m->gobbled) && (!m->busy)) { | |
1791 | ||
91447636 A |
1792 | assert(!m->laundry); |
1793 | ||
0b4e3aa0 | 1794 | m->reference = FALSE; |
55e303ae | 1795 | pmap_clear_reference(m->phys_page); |
0b4e3aa0 A |
1796 | |
1797 | if ((kill_page) && (object->internal)) { | |
1798 | m->precious = FALSE; | |
1799 | m->dirty = FALSE; | |
55e303ae | 1800 | pmap_clear_modify(m->phys_page); |
2d21ac55 | 1801 | #if MACH_PAGEMAP |
0b4e3aa0 | 1802 | vm_external_state_clr(object->existence_map, offset); |
2d21ac55 | 1803 | #endif /* MACH_PAGEMAP */ |
0b4e3aa0 | 1804 | } |
0b4e3aa0 | 1805 | |
2d21ac55 A |
1806 | if (!m->throttled) { |
1807 | VM_PAGE_QUEUES_REMOVE(m); | |
1808 | ||
1809 | assert(!m->laundry); | |
1810 | assert(m->object != kernel_object); | |
1811 | assert(m->pageq.next == NULL && | |
1812 | m->pageq.prev == NULL); | |
1813 | ||
1814 | if(m->zero_fill) { | |
1815 | queue_enter_first( | |
9bccf70c A |
1816 | &vm_page_queue_zf, |
1817 | m, vm_page_t, pageq); | |
2d21ac55 A |
1818 | vm_zf_queue_count++; |
1819 | } else { | |
1820 | queue_enter_first( | |
1821 | &vm_page_queue_inactive, | |
1822 | m, vm_page_t, pageq); | |
1823 | } | |
0b4e3aa0 | 1824 | |
2d21ac55 A |
1825 | m->inactive = TRUE; |
1826 | if (!m->fictitious) { | |
1827 | vm_page_inactive_count++; | |
1828 | token_new_pagecount++; | |
1829 | } else { | |
1830 | assert(m->phys_page == vm_page_fictitious_addr); | |
1831 | } | |
0b4e3aa0 | 1832 | |
2d21ac55 A |
1833 | pages_moved++; |
1834 | } | |
0b4e3aa0 A |
1835 | } |
1836 | } | |
1837 | } | |
1838 | vm_page_unlock_queues(); | |
1839 | vm_object_paging_end(object); | |
1840 | ||
1841 | if (object->shadow) { | |
1842 | vm_object_t tmp_object; | |
1843 | ||
1844 | kill_page = 0; | |
1845 | ||
1846 | offset += object->shadow_offset; | |
1847 | ||
1848 | tmp_object = object->shadow; | |
1849 | vm_object_lock(tmp_object); | |
1850 | ||
1851 | if (object != orig_object) | |
1852 | vm_object_unlock(object); | |
1853 | object = tmp_object; | |
1854 | } else | |
1855 | break; | |
1856 | } | |
1857 | if (object != orig_object) | |
1858 | vm_object_unlock(object); | |
1859 | } | |
1c79356b A |
1860 | |
1861 | /* | |
1862 | * Routine: vm_object_pmap_protect | |
1863 | * | |
1864 | * Purpose: | |
1865 | * Reduces the permission for all physical | |
1866 | * pages in the specified object range. | |
1867 | * | |
1868 | * If removing write permission only, it is | |
1869 | * sufficient to protect only the pages in | |
1870 | * the top-level object; only those pages may | |
1871 | * have write permission. | |
1872 | * | |
1873 | * If removing all access, we must follow the | |
1874 | * shadow chain from the top-level object to | |
1875 | * remove access to all pages in shadowed objects. | |
1876 | * | |
1877 | * The object must *not* be locked. The object must | |
1878 | * be temporary/internal. | |
1879 | * | |
1880 | * If pmap is not NULL, this routine assumes that | |
1881 | * the only mappings for the pages are in that | |
1882 | * pmap. | |
1883 | */ | |
1884 | ||
0b4e3aa0 | 1885 | __private_extern__ void |
1c79356b A |
1886 | vm_object_pmap_protect( |
1887 | register vm_object_t object, | |
1888 | register vm_object_offset_t offset, | |
91447636 | 1889 | vm_object_size_t size, |
1c79356b | 1890 | pmap_t pmap, |
91447636 | 1891 | vm_map_offset_t pmap_start, |
1c79356b A |
1892 | vm_prot_t prot) |
1893 | { | |
1894 | if (object == VM_OBJECT_NULL) | |
1895 | return; | |
91447636 A |
1896 | size = vm_object_round_page(size); |
1897 | offset = vm_object_trunc_page(offset); | |
1c79356b A |
1898 | |
1899 | vm_object_lock(object); | |
1900 | ||
2d21ac55 A |
1901 | if (object->phys_contiguous) { |
1902 | if (pmap != NULL) { | |
1903 | vm_object_unlock(object); | |
1904 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
1905 | } else { | |
1906 | vm_object_offset_t phys_start, phys_end, phys_addr; | |
1907 | ||
1908 | phys_start = object->shadow_offset + offset; | |
1909 | phys_end = phys_start + size; | |
1910 | assert(phys_start <= phys_end); | |
1911 | assert(phys_end <= object->shadow_offset + object->size); | |
1912 | vm_object_unlock(object); | |
1913 | ||
1914 | for (phys_addr = phys_start; | |
1915 | phys_addr < phys_end; | |
1916 | phys_addr += PAGE_SIZE_64) { | |
1917 | pmap_page_protect(phys_addr >> 12, prot); | |
1918 | } | |
1919 | } | |
1920 | return; | |
1921 | } | |
1922 | ||
55e303ae | 1923 | assert(object->internal); |
de355530 | 1924 | |
1c79356b | 1925 | while (TRUE) { |
91447636 | 1926 | if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) { |
1c79356b A |
1927 | vm_object_unlock(object); |
1928 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
1929 | return; | |
1930 | } | |
1931 | ||
9bccf70c A |
1932 | /* if we are doing large ranges with respect to resident */ |
1933 | /* page count then we should interate over pages otherwise */ | |
1934 | /* inverse page look-up will be faster */ | |
91447636 | 1935 | if (ptoa_64(object->resident_page_count / 4) < size) { |
9bccf70c A |
1936 | vm_page_t p; |
1937 | vm_object_offset_t end; | |
1c79356b A |
1938 | |
1939 | end = offset + size; | |
1940 | ||
1941 | if (pmap != PMAP_NULL) { | |
1942 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1943 | if (!p->fictitious && | |
1944 | (offset <= p->offset) && (p->offset < end)) { | |
91447636 | 1945 | vm_map_offset_t start; |
1c79356b | 1946 | |
91447636 A |
1947 | start = pmap_start + p->offset - offset; |
1948 | pmap_protect(pmap, start, start + PAGE_SIZE_64, prot); | |
1c79356b A |
1949 | } |
1950 | } | |
1951 | } else { | |
1952 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1953 | if (!p->fictitious && | |
1954 | (offset <= p->offset) && (p->offset < end)) { | |
1955 | ||
2d21ac55 | 1956 | pmap_page_protect(p->phys_page, prot); |
1c79356b A |
1957 | } |
1958 | } | |
1959 | } | |
9bccf70c A |
1960 | } else { |
1961 | vm_page_t p; | |
1962 | vm_object_offset_t end; | |
1963 | vm_object_offset_t target_off; | |
1964 | ||
1965 | end = offset + size; | |
1966 | ||
1967 | if (pmap != PMAP_NULL) { | |
1968 | for(target_off = offset; | |
91447636 A |
1969 | target_off < end; |
1970 | target_off += PAGE_SIZE) { | |
1971 | p = vm_page_lookup(object, target_off); | |
1972 | if (p != VM_PAGE_NULL) { | |
1973 | vm_offset_t start; | |
1974 | start = pmap_start + | |
9bccf70c A |
1975 | (vm_offset_t)(p->offset - offset); |
1976 | pmap_protect(pmap, start, | |
1977 | start + PAGE_SIZE, prot); | |
1978 | } | |
1979 | } | |
1980 | } else { | |
1981 | for(target_off = offset; | |
1982 | target_off < end; target_off += PAGE_SIZE) { | |
91447636 A |
1983 | p = vm_page_lookup(object, target_off); |
1984 | if (p != VM_PAGE_NULL) { | |
2d21ac55 | 1985 | pmap_page_protect(p->phys_page, prot); |
9bccf70c A |
1986 | } |
1987 | } | |
1988 | } | |
1989 | } | |
1c79356b A |
1990 | |
1991 | if (prot == VM_PROT_NONE) { | |
1992 | /* | |
1993 | * Must follow shadow chain to remove access | |
1994 | * to pages in shadowed objects. | |
1995 | */ | |
1996 | register vm_object_t next_object; | |
1997 | ||
1998 | next_object = object->shadow; | |
1999 | if (next_object != VM_OBJECT_NULL) { | |
2000 | offset += object->shadow_offset; | |
2001 | vm_object_lock(next_object); | |
2002 | vm_object_unlock(object); | |
2003 | object = next_object; | |
2004 | } | |
2005 | else { | |
2006 | /* | |
2007 | * End of chain - we are done. | |
2008 | */ | |
2009 | break; | |
2010 | } | |
2011 | } | |
2012 | else { | |
2013 | /* | |
2014 | * Pages in shadowed objects may never have | |
2015 | * write permission - we may stop here. | |
2016 | */ | |
2017 | break; | |
2018 | } | |
2019 | } | |
2020 | ||
2021 | vm_object_unlock(object); | |
2022 | } | |
2023 | ||
2024 | /* | |
2025 | * Routine: vm_object_copy_slowly | |
2026 | * | |
2027 | * Description: | |
2028 | * Copy the specified range of the source | |
2029 | * virtual memory object without using | |
2030 | * protection-based optimizations (such | |
2031 | * as copy-on-write). The pages in the | |
2032 | * region are actually copied. | |
2033 | * | |
2034 | * In/out conditions: | |
2035 | * The caller must hold a reference and a lock | |
2036 | * for the source virtual memory object. The source | |
2037 | * object will be returned *unlocked*. | |
2038 | * | |
2039 | * Results: | |
2040 | * If the copy is completed successfully, KERN_SUCCESS is | |
2041 | * returned. If the caller asserted the interruptible | |
2042 | * argument, and an interruption occurred while waiting | |
2043 | * for a user-generated event, MACH_SEND_INTERRUPTED is | |
2044 | * returned. Other values may be returned to indicate | |
2045 | * hard errors during the copy operation. | |
2046 | * | |
2047 | * A new virtual memory object is returned in a | |
2048 | * parameter (_result_object). The contents of this | |
2049 | * new object, starting at a zero offset, are a copy | |
2050 | * of the source memory region. In the event of | |
2051 | * an error, this parameter will contain the value | |
2052 | * VM_OBJECT_NULL. | |
2053 | */ | |
0b4e3aa0 | 2054 | __private_extern__ kern_return_t |
1c79356b A |
2055 | vm_object_copy_slowly( |
2056 | register vm_object_t src_object, | |
2057 | vm_object_offset_t src_offset, | |
2058 | vm_object_size_t size, | |
2059 | boolean_t interruptible, | |
2060 | vm_object_t *_result_object) /* OUT */ | |
2061 | { | |
2062 | vm_object_t new_object; | |
2063 | vm_object_offset_t new_offset; | |
2064 | ||
2d21ac55 | 2065 | struct vm_object_fault_info fault_info; |
1c79356b A |
2066 | |
2067 | XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n", | |
2068 | src_object, src_offset, size, 0, 0); | |
2069 | ||
2070 | if (size == 0) { | |
2071 | vm_object_unlock(src_object); | |
2072 | *_result_object = VM_OBJECT_NULL; | |
2073 | return(KERN_INVALID_ARGUMENT); | |
2074 | } | |
2075 | ||
2076 | /* | |
2077 | * Prevent destruction of the source object while we copy. | |
2078 | */ | |
2079 | ||
2d21ac55 | 2080 | vm_object_reference_locked(src_object); |
1c79356b A |
2081 | vm_object_unlock(src_object); |
2082 | ||
2083 | /* | |
2084 | * Create a new object to hold the copied pages. | |
2085 | * A few notes: | |
2086 | * We fill the new object starting at offset 0, | |
2087 | * regardless of the input offset. | |
2088 | * We don't bother to lock the new object within | |
2089 | * this routine, since we have the only reference. | |
2090 | */ | |
2091 | ||
2092 | new_object = vm_object_allocate(size); | |
2093 | new_offset = 0; | |
2094 | ||
2095 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ | |
2096 | ||
2d21ac55 A |
2097 | fault_info.interruptible = interruptible; |
2098 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
2099 | fault_info.user_tag = 0; | |
2100 | fault_info.lo_offset = src_offset; | |
2101 | fault_info.hi_offset = src_offset + size; | |
2102 | fault_info.no_cache = FALSE; | |
2103 | ||
1c79356b A |
2104 | for ( ; |
2105 | size != 0 ; | |
2106 | src_offset += PAGE_SIZE_64, | |
2107 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 | |
2108 | ) { | |
2109 | vm_page_t new_page; | |
2110 | vm_fault_return_t result; | |
2111 | ||
2d21ac55 A |
2112 | vm_object_lock(new_object); |
2113 | ||
1c79356b A |
2114 | while ((new_page = vm_page_alloc(new_object, new_offset)) |
2115 | == VM_PAGE_NULL) { | |
2d21ac55 A |
2116 | |
2117 | vm_object_unlock(new_object); | |
2118 | ||
1c79356b A |
2119 | if (!vm_page_wait(interruptible)) { |
2120 | vm_object_deallocate(new_object); | |
91447636 | 2121 | vm_object_deallocate(src_object); |
1c79356b A |
2122 | *_result_object = VM_OBJECT_NULL; |
2123 | return(MACH_SEND_INTERRUPTED); | |
2124 | } | |
2d21ac55 | 2125 | vm_object_lock(new_object); |
1c79356b | 2126 | } |
2d21ac55 | 2127 | vm_object_unlock(new_object); |
1c79356b A |
2128 | |
2129 | do { | |
2130 | vm_prot_t prot = VM_PROT_READ; | |
2131 | vm_page_t _result_page; | |
2132 | vm_page_t top_page; | |
2133 | register | |
2134 | vm_page_t result_page; | |
2135 | kern_return_t error_code; | |
2136 | ||
2137 | vm_object_lock(src_object); | |
2138 | vm_object_paging_begin(src_object); | |
2139 | ||
2d21ac55 A |
2140 | fault_info.cluster_size = size; |
2141 | ||
1c79356b A |
2142 | XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0); |
2143 | result = vm_fault_page(src_object, src_offset, | |
2d21ac55 | 2144 | VM_PROT_READ, FALSE, |
1c79356b A |
2145 | &prot, &_result_page, &top_page, |
2146 | (int *)0, | |
2d21ac55 | 2147 | &error_code, FALSE, FALSE, &fault_info); |
1c79356b A |
2148 | |
2149 | switch(result) { | |
2150 | case VM_FAULT_SUCCESS: | |
2151 | result_page = _result_page; | |
2152 | ||
2153 | /* | |
2154 | * We don't need to hold the object | |
2155 | * lock -- the busy page will be enough. | |
2156 | * [We don't care about picking up any | |
2157 | * new modifications.] | |
2158 | * | |
2159 | * Copy the page to the new object. | |
2160 | * | |
2161 | * POLICY DECISION: | |
2162 | * If result_page is clean, | |
2163 | * we could steal it instead | |
2164 | * of copying. | |
2165 | */ | |
2166 | ||
2167 | vm_object_unlock(result_page->object); | |
2168 | vm_page_copy(result_page, new_page); | |
2169 | ||
2170 | /* | |
2171 | * Let go of both pages (make them | |
2172 | * not busy, perform wakeup, activate). | |
2173 | */ | |
2d21ac55 | 2174 | vm_object_lock(new_object); |
1c79356b | 2175 | new_page->dirty = TRUE; |
2d21ac55 A |
2176 | PAGE_WAKEUP_DONE(new_page); |
2177 | vm_object_unlock(new_object); | |
2178 | ||
1c79356b A |
2179 | vm_object_lock(result_page->object); |
2180 | PAGE_WAKEUP_DONE(result_page); | |
2181 | ||
2d21ac55 | 2182 | vm_page_lockspin_queues(); |
1c79356b | 2183 | if (!result_page->active && |
2d21ac55 A |
2184 | !result_page->inactive && |
2185 | !result_page->throttled) | |
1c79356b A |
2186 | vm_page_activate(result_page); |
2187 | vm_page_activate(new_page); | |
2188 | vm_page_unlock_queues(); | |
2189 | ||
2190 | /* | |
2191 | * Release paging references and | |
2192 | * top-level placeholder page, if any. | |
2193 | */ | |
2194 | ||
2195 | vm_fault_cleanup(result_page->object, | |
2196 | top_page); | |
2197 | ||
2198 | break; | |
2199 | ||
2200 | case VM_FAULT_RETRY: | |
2201 | break; | |
2202 | ||
2203 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
2204 | vm_page_more_fictitious(); | |
2205 | break; | |
2206 | ||
2207 | case VM_FAULT_MEMORY_SHORTAGE: | |
2208 | if (vm_page_wait(interruptible)) | |
2209 | break; | |
2210 | /* fall thru */ | |
2211 | ||
2212 | case VM_FAULT_INTERRUPTED: | |
2213 | vm_page_free(new_page); | |
2214 | vm_object_deallocate(new_object); | |
2215 | vm_object_deallocate(src_object); | |
2216 | *_result_object = VM_OBJECT_NULL; | |
2217 | return(MACH_SEND_INTERRUPTED); | |
2218 | ||
2219 | case VM_FAULT_MEMORY_ERROR: | |
2220 | /* | |
2221 | * A policy choice: | |
2222 | * (a) ignore pages that we can't | |
2223 | * copy | |
2224 | * (b) return the null object if | |
2225 | * any page fails [chosen] | |
2226 | */ | |
2227 | ||
2228 | vm_page_lock_queues(); | |
2229 | vm_page_free(new_page); | |
2230 | vm_page_unlock_queues(); | |
2d21ac55 | 2231 | |
1c79356b A |
2232 | vm_object_deallocate(new_object); |
2233 | vm_object_deallocate(src_object); | |
2234 | *_result_object = VM_OBJECT_NULL; | |
2235 | return(error_code ? error_code: | |
2236 | KERN_MEMORY_ERROR); | |
2237 | } | |
2238 | } while (result != VM_FAULT_SUCCESS); | |
2239 | } | |
2240 | ||
2241 | /* | |
2242 | * Lose the extra reference, and return our object. | |
2243 | */ | |
1c79356b A |
2244 | vm_object_deallocate(src_object); |
2245 | *_result_object = new_object; | |
2246 | return(KERN_SUCCESS); | |
2247 | } | |
2248 | ||
2249 | /* | |
2250 | * Routine: vm_object_copy_quickly | |
2251 | * | |
2252 | * Purpose: | |
2253 | * Copy the specified range of the source virtual | |
2254 | * memory object, if it can be done without waiting | |
2255 | * for user-generated events. | |
2256 | * | |
2257 | * Results: | |
2258 | * If the copy is successful, the copy is returned in | |
2259 | * the arguments; otherwise, the arguments are not | |
2260 | * affected. | |
2261 | * | |
2262 | * In/out conditions: | |
2263 | * The object should be unlocked on entry and exit. | |
2264 | */ | |
2265 | ||
2266 | /*ARGSUSED*/ | |
0b4e3aa0 | 2267 | __private_extern__ boolean_t |
1c79356b A |
2268 | vm_object_copy_quickly( |
2269 | vm_object_t *_object, /* INOUT */ | |
91447636 A |
2270 | __unused vm_object_offset_t offset, /* IN */ |
2271 | __unused vm_object_size_t size, /* IN */ | |
1c79356b A |
2272 | boolean_t *_src_needs_copy, /* OUT */ |
2273 | boolean_t *_dst_needs_copy) /* OUT */ | |
2274 | { | |
2275 | vm_object_t object = *_object; | |
2276 | memory_object_copy_strategy_t copy_strategy; | |
2277 | ||
2278 | XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n", | |
2279 | *_object, offset, size, 0, 0); | |
2280 | if (object == VM_OBJECT_NULL) { | |
2281 | *_src_needs_copy = FALSE; | |
2282 | *_dst_needs_copy = FALSE; | |
2283 | return(TRUE); | |
2284 | } | |
2285 | ||
2286 | vm_object_lock(object); | |
2287 | ||
2288 | copy_strategy = object->copy_strategy; | |
2289 | ||
2290 | switch (copy_strategy) { | |
2291 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
2292 | ||
2293 | /* | |
2294 | * Symmetric copy strategy. | |
2295 | * Make another reference to the object. | |
2296 | * Leave object/offset unchanged. | |
2297 | */ | |
2298 | ||
2d21ac55 | 2299 | vm_object_reference_locked(object); |
1c79356b A |
2300 | object->shadowed = TRUE; |
2301 | vm_object_unlock(object); | |
2302 | ||
2303 | /* | |
2304 | * Both source and destination must make | |
2305 | * shadows, and the source must be made | |
2306 | * read-only if not already. | |
2307 | */ | |
2308 | ||
2309 | *_src_needs_copy = TRUE; | |
2310 | *_dst_needs_copy = TRUE; | |
2311 | ||
2312 | break; | |
2313 | ||
2314 | case MEMORY_OBJECT_COPY_DELAY: | |
2315 | vm_object_unlock(object); | |
2316 | return(FALSE); | |
2317 | ||
2318 | default: | |
2319 | vm_object_unlock(object); | |
2320 | return(FALSE); | |
2321 | } | |
2322 | return(TRUE); | |
2323 | } | |
2324 | ||
0b4e3aa0 A |
2325 | static int copy_call_count = 0; |
2326 | static int copy_call_sleep_count = 0; | |
2327 | static int copy_call_restart_count = 0; | |
1c79356b A |
2328 | |
2329 | /* | |
2330 | * Routine: vm_object_copy_call [internal] | |
2331 | * | |
2332 | * Description: | |
2333 | * Copy the source object (src_object), using the | |
2334 | * user-managed copy algorithm. | |
2335 | * | |
2336 | * In/out conditions: | |
2337 | * The source object must be locked on entry. It | |
2338 | * will be *unlocked* on exit. | |
2339 | * | |
2340 | * Results: | |
2341 | * If the copy is successful, KERN_SUCCESS is returned. | |
2342 | * A new object that represents the copied virtual | |
2343 | * memory is returned in a parameter (*_result_object). | |
2344 | * If the return value indicates an error, this parameter | |
2345 | * is not valid. | |
2346 | */ | |
0b4e3aa0 | 2347 | static kern_return_t |
1c79356b A |
2348 | vm_object_copy_call( |
2349 | vm_object_t src_object, | |
2350 | vm_object_offset_t src_offset, | |
2351 | vm_object_size_t size, | |
2352 | vm_object_t *_result_object) /* OUT */ | |
2353 | { | |
2354 | kern_return_t kr; | |
2355 | vm_object_t copy; | |
2356 | boolean_t check_ready = FALSE; | |
2d21ac55 | 2357 | uint32_t try_failed_count = 0; |
1c79356b A |
2358 | |
2359 | /* | |
2360 | * If a copy is already in progress, wait and retry. | |
2361 | * | |
2362 | * XXX | |
2363 | * Consider making this call interruptable, as Mike | |
2364 | * intended it to be. | |
2365 | * | |
2366 | * XXXO | |
2367 | * Need a counter or version or something to allow | |
2368 | * us to use the copy that the currently requesting | |
2369 | * thread is obtaining -- is it worth adding to the | |
2370 | * vm object structure? Depends how common this case it. | |
2371 | */ | |
2372 | copy_call_count++; | |
2373 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
9bccf70c | 2374 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, |
1c79356b | 2375 | THREAD_UNINT); |
1c79356b A |
2376 | copy_call_restart_count++; |
2377 | } | |
2378 | ||
2379 | /* | |
2380 | * Indicate (for the benefit of memory_object_create_copy) | |
2381 | * that we want a copy for src_object. (Note that we cannot | |
2382 | * do a real assert_wait before calling memory_object_copy, | |
2383 | * so we simply set the flag.) | |
2384 | */ | |
2385 | ||
2386 | vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL); | |
2387 | vm_object_unlock(src_object); | |
2388 | ||
2389 | /* | |
2390 | * Ask the memory manager to give us a memory object | |
2391 | * which represents a copy of the src object. | |
2392 | * The memory manager may give us a memory object | |
2393 | * which we already have, or it may give us a | |
2394 | * new memory object. This memory object will arrive | |
2395 | * via memory_object_create_copy. | |
2396 | */ | |
2397 | ||
2398 | kr = KERN_FAILURE; /* XXX need to change memory_object.defs */ | |
2399 | if (kr != KERN_SUCCESS) { | |
2400 | return kr; | |
2401 | } | |
2402 | ||
2403 | /* | |
2404 | * Wait for the copy to arrive. | |
2405 | */ | |
2406 | vm_object_lock(src_object); | |
2407 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
9bccf70c | 2408 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, |
1c79356b | 2409 | THREAD_UNINT); |
1c79356b A |
2410 | copy_call_sleep_count++; |
2411 | } | |
2412 | Retry: | |
2413 | assert(src_object->copy != VM_OBJECT_NULL); | |
2414 | copy = src_object->copy; | |
2415 | if (!vm_object_lock_try(copy)) { | |
2416 | vm_object_unlock(src_object); | |
2d21ac55 A |
2417 | |
2418 | try_failed_count++; | |
2419 | mutex_pause(try_failed_count); /* wait a bit */ | |
