]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
593a1d5f | 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | ||
32 | /* | |
33 | * File: i386/rtclock.c | |
34 | * Purpose: Routines for handling the machine dependent | |
91447636 A |
35 | * real-time clock. Historically, this clock is |
36 | * generated by the Intel 8254 Programmable Interval | |
37 | * Timer, but local apic timers are now used for | |
38 | * this purpose with the master time reference being | |
39 | * the cpu clock counted by the timestamp MSR. | |
1c79356b A |
40 | */ |
41 | ||
1c79356b | 42 | #include <platforms.h> |
1c79356b | 43 | #include <mach_kdb.h> |
55e303ae A |
44 | |
45 | #include <mach/mach_types.h> | |
46 | ||
1c79356b | 47 | #include <kern/cpu_data.h> |
91447636 | 48 | #include <kern/cpu_number.h> |
1c79356b | 49 | #include <kern/clock.h> |
55e303ae | 50 | #include <kern/host_notify.h> |
1c79356b A |
51 | #include <kern/macro_help.h> |
52 | #include <kern/misc_protos.h> | |
53 | #include <kern/spl.h> | |
91447636 | 54 | #include <kern/assert.h> |
1c79356b A |
55 | #include <mach/vm_prot.h> |
56 | #include <vm/pmap.h> | |
57 | #include <vm/vm_kern.h> /* for kernel_map */ | |
58 | #include <i386/ipl.h> | |
0c530ab8 | 59 | #include <architecture/i386/pio.h> |
1c79356b | 60 | #include <i386/misc_protos.h> |
55e303ae A |
61 | #include <i386/proc_reg.h> |
62 | #include <i386/machine_cpu.h> | |
593a1d5f | 63 | #include <i386/lapic.h> |
91447636 A |
64 | #include <i386/cpuid.h> |
65 | #include <i386/cpu_data.h> | |
66 | #include <i386/cpu_threads.h> | |
67 | #include <i386/perfmon.h> | |
68 | #include <i386/machine_routines.h> | |
55e303ae | 69 | #include <pexpert/pexpert.h> |
91447636 A |
70 | #include <machine/limits.h> |
71 | #include <machine/commpage.h> | |
72 | #include <sys/kdebug.h> | |
0c530ab8 | 73 | #include <i386/tsc.h> |
0c530ab8 | 74 | #include <i386/rtclock.h> |
91447636 | 75 | |
91447636 A |
76 | #define NSEC_PER_HZ (NSEC_PER_SEC / 100) /* nsec per tick */ |
77 | ||
78 | #define UI_CPUFREQ_ROUNDING_FACTOR 10000000 | |
1c79356b | 79 | |
0c530ab8 | 80 | int rtclock_config(void); |
6601e61a | 81 | |
0c530ab8 | 82 | int rtclock_init(void); |
6601e61a | 83 | |
0c530ab8 | 84 | uint64_t rtc_decrementer_min; |
6601e61a | 85 | |
0c530ab8 A |
86 | void rtclock_intr(x86_saved_state_t *regs); |
87 | static uint64_t maxDec; /* longest interval our hardware timer can handle (nsec) */ | |
6601e61a | 88 | |
0c530ab8 A |
89 | static void rtc_set_timescale(uint64_t cycles); |
90 | static uint64_t rtc_export_speed(uint64_t cycles); | |
8f6c56a5 | 91 | |
2d21ac55 | 92 | rtc_nanotime_t rtc_nanotime_info = {0,0,0,0,1,0}; |
6601e61a | 93 | |
4a3eedf9 A |
94 | /* |
95 | * tsc_to_nanoseconds: | |
96 | * | |
97 | * Basic routine to convert a raw 64 bit TSC value to a | |
98 | * 64 bit nanosecond value. The conversion is implemented | |
99 | * based on the scale factor and an implicit 32 bit shift. | |
100 | */ | |
101 | static inline uint64_t | |
102 | _tsc_to_nanoseconds(uint64_t value) | |
103 | { | |
104 | asm volatile("movl %%edx,%%esi ;" | |
105 | "mull %%ecx ;" | |
106 | "movl %%edx,%%edi ;" | |
107 | "movl %%esi,%%eax ;" | |
108 | "mull %%ecx ;" | |
109 | "addl %%edi,%%eax ;" | |
110 | "adcl $0,%%edx " | |
593a1d5f A |
111 | : "+A" (value) |
112 | : "c" (current_cpu_datap()->cpu_nanotime->scale) | |
