]>
Commit | Line | Data |
---|---|---|
39037602 A |
1 | /* |
2 | * Copyright (c) 2016 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <kern/cpu_data.h> | |
29 | #include <kern/kern_types.h> | |
30 | #include <kern/locks.h> | |
31 | #include <kern/ltable.h> | |
32 | #include <kern/zalloc.h> | |
33 | #include <libkern/OSAtomic.h> | |
34 | #include <pexpert/pexpert.h> | |
35 | #include <vm/vm_kern.h> | |
36 | ||
37 | ||
0a7de745 A |
38 | #define P2ROUNDUP(x, align) (-(-((uint32_t)(x)) & -(align))) |
39 | #define ROUNDDOWN(x, y) (((x)/(y))*(y)) | |
39037602 A |
40 | |
41 | /* ---------------------------------------------------------------------- | |
42 | * | |
43 | * Lockless Link Table Interface | |
44 | * | |
45 | * ---------------------------------------------------------------------- */ | |
46 | ||
47 | vm_size_t g_lt_max_tbl_size; | |
48 | static lck_grp_t g_lt_lck_grp; | |
49 | ||
50 | /* default VA space for link tables (zone allocated) */ | |
51 | #define DEFAULT_MAX_TABLE_SIZE P2ROUNDUP(8 * 1024 * 1024, PAGE_SIZE) | |
52 | ||
5ba3f43e | 53 | #if DEVELOPMENT || DEBUG |
39037602 A |
54 | /* global for lldb macros */ |
55 | uint64_t g_lt_idx_max = LT_IDX_MAX; | |
56 | #endif | |
57 | ||
58 | ||
59 | /* construct a link table element from an offset and mask into a slab */ | |
60 | #define lt_elem_ofst_slab(slab, slab_msk, ofst) \ | |
61 | /* cast through 'void *' to avoid compiler alignment warning messages */ \ | |
62 | ((struct lt_elem *)((void *)((uintptr_t)(slab) + ((ofst) & (slab_msk))))) | |
63 | ||
5ba3f43e | 64 | #if CONFIG_LTABLE_STATS |
39037602 A |
65 | /* version that makes no assumption on waste within a slab */ |
66 | static inline struct lt_elem * | |
67 | lt_elem_idx(struct link_table *table, uint32_t idx) | |
68 | { | |
69 | int slab_idx = idx / table->slab_elem; | |
70 | struct lt_elem *slab = table->table[slab_idx]; | |
0a7de745 | 71 | if (!slab) { |
39037602 | 72 | panic("Invalid index:%d slab:%d (NULL) for table:%p\n", |
0a7de745 A |
73 | idx, slab_idx, table); |
74 | } | |
39037602 A |
75 | assert(slab->lt_id.idx <= idx && (slab->lt_id.idx + table->slab_elem) > idx); |
76 | return lt_elem_ofst_slab(slab, table->slab_msk, (idx - slab->lt_id.idx) * table->elem_sz); | |
77 | } | |
78 | #else /* !CONFIG_LTABLE_STATS */ | |
79 | /* verion that assumes 100% ultilization of slabs (no waste) */ | |
80 | static inline struct lt_elem * | |
81 | lt_elem_idx(struct link_table *table, uint32_t idx) | |
82 | { | |
83 | uint32_t ofst = idx * table->elem_sz; | |
84 | struct lt_elem *slab = table->table[ofst >> table->slab_shift]; | |
0a7de745 | 85 | if (!slab) { |
39037602 | 86 | panic("Invalid index:%d slab:%d (NULL) for table:%p\n", |
0a7de745 A |
87 | idx, (ofst >> table->slab_shift), table); |
88 | } | |
39037602 A |
89 | assert(slab->lt_id.idx <= idx && (slab->lt_id.idx + table->slab_elem) > idx); |
90 | return lt_elem_ofst_slab(slab, table->slab_msk, ofst); | |
91 | } | |
5ba3f43e | 92 | #endif /* CONFIG_LTABLE_STATS */ |
39037602 A |
93 | |
94 | static int __assert_only | |
95 | lt_elem_in_range(struct lt_elem *elem, struct link_table *table) | |
96 | { | |
97 | struct lt_elem **base = table->table; | |
98 | uintptr_t e = (uintptr_t)elem; | |
99 | assert(base != NULL); | |
100 | while (*base != NULL) { | |
101 | uintptr_t b = (uintptr_t)(*base); | |
0a7de745 | 102 | if (e >= b && e < b + table->slab_sz) { |
39037602 | 103 | return 1; |
0a7de745 | 104 | } |
39037602 | 105 | base++; |
0a7de745 | 106 | if ((uintptr_t)base >= (uintptr_t)table->table + PAGE_SIZE) { |
39037602 | 107 | return 0; |
0a7de745 | 108 | } |
39037602 A |
109 | } |
110 | return 0; | |
111 | } | |
112 | ||
113 | ||
114 | /** | |
115 | * lt_elem_invalidate: mark 'elem' as invalid | |
116 | * | |
117 | * NOTE: this does _not_ get or put a reference on 'elem' | |
118 | */ | |
0a7de745 A |
119 | void |
120 | lt_elem_invalidate(struct lt_elem *elem) | |
39037602 A |
121 | { |
122 | uint32_t __assert_only old = OSBitAndAtomic(~LT_BITS_VALID, &elem->lt_bits); | |
123 | OSMemoryBarrier(); | |
124 | assert(((lt_bits_type(old) != LT_RESERVED) && (old & LT_BITS_VALID)) || | |
0a7de745 | 125 | ((lt_bits_type(old) == LT_RESERVED) && !(old & LT_BITS_VALID))); |
39037602 A |
126 | } |
127 | ||
128 | /** | |
129 | * lt_elem_mkvalid: mark 'elem' as valid | |
130 | * | |
131 | * NOTE: this does _not_ get or put a reference on 'elem' | |
132 | */ | |
0a7de745 A |
133 | void |
134 | lt_elem_mkvalid(struct lt_elem *elem) | |
39037602 A |
135 | { |
136 | uint32_t __assert_only old = OSBitOrAtomic(LT_BITS_VALID, &elem->lt_bits); | |
137 | OSMemoryBarrier(); | |
138 | assert(!(old & LT_BITS_VALID)); | |
139 | } | |
140 | ||
0a7de745 A |
141 | static void |
142 | lt_elem_set_type(struct lt_elem *elem, int type) | |
39037602 A |
143 | { |
144 | uint32_t old_bits, new_bits; | |
145 | do { | |
146 | old_bits = elem->lt_bits; | |
