]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
d7e50217 | 6 | * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved. |
1c79356b | 7 | * |
d7e50217 A |
8 | * This file contains Original Code and/or Modifications of Original Code |
9 | * as defined in and that are subject to the Apple Public Source License | |
10 | * Version 2.0 (the 'License'). You may not use this file except in | |
11 | * compliance with the License. Please obtain a copy of the License at | |
12 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
13 | * file. | |
14 | * | |
15 | * The Original Code and all software distributed under the License are | |
16 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
17 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
18 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
d7e50217 A |
19 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
20 | * Please see the License for the specific language governing rights and | |
21 | * limitations under the License. | |
1c79356b A |
22 | * |
23 | * @APPLE_LICENSE_HEADER_END@ | |
24 | */ | |
25 | /* | |
26 | * File: ppc/cpu.c | |
27 | * | |
28 | * cpu specific routines | |
29 | */ | |
30 | ||
31 | #include <kern/machine.h> | |
32 | #include <kern/misc_protos.h> | |
33 | #include <kern/thread.h> | |
34 | #include <kern/processor.h> | |
35 | #include <mach/machine.h> | |
36 | #include <mach/processor_info.h> | |
37 | #include <mach/mach_types.h> | |
38 | #include <ppc/proc_reg.h> | |
39 | #include <ppc/misc_protos.h> | |
40 | #include <ppc/machine_routines.h> | |
41 | #include <ppc/machine_cpu.h> | |
42 | #include <ppc/exception.h> | |
9bccf70c | 43 | #include <ppc/asm.h> |
d7e50217 | 44 | #include <ppc/hw_perfmon.h> |
1c79356b | 45 | #include <pexpert/pexpert.h> |
9bccf70c | 46 | #include <kern/cpu_data.h> |
d7e50217 A |
47 | #include <ppc/mappings.h> |
48 | #include <ppc/Diagnostics.h> | |
1c79356b A |
49 | |
50 | /* TODO: BOGUS TO BE REMOVED */ | |
51 | int real_ncpus = 1; | |
52 | ||
53 | int wncpu = NCPUS; | |
54 | resethandler_t resethandler_target; | |
55 | ||
56 | #define MMCR0_SUPPORT_MASK 0xf83f1fff | |
57 | #define MMCR1_SUPPORT_MASK 0xffc00000 | |
58 | #define MMCR2_SUPPORT_MASK 0x80000000 | |
59 | ||
60 | extern int debugger_pending[NCPUS]; | |
61 | extern int debugger_is_slave[NCPUS]; | |
62 | extern int debugger_holdoff[NCPUS]; | |
63 | extern int debugger_sync; | |
64 | ||
65 | struct SIGtimebase { | |
66 | boolean_t avail; | |
67 | boolean_t ready; | |
68 | boolean_t done; | |
0b4e3aa0 | 69 | uint64_t abstime; |
1c79356b A |
70 | }; |
71 | ||
9bccf70c A |
72 | struct per_proc_info *pper_proc_info = per_proc_info; |
73 | ||
1c79356b A |
74 | extern struct SIGtimebase syncClkSpot; |
75 | ||
76 | void cpu_sync_timebase(void); | |
77 | ||
78 | kern_return_t | |
79 | cpu_control( | |
80 | int slot_num, | |
81 | processor_info_t info, | |
82 | unsigned int count) | |
83 | { | |
84 | cpu_type_t cpu_type; | |
85 | cpu_subtype_t cpu_subtype; | |
86 | processor_pm_regs_t perf_regs; | |
87 | processor_control_cmd_t cmd; | |
88 | boolean_t oldlevel; | |
89 | ||
90 | cpu_type = machine_slot[slot_num].cpu_type; | |
91 | cpu_subtype = machine_slot[slot_num].cpu_subtype; | |
92 | cmd = (processor_control_cmd_t) info; | |
93 | ||
94 | if (count < PROCESSOR_CONTROL_CMD_COUNT) | |
95 | return(KERN_FAILURE); | |
96 | ||
97 | if ( cpu_type != cmd->cmd_cpu_type || | |
98 | cpu_subtype != cmd->cmd_cpu_subtype) | |
99 | return(KERN_FAILURE); | |
100 | ||
d7e50217 A |
101 | if (perfmon_acquire_facility(current_task()) != KERN_SUCCESS) { |
102 | return(KERN_RESOURCE_SHORTAGE); /* cpu performance facility in use by another task */ | |
103 | } | |
104 | ||
1c79356b A |
105 | switch (cmd->cmd_op) |
106 | { | |
107 | case PROCESSOR_PM_CLR_PMC: /* Clear Performance Monitor Counters */ | |