2420 | ||
1c79356b A |
2421 | vm_object_lock(src_object); |
2422 | goto Retry; | |
2423 | } | |
2424 | if (copy->size < src_offset+size) | |
2425 | copy->size = src_offset+size; | |
2426 | ||
2427 | if (!copy->pager_ready) | |
2428 | check_ready = TRUE; | |
2429 | ||
2430 | /* | |
2431 | * Return the copy. | |
2432 | */ | |
2433 | *_result_object = copy; | |
2434 | vm_object_unlock(copy); | |
2435 | vm_object_unlock(src_object); | |
2436 | ||
2437 | /* Wait for the copy to be ready. */ | |
2438 | if (check_ready == TRUE) { | |
2439 | vm_object_lock(copy); | |
2440 | while (!copy->pager_ready) { | |
9bccf70c | 2441 | vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); |
1c79356b A |
2442 | } |
2443 | vm_object_unlock(copy); | |
2444 | } | |
2445 | ||
2446 | return KERN_SUCCESS; | |
2447 | } | |
2448 | ||
0b4e3aa0 A |
2449 | static int copy_delayed_lock_collisions = 0; |
2450 | static int copy_delayed_max_collisions = 0; | |
2451 | static int copy_delayed_lock_contention = 0; | |
2452 | static int copy_delayed_protect_iterate = 0; | |
1c79356b A |
2453 | |
2454 | /* | |
2455 | * Routine: vm_object_copy_delayed [internal] | |
2456 | * | |
2457 | * Description: | |
2458 | * Copy the specified virtual memory object, using | |
2459 | * the asymmetric copy-on-write algorithm. | |
2460 | * | |
2461 | * In/out conditions: | |
55e303ae A |
2462 | * The src_object must be locked on entry. It will be unlocked |
2463 | * on exit - so the caller must also hold a reference to it. | |
1c79356b A |
2464 | * |
2465 | * This routine will not block waiting for user-generated | |
2466 | * events. It is not interruptible. | |
2467 | */ | |
0b4e3aa0 | 2468 | __private_extern__ vm_object_t |
1c79356b A |
2469 | vm_object_copy_delayed( |
2470 | vm_object_t src_object, | |
2471 | vm_object_offset_t src_offset, | |
2d21ac55 A |
2472 | vm_object_size_t size, |
2473 | boolean_t src_object_shared) | |
1c79356b A |
2474 | { |
2475 | vm_object_t new_copy = VM_OBJECT_NULL; | |
2476 | vm_object_t old_copy; | |
2477 | vm_page_t p; | |
55e303ae | 2478 | vm_object_size_t copy_size = src_offset + size; |
1c79356b | 2479 | |
2d21ac55 | 2480 | |
1c79356b A |
2481 | int collisions = 0; |
2482 | /* | |
2483 | * The user-level memory manager wants to see all of the changes | |
2484 | * to this object, but it has promised not to make any changes on | |
2485 | * its own. | |
2486 | * | |
2487 | * Perform an asymmetric copy-on-write, as follows: | |
2488 | * Create a new object, called a "copy object" to hold | |
2489 | * pages modified by the new mapping (i.e., the copy, | |
2490 | * not the original mapping). | |
2491 | * Record the original object as the backing object for | |
2492 | * the copy object. If the original mapping does not | |
2493 | * change a page, it may be used read-only by the copy. | |
2494 | * Record the copy object in the original object. | |
2495 | * When the original mapping causes a page to be modified, | |
2496 | * it must be copied to a new page that is "pushed" to | |
2497 | * the copy object. | |
2498 | * Mark the new mapping (the copy object) copy-on-write. | |
2499 | * This makes the copy object itself read-only, allowing | |
2500 | * it to be reused if the original mapping makes no | |
2501 | * changes, and simplifying the synchronization required | |
2502 | * in the "push" operation described above. | |
2503 | * | |
2504 | * The copy-on-write is said to be assymetric because the original | |
2505 | * object is *not* marked copy-on-write. A copied page is pushed | |
2506 | * to the copy object, regardless which party attempted to modify | |
2507 | * the page. | |
2508 | * | |
2509 | * Repeated asymmetric copy operations may be done. If the | |
2510 | * original object has not been changed since the last copy, its | |
2511 | * copy object can be reused. Otherwise, a new copy object can be | |
2512 | * inserted between the original object and its previous copy | |
2513 | * object. Since any copy object is read-only, this cannot affect | |
2514 | * affect the contents of the previous copy object. | |
2515 | * | |
2516 | * Note that a copy object is higher in the object tree than the | |
2517 | * original object; therefore, use of the copy object recorded in | |
2518 | * the original object must be done carefully, to avoid deadlock. | |
2519 | */ | |
2520 | ||
2521 | Retry: | |
1c79356b | 2522 | |
55e303ae A |
2523 | /* |
2524 | * Wait for paging in progress. | |
2525 | */ | |
2d21ac55 A |
2526 | if (!src_object->true_share && src_object->paging_in_progress) { |
2527 | if (src_object_shared == TRUE) { | |
2528 | vm_object_unlock(src_object); | |
2529 | ||
2530 | vm_object_lock(src_object); | |
2531 | src_object_shared = FALSE; | |
2532 | } | |
55e303ae | 2533 | vm_object_paging_wait(src_object, THREAD_UNINT); |
2d21ac55 | 2534 | } |
1c79356b A |
2535 | /* |
2536 | * See whether we can reuse the result of a previous | |
2537 | * copy operation. | |
2538 | */ | |
2539 | ||
2540 | old_copy = src_object->copy; | |
2541 | if (old_copy != VM_OBJECT_NULL) { | |
2d21ac55 A |
2542 | int lock_granted; |
2543 | ||
1c79356b A |
2544 | /* |
2545 | * Try to get the locks (out of order) | |
2546 | */ | |
2d21ac55 A |
2547 | if (src_object_shared == TRUE) |
2548 | lock_granted = vm_object_lock_try_shared(old_copy); | |
2549 | else | |
2550 | lock_granted = vm_object_lock_try(old_copy); | |
2551 | ||
2552 | if (!lock_granted) { | |
1c79356b | 2553 | vm_object_unlock(src_object); |
1c79356b | 2554 | |
1c79356b A |
2555 | if (collisions++ == 0) |
2556 | copy_delayed_lock_contention++; | |
2d21ac55 A |
2557 | mutex_pause(collisions); |
2558 | ||
2559 | /* Heisenberg Rules */ | |
2560 | copy_delayed_lock_collisions++; | |
1c79356b A |
2561 | |
2562 | if (collisions > copy_delayed_max_collisions) | |
2563 | copy_delayed_max_collisions = collisions; | |
2564 | ||
2d21ac55 A |
2565 | if (src_object_shared == TRUE) |
2566 | vm_object_lock_shared(src_object); | |
2567 | else | |
2568 | vm_object_lock(src_object); | |
2569 | ||
1c79356b A |
2570 | goto Retry; |
2571 | } | |
2572 | ||
2573 | /* | |
2574 | * Determine whether the old copy object has | |
2575 | * been modified. | |
2576 | */ | |
2577 | ||
2578 | if (old_copy->resident_page_count == 0 && | |
2579 | !old_copy->pager_created) { | |
2580 | /* | |
2581 | * It has not been modified. | |
2582 | * | |
2583 | * Return another reference to | |
55e303ae A |
2584 | * the existing copy-object if |
2585 | * we can safely grow it (if | |
2586 | * needed). | |
de355530 | 2587 | */ |
1c79356b | 2588 | |
55e303ae | 2589 | if (old_copy->size < copy_size) { |
2d21ac55 A |
2590 | if (src_object_shared == TRUE) { |
2591 | vm_object_unlock(old_copy); | |
2592 | vm_object_unlock(src_object); | |
2593 | ||
2594 | vm_object_lock(src_object); | |
2595 | src_object_shared = FALSE; | |
2596 | goto Retry; | |
2597 | } | |
55e303ae A |
2598 | /* |
2599 | * We can't perform a delayed copy if any of the | |
2600 | * pages in the extended range are wired (because | |
2601 | * we can't safely take write permission away from | |
2602 | * wired pages). If the pages aren't wired, then | |
2603 | * go ahead and protect them. | |
2604 | */ | |
2605 | copy_delayed_protect_iterate++; | |
2d21ac55 | 2606 | |
55e303ae A |
2607 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { |
2608 | if (!p->fictitious && | |
2609 | p->offset >= old_copy->size && | |
2610 | p->offset < copy_size) { | |
2611 | if (p->wire_count > 0) { | |
2612 | vm_object_unlock(old_copy); | |
2613 | vm_object_unlock(src_object); | |
91447636 A |
2614 | |
2615 | if (new_copy != VM_OBJECT_NULL) { | |
2616 | vm_object_unlock(new_copy); | |
2617 | vm_object_deallocate(new_copy); | |
2618 | } | |
2619 | ||
55e303ae A |
2620 | return VM_OBJECT_NULL; |
2621 | } else { | |
2622 | pmap_page_protect(p->phys_page, | |
2d21ac55 | 2623 | (VM_PROT_ALL & ~VM_PROT_WRITE)); |
55e303ae A |
2624 | } |
2625 | } | |
2626 | } | |
2627 | old_copy->size = copy_size; | |
2628 | } | |
2d21ac55 A |
2629 | if (src_object_shared == TRUE) |
2630 | vm_object_reference_shared(old_copy); | |
2631 | else | |
2632 | vm_object_reference_locked(old_copy); | |
d7e50217 A |
2633 | vm_object_unlock(old_copy); |
2634 | vm_object_unlock(src_object); | |
91447636 A |
2635 | |
2636 | if (new_copy != VM_OBJECT_NULL) { | |
2637 | vm_object_unlock(new_copy); | |
2638 | vm_object_deallocate(new_copy); | |
2639 | } | |
55e303ae | 2640 | return(old_copy); |
d7e50217 | 2641 | } |
2d21ac55 A |
2642 | |
2643 | ||
de355530 A |
2644 | |
2645 | /* | |
2646 | * Adjust the size argument so that the newly-created | |
2647 | * copy object will be large enough to back either the | |
55e303ae | 2648 | * old copy object or the new mapping. |
de355530 | 2649 | */ |
55e303ae A |
2650 | if (old_copy->size > copy_size) |
2651 | copy_size = old_copy->size; | |
2652 | ||
2653 | if (new_copy == VM_OBJECT_NULL) { | |
2654 | vm_object_unlock(old_copy); | |
2655 | vm_object_unlock(src_object); | |
2656 | new_copy = vm_object_allocate(copy_size); | |
2657 | vm_object_lock(src_object); | |
2658 | vm_object_lock(new_copy); | |
2d21ac55 A |
2659 | |
2660 | src_object_shared = FALSE; | |
55e303ae A |
2661 | goto Retry; |
2662 | } | |
2663 | new_copy->size = copy_size; | |
1c79356b A |
2664 | |
2665 | /* | |
2666 | * The copy-object is always made large enough to | |
2667 | * completely shadow the original object, since | |
2668 | * it may have several users who want to shadow | |
2669 | * the original object at different points. | |
2670 | */ | |
2671 | ||
2672 | assert((old_copy->shadow == src_object) && | |
2673 | (old_copy->shadow_offset == (vm_object_offset_t) 0)); | |
2674 | ||
55e303ae A |
2675 | } else if (new_copy == VM_OBJECT_NULL) { |
2676 | vm_object_unlock(src_object); | |
2677 | new_copy = vm_object_allocate(copy_size); | |
2678 | vm_object_lock(src_object); | |
2679 | vm_object_lock(new_copy); | |
2d21ac55 A |
2680 | |
2681 | src_object_shared = FALSE; | |
55e303ae A |
2682 | goto Retry; |
2683 | } | |
2684 | ||
2685 | /* | |
2686 | * We now have the src object locked, and the new copy object | |
2687 | * allocated and locked (and potentially the old copy locked). | |
2688 | * Before we go any further, make sure we can still perform | |
2689 | * a delayed copy, as the situation may have changed. | |
2690 | * | |
2691 | * Specifically, we can't perform a delayed copy if any of the | |
2692 | * pages in the range are wired (because we can't safely take | |
2693 | * write permission away from wired pages). If the pages aren't | |
2694 | * wired, then go ahead and protect them. | |
2695 | */ | |
2696 | copy_delayed_protect_iterate++; | |
2d21ac55 | 2697 | |
55e303ae A |
2698 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { |
2699 | if (!p->fictitious && p->offset < copy_size) { | |
2700 | if (p->wire_count > 0) { | |
2701 | if (old_copy) | |
2702 | vm_object_unlock(old_copy); | |
2703 | vm_object_unlock(src_object); | |
2704 | vm_object_unlock(new_copy); | |
2705 | vm_object_deallocate(new_copy); | |
2706 | return VM_OBJECT_NULL; | |
2707 | } else { | |
2708 | pmap_page_protect(p->phys_page, | |
2d21ac55 | 2709 | (VM_PROT_ALL & ~VM_PROT_WRITE)); |
55e303ae A |
2710 | } |
2711 | } | |
2712 | } | |
55e303ae | 2713 | if (old_copy != VM_OBJECT_NULL) { |
1c79356b A |
2714 | /* |
2715 | * Make the old copy-object shadow the new one. | |
2716 | * It will receive no more pages from the original | |
2717 | * object. | |
2718 | */ | |
2719 | ||
2d21ac55 A |
2720 | /* remove ref. from old_copy */ |
2721 | vm_object_lock_assert_exclusive(src_object); | |
2722 | src_object->ref_count--; | |
1c79356b | 2723 | assert(src_object->ref_count > 0); |
2d21ac55 | 2724 | vm_object_lock_assert_exclusive(old_copy); |
1c79356b | 2725 | old_copy->shadow = new_copy; |
2d21ac55 | 2726 | vm_object_lock_assert_exclusive(new_copy); |
1c79356b A |
2727 | assert(new_copy->ref_count > 0); |
2728 | new_copy->ref_count++; /* for old_copy->shadow ref. */ | |
2729 | ||
2730 | #if TASK_SWAPPER | |
2731 | if (old_copy->res_count) { | |
2732 | VM_OBJ_RES_INCR(new_copy); | |
2733 | VM_OBJ_RES_DECR(src_object); | |
2734 | } | |
2735 | #endif | |
2736 | ||
2737 | vm_object_unlock(old_copy); /* done with old_copy */ | |
1c79356b A |
2738 | } |
2739 | ||
2740 | /* | |
2741 | * Point the new copy at the existing object. | |
2742 | */ | |
2d21ac55 | 2743 | vm_object_lock_assert_exclusive(new_copy); |
1c79356b A |
2744 | new_copy->shadow = src_object; |
2745 | new_copy->shadow_offset = 0; | |
2746 | new_copy->shadowed = TRUE; /* caller must set needs_copy */ | |
2d21ac55 A |
2747 | |
2748 | vm_object_lock_assert_exclusive(src_object); | |
2749 | vm_object_reference_locked(src_object); | |
1c79356b | 2750 | src_object->copy = new_copy; |
55e303ae | 2751 | vm_object_unlock(src_object); |
1c79356b A |
2752 | vm_object_unlock(new_copy); |
2753 | ||
1c79356b A |
2754 | XPR(XPR_VM_OBJECT, |
2755 | "vm_object_copy_delayed: used copy object %X for source %X\n", | |
2756 | (integer_t)new_copy, (integer_t)src_object, 0, 0, 0); | |
2757 | ||
2d21ac55 | 2758 | return new_copy; |
1c79356b A |
2759 | } |
2760 | ||
2761 | /* | |
2762 | * Routine: vm_object_copy_strategically | |
2763 | * | |
2764 | * Purpose: | |
2765 | * Perform a copy according to the source object's | |
2766 | * declared strategy. This operation may block, | |
2767 | * and may be interrupted. | |
2768 | */ | |
0b4e3aa0 | 2769 | __private_extern__ kern_return_t |
1c79356b A |
2770 | vm_object_copy_strategically( |
2771 | register vm_object_t src_object, | |
2772 | vm_object_offset_t src_offset, | |
2773 | vm_object_size_t size, | |
2774 | vm_object_t *dst_object, /* OUT */ | |
2775 | vm_object_offset_t *dst_offset, /* OUT */ | |
2776 | boolean_t *dst_needs_copy) /* OUT */ | |
2777 | { | |
2778 | boolean_t result; | |
2779 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ | |
2d21ac55 | 2780 | boolean_t object_lock_shared = FALSE; |
1c79356b A |
2781 | memory_object_copy_strategy_t copy_strategy; |
2782 | ||
2783 | assert(src_object != VM_OBJECT_NULL); | |
2784 | ||
2d21ac55 A |
2785 | copy_strategy = src_object->copy_strategy; |
2786 | ||
2787 | if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
2788 | vm_object_lock_shared(src_object); | |
2789 | object_lock_shared = TRUE; | |
2790 | } else | |
2791 | vm_object_lock(src_object); | |
1c79356b A |
2792 | |
2793 | /* | |
2794 | * The copy strategy is only valid if the memory manager | |
2795 | * is "ready". Internal objects are always ready. | |
2796 | */ | |
2797 | ||
2798 | while (!src_object->internal && !src_object->pager_ready) { | |
9bccf70c | 2799 | wait_result_t wait_result; |
1c79356b | 2800 | |
2d21ac55 A |
2801 | if (object_lock_shared == TRUE) { |
2802 | vm_object_unlock(src_object); | |
2803 | vm_object_lock(src_object); | |
2804 | object_lock_shared = FALSE; | |
2805 | continue; | |
2806 | } | |
9bccf70c A |
2807 | wait_result = vm_object_sleep( src_object, |
2808 | VM_OBJECT_EVENT_PAGER_READY, | |
2809 | interruptible); | |
2810 | if (wait_result != THREAD_AWAKENED) { | |
2811 | vm_object_unlock(src_object); | |
1c79356b A |
2812 | *dst_object = VM_OBJECT_NULL; |
2813 | *dst_offset = 0; | |
2814 | *dst_needs_copy = FALSE; | |
2815 | return(MACH_SEND_INTERRUPTED); | |
2816 | } | |
1c79356b A |
2817 | } |
2818 | ||
1c79356b A |
2819 | /* |
2820 | * Use the appropriate copy strategy. | |
2821 | */ | |
2822 | ||
2823 | switch (copy_strategy) { | |
55e303ae A |
2824 | case MEMORY_OBJECT_COPY_DELAY: |
2825 | *dst_object = vm_object_copy_delayed(src_object, | |
2d21ac55 | 2826 | src_offset, size, object_lock_shared); |
55e303ae A |
2827 | if (*dst_object != VM_OBJECT_NULL) { |
2828 | *dst_offset = src_offset; | |
2829 | *dst_needs_copy = TRUE; | |
2830 | result = KERN_SUCCESS; | |
2831 | break; | |
2832 | } | |
2833 | vm_object_lock(src_object); | |
2834 | /* fall thru when delayed copy not allowed */ | |
2835 | ||
1c79356b A |
2836 | case MEMORY_OBJECT_COPY_NONE: |
2837 | result = vm_object_copy_slowly(src_object, src_offset, size, | |
2838 | interruptible, dst_object); | |
2839 | if (result == KERN_SUCCESS) { | |
2840 | *dst_offset = 0; | |
2841 | *dst_needs_copy = FALSE; | |
2842 | } | |
2843 | break; | |
2844 | ||
2845 | case MEMORY_OBJECT_COPY_CALL: | |
2846 | result = vm_object_copy_call(src_object, src_offset, size, | |
2847 | dst_object); | |
2848 | if (result == KERN_SUCCESS) { | |
2849 | *dst_offset = src_offset; | |
2850 | *dst_needs_copy = TRUE; | |
2851 | } | |
2852 | break; | |
2853 | ||
1c79356b A |
2854 | case MEMORY_OBJECT_COPY_SYMMETRIC: |
2855 | XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n",(natural_t)src_object, src_offset, size, 0, 0); | |
2856 | vm_object_unlock(src_object); | |
2857 | result = KERN_MEMORY_RESTART_COPY; | |
2858 | break; | |
2859 | ||
2860 | default: | |
2861 | panic("copy_strategically: bad strategy"); | |
2862 | result = KERN_INVALID_ARGUMENT; | |
2863 | } | |
2864 | return(result); | |
2865 | } | |
2866 | ||
2867 | /* | |
2868 | * vm_object_shadow: | |
2869 | * | |
2870 | * Create a new object which is backed by the | |
2871 | * specified existing object range. The source | |
2872 | * object reference is deallocated. | |
2873 | * | |
2874 | * The new object and offset into that object | |
2875 | * are returned in the source parameters. | |
2876 | */ | |
2877 | boolean_t vm_object_shadow_check = FALSE; | |
2878 | ||
0b4e3aa0 | 2879 | __private_extern__ boolean_t |
1c79356b A |
2880 | vm_object_shadow( |
2881 | vm_object_t *object, /* IN/OUT */ | |
2882 | vm_object_offset_t *offset, /* IN/OUT */ | |
2883 | vm_object_size_t length) | |
2884 | { | |
2885 | register vm_object_t source; | |
2886 | register vm_object_t result; | |
2887 | ||
2888 | source = *object; | |
2d21ac55 A |
2889 | #if 0 |
2890 | /* | |
2891 | * XXX FBDP | |
2892 | * This assertion is valid but it gets triggered by Rosetta for example | |
2893 | * due to a combination of vm_remap() that changes a VM object's | |
2894 | * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY) | |
2895 | * that then sets "needs_copy" on its map entry. This creates a | |
2896 | * mapping situation that VM should never see and doesn't know how to | |
2897 | * handle. | |
2898 | * It's not clear if this can create any real problem but we should | |
2899 | * look into fixing this, probably by having vm_protect(VM_PROT_COPY) | |
2900 | * do more than just set "needs_copy" to handle the copy-on-write... | |
2901 | * In the meantime, let's disable the assertion. | |
2902 | */ | |
1c79356b | 2903 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); |
2d21ac55 | 2904 | #endif |
1c79356b A |
2905 | |
2906 | /* | |
2907 | * Determine if we really need a shadow. | |
2908 | */ | |
2909 | ||
2910 | if (vm_object_shadow_check && source->ref_count == 1 && | |
2911 | (source->shadow == VM_OBJECT_NULL || | |
2912 | source->shadow->copy == VM_OBJECT_NULL)) | |
2913 | { | |
2914 | source->shadowed = FALSE; | |
2915 | return FALSE; | |
2916 | } | |
2917 | ||
2918 | /* | |
2919 | * Allocate a new object with the given length | |
2920 | */ | |
2921 | ||
2922 | if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) | |
2923 | panic("vm_object_shadow: no object for shadowing"); | |
2924 | ||
2925 | /* | |
2926 | * The new object shadows the source object, adding | |
2927 | * a reference to it. Our caller changes his reference | |
2928 | * to point to the new object, removing a reference to | |
2929 | * the source object. Net result: no change of reference | |
2930 | * count. | |
2931 | */ | |
2932 | result->shadow = source; | |
2933 | ||
2934 | /* | |
2935 | * Store the offset into the source object, | |
2936 | * and fix up the offset into the new object. | |
2937 | */ | |
2938 | ||
2939 | result->shadow_offset = *offset; | |
2940 | ||
2941 | /* | |
2942 | * Return the new things | |
2943 | */ | |
2944 | ||
2945 | *offset = 0; | |
2946 | *object = result; | |
2947 | return TRUE; | |
2948 | } | |
2949 | ||
2950 | /* | |
2951 | * The relationship between vm_object structures and | |
0b4e3aa0 | 2952 | * the memory_object requires careful synchronization. |
1c79356b | 2953 | * |
0b4e3aa0 A |
2954 | * All associations are created by memory_object_create_named |
2955 | * for external pagers and vm_object_pager_create for internal | |
2956 | * objects as follows: | |
2957 | * | |
2958 | * pager: the memory_object itself, supplied by | |
1c79356b A |
2959 | * the user requesting a mapping (or the kernel, |
2960 | * when initializing internal objects); the | |
2961 | * kernel simulates holding send rights by keeping | |
2962 | * a port reference; | |
0b4e3aa0 | 2963 | * |
1c79356b A |
2964 | * pager_request: |
2965 | * the memory object control port, | |
2966 | * created by the kernel; the kernel holds | |
2967 | * receive (and ownership) rights to this | |
2968 | * port, but no other references. | |
1c79356b A |
2969 | * |
2970 | * When initialization is complete, the "initialized" field | |
2971 | * is asserted. Other mappings using a particular memory object, | |
2972 | * and any references to the vm_object gained through the | |
2973 | * port association must wait for this initialization to occur. | |
2974 | * | |
2975 | * In order to allow the memory manager to set attributes before | |
2976 | * requests (notably virtual copy operations, but also data or | |
2977 | * unlock requests) are made, a "ready" attribute is made available. | |
2978 | * Only the memory manager may affect the value of this attribute. | |
2979 | * Its value does not affect critical kernel functions, such as | |
2980 | * internal object initialization or destruction. [Furthermore, | |