147 | new_bits = (old_bits & ~LT_BITS_TYPE) | | |
0a7de745 | 148 | ((type & LT_BITS_TYPE_MASK) << LT_BITS_TYPE_SHIFT); |
39037602 A |
149 | } while (OSCompareAndSwap(old_bits, new_bits, &elem->lt_bits) == FALSE); |
150 | OSMemoryBarrier(); | |
151 | } | |
152 | ||
153 | ||
154 | /** | |
155 | * ltable_bootstrap: bootstrap a link table | |
156 | * | |
157 | * Called once at system boot | |
158 | */ | |
0a7de745 A |
159 | void |
160 | ltable_bootstrap(void) | |
39037602 A |
161 | { |
162 | static int s_is_bootstrapped = 0; | |
163 | ||
164 | uint32_t tmp32 = 0; | |
165 | ||
0a7de745 | 166 | if (s_is_bootstrapped) { |
39037602 | 167 | return; |
0a7de745 | 168 | } |
39037602 A |
169 | s_is_bootstrapped = 1; |
170 | ||
171 | g_lt_max_tbl_size = DEFAULT_MAX_TABLE_SIZE; | |
0a7de745 | 172 | if (PE_parse_boot_argn("lt_tbl_size", &tmp32, sizeof(tmp32)) == TRUE) { |
39037602 | 173 | g_lt_max_tbl_size = (vm_size_t)P2ROUNDUP(tmp32, PAGE_SIZE); |
0a7de745 | 174 | } |
39037602 A |
175 | |
176 | lck_grp_init(&g_lt_lck_grp, "link_table_locks", LCK_GRP_ATTR_NULL); | |
177 | } | |
178 | ||
179 | /** | |
180 | * ltable_init: initialize a link table with given parameters | |
181 | * | |
182 | */ | |
0a7de745 A |
183 | void |
184 | ltable_init(struct link_table *table, const char *name, | |
185 | uint32_t max_tbl_elem, uint32_t elem_sz, | |
186 | ltable_poison_func poison) | |
39037602 A |
187 | { |
188 | kern_return_t kr; | |
189 | uint32_t slab_sz, slab_shift, slab_msk, slab_elem; | |
190 | zone_t slab_zone; | |
191 | size_t max_tbl_sz; | |
192 | struct lt_elem *e, **base; | |
193 | ||
194 | #ifndef CONFIG_LTABLE_STATS | |
195 | /* the element size _must_ be a power of two! */ | |
0a7de745 | 196 | if ((elem_sz & (elem_sz - 1)) != 0) { |
39037602 | 197 | panic("elem_sz:%d for table:'%s' must be a power of two!", |
0a7de745 A |
198 | elem_sz, name); |
199 | } | |
39037602 A |
200 | #endif |
201 | ||
202 | /* | |
203 | * First, allocate a single page of memory to act as the base | |
204 | * for the table's element slabs | |
205 | */ | |
206 | kr = kernel_memory_allocate(kernel_map, (vm_offset_t *)&base, | |
0a7de745 A |
207 | PAGE_SIZE, 0, KMA_NOPAGEWAIT, VM_KERN_MEMORY_LTABLE); |
208 | if (kr != KERN_SUCCESS) { | |
39037602 | 209 | panic("Cannot initialize %s table: " |
0a7de745 A |
210 | "kernel_memory_allocate failed:%d\n", name, kr); |
211 | } | |
39037602 A |
212 | memset(base, 0, PAGE_SIZE); |
213 | ||
214 | /* | |
215 | * Based on the maximum table size, calculate the slab size: | |
216 | * we allocate 1 page of slab pointers for the table, and we need to | |
217 | * index elements of 'elem_sz', this gives us the slab size based on | |
218 | * the maximum size the table should grow. | |
219 | */ | |
220 | max_tbl_sz = (max_tbl_elem * elem_sz); | |
221 | max_tbl_sz = P2ROUNDUP(max_tbl_sz, PAGE_SIZE); | |
222 | ||
223 | /* system maximum table size divided by number of slots in a page */ | |
224 | slab_sz = (uint32_t)(max_tbl_sz / (PAGE_SIZE / (sizeof(void *)))); | |
0a7de745 | 225 | if (slab_sz < PAGE_SIZE) { |
39037602 | 226 | slab_sz = PAGE_SIZE; |
0a7de745 | 227 | } |
39037602 A |
228 | |
229 | /* make sure the slab size is a power of two */ | |
230 | slab_shift = 0; | |
231 | slab_msk = ~0; | |
232 | for (uint32_t i = 0; i < 31; i++) { | |
233 | uint32_t bit = (1 << i); | |
234 | if ((slab_sz & bit) == slab_sz) { | |
235 | slab_shift = i; | |
236 | slab_msk = 0; | |
0a7de745 | 237 | for (uint32_t j = 0; j < i; j++) { |
39037602 | 238 | slab_msk |= (1 << j); |
0a7de745 | 239 | } |
39037602 A |
240 | break; |
241 | } | |
242 | slab_sz &= ~bit; | |
243 | } | |
244 | slab_elem = slab_sz / elem_sz; | |
245 | ||
246 | /* initialize the table's slab zone (for table growth) */ | |
247 | ltdbg("Initializing %s zone: slab:%d (%d,0x%x) max:%ld", | |
0a7de745 | 248 | name, slab_sz, slab_shift, slab_msk, max_tbl_sz); |
39037602 A |
249 | slab_zone = zinit(slab_sz, max_tbl_sz, slab_sz, name); |
250 | assert(slab_zone != ZONE_NULL); | |
251 | ||
252 | /* allocate the first slab and populate it */ | |
253 | base[0] = (struct lt_elem *)zalloc(slab_zone); | |
0a7de745 | 254 | if (base[0] == NULL) { |
39037602 | 255 | panic("Can't allocate a %s table slab from zone:%p", |
0a7de745 A |
256 | name, slab_zone); |
257 | } | |
39037602 A |
258 | |
259 | memset(base[0], 0, slab_sz); | |
260 | ||
261 | /* setup the initial freelist */ | |
262 | ltdbg("initializing %d links (%d bytes each)...", slab_elem, elem_sz); | |
263 | for (unsigned l = 0; l < slab_elem; l++) { | |
264 | e = lt_elem_ofst_slab(base[0], slab_msk, l * elem_sz); | |
265 | e->lt_id.idx = l; | |
266 | /* | |
267 | * setting generation to 0 ensures that a setid of 0 is | |
268 | * invalid because the generation will be incremented before | |
269 | * each element's allocation. | |
270 | */ | |
271 | e->lt_id.generation = 0; | |
272 | e->lt_next_idx = l + 1; | |