108 | switch (cpu_subtype) | |
109 | { | |
1c79356b A |
110 | case CPU_SUBTYPE_POWERPC_750: |
111 | case CPU_SUBTYPE_POWERPC_7400: | |
112 | case CPU_SUBTYPE_POWERPC_7450: | |
113 | { | |
114 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
115 | mtpmc1(0x0); | |
116 | mtpmc2(0x0); | |
117 | mtpmc3(0x0); | |
118 | mtpmc4(0x0); | |
119 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
120 | return(KERN_SUCCESS); | |
121 | } | |
122 | default: | |
123 | return(KERN_FAILURE); | |
124 | } /* cpu_subtype */ | |
125 | case PROCESSOR_PM_SET_REGS: /* Set Performance Monitor Registors */ | |
126 | switch (cpu_subtype) | |
127 | { | |
1c79356b A |
128 | case CPU_SUBTYPE_POWERPC_750: |
129 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
130 | PROCESSOR_PM_REGS_COUNT_POWERPC_750)) | |
131 | return(KERN_FAILURE); | |
132 | else | |
133 | { | |
134 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
135 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
136 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
137 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
138 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
139 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
140 | mtpmc3(PERFMON_PMC3(perf_regs)); | |
141 | mtpmc4(PERFMON_PMC4(perf_regs)); | |
142 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
143 | return(KERN_SUCCESS); | |
144 | } | |
145 | case CPU_SUBTYPE_POWERPC_7400: | |
146 | case CPU_SUBTYPE_POWERPC_7450: | |
147 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
148 | PROCESSOR_PM_REGS_COUNT_POWERPC_7400)) | |
149 | return(KERN_FAILURE); | |
150 | else | |
151 | { | |
152 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
153 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
154 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
155 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
156 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
157 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
158 | mtpmc3(PERFMON_PMC3(perf_regs)); | |
159 | mtpmc4(PERFMON_PMC4(perf_regs)); | |
160 | mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK); | |
161 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
162 | return(KERN_SUCCESS); | |
163 | } | |
164 | default: | |
165 | return(KERN_FAILURE); | |
166 | } /* switch cpu_subtype */ | |
167 | case PROCESSOR_PM_SET_MMCR: | |
168 | switch (cpu_subtype) | |
169 | { | |
1c79356b A |
170 | case CPU_SUBTYPE_POWERPC_750: |
171 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
172 | PROCESSOR_PM_REGS_COUNT_POWERPC_750)) | |
173 | return(KERN_FAILURE); | |
174 | else | |
175 | { | |
176 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
177 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
178 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
179 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
180 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
181 | return(KERN_SUCCESS); | |
182 | } | |
183 | case CPU_SUBTYPE_POWERPC_7400: | |
184 | case CPU_SUBTYPE_POWERPC_7450: | |
185 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
186 | PROCESSOR_PM_REGS_COUNT_POWERPC_7400)) | |
187 | return(KERN_FAILURE); | |
188 | else | |
189 | { | |
190 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
191 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
192 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
193 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
194 | mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK); | |
195 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
196 | return(KERN_SUCCESS); | |
197 | } | |
198 | default: | |
199 | return(KERN_FAILURE); | |
200 | } /* cpu_subtype */ | |
201 | default: | |
202 | return(KERN_FAILURE); | |
203 | } /* switch cmd_op */ | |
204 | } | |
205 | ||
206 | kern_return_t | |