2981 | * memory objects created by the kernel are assumed to be ready | |
2982 | * immediately; the default memory manager need not explicitly | |
2983 | * set the "ready" attribute.] | |
2984 | * | |
2985 | * [Both the "initialized" and "ready" attribute wait conditions | |
2986 | * use the "pager" field as the wait event.] | |
2987 | * | |
2988 | * The port associations can be broken down by any of the | |
2989 | * following routines: | |
2990 | * vm_object_terminate: | |
2991 | * No references to the vm_object remain, and | |
2992 | * the object cannot (or will not) be cached. | |
2993 | * This is the normal case, and is done even | |
2994 | * though one of the other cases has already been | |
2995 | * done. | |
1c79356b A |
2996 | * memory_object_destroy: |
2997 | * The memory manager has requested that the | |
0b4e3aa0 A |
2998 | * kernel relinquish references to the memory |
2999 | * object. [The memory manager may not want to | |
3000 | * destroy the memory object, but may wish to | |
3001 | * refuse or tear down existing memory mappings.] | |
3002 | * | |
1c79356b A |
3003 | * Each routine that breaks an association must break all of |
3004 | * them at once. At some later time, that routine must clear | |
0b4e3aa0 | 3005 | * the pager field and release the memory object references. |
1c79356b A |
3006 | * [Furthermore, each routine must cope with the simultaneous |
3007 | * or previous operations of the others.] | |
3008 | * | |
3009 | * In addition to the lock on the object, the vm_object_cache_lock | |
0b4e3aa0 A |
3010 | * governs the associations. References gained through the |
3011 | * association require use of the cache lock. | |
1c79356b | 3012 | * |
0b4e3aa0 | 3013 | * Because the pager field may be cleared spontaneously, it |
1c79356b A |
3014 | * cannot be used to determine whether a memory object has |
3015 | * ever been associated with a particular vm_object. [This | |
2d21ac55 A |
3016 | * knowledge is important to the shadow object mechanism.] |
3017 | * For this reason, an additional "created" attribute is | |
3018 | * provided. | |
3019 | * | |
3020 | * During various paging operations, the pager reference found in the | |
3021 | * vm_object must be valid. To prevent this from being released, | |
3022 | * (other than being removed, i.e., made null), routines may use | |
3023 | * the vm_object_paging_begin/end routines [actually, macros]. | |
3024 | * The implementation uses the "paging_in_progress" and "wanted" fields. | |
3025 | * [Operations that alter the validity of the pager values include the | |
3026 | * termination routines and vm_object_collapse.] | |
3027 | */ | |
1c79356b | 3028 | |
1c79356b A |
3029 | |
3030 | /* | |
3031 | * Routine: vm_object_enter | |
3032 | * Purpose: | |
3033 | * Find a VM object corresponding to the given | |
3034 | * pager; if no such object exists, create one, | |
3035 | * and initialize the pager. | |
3036 | */ | |
3037 | vm_object_t | |
3038 | vm_object_enter( | |
0b4e3aa0 | 3039 | memory_object_t pager, |
1c79356b A |
3040 | vm_object_size_t size, |
3041 | boolean_t internal, | |
3042 | boolean_t init, | |
0b4e3aa0 | 3043 | boolean_t named) |
1c79356b A |
3044 | { |
3045 | register vm_object_t object; | |
3046 | vm_object_t new_object; | |
3047 | boolean_t must_init; | |
1c79356b | 3048 | vm_object_hash_entry_t entry, new_entry; |
2d21ac55 | 3049 | uint32_t try_failed_count = 0; |
1c79356b | 3050 | |
0b4e3aa0 | 3051 | if (pager == MEMORY_OBJECT_NULL) |
1c79356b A |
3052 | return(vm_object_allocate(size)); |
3053 | ||
3054 | new_object = VM_OBJECT_NULL; | |
3055 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
3056 | must_init = init; | |
3057 | ||
3058 | /* | |
3059 | * Look for an object associated with this port. | |
3060 | */ | |
2d21ac55 | 3061 | Retry: |
1c79356b | 3062 | vm_object_cache_lock(); |
55e303ae | 3063 | do { |
1c79356b A |
3064 | entry = vm_object_hash_lookup(pager, FALSE); |
3065 | ||
55e303ae A |
3066 | if (entry == VM_OBJECT_HASH_ENTRY_NULL) { |
3067 | if (new_object == VM_OBJECT_NULL) { | |
3068 | /* | |
3069 | * We must unlock to create a new object; | |
3070 | * if we do so, we must try the lookup again. | |
3071 | */ | |
3072 | vm_object_cache_unlock(); | |
3073 | assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL); | |
3074 | new_entry = vm_object_hash_entry_alloc(pager); | |
3075 | new_object = vm_object_allocate(size); | |
3076 | vm_object_cache_lock(); | |
3077 | } else { | |
3078 | /* | |
3079 | * Lookup failed twice, and we have something | |
3080 | * to insert; set the object. | |
3081 | */ | |
3082 | vm_object_hash_insert(new_entry); | |
3083 | entry = new_entry; | |
3084 | entry->object = new_object; | |
3085 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
3086 | new_object = VM_OBJECT_NULL; | |
3087 | must_init = TRUE; | |
3088 | } | |
3089 | } else if (entry->object == VM_OBJECT_NULL) { | |
3090 | /* | |
3091 | * If a previous object is being terminated, | |
3092 | * we must wait for the termination message | |
3093 | * to be queued (and lookup the entry again). | |
3094 | */ | |
1c79356b | 3095 | entry->waiting = TRUE; |
55e303ae | 3096 | entry = VM_OBJECT_HASH_ENTRY_NULL; |
1c79356b A |
3097 | assert_wait((event_t) pager, THREAD_UNINT); |
3098 | vm_object_cache_unlock(); | |
91447636 | 3099 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 3100 | vm_object_cache_lock(); |
1c79356b | 3101 | } |
55e303ae | 3102 | } while (entry == VM_OBJECT_HASH_ENTRY_NULL); |
1c79356b A |
3103 | |
3104 | object = entry->object; | |
3105 | assert(object != VM_OBJECT_NULL); | |
3106 | ||
3107 | if (!must_init) { | |
2d21ac55 A |
3108 | if (!vm_object_lock_try(object)) { |
3109 | ||
3110 | vm_object_cache_unlock(); | |
3111 | ||
3112 | try_failed_count++; | |
3113 | mutex_pause(try_failed_count); /* wait a bit */ | |
3114 | ||
3115 | goto Retry; | |
3116 | } | |
1c79356b | 3117 | assert(!internal || object->internal); |
0b4e3aa0 A |
3118 | if (named) { |
3119 | assert(!object->named); | |
1c79356b | 3120 | object->named = TRUE; |
0b4e3aa0 | 3121 | } |
1c79356b A |
3122 | if (object->ref_count == 0) { |
3123 | XPR(XPR_VM_OBJECT_CACHE, | |
3124 | "vm_object_enter: removing %x from cache, head (%x, %x)\n", | |
3125 | (integer_t)object, | |
3126 | (integer_t)vm_object_cached_list.next, | |
3127 | (integer_t)vm_object_cached_list.prev, 0,0); | |
3128 | queue_remove(&vm_object_cached_list, object, | |
3129 | vm_object_t, cached_list); | |
3130 | vm_object_cached_count--; | |
3131 | } | |
2d21ac55 | 3132 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
3133 | object->ref_count++; |
3134 | vm_object_res_reference(object); | |
3135 | vm_object_unlock(object); | |
3136 | ||
2d21ac55 | 3137 | VM_STAT_INCR(hits); |
1c79356b A |
3138 | } |
3139 | assert(object->ref_count > 0); | |
3140 | ||
2d21ac55 | 3141 | VM_STAT_INCR(lookups); |
1c79356b A |
3142 | |
3143 | vm_object_cache_unlock(); | |
3144 | ||
3145 | XPR(XPR_VM_OBJECT, | |
3146 | "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n", | |
3147 | (integer_t)pager, (integer_t)object, must_init, 0, 0); | |
3148 | ||
3149 | /* | |
3150 | * If we raced to create a vm_object but lost, let's | |
3151 | * throw away ours. | |
3152 | */ | |
3153 | ||
3154 | if (new_object != VM_OBJECT_NULL) | |
3155 | vm_object_deallocate(new_object); | |
3156 | ||
3157 | if (new_entry != VM_OBJECT_HASH_ENTRY_NULL) | |
3158 | vm_object_hash_entry_free(new_entry); | |
3159 | ||
3160 | if (must_init) { | |
91447636 | 3161 | memory_object_control_t control; |
1c79356b A |
3162 | |
3163 | /* | |
3164 | * Allocate request port. | |
3165 | */ | |
3166 | ||
91447636 A |
3167 | control = memory_object_control_allocate(object); |
3168 | assert (control != MEMORY_OBJECT_CONTROL_NULL); | |
1c79356b A |
3169 | |
3170 | vm_object_lock(object); | |
91447636 | 3171 | assert(object != kernel_object); |
1c79356b A |
3172 | |
3173 | /* | |
0b4e3aa0 | 3174 | * Copy the reference we were given. |
1c79356b A |
3175 | */ |
3176 | ||
0b4e3aa0 | 3177 | memory_object_reference(pager); |
1c79356b A |
3178 | object->pager_created = TRUE; |
3179 | object->pager = pager; | |
3180 | object->internal = internal; | |
3181 | object->pager_trusted = internal; | |
3182 | if (!internal) { | |
3183 | /* copy strategy invalid until set by memory manager */ | |
3184 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; | |
3185 | } | |
91447636 | 3186 | object->pager_control = control; |
1c79356b A |
3187 | object->pager_ready = FALSE; |
3188 | ||
1c79356b A |
3189 | vm_object_unlock(object); |
3190 | ||
3191 | /* | |
3192 | * Let the pager know we're using it. | |
3193 | */ | |
3194 | ||
0b4e3aa0 | 3195 | (void) memory_object_init(pager, |
91447636 | 3196 | object->pager_control, |
0b4e3aa0 | 3197 | PAGE_SIZE); |
1c79356b A |
3198 | |
3199 | vm_object_lock(object); | |
0b4e3aa0 A |
3200 | if (named) |
3201 | object->named = TRUE; | |
1c79356b A |
3202 | if (internal) { |
3203 | object->pager_ready = TRUE; | |
3204 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
3205 | } | |
3206 | ||
3207 | object->pager_initialized = TRUE; | |
3208 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); | |
3209 | } else { | |
3210 | vm_object_lock(object); | |
3211 | } | |
3212 | ||
3213 | /* | |
3214 | * [At this point, the object must be locked] | |
3215 | */ | |
3216 | ||
3217 | /* | |
3218 | * Wait for the work above to be done by the first | |
3219 | * thread to map this object. | |
3220 | */ | |
3221 | ||
3222 | while (!object->pager_initialized) { | |
9bccf70c | 3223 | vm_object_sleep(object, |
1c79356b A |
3224 | VM_OBJECT_EVENT_INITIALIZED, |
3225 | THREAD_UNINT); | |
1c79356b A |
3226 | } |
3227 | vm_object_unlock(object); | |
3228 | ||
3229 | XPR(XPR_VM_OBJECT, | |
3230 | "vm_object_enter: vm_object %x, memory_object %x, internal %d\n", | |
3231 | (integer_t)object, (integer_t)object->pager, internal, 0,0); | |
3232 | return(object); | |
3233 | } | |
3234 | ||
3235 | /* | |
3236 | * Routine: vm_object_pager_create | |
3237 | * Purpose: | |
3238 | * Create a memory object for an internal object. | |
3239 | * In/out conditions: | |
3240 | * The object is locked on entry and exit; | |
3241 | * it may be unlocked within this call. | |
3242 | * Limitations: | |
3243 | * Only one thread may be performing a | |
3244 | * vm_object_pager_create on an object at | |
3245 | * a time. Presumably, only the pageout | |
3246 | * daemon will be using this routine. | |
3247 | */ | |
3248 | ||
3249 | void | |
3250 | vm_object_pager_create( | |
3251 | register vm_object_t object) | |
3252 | { | |
0b4e3aa0 | 3253 | memory_object_t pager; |
1c79356b A |
3254 | vm_object_hash_entry_t entry; |
3255 | #if MACH_PAGEMAP | |
3256 | vm_object_size_t size; | |
3257 | vm_external_map_t map; | |
3258 | #endif /* MACH_PAGEMAP */ | |
3259 | ||
3260 | XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n", | |
3261 | (integer_t)object, 0,0,0,0); | |
3262 | ||
91447636 A |
3263 | assert(object != kernel_object); |
3264 | ||
1c79356b A |
3265 | if (memory_manager_default_check() != KERN_SUCCESS) |
3266 | return; | |
3267 | ||
3268 | /* | |
3269 | * Prevent collapse or termination by holding a paging reference | |
3270 | */ | |
3271 | ||
3272 | vm_object_paging_begin(object); | |
3273 | if (object->pager_created) { | |
3274 | /* | |
3275 | * Someone else got to it first... | |
3276 | * wait for them to finish initializing the ports | |
3277 | */ | |
3278 | while (!object->pager_initialized) { | |
9bccf70c A |
3279 | vm_object_sleep(object, |
3280 | VM_OBJECT_EVENT_INITIALIZED, | |
3281 | THREAD_UNINT); | |
1c79356b A |
3282 | } |
3283 | vm_object_paging_end(object); | |
3284 | return; | |
3285 | } | |
3286 | ||
3287 | /* | |
3288 | * Indicate that a memory object has been assigned | |
3289 | * before dropping the lock, to prevent a race. | |
3290 | */ | |
3291 | ||
3292 | object->pager_created = TRUE; | |
3293 | object->paging_offset = 0; | |
3294 | ||
3295 | #if MACH_PAGEMAP | |
3296 | size = object->size; | |
3297 | #endif /* MACH_PAGEMAP */ | |
3298 | vm_object_unlock(object); | |
3299 | ||
3300 | #if MACH_PAGEMAP | |
3301 | map = vm_external_create(size); | |
3302 | vm_object_lock(object); | |
3303 | assert(object->size == size); | |
3304 | object->existence_map = map; | |
3305 | vm_object_unlock(object); | |
3306 | #endif /* MACH_PAGEMAP */ | |
3307 | ||
3308 | /* | |
0b4e3aa0 | 3309 | * Create the [internal] pager, and associate it with this object. |
1c79356b | 3310 | * |
0b4e3aa0 | 3311 | * We make the association here so that vm_object_enter() |
1c79356b A |
3312 | * can look up the object to complete initializing it. No |
3313 | * user will ever map this object. | |
3314 | */ | |
3315 | { | |
0b4e3aa0 | 3316 | memory_object_default_t dmm; |
1c79356b | 3317 | |
0b4e3aa0 | 3318 | /* acquire a reference for the default memory manager */ |
2d21ac55 | 3319 | dmm = memory_manager_default_reference(); |
1c79356b | 3320 | |
1c79356b A |
3321 | assert(object->temporary); |
3322 | ||
0b4e3aa0 A |
3323 | /* create our new memory object */ |
3324 | (void) memory_object_create(dmm, object->size, &pager); | |
3325 | ||
3326 | memory_object_default_deallocate(dmm); | |
1c79356b A |
3327 | } |
3328 | ||
3329 | entry = vm_object_hash_entry_alloc(pager); | |
3330 | ||
3331 | vm_object_cache_lock(); | |
3332 | vm_object_hash_insert(entry); | |
3333 | ||
3334 | entry->object = object; | |
3335 | vm_object_cache_unlock(); | |
3336 | ||
3337 | /* | |
0b4e3aa0 | 3338 | * A reference was returned by |
1c79356b A |
3339 | * memory_object_create(), and it is |
3340 | * copied by vm_object_enter(). | |
3341 | */ | |
3342 | ||
3343 | if (vm_object_enter(pager, object->size, TRUE, TRUE, FALSE) != object) | |
3344 | panic("vm_object_pager_create: mismatch"); | |
3345 | ||
3346 | /* | |
0b4e3aa0 | 3347 | * Drop the reference we were passed. |
1c79356b | 3348 | */ |
0b4e3aa0 | 3349 | memory_object_deallocate(pager); |
1c79356b A |
3350 | |
3351 | vm_object_lock(object); | |
3352 | ||
3353 | /* | |
3354 | * Release the paging reference | |
3355 | */ | |
3356 | vm_object_paging_end(object); | |
3357 | } | |
3358 | ||
3359 | /* | |
3360 | * Routine: vm_object_remove | |
3361 | * Purpose: | |
3362 | * Eliminate the pager/object association | |
3363 | * for this pager. | |
3364 | * Conditions: | |
3365 | * The object cache must be locked. | |
3366 | */ | |
0b4e3aa0 | 3367 | __private_extern__ void |
1c79356b A |
3368 | vm_object_remove( |
3369 | vm_object_t object) | |
3370 | { | |
0b4e3aa0 | 3371 | memory_object_t pager; |
1c79356b | 3372 | |
0b4e3aa0 | 3373 | if ((pager = object->pager) != MEMORY_OBJECT_NULL) { |
1c79356b A |
3374 | vm_object_hash_entry_t entry; |
3375 | ||
0b4e3aa0 | 3376 | entry = vm_object_hash_lookup(pager, FALSE); |
1c79356b A |
3377 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) |
3378 | entry->object = VM_OBJECT_NULL; | |
3379 | } | |
3380 | ||
1c79356b A |
3381 | } |
3382 | ||
3383 | /* | |
3384 | * Global variables for vm_object_collapse(): | |
3385 | * | |
3386 | * Counts for normal collapses and bypasses. | |
3387 | * Debugging variables, to watch or disable collapse. | |
3388 | */ | |
0b4e3aa0 A |
3389 | static long object_collapses = 0; |
3390 | static long object_bypasses = 0; | |
1c79356b | 3391 | |
0b4e3aa0 A |
3392 | static boolean_t vm_object_collapse_allowed = TRUE; |
3393 | static boolean_t vm_object_bypass_allowed = TRUE; | |
3394 | ||
2d21ac55 | 3395 | #if MACH_PAGEMAP |
0b4e3aa0 A |
3396 | static int vm_external_discarded; |
3397 | static int vm_external_collapsed; | |
2d21ac55 | 3398 | #endif |
1c79356b | 3399 | |
91447636 A |
3400 | unsigned long vm_object_collapse_encrypted = 0; |
3401 | ||
1c79356b | 3402 | /* |
0b4e3aa0 A |
3403 | * Routine: vm_object_do_collapse |
3404 | * Purpose: | |
3405 | * Collapse an object with the object backing it. | |
3406 | * Pages in the backing object are moved into the | |
3407 | * parent, and the backing object is deallocated. | |
3408 | * Conditions: | |
3409 | * Both objects and the cache are locked; the page | |
3410 | * queues are unlocked. | |
1c79356b A |
3411 | * |
3412 | */ | |
0b4e3aa0 | 3413 | static void |
1c79356b A |
3414 | vm_object_do_collapse( |
3415 | vm_object_t object, | |
3416 | vm_object_t backing_object) | |
3417 | { | |
3418 | vm_page_t p, pp; | |
3419 | vm_object_offset_t new_offset, backing_offset; | |
3420 | vm_object_size_t size; | |
3421 | ||
3422 | backing_offset = object->shadow_offset; | |
3423 | size = object->size; | |
3424 | ||
1c79356b A |
3425 | /* |
3426 | * Move all in-memory pages from backing_object | |
3427 | * to the parent. Pages that have been paged out | |
3428 | * will be overwritten by any of the parent's | |
3429 | * pages that shadow them. | |
3430 | */ | |
3431 | ||
3432 | while (!queue_empty(&backing_object->memq)) { | |
3433 | ||
3434 | p = (vm_page_t) queue_first(&backing_object->memq); | |
3435 | ||
3436 | new_offset = (p->offset - backing_offset); | |
3437 | ||
3438 | assert(!p->busy || p->absent); | |
91447636 | 3439 | |
1c79356b A |
3440 | /* |
3441 | * If the parent has a page here, or if | |
3442 | * this page falls outside the parent, | |
3443 | * dispose of it. | |
3444 | * | |
3445 | * Otherwise, move it as planned. | |
3446 | */ | |
3447 | ||
3448 | if (p->offset < backing_offset || new_offset >= size) { | |
3449 | VM_PAGE_FREE(p); | |
3450 | } else { | |
91447636 A |
3451 | /* |
3452 | * ENCRYPTED SWAP: | |
3453 | * The encryption key includes the "pager" and the | |
2d21ac55 A |
3454 | * "paging_offset". These will not change during the |
3455 | * object collapse, so we can just move an encrypted | |
3456 | * page from one object to the other in this case. | |
3457 | * We can't decrypt the page here, since we can't drop | |
91447636 | 3458 | * the object lock. |
91447636 | 3459 | */ |
2d21ac55 A |
3460 | if (p->encrypted) { |
3461 | vm_object_collapse_encrypted++; | |
3462 | } | |
1c79356b A |
3463 | pp = vm_page_lookup(object, new_offset); |
3464 | if (pp == VM_PAGE_NULL) { | |
3465 | ||
3466 | /* | |
3467 | * Parent now has no page. | |
3468 | * Move the backing object's page up. | |
3469 | */ | |
3470 | ||
2d21ac55 | 3471 | vm_page_rename(p, object, new_offset, TRUE); |
1c79356b A |
3472 | #if MACH_PAGEMAP |
3473 | } else if (pp->absent) { | |
3474 | ||
3475 | /* | |
3476 | * Parent has an absent page... | |
3477 | * it's not being paged in, so | |
3478 | * it must really be missing from | |
3479 | * the parent. | |
3480 | * | |
3481 | * Throw out the absent page... | |
3482 | * any faults looking for that | |
3483 | * page will restart with the new | |
3484 | * one. | |
3485 | */ | |
3486 | ||
3487 | VM_PAGE_FREE(pp); | |
2d21ac55 | 3488 | vm_page_rename(p, object, new_offset, TRUE); |
1c79356b A |
3489 | #endif /* MACH_PAGEMAP */ |
3490 | } else { | |
3491 | assert(! pp->absent); | |
3492 | ||
3493 | /* | |
3494 | * Parent object has a real page. | |
3495 | * Throw away the backing object's | |
3496 | * page. | |
3497 | */ | |
3498 | VM_PAGE_FREE(p); | |
3499 | } | |
3500 | } | |
3501 | } | |
3502 | ||
55e303ae | 3503 | #if !MACH_PAGEMAP |
2d21ac55 | 3504 | assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL)) |
55e303ae | 3505 | || (!backing_object->pager_created |
2d21ac55 | 3506 | && (backing_object->pager == MEMORY_OBJECT_NULL))); |
55e303ae A |
3507 | #else |
3508 | assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL); | |
3509 | #endif /* !MACH_PAGEMAP */ | |
1c79356b | 3510 | |
0b4e3aa0 | 3511 | if (backing_object->pager != MEMORY_OBJECT_NULL) { |
1c79356b A |
3512 | vm_object_hash_entry_t entry; |
3513 | ||
3514 | /* | |
3515 | * Move the pager from backing_object to object. | |
3516 | * | |
3517 | * XXX We're only using part of the paging space | |
3518 | * for keeps now... we ought to discard the | |
3519 | * unused portion. | |
3520 | */ | |
3521 | ||
55e303ae | 3522 | assert(!object->paging_in_progress); |
1c79356b A |
3523 | object->pager = backing_object->pager; |
3524 | entry = vm_object_hash_lookup(object->pager, FALSE); | |
3525 | assert(entry != VM_OBJECT_HASH_ENTRY_NULL); | |
3526 | entry->object = object; | |
3527 | object->pager_created = backing_object->pager_created; | |
91447636 | 3528 | object->pager_control = backing_object->pager_control; |
1c79356b A |
3529 | object->pager_ready = backing_object->pager_ready; |
3530 | object->pager_initialized = backing_object->pager_initialized; | |
1c79356b A |
3531 | object->paging_offset = |
3532 | backing_object->paging_offset + backing_offset; | |
91447636 A |
3533 | if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) { |
3534 | memory_object_control_collapse(object->pager_control, | |
0b4e3aa0 | 3535 | object); |
1c79356b A |
3536 | } |
3537 | } | |
3538 | ||
3539 | vm_object_cache_unlock(); | |
3540 | ||
1c79356b A |
3541 | #if MACH_PAGEMAP |
3542 | /* | |
3543 | * If the shadow offset is 0, the use the existence map from | |
3544 | * the backing object if there is one. If the shadow offset is | |
3545 | * not zero, toss it. | |
3546 | * | |
3547 | * XXX - If the shadow offset is not 0 then a bit copy is needed | |
3548 | * if the map is to be salvaged. For now, we just just toss the | |
3549 | * old map, giving the collapsed object no map. This means that | |
3550 | * the pager is invoked for zero fill pages. If analysis shows | |
3551 | * that this happens frequently and is a performance hit, then | |
3552 | * this code should be fixed to salvage the map. | |
3553 | */ | |
3554 | assert(object->existence_map == VM_EXTERNAL_NULL); | |
3555 | if (backing_offset || (size != backing_object->size)) { | |
3556 | vm_external_discarded++; | |
3557 | vm_external_destroy(backing_object->existence_map, | |