113 | : "esi", "edi"); | |
4a3eedf9 A |
114 | |
115 | return (value); | |
116 | } | |
117 | ||
91447636 A |
118 | static uint32_t |
119 | deadline_to_decrementer( | |
120 | uint64_t deadline, | |
121 | uint64_t now) | |
122 | { | |
123 | uint64_t delta; | |
124 | ||
125 | if (deadline <= now) | |
126 | return rtc_decrementer_min; | |
127 | else { | |
128 | delta = deadline - now; | |
0c530ab8 | 129 | return MIN(MAX(rtc_decrementer_min,delta),maxDec); |
91447636 A |
130 | } |
131 | } | |
132 | ||
0c530ab8 | 133 | void |
6601e61a A |
134 | rtc_lapic_start_ticking(void) |
135 | { | |
2d21ac55 | 136 | x86_lcpu_t *lcpu = x86_lcpu(); |
0c530ab8 A |
137 | |
138 | /* | |
139 | * Force a complete re-evaluation of timer deadlines. | |
140 | */ | |
2d21ac55 | 141 | lcpu->rtcPop = EndOfAllTime; |
0c530ab8 | 142 | etimer_resync_deadlines(); |
1c79356b A |
143 | } |
144 | ||
145 | /* | |
146 | * Configure the real-time clock device. Return success (1) | |
147 | * or failure (0). | |
148 | */ | |
149 | ||
150 | int | |
0c530ab8 | 151 | rtclock_config(void) |
1c79356b | 152 | { |
0c530ab8 | 153 | /* nothing to do */ |
91447636 A |
154 | return (1); |
155 | } | |
156 | ||
157 | ||
158 | /* | |
159 | * Nanotime/mach_absolutime_time | |
160 | * ----------------------------- | |
0c530ab8 A |
161 | * The timestamp counter (TSC) - which counts cpu clock cycles and can be read |
162 | * efficiently by the kernel and in userspace - is the reference for all timing. | |
163 | * The cpu clock rate is platform-dependent and may stop or be reset when the | |
164 | * processor is napped/slept. As a result, nanotime is the software abstraction | |
165 | * used to maintain a monotonic clock, adjusted from an outside reference as needed. | |
91447636 A |
166 | * |
167 | * The kernel maintains nanotime information recording: | |
0c530ab8 | 168 | * - the ratio of tsc to nanoseconds |
91447636 A |
169 | * with this ratio expressed as a 32-bit scale and shift |
170 | * (power of 2 divider); | |
0c530ab8 | 171 | * - { tsc_base, ns_base } pair of corresponding timestamps. |
6601e61a | 172 | * |
0c530ab8 A |
173 | * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage |
174 | * for the userspace nanotime routine to read. | |
6601e61a | 175 | * |
0c530ab8 A |
176 | * All of the routines which update the nanotime data are non-reentrant. This must |
177 | * be guaranteed by the caller. | |
91447636 A |
178 | */ |
179 | static inline void | |
180 | rtc_nanotime_set_commpage(rtc_nanotime_t *rntp) | |
181 | { | |
0c530ab8 A |
182 | commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift); |
183 | } | |
6601e61a | 184 | |
0c530ab8 A |
185 | /* |
186 | * rtc_nanotime_init: | |
187 | * | |
188 | * Intialize the nanotime info from the base time. | |
189 | */ | |
190 | static inline void | |
191 | _rtc_nanotime_init(rtc_nanotime_t *rntp, uint64_t base) | |
192 | { | |
193 | uint64_t tsc = rdtsc64(); | |
21362eb3 | 194 | |
2d21ac55 | 195 | _rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp); |
91447636 A |
196 | } |
197 | ||
198 | static void | |
0c530ab8 | 199 | rtc_nanotime_init(uint64_t base) |
91447636 | 200 | { |
593a1d5f | 201 | rtc_nanotime_t *rntp = current_cpu_datap()->cpu_nanotime; |
91447636 | 202 | |
0c530ab8 A |
203 | _rtc_nanotime_init(rntp, base); |
204 | rtc_nanotime_set_commpage(rntp); | |
91447636 A |
205 | } |