207 | cpu_info_count( | |
208 | processor_flavor_t flavor, | |
209 | unsigned int *count) | |
210 | { | |
211 | cpu_subtype_t cpu_subtype; | |
212 | ||
213 | /* | |
214 | * For now, we just assume that all CPUs are of the same type | |
215 | */ | |
216 | cpu_subtype = machine_slot[0].cpu_subtype; | |
217 | switch (flavor) { | |
218 | case PROCESSOR_PM_REGS_INFO: | |
219 | switch (cpu_subtype) { | |
1c79356b A |
220 | case CPU_SUBTYPE_POWERPC_750: |
221 | ||
222 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750; | |
223 | return(KERN_SUCCESS); | |
224 | ||
225 | case CPU_SUBTYPE_POWERPC_7400: | |
226 | case CPU_SUBTYPE_POWERPC_7450: | |
227 | ||
228 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400; | |
229 | return(KERN_SUCCESS); | |
230 | ||
231 | default: | |
232 | *count = 0; | |
233 | return(KERN_INVALID_ARGUMENT); | |
234 | } /* switch cpu_subtype */ | |
235 | ||
236 | case PROCESSOR_TEMPERATURE: | |
237 | *count = PROCESSOR_TEMPERATURE_COUNT; | |
238 | return (KERN_SUCCESS); | |
239 | ||
240 | default: | |
241 | *count = 0; | |
242 | return(KERN_INVALID_ARGUMENT); | |
243 | ||
244 | } | |
245 | } | |
246 | ||
247 | kern_return_t | |
248 | cpu_info( | |
249 | processor_flavor_t flavor, | |
250 | int slot_num, | |
251 | processor_info_t info, | |
252 | unsigned int *count) | |
253 | { | |
254 | cpu_subtype_t cpu_subtype; | |
255 | processor_pm_regs_t perf_regs; | |
256 | boolean_t oldlevel; | |
257 | unsigned int temp[2]; | |
258 | ||
259 | cpu_subtype = machine_slot[slot_num].cpu_subtype; | |
260 | ||
261 | switch (flavor) { | |
262 | case PROCESSOR_PM_REGS_INFO: | |
263 | ||
264 | perf_regs = (processor_pm_regs_t) info; | |
265 | ||
266 | switch (cpu_subtype) { | |
1c79356b A |
267 | case CPU_SUBTYPE_POWERPC_750: |
268 | ||
269 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_750) | |
270 | return(KERN_FAILURE); | |
271 | ||
272 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
273 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
274 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
275 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
276 | PERFMON_MMCR1(perf_regs) = mfmmcr1(); | |
277 | PERFMON_PMC3(perf_regs) = mfpmc3(); | |
278 | PERFMON_PMC4(perf_regs) = mfpmc4(); | |
279 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
280 | ||
281 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750; | |
282 | return(KERN_SUCCESS); | |
283 | ||
284 | case CPU_SUBTYPE_POWERPC_7400: | |
285 | case CPU_SUBTYPE_POWERPC_7450: | |
286 | ||
287 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_7400) | |
288 | return(KERN_FAILURE); | |
289 | ||
290 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
291 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
292 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
293 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
294 | PERFMON_MMCR1(perf_regs) = mfmmcr1(); | |
295 | PERFMON_PMC3(perf_regs) = mfpmc3(); | |
296 | PERFMON_PMC4(perf_regs) = mfpmc4(); | |
297 | PERFMON_MMCR2(perf_regs) = mfmmcr2(); | |
298 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
299 | ||
300 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400; | |
301 | return(KERN_SUCCESS); | |
302 | ||
303 | default: | |
304 | return(KERN_FAILURE); | |
305 | } /* switch cpu_subtype */ | |
306 | ||
307 | case PROCESSOR_TEMPERATURE: /* Get the temperature of a processor */ | |
308 | ||
309 | disable_preemption(); /* Don't move me now */ | |
310 | ||
311 | if(slot_num == cpu_number()) { /* Is this for the local CPU? */ | |
312 | *info = ml_read_temp(); /* Get the temperature */ | |
313 | } | |
314 | else { /* For another CPU */ | |
315 | temp[0] = -1; /* Set sync flag */ | |
316 | eieio(); | |
317 | sync(); | |
318 | temp[1] = -1; /* Set invalid temperature */ | |
