]>
Commit | Line | Data |
---|---|---|
b0d623f7 A |
1 | #include <sys/types.h> |
2 | #include <sys/event.h> | |
3 | #include <sys/time.h> | |
4 | #include <assert.h> | |
5 | #include <errno.h> | |
6 | #include <stdio.h> | |
7 | #include <stdlib.h> | |
39236c6e | 8 | #include <unistd.h> |
b0d623f7 A |
9 | |
10 | int kq, passed, failed; | |
11 | ||
12 | /* | |
13 | * Wait for given kevent, which should return in 'expected' usecs. | |
14 | */ | |
15 | int | |
16 | do_simple_kevent(struct kevent64_s *kev, uint64_t expected) | |
17 | { | |
18 | int ret; | |
19 | uint64_t elapsed_usecs, delta_usecs; | |
20 | struct timespec timeout; | |
21 | struct timeval before, after; | |
22 | ||
23 | /* time out after 1 sec extra delay */ | |
24 | timeout.tv_sec = (expected / (1000 * 1000)) + 1; | |
25 | timeout.tv_nsec = (expected % (1000 * 1000)) * 1000; | |
26 | ||
27 | /* measure time for the kevent */ | |
28 | gettimeofday(&before, NULL); | |
29 | ret = kevent64(kq, kev, 1, kev, 1, 0, &timeout); | |
30 | gettimeofday(&after, NULL); | |
31 | ||
32 | if (ret < 1 || (kev->flags & EV_ERROR)) { | |
33 | printf("\tfailure: kevent returned %d, error %d\n", ret, | |
34 | (ret == -1 ? errno : (int) kev->data)); | |
35 | return 0; | |
36 | } | |
37 | ||
38 | /* did it work? */ | |
39 | elapsed_usecs = (after.tv_sec - before.tv_sec) * (1000 * 1000) + | |
40 | (after.tv_usec - before.tv_usec); | |
41 | delta_usecs = abs(elapsed_usecs - (expected)); | |
42 | ||
43 | /* failure if we're 30% off, or 50 mics late */ | |
44 | if (delta_usecs > (30 * expected / 100.0) && delta_usecs > 50) { | |
45 | printf("\tfailure: expected %lld usec, measured %lld usec.\n", | |
46 | expected, elapsed_usecs); | |
47 | return 0; | |
48 | } else { | |
49 | printf("\tsuccess.\n"); | |
50 | return 1; | |
51 | } | |
52 | } | |
53 | ||
54 | void | |
55 | test_absolute_kevent(int time, int scale) | |
56 | { | |
57 | struct timeval tv; | |
58 | struct kevent64_s kev; | |
59 | uint64_t nowus, expected, deadline; | |
60 | int ret; | |
61 | int timescale = 0; | |
62 | ||
63 | gettimeofday(&tv, NULL); | |
64 | nowus = tv.tv_sec * (1000 * 1000LL) + tv.tv_usec; | |
65 | ||
66 | switch (scale) { | |
67 | case NOTE_SECONDS: | |
68 | printf("Testing %d sec absolute timer...\n", time); | |
69 | timescale = 1000 * 1000; | |
70 | break; | |
71 | case NOTE_USECONDS: | |
72 | printf("Testing %d usec absolute timer...\n", time); | |
73 | timescale = 1; | |
74 | break; | |
75 | case 0: | |
76 | printf("Testing %d msec absolute timer...\n", time); | |
77 | timescale = 1000; | |
78 | break; | |
79 | default: | |
80 | printf("Failure: scale 0x%x not recognized.\n", scale); | |
81 | return; | |
82 | } | |
83 | ||
84 | expected = time * timescale; | |
85 | deadline = nowus / timescale + time; | |
86 | ||
87 | /* deadlines in the past should fire immediately */ | |
88 | if (time < 0) | |
89 | expected = 0; | |
90 | ||
91 | EV_SET64(&kev, 1, EVFILT_TIMER, EV_ADD, | |
92 | NOTE_ABSOLUTE | scale, deadline, 0,0,0); | |
93 | ret = do_simple_kevent(&kev, expected); | |
94 | ||
95 | if (ret) | |
96 | passed++; | |
97 | else | |
98 | failed++; | |
99 | } | |
100 | ||
101 | void | |
102 | test_oneshot_kevent(int time, int scale) | |
103 | { | |
104 | int ret; | |
105 | uint64_t expected = 0; | |
106 | struct kevent64_s kev; | |
107 | ||
108 | switch (scale) { | |
109 | case NOTE_SECONDS: | |
110 | printf("Testing %d sec interval timer...\n", time); | |
111 | expected = time * (1000 * 1000); | |
112 | break; | |
113 | case NOTE_USECONDS: | |
114 | printf("Testing %d usec interval timer...\n", time); | |
115 | expected = time; | |
116 | break; | |
117 | case NOTE_NSECONDS: | |
118 | printf("Testing %d nsec interval timer...\n", time); | |
119 | expected = time / 1000; | |
120 | break; | |
121 | case 0: | |
122 | printf("Testing %d msec interval timer...\n", time); | |
123 | expected = time * 1000; | |
124 | break; | |
125 | default: | |
126 | printf("Failure: scale 0x%x not recognized.\n", scale); | |
127 | return; | |
128 | } | |
129 | ||