273 | } | |
274 | ||
275 | /* make sure the last free element points to a never-valid idx */ | |
276 | e = lt_elem_ofst_slab(base[0], slab_msk, (slab_elem - 1) * elem_sz); | |
277 | e->lt_next_idx = LT_IDX_MAX; | |
278 | ||
279 | lck_mtx_init(&table->lock, &g_lt_lck_grp, LCK_ATTR_NULL); | |
280 | ||
281 | table->slab_sz = slab_sz; | |
282 | table->slab_shift = slab_shift; | |
283 | table->slab_msk = slab_msk; | |
284 | table->slab_elem = slab_elem; | |
285 | table->slab_zone = slab_zone; | |
286 | ||
287 | table->elem_sz = elem_sz; | |
288 | table->nelem = slab_elem; | |
289 | table->used_elem = 0; | |
290 | table->elem_sz = elem_sz; | |
291 | table->poison = poison; | |
292 | ||
293 | table->table = base; | |
294 | table->next_free_slab = &base[1]; | |
295 | table->free_list.id = base[0]->lt_id.id; | |
296 | ||
297 | #if CONFIG_LTABLE_STATS | |
298 | table->nslabs = 1; | |
299 | table->nallocs = 0; | |
300 | table->nreallocs = 0; | |
301 | table->npreposts = 0; | |
302 | table->nreservations = 0; | |
303 | table->nreserved_releases = 0; | |
304 | ||
305 | table->max_used = 0; | |
306 | table->avg_used = 0; | |
307 | table->max_reservations = 0; | |
308 | table->avg_reservations = 0; | |
309 | #endif | |
310 | } | |
311 | ||
312 | ||
313 | /** | |
314 | * ltable_grow: grow a link table by adding another 'slab' of table elements | |
315 | * | |
316 | * Conditions: | |
317 | * table mutex is unlocked | |
318 | * calling thread can block | |
319 | */ | |
0a7de745 A |
320 | void |
321 | ltable_grow(struct link_table *table, uint32_t min_free) | |
39037602 A |
322 | { |
323 | struct lt_elem *slab, **slot; | |
324 | struct lt_elem *e = NULL, *first_new_elem, *last_new_elem; | |
325 | struct ltable_id free_id; | |
326 | uint32_t free_elem; | |
327 | ||
328 | assert(get_preemption_level() == 0); | |
329 | assert(table && table->slab_zone); | |
330 | ||
331 | lck_mtx_lock(&table->lock); | |
332 | ||
333 | free_elem = table->nelem - table->used_elem; | |
334 | ||
335 | /* | |
336 | * If the caller just wanted to ensure a minimum number of elements, | |
337 | * do that (and don't just blindly grow the table). Also, don't grow | |
338 | * the table unnecessarily - we could have been beaten by a higher | |
339 | * priority thread who acquired the lock and grew the table before we | |
340 | * got here. | |
341 | */ | |
342 | if (free_elem > min_free) { | |
343 | lck_mtx_unlock(&table->lock); | |
344 | return; | |
345 | } | |
346 | ||
347 | /* we are now committed to table growth */ | |
348 | ltdbg_v("BEGIN"); | |
349 | ||
350 | if (table->next_free_slab == NULL) { | |
351 | /* | |
352 | * before we panic, check one more time to see if any other | |
353 | * threads have free'd from space in the table. | |
354 | */ | |
355 | if ((table->nelem - table->used_elem) > 0) { | |
356 | /* there's at least 1 free element: don't panic yet */ | |
357 | lck_mtx_unlock(&table->lock); | |
358 | return; | |
359 | } | |
360 | panic("No more room to grow table: %p (nelem: %d, used: %d)", | |
0a7de745 | 361 | table, table->nelem, table->used_elem); |
39037602 A |
362 | } |
363 | slot = table->next_free_slab; | |
364 | table->next_free_slab++; | |
0a7de745 | 365 | if ((uintptr_t)table->next_free_slab >= (uintptr_t)table->table + PAGE_SIZE) { |
39037602 | 366 | table->next_free_slab = NULL; |
0a7de745 | 367 | } |
39037602 A |
368 | |
369 | assert(*slot == NULL); | |
370 | ||
371 | /* allocate another slab */ | |
372 | slab = (struct lt_elem *)zalloc(table->slab_zone); | |
0a7de745 | 373 | if (slab == NULL) { |
39037602 | 374 | panic("Can't allocate a %s table (%p) slab from zone:%p", |
0a7de745 A |
375 | table->slab_zone->zone_name, table, table->slab_zone); |
376 | } | |
39037602 A |
377 | |
378 | memset(slab, 0, table->slab_sz); | |
379 | ||
380 | /* put the new elements into a freelist */ | |
381 | ltdbg_v(" init %d new links...", table->slab_elem); | |
382 | for (unsigned l = 0; l < table->slab_elem; l++) { | |
383 | uint32_t idx = l + table->nelem; | |
0a7de745 | 384 | if (idx >= (LT_IDX_MAX - 1)) { |
39037602 | 385 | break; /* the last element of the last slab */ |
0a7de745 | 386 | } |
39037602 A |
387 | e = lt_elem_ofst_slab(slab, table->slab_msk, l * table->elem_sz); |
388 | e->lt_id.idx = idx; | |
389 | e->lt_next_idx = idx + 1; | |
390 | } | |
391 | last_new_elem = e; | |
392 | assert(last_new_elem != NULL); | |
393 | ||
394 | first_new_elem = lt_elem_ofst_slab(slab, table->slab_msk, 0); | |
395 | ||
396 | /* update table book keeping, and atomically swap the freelist head */ | |
397 | *slot = slab; | |
0a7de745 | 398 | if (table->nelem + table->slab_elem >= LT_IDX_MAX) { |
39037602 | 399 | table->nelem = LT_IDX_MAX - 1; |
0a7de745 | 400 | } else { |
39037602 | 401 | table->nelem += table->slab_elem; |
0a7de745 | 402 | } |
39037602 A |
403 | |
404 | #if CONFIG_LTABLE_STATS | |
405 | table->nslabs += 1; | |