319 | (void)cpu_signal(slot_num, SIGPcpureq, CPRQtemp ,(unsigned int)&temp); /* Ask him to take his temperature */ | |
320 | (void)hw_cpu_sync(temp, LockTimeOut); /* Wait for the other processor to get its temperature */ | |
321 | *info = temp[1]; /* Pass it back */ | |
322 | } | |
323 | ||
324 | enable_preemption(); /* Ok to move now */ | |
325 | return(KERN_SUCCESS); | |
326 | ||
327 | default: | |
328 | return(KERN_INVALID_ARGUMENT); | |
329 | ||
330 | } /* flavor */ | |
331 | } | |
332 | ||
333 | void | |
334 | cpu_init( | |
335 | void) | |
336 | { | |
337 | int cpu; | |
338 | ||
339 | cpu = cpu_number(); | |
340 | ||
341 | machine_slot[cpu].running = TRUE; | |
342 | machine_slot[cpu].cpu_type = CPU_TYPE_POWERPC; | |
343 | machine_slot[cpu].cpu_subtype = (cpu_subtype_t)per_proc_info[cpu].pf.rptdProc; | |
344 | ||
345 | } | |
346 | ||
347 | void | |
348 | cpu_machine_init( | |
349 | void) | |
350 | { | |
0b4e3aa0 A |
351 | struct per_proc_info *tproc_info; |
352 | volatile struct per_proc_info *mproc_info; | |
1c79356b A |
353 | int cpu; |
354 | ||
355 | /* TODO: realese mutex lock reset_handler_lock */ | |
356 | ||
357 | cpu = cpu_number(); | |
0b4e3aa0 A |
358 | tproc_info = &per_proc_info[cpu]; |
359 | mproc_info = &per_proc_info[master_cpu]; | |
360 | PE_cpu_machine_init(tproc_info->cpu_id, !(tproc_info->cpu_flags & BootDone)); | |
361 | if (cpu != master_cpu) { | |
362 | while (!((mproc_info->cpu_flags) & SignalReady)) | |
363 | continue; | |
1c79356b | 364 | cpu_sync_timebase(); |
0b4e3aa0 | 365 | } |
1c79356b | 366 | ml_init_interrupt(); |
0b4e3aa0 | 367 | tproc_info->cpu_flags |= BootDone|SignalReady; |
1c79356b A |
368 | } |
369 | ||
370 | kern_return_t | |
371 | cpu_register( | |
372 | int *target_cpu | |
373 | ) | |
374 | { | |
375 | int cpu; | |
376 | ||
377 | /* | |
378 | * TODO: | |
379 | * - Run cpu_register() in exclusion mode | |
380 | */ | |
381 | ||
382 | *target_cpu = -1; | |
383 | for(cpu=0; cpu < wncpu; cpu++) { | |
384 | if(!machine_slot[cpu].is_cpu) { | |
385 | machine_slot[cpu].is_cpu = TRUE; | |
386 | *target_cpu = cpu; | |
387 | break; | |
388 | } | |
389 | } | |
390 | if (*target_cpu != -1) { | |
391 | real_ncpus++; | |
392 | return KERN_SUCCESS; | |
393 | } else | |
394 | return KERN_FAILURE; | |
395 | } | |
396 | ||
397 | kern_return_t | |
398 | cpu_start( | |
399 | int cpu) | |
400 | { | |
401 | struct per_proc_info *proc_info; | |
402 | kern_return_t ret; | |
d7e50217 | 403 | mapping *mp; |
1c79356b | 404 | |
1c79356b A |
405 | extern vm_offset_t intstack; |
406 | extern vm_offset_t debstack; | |
407 | ||
408 | proc_info = &per_proc_info[cpu]; | |
409 | ||
410 | if (cpu == cpu_number()) { | |
411 | PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone)); | |
412 | ml_init_interrupt(); | |
0b4e3aa0 | 413 | proc_info->cpu_flags |= BootDone|SignalReady; |
1c79356b A |
414 | |
415 | return KERN_SUCCESS; | |
416 | } else { | |
417 | extern void _start_cpu(void); | |
418 | ||
419 | proc_info->cpu_number = cpu; | |
420 | proc_info->cpu_flags &= BootDone; | |
9bccf70c | 421 | proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE; |
1c79356b A |
422 | proc_info->intstack_top_ss = proc_info->istackptr; |
423 | #if MACH_KDP || MACH_KDB | |
9bccf70c | 424 | proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE; |
1c79356b A |
425 | proc_info->debstack_top_ss = proc_info->debstackptr; |
426 | #endif /* MACH_KDP || MACH_KDB */ | |
0b4e3aa0 | 427 | proc_info->interrupts_enabled = 0; |
1c79356b | 428 | proc_info->active_kloaded = (unsigned int)&active_kloaded[cpu]; |
1c79356b A |
429 | proc_info->active_stacks = (unsigned int)&active_stacks[cpu]; |
430 | proc_info->need_ast = (unsigned int)&need_ast[cpu]; | |
9bccf70c A |
431 | proc_info->FPU_owner = 0; |
432 | proc_info->VMX_owner = 0; | |
d7e50217 A |
