]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
316670eb | 2 | * Copyright (c) 2010 Apple Computer, Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
91447636 | 31 | |
fe8ab488 | 32 | #include <kern/kern_types.h> |
1c79356b | 33 | #include <kern/ledger.h> |
91447636 | 34 | #include <kern/kalloc.h> |
316670eb | 35 | #include <kern/task.h> |
91447636 | 36 | |
316670eb A |
37 | #include <kern/processor.h> |
38 | #include <kern/machine.h> | |
39 | #include <kern/queue.h> | |
40 | #include <sys/errno.h> | |
1c79356b | 41 | |
316670eb A |
42 | #include <libkern/OSAtomic.h> |
43 | #include <mach/mach_types.h> | |
1c79356b | 44 | |
316670eb A |
45 | /* |
46 | * Ledger entry flags. Bits in second nibble (masked by 0xF0) are used for | |
47 | * ledger actions (LEDGER_ACTION_BLOCK, etc). | |
48 | */ | |
39236c6e A |
49 | #define LF_ENTRY_ACTIVE 0x0001 /* entry is active if set */ |
50 | #define LF_WAKE_NEEDED 0x0100 /* one or more threads are asleep */ | |
51 | #define LF_WAKE_INPROGRESS 0x0200 /* the wait queue is being processed */ | |
52 | #define LF_REFILL_SCHEDULED 0x0400 /* a refill timer has been set */ | |
53 | #define LF_REFILL_INPROGRESS 0x0800 /* the ledger is being refilled */ | |
54 | #define LF_CALLED_BACK 0x1000 /* callback was called for balance in deficit */ | |
55 | #define LF_WARNED 0x2000 /* callback was called for balance warning */ | |
56 | #define LF_TRACKING_MAX 0x4000 /* track max balance over user-specfied time */ | |
fe8ab488 | 57 | #define LF_PANIC_ON_NEGATIVE 0x8000 /* panic if it goes negative */ |
1c79356b | 58 | |
316670eb A |
59 | /* Determine whether a ledger entry exists and has been initialized and active */ |
60 | #define ENTRY_VALID(l, e) \ | |
61 | (((l) != NULL) && ((e) >= 0) && ((e) < (l)->l_size) && \ | |
39236c6e | 62 | (((l)->l_entries[e].le_flags & LF_ENTRY_ACTIVE) == LF_ENTRY_ACTIVE)) |
316670eb | 63 | |
fe8ab488 A |
64 | #define ASSERT(a) assert(a) |
65 | ||
316670eb A |
66 | #ifdef LEDGER_DEBUG |
67 | int ledger_debug = 0; | |
68 | ||
316670eb A |
69 | #define lprintf(a) if (ledger_debug) { \ |
70 | printf("%lld ", abstime_to_nsecs(mach_absolute_time() / 1000000)); \ | |
71 | printf a ; \ | |
72 | } | |
73 | #else | |
74 | #define lprintf(a) | |
316670eb A |
75 | #endif |
76 | ||
77 | struct ledger_callback { | |
78 | ledger_callback_t lc_func; | |
79 | const void *lc_param0; | |
80 | const void *lc_param1; | |
81 | }; | |
82 | ||
83 | struct entry_template { | |
84 | char et_key[LEDGER_NAME_MAX]; | |
85 | char et_group[LEDGER_NAME_MAX]; | |
86 | char et_units[LEDGER_NAME_MAX]; | |
87 | uint32_t et_flags; | |
88 | struct ledger_callback *et_callback; | |
89 | }; | |
90 | ||
91 | lck_grp_t ledger_lck_grp; | |
92 | ||
93 | /* | |
94 | * Modifying the reference count, table size, or table contents requires | |
95 | * holding the lt_lock. Modfying the table address requires both lt_lock | |
96 | * and setting the inuse bit. This means that the lt_entries field can be | |
97 | * safely dereferenced if you hold either the lock or the inuse bit. The | |
98 | * inuse bit exists solely to allow us to swap in a new, larger entries | |
99 | * table without requiring a full lock to be acquired on each lookup. | |
100 | * Accordingly, the inuse bit should never be held for longer than it takes | |
101 | * to extract a value from the table - i.e., 2 or 3 memory references. | |
102 | */ | |
103 | struct ledger_template { | |
104 | const char *lt_name; | |
105 | int lt_refs; | |
106 | int lt_cnt; | |
107 | int lt_table_size; | |
108 | volatile uint32_t lt_inuse; | |
109 | lck_mtx_t lt_lock; | |
110 | struct entry_template *lt_entries; | |
111 | }; | |
112 | ||
113 | #define template_lock(template) lck_mtx_lock(&(template)->lt_lock) | |
114 | #define template_unlock(template) lck_mtx_unlock(&(template)->lt_lock) | |
115 | ||
116 | #define TEMPLATE_INUSE(s, t) { \ | |
117 | s = splsched(); \ | |
118 | while (OSCompareAndSwap(0, 1, &((t)->lt_inuse))) \ | |
119 | ; \ | |
120 | } | |
121 | ||
122 | #define TEMPLATE_IDLE(s, t) { \ | |
123 | (t)->lt_inuse = 0; \ | |
124 | splx(s); \ | |
125 | } | |
126 | ||
39236c6e A |
127 | /* |
128 | * Use 2 "tocks" to track the rolling maximum balance of a ledger entry. | |
129 | */ | |
130 | #define NTOCKS 2 | |
316670eb A |
131 | /* |
132 | * The explicit alignment is to ensure that atomic operations don't panic | |
133 | * on ARM. | |
134 | */ | |
135 | struct ledger_entry { | |
39236c6e A |
136 | volatile uint32_t le_flags; |
137 | ledger_amount_t le_limit; | |
