]> git.saurik.com Git - apple/xnu.git/blame - osfmk/ppc/rtclock.c
xnu-1504.9.26.tar.gz
[apple/xnu.git] / osfmk / ppc / rtclock.c
CommitLineData
1c79356b 1/*
c910b4d9 2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * @APPLE_FREE_COPYRIGHT@
33 */
34/*
35 * File: rtclock.c
36 * Purpose: Routines for handling the machine dependent
37 * real-time clock.
38 */
39
40#include <mach/mach_types.h>
41
42#include <kern/clock.h>
43#include <kern/thread.h>
0c530ab8 44#include <kern/processor.h>
1c79356b
A
45#include <kern/macro_help.h>
46#include <kern/spl.h>
2d21ac55 47#include <kern/pms.h>
1c79356b 48
55e303ae 49#include <machine/commpage.h>
ab86ba33 50#include <machine/machine_routines.h>
a3d08fcd 51#include <ppc/exception.h>
1c79356b 52#include <ppc/proc_reg.h>
3a60a9f5 53#include <ppc/rtclock.h>
1c79356b 54
1c79356b
A
55#include <sys/kdebug.h>
56
0c530ab8 57int rtclock_config(void);
6601e61a 58
0c530ab8 59int rtclock_init(void);
1c79356b 60
91447636 61#define NSEC_PER_HZ (NSEC_PER_SEC / 100)
1c79356b 62
55e303ae 63static uint32_t rtclock_sec_divisor;
1c79356b 64
55e303ae 65static mach_timebase_info_data_t rtclock_timebase_const;
1c79356b 66
55e303ae
A
67static boolean_t rtclock_timebase_initialized;
68
55e303ae
A
69decl_simple_lock_data(static,rtclock_lock)
70
1c79356b
A
71/*
72 * Macros to lock/unlock real-time clock device.
73 */
74#define LOCK_RTC(s) \
75MACRO_BEGIN \
76 (s) = splclock(); \
55e303ae 77 simple_lock(&rtclock_lock); \
1c79356b
A
78MACRO_END
79
80#define UNLOCK_RTC(s) \
81MACRO_BEGIN \
55e303ae 82 simple_unlock(&rtclock_lock); \
1c79356b
A
83 splx(s); \
84MACRO_END
85
86static void
87timebase_callback(
88 struct timebase_freq_t *freq)
89{
55e303ae 90 uint32_t numer, denom;
1c79356b
A
91 spl_t s;
92
55e303ae
A
93 if ( freq->timebase_den < 1 || freq->timebase_den > 4 ||
94 freq->timebase_num < freq->timebase_den )
2d21ac55 95 panic("rtclock timebase_callback: invalid constant %lu / %lu",
55e303ae 96 freq->timebase_num, freq->timebase_den);
1c79356b 97
55e303ae
A
98 denom = freq->timebase_num;
99 numer = freq->timebase_den * NSEC_PER_SEC;
1c79356b
A
100
101 LOCK_RTC(s);
55e303ae 102 if (!rtclock_timebase_initialized) {
0c530ab8 103 commpage_set_timestamp(0,0,0);
55e303ae
A
104
105 rtclock_timebase_const.numer = numer;
106 rtclock_timebase_const.denom = denom;
107 rtclock_sec_divisor = freq->timebase_num / freq->timebase_den;
108
ab86ba33 109 ml_init_lock_timeout();
55e303ae
A
110 }
111 else {
112 UNLOCK_RTC(s);
91447636 113 printf("rtclock timebase_callback: late old %d / %d new %d / %d\n",
55e303ae
A
114 rtclock_timebase_const.numer, rtclock_timebase_const.denom,
115 numer, denom);
116 return;
117 }
1c79356b 118 UNLOCK_RTC(s);
55e303ae
A
119
120 clock_timebase_init();
1c79356b
A
121}
122
123/*
0c530ab8 124 * Configure the system clock device.
1c79356b
A
125 */
126int
0c530ab8 127rtclock_config(void)
1c79356b 128{
91447636 129 simple_lock_init(&rtclock_lock, 0);
1c79356b
A
130
131 PE_register_timebase_callback(timebase_callback);
132
133 return (1);
134}
135
136/*
137 * Initialize the system clock device.