433 | mp = (mapping *)(&proc_info->ppCIOmp); |
434 | mp->mpFlags = 0x01000000 | mpSpecial | 1; | |
435 | mp->mpSpace = invalSpace; | |
1c79356b A |
436 | |
437 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
438 | ||
439 | /* TODO: get mutex lock reset_handler_lock */ | |
440 | ||
441 | resethandler_target.type = RESET_HANDLER_START; | |
d7e50217 A |
442 | resethandler_target.call_paddr = (vm_offset_t)_start_cpu; /* Note: these routines are always V=R */ |
443 | resethandler_target.arg__paddr = (vm_offset_t)proc_info; /* Note: these routines are always V=R */ | |
1c79356b A |
444 | |
445 | ml_phys_write((vm_offset_t)&ResetHandler + 0, | |
446 | resethandler_target.type); | |
447 | ml_phys_write((vm_offset_t)&ResetHandler + 4, | |
448 | resethandler_target.call_paddr); | |
449 | ml_phys_write((vm_offset_t)&ResetHandler + 8, | |
450 | resethandler_target.arg__paddr); | |
451 | ||
452 | } | |
453 | /* | |
454 | * Note: we pass the current time to the other processor here. He will load it | |
455 | * as early as possible so that there is a chance that it is close to accurate. | |
456 | * After the machine is up a while, we will officially resync the clocks so | |
457 | * that all processors are the same. This is just to get close. | |
458 | */ | |
459 | ||
9bccf70c | 460 | ml_get_timebase((unsigned long long *)&proc_info->ruptStamp); /* Pass our current time to the other guy */ |
1c79356b A |
461 | |
462 | __asm__ volatile("sync"); /* Commit to storage */ | |
463 | __asm__ volatile("isync"); /* Wait a second */ | |
464 | ret = PE_cpu_start(proc_info->cpu_id, | |
465 | proc_info->start_paddr, (vm_offset_t)proc_info); | |
466 | ||
467 | if (ret != KERN_SUCCESS && | |
468 | proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
469 | ||
470 | /* TODO: realese mutex lock reset_handler_lock */ | |
471 | } | |
472 | return(ret); | |
473 | } | |
474 | } | |
475 | ||
476 | /* | |
477 | * Here is where we implement the receiver of the signaling protocol. | |
478 | * We wait for the signal status area to be passed to us. Then we snarf | |
479 | * up the status, the sender, and the 3 potential parms. Next we release | |
480 | * the lock and signal the other guy. | |
481 | */ | |
482 | ||
483 | void | |
484 | cpu_signal_handler( | |
485 | void) | |
486 | { | |
487 | ||
488 | unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype; | |
489 | unsigned int *parmAddr; | |
490 | struct per_proc_info *pproc; /* Area for my per_proc address */ | |
491 | int cpu; | |
492 | struct SIGtimebase *timebaseAddr; | |
493 | natural_t tbu, tbu2, tbl; | |
494 | ||
495 | cpu = cpu_number(); /* Get the CPU number */ | |
496 | pproc = &per_proc_info[cpu]; /* Point to our block */ | |
497 | ||
498 | /* | |
d7e50217 | 499 | * Since we've been signaled, wait about 31 ms for the signal lock to pass |
1c79356b | 500 | */ |
9bccf70c | 501 | if(!hw_lock_mbits(&pproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), (MPsigpBusy | MPsigpPass), |
d7e50217 | 502 | (MPsigpBusy | MPsigpPass | MPsigpAck), (gPEClockFrequencyInfo.timebase_frequency_hz >> 5))) { |
1c79356b A |
503 | panic("cpu_signal_handler: Lock pass timed out\n"); |
504 | } | |
505 | ||
506 | holdStat = pproc->MPsigpStat; /* Snarf stat word */ | |
507 | holdParm0 = pproc->MPsigpParm0; /* Snarf parameter */ | |
508 | holdParm1 = pproc->MPsigpParm1; /* Snarf parameter */ | |
509 | holdParm2 = pproc->MPsigpParm2; /* Snarf parameter */ | |
510 | ||
511 | __asm__ volatile("isync"); /* Make sure we don't unlock until memory is in */ | |
512 | ||
9bccf70c | 513 | pproc->MPsigpStat = holdStat & ~(MPsigpMsgp | MPsigpAck | MPsigpFunc); /* Release lock */ |
1c79356b A |
514 | |
515 | switch ((holdStat & MPsigpFunc) >> 8) { /* Decode function code */ | |
516 | ||
517 | case MPsigpIdle: /* Was function cancelled? */ | |
518 | return; /* Yup... */ | |