3558 | backing_object->size); | |
3559 | } | |
3560 | else { | |
3561 | vm_external_collapsed++; | |
3562 | object->existence_map = backing_object->existence_map; | |
3563 | } | |
3564 | backing_object->existence_map = VM_EXTERNAL_NULL; | |
3565 | #endif /* MACH_PAGEMAP */ | |
3566 | ||
3567 | /* | |
3568 | * Object now shadows whatever backing_object did. | |
3569 | * Note that the reference to backing_object->shadow | |
3570 | * moves from within backing_object to within object. | |
3571 | */ | |
3572 | ||
91447636 A |
3573 | assert(!object->phys_contiguous); |
3574 | assert(!backing_object->phys_contiguous); | |
1c79356b | 3575 | object->shadow = backing_object->shadow; |
91447636 A |
3576 | if (object->shadow) { |
3577 | object->shadow_offset += backing_object->shadow_offset; | |
3578 | } else { | |
3579 | /* no shadow, therefore no shadow offset... */ | |
3580 | object->shadow_offset = 0; | |
3581 | } | |
1c79356b | 3582 | assert((object->shadow == VM_OBJECT_NULL) || |
55e303ae | 3583 | (object->shadow->copy != backing_object)); |
1c79356b A |
3584 | |
3585 | /* | |
3586 | * Discard backing_object. | |
3587 | * | |
3588 | * Since the backing object has no pages, no | |
3589 | * pager left, and no object references within it, | |
3590 | * all that is necessary is to dispose of it. | |
3591 | */ | |
3592 | ||
3593 | assert((backing_object->ref_count == 1) && | |
3594 | (backing_object->resident_page_count == 0) && | |
3595 | (backing_object->paging_in_progress == 0)); | |
3596 | ||
1c79356b A |
3597 | backing_object->alive = FALSE; |
3598 | vm_object_unlock(backing_object); | |
3599 | ||
3600 | XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n", | |
3601 | (integer_t)backing_object, 0,0,0,0); | |
3602 | ||
2d21ac55 A |
3603 | vm_object_lock_destroy(backing_object); |
3604 | ||
91447636 | 3605 | zfree(vm_object_zone, backing_object); |
1c79356b A |
3606 | |
3607 | object_collapses++; | |
3608 | } | |
3609 | ||
0b4e3aa0 | 3610 | static void |
1c79356b A |
3611 | vm_object_do_bypass( |
3612 | vm_object_t object, | |
3613 | vm_object_t backing_object) | |
3614 | { | |
3615 | /* | |
3616 | * Make the parent shadow the next object | |
3617 | * in the chain. | |
3618 | */ | |
3619 | ||
2d21ac55 A |
3620 | vm_object_lock_assert_exclusive(backing_object); |
3621 | ||
1c79356b A |
3622 | #if TASK_SWAPPER |
3623 | /* | |
3624 | * Do object reference in-line to | |
3625 | * conditionally increment shadow's | |
3626 | * residence count. If object is not | |
3627 | * resident, leave residence count | |
3628 | * on shadow alone. | |
3629 | */ | |
3630 | if (backing_object->shadow != VM_OBJECT_NULL) { | |
3631 | vm_object_lock(backing_object->shadow); | |
2d21ac55 | 3632 | vm_object_lock_assert_exclusive(backing_object->shadow); |
1c79356b A |
3633 | backing_object->shadow->ref_count++; |
3634 | if (object->res_count != 0) | |
3635 | vm_object_res_reference(backing_object->shadow); | |
3636 | vm_object_unlock(backing_object->shadow); | |
3637 | } | |
3638 | #else /* TASK_SWAPPER */ | |
3639 | vm_object_reference(backing_object->shadow); | |
3640 | #endif /* TASK_SWAPPER */ | |
3641 | ||
91447636 A |
3642 | assert(!object->phys_contiguous); |
3643 | assert(!backing_object->phys_contiguous); | |
1c79356b | 3644 | object->shadow = backing_object->shadow; |
91447636 A |
3645 | if (object->shadow) { |
3646 | object->shadow_offset += backing_object->shadow_offset; | |
3647 | } else { | |
3648 | /* no shadow, therefore no shadow offset... */ | |
3649 | object->shadow_offset = 0; | |
3650 | } | |
1c79356b A |
3651 | |
3652 | /* | |
3653 | * Backing object might have had a copy pointer | |
3654 | * to us. If it did, clear it. | |
3655 | */ | |
3656 | if (backing_object->copy == object) { | |
3657 | backing_object->copy = VM_OBJECT_NULL; | |
3658 | } | |
3659 | ||
3660 | /* | |
3661 | * Drop the reference count on backing_object. | |
3662 | #if TASK_SWAPPER | |
3663 | * Since its ref_count was at least 2, it | |
3664 | * will not vanish; so we don't need to call | |
3665 | * vm_object_deallocate. | |
3666 | * [FBDP: that doesn't seem to be true any more] | |
3667 | * | |
3668 | * The res_count on the backing object is | |
3669 | * conditionally decremented. It's possible | |
3670 | * (via vm_pageout_scan) to get here with | |
3671 | * a "swapped" object, which has a 0 res_count, | |
3672 | * in which case, the backing object res_count | |
3673 | * is already down by one. | |
3674 | #else | |
3675 | * Don't call vm_object_deallocate unless | |
3676 | * ref_count drops to zero. | |
3677 | * | |
3678 | * The ref_count can drop to zero here if the | |
3679 | * backing object could be bypassed but not | |
3680 | * collapsed, such as when the backing object | |
3681 | * is temporary and cachable. | |
3682 | #endif | |
3683 | */ | |
3684 | if (backing_object->ref_count > 1) { | |
2d21ac55 | 3685 | vm_object_lock_assert_exclusive(backing_object); |
1c79356b A |
3686 | backing_object->ref_count--; |
3687 | #if TASK_SWAPPER | |
3688 | if (object->res_count != 0) | |
3689 | vm_object_res_deallocate(backing_object); | |
3690 | assert(backing_object->ref_count > 0); | |
3691 | #endif /* TASK_SWAPPER */ | |
3692 | vm_object_unlock(backing_object); | |
3693 | } else { | |
3694 | ||
3695 | /* | |
3696 | * Drop locks so that we can deallocate | |
3697 | * the backing object. | |
3698 | */ | |
3699 | ||
3700 | #if TASK_SWAPPER | |
3701 | if (object->res_count == 0) { | |
3702 | /* XXX get a reference for the deallocate below */ | |
3703 | vm_object_res_reference(backing_object); | |
3704 | } | |
3705 | #endif /* TASK_SWAPPER */ | |
3706 | vm_object_unlock(object); | |
3707 | vm_object_unlock(backing_object); | |
3708 | vm_object_deallocate(backing_object); | |
3709 | ||
3710 | /* | |
3711 | * Relock object. We don't have to reverify | |
3712 | * its state since vm_object_collapse will | |
3713 | * do that for us as it starts at the | |
3714 | * top of its loop. | |
3715 | */ | |
3716 | ||
3717 | vm_object_lock(object); | |
3718 | } | |
3719 | ||
3720 | object_bypasses++; | |
3721 | } | |
0b4e3aa0 | 3722 | |
1c79356b A |
3723 | |
3724 | /* | |
3725 | * vm_object_collapse: | |
3726 | * | |
3727 | * Perform an object collapse or an object bypass if appropriate. | |
3728 | * The real work of collapsing and bypassing is performed in | |
3729 | * the routines vm_object_do_collapse and vm_object_do_bypass. | |
3730 | * | |
3731 | * Requires that the object be locked and the page queues be unlocked. | |
3732 | * | |
3733 | */ | |
91447636 A |
3734 | static unsigned long vm_object_collapse_calls = 0; |
3735 | static unsigned long vm_object_collapse_objects = 0; | |
3736 | static unsigned long vm_object_collapse_do_collapse = 0; | |
3737 | static unsigned long vm_object_collapse_do_bypass = 0; | |
2d21ac55 | 3738 | static unsigned long vm_object_collapse_delays = 0; |
0b4e3aa0 | 3739 | __private_extern__ void |
1c79356b | 3740 | vm_object_collapse( |
55e303ae | 3741 | register vm_object_t object, |
0c530ab8 A |
3742 | register vm_object_offset_t hint_offset, |
3743 | boolean_t can_bypass) | |
1c79356b A |
3744 | { |
3745 | register vm_object_t backing_object; | |
55e303ae A |
3746 | register unsigned int rcount; |
3747 | register unsigned int size; | |
91447636 A |
3748 | vm_object_t original_object; |
3749 | ||
3750 | vm_object_collapse_calls++; | |
0b4e3aa0 | 3751 | |
0c530ab8 A |
3752 | if (! vm_object_collapse_allowed && |
3753 | ! (can_bypass && vm_object_bypass_allowed)) { | |
1c79356b A |
3754 | return; |
3755 | } | |
3756 | ||
3757 | XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n", | |
3758 | (integer_t)object, 0,0,0,0); | |
3759 | ||
91447636 A |
3760 | if (object == VM_OBJECT_NULL) |
3761 | return; | |
3762 | ||
3763 | original_object = object; | |
3764 | ||
1c79356b | 3765 | while (TRUE) { |
91447636 | 3766 | vm_object_collapse_objects++; |
1c79356b A |
3767 | /* |
3768 | * Verify that the conditions are right for either | |
3769 | * collapse or bypass: | |
1c79356b | 3770 | */ |
1c79356b A |
3771 | |
3772 | /* | |
3773 | * There is a backing object, and | |
3774 | */ | |
3775 | ||
91447636 A |
3776 | backing_object = object->shadow; |
3777 | if (backing_object == VM_OBJECT_NULL) { | |
3778 | if (object != original_object) { | |
3779 | vm_object_unlock(object); | |
3780 | } | |
1c79356b | 3781 | return; |
91447636 | 3782 | } |
1c79356b | 3783 | |
91447636 A |
3784 | /* |
3785 | * No pages in the object are currently | |
3786 | * being paged out, and | |
3787 | */ | |
2d21ac55 | 3788 | if (object->paging_in_progress != 0) { |
91447636 A |
3789 | /* try and collapse the rest of the shadow chain */ |
3790 | vm_object_lock(backing_object); | |
3791 | if (object != original_object) { | |
3792 | vm_object_unlock(object); | |
3793 | } | |
3794 | object = backing_object; | |
3795 | continue; | |
3796 | } | |
3797 | ||
1c79356b A |
3798 | vm_object_lock(backing_object); |
3799 | ||
3800 | /* | |
3801 | * ... | |
3802 | * The backing object is not read_only, | |
3803 | * and no pages in the backing object are | |
3804 | * currently being paged out. | |
3805 | * The backing object is internal. | |
3806 | * | |
3807 | */ | |
3808 | ||
3809 | if (!backing_object->internal || | |
3810 | backing_object->paging_in_progress != 0) { | |
91447636 A |
3811 | /* try and collapse the rest of the shadow chain */ |
3812 | if (object != original_object) { | |
3813 | vm_object_unlock(object); | |
3814 | } | |
3815 | object = backing_object; | |
3816 | continue; | |
1c79356b A |
3817 | } |
3818 | ||
3819 | /* | |
3820 | * The backing object can't be a copy-object: | |
3821 | * the shadow_offset for the copy-object must stay | |
3822 | * as 0. Furthermore (for the 'we have all the | |
3823 | * pages' case), if we bypass backing_object and | |
3824 | * just shadow the next object in the chain, old | |
3825 | * pages from that object would then have to be copied | |
3826 | * BOTH into the (former) backing_object and into the | |
3827 | * parent object. | |
3828 | */ | |
3829 | if (backing_object->shadow != VM_OBJECT_NULL && | |
55e303ae | 3830 | backing_object->shadow->copy == backing_object) { |
91447636 A |
3831 | /* try and collapse the rest of the shadow chain */ |
3832 | if (object != original_object) { | |
3833 | vm_object_unlock(object); | |
3834 | } | |
3835 | object = backing_object; | |
3836 | continue; | |
1c79356b A |
3837 | } |
3838 | ||
3839 | /* | |
3840 | * We can now try to either collapse the backing | |
3841 | * object (if the parent is the only reference to | |
3842 | * it) or (perhaps) remove the parent's reference | |
3843 | * to it. | |
1c79356b | 3844 | * |
0b4e3aa0 A |
3845 | * If there is exactly one reference to the backing |
3846 | * object, we may be able to collapse it into the | |
3847 | * parent. | |
1c79356b | 3848 | * |
55e303ae A |
3849 | * If MACH_PAGEMAP is defined: |
3850 | * The parent must not have a pager created for it, | |
3851 | * since collapsing a backing_object dumps new pages | |
3852 | * into the parent that its pager doesn't know about | |
3853 | * (and the collapse code can't merge the existence | |
3854 | * maps). | |
3855 | * Otherwise: | |
3856 | * As long as one of the objects is still not known | |
3857 | * to the pager, we can collapse them. | |
1c79356b | 3858 | */ |
1c79356b | 3859 | if (backing_object->ref_count == 1 && |
55e303ae A |
3860 | (!object->pager_created |
3861 | #if !MACH_PAGEMAP | |
91447636 | 3862 | || !backing_object->pager_created |
55e303ae A |
3863 | #endif /*!MACH_PAGEMAP */ |
3864 | ) && vm_object_collapse_allowed) { | |
1c79356b A |
3865 | |
3866 | XPR(XPR_VM_OBJECT, | |
91447636 | 3867 | "vm_object_collapse: %x to %x, pager %x, pager_control %x\n", |
1c79356b A |
3868 | (integer_t)backing_object, (integer_t)object, |
3869 | (integer_t)backing_object->pager, | |
91447636 | 3870 | (integer_t)backing_object->pager_control, 0); |
1c79356b A |
3871 | |
3872 | /* | |
3873 | * We need the cache lock for collapsing, | |
3874 | * but we must not deadlock. | |
3875 | */ | |
3876 | ||
3877 | if (! vm_object_cache_lock_try()) { | |
91447636 A |
3878 | if (object != original_object) { |
3879 | vm_object_unlock(object); | |
3880 | } | |
1c79356b A |
3881 | vm_object_unlock(backing_object); |
3882 | return; | |
3883 | } | |
3884 | ||
3885 | /* | |
3886 | * Collapse the object with its backing | |
3887 | * object, and try again with the object's | |
3888 | * new backing object. | |
3889 | */ | |
3890 | ||
3891 | vm_object_do_collapse(object, backing_object); | |
91447636 | 3892 | vm_object_collapse_do_collapse++; |
1c79356b A |
3893 | continue; |
3894 | } | |
3895 | ||
1c79356b A |
3896 | /* |
3897 | * Collapsing the backing object was not possible | |
3898 | * or permitted, so let's try bypassing it. | |
3899 | */ | |
3900 | ||
0c530ab8 | 3901 | if (! (can_bypass && vm_object_bypass_allowed)) { |
91447636 A |
3902 | /* try and collapse the rest of the shadow chain */ |
3903 | if (object != original_object) { | |
3904 | vm_object_unlock(object); | |
3905 | } | |
3906 | object = backing_object; | |
3907 | continue; | |
1c79356b A |
3908 | } |
3909 | ||
0b4e3aa0 | 3910 | |
1c79356b | 3911 | /* |
55e303ae A |
3912 | * If the object doesn't have all its pages present, |
3913 | * we have to make sure no pages in the backing object | |
3914 | * "show through" before bypassing it. | |
1c79356b | 3915 | */ |
55e303ae A |
3916 | size = atop(object->size); |
3917 | rcount = object->resident_page_count; | |
3918 | if (rcount != size) { | |
55e303ae A |
3919 | vm_object_offset_t offset; |
3920 | vm_object_offset_t backing_offset; | |
3921 | unsigned int backing_rcount; | |
3922 | unsigned int lookups = 0; | |
3923 | ||
3924 | /* | |
3925 | * If the backing object has a pager but no pagemap, | |
3926 | * then we cannot bypass it, because we don't know | |
3927 | * what pages it has. | |
3928 | */ | |
3929 | if (backing_object->pager_created | |
1c79356b | 3930 | #if MACH_PAGEMAP |
55e303ae | 3931 | && (backing_object->existence_map == VM_EXTERNAL_NULL) |
1c79356b | 3932 | #endif /* MACH_PAGEMAP */ |
55e303ae | 3933 | ) { |
91447636 A |
3934 | /* try and collapse the rest of the shadow chain */ |
3935 | if (object != original_object) { | |
3936 | vm_object_unlock(object); | |
3937 | } | |
3938 | object = backing_object; | |
3939 | continue; | |
55e303ae | 3940 | } |
1c79356b | 3941 | |
55e303ae A |
3942 | /* |
3943 | * If the object has a pager but no pagemap, | |
3944 | * then we cannot bypass it, because we don't know | |
3945 | * what pages it has. | |
3946 | */ | |
3947 | if (object->pager_created | |
0b4e3aa0 | 3948 | #if MACH_PAGEMAP |
55e303ae | 3949 | && (object->existence_map == VM_EXTERNAL_NULL) |
0b4e3aa0 | 3950 | #endif /* MACH_PAGEMAP */ |
55e303ae | 3951 | ) { |
91447636 A |
3952 | /* try and collapse the rest of the shadow chain */ |
3953 | if (object != original_object) { | |
3954 | vm_object_unlock(object); | |
3955 | } | |
3956 | object = backing_object; | |
3957 | continue; | |
55e303ae | 3958 | } |
0b4e3aa0 | 3959 | |
55e303ae A |
3960 | /* |
3961 | * If all of the pages in the backing object are | |
3962 | * shadowed by the parent object, the parent | |
3963 | * object no longer has to shadow the backing | |
3964 | * object; it can shadow the next one in the | |
3965 | * chain. | |
3966 | * | |
3967 | * If the backing object has existence info, | |
3968 | * we must check examine its existence info | |
3969 | * as well. | |
3970 | * | |
3971 | */ | |
1c79356b | 3972 | |
55e303ae A |
3973 | backing_offset = object->shadow_offset; |
3974 | backing_rcount = backing_object->resident_page_count; | |
1c79356b | 3975 | |
2d21ac55 | 3976 | #if MACH_PAGEMAP |
55e303ae A |
3977 | #define EXISTS_IN_OBJECT(obj, off, rc) \ |
3978 | (vm_external_state_get((obj)->existence_map, \ | |
3979 | (vm_offset_t)(off)) == VM_EXTERNAL_STATE_EXISTS || \ | |
3980 | ((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
2d21ac55 A |
3981 | #else |
3982 | #define EXISTS_IN_OBJECT(obj, off, rc) \ | |
3983 | (((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
3984 | #endif /* MACH_PAGEMAP */ | |
55e303ae A |
3985 | |
3986 | /* | |
3987 | * Check the hint location first | |
3988 | * (since it is often the quickest way out of here). | |
3989 | */ | |
3990 | if (object->cow_hint != ~(vm_offset_t)0) | |
3991 | hint_offset = (vm_object_offset_t)object->cow_hint; | |
3992 | else | |
3993 | hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ? | |
3994 | (hint_offset - 8 * PAGE_SIZE_64) : 0; | |
3995 | ||
3996 | if (EXISTS_IN_OBJECT(backing_object, hint_offset + | |
3997 | backing_offset, backing_rcount) && | |
3998 | !EXISTS_IN_OBJECT(object, hint_offset, rcount)) { | |
3999 | /* dependency right at the hint */ | |
4000 | object->cow_hint = (vm_offset_t)hint_offset; | |
91447636 A |
4001 | /* try and collapse the rest of the shadow chain */ |
4002 | if (object != original_object) { | |
4003 | vm_object_unlock(object); | |
4004 | } | |
4005 | object = backing_object; | |
4006 | continue; | |
0b4e3aa0 | 4007 | } |
55e303ae A |
4008 | |
4009 | /* | |
4010 | * If the object's window onto the backing_object | |
4011 | * is large compared to the number of resident | |
4012 | * pages in the backing object, it makes sense to | |
4013 | * walk the backing_object's resident pages first. | |
4014 | * | |
4015 | * NOTE: Pages may be in both the existence map and | |
4016 | * resident. So, we can't permanently decrement | |
4017 | * the rcount here because the second loop may | |
4018 | * find the same pages in the backing object' | |
4019 | * existence map that we found here and we would | |
4020 | * double-decrement the rcount. We also may or | |
4021 | * may not have found the | |
4022 | */ | |
2d21ac55 A |
4023 | if (backing_rcount && |
4024 | #if MACH_PAGEMAP | |
4025 | size > ((backing_object->existence_map) ? | |
4026 | backing_rcount : (backing_rcount >> 1)) | |
4027 | #else | |
4028 | size > (backing_rcount >> 1) | |
4029 | #endif /* MACH_PAGEMAP */ | |
4030 | ) { | |
55e303ae A |
4031 | unsigned int rc = rcount; |
4032 | vm_page_t p; | |
4033 | ||
4034 | backing_rcount = backing_object->resident_page_count; | |
4035 | p = (vm_page_t)queue_first(&backing_object->memq); | |
4036 | do { | |
4037 | /* Until we get more than one lookup lock */ | |
4038 | if (lookups > 256) { | |
2d21ac55 | 4039 | vm_object_collapse_delays++; |
55e303ae | 4040 | lookups = 0; |
2d21ac55 | 4041 | mutex_pause(0); |
55e303ae A |
4042 | } |
4043 | ||
4044 | offset = (p->offset - backing_offset); | |
4045 | if (offset < object->size && | |
4046 | offset != hint_offset && | |
4047 | !EXISTS_IN_OBJECT(object, offset, rc)) { | |
4048 | /* found a dependency */ | |
4049 | object->cow_hint = (vm_offset_t)offset; | |
91447636 | 4050 | break; |
55e303ae | 4051 | } |
91447636 | 4052 | p = (vm_page_t) queue_next(&p->listq); |
55e303ae A |
4053 | |
4054 | } while (--backing_rcount); | |
91447636 A |
4055 | if (backing_rcount != 0 ) { |
4056 | /* try and collapse the rest of the shadow chain */ | |
4057 | if (object != original_object) { | |
4058 | vm_object_unlock(object); | |
4059 | } | |
4060 | object = backing_object; | |
4061 | continue; | |
4062 | } | |
0b4e3aa0 | 4063 | } |
55e303ae A |
4064 | |
4065 | /* | |
4066 | * Walk through the offsets looking for pages in the | |
4067 | * backing object that show through to the object. | |
4068 | */ | |
2d21ac55 | 4069 | #if MACH_PAGEMAP |
55e303ae | 4070 | if (backing_rcount || backing_object->existence_map) { |
2d21ac55 A |
4071 | #else |
4072 | if (backing_rcount) { | |
4073 | #endif /* MACH_PAGEMAP */ | |
55e303ae A |
4074 | offset = hint_offset; |
4075 | ||
4076 | while((offset = | |
4077 | (offset + PAGE_SIZE_64 < object->size) ? | |
4078 | (offset + PAGE_SIZE_64) : 0) != hint_offset) { | |
4079 | ||
4080 | /* Until we get more than one lookup lock */ | |
4081 | if (lookups > 256) { | |
2d21ac55 | 4082 | vm_object_collapse_delays++; |
55e303ae | 4083 | lookups = 0; |
2d21ac55 | 4084 | mutex_pause(0); |
55e303ae A |
4085 | } |
4086 | ||
4087 | if (EXISTS_IN_OBJECT(backing_object, offset + | |
4088 | backing_offset, backing_rcount) && | |
4089 | !EXISTS_IN_OBJECT(object, offset, rcount)) { | |
4090 | /* found a dependency */ | |
4091 | object->cow_hint = (vm_offset_t)offset; | |
91447636 | 4092 | break; |
55e303ae A |
4093 | } |
4094 | } | |
91447636 A |
4095 | if (offset != hint_offset) { |
4096 | /* try and collapse the rest of the shadow chain */ | |
4097 | if (object != original_object) { | |
4098 | vm_object_unlock(object); | |
4099 | } | |
4100 | object = backing_object; | |
4101 | continue; | |
4102 | } | |
0b4e3aa0 A |
4103 | } |
4104 | } | |
1c79356b | 4105 | |
55e303ae A |
4106 | /* reset the offset hint for any objects deeper in the chain */ |
4107 | object->cow_hint = (vm_offset_t)0; | |
1c79356b A |
4108 | |
4109 | /* | |
4110 | * All interesting pages in the backing object | |
4111 | * already live in the parent or its pager. | |
4112 | * Thus we can bypass the backing object. | |
4113 | */ | |
4114 | ||
4115 | vm_object_do_bypass(object, backing_object); | |
91447636 | 4116 | vm_object_collapse_do_bypass++; |
1c79356b A |
4117 | |
4118 | /* | |
4119 | * Try again with this object's new backing object. | |
4120 | */ | |
4121 | ||
4122 | continue; | |
4123 | } | |
91447636 A |
4124 | |
4125 | if (object != original_object) { | |
4126 | vm_object_unlock(object); | |
4127 | } | |
1c79356b A |
4128 | } |
4129 | ||
4130 | /* | |
4131 | * Routine: vm_object_page_remove: [internal] | |
4132 | * Purpose: | |
4133 | * Removes all physical pages in the specified | |
4134 | * object range from the object's list of pages. | |