206 | ||
0c530ab8 A |
207 | /* |
208 | * rtc_nanotime_init_commpage: | |
209 | * | |
210 | * Call back from the commpage initialization to | |
211 | * cause the commpage data to be filled in once the | |
212 | * commpages have been created. | |
213 | */ | |
214 | void | |
215 | rtc_nanotime_init_commpage(void) | |
91447636 | 216 | { |
0c530ab8 A |
217 | spl_t s = splclock(); |
218 | ||
593a1d5f | 219 | rtc_nanotime_set_commpage(current_cpu_datap()->cpu_nanotime); |
4452a7af | 220 | |
0c530ab8 | 221 | splx(s); |
91447636 A |
222 | } |
223 | ||
0c530ab8 A |
224 | /* |
225 | * rtc_nanotime_read: | |
226 | * | |
227 | * Returns the current nanotime value, accessable from any | |
228 | * context. | |
229 | */ | |
2d21ac55 | 230 | static inline uint64_t |
91447636 A |
231 | rtc_nanotime_read(void) |
232 | { | |
2d21ac55 A |
233 | |
234 | #if CONFIG_EMBEDDED | |
235 | if (gPEClockFrequencyInfo.timebase_frequency_hz > SLOW_TSC_THRESHOLD) | |
593a1d5f | 236 | return _rtc_nanotime_read(current_cpu_datap()->cpu_nanotime, 1); /* slow processor */ |
2d21ac55 A |
237 | else |
238 | #endif | |
593a1d5f | 239 | return _rtc_nanotime_read(current_cpu_datap()->cpu_nanotime, 0); /* assume fast processor */ |
91447636 A |
240 | } |
241 | ||
91447636 | 242 | /* |
0c530ab8 A |
243 | * rtc_clock_napped: |
244 | * | |
4a3eedf9 A |
245 | * Invoked from power management when we exit from a low C-State (>= C4) |
246 | * and the TSC has stopped counting. The nanotime data is updated according | |
247 | * to the provided value which represents the new value for nanotime. | |
91447636 | 248 | */ |
0c530ab8 | 249 | void |
4a3eedf9 | 250 | rtc_clock_napped(uint64_t base, uint64_t tsc_base) |
0c530ab8 | 251 | { |
593a1d5f | 252 | rtc_nanotime_t *rntp = current_cpu_datap()->cpu_nanotime; |
4a3eedf9 A |
253 | uint64_t oldnsecs; |
254 | uint64_t newnsecs; | |
255 | uint64_t tsc; | |
2d21ac55 A |
256 | |
257 | assert(!ml_get_interrupts_enabled()); | |
4a3eedf9 A |
258 | tsc = rdtsc64(); |
259 | oldnsecs = rntp->ns_base + _tsc_to_nanoseconds(tsc - rntp->tsc_base); | |
260 | newnsecs = base + _tsc_to_nanoseconds(tsc - tsc_base); | |
261 | ||
262 | /* | |
263 | * Only update the base values if time using the new base values | |
264 | * is later than the time using the old base values. | |
265 | */ | |
266 | if (oldnsecs < newnsecs) { | |
267 | _rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp); | |
268 | rtc_nanotime_set_commpage(rntp); | |
269 | } | |
0c530ab8 A |
270 | } |
271 | ||
91447636 A |
272 | void |
273 | rtc_clock_stepping(__unused uint32_t new_frequency, | |
274 | __unused uint32_t old_frequency) | |
275 | { | |
0c530ab8 | 276 | panic("rtc_clock_stepping unsupported"); |
91447636 A |
277 | } |
278 | ||
91447636 | 279 | void |
0c530ab8 A |
280 | rtc_clock_stepped(__unused uint32_t new_frequency, |
281 | __unused uint32_t old_frequency) | |
91447636 | 282 | { |
2d21ac55 | 283 | panic("rtc_clock_stepped unsupported"); |
1c79356b A |
284 | } |
285 | ||
286 | /* | |
0c530ab8 A |
287 | * rtc_sleep_wakeup: |
288 | * | |
289 | * Invoked from power manageent when we have awoken from a sleep (S3) | |
290 | * and the TSC has been reset. The nanotime data is updated based on | |
291 | * the passed in value. | |
292 | * | |
293 | * The caller must guarantee non-reentrancy. | |
91447636 A |
294 | */ |
295 | void | |