519 | ||
520 | case MPsigpSigp: /* Signal Processor message? */ | |
521 | ||
522 | switch (holdParm0) { /* Decode SIGP message order */ | |
523 | ||
524 | case SIGPast: /* Should we do an AST? */ | |
d7e50217 | 525 | pproc->hwCtr.numSIGPast++; /* Count this one */ |
1c79356b A |
526 | #if 0 |
527 | kprintf("cpu_signal_handler: AST check on cpu %x\n", cpu_number()); | |
528 | #endif | |
9bccf70c | 529 | ast_check(cpu_to_processor(cpu)); |
1c79356b A |
530 | return; /* All done... */ |
531 | ||
532 | case SIGPcpureq: /* CPU specific function? */ | |
533 | ||
d7e50217 | 534 | pproc->hwCtr.numSIGPcpureq++; /* Count this one */ |
1c79356b A |
535 | switch (holdParm1) { /* Select specific function */ |
536 | ||
537 | case CPRQtemp: /* Get the temperature */ | |
538 | parmAddr = (unsigned int *)holdParm2; /* Get the destination address */ | |
539 | parmAddr[1] = ml_read_temp(); /* Get the core temperature */ | |
540 | eieio(); /* Force order */ | |
541 | sync(); /* Force to memory */ | |
542 | parmAddr[0] = 0; /* Show we're done */ | |
543 | return; | |
544 | ||
545 | case CPRQtimebase: | |
546 | ||
547 | timebaseAddr = (struct SIGtimebase *)holdParm2; | |
548 | ||
549 | if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL) | |
550 | pproc->time_base_enable(pproc->cpu_id, FALSE); | |
551 | ||
0b4e3aa0 | 552 | timebaseAddr->abstime = 0; /* Touch to force into cache */ |
1c79356b A |
553 | sync(); |
554 | ||
555 | do { | |
556 | asm volatile(" mftbu %0" : "=r" (tbu)); | |
557 | asm volatile(" mftb %0" : "=r" (tbl)); | |
558 | asm volatile(" mftbu %0" : "=r" (tbu2)); | |
559 | } while (tbu != tbu2); | |
560 | ||
0b4e3aa0 | 561 | timebaseAddr->abstime = ((uint64_t)tbu << 32) | tbl; |
1c79356b A |
562 | sync(); /* Force order */ |
563 | ||
564 | timebaseAddr->avail = TRUE; | |
565 | ||
566 | while (*(volatile int *)&(syncClkSpot.ready) == FALSE); | |
567 | ||
568 | if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL) | |
569 | pproc->time_base_enable(pproc->cpu_id, TRUE); | |
570 | ||
571 | timebaseAddr->done = TRUE; | |
572 | ||
573 | return; | |
d7e50217 A |
574 | |
575 | case CPRQscom: | |
576 | fwSCOM((scomcomm *)holdParm2); /* Do the function */ | |
577 | return; | |
1c79356b A |
578 | |
579 | default: | |
580 | panic("cpu_signal_handler: unknown CPU request - %08X\n", holdParm1); | |
581 | return; | |
582 | } | |
583 | ||
584 | ||
585 | case SIGPdebug: /* Enter the debugger? */ | |
586 | ||
d7e50217 | 587 | pproc->hwCtr.numSIGPdebug++; /* Count this one */ |
1c79356b A |
588 | debugger_is_slave[cpu]++; /* Bump up the count to show we're here */ |
589 | hw_atomic_sub(&debugger_sync, 1); /* Show we've received the 'rupt */ | |
590 | __asm__ volatile("tw 4,r3,r3"); /* Enter the debugger */ | |
591 | return; /* All done now... */ | |
592 | ||
593 | case SIGPwake: /* Wake up CPU */ | |
d7e50217 | 594 | pproc->hwCtr.numSIGPwake++; /* Count this one */ |
1c79356b A |
595 | return; /* No need to do anything, the interrupt does it all... */ |
596 | ||
597 | default: | |
598 | panic("cpu_signal_handler: unknown SIGP message order - %08X\n", holdParm0); | |
599 | return; | |
600 | ||
601 | } | |
602 | ||
603 | default: | |
604 | panic("cpu_signal_handler: unknown SIGP function - %08X\n", (holdStat & MPsigpFunc) >> 8); | |
605 | return; | |
606 | ||
607 | } | |
608 | panic("cpu_signal_handler: we should never get here\n"); | |
609 | } | |
610 | ||
611 | /* | |
612 | * Here is where we send a message to another processor. So far we only have two: | |
613 | * SIGPast and SIGPdebug. SIGPast is used to preempt and kick off threads (this is | |
614 | * currently disabled). SIGPdebug is used to enter the debugger. | |
615 | * | |
616 | * We set up the SIGP function to indicate that this is a simple message and set the | |