4135 | * | |
4136 | * In/out conditions: | |
4137 | * The object must be locked. | |
4138 | * The object must not have paging_in_progress, usually | |
4139 | * guaranteed by not having a pager. | |
4140 | */ | |
4141 | unsigned int vm_object_page_remove_lookup = 0; | |
4142 | unsigned int vm_object_page_remove_iterate = 0; | |
4143 | ||
0b4e3aa0 | 4144 | __private_extern__ void |
1c79356b A |
4145 | vm_object_page_remove( |
4146 | register vm_object_t object, | |
4147 | register vm_object_offset_t start, | |
4148 | register vm_object_offset_t end) | |
4149 | { | |
4150 | register vm_page_t p, next; | |
4151 | ||
4152 | /* | |
4153 | * One and two page removals are most popular. | |
4154 | * The factor of 16 here is somewhat arbitrary. | |
4155 | * It balances vm_object_lookup vs iteration. | |
4156 | */ | |
4157 | ||
55e303ae | 4158 | if (atop_64(end - start) < (unsigned)object->resident_page_count/16) { |
1c79356b A |
4159 | vm_object_page_remove_lookup++; |
4160 | ||
4161 | for (; start < end; start += PAGE_SIZE_64) { | |
4162 | p = vm_page_lookup(object, start); | |
4163 | if (p != VM_PAGE_NULL) { | |
4164 | assert(!p->cleaning && !p->pageout); | |
2d21ac55 | 4165 | if (!p->fictitious && p->pmapped) |
91447636 | 4166 | pmap_disconnect(p->phys_page); |
1c79356b A |
4167 | VM_PAGE_FREE(p); |
4168 | } | |
4169 | } | |
4170 | } else { | |
4171 | vm_object_page_remove_iterate++; | |
4172 | ||
4173 | p = (vm_page_t) queue_first(&object->memq); | |
4174 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
4175 | next = (vm_page_t) queue_next(&p->listq); | |
4176 | if ((start <= p->offset) && (p->offset < end)) { | |
4177 | assert(!p->cleaning && !p->pageout); | |
2d21ac55 | 4178 | if (!p->fictitious && p->pmapped) |
91447636 | 4179 | pmap_disconnect(p->phys_page); |
1c79356b A |
4180 | VM_PAGE_FREE(p); |
4181 | } | |
4182 | p = next; | |
4183 | } | |
4184 | } | |
4185 | } | |
4186 | ||
0b4e3aa0 | 4187 | |
1c79356b A |
4188 | /* |
4189 | * Routine: vm_object_coalesce | |
4190 | * Function: Coalesces two objects backing up adjoining | |
4191 | * regions of memory into a single object. | |
4192 | * | |
4193 | * returns TRUE if objects were combined. | |
4194 | * | |
4195 | * NOTE: Only works at the moment if the second object is NULL - | |
4196 | * if it's not, which object do we lock first? | |
4197 | * | |
4198 | * Parameters: | |
4199 | * prev_object First object to coalesce | |
4200 | * prev_offset Offset into prev_object | |
4201 | * next_object Second object into coalesce | |
4202 | * next_offset Offset into next_object | |
4203 | * | |
4204 | * prev_size Size of reference to prev_object | |
4205 | * next_size Size of reference to next_object | |
4206 | * | |
4207 | * Conditions: | |
4208 | * The object(s) must *not* be locked. The map must be locked | |
4209 | * to preserve the reference to the object(s). | |
4210 | */ | |
0b4e3aa0 | 4211 | static int vm_object_coalesce_count = 0; |
1c79356b | 4212 | |
0b4e3aa0 | 4213 | __private_extern__ boolean_t |
1c79356b A |
4214 | vm_object_coalesce( |
4215 | register vm_object_t prev_object, | |
4216 | vm_object_t next_object, | |
4217 | vm_object_offset_t prev_offset, | |
91447636 | 4218 | __unused vm_object_offset_t next_offset, |
1c79356b A |
4219 | vm_object_size_t prev_size, |
4220 | vm_object_size_t next_size) | |
4221 | { | |
4222 | vm_object_size_t newsize; | |
4223 | ||
4224 | #ifdef lint | |
4225 | next_offset++; | |
4226 | #endif /* lint */ | |
4227 | ||
4228 | if (next_object != VM_OBJECT_NULL) { | |
4229 | return(FALSE); | |
4230 | } | |
4231 | ||
4232 | if (prev_object == VM_OBJECT_NULL) { | |
4233 | return(TRUE); | |
4234 | } | |
4235 | ||
4236 | XPR(XPR_VM_OBJECT, | |
4237 | "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n", | |
4238 | (integer_t)prev_object, prev_offset, prev_size, next_size, 0); | |
4239 | ||
4240 | vm_object_lock(prev_object); | |
4241 | ||
4242 | /* | |
4243 | * Try to collapse the object first | |
4244 | */ | |
0c530ab8 | 4245 | vm_object_collapse(prev_object, prev_offset, TRUE); |
1c79356b A |
4246 | |
4247 | /* | |
4248 | * Can't coalesce if pages not mapped to | |
4249 | * prev_entry may be in use any way: | |
4250 | * . more than one reference | |
4251 | * . paged out | |
4252 | * . shadows another object | |
4253 | * . has a copy elsewhere | |
2d21ac55 | 4254 | * . is purgeable |
1c79356b A |
4255 | * . paging references (pages might be in page-list) |
4256 | */ | |
4257 | ||
4258 | if ((prev_object->ref_count > 1) || | |
4259 | prev_object->pager_created || | |
4260 | (prev_object->shadow != VM_OBJECT_NULL) || | |
4261 | (prev_object->copy != VM_OBJECT_NULL) || | |
4262 | (prev_object->true_share != FALSE) || | |
2d21ac55 | 4263 | (prev_object->purgable != VM_PURGABLE_DENY) || |
1c79356b A |
4264 | (prev_object->paging_in_progress != 0)) { |
4265 | vm_object_unlock(prev_object); | |
4266 | return(FALSE); | |
4267 | } | |
4268 | ||
4269 | vm_object_coalesce_count++; | |
4270 | ||
4271 | /* | |
4272 | * Remove any pages that may still be in the object from | |
4273 | * a previous deallocation. | |
4274 | */ | |
4275 | vm_object_page_remove(prev_object, | |
4276 | prev_offset + prev_size, | |
4277 | prev_offset + prev_size + next_size); | |
4278 | ||
4279 | /* | |
4280 | * Extend the object if necessary. | |
4281 | */ | |
4282 | newsize = prev_offset + prev_size + next_size; | |
4283 | if (newsize > prev_object->size) { | |
4284 | #if MACH_PAGEMAP | |
4285 | /* | |
4286 | * We cannot extend an object that has existence info, | |
4287 | * since the existence info might then fail to cover | |
4288 | * the entire object. | |
4289 | * | |
4290 | * This assertion must be true because the object | |
4291 | * has no pager, and we only create existence info | |
4292 | * for objects with pagers. | |
4293 | */ | |
4294 | assert(prev_object->existence_map == VM_EXTERNAL_NULL); | |
4295 | #endif /* MACH_PAGEMAP */ | |
4296 | prev_object->size = newsize; | |
4297 | } | |
4298 | ||
4299 | vm_object_unlock(prev_object); | |
4300 | return(TRUE); | |
4301 | } | |
4302 | ||
4303 | /* | |
4304 | * Attach a set of physical pages to an object, so that they can | |
4305 | * be mapped by mapping the object. Typically used to map IO memory. | |
4306 | * | |
4307 | * The mapping function and its private data are used to obtain the | |
4308 | * physical addresses for each page to be mapped. | |
4309 | */ | |
4310 | void | |
4311 | vm_object_page_map( | |
4312 | vm_object_t object, | |
4313 | vm_object_offset_t offset, | |
4314 | vm_object_size_t size, | |
4315 | vm_object_offset_t (*map_fn)(void *map_fn_data, | |
4316 | vm_object_offset_t offset), | |
4317 | void *map_fn_data) /* private to map_fn */ | |
4318 | { | |
4319 | int num_pages; | |
4320 | int i; | |
4321 | vm_page_t m; | |
4322 | vm_page_t old_page; | |
4323 | vm_object_offset_t addr; | |
4324 | ||
55e303ae | 4325 | num_pages = atop_64(size); |
1c79356b A |
4326 | |
4327 | for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) { | |
4328 | ||
4329 | addr = (*map_fn)(map_fn_data, offset); | |
4330 | ||
4331 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
4332 | vm_page_more_fictitious(); | |
4333 | ||
4334 | vm_object_lock(object); | |
4335 | if ((old_page = vm_page_lookup(object, offset)) | |
4336 | != VM_PAGE_NULL) | |
4337 | { | |
4338 | vm_page_lock_queues(); | |
4339 | vm_page_free(old_page); | |
4340 | vm_page_unlock_queues(); | |
4341 | } | |
4342 | ||
4343 | vm_page_init(m, addr); | |
0b4e3aa0 A |
4344 | /* private normally requires lock_queues but since we */ |
4345 | /* are initializing the page, its not necessary here */ | |
1c79356b A |
4346 | m->private = TRUE; /* don`t free page */ |
4347 | m->wire_count = 1; | |
4348 | vm_page_insert(m, object, offset); | |
4349 | ||
4350 | PAGE_WAKEUP_DONE(m); | |
4351 | vm_object_unlock(object); | |
4352 | } | |
4353 | } | |
4354 | ||
4355 | #include <mach_kdb.h> | |
4356 | ||
4357 | #if MACH_KDB | |
4358 | #include <ddb/db_output.h> | |
4359 | #include <vm/vm_print.h> | |
4360 | ||
4361 | #define printf kdbprintf | |
4362 | ||
4363 | extern boolean_t vm_object_cached( | |
4364 | vm_object_t object); | |
4365 | ||
4366 | extern void print_bitstring( | |
4367 | char byte); | |
4368 | ||
4369 | boolean_t vm_object_print_pages = FALSE; | |
4370 | ||
4371 | void | |
4372 | print_bitstring( | |
4373 | char byte) | |
4374 | { | |
4375 | printf("%c%c%c%c%c%c%c%c", | |
4376 | ((byte & (1 << 0)) ? '1' : '0'), | |
4377 | ((byte & (1 << 1)) ? '1' : '0'), | |
4378 | ((byte & (1 << 2)) ? '1' : '0'), | |
4379 | ((byte & (1 << 3)) ? '1' : '0'), | |
4380 | ((byte & (1 << 4)) ? '1' : '0'), | |
4381 | ((byte & (1 << 5)) ? '1' : '0'), | |
4382 | ((byte & (1 << 6)) ? '1' : '0'), | |
4383 | ((byte & (1 << 7)) ? '1' : '0')); | |
4384 | } | |
4385 | ||
4386 | boolean_t | |
4387 | vm_object_cached( | |
4388 | register vm_object_t object) | |
4389 | { | |
4390 | register vm_object_t o; | |
4391 | ||
4392 | queue_iterate(&vm_object_cached_list, o, vm_object_t, cached_list) { | |
4393 | if (object == o) { | |
4394 | return TRUE; | |
4395 | } | |
4396 | } | |
4397 | return FALSE; | |
4398 | } | |
4399 | ||
4400 | #if MACH_PAGEMAP | |
4401 | /* | |
4402 | * vm_external_print: [ debug ] | |
4403 | */ | |
4404 | void | |
4405 | vm_external_print( | |
91447636 A |
4406 | vm_external_map_t emap, |
4407 | vm_size_t size) | |
1c79356b | 4408 | { |
91447636 | 4409 | if (emap == VM_EXTERNAL_NULL) { |
1c79356b A |
4410 | printf("0 "); |
4411 | } else { | |
4412 | vm_size_t existence_size = stob(size); | |
4413 | printf("{ size=%d, map=[", existence_size); | |
4414 | if (existence_size > 0) { | |
91447636 | 4415 | print_bitstring(emap[0]); |
1c79356b A |
4416 | } |
4417 | if (existence_size > 1) { | |
91447636 | 4418 | print_bitstring(emap[1]); |
1c79356b A |
4419 | } |
4420 | if (existence_size > 2) { | |
4421 | printf("..."); | |
91447636 | 4422 | print_bitstring(emap[existence_size-1]); |
1c79356b A |
4423 | } |
4424 | printf("] }\n"); | |
4425 | } | |
4426 | return; | |
4427 | } | |
4428 | #endif /* MACH_PAGEMAP */ | |
4429 | ||
4430 | int | |
4431 | vm_follow_object( | |
4432 | vm_object_t object) | |
4433 | { | |
0b4e3aa0 A |
4434 | int count = 0; |
4435 | int orig_db_indent = db_indent; | |
1c79356b | 4436 | |
0b4e3aa0 A |
4437 | while (TRUE) { |
4438 | if (object == VM_OBJECT_NULL) { | |
4439 | db_indent = orig_db_indent; | |
4440 | return count; | |
4441 | } | |
1c79356b | 4442 | |
0b4e3aa0 | 4443 | count += 1; |
1c79356b | 4444 | |
0b4e3aa0 A |
4445 | iprintf("object 0x%x", object); |
4446 | printf(", shadow=0x%x", object->shadow); | |
4447 | printf(", copy=0x%x", object->copy); | |
4448 | printf(", pager=0x%x", object->pager); | |
4449 | printf(", ref=%d\n", object->ref_count); | |
4450 | ||
4451 | db_indent += 2; | |
4452 | object = object->shadow; | |
4453 | } | |
1c79356b | 4454 | |
1c79356b A |
4455 | } |
4456 | ||
4457 | /* | |
4458 | * vm_object_print: [ debug ] | |
4459 | */ | |
4460 | void | |
2d21ac55 A |
4461 | vm_object_print(db_expr_t db_addr, __unused boolean_t have_addr, |
4462 | __unused db_expr_t arg_count, __unused char *modif) | |
1c79356b | 4463 | { |
91447636 | 4464 | vm_object_t object; |
1c79356b | 4465 | register vm_page_t p; |
91447636 | 4466 | const char *s; |
1c79356b A |
4467 | |
4468 | register int count; | |
4469 | ||
91447636 | 4470 | object = (vm_object_t) (long) db_addr; |
1c79356b A |
4471 | if (object == VM_OBJECT_NULL) |
4472 | return; | |
4473 | ||
4474 | iprintf("object 0x%x\n", object); | |
4475 | ||
4476 | db_indent += 2; | |
4477 | ||
4478 | iprintf("size=0x%x", object->size); | |
91447636 | 4479 | printf(", memq_hint=%p", object->memq_hint); |
1c79356b A |
4480 | printf(", ref_count=%d\n", object->ref_count); |
4481 | iprintf(""); | |
4482 | #if TASK_SWAPPER | |
4483 | printf("res_count=%d, ", object->res_count); | |
4484 | #endif /* TASK_SWAPPER */ | |
4485 | printf("resident_page_count=%d\n", object->resident_page_count); | |
4486 | ||
4487 | iprintf("shadow=0x%x", object->shadow); | |
4488 | if (object->shadow) { | |
4489 | register int i = 0; | |
4490 | vm_object_t shadow = object; | |
91447636 | 4491 | while((shadow = shadow->shadow)) |
1c79356b A |
4492 | i++; |
4493 | printf(" (depth %d)", i); | |
4494 | } | |
4495 | printf(", copy=0x%x", object->copy); | |
4496 | printf(", shadow_offset=0x%x", object->shadow_offset); | |
4497 | printf(", last_alloc=0x%x\n", object->last_alloc); | |
4498 | ||
4499 | iprintf("pager=0x%x", object->pager); | |
4500 | printf(", paging_offset=0x%x", object->paging_offset); | |
91447636 | 4501 | printf(", pager_control=0x%x\n", object->pager_control); |
1c79356b A |
4502 | |
4503 | iprintf("copy_strategy=%d[", object->copy_strategy); | |
4504 | switch (object->copy_strategy) { | |
4505 | case MEMORY_OBJECT_COPY_NONE: | |
4506 | printf("copy_none"); | |
4507 | break; | |
4508 | ||
4509 | case MEMORY_OBJECT_COPY_CALL: | |
4510 | printf("copy_call"); | |
4511 | break; | |
4512 | ||
4513 | case MEMORY_OBJECT_COPY_DELAY: | |
4514 | printf("copy_delay"); | |
4515 | break; | |
4516 | ||
4517 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
4518 | printf("copy_symmetric"); | |
4519 | break; | |
4520 | ||
4521 | case MEMORY_OBJECT_COPY_INVALID: | |
4522 | printf("copy_invalid"); | |
4523 | break; | |
4524 | ||
4525 | default: | |
4526 | printf("?"); | |
4527 | } | |
4528 | printf("]"); | |
1c79356b A |
4529 | |
4530 | iprintf("all_wanted=0x%x<", object->all_wanted); | |
4531 | s = ""; | |
4532 | if (vm_object_wanted(object, VM_OBJECT_EVENT_INITIALIZED)) { | |
4533 | printf("%sinit", s); | |
4534 | s = ","; | |
4535 | } | |
4536 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGER_READY)) { | |
4537 | printf("%sready", s); | |
4538 | s = ","; | |
4539 | } | |
4540 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS)) { | |
4541 | printf("%spaging", s); | |
4542 | s = ","; | |
4543 | } | |
1c79356b A |
4544 | if (vm_object_wanted(object, VM_OBJECT_EVENT_LOCK_IN_PROGRESS)) { |
4545 | printf("%slock", s); | |
4546 | s = ","; | |
4547 | } | |
4548 | if (vm_object_wanted(object, VM_OBJECT_EVENT_UNCACHING)) { | |
4549 | printf("%suncaching", s); | |
4550 | s = ","; | |
4551 | } | |
4552 | if (vm_object_wanted(object, VM_OBJECT_EVENT_COPY_CALL)) { | |
4553 | printf("%scopy_call", s); | |
4554 | s = ","; | |
4555 | } | |
4556 | if (vm_object_wanted(object, VM_OBJECT_EVENT_CACHING)) { | |
4557 | printf("%scaching", s); | |
4558 | s = ","; | |
4559 | } | |
4560 | printf(">"); | |
4561 | printf(", paging_in_progress=%d\n", object->paging_in_progress); | |
4562 | ||
4563 | iprintf("%screated, %sinit, %sready, %spersist, %strusted, %spageout, %s, %s\n", | |
4564 | (object->pager_created ? "" : "!"), | |
4565 | (object->pager_initialized ? "" : "!"), | |
4566 | (object->pager_ready ? "" : "!"), | |
4567 | (object->can_persist ? "" : "!"), | |
4568 | (object->pager_trusted ? "" : "!"), | |
4569 | (object->pageout ? "" : "!"), | |
4570 | (object->internal ? "internal" : "external"), | |
4571 | (object->temporary ? "temporary" : "permanent")); | |
2d21ac55 | 4572 | iprintf("%salive, %spurgeable, %spurgeable_volatile, %spurgeable_empty, %sshadowed, %scached, %sprivate\n", |
1c79356b | 4573 | (object->alive ? "" : "!"), |
2d21ac55 A |
4574 | ((object->purgable != VM_PURGABLE_DENY) ? "" : "!"), |
4575 | ((object->purgable == VM_PURGABLE_VOLATILE) ? "" : "!"), | |
4576 | ((object->purgable == VM_PURGABLE_EMPTY) ? "" : "!"), | |
1c79356b A |
4577 | (object->shadowed ? "" : "!"), |
4578 | (vm_object_cached(object) ? "" : "!"), | |
4579 | (object->private ? "" : "!")); | |
4580 | iprintf("%sadvisory_pageout, %ssilent_overwrite\n", | |
4581 | (object->advisory_pageout ? "" : "!"), | |
4582 | (object->silent_overwrite ? "" : "!")); | |
4583 | ||
4584 | #if MACH_PAGEMAP | |
4585 | iprintf("existence_map="); | |
4586 | vm_external_print(object->existence_map, object->size); | |
4587 | #endif /* MACH_PAGEMAP */ | |
4588 | #if MACH_ASSERT | |
4589 | iprintf("paging_object=0x%x\n", object->paging_object); | |
4590 | #endif /* MACH_ASSERT */ | |
4591 | ||
4592 | if (vm_object_print_pages) { | |
4593 | count = 0; | |
4594 | p = (vm_page_t) queue_first(&object->memq); | |
4595 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
4596 | if (count == 0) { | |
4597 | iprintf("memory:="); | |
4598 | } else if (count == 2) { | |
4599 | printf("\n"); | |
4600 | iprintf(" ..."); | |
4601 | count = 0; | |
4602 | } else { | |
4603 | printf(","); | |
4604 | } | |
4605 | count++; | |
4606 | ||
91447636 | 4607 | printf("(off=0x%llX,page=%p)", p->offset, p); |
1c79356b A |
4608 | p = (vm_page_t) queue_next(&p->listq); |
4609 | } | |
4610 | if (count != 0) { | |
4611 | printf("\n"); | |
4612 | } | |
4613 | } | |
4614 | db_indent -= 2; | |
4615 | } | |
4616 | ||
4617 | ||
4618 | /* | |
4619 | * vm_object_find [ debug ] | |
4620 | * | |
4621 | * Find all tasks which reference the given vm_object. | |
4622 | */ | |
4623 | ||
4624 | boolean_t vm_object_find(vm_object_t object); | |
4625 | boolean_t vm_object_print_verbose = FALSE; | |
4626 | ||
4627 | boolean_t | |
4628 | vm_object_find( | |
4629 | vm_object_t object) | |
4630 | { | |
4631 | task_t task; | |
4632 | vm_map_t map; | |
4633 | vm_map_entry_t entry; | |
1c79356b A |
4634 | boolean_t found = FALSE; |
4635 | ||
2d21ac55 | 4636 | queue_iterate(&tasks, task, task_t, tasks) { |
1c79356b A |
4637 | map = task->map; |
4638 | for (entry = vm_map_first_entry(map); | |
4639 | entry && entry != vm_map_to_entry(map); | |
4640 | entry = entry->vme_next) { | |
4641 | ||
4642 | vm_object_t obj; | |
4643 | ||
4644 | /* | |
4645 | * For the time being skip submaps, | |
4646 | * only the kernel can have submaps, | |
4647 | * and unless we are interested in | |
4648 | * kernel objects, we can simply skip | |
4649 | * submaps. See sb/dejan/nmk18b7/src/mach_kernel/vm | |
4650 | * for a full solution. | |
4651 | */ | |
4652 | if (entry->is_sub_map) | |
4653 | continue; | |
4654 | if (entry) | |
4655 | obj = entry->object.vm_object; | |
4656 | else | |
4657 | continue; | |
4658 | ||
4659 | while (obj != VM_OBJECT_NULL) { | |
4660 | if (obj == object) { | |
4661 | if (!found) { | |
4662 | printf("TASK\t\tMAP\t\tENTRY\n"); | |
4663 | found = TRUE; | |
4664 | } | |
4665 | printf("0x%x\t0x%x\t0x%x\n", | |
4666 | task, map, entry); | |
4667 | } | |
4668 | obj = obj->shadow; | |
4669 | } | |
4670 | } | |
4671 | } | |
4672 | ||
4673 | return(found); | |
4674 | } | |
4675 | ||
4676 | #endif /* MACH_KDB */ | |
4677 | ||
0b4e3aa0 A |
4678 | kern_return_t |
4679 | vm_object_populate_with_private( | |
55e303ae | 4680 | vm_object_t object, |
0b4e3aa0 | 4681 | vm_object_offset_t offset, |
55e303ae A |
4682 | ppnum_t phys_page, |
4683 | vm_size_t size) | |
0b4e3aa0 | 4684 | { |
55e303ae | 4685 | ppnum_t base_page; |
0b4e3aa0 A |
4686 | vm_object_offset_t base_offset; |
4687 | ||
4688 | ||
4689 | if(!object->private) | |
4690 | return KERN_FAILURE; | |
4691 | ||
55e303ae | 4692 | base_page = phys_page; |
0b4e3aa0 A |
4693 | |
4694 | vm_object_lock(object); | |
4695 | if(!object->phys_contiguous) { | |
4696 | vm_page_t m; | |
55e303ae | 4697 | if((base_offset = trunc_page_64(offset)) != offset) { |
0b4e3aa0 A |
4698 | vm_object_unlock(object); |
4699 | return KERN_FAILURE; | |
4700 | } | |
4701 | base_offset += object->paging_offset; | |
4702 | while(size) { | |
4703 | m = vm_page_lookup(object, base_offset); | |
4704 | if(m != VM_PAGE_NULL) { | |
4705 | if(m->fictitious) { | |
2d21ac55 A |
4706 | if (m->phys_page != |
4707 | vm_page_guard_addr) { | |
4708 | vm_page_lockspin_queues(); | |
4709 | m->fictitious = FALSE; | |
4710 | m->private = TRUE; | |
4711 | m->phys_page = base_page; | |
4712 | if(!m->busy) { | |
4713 | m->busy = TRUE; | |
4714 | } | |
4715 | if(!m->absent) { | |
4716 | m->absent = TRUE; | |
4717 | } | |
4718 | m->list_req_pending = TRUE; | |
4719 | vm_page_unlock_queues(); | |
0b4e3aa0 | 4720 | } |
55e303ae | 4721 | } else if (m->phys_page != base_page) { |
2d21ac55 A |
4722 | if (m->pmapped) { |
4723 | /* | |
4724 | * pmap call to clear old mapping | |
4725 | */ | |
4726 | pmap_disconnect(m->phys_page); | |
4727 | } | |
55e303ae | 4728 | m->phys_page = base_page; |
0b4e3aa0 | 4729 | } |
91447636 A |
4730 | |
4731 | /* | |
4732 | * ENCRYPTED SWAP: | |
4733 | * We're not pointing to the same | |
4734 | * physical page any longer and the | |
4735 | * contents of the new one are not | |
4736 | * supposed to be encrypted. | |
4737 | * XXX What happens to the original | |
4738 | * physical page. Is it lost ? | |
4739 | */ | |
4740 | m->encrypted = FALSE; | |
4741 | ||
0b4e3aa0 A |
4742 | } else { |
4743 | while ((m = vm_page_grab_fictitious()) | |
4744 | == VM_PAGE_NULL) | |
4745 | vm_page_more_fictitious(); | |
2d21ac55 | 4746 | vm_page_lockspin_queues(); |
0b4e3aa0 A |
4747 | m->fictitious = FALSE; |
4748 | m->private = TRUE; | |
55e303ae | 4749 | m->phys_page = base_page; |
0b4e3aa0 A |
4750 | m->list_req_pending = TRUE; |
4751 | m->absent = TRUE; | |
4752 | m->unusual = TRUE; | |
0b4e3aa0 A |
4753 | vm_page_unlock_queues(); |
4754 | vm_page_insert(m, object, base_offset); | |
4755 | } | |
55e303ae | 4756 | base_page++; /* Go to the next physical page */ |
0b4e3aa0 A |
4757 | base_offset += PAGE_SIZE; |
4758 | size -= PAGE_SIZE; | |
4759 | } | |
4760 | } else { | |
4761 | /* NOTE: we should check the original settings here */ | |
4762 | /* if we have a size > zero a pmap call should be made */ | |
4763 | /* to disable the range */ | |
4764 | ||
4765 | /* pmap_? */ | |
4766 | ||
4767 | /* shadows on contiguous memory are not allowed */ | |
4768 | /* we therefore can use the offset field */ | |