138 */
139int
0c530ab8 140rtclock_init(void)
1c79356b 141{
0c530ab8 142 etimer_resync_deadlines(); /* Start the timers going */
1c79356b
A
143
144 return (1);
145}
146
55e303ae
A
147void
148clock_get_system_microtime(
149 uint32_t *secs,
150 uint32_t *microsecs)
1c79356b 151{
55e303ae
A
152 uint64_t now, t64;
153 uint32_t divisor;
1c79356b 154
55e303ae 155 now = mach_absolute_time();
1c79356b 156
55e303ae
A
157 *secs = t64 = now / (divisor = rtclock_sec_divisor);
158 now -= (t64 * divisor);
159 *microsecs = (now * USEC_PER_SEC) / divisor;
160}
1c79356b 161
55e303ae
A
162void
163clock_get_system_nanotime(
164 uint32_t *secs,
165 uint32_t *nanosecs)
166{
167 uint64_t now, t64;
168 uint32_t divisor;
1c79356b 169
55e303ae 170 now = mach_absolute_time();
1c79356b 171
55e303ae
A
172 *secs = t64 = now / (divisor = rtclock_sec_divisor);
173 now -= (t64 * divisor);
174 *nanosecs = (now * NSEC_PER_SEC) / divisor;
1c79356b
A
175}
176
6601e61a 177void
0c530ab8
A
178clock_gettimeofday_set_commpage(
179 uint64_t abstime,
180 uint64_t epoch,
181 uint64_t offset,
182 uint32_t *secs,
183 uint32_t *microsecs)
6601e61a 184{
0c530ab8 185 uint64_t t64, now = abstime;
6601e61a
A
186
187 simple_lock(&rtclock_lock);
188
0c530ab8 189 now += offset;
6601e61a 190
0c530ab8
A
191 *secs = t64 = now / rtclock_sec_divisor;
192 now -= (t64 * rtclock_sec_divisor);
193 *microsecs = (now * USEC_PER_SEC) / rtclock_sec_divisor;
6601e61a 194
0c530ab8 195 *secs += epoch;
6601e61a 196
0c530ab8 197 commpage_set_timestamp(abstime - now, *secs, rtclock_sec_divisor);
91447636 198
91447636 199 simple_unlock(&rtclock_lock);
91447636
A
200}
201
1c79356b
A
202void
203clock_timebase_info(
204 mach_timebase_info_t info)
205{
55e303ae 206 spl_t s;
1c79356b
A
207
208 LOCK_RTC(s);
6601e61a 209 *info = rtclock_timebase_const;
0c530ab8 210 rtclock_timebase_initialized = TRUE;
1c79356b
A
211 UNLOCK_RTC(s);
212}
213
1c79356b 214void
0c530ab8
A
215clock_interval_to_absolutetime_interval(
216 uint32_t interval,
217 uint32_t scale_factor,
55e303ae 218 uint64_t *result)
1c79356b 219{
0c530ab8
A
220 uint64_t nanosecs = (uint64_t)interval * scale_factor;
221 uint64_t t64;
222 uint32_t divisor;
91447636 223
0c530ab8
A
224 *result = (t64 = nanosecs / NSEC_PER_SEC) *
225 (divisor = rtclock_sec_divisor);
226 nanosecs -= (t64 * NSEC_PER_SEC);
227 *result += (nanosecs * divisor) / NSEC_PER_SEC;
91447636
A
228}
229
230void
231absolutetime_to_microtime(
232 uint64_t abstime,
233 uint32_t *secs,
234 uint32_t *microsecs)
235{
236 uint64_t t64;
55e303ae 237 uint32_t divisor;
1c79356b 238
91447636
A
239 *secs = t64 = abstime / (divisor = rtclock_sec_divisor);
240 abstime -= (t64 * divisor);
241 *microsecs = (abstime * USEC_PER_SEC) / divisor;
1c79356b
A
242}
243
244void
0c530ab8
A
245absolutetime_to_nanotime(
246 uint64_t abstime,
247 uint32_t *secs,
248 uint32_t *nanosecs)
21362eb3 249{
0c530ab8
A
250 uint64_t t64;
251 uint32_t divisor;
21362eb3 252
0c530ab8
A
253 *secs = t64 = abstime / (divisor = rtclock_sec_divisor);
254 abstime -= (t64 * divisor);
255 *nanosecs = (abstime * NSEC_PER_SEC) / divisor;
6601e61a
A
256}
257
258void
0c530ab8
A
259nanotime_to_absolutetime(
260 uint32_t secs,
261 uint32_t nanosecs,
6601e61a
A
262 uint64_t *result)
263{
0c530ab8 264 uint32_t divisor = rtclock_sec_divisor;
6601e61a 265
0c530ab8
A
266 *result = ((uint64_t)secs * divisor) +
267 ((uint64_t)nanosecs * divisor) / NSEC_PER_SEC;
1c79356b
A
268}
269
270void
271absolutetime_to_nanoseconds(
0b4e3aa0
A
272 uint64_t abstime,
273 uint64_t *result)
1c79356b 274{
55e303ae
A
275 uint64_t t64;
276 uint32_t divisor;
1c79356b 277
55e303ae
A
278 *result = (t64 = abstime / (divisor = rtclock_sec_divisor)) * NSEC_PER_SEC;
279 abstime -= (t64 * divisor);
280 *result += (abstime * NSEC_PER_SEC) / divisor;
1c79356b
A
281}
282
283void
284nanoseconds_to_absolutetime(
55e303ae 285 uint64_t nanosecs,
0b4e3aa0 286 uint64_t *result)
1c79356b 287{
55e303ae
A
288 uint64_t t64;
289 uint32_t divisor;
1c79356b 290
55e303ae
A
291 *result = (t64 = nanosecs / NSEC_PER_SEC) *
292 (divisor = rtclock_sec_divisor);
293 nanosecs -= (t64 * NSEC_PER_SEC);
294 *result += (nanosecs * divisor) / NSEC_PER_SEC;
1c79356b
A
295}
296
1c79356b 297void
91447636 298machine_delay_until(
0b4e3aa0 299 uint64_t deadline)
1c79356b 300{
0b4e3aa0 301 uint64_t now;
1c79356b
A
302
303 do {
55e303ae 304 now = mach_absolute_time();
0b4e3aa0 305 } while (now < deadline);
1c79356b 306}