406 | #endif | |
407 | ||
408 | /* | |
409 | * The atomic swap of the free list head marks the end of table | |
410 | * growth. Incoming requests may now use the newly allocated slab | |
411 | * of table elements | |
412 | */ | |
413 | free_id = table->free_list; | |
414 | /* connect the existing free list to the end of the new free list */ | |
415 | last_new_elem->lt_next_idx = free_id.idx; | |
416 | while (OSCompareAndSwap64(free_id.id, first_new_elem->lt_id.id, | |
0a7de745 | 417 | &table->free_list.id) == FALSE) { |
39037602 A |
418 | OSMemoryBarrier(); |
419 | free_id = table->free_list; | |
420 | last_new_elem->lt_next_idx = free_id.idx; | |
421 | } | |
422 | OSMemoryBarrier(); | |
423 | ||
424 | lck_mtx_unlock(&table->lock); | |
425 | ||
426 | return; | |
427 | } | |
428 | ||
d9a64523 A |
429 | #if DEVELOPMENT || DEBUG |
430 | ||
431 | int | |
432 | ltable_nelem(struct link_table *table) | |
433 | { | |
434 | int nelem = 0; | |
435 | ||
436 | lck_mtx_lock(&table->lock); | |
437 | ||
438 | nelem = table->used_elem; | |
439 | ||
440 | lck_mtx_unlock(&table->lock); | |
441 | ||
442 | return nelem; | |
443 | } | |
444 | #endif | |
39037602 A |
445 | |
446 | /** | |
447 | * ltable_alloc_elem: allocate one or more elements from a given table | |
448 | * | |
449 | * The returned element(s) will be of type 'type', but will remain invalid. | |
450 | * | |
451 | * If the caller has disabled preemption, then this function may (rarely) spin | |
452 | * waiting either for another thread to either release 'nelem' table elements, | |
453 | * or grow the table. | |
454 | * | |
455 | * If the caller can block, then this function may (rarely) block while | |
456 | * the table grows to meet the demand for 'nelem' element(s). | |
457 | */ | |
458 | __attribute__((noinline)) | |
0a7de745 A |
459 | struct lt_elem * |
460 | ltable_alloc_elem(struct link_table *table, int type, | |
461 | int nelem, int nattempts) | |
39037602 A |
462 | { |
463 | int nspins = 0, ntries = 0, nalloc = 0; | |
464 | uint32_t table_size; | |
465 | struct lt_elem *elem = NULL; | |
466 | struct ltable_id free_id, next_id; | |
467 | ||
468 | static const int max_retries = 500; | |
469 | ||
0a7de745 | 470 | if (type != LT_ELEM && type != LT_LINK && type != LT_RESERVED) { |
39037602 | 471 | panic("link_table_aloc of invalid elem type:%d from table @%p", |
0a7de745 A |
472 | type, table); |
473 | } | |
39037602 A |
474 | |
475 | assert(nelem > 0); | |
476 | ||
477 | /* | |
478 | * If the callers only wants to try a certain number of times, make it | |
479 | * look like we've already made (MAX - nattempts) tries at allocation | |
480 | */ | |
481 | if (nattempts > 0 && nattempts <= max_retries) { | |
482 | ntries = max_retries - nattempts; | |
483 | } | |
484 | ||
485 | try_again: | |
486 | elem = NULL; | |
487 | if (ntries++ > max_retries) { | |
488 | struct lt_elem *tmp; | |
489 | if (nattempts > 0) { | |
490 | /* | |
491 | * The caller specified a particular number of | |
492 | * attempts before failure, so it's expected that | |
493 | * they're prepared to handle a NULL return. | |
494 | */ | |
495 | return NULL; | |
496 | } | |
497 | ||
0a7de745 | 498 | if (table->used_elem + nelem >= table_size) { |
39037602 | 499 | panic("No more room to grow table: 0x%p size:%d, used:%d, requested elem:%d", |
0a7de745 A |
500 | table, table_size, table->used_elem, nelem); |
501 | } | |
502 | if (nelem == 1) { | |
39037602 | 503 | panic("Too many alloc retries: %d, table:%p, type:%d, nelem:%d", |
0a7de745 A |
504 | ntries, table, type, nelem); |
505 | } | |
39037602 A |
506 | /* don't panic: try allocating one-at-a-time */ |
507 | while (nelem > 0) { | |
508 | tmp = ltable_alloc_elem(table, type, 1, nattempts); | |
0a7de745 | 509 | if (elem) { |
39037602 | 510 | lt_elem_list_link(table, tmp, elem); |
0a7de745 | 511 | } |
39037602 A |
512 | elem = tmp; |
513 | --nelem; | |
514 | } | |
515 | assert(elem != NULL); | |
516 | return elem; | |
517 | } | |
518 | ||
519 | nalloc = 0; | |
520 | table_size = table->nelem; | |
521 | ||
522 | if (table->used_elem + nelem >= table_size) { | |
523 | if (get_preemption_level() != 0) { | |
524 | #if CONFIG_LTABLE_STATS | |
525 | table->nspins += 1; | |
526 | #endif | |
527 | /* | |
528 | * We may have just raced with table growth: check | |
529 | * again to make sure there really isn't any space. | |
530 | */ | |
0a7de745 | 531 | if (++nspins > 4) { |
39037602 | 532 | panic("Can't grow table %p with preemption" |
0a7de745 A |
533 | " disabled!", table); |
534 | } | |
39037602 A |
535 | delay(1); |
536 | goto try_again; | |
537 | } | |
538 | ltable_grow(table, nelem); | |
539 | goto try_again; | |
540 | } | |
541 | ||
542 | /* read this value only once before the CAS */ | |
543 | free_id = table->free_list; | |
0a7de745 | 544 | if (free_id.idx >= table_size) { |
39037602 | 545 | goto try_again; |
0a7de745 | 546 | } |