130 | /* deadlines in the past should fire immediately */ | |
131 | if (time < 0) | |
132 | expected = 0; | |
133 | ||
134 | EV_SET64(&kev, 2, EVFILT_TIMER, EV_ADD | EV_ONESHOT, scale, time, | |
135 | 0, 0, 0); | |
136 | ret = do_simple_kevent(&kev, expected); | |
137 | ||
138 | if (ret) | |
139 | passed++; | |
140 | else | |
141 | failed++; | |
142 | ||
143 | } | |
144 | ||
145 | void | |
146 | test_repeating_kevent(int usec) | |
147 | { | |
148 | struct kevent64_s kev; | |
149 | int expected_pops, ret; | |
150 | ||
151 | expected_pops = 1000 * 1000 / usec; | |
152 | printf("Testing repeating kevent for %d pops in a second...\n", | |
153 | expected_pops); | |
154 | ||
155 | EV_SET64(&kev, 3, EVFILT_TIMER, EV_ADD, NOTE_USECONDS, usec, 0, 0, 0); | |
156 | ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL); | |
157 | if (ret != 0) { | |
158 | printf("\tfailure: kevent64 returned %d\n", ret); | |
159 | failed++; | |
160 | return; | |
161 | } | |
162 | ||
163 | /* sleep 1 second */ | |
164 | usleep(1000 * 1000); | |
165 | ret = kevent64(kq, NULL, 0, &kev, 1, 0, NULL); | |
166 | if (ret != 1 || (kev.flags & EV_ERROR)) { | |
167 | printf("\tfailure: kevent64 returned %d\n", ret); | |
168 | failed++; | |
169 | return; | |
170 | } | |
171 | ||
172 | /* check how many times the timer fired: within 5%? */ | |
173 | if (kev.data > expected_pops + (expected_pops / 20) || | |
174 | kev.data < expected_pops - (expected_pops / 20)) { | |
175 | printf("\tfailure: saw %lld pops.\n", kev.data); | |
176 | failed++; | |
177 | } else { | |
178 | printf("\tsuccess: saw %lld pops.\n", kev.data); | |
179 | passed++; | |
180 | } | |
181 | ||
182 | EV_SET64(&kev, 3, EVFILT_TIMER, EV_DELETE, 0, 0, 0, 0, 0); | |
183 | ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL); | |
184 | if (ret != 0) { | |
185 | printf("\tfailed to stop repeating timer: %d\n", ret); | |
186 | } | |
187 | } | |
188 | ||
39236c6e | 189 | void |
b0d623f7 A |
190 | test_updated_kevent(int first, int second) |
191 | { | |
192 | struct kevent64_s kev; | |
193 | int ret; | |
194 | ||
195 | printf("Testing update from %d to %d msecs...\n", first, second); | |
196 | ||
197 | EV_SET64(&kev, 4, EVFILT_TIMER, EV_ADD|EV_ONESHOT, 0, first, 0, 0, 0); | |
198 | ret = kevent64(kq, &kev, 1, NULL, 0, 0, NULL); | |
199 | if (ret != 0) { | |
200 | printf("\tfailure: initial kevent returned %d\n", ret); | |
201 | failed++; | |
202 | return; | |
203 | } | |
204 | ||
205 | EV_SET64(&kev, 4, EVFILT_TIMER, EV_ONESHOT, 0, second, 0, 0, 0); | |
206 | if (second < 0) | |
207 | second = 0; | |
208 | ret = do_simple_kevent(&kev, second * 1000); | |
209 | if (ret) | |
210 | passed++; | |
211 | else | |
212 | failed++; | |
213 | } | |
214 | ||
215 | int | |
216 | main(void) | |
217 | { | |
218 | struct timeval tv; | |
219 | struct kevent64_s kev; | |
220 | uint64_t nowms, deadline; | |
221 | ||
222 | kq = kqueue(); | |
223 | assert(kq > 0); | |
224 | passed = 0; | |
225 | failed = 0; | |
226 | ||
227 | test_absolute_kevent(100, 0); | |
228 | test_absolute_kevent(200, 0); | |
229 | test_absolute_kevent(300, 0); | |
230 | test_absolute_kevent(1000, 0); | |
231 | test_absolute_kevent(500, NOTE_USECONDS); | |
232 | test_absolute_kevent(100, NOTE_USECONDS); | |
233 | test_absolute_kevent(5, NOTE_SECONDS); | |
234 | test_absolute_kevent(-1000, 0); | |
235 | ||
236 | test_oneshot_kevent(1, NOTE_SECONDS); | |
237 | test_oneshot_kevent(10, 0); | |
238 | test_oneshot_kevent(200, NOTE_USECONDS); | |
239 | test_oneshot_kevent(300000, NOTE_NSECONDS); | |
240 | test_oneshot_kevent(-1, NOTE_SECONDS); | |
241 | ||
242 | test_repeating_kevent(100 * 1000); | |
243 | test_repeating_kevent(5 * 1000); | |
244 | test_repeating_kevent(200); | |
245 | test_repeating_kevent(50); | |
246 | test_repeating_kevent(10); | |
247 | ||
248 | test_updated_kevent(1000, 2000); | |
249 | test_updated_kevent(2000, 1000); | |
250 | test_updated_kevent(1000, -1); | |
251 | ||
252 | printf("\nFinished: %d tests passed, %d failed.\n", passed, failed); | |
253 | ||
254 | exit(EXIT_SUCCESS); | |
255 | } |