55e303ae | 4769 | object->shadow_offset = (vm_object_offset_t)(phys_page << 12); |
0b4e3aa0 A |
4770 | object->size = size; |
4771 | } | |
4772 | vm_object_unlock(object); | |
4773 | return KERN_SUCCESS; | |
4774 | } | |
4775 | ||
1c79356b A |
4776 | /* |
4777 | * memory_object_free_from_cache: | |
4778 | * | |
4779 | * Walk the vm_object cache list, removing and freeing vm_objects | |
0c530ab8 | 4780 | * which are backed by the pager identified by the caller, (pager_ops). |
1c79356b A |
4781 | * Remove up to "count" objects, if there are that may available |
4782 | * in the cache. | |
0b4e3aa0 | 4783 | * |
1c79356b A |
4784 | * Walk the list at most once, return the number of vm_objects |
4785 | * actually freed. | |
1c79356b A |
4786 | */ |
4787 | ||
0b4e3aa0 | 4788 | __private_extern__ kern_return_t |
1c79356b | 4789 | memory_object_free_from_cache( |
91447636 | 4790 | __unused host_t host, |
0c530ab8 | 4791 | memory_object_pager_ops_t pager_ops, |
1c79356b A |
4792 | int *count) |
4793 | { | |
4794 | ||
4795 | int object_released = 0; | |
1c79356b A |
4796 | |
4797 | register vm_object_t object = VM_OBJECT_NULL; | |
4798 | vm_object_t shadow; | |
4799 | ||
4800 | /* | |
4801 | if(host == HOST_NULL) | |
4802 | return(KERN_INVALID_ARGUMENT); | |
4803 | */ | |
4804 | ||
4805 | try_again: | |
4806 | vm_object_cache_lock(); | |
4807 | ||
4808 | queue_iterate(&vm_object_cached_list, object, | |
4809 | vm_object_t, cached_list) { | |
0c530ab8 A |
4810 | if (object->pager && |
4811 | (pager_ops == object->pager->mo_pager_ops)) { | |
1c79356b A |
4812 | vm_object_lock(object); |
4813 | queue_remove(&vm_object_cached_list, object, | |
4814 | vm_object_t, cached_list); | |
4815 | vm_object_cached_count--; | |
4816 | ||
4817 | /* | |
4818 | * Since this object is in the cache, we know | |
0b4e3aa0 A |
4819 | * that it is initialized and has only a pager's |
4820 | * (implicit) reference. Take a reference to avoid | |
4821 | * recursive deallocations. | |
1c79356b A |
4822 | */ |
4823 | ||
4824 | assert(object->pager_initialized); | |
4825 | assert(object->ref_count == 0); | |
2d21ac55 | 4826 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
4827 | object->ref_count++; |
4828 | ||
4829 | /* | |
4830 | * Terminate the object. | |
4831 | * If the object had a shadow, we let | |
4832 | * vm_object_deallocate deallocate it. | |
4833 | * "pageout" objects have a shadow, but | |
4834 | * maintain a "paging reference" rather | |
4835 | * than a normal reference. | |
4836 | * (We are careful here to limit recursion.) | |
4837 | */ | |
4838 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
4839 | if ((vm_object_terminate(object) == KERN_SUCCESS) | |
4840 | && (shadow != VM_OBJECT_NULL)) { | |
4841 | vm_object_deallocate(shadow); | |
4842 | } | |
4843 | ||
4844 | if(object_released++ == *count) | |
4845 | return KERN_SUCCESS; | |
4846 | goto try_again; | |
4847 | } | |
4848 | } | |
4849 | vm_object_cache_unlock(); | |
4850 | *count = object_released; | |
4851 | return KERN_SUCCESS; | |
4852 | } | |
4853 | ||
0b4e3aa0 | 4854 | |
1c79356b A |
4855 | |
4856 | kern_return_t | |
0b4e3aa0 A |
4857 | memory_object_create_named( |
4858 | memory_object_t pager, | |
4859 | memory_object_offset_t size, | |
4860 | memory_object_control_t *control) | |
1c79356b | 4861 | { |
0b4e3aa0 A |
4862 | vm_object_t object; |
4863 | vm_object_hash_entry_t entry; | |
1c79356b | 4864 | |
0b4e3aa0 A |
4865 | *control = MEMORY_OBJECT_CONTROL_NULL; |
4866 | if (pager == MEMORY_OBJECT_NULL) | |
4867 | return KERN_INVALID_ARGUMENT; | |
1c79356b | 4868 | |
0b4e3aa0 A |
4869 | vm_object_cache_lock(); |
4870 | entry = vm_object_hash_lookup(pager, FALSE); | |
4871 | if ((entry != VM_OBJECT_HASH_ENTRY_NULL) && | |
4872 | (entry->object != VM_OBJECT_NULL)) { | |
4873 | if (entry->object->named == TRUE) | |
4874 | panic("memory_object_create_named: caller already holds the right"); } | |
1c79356b | 4875 | |
0b4e3aa0 A |
4876 | vm_object_cache_unlock(); |
4877 | if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) | |
4878 | == VM_OBJECT_NULL) { | |
4879 | return(KERN_INVALID_OBJECT); | |
4880 | } | |
4881 | ||
4882 | /* wait for object (if any) to be ready */ | |
4883 | if (object != VM_OBJECT_NULL) { | |
4884 | vm_object_lock(object); | |
4885 | object->named = TRUE; | |
4886 | while (!object->pager_ready) { | |
9bccf70c A |
4887 | vm_object_sleep(object, |
4888 | VM_OBJECT_EVENT_PAGER_READY, | |
4889 | THREAD_UNINT); | |
0b4e3aa0 | 4890 | } |
91447636 | 4891 | *control = object->pager_control; |
0b4e3aa0 A |
4892 | vm_object_unlock(object); |
4893 | } | |
4894 | return (KERN_SUCCESS); | |
4895 | } | |
1c79356b | 4896 | |
1c79356b | 4897 | |
0b4e3aa0 A |
4898 | /* |
4899 | * Routine: memory_object_recover_named [user interface] | |
4900 | * Purpose: | |
4901 | * Attempt to recover a named reference for a VM object. | |
4902 | * VM will verify that the object has not already started | |
4903 | * down the termination path, and if it has, will optionally | |
4904 | * wait for that to finish. | |
4905 | * Returns: | |
4906 | * KERN_SUCCESS - we recovered a named reference on the object | |
4907 | * KERN_FAILURE - we could not recover a reference (object dead) | |
4908 | * KERN_INVALID_ARGUMENT - bad memory object control | |
4909 | */ | |
4910 | kern_return_t | |
4911 | memory_object_recover_named( | |
4912 | memory_object_control_t control, | |
4913 | boolean_t wait_on_terminating) | |
4914 | { | |
4915 | vm_object_t object; | |
1c79356b | 4916 | |
0b4e3aa0 A |
4917 | vm_object_cache_lock(); |
4918 | object = memory_object_control_to_vm_object(control); | |
4919 | if (object == VM_OBJECT_NULL) { | |
4920 | vm_object_cache_unlock(); | |
4921 | return (KERN_INVALID_ARGUMENT); | |
4922 | } | |
1c79356b | 4923 | |
0b4e3aa0 A |
4924 | restart: |
4925 | vm_object_lock(object); | |
1c79356b | 4926 | |
0b4e3aa0 A |
4927 | if (object->terminating && wait_on_terminating) { |
4928 | vm_object_cache_unlock(); | |
4929 | vm_object_wait(object, | |
4930 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
4931 | THREAD_UNINT); | |
4932 | vm_object_cache_lock(); | |
4933 | goto restart; | |
4934 | } | |
4935 | ||
4936 | if (!object->alive) { | |
4937 | vm_object_cache_unlock(); | |
4938 | vm_object_unlock(object); | |
4939 | return KERN_FAILURE; | |
1c79356b A |
4940 | } |
4941 | ||
0b4e3aa0 A |
4942 | if (object->named == TRUE) { |
4943 | vm_object_cache_unlock(); | |
4944 | vm_object_unlock(object); | |
4945 | return KERN_SUCCESS; | |
4946 | } | |
1c79356b | 4947 | |
0b4e3aa0 A |
4948 | if((object->ref_count == 0) && (!object->terminating)){ |
4949 | queue_remove(&vm_object_cached_list, object, | |
4950 | vm_object_t, cached_list); | |
4951 | vm_object_cached_count--; | |
4952 | XPR(XPR_VM_OBJECT_CACHE, | |
4953 | "memory_object_recover_named: removing %X, head (%X, %X)\n", | |
4954 | (integer_t)object, | |
4955 | (integer_t)vm_object_cached_list.next, | |
4956 | (integer_t)vm_object_cached_list.prev, 0,0); | |
4957 | } | |
4958 | ||
4959 | vm_object_cache_unlock(); | |
4960 | ||
4961 | object->named = TRUE; | |
2d21ac55 | 4962 | vm_object_lock_assert_exclusive(object); |
0b4e3aa0 A |
4963 | object->ref_count++; |
4964 | vm_object_res_reference(object); | |
4965 | while (!object->pager_ready) { | |
9bccf70c A |
4966 | vm_object_sleep(object, |
4967 | VM_OBJECT_EVENT_PAGER_READY, | |
4968 | THREAD_UNINT); | |
0b4e3aa0 A |
4969 | } |
4970 | vm_object_unlock(object); | |
4971 | return (KERN_SUCCESS); | |
1c79356b A |
4972 | } |
4973 | ||
0b4e3aa0 A |
4974 | |
4975 | /* | |
4976 | * vm_object_release_name: | |
4977 | * | |
4978 | * Enforces name semantic on memory_object reference count decrement | |
4979 | * This routine should not be called unless the caller holds a name | |
4980 | * reference gained through the memory_object_create_named. | |
4981 | * | |
4982 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
4983 | * reference count is not 1. i.e. idle with the only remaining reference | |
4984 | * being the name. | |
4985 | * If the decision is made to proceed the name field flag is set to | |
4986 | * false and the reference count is decremented. If the RESPECT_CACHE | |
4987 | * flag is set and the reference count has gone to zero, the | |
4988 | * memory_object is checked to see if it is cacheable otherwise when | |
4989 | * the reference count is zero, it is simply terminated. | |
4990 | */ | |
4991 | ||
4992 | __private_extern__ kern_return_t | |
4993 | vm_object_release_name( | |
4994 | vm_object_t object, | |
4995 | int flags) | |
1c79356b | 4996 | { |
0b4e3aa0 A |
4997 | vm_object_t shadow; |
4998 | boolean_t original_object = TRUE; | |
1c79356b | 4999 | |
0b4e3aa0 | 5000 | while (object != VM_OBJECT_NULL) { |
1c79356b | 5001 | |
0b4e3aa0 A |
5002 | /* |
5003 | * The cache holds a reference (uncounted) to | |
5004 | * the object. We must locke it before removing | |
5005 | * the object. | |
5006 | * | |
5007 | */ | |
5008 | ||
1c79356b | 5009 | vm_object_cache_lock(); |
0b4e3aa0 A |
5010 | vm_object_lock(object); |
5011 | assert(object->alive); | |
5012 | if(original_object) | |
5013 | assert(object->named); | |
5014 | assert(object->ref_count > 0); | |
5015 | ||
5016 | /* | |
5017 | * We have to wait for initialization before | |
5018 | * destroying or caching the object. | |
5019 | */ | |
5020 | ||
5021 | if (object->pager_created && !object->pager_initialized) { | |
5022 | assert(!object->can_persist); | |
5023 | vm_object_assert_wait(object, | |
5024 | VM_OBJECT_EVENT_INITIALIZED, | |
5025 | THREAD_UNINT); | |
5026 | vm_object_unlock(object); | |
5027 | vm_object_cache_unlock(); | |
9bccf70c | 5028 | thread_block(THREAD_CONTINUE_NULL); |
0b4e3aa0 | 5029 | continue; |
1c79356b A |
5030 | } |
5031 | ||
0b4e3aa0 A |
5032 | if (((object->ref_count > 1) |
5033 | && (flags & MEMORY_OBJECT_TERMINATE_IDLE)) | |
5034 | || (object->terminating)) { | |
5035 | vm_object_unlock(object); | |
5036 | vm_object_cache_unlock(); | |
5037 | return KERN_FAILURE; | |
5038 | } else { | |
5039 | if (flags & MEMORY_OBJECT_RELEASE_NO_OP) { | |
5040 | vm_object_unlock(object); | |
5041 | vm_object_cache_unlock(); | |
5042 | return KERN_SUCCESS; | |
1c79356b | 5043 | } |
0b4e3aa0 A |
5044 | } |
5045 | ||
5046 | if ((flags & MEMORY_OBJECT_RESPECT_CACHE) && | |
5047 | (object->ref_count == 1)) { | |
5048 | if(original_object) | |
5049 | object->named = FALSE; | |
1c79356b | 5050 | vm_object_unlock(object); |
0b4e3aa0 A |
5051 | vm_object_cache_unlock(); |
5052 | /* let vm_object_deallocate push this thing into */ | |
5053 | /* the cache, if that it is where it is bound */ | |
5054 | vm_object_deallocate(object); | |
5055 | return KERN_SUCCESS; | |
5056 | } | |
5057 | VM_OBJ_RES_DECR(object); | |
5058 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
5059 | if(object->ref_count == 1) { | |
5060 | if(vm_object_terminate(object) != KERN_SUCCESS) { | |
5061 | if(original_object) { | |
5062 | return KERN_FAILURE; | |
5063 | } else { | |
5064 | return KERN_SUCCESS; | |
5065 | } | |
5066 | } | |
5067 | if (shadow != VM_OBJECT_NULL) { | |
5068 | original_object = FALSE; | |
5069 | object = shadow; | |
5070 | continue; | |
5071 | } | |
5072 | return KERN_SUCCESS; | |
5073 | } else { | |
2d21ac55 | 5074 | vm_object_lock_assert_exclusive(object); |
0b4e3aa0 A |
5075 | object->ref_count--; |
5076 | assert(object->ref_count > 0); | |
5077 | if(original_object) | |
5078 | object->named = FALSE; | |
5079 | vm_object_unlock(object); | |
5080 | vm_object_cache_unlock(); | |
5081 | return KERN_SUCCESS; | |
1c79356b | 5082 | } |
1c79356b | 5083 | } |
91447636 A |
5084 | /*NOTREACHED*/ |
5085 | assert(0); | |
5086 | return KERN_FAILURE; | |
1c79356b A |
5087 | } |
5088 | ||
0b4e3aa0 A |
5089 | |
5090 | __private_extern__ kern_return_t | |
5091 | vm_object_lock_request( | |
5092 | vm_object_t object, | |
5093 | vm_object_offset_t offset, | |
5094 | vm_object_size_t size, | |
5095 | memory_object_return_t should_return, | |
5096 | int flags, | |
5097 | vm_prot_t prot) | |
1c79356b | 5098 | { |
91447636 A |
5099 | __unused boolean_t should_flush; |
5100 | ||
5101 | should_flush = flags & MEMORY_OBJECT_DATA_FLUSH; | |
1c79356b | 5102 | |
0b4e3aa0 A |
5103 | XPR(XPR_MEMORY_OBJECT, |
5104 | "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n", | |
5105 | (integer_t)object, offset, size, | |
5106 | (((should_return&1)<<1)|should_flush), prot); | |
1c79356b | 5107 | |
0b4e3aa0 A |
5108 | /* |
5109 | * Check for bogus arguments. | |
5110 | */ | |
5111 | if (object == VM_OBJECT_NULL) | |
5112 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 5113 | |
0b4e3aa0 A |
5114 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) |
5115 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 5116 | |
55e303ae | 5117 | size = round_page_64(size); |
0b4e3aa0 A |
5118 | |
5119 | /* | |
5120 | * Lock the object, and acquire a paging reference to | |
5121 | * prevent the memory_object reference from being released. | |
5122 | */ | |
5123 | vm_object_lock(object); | |
5124 | vm_object_paging_begin(object); | |
0b4e3aa0 A |
5125 | |
5126 | (void)vm_object_update(object, | |
91447636 | 5127 | offset, size, NULL, NULL, should_return, flags, prot); |
0b4e3aa0 A |
5128 | |
5129 | vm_object_paging_end(object); | |
5130 | vm_object_unlock(object); | |
5131 | ||
5132 | return (KERN_SUCCESS); | |
5133 | } | |
5134 | ||
91447636 | 5135 | /* |
2d21ac55 | 5136 | * Empty a purgeable object by grabbing the physical pages assigned to it and |
91447636 A |
5137 | * putting them on the free queue without writing them to backing store, etc. |
5138 | * When the pages are next touched they will be demand zero-fill pages. We | |
5139 | * skip pages which are busy, being paged in/out, wired, etc. We do _not_ | |
5140 | * skip referenced/dirty pages, pages on the active queue, etc. We're more | |
2d21ac55 | 5141 | * than happy to grab these since this is a purgeable object. We mark the |
91447636 A |
5142 | * object as "empty" after reaping its pages. |
5143 | * | |
5144 | * On entry the object and page queues are locked, the object must be a | |
2d21ac55 | 5145 | * purgeable object with no delayed copies pending. |
91447636 A |
5146 | */ |
5147 | unsigned int | |
5148 | vm_object_purge(vm_object_t object) | |
5149 | { | |
5150 | vm_page_t p, next; | |
5151 | unsigned int num_purged_pages; | |
5152 | vm_page_t local_freeq; | |
5153 | unsigned long local_freed; | |
5154 | int purge_loop_quota; | |
5155 | /* free pages as soon as we gather PURGE_BATCH_FREE_LIMIT pages to free */ | |
5156 | #define PURGE_BATCH_FREE_LIMIT 50 | |
5157 | /* release page queues lock every PURGE_LOOP_QUOTA iterations */ | |
5158 | #define PURGE_LOOP_QUOTA 100 | |
5159 | ||
5160 | num_purged_pages = 0; | |
2d21ac55 | 5161 | if (object->purgable == VM_PURGABLE_DENY) |
91447636 | 5162 | return num_purged_pages; |
0b4e3aa0 | 5163 | |
2d21ac55 A |
5164 | assert(object->purgable != VM_PURGABLE_NONVOLATILE); |
5165 | object->purgable = VM_PURGABLE_EMPTY; | |
91447636 A |
5166 | |
5167 | assert(object->copy == VM_OBJECT_NULL); | |
5168 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
5169 | purge_loop_quota = PURGE_LOOP_QUOTA; | |
5170 | ||
5171 | local_freeq = VM_PAGE_NULL; | |
5172 | local_freed = 0; | |
5173 | ||
5174 | /* | |
5175 | * Go through the object's resident pages and try and discard them. | |
5176 | */ | |
5177 | next = (vm_page_t)queue_first(&object->memq); | |
5178 | while (!queue_end(&object->memq, (queue_entry_t)next)) { | |
5179 | p = next; | |
5180 | next = (vm_page_t)queue_next(&next->listq); | |
5181 | ||
5182 | if (purge_loop_quota-- == 0) { | |
5183 | /* | |
5184 | * Avoid holding the page queues lock for too long. | |
5185 | * Let someone else take it for a while if needed. | |
5186 | * Keep holding the object's lock to guarantee that | |
5187 | * the object's page list doesn't change under us | |
5188 | * while we yield. | |
5189 | */ | |
5190 | if (local_freeq != VM_PAGE_NULL) { | |
5191 | /* | |
5192 | * Flush our queue of pages to free. | |
5193 | */ | |
5194 | vm_page_free_list(local_freeq); | |
5195 | local_freeq = VM_PAGE_NULL; | |
5196 | local_freed = 0; | |
5197 | } | |
2d21ac55 | 5198 | mutex_yield(&vm_page_queue_lock); |
91447636 A |
5199 | |
5200 | /* resume with the current page and a new quota */ | |
5201 | purge_loop_quota = PURGE_LOOP_QUOTA; | |
5202 | } | |
5203 | ||
5204 | ||
5205 | if (p->busy || p->cleaning || p->laundry || | |
5206 | p->list_req_pending) { | |
5207 | /* page is being acted upon, so don't mess with it */ | |
5208 | continue; | |
5209 | } | |
5210 | if (p->wire_count) { | |
5211 | /* don't discard a wired page */ | |
5212 | continue; | |
5213 | } | |
5214 | ||
2d21ac55 A |
5215 | assert(!p->laundry); |
5216 | assert(p->object != kernel_object); | |
91447636 A |
5217 | |
5218 | /* we can discard this page */ | |
5219 | ||
5220 | /* advertize that this page is in a transition state */ | |
5221 | p->busy = TRUE; | |
5222 | ||
2d21ac55 | 5223 | if (p->pmapped == TRUE) { |
91447636 A |
5224 | /* unmap the page */ |
5225 | int refmod_state; | |
5226 | ||
5227 | refmod_state = pmap_disconnect(p->phys_page); | |
5228 | if (refmod_state & VM_MEM_MODIFIED) { | |
5229 | p->dirty = TRUE; | |
5230 | } | |
5231 | } | |
5232 | ||
5233 | if (p->dirty || p->precious) { | |
5234 | /* we saved the cost of cleaning this page ! */ | |
5235 | num_purged_pages++; | |
5236 | vm_page_purged_count++; | |
5237 | } | |
5238 | ||
2d21ac55 | 5239 | vm_page_free_prepare(p); |
91447636 A |
5240 | |
5241 | /* ... and put it on our queue of pages to free */ | |
91447636 A |
5242 | assert(p->pageq.next == NULL && |
5243 | p->pageq.prev == NULL); | |
5244 | p->pageq.next = (queue_entry_t) local_freeq; | |
5245 | local_freeq = p; | |
5246 | if (++local_freed >= PURGE_BATCH_FREE_LIMIT) { | |
5247 | /* flush our queue of pages to free */ | |
5248 | vm_page_free_list(local_freeq); | |
5249 | local_freeq = VM_PAGE_NULL; | |
5250 | local_freed = 0; | |
5251 | } | |
5252 | } | |
5253 | ||
5254 | /* flush our local queue of pages to free one last time */ | |
5255 | if (local_freeq != VM_PAGE_NULL) { | |
5256 | vm_page_free_list(local_freeq); | |
5257 | local_freeq = VM_PAGE_NULL; | |
5258 | local_freed = 0; | |
5259 | } | |
5260 | ||
5261 | return num_purged_pages; | |
5262 | } | |
5263 | ||
5264 | /* | |
2d21ac55 A |
5265 | * vm_object_purgeable_control() allows the caller to control and investigate the |
5266 | * state of a purgeable object. A purgeable object is created via a call to | |
5267 | * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will | |
5268 | * never be coalesced with any other object -- even other purgeable objects -- | |
5269 | * and will thus always remain a distinct object. A purgeable object has | |
91447636 | 5270 | * special semantics when its reference count is exactly 1. If its reference |
2d21ac55 | 5271 | * count is greater than 1, then a purgeable object will behave like a normal |
91447636 A |
5272 | * object and attempts to use this interface will result in an error return |
5273 | * of KERN_INVALID_ARGUMENT. | |
5274 | * | |
2d21ac55 | 5275 | * A purgeable object may be put into a "volatile" state which will make the |
91447636 A |
5276 | * object's pages elligable for being reclaimed without paging to backing |
5277 | * store if the system runs low on memory. If the pages in a volatile | |
2d21ac55 A |
5278 | * purgeable object are reclaimed, the purgeable object is said to have been |
5279 | * "emptied." When a purgeable object is emptied the system will reclaim as | |
91447636 A |
5280 | * many pages from the object as it can in a convenient manner (pages already |
5281 | * en route to backing store or busy for other reasons are left as is). When | |
2d21ac55 | 5282 | * a purgeable object is made volatile, its pages will generally be reclaimed |
91447636 A |
5283 | * before other pages in the application's working set. This semantic is |
5284 | * generally used by applications which can recreate the data in the object | |
5285 | * faster than it can be paged in. One such example might be media assets | |
5286 | * which can be reread from a much faster RAID volume. | |
5287 | * | |
2d21ac55 | 5288 | * A purgeable object may be designated as "non-volatile" which means it will |
91447636 A |
5289 | * behave like all other objects in the system with pages being written to and |
5290 | * read from backing store as needed to satisfy system memory needs. If the | |
5291 | * object was emptied before the object was made non-volatile, that fact will | |
2d21ac55 | 5292 | * be returned as the old state of the purgeable object (see |
91447636 A |
5293 | * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which |
5294 | * were reclaimed as part of emptying the object will be refaulted in as | |
5295 | * zero-fill on demand. It is up to the application to note that an object | |
5296 | * was emptied and recreate the objects contents if necessary. When a | |
2d21ac55 A |
5297 | * purgeable object is made non-volatile, its pages will generally not be paged |
5298 | * out to backing store in the immediate future. A purgeable object may also | |
91447636 A |
5299 | * be manually emptied. |
5300 | * | |
5301 | * Finally, the current state (non-volatile, volatile, volatile & empty) of a | |
2d21ac55 | 5302 | * volatile purgeable object may be queried at any time. This information may |
91447636 A |
5303 | * be used as a control input to let the application know when the system is |
5304 | * experiencing memory pressure and is reclaiming memory. | |
5305 | * | |
2d21ac55 | 5306 | * The specified address may be any address within the purgeable object. If |