39037602 A |
547 | |
548 | /* | |
549 | * Find the item on the free list which will become the new free list | |
550 | * head, but be careful not to modify any memory (read only)! Other | |
551 | * threads can alter table state at any time up until the CAS. We | |
552 | * don't modify any memory until we've successfully swapped out the | |
553 | * free list head with the one we've investigated. | |
554 | */ | |
555 | for (struct lt_elem *next_elem = lt_elem_idx(table, free_id.idx); | |
0a7de745 A |
556 | nalloc < nelem; |
557 | nalloc++) { | |
39037602 A |
558 | elem = next_elem; |
559 | next_id.generation = 0; | |
560 | next_id.idx = next_elem->lt_next_idx; | |
561 | if (next_id.idx < table->nelem) { | |
562 | next_elem = lt_elem_idx(table, next_id.idx); | |
563 | next_id.id = next_elem->lt_id.id; | |
564 | } else { | |
565 | goto try_again; | |
566 | } | |
567 | } | |
568 | /* 'elem' points to the last element being allocated */ | |
569 | ||
570 | if (OSCompareAndSwap64(free_id.id, next_id.id, | |
0a7de745 | 571 | &table->free_list.id) == FALSE) { |
39037602 | 572 | goto try_again; |
0a7de745 | 573 | } |
39037602 A |
574 | |
575 | /* load barrier */ | |
576 | OSMemoryBarrier(); | |
577 | ||
578 | /* | |
579 | * After the CAS, we know that we own free_id, and it points to a | |
580 | * valid table entry (checked above). Grab the table pointer and | |
581 | * reset some values. | |
582 | */ | |
583 | OSAddAtomic(nelem, &table->used_elem); | |
584 | ||
585 | /* end the list of allocated elements */ | |
586 | elem->lt_next_idx = LT_IDX_MAX; | |
587 | /* reset 'elem' to point to the first allocated element */ | |
588 | elem = lt_elem_idx(table, free_id.idx); | |
589 | ||
590 | /* | |
591 | * Update the generation count, and return the element(s) | |
592 | * with a single reference (and no valid bit). If the | |
593 | * caller immediately calls _put() on any element, then | |
594 | * it will be released back to the free list. If the caller | |
595 | * subsequently marks the element as valid, then the put | |
596 | * will simply drop the reference. | |
597 | */ | |
0a7de745 | 598 | for (struct lt_elem *tmp = elem;;) { |
39037602 | 599 | assert(!lt_bits_valid(tmp->lt_bits) && |
0a7de745 | 600 | (lt_bits_refcnt(tmp->lt_bits) == 0)); |
39037602 A |
601 | --nalloc; |
602 | tmp->lt_id.generation += 1; | |
603 | tmp->lt_bits = 1; | |
604 | lt_elem_set_type(tmp, type); | |
0a7de745 | 605 | if (tmp->lt_next_idx == LT_IDX_MAX) { |
39037602 | 606 | break; |
0a7de745 | 607 | } |
39037602 A |
608 | assert(tmp->lt_next_idx != LT_IDX_MAX); |
609 | tmp = lt_elem_idx(table, tmp->lt_next_idx); | |
610 | } | |
611 | assert(nalloc == 0); | |
612 | ||
613 | #if CONFIG_LTABLE_STATS | |
614 | uint64_t nreservations; | |
615 | table->nallocs += nelem; | |
0a7de745 | 616 | if (type == LT_RESERVED) { |
39037602 | 617 | OSIncrementAtomic64(&table->nreservations); |
0a7de745 | 618 | } |
39037602 | 619 | nreservations = table->nreservations; |
0a7de745 | 620 | if (table->used_elem > table->max_used) { |
39037602 | 621 | table->max_used = table->used_elem; |
0a7de745 A |
622 | } |
623 | if (nreservations > table->max_reservations) { | |
39037602 | 624 | table->max_reservations = nreservations; |
0a7de745 | 625 | } |
39037602 A |
626 | table->avg_used = (table->avg_used + table->used_elem) / 2; |
627 | table->avg_reservations = (table->avg_reservations + nreservations) / 2; | |
628 | #endif | |
629 | ||
630 | return elem; | |
631 | } | |
632 | ||
633 | ||
634 | /** | |
635 | * ltable_realloc_elem: convert a reserved element to a particular type | |
636 | * | |
637 | * This funciton is used to convert reserved elements (not yet marked valid) | |
638 | * to the given 'type'. The generation of 'elem' is incremented, the element | |
639 | * is disconnected from any list to which it belongs, and its type is set to | |
640 | * 'type'. | |
641 | */ | |
0a7de745 A |
642 | void |
643 | ltable_realloc_elem(struct link_table *table, struct lt_elem *elem, int type) | |
39037602 A |
644 | { |
645 | (void)table; | |
646 | assert(lt_elem_in_range(elem, table) && | |
0a7de745 | 647 | !lt_bits_valid(elem->lt_bits)); |
39037602 A |
648 | |
649 | #if CONFIG_LTABLE_STATS | |
650 | table->nreallocs += 1; | |
651 | if (lt_bits_type(elem->lt_bits) == LT_RESERVED && type != LT_RESERVED) { | |
652 | /* | |
653 | * This isn't under any lock, so we'll clamp it. | |
654 | * the stats are meant to be informative, not perfectly | |
655 | * accurate | |
656 | */ | |
657 | OSDecrementAtomic64(&table->nreservations); | |
658 | } | |
659 | table->avg_reservations = (table->avg_reservations + table->nreservations) / 2; | |
660 | #endif | |
661 | ||
662 | /* | |
663 | * Return the same element with a new generation count, and a | |
664 | * (potentially) new type. Don't touch the refcount: the caller | |
665 | * is responsible for getting that (and the valid bit) correct. | |