0c530ab8 A |
296 | rtc_sleep_wakeup( |
297 | uint64_t base) | |
91447636 | 298 | { |
91447636 A |
299 | /* |
300 | * Reset nanotime. | |
301 | * The timestamp counter will have been reset | |
302 | * but nanotime (uptime) marches onward. | |
91447636 | 303 | */ |
0c530ab8 | 304 | rtc_nanotime_init(base); |
91447636 A |
305 | } |
306 | ||
307 | /* | |
308 | * Initialize the real-time clock device. | |
309 | * In addition, various variables used to support the clock are initialized. | |
1c79356b A |
310 | */ |
311 | int | |
0c530ab8 | 312 | rtclock_init(void) |
1c79356b | 313 | { |
91447636 A |
314 | uint64_t cycles; |
315 | ||
0c530ab8 A |
316 | assert(!ml_get_interrupts_enabled()); |
317 | ||
91447636 | 318 | if (cpu_number() == master_cpu) { |
0c530ab8 A |
319 | |
320 | assert(tscFreq); | |
321 | rtc_set_timescale(tscFreq); | |
322 | ||
91447636 | 323 | /* |
0c530ab8 | 324 | * Adjust and set the exported cpu speed. |
91447636 | 325 | */ |
0c530ab8 | 326 | cycles = rtc_export_speed(tscFreq); |
91447636 A |
327 | |
328 | /* | |
329 | * Set min/max to actual. | |
330 | * ACPI may update these later if speed-stepping is detected. | |
331 | */ | |
0c530ab8 A |
332 | gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles; |
333 | gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles; | |
91447636 | 334 | |
0c530ab8 A |
335 | /* |
336 | * Compute the longest interval we can represent. | |
337 | */ | |
338 | maxDec = tmrCvt(0x7fffffffULL, busFCvtt2n); | |
339 | kprintf("maxDec: %lld\n", maxDec); | |
91447636 A |
340 | |
341 | /* Minimum interval is 1usec */ | |
0c530ab8 | 342 | rtc_decrementer_min = deadline_to_decrementer(NSEC_PER_USEC, 0ULL); |
91447636 A |
343 | /* Point LAPIC interrupts to hardclock() */ |
344 | lapic_set_timer_func((i386_intr_func_t) rtclock_intr); | |
345 | ||
346 | clock_timebase_init(); | |
0c530ab8 | 347 | ml_init_lock_timeout(); |
1c79356b | 348 | } |
91447636 | 349 | |
91447636 A |
350 | rtc_lapic_start_ticking(); |
351 | ||
1c79356b A |
352 | return (1); |
353 | } | |
354 | ||
0c530ab8 A |
355 | // utility routine |
356 | // Code to calculate how many processor cycles are in a second... | |
1c79356b | 357 | |
0c530ab8 A |
358 | static void |
359 | rtc_set_timescale(uint64_t cycles) | |
1c79356b | 360 | { |
593a1d5f A |
361 | rtc_nanotime_t *rntp = current_cpu_datap()->cpu_nanotime; |
362 | rntp->scale = ((uint64_t)NSEC_PER_SEC << 32) / cycles; | |
2d21ac55 A |
363 | |
364 | if (cycles <= SLOW_TSC_THRESHOLD) | |
593a1d5f | 365 | rntp->shift = cycles; |
2d21ac55 | 366 | else |
593a1d5f | 367 | rntp->shift = 32; |
1c79356b | 368 | |
0c530ab8 | 369 | rtc_nanotime_init(0); |
1c79356b A |
370 | } |
371 | ||
91447636 | 372 | static uint64_t |
0c530ab8 | 373 | rtc_export_speed(uint64_t cyc_per_sec) |
9bccf70c | 374 | { |
0c530ab8 | 375 | uint64_t cycles; |
1c79356b | 376 | |
0c530ab8 A |
377 | /* Round: */ |
378 | cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2)) | |
91447636 A |
379 | / UI_CPUFREQ_ROUNDING_FACTOR) |
380 | * UI_CPUFREQ_ROUNDING_FACTOR; | |
9bccf70c | 381 | |
91447636 A |
382 | /* |
383 | * Set current measured speed. | |
384 | */ | |
385 | if (cycles >= 0x100000000ULL) { | |
386 | gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL; | |
55e303ae | 387 | } else { |
91447636 | 388 | gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles; |