91447636 A |
5307 | * the specified address does not represent any object in the target task's |
5308 | * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the | |
2d21ac55 | 5309 | * object containing the specified address is not a purgeable object, then |
91447636 A |
5310 | * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be |
5311 | * returned. | |
5312 | * | |
5313 | * The control parameter may be any one of VM_PURGABLE_SET_STATE or | |
5314 | * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter | |
2d21ac55 A |
5315 | * state is used to set the new state of the purgeable object and return its |
5316 | * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable | |
91447636 A |
5317 | * object is returned in the parameter state. |
5318 | * | |
5319 | * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE, | |
5320 | * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent | |
5321 | * the non-volatile, volatile and volatile/empty states described above. | |
2d21ac55 | 5322 | * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will |
91447636 A |
5323 | * immediately reclaim as many pages in the object as can be conveniently |
5324 | * collected (some may have already been written to backing store or be | |
5325 | * otherwise busy). | |
5326 | * | |
2d21ac55 A |
5327 | * The process of making a purgeable object non-volatile and determining its |
5328 | * previous state is atomic. Thus, if a purgeable object is made | |
91447636 | 5329 | * VM_PURGABLE_NONVOLATILE and the old state is returned as |
2d21ac55 | 5330 | * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are |
91447636 A |
5331 | * completely intact and will remain so until the object is made volatile |
5332 | * again. If the old state is returned as VM_PURGABLE_EMPTY then the object | |
5333 | * was reclaimed while it was in a volatile state and its previous contents | |
5334 | * have been lost. | |
5335 | */ | |
5336 | /* | |
5337 | * The object must be locked. | |
5338 | */ | |
5339 | kern_return_t | |
5340 | vm_object_purgable_control( | |
5341 | vm_object_t object, | |
5342 | vm_purgable_t control, | |
5343 | int *state) | |
5344 | { | |
5345 | int old_state; | |
2d21ac55 | 5346 | int new_state; |
91447636 A |
5347 | |
5348 | if (object == VM_OBJECT_NULL) { | |
5349 | /* | |
2d21ac55 | 5350 | * Object must already be present or it can't be purgeable. |
91447636 A |
5351 | */ |
5352 | return KERN_INVALID_ARGUMENT; | |
5353 | } | |
5354 | ||
5355 | /* | |
2d21ac55 | 5356 | * Get current state of the purgeable object. |
91447636 | 5357 | */ |
2d21ac55 A |
5358 | old_state = object->purgable; |
5359 | if (old_state == VM_PURGABLE_DENY) | |
91447636 A |
5360 | return KERN_INVALID_ARGUMENT; |
5361 | ||
2d21ac55 | 5362 | /* purgeable cant have delayed copies - now or in the future */ |
91447636 A |
5363 | assert(object->copy == VM_OBJECT_NULL); |
5364 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
5365 | ||
5366 | /* | |
5367 | * Execute the desired operation. | |
5368 | */ | |
5369 | if (control == VM_PURGABLE_GET_STATE) { | |
5370 | *state = old_state; | |
5371 | return KERN_SUCCESS; | |
5372 | } | |
5373 | ||
2d21ac55 A |
5374 | new_state = *state & VM_PURGABLE_STATE_MASK; |
5375 | switch (new_state) { | |
5376 | case VM_PURGABLE_DENY: | |
91447636 | 5377 | case VM_PURGABLE_NONVOLATILE: |
2d21ac55 A |
5378 | object->purgable = new_state; |
5379 | ||
5380 | if (old_state != VM_PURGABLE_NONVOLATILE) { | |
5381 | vm_page_lock_queues(); | |
91447636 A |
5382 | assert(vm_page_purgeable_count >= |
5383 | object->resident_page_count); | |
5384 | vm_page_purgeable_count -= object->resident_page_count; | |
91447636 | 5385 | |
2d21ac55 A |
5386 | if (old_state==VM_PURGABLE_VOLATILE) { |
5387 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
5388 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
5389 | assert(queue); | |
91447636 | 5390 | |
2d21ac55 A |
5391 | vm_purgeable_token_delete_first(queue); |
5392 | assert(queue->debug_count_objects>=0); | |
5393 | }; | |
5394 | vm_page_unlock_queues(); | |
91447636 | 5395 | } |
91447636 A |
5396 | break; |
5397 | ||
5398 | case VM_PURGABLE_VOLATILE: | |
91447636 | 5399 | |
2d21ac55 A |
5400 | if ((old_state != VM_PURGABLE_NONVOLATILE) && (old_state != VM_PURGABLE_VOLATILE)) |
5401 | break; | |
5402 | purgeable_q_t queue; | |
5403 | ||
5404 | /* find the correct queue */ | |
5405 | if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE) | |
5406 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
5407 | else { | |
5408 | if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO) | |
5409 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
5410 | else | |
5411 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
91447636 | 5412 | } |
2d21ac55 A |
5413 | |
5414 | if (old_state == VM_PURGABLE_NONVOLATILE) { | |
5415 | /* try to add token... this can fail */ | |
5416 | vm_page_lock_queues(); | |
91447636 | 5417 | |
2d21ac55 A |
5418 | kern_return_t result = vm_purgeable_token_add(queue); |
5419 | if (result != KERN_SUCCESS) { | |
5420 | vm_page_unlock_queues(); | |
5421 | return result; | |
91447636 | 5422 | } |
2d21ac55 A |
5423 | vm_page_purgeable_count += object->resident_page_count; |
5424 | ||
5425 | vm_page_unlock_queues(); | |
5426 | ||
5427 | object->purgable = new_state; | |
5428 | ||
5429 | /* object should not be on a queue */ | |
5430 | assert(object->objq.next == NULL && object->objq.prev == NULL); | |
91447636 | 5431 | } |
2d21ac55 A |
5432 | else if (old_state == VM_PURGABLE_VOLATILE) { |
5433 | /* | |
5434 | * if reassigning priorities / purgeable groups, we don't change the | |
5435 | * token queue. So moving priorities will not make pages stay around longer. | |
5436 | * Reasoning is that the algorithm gives most priority to the most important | |
5437 | * object. If a new token is added, the most important object' priority is boosted. | |
5438 | * This biases the system already for purgeable queues that move a lot. | |
5439 | * It doesn't seem more biasing is neccessary in this case, where no new object is added. | |
5440 | */ | |
5441 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
5442 | ||
5443 | purgeable_q_t old_queue=vm_purgeable_object_remove(object); | |
5444 | assert(old_queue); | |
5445 | ||
5446 | if (old_queue != queue) { | |
5447 | kern_return_t result; | |
5448 | ||
5449 | /* Changing queue. Have to move token. */ | |
5450 | vm_page_lock_queues(); | |
5451 | vm_purgeable_token_delete_first(old_queue); | |
5452 | result = vm_purgeable_token_add(queue); | |
5453 | vm_page_unlock_queues(); | |
91447636 | 5454 | |
2d21ac55 A |
5455 | assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */ |
5456 | } | |
5457 | }; | |
5458 | vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT ); | |
5459 | ||
5460 | assert(queue->debug_count_objects>=0); | |
5461 | ||
91447636 A |
5462 | break; |
5463 | ||
5464 | ||
5465 | case VM_PURGABLE_EMPTY: | |
2d21ac55 A |
5466 | if (old_state != new_state) |
5467 | { | |
5468 | assert(old_state==VM_PURGABLE_NONVOLATILE || old_state==VM_PURGABLE_VOLATILE); | |
5469 | if(old_state==VM_PURGABLE_VOLATILE) { | |
5470 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
5471 | purgeable_q_t old_queue=vm_purgeable_object_remove(object); | |
5472 | assert(old_queue); | |
5473 | vm_page_lock_queues(); | |
5474 | vm_purgeable_token_delete_first(old_queue); | |
5475 | } | |
5476 | ||
5477 | if (old_state==VM_PURGABLE_NONVOLATILE) { | |
5478 | vm_page_purgeable_count += object->resident_page_count; | |
5479 | vm_page_lock_queues(); | |
5480 | } | |
5481 | (void) vm_object_purge(object); | |
5482 | vm_page_unlock_queues(); | |
91447636 | 5483 | } |
91447636 A |
5484 | break; |
5485 | ||
5486 | } | |
5487 | *state = old_state; | |
5488 | ||
5489 | return KERN_SUCCESS; | |
5490 | } | |
0b4e3aa0 A |
5491 | |
5492 | #if TASK_SWAPPER | |
5493 | /* | |
5494 | * vm_object_res_deallocate | |
5495 | * | |
5496 | * (recursively) decrement residence counts on vm objects and their shadows. | |
5497 | * Called from vm_object_deallocate and when swapping out an object. | |
5498 | * | |
5499 | * The object is locked, and remains locked throughout the function, | |
5500 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
5501 | * will be dropped, but not the original object. | |
5502 | * | |
5503 | * NOTE: this function used to use recursion, rather than iteration. | |
5504 | */ | |
5505 | ||
5506 | __private_extern__ void | |
5507 | vm_object_res_deallocate( | |
5508 | vm_object_t object) | |
5509 | { | |
5510 | vm_object_t orig_object = object; | |
5511 | /* | |
5512 | * Object is locked so it can be called directly | |
5513 | * from vm_object_deallocate. Original object is never | |
5514 | * unlocked. | |
5515 | */ | |
5516 | assert(object->res_count > 0); | |
5517 | while (--object->res_count == 0) { | |
5518 | assert(object->ref_count >= object->res_count); | |
5519 | vm_object_deactivate_all_pages(object); | |
5520 | /* iterate on shadow, if present */ | |
5521 | if (object->shadow != VM_OBJECT_NULL) { | |
5522 | vm_object_t tmp_object = object->shadow; | |
5523 | vm_object_lock(tmp_object); | |
5524 | if (object != orig_object) | |
5525 | vm_object_unlock(object); | |
5526 | object = tmp_object; | |
5527 | assert(object->res_count > 0); | |
5528 | } else | |
5529 | break; | |
5530 | } | |
5531 | if (object != orig_object) | |
1c79356b | 5532 | vm_object_unlock(object); |
0b4e3aa0 A |
5533 | } |
5534 | ||
5535 | /* | |
5536 | * vm_object_res_reference | |
5537 | * | |
5538 | * Internal function to increment residence count on a vm object | |
5539 | * and its shadows. It is called only from vm_object_reference, and | |
5540 | * when swapping in a vm object, via vm_map_swap. | |
5541 | * | |
5542 | * The object is locked, and remains locked throughout the function, | |
5543 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
5544 | * will be dropped, but not the original object. | |
5545 | * | |
5546 | * NOTE: this function used to use recursion, rather than iteration. | |
5547 | */ | |
5548 | ||
5549 | __private_extern__ void | |
5550 | vm_object_res_reference( | |
5551 | vm_object_t object) | |
5552 | { | |
5553 | vm_object_t orig_object = object; | |
5554 | /* | |
5555 | * Object is locked, so this can be called directly | |
5556 | * from vm_object_reference. This lock is never released. | |
5557 | */ | |
5558 | while ((++object->res_count == 1) && | |
5559 | (object->shadow != VM_OBJECT_NULL)) { | |
5560 | vm_object_t tmp_object = object->shadow; | |
5561 | ||
5562 | assert(object->ref_count >= object->res_count); | |
5563 | vm_object_lock(tmp_object); | |
5564 | if (object != orig_object) | |
5565 | vm_object_unlock(object); | |
5566 | object = tmp_object; | |
1c79356b | 5567 | } |
0b4e3aa0 A |
5568 | if (object != orig_object) |
5569 | vm_object_unlock(object); | |
5570 | assert(orig_object->ref_count >= orig_object->res_count); | |
1c79356b | 5571 | } |
0b4e3aa0 A |
5572 | #endif /* TASK_SWAPPER */ |
5573 | ||
5574 | /* | |
5575 | * vm_object_reference: | |
5576 | * | |
5577 | * Gets another reference to the given object. | |
5578 | */ | |
5579 | #ifdef vm_object_reference | |
5580 | #undef vm_object_reference | |
5581 | #endif | |
5582 | __private_extern__ void | |
5583 | vm_object_reference( | |
5584 | register vm_object_t object) | |
5585 | { | |
5586 | if (object == VM_OBJECT_NULL) | |
5587 | return; | |
5588 | ||
5589 | vm_object_lock(object); | |
5590 | assert(object->ref_count > 0); | |
5591 | vm_object_reference_locked(object); | |
5592 | vm_object_unlock(object); | |
5593 | } | |
5594 | ||
1c79356b A |
5595 | #ifdef MACH_BSD |
5596 | /* | |
5597 | * Scale the vm_object_cache | |
5598 | * This is required to make sure that the vm_object_cache is big | |
5599 | * enough to effectively cache the mapped file. | |
5600 | * This is really important with UBC as all the regular file vnodes | |
5601 | * have memory object associated with them. Havving this cache too | |
5602 | * small results in rapid reclaim of vnodes and hurts performance a LOT! | |
5603 | * | |
5604 | * This is also needed as number of vnodes can be dynamically scaled. | |
5605 | */ | |
5606 | kern_return_t | |
91447636 A |
5607 | adjust_vm_object_cache( |
5608 | __unused vm_size_t oval, | |
5609 | vm_size_t nval) | |
1c79356b A |
5610 | { |
5611 | vm_object_cached_max = nval; | |
5612 | vm_object_cache_trim(FALSE); | |
5613 | return (KERN_SUCCESS); | |
5614 | } | |
5615 | #endif /* MACH_BSD */ | |
5616 | ||
91447636 A |
5617 | |
5618 | /* | |
5619 | * vm_object_transpose | |
5620 | * | |
5621 | * This routine takes two VM objects of the same size and exchanges | |
5622 | * their backing store. | |
5623 | * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE | |
5624 | * and UPL_BLOCK_ACCESS if they are referenced anywhere. | |
5625 | * | |
5626 | * The VM objects must not be locked by caller. | |
5627 | */ | |
5628 | kern_return_t | |
5629 | vm_object_transpose( | |
5630 | vm_object_t object1, | |
5631 | vm_object_t object2, | |
5632 | vm_object_size_t transpose_size) | |
5633 | { | |
5634 | vm_object_t tmp_object; | |
5635 | kern_return_t retval; | |
5636 | boolean_t object1_locked, object2_locked; | |
5637 | boolean_t object1_paging, object2_paging; | |
5638 | vm_page_t page; | |
5639 | vm_object_offset_t page_offset; | |
5640 | ||
5641 | tmp_object = VM_OBJECT_NULL; | |
5642 | object1_locked = FALSE; object2_locked = FALSE; | |
5643 | object1_paging = FALSE; object2_paging = FALSE; | |
5644 | ||
5645 | if (object1 == object2 || | |
5646 | object1 == VM_OBJECT_NULL || | |
5647 | object2 == VM_OBJECT_NULL) { | |
5648 | /* | |
5649 | * If the 2 VM objects are the same, there's | |
5650 | * no point in exchanging their backing store. | |
5651 | */ | |
5652 | retval = KERN_INVALID_VALUE; | |
5653 | goto done; | |
5654 | } | |
5655 | ||
5656 | vm_object_lock(object1); | |
5657 | object1_locked = TRUE; | |
2d21ac55 A |
5658 | if (!object1->alive || object1->terminating || |
5659 | object1->copy || object1->shadow || object1->shadowed || | |
5660 | object1->purgable != VM_PURGABLE_DENY) { | |
91447636 A |
5661 | /* |
5662 | * We don't deal with copy or shadow objects (yet). | |
5663 | */ | |
5664 | retval = KERN_INVALID_VALUE; | |
5665 | goto done; | |
5666 | } | |
5667 | /* | |
5668 | * Since we're about to mess with the object's backing store, | |
5669 | * mark it as "paging_in_progress". Note that this is not enough | |
5670 | * to prevent any paging activity on this object, so the caller should | |
5671 | * have "quiesced" the objects beforehand, via a UPL operation with | |
5672 | * UPL_SET_IO_WIRE (to make sure all the pages are there and wired) | |
5673 | * and UPL_BLOCK_ACCESS (to mark the pages "busy"). | |
5674 | */ | |
5675 | vm_object_paging_begin(object1); | |
5676 | object1_paging = TRUE; | |
5677 | vm_object_unlock(object1); | |
5678 | object1_locked = FALSE; | |
5679 | ||
5680 | /* | |
5681 | * Same as above for the 2nd object... | |
5682 | */ | |
5683 | vm_object_lock(object2); | |
5684 | object2_locked = TRUE; | |
2d21ac55 A |
5685 | if (! object2->alive || object2->terminating || |
5686 | object2->copy || object2->shadow || object2->shadowed || | |
5687 | object2->purgable != VM_PURGABLE_DENY) { | |
91447636 A |
5688 | retval = KERN_INVALID_VALUE; |
5689 | goto done; | |
5690 | } | |
5691 | vm_object_paging_begin(object2); | |
5692 | object2_paging = TRUE; | |
5693 | vm_object_unlock(object2); | |
5694 | object2_locked = FALSE; | |
5695 | ||
5696 | /* | |
5697 | * Allocate a temporary VM object to hold object1's contents | |
5698 | * while we copy object2 to object1. | |
5699 | */ | |
5700 | tmp_object = vm_object_allocate(transpose_size); | |
5701 | vm_object_lock(tmp_object); | |
5702 | vm_object_paging_begin(tmp_object); | |
5703 | tmp_object->can_persist = FALSE; | |
5704 | ||
5705 | /* | |
5706 | * Since we need to lock both objects at the same time, | |
5707 | * make sure we always lock them in the same order to | |
5708 | * avoid deadlocks. | |
5709 | */ | |
5710 | if (object1 < object2) { | |
5711 | vm_object_lock(object1); | |
5712 | vm_object_lock(object2); | |
5713 | } else { | |
5714 | vm_object_lock(object2); | |
5715 | vm_object_lock(object1); | |
5716 | } | |
5717 | object1_locked = TRUE; | |
5718 | object2_locked = TRUE; | |
5719 | ||
5720 | if (object1->size != object2->size || | |
5721 | object1->size != transpose_size) { | |
5722 | /* | |
5723 | * If the 2 objects don't have the same size, we can't | |
5724 | * exchange their backing stores or one would overflow. | |
5725 | * If their size doesn't match the caller's | |
5726 | * "transpose_size", we can't do it either because the | |
5727 | * transpose operation will affect the entire span of | |
5728 | * the objects. | |
5729 | */ | |
5730 | retval = KERN_INVALID_VALUE; | |
5731 | goto done; | |
5732 | } | |
5733 | ||
5734 | ||
5735 | /* | |
5736 | * Transpose the lists of resident pages. | |
2d21ac55 | 5737 | * This also updates the resident_page_count and the memq_hint. |
91447636 A |
5738 | */ |
5739 | if (object1->phys_contiguous || queue_empty(&object1->memq)) { | |
5740 | /* | |
5741 | * No pages in object1, just transfer pages | |
5742 | * from object2 to object1. No need to go through | |
5743 | * an intermediate object. | |
5744 | */ | |
5745 | while (!queue_empty(&object2->memq)) { | |
5746 | page = (vm_page_t) queue_first(&object2->memq); | |
2d21ac55 | 5747 | vm_page_rename(page, object1, page->offset, FALSE); |
91447636 A |
5748 | } |
5749 | assert(queue_empty(&object2->memq)); | |
5750 | } else if (object2->phys_contiguous || queue_empty(&object2->memq)) { | |
5751 | /* | |
5752 | * No pages in object2, just transfer pages | |
5753 | * from object1 to object2. No need to go through | |
5754 | * an intermediate object. | |
5755 | */ | |
5756 | while (!queue_empty(&object1->memq)) { | |
5757 | page = (vm_page_t) queue_first(&object1->memq); | |
2d21ac55 | 5758 | vm_page_rename(page, object2, page->offset, FALSE); |
91447636 A |
5759 | } |
5760 | assert(queue_empty(&object1->memq)); | |
5761 | } else { | |
5762 | /* transfer object1's pages to tmp_object */ | |
5763 | vm_page_lock_queues(); | |
5764 | while (!queue_empty(&object1->memq)) { | |
5765 | page = (vm_page_t) queue_first(&object1->memq); | |
5766 | page_offset = page->offset; | |
5767 | vm_page_remove(page); | |
5768 | page->offset = page_offset; | |
5769 | queue_enter(&tmp_object->memq, page, vm_page_t, listq); | |
5770 | } | |
5771 | vm_page_unlock_queues(); | |
5772 | assert(queue_empty(&object1->memq)); | |
5773 | /* transfer object2's pages to object1 */ | |
5774 | while (!queue_empty(&object2->memq)) { | |
5775 | page = (vm_page_t) queue_first(&object2->memq); | |
2d21ac55 | 5776 | vm_page_rename(page, object1, page->offset, FALSE); |
91447636 A |
5777 | } |
5778 | assert(queue_empty(&object2->memq)); | |
5779 | /* transfer tmp_object's pages to object1 */ | |
5780 | while (!queue_empty(&tmp_object->memq)) { | |
5781 | page = (vm_page_t) queue_first(&tmp_object->memq); | |
5782 | queue_remove(&tmp_object->memq, page, | |
5783 | vm_page_t, listq); | |
5784 | vm_page_insert(page, object2, page->offset); | |
5785 | } | |
5786 | assert(queue_empty(&tmp_object->memq)); | |
5787 | } | |
5788 | ||
91447636 A |
5789 | #define __TRANSPOSE_FIELD(field) \ |
5790 | MACRO_BEGIN \ | |
5791 | tmp_object->field = object1->field; \ | |
5792 | object1->field = object2->field; \ | |
5793 | object2->field = tmp_object->field; \ | |
5794 | MACRO_END | |
5795 | ||
2d21ac55 A |
5796 | /* "size" should be identical */ |
5797 | assert(object1->size == object2->size); | |
5798 | /* "Lock" refers to the object not its contents */ | |
5799 | /* "ref_count" refers to the object not its contents */ | |
5800 | #if TASK_SWAPPER | |
5801 | /* "res_count" refers to the object not its contents */ | |
5802 | #endif | |
5803 | /* "resident_page_count" was updated above when transposing pages */ | |
5804 | /* there should be no "copy" */ | |
91447636 A |
5805 | assert(!object1->copy); |
5806 | assert(!object2->copy); | |
2d21ac55 | 5807 | /* there should be no "shadow" */ |
91447636 A |
5808 | assert(!object1->shadow); |
5809 | assert(!object2->shadow); | |
91447636 A |
5810 | __TRANSPOSE_FIELD(shadow_offset); /* used by phys_contiguous objects */ |
5811 | __TRANSPOSE_FIELD(pager); | |
5812 | __TRANSPOSE_FIELD(paging_offset); | |
91447636 A |
5813 | __TRANSPOSE_FIELD(pager_control); |
5814 | /* update the memory_objects' pointers back to the VM objects */ | |
5815 | if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
5816 | memory_object_control_collapse(object1->pager_control, | |
5817 | object1); | |
5818 | } | |
5819 | if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
5820 | memory_object_control_collapse(object2->pager_control, | |
5821 | object2); | |
5822 | } | |
2d21ac55 A |
5823 | __TRANSPOSE_FIELD(copy_strategy); |
5824 | /* "paging_in_progress" refers to the object not its contents */ | |
91447636 A |
5825 | assert(object1->paging_in_progress); |
5826 | assert(object2->paging_in_progress); | |
2d21ac55 | 5827 | /* "all_wanted" refers to the object not its contents */ |
91447636 A |
5828 | __TRANSPOSE_FIELD(pager_created); |
5829 | __TRANSPOSE_FIELD(pager_initialized); | |
5830 | __TRANSPOSE_FIELD(pager_ready); | |
5831 | __TRANSPOSE_FIELD(pager_trusted); | |
2d21ac55 | 5832 | __TRANSPOSE_FIELD(can_persist); |
91447636 A |
5833 | __TRANSPOSE_FIELD(internal); |
5834 | __TRANSPOSE_FIELD(temporary); | |
5835 | __TRANSPOSE_FIELD(private); | |
5836 | __TRANSPOSE_FIELD(pageout); | |
2d21ac55 A |
5837 | /* "alive" should be set */ |