666 | */ | |
667 | elem->lt_id.generation += 1; | |
668 | elem->lt_next_idx = LT_IDX_MAX; | |
669 | lt_elem_set_type(elem, type); | |
670 | ||
671 | return; | |
672 | } | |
673 | ||
674 | ||
675 | /** | |
676 | * ltable_free_elem: release an element back to a link table | |
677 | * | |
678 | * Do not call this function directly: use ltable_[get|put]_elem! | |
679 | * | |
680 | * Conditions: | |
681 | * 'elem' was originally allocated from 'table' | |
682 | * 'elem' is _not_ marked valid | |
683 | * 'elem' has a reference count of 0 | |
684 | */ | |
0a7de745 A |
685 | static void |
686 | ltable_free_elem(struct link_table *table, struct lt_elem *elem) | |
39037602 A |
687 | { |
688 | struct ltable_id next_id; | |
689 | ||
690 | assert(lt_elem_in_range(elem, table) && | |
0a7de745 A |
691 | !lt_bits_valid(elem->lt_bits) && |
692 | (lt_bits_refcnt(elem->lt_bits) == 0)); | |
39037602 A |
693 | |
694 | OSDecrementAtomic(&table->used_elem); | |
695 | ||
696 | #if CONFIG_LTABLE_STATS | |
697 | table->avg_used = (table->avg_used + table->used_elem) / 2; | |
0a7de745 | 698 | if (lt_bits_type(elem->lt_bits) == LT_RESERVED) { |
39037602 | 699 | OSDecrementAtomic64(&table->nreservations); |
0a7de745 | 700 | } |
39037602 A |
701 | table->avg_reservations = (table->avg_reservations + table->nreservations) / 2; |
702 | #endif | |
703 | ||
704 | elem->lt_bits = 0; | |
705 | ||
0a7de745 | 706 | if (table->poison) { |
39037602 | 707 | (table->poison)(table, elem); |
0a7de745 | 708 | } |
39037602 A |
709 | |
710 | again: | |
711 | next_id = table->free_list; | |
0a7de745 | 712 | if (next_id.idx >= table->nelem) { |
39037602 | 713 | elem->lt_next_idx = LT_IDX_MAX; |
0a7de745 | 714 | } else { |
39037602 | 715 | elem->lt_next_idx = next_id.idx; |
0a7de745 | 716 | } |
39037602 A |
717 | |
718 | /* store barrier */ | |
719 | OSMemoryBarrier(); | |
720 | if (OSCompareAndSwap64(next_id.id, elem->lt_id.id, | |
0a7de745 | 721 | &table->free_list.id) == FALSE) { |
39037602 | 722 | goto again; |
0a7de745 | 723 | } |
39037602 A |
724 | } |
725 | ||
726 | ||
727 | /** | |
728 | * ltable_get_elem: get a reference to a table element identified by 'id' | |
729 | * | |
730 | * Returns a reference to the table element associated with the given 'id', or | |
731 | * NULL if the 'id' was invalid or does not exist in 'table'. The caller is | |
732 | * responsible to release the reference using ltable_put_elem(). | |
733 | * | |
734 | * NOTE: if the table element pointed to by 'id' is marked as invalid, | |
735 | * this function will return NULL. | |
736 | */ | |
0a7de745 A |
737 | struct lt_elem * |
738 | ltable_get_elem(struct link_table *table, uint64_t id) | |
39037602 A |
739 | { |
740 | struct lt_elem *elem; | |
741 | uint32_t idx, bits, new_bits; | |
742 | ||
743 | /* | |
744 | * Here we have a reference to the table which is guaranteed to remain | |
745 | * valid until we drop the reference | |
746 | */ | |
747 | ||
748 | idx = ((struct ltable_id *)&id)->idx; | |
749 | ||
0a7de745 | 750 | if (idx >= table->nelem) { |
39037602 | 751 | panic("id:0x%llx : idx:%d > %d", id, idx, table->nelem); |
0a7de745 | 752 | } |
39037602 A |
753 | |
754 | elem = lt_elem_idx(table, idx); | |
755 | ||
756 | /* verify the validity by taking a reference on the table object */ | |
757 | bits = elem->lt_bits; | |
0a7de745 | 758 | if (!lt_bits_valid(bits)) { |
39037602 | 759 | return NULL; |
0a7de745 | 760 | } |
39037602 A |
761 | |
762 | /* | |
763 | * do a pre-verify on the element ID to potentially | |
764 | * avoid 2 compare-and-swaps | |
765 | */ | |
0a7de745 | 766 | if (elem->lt_id.id != id) { |
39037602 | 767 | return NULL; |
0a7de745 | 768 | } |
39037602 A |
769 | |
770 | new_bits = bits + 1; | |
771 | ||
772 | /* check for overflow */ | |
773 | assert(lt_bits_refcnt(new_bits) > 0); | |
774 | ||
775 | while (OSCompareAndSwap(bits, new_bits, &elem->lt_bits) == FALSE) { | |
776 | /* | |
777 | * either the element became invalid, | |
778 | * or someone else grabbed/removed a reference. | |
779 | */ | |
780 | bits = elem->lt_bits; | |
781 | if (!lt_bits_valid(bits)) { | |
782 | /* don't return invalid elements */ | |
783 | return NULL; | |
784 | } | |
785 | new_bits = bits + 1; | |
786 | assert(lt_bits_refcnt(new_bits) > 0); | |
787 | } | |
788 | ||
789 | /* load barrier */ | |
790 | OSMemoryBarrier(); | |
791 | ||
792 | /* check to see that our reference is to the same generation! */ | |
793 | if (elem->lt_id.id != id) { | |
794 | /* | |
0a7de745 A |
795 | * ltdbg("ID:0x%llx table generation (%d) != %d", |
796 | * id, elem->lt_id.generation, | |
797 | * ((struct ltable_id *)&id)->generation); | |
39037602 A |
798 | */ |
799 | ltable_put_elem(table, elem); | |
800 | return NULL; | |
801 | } | |
802 | ||
803 | /* We now have a reference on a valid object */ | |
804 | return elem; | |
805 | } | |
806 | ||
807 | /** | |