9bccf70c | 389 | } |
91447636 | 390 | gPEClockFrequencyInfo.cpu_frequency_hz = cycles; |
55e303ae | 391 | |
0c530ab8 | 392 | kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec); |
91447636 | 393 | return(cycles); |
9bccf70c | 394 | } |
1c79356b | 395 | |
55e303ae A |
396 | void |
397 | clock_get_system_microtime( | |
398 | uint32_t *secs, | |
399 | uint32_t *microsecs) | |
9bccf70c | 400 | { |
0c530ab8 A |
401 | uint64_t now = rtc_nanotime_read(); |
402 | uint32_t remain; | |
6601e61a | 403 | |
0c530ab8 A |
404 | asm volatile( |
405 | "divl %3" | |
406 | : "=a" (*secs), "=d" (remain) | |
407 | : "A" (now), "r" (NSEC_PER_SEC)); | |
408 | asm volatile( | |
409 | "divl %3" | |
410 | : "=a" (*microsecs) | |
411 | : "0" (remain), "d" (0), "r" (NSEC_PER_USEC)); | |
1c79356b A |
412 | } |
413 | ||
55e303ae A |
414 | void |
415 | clock_get_system_nanotime( | |
416 | uint32_t *secs, | |
417 | uint32_t *nanosecs) | |
418 | { | |
0c530ab8 | 419 | uint64_t now = rtc_nanotime_read(); |
8f6c56a5 | 420 | |
0c530ab8 A |
421 | asm volatile( |
422 | "divl %3" | |
423 | : "=a" (*secs), "=d" (*nanosecs) | |
424 | : "A" (now), "r" (NSEC_PER_SEC)); | |
6601e61a A |
425 | } |
426 | ||
427 | void | |
0c530ab8 A |
428 | clock_gettimeofday_set_commpage( |
429 | uint64_t abstime, | |
430 | uint64_t epoch, | |
431 | uint64_t offset, | |
432 | uint32_t *secs, | |
433 | uint32_t *microsecs) | |
434 | { | |
435 | uint64_t now = abstime; | |
436 | uint32_t remain; | |
6601e61a | 437 | |
0c530ab8 | 438 | now += offset; |
6601e61a | 439 | |
0c530ab8 A |
440 | asm volatile( |
441 | "divl %3" | |
442 | : "=a" (*secs), "=d" (remain) | |
443 | : "A" (now), "r" (NSEC_PER_SEC)); | |
444 | asm volatile( | |
445 | "divl %3" | |
446 | : "=a" (*microsecs) | |
447 | : "0" (remain), "d" (0), "r" (NSEC_PER_USEC)); | |
6601e61a | 448 | |
0c530ab8 | 449 | *secs += epoch; |
6601e61a | 450 | |
2d21ac55 | 451 | commpage_set_timestamp(abstime - remain, *secs); |
91447636 A |
452 | } |
453 | ||
1c79356b A |
454 | void |
455 | clock_timebase_info( | |
456 | mach_timebase_info_t info) | |
457 | { | |
91447636 | 458 | info->numer = info->denom = 1; |
1c79356b A |
459 | } |
460 | ||
1c79356b | 461 | /* |
91447636 | 462 | * Real-time clock device interrupt. |
1c79356b | 463 | */ |
1c79356b | 464 | void |
0c530ab8 A |
465 | rtclock_intr( |
466 | x86_saved_state_t *tregs) | |
1c79356b | 467 | { |
0c530ab8 A |
468 | uint64_t rip; |
469 | boolean_t user_mode = FALSE; | |
55e303ae | 470 | uint64_t abstime; |
91447636 | 471 | uint32_t latency; |
2d21ac55 | 472 | x86_lcpu_t *lcpu = x86_lcpu(); |
91447636 A |
473 | |
474 | assert(get_preemption_level() > 0); | |
475 | assert(!ml_get_interrupts_enabled()); | |
476 | ||
0c530ab8 | 477 | abstime = rtc_nanotime_read(); |
2d21ac55 A |
478 | latency = (uint32_t)(abstime - lcpu->rtcDeadline); |
479 | if (abstime < lcpu->rtcDeadline) | |
480 | latency = 1; | |
89b3af67 | 481 | |
0c530ab8 A |
482 | if (is_saved_state64(tregs) == TRUE) { |
483 | x86_saved_state64_t *regs; | |
484 | ||
485 | regs = saved_state64(tregs); | |
5d5c5d0d | 486 | |
0c530ab8 A |
487 | user_mode = TRUE; |
488 | rip = regs->isf.rip; | |
489 | } else { | |
490 | x86_saved_state32_t *regs; | |
8ad349bb | 491 | |
0c530ab8 | 492 | regs = saved_state32(tregs); |
4452a7af | 493 | |
0c530ab8 A |
494 | if (regs->cs & 0x03) |