617 | * order code (MPsigpParm0) to SIGPast or SIGPdebug). After finding the per_processor | |
618 | * block for the target, we lock the message block. Then we set the parameter(s). | |
619 | * Next we change the lock (also called "busy") to "passing" and finally signal | |
620 | * the other processor. Note that we only wait about 1ms to get the message lock. | |
621 | * If we time out, we return failure to our caller. It is their responsibility to | |
622 | * recover. | |
623 | */ | |
624 | ||
625 | kern_return_t | |
626 | cpu_signal( | |
627 | int target, | |
628 | int signal, | |
629 | unsigned int p1, | |
630 | unsigned int p2) | |
631 | { | |
632 | ||
633 | unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype; | |
634 | struct per_proc_info *tpproc, *mpproc; /* Area for per_proc addresses */ | |
635 | int cpu; | |
9bccf70c | 636 | int busybitset =0; |
1c79356b A |
637 | |
638 | #if DEBUG | |
639 | if(target > NCPUS) panic("cpu_signal: invalid target CPU - %08X\n", target); | |
640 | #endif | |
641 | ||
642 | cpu = cpu_number(); /* Get our CPU number */ | |
643 | if(target == cpu) return KERN_FAILURE; /* Don't play with ourselves */ | |
644 | if(!machine_slot[target].running) return KERN_FAILURE; /* These guys are too young */ | |
645 | ||
646 | mpproc = &per_proc_info[cpu]; /* Point to our block */ | |
647 | tpproc = &per_proc_info[target]; /* Point to the target's block */ | |
0b4e3aa0 A |
648 | |
649 | if (!(tpproc->cpu_flags & SignalReady)) return KERN_FAILURE; | |
9bccf70c | 650 | |
7b1edb79 A |
651 | if((tpproc->MPsigpStat & MPsigpMsgp) == MPsigpMsgp) { /* Is there an unreceived message already pending? */ |
652 | ||
9bccf70c | 653 | if(signal == SIGPwake) { /* SIGPwake can merge into all others... */ |
d7e50217 | 654 | mpproc->hwCtr.numSIGPmwake++; /* Account for merged wakes */ |
9bccf70c A |
655 | return KERN_SUCCESS; |
656 | } | |
7b1edb79 A |
657 | |
658 | if((signal == SIGPast) && (tpproc->MPsigpParm0 == SIGPast)) { /* We can merge ASTs */ | |
d7e50217 | 659 | mpproc->hwCtr.numSIGPmast++; /* Account for merged ASTs */ |
7b1edb79 A |
660 | return KERN_SUCCESS; /* Don't bother to send this one... */ |
661 | } | |
9bccf70c A |
662 | |
663 | if (tpproc->MPsigpParm0 == SIGPwake) { | |
664 | if (hw_lock_mbits(&tpproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), | |
665 | (MPsigpBusy | MPsigpPass ), MPsigpBusy, 0)) { | |
666 | busybitset = 1; | |
d7e50217 | 667 | mpproc->hwCtr.numSIGPmwake++; |
9bccf70c A |
668 | } |
669 | } | |
7b1edb79 A |
670 | } |
671 | ||
9bccf70c A |
672 | if((busybitset == 0) && |
673 | (!hw_lock_mbits(&tpproc->MPsigpStat, MPsigpMsgp, 0, MPsigpBusy, | |
d7e50217 A |
674 | (gPEClockFrequencyInfo.timebase_frequency_hz >> 11)))) { /* Try to lock the message block with a .5ms timeout */ |
675 | mpproc->hwCtr.numSIGPtimo++; /* Account for timeouts */ | |
1c79356b A |
676 | return KERN_FAILURE; /* Timed out, take your ball and go home... */ |
677 | } | |
678 | ||
679 | holdStat = MPsigpBusy | MPsigpPass | (MPsigpSigp << 8) | cpu; /* Set up the signal status word */ | |
680 | tpproc->MPsigpParm0 = signal; /* Set message order */ | |
681 | tpproc->MPsigpParm1 = p1; /* Set additional parm */ | |
682 | tpproc->MPsigpParm2 = p2; /* Set additional parm */ | |
683 | ||
684 | __asm__ volatile("sync"); /* Make sure it's all there */ | |
685 | ||
686 | tpproc->MPsigpStat = holdStat; /* Set status and pass the lock */ | |
687 | __asm__ volatile("eieio"); /* I'm a paraniod freak */ | |
688 | ||
9bccf70c A |
689 | if (busybitset == 0) |
690 | PE_cpu_signal(mpproc->cpu_id, tpproc->cpu_id); /* Kick the other processor */ | |
1c79356b A |
691 | |
692 | return KERN_SUCCESS; /* All is goodness and rainbows... */ | |
693 | } | |
694 | ||
695 | void | |
696 | cpu_doshutdown( | |
697 | void) | |
698 | { | |
d7e50217 | 699 | enable_preemption(); |
1c79356b A |