808 | * ltable_put_elem: release a reference to table element | |
809 | * | |
810 | * This function releases a reference taken on a table element via | |
811 | * ltable_get_elem(). This function will release the element back to 'table' | |
812 | * when the reference count goes to 0 AND the element has been marked as | |
813 | * invalid. | |
814 | */ | |
0a7de745 A |
815 | void |
816 | ltable_put_elem(struct link_table *table, struct lt_elem *elem) | |
39037602 A |
817 | { |
818 | uint32_t bits, new_bits; | |
819 | ||
820 | assert(lt_elem_in_range(elem, table)); | |
821 | ||
822 | bits = elem->lt_bits; | |
823 | new_bits = bits - 1; | |
824 | ||
825 | /* check for underflow */ | |
826 | assert(lt_bits_refcnt(new_bits) < LT_BITS_REFCNT_MASK); | |
827 | ||
828 | while (OSCompareAndSwap(bits, new_bits, &elem->lt_bits) == FALSE) { | |
829 | bits = elem->lt_bits; | |
830 | new_bits = bits - 1; | |
831 | /* catch underflow */ | |
832 | assert(lt_bits_refcnt(new_bits) < LT_BITS_REFCNT_MASK); | |
833 | } | |
834 | ||
835 | /* load barrier */ | |
836 | OSMemoryBarrier(); | |
837 | ||
838 | /* | |
839 | * if this was the last reference, and it was marked as invalid, | |
840 | * then we can add this link object back to the free list | |
841 | */ | |
0a7de745 | 842 | if (!lt_bits_valid(new_bits) && (lt_bits_refcnt(new_bits) == 0)) { |
39037602 | 843 | ltable_free_elem(table, elem); |
0a7de745 | 844 | } |
39037602 A |
845 | |
846 | return; | |
847 | } | |
848 | ||
849 | ||
850 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
851 | * | |
852 | * API: lt_elem_list_... | |
853 | * | |
854 | * Reuse the free list linkage member, 'lt_next_idx' of a table element | |
855 | * in a slightly more generic singly-linked list. All members of this | |
856 | * list have been allocated from a table, but have not been made valid. | |
857 | * | |
858 | * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*/ | |
859 | ||
860 | /** | |
861 | * lt_elem_list_link: link a child onto a parent | |
862 | * | |
863 | * Note that if 'parent' is the head of a list, this function will follow that | |
864 | * list and attach 'child' to the end of it. In the simplest case, this | |
865 | * results in: parent->child | |
866 | * however this could also result in: parent->...->child | |
867 | */ | |
0a7de745 A |
868 | int |
869 | lt_elem_list_link(struct link_table *table, struct lt_elem *parent, struct lt_elem *child) | |
39037602 A |
870 | { |
871 | int nelem = 1; | |
872 | ||
873 | assert(lt_elem_in_range(parent, table)); | |
874 | ||
875 | /* find the end of the parent's list */ | |
876 | while (parent->lt_next_idx != LT_IDX_MAX) { | |
877 | assert(parent->lt_next_idx < table->nelem); | |
878 | parent = lt_elem_idx(table, parent->lt_next_idx); | |
879 | nelem++; | |
880 | } | |
881 | ||
882 | if (child) { | |
883 | assert(lt_elem_in_range(child, table)); | |
884 | parent->lt_next_idx = child->lt_id.idx; | |
885 | } | |
886 | ||
887 | return nelem; | |
888 | } | |
889 | ||
890 | ||
891 | /** | |
892 | * lt_elem_list_first: obtain a pointer to the first element of a list. | |
893 | * | |
894 | * This function converts the head of a singly-linked list, 'id', into a real | |
895 | * lt_elem object and returns a pointer to the object. | |
896 | * | |
897 | * It does _not_ take an extra reference on the object: the list implicitly | |
898 | * holds that reference. | |
899 | */ | |
0a7de745 A |
900 | struct lt_elem * |
901 | lt_elem_list_first(struct link_table *table, uint64_t id) | |
39037602 A |
902 | { |
903 | uint32_t idx; | |
904 | struct lt_elem *elem = NULL; | |
905 | ||
0a7de745 | 906 | if (id == 0) { |
39037602 | 907 | return NULL; |
0a7de745 | 908 | } |
39037602 A |
909 | |
910 | idx = ((struct ltable_id *)&id)->idx; | |
911 | ||
0a7de745 | 912 | if (idx > table->nelem) { |
39037602 | 913 | panic("Invalid element for id:0x%llx", id); |
0a7de745 | 914 | } |
39037602 A |
915 | elem = lt_elem_idx(table, idx); |
916 | ||
917 | /* invalid element: reserved ID was probably already reallocated */ | |
0a7de745 | 918 | if (elem->lt_id.id != id) { |
39037602 | 919 | return NULL; |
0a7de745 | 920 | } |
39037602 A |
921 | |
922 | /* the returned element should _not_ be marked valid! */ | |
923 | if (lt_bits_valid(elem->lt_bits) || | |
924 | lt_bits_type(elem->lt_bits) != LT_RESERVED || | |
925 | lt_bits_refcnt(elem->lt_bits) != 1) { | |
926 | panic("Valid/unreserved element %p (0x%x) in reserved list", | |
0a7de745 | 927 | elem, elem->lt_bits); |
39037602 A |
928 | } |
929 | ||
930 | return elem; | |
931 | } | |
932 | ||
933 | ||
934 | /** | |
935 | * lt_elem_list_next: return the item subsequent to 'elem' in a list | |
936 | * | |
937 | * Note that this will return NULL if 'elem' is actually the end of the list. | |
938 | */ | |
0a7de745 A |
939 | struct lt_elem * |
940 | lt_elem_list_next(struct link_table *table, struct lt_elem *head) | |