5838 | assert(object1->alive); | |
5839 | assert(object2->alive); | |
5840 | /* "purgeable" should be non-purgeable */ | |
5841 | assert(object1->purgable == VM_PURGABLE_DENY); | |
5842 | assert(object2->purgable == VM_PURGABLE_DENY); | |
5843 | /* "shadowed" refers to the the object not its contents */ | |
5844 | __TRANSPOSE_FIELD(silent_overwrite); | |
5845 | __TRANSPOSE_FIELD(advisory_pageout); | |
91447636 | 5846 | __TRANSPOSE_FIELD(true_share); |
2d21ac55 A |
5847 | /* "terminating" should not be set */ |
5848 | assert(!object1->terminating); | |
5849 | assert(!object2->terminating); | |
5850 | __TRANSPOSE_FIELD(named); | |
5851 | /* "shadow_severed" refers to the object not its contents */ | |
91447636 A |
5852 | __TRANSPOSE_FIELD(phys_contiguous); |
5853 | __TRANSPOSE_FIELD(nophyscache); | |
2d21ac55 A |
5854 | /* "cached_list" should be NULL */ |
5855 | assert(object1->cached_list.prev == NULL); | |
5856 | assert(object1->cached_list.next == NULL); | |
5857 | assert(object2->cached_list.prev == NULL); | |
5858 | assert(object2->cached_list.next == NULL); | |
5859 | /* "msr_q" is linked to the object not its contents */ | |
5860 | assert(queue_empty(&object1->msr_q)); | |
5861 | assert(queue_empty(&object2->msr_q)); | |
91447636 A |
5862 | __TRANSPOSE_FIELD(last_alloc); |
5863 | __TRANSPOSE_FIELD(sequential); | |
2d21ac55 A |
5864 | __TRANSPOSE_FIELD(pages_created); |
5865 | __TRANSPOSE_FIELD(pages_used); | |
5866 | #if MACH_PAGEMAP | |
91447636 | 5867 | __TRANSPOSE_FIELD(existence_map); |
2d21ac55 | 5868 | #endif |
91447636 | 5869 | __TRANSPOSE_FIELD(cow_hint); |
2d21ac55 A |
5870 | #if MACH_ASSERT |
5871 | __TRANSPOSE_FIELD(paging_object); | |
5872 | #endif | |
91447636 | 5873 | __TRANSPOSE_FIELD(wimg_bits); |
2d21ac55 A |
5874 | __TRANSPOSE_FIELD(code_signed); |
5875 | __TRANSPOSE_FIELD(not_in_use); | |
5876 | #ifdef UPL_DEBUG | |
5877 | /* "uplq" refers to the object not its contents (see upl_transpose()) */ | |
5878 | #endif | |
91447636 A |
5879 | |
5880 | #undef __TRANSPOSE_FIELD | |
5881 | ||
5882 | retval = KERN_SUCCESS; | |
5883 | ||
5884 | done: | |
5885 | /* | |
5886 | * Cleanup. | |
5887 | */ | |
5888 | if (tmp_object != VM_OBJECT_NULL) { | |
5889 | vm_object_paging_end(tmp_object); | |
5890 | vm_object_unlock(tmp_object); | |
5891 | /* | |
5892 | * Re-initialize the temporary object to avoid | |
5893 | * deallocating a real pager. | |
5894 | */ | |
5895 | _vm_object_allocate(transpose_size, tmp_object); | |
5896 | vm_object_deallocate(tmp_object); | |
5897 | tmp_object = VM_OBJECT_NULL; | |
5898 | } | |
5899 | ||
5900 | if (object1_locked) { | |
5901 | vm_object_unlock(object1); | |
5902 | object1_locked = FALSE; | |
5903 | } | |
5904 | if (object2_locked) { | |
5905 | vm_object_unlock(object2); | |
5906 | object2_locked = FALSE; | |
5907 | } | |
5908 | if (object1_paging) { | |
5909 | vm_object_lock(object1); | |
5910 | vm_object_paging_end(object1); | |
5911 | vm_object_unlock(object1); | |
5912 | object1_paging = FALSE; | |
5913 | } | |
5914 | if (object2_paging) { | |
5915 | vm_object_lock(object2); | |
5916 | vm_object_paging_end(object2); | |
5917 | vm_object_unlock(object2); | |
5918 | object2_paging = FALSE; | |
5919 | } | |
5920 | ||
5921 | return retval; | |
5922 | } | |
0c530ab8 A |
5923 | |
5924 | ||
2d21ac55 A |
5925 | /* |
5926 | * vm_object_build_cluster | |
5927 | * | |
5928 | * Determine how big a cluster we should issue an I/O for... | |
5929 | * | |
5930 | * Inputs: *start == offset of page needed | |
5931 | * *length == maximum cluster pager can handle | |
5932 | * Outputs: *start == beginning offset of cluster | |
5933 | * *length == length of cluster to try | |
5934 | * | |
5935 | * The original *start will be encompassed by the cluster | |
5936 | * | |
5937 | */ | |
5938 | extern int speculative_reads_disabled; | |
5939 | ||
5940 | uint32_t pre_heat_scaling[MAX_UPL_TRANSFER]; | |
5941 | uint32_t pre_heat_cluster[MAX_UPL_TRANSFER]; | |
5942 | ||
5943 | #define PRE_HEAT_MULTIPLIER 4 | |
5944 | ||
5945 | __private_extern__ void | |
5946 | vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start, | |
5947 | vm_size_t *length, vm_object_fault_info_t fault_info) | |
5948 | { | |
5949 | vm_size_t pre_heat_size; | |
5950 | vm_size_t tail_size; | |
5951 | vm_size_t head_size; | |
5952 | vm_size_t max_length; | |
5953 | vm_size_t cluster_size; | |
5954 | vm_object_offset_t object_size; | |
5955 | vm_object_offset_t orig_start; | |
5956 | vm_object_offset_t target_start; | |
5957 | vm_object_offset_t offset; | |
5958 | vm_behavior_t behavior; | |
5959 | boolean_t look_behind = TRUE; | |
5960 | boolean_t look_ahead = TRUE; | |
5961 | int sequential_run; | |
5962 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
5963 | ||
5964 | assert( !(*length & PAGE_MASK)); | |
5965 | assert( !(*start & PAGE_MASK_64)); | |
5966 | ||
5967 | if ( (max_length = *length) > (MAX_UPL_TRANSFER * PAGE_SIZE) ) | |
5968 | max_length = (MAX_UPL_TRANSFER * PAGE_SIZE); | |
5969 | /* | |
5970 | * we'll always return a cluster size of at least | |
5971 | * 1 page, since the original fault must always | |
5972 | * be processed | |
5973 | */ | |
5974 | *length = PAGE_SIZE; | |
5975 | ||
5976 | if (speculative_reads_disabled || fault_info == NULL || max_length == 0) { | |
5977 | /* | |
5978 | * no cluster... just fault the page in | |
5979 | */ | |
5980 | return; | |
5981 | } | |
5982 | orig_start = *start; | |
5983 | target_start = orig_start; | |
5984 | cluster_size = round_page_32(fault_info->cluster_size); | |
5985 | behavior = fault_info->behavior; | |
5986 | ||
5987 | vm_object_lock(object); | |
5988 | ||
5989 | if (object->internal) | |
5990 | object_size = object->size; | |
5991 | else if (object->pager != MEMORY_OBJECT_NULL) | |
5992 | vnode_pager_get_object_size(object->pager, &object_size); | |
5993 | else | |
5994 | goto out; /* pager is gone for this object, nothing more to do */ | |
5995 | ||
5996 | object_size = round_page_64(object_size); | |
5997 | ||
5998 | if (orig_start >= object_size) { | |
5999 | /* | |
6000 | * fault occurred beyond the EOF... | |
6001 | * we need to punt w/o changing the | |
6002 | * starting offset | |
6003 | */ | |
6004 | goto out; | |
6005 | } | |
6006 | if (object->pages_used > object->pages_created) { | |
6007 | /* | |
6008 | * must have wrapped our 32 bit counters | |
6009 | * so reset | |
6010 | */ | |
6011 | object->pages_used = object->pages_created = 0; | |
6012 | } | |
6013 | if ((sequential_run = object->sequential)) { | |
6014 | if (sequential_run < 0) { | |
6015 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
6016 | sequential_run = 0 - sequential_run; | |
6017 | } else { | |
6018 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6019 | } | |
6020 | } | |
6021 | switch(behavior) { | |
6022 | ||
6023 | default: | |
6024 | behavior = VM_BEHAVIOR_DEFAULT; | |
6025 | ||
6026 | case VM_BEHAVIOR_DEFAULT: | |
6027 | if (object->internal && fault_info->user_tag == VM_MEMORY_STACK) | |
6028 | goto out; | |
6029 | ||
6030 | if (sequential_run >= (3 * PAGE_SIZE)) { | |
6031 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6032 | ||
6033 | if ((behavior = sequential_behavior) == VM_BEHAVIOR_SEQUENTIAL) | |
6034 | look_behind = FALSE; | |
6035 | else | |
6036 | look_ahead = FALSE; | |
6037 | } else { | |
6038 | uint32_t pages_unused; | |
6039 | ||
6040 | if (object->pages_created < 32 * PRE_HEAT_MULTIPLIER) { | |
6041 | /* | |
6042 | * prime the pump | |
6043 | */ | |
6044 | pre_heat_size = PAGE_SIZE * 8 * PRE_HEAT_MULTIPLIER; | |
6045 | break; | |
6046 | } | |
6047 | pages_unused = object->pages_created - object->pages_used; | |
6048 | ||
6049 | if (pages_unused < (object->pages_created / 8)) { | |
6050 | pre_heat_size = PAGE_SIZE * 32 * PRE_HEAT_MULTIPLIER; | |
6051 | } else if (pages_unused < (object->pages_created / 4)) { | |
6052 | pre_heat_size = PAGE_SIZE * 16 * PRE_HEAT_MULTIPLIER; | |
6053 | } else if (pages_unused < (object->pages_created / 2)) { | |
6054 | pre_heat_size = PAGE_SIZE * 8 * PRE_HEAT_MULTIPLIER; | |
6055 | } else { | |
6056 | pre_heat_size = PAGE_SIZE * 4 * PRE_HEAT_MULTIPLIER; | |
6057 | } | |
6058 | } | |
6059 | break; | |
6060 | ||
6061 | case VM_BEHAVIOR_RANDOM: | |
6062 | if ((pre_heat_size = cluster_size) <= PAGE_SIZE) | |
6063 | goto out; | |
6064 | break; | |
6065 | ||
6066 | case VM_BEHAVIOR_SEQUENTIAL: | |
6067 | if ((pre_heat_size = cluster_size) == 0) | |
6068 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6069 | look_behind = FALSE; | |
6070 | ||
6071 | break; | |
6072 | ||
6073 | case VM_BEHAVIOR_RSEQNTL: | |
6074 | if ((pre_heat_size = cluster_size) == 0) | |
6075 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6076 | look_ahead = FALSE; | |
6077 | ||
6078 | break; | |
6079 | ||
6080 | } | |
6081 | if (pre_heat_size > max_length) | |
6082 | pre_heat_size = max_length; | |
6083 | ||
6084 | if (behavior == VM_BEHAVIOR_DEFAULT && vm_page_free_count < vm_page_free_target) | |
6085 | pre_heat_size /= 2; | |
6086 | ||
6087 | if (look_ahead == TRUE) { | |
6088 | if (look_behind == TRUE) | |
6089 | target_start &= ~(pre_heat_size - 1); | |
6090 | ||
6091 | if ((target_start + pre_heat_size) > object_size) | |
6092 | pre_heat_size = (vm_size_t)(trunc_page_64(object_size - target_start)); | |
6093 | ||
6094 | tail_size = pre_heat_size - (orig_start - target_start) - PAGE_SIZE; | |
6095 | } else { | |
6096 | if (pre_heat_size > target_start) | |
6097 | pre_heat_size = target_start; | |
6098 | tail_size = 0; | |
6099 | } | |
6100 | pre_heat_scaling[pre_heat_size / PAGE_SIZE]++; | |
6101 | ||
6102 | if (pre_heat_size <= PAGE_SIZE) | |
6103 | goto out; | |
6104 | ||
6105 | if (look_behind == TRUE) { | |
6106 | /* | |
6107 | * take a look at the pages before the original | |
6108 | * faulting offset | |
6109 | */ | |
6110 | head_size = pre_heat_size - tail_size - PAGE_SIZE; | |
6111 | ||
6112 | for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) { | |
6113 | /* | |
6114 | * don't poke below the lowest offset | |
6115 | */ | |
6116 | if (offset < fault_info->lo_offset) | |
6117 | break; | |
6118 | /* | |
6119 | * for external objects and internal objects w/o an existence map | |
6120 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
6121 | */ | |
6122 | #if MACH_PAGEMAP | |
6123 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
6124 | /* | |
6125 | * we know for a fact that the pager can't provide the page | |
6126 | * so don't include it or any pages beyond it in this cluster | |
6127 | */ | |
6128 | break; | |
6129 | } | |
6130 | #endif | |
6131 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
6132 | /* | |
6133 | * don't bridge resident pages | |
6134 | */ | |
6135 | break; | |
6136 | } | |
6137 | *start = offset; | |
6138 | *length += PAGE_SIZE; | |
6139 | } | |
6140 | } | |
6141 | if (look_ahead == TRUE) { | |
6142 | for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) { | |
6143 | /* | |
6144 | * don't poke above the highest offset | |
6145 | */ | |
6146 | if (offset >= fault_info->hi_offset) | |
6147 | break; | |
6148 | /* | |
6149 | * for external objects and internal objects w/o an existence map | |
6150 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
6151 | */ | |
6152 | #if MACH_PAGEMAP | |
6153 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
6154 | /* | |
6155 | * we know for a fact that the pager can't provide the page | |
6156 | * so don't include it or any pages beyond it in this cluster | |
6157 | */ | |
6158 | break; | |
6159 | } | |
6160 | #endif | |
6161 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
6162 | /* | |
6163 | * don't bridge resident pages | |
6164 | */ | |
6165 | break; | |
6166 | } | |
6167 | *length += PAGE_SIZE; | |
6168 | } | |
6169 | } | |
6170 | out: | |
6171 | pre_heat_cluster[*length / PAGE_SIZE]++; | |
6172 | ||
6173 | vm_object_unlock(object); | |
6174 | } | |
6175 | ||
6176 | ||
6177 | /* | |
6178 | * Allow manipulation of individual page state. This is actually part of | |
6179 | * the UPL regimen but takes place on the VM object rather than on a UPL | |
6180 | */ | |
0c530ab8 A |
6181 | |
6182 | kern_return_t | |
6183 | vm_object_page_op( | |
6184 | vm_object_t object, | |
6185 | vm_object_offset_t offset, | |
6186 | int ops, | |
6187 | ppnum_t *phys_entry, | |
6188 | int *flags) | |
6189 | { | |
6190 | vm_page_t dst_page; | |
6191 | ||
6192 | vm_object_lock(object); | |
6193 | ||
6194 | if(ops & UPL_POP_PHYSICAL) { | |
6195 | if(object->phys_contiguous) { | |
6196 | if (phys_entry) { | |
6197 | *phys_entry = (ppnum_t) | |
6198 | (object->shadow_offset >> 12); | |
6199 | } | |
6200 | vm_object_unlock(object); | |
6201 | return KERN_SUCCESS; | |
6202 | } else { | |
6203 | vm_object_unlock(object); | |
6204 | return KERN_INVALID_OBJECT; | |
6205 | } | |
6206 | } | |
6207 | if(object->phys_contiguous) { | |
6208 | vm_object_unlock(object); | |
6209 | return KERN_INVALID_OBJECT; | |
6210 | } | |
6211 | ||
6212 | while(TRUE) { | |
6213 | if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) { | |
6214 | vm_object_unlock(object); | |
6215 | return KERN_FAILURE; | |
6216 | } | |
6217 | ||
6218 | /* Sync up on getting the busy bit */ | |
6219 | if((dst_page->busy || dst_page->cleaning) && | |
6220 | (((ops & UPL_POP_SET) && | |
6221 | (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) { | |
6222 | /* someone else is playing with the page, we will */ | |
6223 | /* have to wait */ | |
6224 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
6225 | continue; | |
6226 | } | |
6227 | ||
6228 | if (ops & UPL_POP_DUMP) { | |
2d21ac55 | 6229 | if (dst_page->pmapped == TRUE) |
0c530ab8 | 6230 | pmap_disconnect(dst_page->phys_page); |
0c530ab8 | 6231 | |
2d21ac55 A |
6232 | vm_page_lock_queues(); |
6233 | vm_page_free(dst_page); | |
0c530ab8 | 6234 | vm_page_unlock_queues(); |
2d21ac55 | 6235 | |
0c530ab8 A |
6236 | break; |
6237 | } | |
6238 | ||
6239 | if (flags) { | |
6240 | *flags = 0; | |
6241 | ||
6242 | /* Get the condition of flags before requested ops */ | |
6243 | /* are undertaken */ | |
6244 | ||
6245 | if(dst_page->dirty) *flags |= UPL_POP_DIRTY; | |
6246 | if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT; | |
6247 | if(dst_page->precious) *flags |= UPL_POP_PRECIOUS; | |
6248 | if(dst_page->absent) *flags |= UPL_POP_ABSENT; | |
6249 | if(dst_page->busy) *flags |= UPL_POP_BUSY; | |
6250 | } | |
6251 | ||
6252 | /* The caller should have made a call either contingent with */ | |
6253 | /* or prior to this call to set UPL_POP_BUSY */ | |
6254 | if(ops & UPL_POP_SET) { | |
6255 | /* The protection granted with this assert will */ | |
6256 | /* not be complete. If the caller violates the */ | |
6257 | /* convention and attempts to change page state */ | |
6258 | /* without first setting busy we may not see it */ | |
6259 | /* because the page may already be busy. However */ | |
6260 | /* if such violations occur we will assert sooner */ | |
6261 | /* or later. */ | |
6262 | assert(dst_page->busy || (ops & UPL_POP_BUSY)); | |
6263 | if (ops & UPL_POP_DIRTY) dst_page->dirty = TRUE; | |
6264 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE; | |
6265 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE; | |
6266 | if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE; | |
6267 | if (ops & UPL_POP_BUSY) dst_page->busy = TRUE; | |
6268 | } | |
6269 | ||
6270 | if(ops & UPL_POP_CLR) { | |
6271 | assert(dst_page->busy); | |
6272 | if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE; | |
6273 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE; | |
6274 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE; | |
6275 | if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE; | |
6276 | if (ops & UPL_POP_BUSY) { | |
6277 | dst_page->busy = FALSE; | |
6278 | PAGE_WAKEUP(dst_page); | |
6279 | } | |
6280 | } | |
6281 | ||
6282 | if (dst_page->encrypted) { | |
6283 | /* | |
6284 | * ENCRYPTED SWAP: | |
6285 | * We need to decrypt this encrypted page before the | |
6286 | * caller can access its contents. | |
6287 | * But if the caller really wants to access the page's | |
6288 | * contents, they have to keep the page "busy". | |
6289 | * Otherwise, the page could get recycled or re-encrypted | |
6290 | * at any time. | |
6291 | */ | |
6292 | if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) && | |
6293 | dst_page->busy) { | |
6294 | /* | |
6295 | * The page is stable enough to be accessed by | |
6296 | * the caller, so make sure its contents are | |
6297 | * not encrypted. | |
6298 | */ | |
6299 | vm_page_decrypt(dst_page, 0); | |
6300 | } else { | |
6301 | /* | |
6302 | * The page is not busy, so don't bother | |
6303 | * decrypting it, since anything could | |
6304 | * happen to it between now and when the | |
6305 | * caller wants to access it. | |
6306 | * We should not give the caller access | |
6307 | * to this page. | |
6308 | */ | |
6309 | assert(!phys_entry); | |
6310 | } | |
6311 | } | |
6312 | ||
6313 | if (phys_entry) { | |
6314 | /* | |
6315 | * The physical page number will remain valid | |
6316 | * only if the page is kept busy. | |
6317 | * ENCRYPTED SWAP: make sure we don't let the | |
6318 | * caller access an encrypted page. | |
6319 | */ | |
6320 | assert(dst_page->busy); | |
6321 | assert(!dst_page->encrypted); | |
6322 | *phys_entry = dst_page->phys_page; | |
6323 | } | |
6324 | ||
6325 | break; | |
6326 | } | |
6327 | ||
6328 | vm_object_unlock(object); | |
6329 | return KERN_SUCCESS; | |
6330 | ||
6331 | } | |
6332 | ||
6333 | /* | |
6334 | * vm_object_range_op offers performance enhancement over | |
6335 | * vm_object_page_op for page_op functions which do not require page | |
6336 | * level state to be returned from the call. Page_op was created to provide | |
6337 | * a low-cost alternative to page manipulation via UPLs when only a single | |
6338 | * page was involved. The range_op call establishes the ability in the _op | |
6339 | * family of functions to work on multiple pages where the lack of page level | |
6340 | * state handling allows the caller to avoid the overhead of the upl structures. | |
6341 | */ | |
6342 | ||
6343 | kern_return_t | |
6344 | vm_object_range_op( | |
6345 | vm_object_t object, | |
6346 | vm_object_offset_t offset_beg, | |
6347 | vm_object_offset_t offset_end, | |
6348 | int ops, | |
6349 | int *range) | |
6350 | { | |
6351 | vm_object_offset_t offset; | |
6352 | vm_page_t dst_page; | |
6353 | ||
6354 | if (object->resident_page_count == 0) { | |
6355 | if (range) { | |
6356 | if (ops & UPL_ROP_PRESENT) | |
6357 | *range = 0; | |
6358 | else | |
6359 | *range = offset_end - offset_beg; | |
6360 | } | |
6361 | return KERN_SUCCESS; | |
6362 | } | |
6363 | vm_object_lock(object); | |
6364 | ||
6365 | if (object->phys_contiguous) { | |
6366 | vm_object_unlock(object); | |
6367 | return KERN_INVALID_OBJECT; | |
6368 | } | |
6369 | ||
2d21ac55 | 6370 | offset = offset_beg & ~PAGE_MASK_64; |
0c530ab8 A |
6371 | |
6372 | while (offset < offset_end) { | |
6373 | dst_page = vm_page_lookup(object, offset); | |
6374 | if (dst_page != VM_PAGE_NULL) { | |
6375 | if (ops & UPL_ROP_DUMP) { | |
6376 | if (dst_page->busy || dst_page->cleaning) { | |
6377 | /* | |
6378 | * someone else is playing with the | |
6379 | * page, we will have to wait | |
6380 | */ | |
2d21ac55 | 6381 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
0c530ab8 A |
6382 | /* |
6383 | * need to relook the page up since it's | |
6384 | * state may have changed while we slept | |
6385 | * it might even belong to a different object | |
6386 | * at this point | |
6387 | */ | |
6388 | continue; | |
6389 | } | |
2d21ac55 | 6390 | if (dst_page->pmapped == TRUE) |
0c530ab8 | 6391 | pmap_disconnect(dst_page->phys_page); |
0c530ab8 | 6392 | |
2d21ac55 A |
6393 | vm_page_lock_queues(); |
6394 | vm_page_free(dst_page); | |
0c530ab8 | 6395 | vm_page_unlock_queues(); |
2d21ac55 | 6396 | |
0c530ab8 A |
6397 | } else if (ops & UPL_ROP_ABSENT) |
6398 | break; | |
6399 | } else if (ops & UPL_ROP_PRESENT) | |
6400 | break; | |
6401 | ||
6402 | offset += PAGE_SIZE; | |
6403 | } | |
6404 | vm_object_unlock(object); | |
6405 | ||
2d21ac55 A |
6406 | if (range) { |
6407 | if (offset > offset_end) | |
6408 | offset = offset_end; | |
cf7d32b8 A |
6409 | if(offset > offset_beg) |
6410 | *range = offset - offset_beg; | |
6411 | else *range=0; | |
2d21ac55 | 6412 | } |
0c530ab8 A |
6413 | return KERN_SUCCESS; |
6414 | } | |
2d21ac55 A |
6415 | |
6416 | ||
6417 | uint32_t scan_object_collision = 0; | |
6418 | ||
6419 | void | |
6420 | vm_object_lock(vm_object_t object) | |
6421 | { | |
6422 | if (object == vm_pageout_scan_wants_object) { | |
6423 | scan_object_collision++; | |
6424 | mutex_pause(2); | |
6425 | } | |
6426 | lck_rw_lock_exclusive(&object->Lock); | |
6427 | } | |
6428 | ||
6429 | boolean_t | |
6430 | vm_object_lock_try(vm_object_t object) | |
6431 | { | |
6432 | if (object == vm_pageout_scan_wants_object) { | |
6433 | scan_object_collision++; | |
6434 | mutex_pause(2); | |
6435 | } | |
6436 | return (lck_rw_try_lock_exclusive(&object->Lock)); | |
6437 | } | |
6438 | ||
6439 | void | |
6440 | vm_object_lock_shared(vm_object_t object) | |
6441 | { | |
6442 | if (object == vm_pageout_scan_wants_object) { | |
6443 | scan_object_collision++; | |
6444 | mutex_pause(2); | |
6445 | } | |
6446 | lck_rw_lock_shared(&object->Lock); | |
6447 | } | |
6448 | ||
6449 | boolean_t | |
6450 | vm_object_lock_try_shared(vm_object_t object) | |
6451 | { | |
6452 | if (object == vm_pageout_scan_wants_object) { | |
6453 | scan_object_collision++; | |
6454 | mutex_pause(2); | |
6455 | } | |
6456 | return (lck_rw_try_lock_shared(&object->Lock)); | |
6457 | } |