495 | user_mode = TRUE; | |
496 | rip = regs->eip; | |
497 | } | |
89b3af67 | 498 | |
0c530ab8 | 499 | /* Log the interrupt service latency (-ve value expected by tool) */ |
6601e61a | 500 | KERNEL_DEBUG_CONSTANT( |
0c530ab8 A |
501 | MACHDBG_CODE(DBG_MACH_EXCP_DECI, 0) | DBG_FUNC_NONE, |
502 | -latency, (uint32_t)rip, user_mode, 0, 0); | |
89b3af67 | 503 | |
0c530ab8 A |
504 | /* call the generic etimer */ |
505 | etimer_intr(user_mode, rip); | |
5d5c5d0d A |
506 | } |
507 | ||
0c530ab8 A |
508 | /* |
509 | * Request timer pop from the hardware | |
510 | */ | |
511 | ||
512 | int | |
513 | setPop( | |
514 | uint64_t time) | |
5d5c5d0d | 515 | { |
0c530ab8 A |
516 | uint64_t now; |
517 | uint32_t decr; | |
518 | uint64_t count; | |
519 | ||
520 | now = rtc_nanotime_read(); /* The time in nanoseconds */ | |
521 | decr = deadline_to_decrementer(time, now); | |
4452a7af | 522 | |
0c530ab8 A |
523 | count = tmrCvt(decr, busFCvtn2t); |
524 | lapic_set_timer(TRUE, one_shot, divide_by_1, (uint32_t) count); | |
4452a7af | 525 | |
0c530ab8 | 526 | return decr; /* Pass back what we set */ |
89b3af67 A |
527 | } |
528 | ||
0c530ab8 | 529 | |
6601e61a A |
530 | uint64_t |
531 | mach_absolute_time(void) | |
4452a7af | 532 | { |
0c530ab8 A |
533 | return rtc_nanotime_read(); |
534 | } | |
535 | ||
536 | void | |
537 | clock_interval_to_absolutetime_interval( | |
538 | uint32_t interval, | |
539 | uint32_t scale_factor, | |
540 | uint64_t *result) | |
541 | { | |
542 | *result = (uint64_t)interval * scale_factor; | |
91447636 A |
543 | } |
544 | ||
545 | void | |
546 | absolutetime_to_microtime( | |
547 | uint64_t abstime, | |
548 | uint32_t *secs, | |
549 | uint32_t *microsecs) | |
550 | { | |
551 | uint32_t remain; | |
552 | ||
553 | asm volatile( | |
554 | "divl %3" | |
555 | : "=a" (*secs), "=d" (remain) | |
556 | : "A" (abstime), "r" (NSEC_PER_SEC)); | |
557 | asm volatile( | |
558 | "divl %3" | |
559 | : "=a" (*microsecs) | |
560 | : "0" (remain), "d" (0), "r" (NSEC_PER_USEC)); | |
1c79356b A |
561 | } |
562 | ||
563 | void | |
0c530ab8 A |
564 | absolutetime_to_nanotime( |
565 | uint64_t abstime, | |
566 | uint32_t *secs, | |
567 | uint32_t *nanosecs) | |
6601e61a | 568 | { |
0c530ab8 A |
569 | asm volatile( |
570 | "divl %3" | |
571 | : "=a" (*secs), "=d" (*nanosecs) | |
572 | : "A" (abstime), "r" (NSEC_PER_SEC)); | |
6601e61a A |
573 | } |
574 | ||
575 | void | |
0c530ab8 A |
576 | nanotime_to_absolutetime( |
577 | uint32_t secs, | |
578 | uint32_t nanosecs, | |
579 | uint64_t *result) | |
1c79356b | 580 | { |
0c530ab8 | 581 | *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs; |
1c79356b A |
582 | } |
583 | ||
584 | void | |
585 | absolutetime_to_nanoseconds( | |
0b4e3aa0 A |
586 | uint64_t abstime, |
587 | uint64_t *result) | |
1c79356b | 588 | { |
0b4e3aa0 | 589 | *result = abstime; |
1c79356b A |
590 | } |
591 | ||
592 | void | |
593 | nanoseconds_to_absolutetime( | |
0b4e3aa0 A |
594 | uint64_t nanoseconds, |
595 | uint64_t *result) | |
1c79356b | 596 | { |
0b4e3aa0 | 597 | *result = nanoseconds; |
1c79356b A |
598 | } |
599 | ||
55e303ae | 600 | void |
91447636 | 601 | machine_delay_until( |
55e303ae A |
602 | uint64_t deadline) |
603 | { | |
604 | uint64_t now; | |
605 | ||
606 | do { | |
607 | cpu_pause(); | |
608 | now = mach_absolute_time(); | |
609 | } while (now < deadline); | |
610 | } |