39037602 A |
941 | { |
942 | struct lt_elem *elem; | |
943 | ||
0a7de745 | 944 | if (!head) { |
39037602 | 945 | return NULL; |
0a7de745 A |
946 | } |
947 | if (head->lt_next_idx >= table->nelem) { | |
39037602 | 948 | return NULL; |
0a7de745 | 949 | } |
39037602 A |
950 | |
951 | elem = lt_elem_idx(table, head->lt_next_idx); | |
952 | assert(lt_elem_in_range(elem, table)); | |
953 | ||
954 | return elem; | |
955 | } | |
956 | ||
957 | ||
958 | /** | |
959 | * lt_elem_list_break: break a list in two around 'elem' | |
960 | * | |
961 | * This function will reset the next_idx field of 'elem' (making it the end of | |
962 | * the list), and return the element subsequent to 'elem' in the list | |
963 | * (which could be NULL) | |
964 | */ | |
0a7de745 A |
965 | struct lt_elem * |
966 | lt_elem_list_break(struct link_table *table, struct lt_elem *elem) | |
39037602 A |
967 | { |
968 | struct lt_elem *next; | |
969 | ||
0a7de745 | 970 | if (!elem) { |
39037602 | 971 | return NULL; |
0a7de745 | 972 | } |
39037602 A |
973 | next = lt_elem_list_next(table, elem); |
974 | elem->lt_next_idx = LT_IDX_MAX; | |
975 | ||
976 | return next; | |
977 | } | |
978 | ||
979 | ||
980 | /** | |
981 | * lt_elem_list_pop: pop an item off the head of a list | |
982 | * | |
983 | * The list head is pointed to by '*id', the element corresponding to '*id' is | |
984 | * returned by this function, and the new list head is returned in the in/out | |
985 | * parameter, '*id'. The caller is responsible for the reference on the | |
986 | * returned object. A realloc is done to reset the type of the object, but it | |
987 | * is still left invalid. | |
988 | */ | |
0a7de745 A |
989 | struct lt_elem * |
990 | lt_elem_list_pop(struct link_table *table, uint64_t *id, int type) | |
39037602 A |
991 | { |
992 | struct lt_elem *first, *next; | |
993 | ||
0a7de745 | 994 | if (!id || *id == 0) { |
39037602 | 995 | return NULL; |
0a7de745 | 996 | } |
39037602 A |
997 | |
998 | /* pop an item off the reserved stack */ | |
999 | ||
1000 | first = lt_elem_list_first(table, *id); | |
1001 | if (!first) { | |
1002 | *id = 0; | |
1003 | return NULL; | |
1004 | } | |
1005 | ||
1006 | next = lt_elem_list_next(table, first); | |
0a7de745 | 1007 | if (next) { |
39037602 | 1008 | *id = next->lt_id.id; |
0a7de745 | 1009 | } else { |
39037602 | 1010 | *id = 0; |
0a7de745 | 1011 | } |
39037602 A |
1012 | |
1013 | ltable_realloc_elem(table, first, type); | |
1014 | ||
1015 | return first; | |
1016 | } | |
1017 | ||
1018 | /** | |
1019 | * lt_elem_list_release: free an entire list of reserved elements | |
1020 | * | |
1021 | * All elements in the list whose first member is 'head' will be released back | |
1022 | * to 'table' as free elements. The 'type' parameter is used in development | |
1023 | * kernels to assert that all elements on the list are of the given type. | |
1024 | */ | |
0a7de745 A |
1025 | int |
1026 | lt_elem_list_release(struct link_table *table, struct lt_elem *head, | |
1027 | int __assert_only type) | |
39037602 A |
1028 | { |
1029 | struct lt_elem *elem; | |
1030 | struct ltable_id free_id; | |
1031 | int nelem = 0; | |
1032 | ||
0a7de745 | 1033 | if (!head) { |
39037602 | 1034 | return 0; |
0a7de745 | 1035 | } |
39037602 | 1036 | |
0a7de745 | 1037 | for (elem = head;;) { |
39037602 A |
1038 | assert(lt_elem_in_range(elem, table)); |
1039 | assert(!lt_bits_valid(elem->lt_bits) && (lt_bits_refcnt(elem->lt_bits) == 1)); | |
1040 | assert(lt_bits_type(elem->lt_bits) == type); | |
1041 | ||
1042 | nelem++; | |
1043 | elem->lt_bits = 0; | |
0a7de745 | 1044 | if (table->poison) { |
39037602 | 1045 | (table->poison)(table, elem); |
0a7de745 | 1046 | } |
39037602 | 1047 | |
0a7de745 | 1048 | if (elem->lt_next_idx == LT_IDX_MAX) { |
39037602 | 1049 | break; |
0a7de745 | 1050 | } |
39037602 A |
1051 | assert(elem->lt_next_idx < table->nelem); |
1052 | elem = lt_elem_idx(table, elem->lt_next_idx); | |
1053 | } | |
1054 | ||
1055 | /* | |
1056 | * 'elem' now points to the end of our list, and 'head' points to the | |
1057 | * beginning. We want to atomically swap the free list pointer with | |
1058 | * the 'head' and ensure that 'elem' points to the previous free list | |
1059 | * head. | |
1060 | */ | |
1061 | ||
1062 | again: | |
1063 | free_id = table->free_list; | |
0a7de745 | 1064 | if (free_id.idx >= table->nelem) { |
39037602 | 1065 | elem->lt_next_idx = LT_IDX_MAX; |
0a7de745 | 1066 | } else { |
39037602 | 1067 | elem->lt_next_idx = free_id.idx; |
0a7de745 | 1068 | } |
39037602 A |
1069 | |
1070 | /* store barrier */ | |
1071 | OSMemoryBarrier(); | |
1072 | if (OSCompareAndSwap64(free_id.id, head->lt_id.id, | |
0a7de745 | 1073 | &table->free_list.id) == FALSE) { |
39037602 | 1074 | goto again; |
0a7de745 | 1075 | } |
39037602 A |
1076 | |
1077 | OSAddAtomic(-nelem, &table->used_elem); | |
1078 | return nelem; | |
1079 | } |