700 | processor_doshutdown(current_processor()); |
701 | } | |
702 | ||
703 | void | |
704 | cpu_sleep( | |
705 | void) | |
706 | { | |
707 | struct per_proc_info *proc_info; | |
708 | unsigned int cpu; | |
9bccf70c | 709 | facility_context *fowner; |
1c79356b A |
710 | extern vm_offset_t intstack; |
711 | extern vm_offset_t debstack; | |
712 | extern void _restart_cpu(void); | |
713 | ||
714 | cpu = cpu_number(); | |
1c79356b A |
715 | |
716 | proc_info = &per_proc_info[cpu]; | |
717 | ||
9bccf70c A |
718 | fowner = proc_info->FPU_owner; /* Cache this */ |
719 | if(fowner) fpu_save(fowner); /* If anyone owns FPU, save it */ | |
720 | proc_info->FPU_owner = 0; /* Set no fpu owner now */ | |
765c9de3 | 721 | |
9bccf70c A |
722 | fowner = proc_info->VMX_owner; /* Cache this */ |
723 | if(fowner) vec_save(fowner); /* If anyone owns vectors, save it */ | |
724 | proc_info->VMX_owner = 0; /* Set no vector owner now */ | |
765c9de3 | 725 | |
1c79356b A |
726 | if (proc_info->cpu_number == 0) { |
727 | proc_info->cpu_flags &= BootDone; | |
9bccf70c | 728 | proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE; |
1c79356b A |
729 | proc_info->intstack_top_ss = proc_info->istackptr; |
730 | #if MACH_KDP || MACH_KDB | |
9bccf70c | 731 | proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE; |
1c79356b A |
732 | proc_info->debstack_top_ss = proc_info->debstackptr; |
733 | #endif /* MACH_KDP || MACH_KDB */ | |
0b4e3aa0 | 734 | proc_info->interrupts_enabled = 0; |
1c79356b | 735 | |
765c9de3 | 736 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { |
1c79356b | 737 | extern void _start_cpu(void); |
765c9de3 | 738 | |
1c79356b | 739 | resethandler_target.type = RESET_HANDLER_START; |
d7e50217 A |
740 | resethandler_target.call_paddr = (vm_offset_t)_start_cpu; /* Note: these routines are always V=R */ |
741 | resethandler_target.arg__paddr = (vm_offset_t)proc_info; /* Note: these routines are always V=R */ | |
765c9de3 | 742 | |
1c79356b | 743 | ml_phys_write((vm_offset_t)&ResetHandler + 0, |
765c9de3 | 744 | resethandler_target.type); |
1c79356b | 745 | ml_phys_write((vm_offset_t)&ResetHandler + 4, |
765c9de3 | 746 | resethandler_target.call_paddr); |
1c79356b | 747 | ml_phys_write((vm_offset_t)&ResetHandler + 8, |
765c9de3 | 748 | resethandler_target.arg__paddr); |
1c79356b A |
749 | |
750 | __asm__ volatile("sync"); | |
751 | __asm__ volatile("isync"); | |
765c9de3 | 752 | } |
1c79356b A |
753 | } |
754 | ||
755 | PE_cpu_machine_quiesce(proc_info->cpu_id); | |
756 | } | |
757 | ||
758 | void | |
759 | cpu_sync_timebase( | |
760 | void) | |
761 | { | |
762 | natural_t tbu, tbl; | |
763 | boolean_t intr; | |
764 | ||
765 | intr = ml_set_interrupts_enabled(FALSE); /* No interruptions in here */ | |
766 | ||
767 | /* Note that syncClkSpot is in a cache aligned area */ | |
768 | syncClkSpot.avail = FALSE; | |
769 | syncClkSpot.ready = FALSE; | |
770 | syncClkSpot.done = FALSE; | |
771 | ||
0b4e3aa0 A |
772 | while (cpu_signal(master_cpu, SIGPcpureq, CPRQtimebase, |
773 | (unsigned int)&syncClkSpot) != KERN_SUCCESS) | |
774 | continue; | |
1c79356b | 775 | |
0b4e3aa0 A |
776 | while (*(volatile int *)&(syncClkSpot.avail) == FALSE) |
777 | continue; | |
1c79356b | 778 | |
1c79356b A |
779 | isync(); |
780 | ||
781 | /* | |
782 | * We do the following to keep the compiler from generating extra stuff | |
783 | * in tb set part | |
784 | */ | |
0b4e3aa0 A |
785 | tbu = syncClkSpot.abstime >> 32; |
786 | tbl = (uint32_t)syncClkSpot.abstime; | |
1c79356b A |
787 | |
788 | mttb(0); | |
789 | mttbu(tbu); | |
790 | mttb(tbl); | |
791 | ||
792 | syncClkSpot.ready = TRUE; | |
793 | ||
0b4e3aa0 A |
794 | while (*(volatile int *)&(syncClkSpot.done) == FALSE) |
795 | continue; | |
1c79356b A |
796 | |
797 | (void)ml_set_interrupts_enabled(intr); | |
798 | } |