138 | ledger_amount_t le_warn_level; | |
139 | volatile ledger_amount_t le_credit __attribute__((aligned(8))); | |
140 | volatile ledger_amount_t le_debit __attribute__((aligned(8))); | |
141 | union { | |
142 | struct { | |
143 | /* | |
144 | * XXX - the following two fields can go away if we move all of | |
145 | * the refill logic into process policy | |
146 | */ | |
147 | uint64_t le_refill_period; | |
148 | uint64_t le_last_refill; | |
149 | } le_refill; | |
150 | struct _le_peak { | |
151 | uint32_t le_max; /* Lower 32-bits of observed max balance */ | |
152 | uint32_t le_time; /* time when this peak was observed */ | |
153 | } le_peaks[NTOCKS]; | |
154 | } _le; | |
316670eb A |
155 | } __attribute__((aligned(8))); |
156 | ||
157 | struct ledger { | |
158 | int l_id; | |
159 | struct ledger_template *l_template; | |
160 | int l_refs; | |
161 | int l_size; | |
162 | struct ledger_entry *l_entries; | |
163 | }; | |
164 | ||
165 | static int ledger_cnt = 0; | |
166 | /* ledger ast helper functions */ | |
167 | static uint32_t ledger_check_needblock(ledger_t l, uint64_t now); | |
168 | static kern_return_t ledger_perform_blocking(ledger_t l); | |
169 | static uint32_t flag_set(volatile uint32_t *flags, uint32_t bit); | |
170 | static uint32_t flag_clear(volatile uint32_t *flags, uint32_t bit); | |
171 | ||
172 | #if 0 | |
173 | static void | |
174 | debug_callback(const void *p0, __unused const void *p1) | |
1c79356b | 175 | { |
316670eb A |
176 | printf("ledger: resource exhausted [%s] for task %p\n", |
177 | (const char *)p0, p1); | |
178 | } | |
179 | #endif | |
b0d623f7 | 180 | |
316670eb A |
181 | /************************************/ |
182 | ||
183 | static uint64_t | |
184 | abstime_to_nsecs(uint64_t abstime) | |
185 | { | |
186 | uint64_t nsecs; | |
187 | ||
188 | absolutetime_to_nanoseconds(abstime, &nsecs); | |
189 | return (nsecs); | |
190 | } | |
191 | ||
192 | static uint64_t | |
193 | nsecs_to_abstime(uint64_t nsecs) | |
194 | { | |
195 | uint64_t abstime; | |
196 | ||
197 | nanoseconds_to_absolutetime(nsecs, &abstime); | |
198 | return (abstime); | |
199 | } | |
200 | ||
201 | void | |
202 | ledger_init(void) | |
203 | { | |
204 | lck_grp_init(&ledger_lck_grp, "ledger", LCK_GRP_ATTR_NULL); | |
205 | } | |
206 | ||
207 | ledger_template_t | |
208 | ledger_template_create(const char *name) | |
209 | { | |
210 | ledger_template_t template; | |
211 | ||
212 | template = (ledger_template_t)kalloc(sizeof (*template)); | |
213 | if (template == NULL) | |
214 | return (NULL); | |
215 | ||
216 | template->lt_name = name; | |
217 | template->lt_refs = 1; | |
218 | template->lt_cnt = 0; | |
219 | template->lt_table_size = 1; | |
220 | template->lt_inuse = 0; | |
221 | lck_mtx_init(&template->lt_lock, &ledger_lck_grp, LCK_ATTR_NULL); | |
222 | ||
223 | template->lt_entries = (struct entry_template *) | |
224 | kalloc(sizeof (struct entry_template) * template->lt_table_size); | |
225 | if (template->lt_entries == NULL) { | |
226 | kfree(template, sizeof (*template)); | |
227 | template = NULL; | |
228 | } | |
229 | ||
230 | return (template); | |
231 | } | |
232 | ||
233 | void | |
234 | ledger_template_dereference(ledger_template_t template) | |
235 | { | |
236 | template_lock(template); | |
237 | template->lt_refs--; | |
238 | template_unlock(template); | |
239 | ||
240 | if (template->lt_refs == 0) | |
241 | kfree(template, sizeof (*template)); | |
242 | } | |
243 | ||
244 | /* | |
245 | * Add a new entry to the list of entries in a ledger template. There is | |
246 | * currently no mechanism to remove an entry. Implementing such a mechanism | |
247 | * would require us to maintain per-entry reference counts, which we would | |
248 | * prefer to avoid if possible. | |
249 | */ | |
250 | int | |
251 | ledger_entry_add(ledger_template_t template, const char *key, | |
252 | const char *group, const char *units) | |
253 | { | |
254 | int idx; | |
255 | struct entry_template *et; | |
256 | ||
257 | if ((key == NULL) || (strlen(key) >= LEDGER_NAME_MAX)) | |
258 | return (-1); | |
259 | ||
260 | template_lock(template); | |
261 | ||
262 | /* If the table is full, attempt to double its size */ | |
263 | if (template->lt_cnt == template->lt_table_size) { | |
264 | struct entry_template *new_entries, *old_entries; | |
265 | int old_cnt, old_sz; | |
266 | spl_t s; | |
267 | ||
268 | old_cnt = template->lt_table_size; | |
269 | old_sz = (int)(old_cnt * sizeof (struct entry_template)); | |
270 | new_entries = kalloc(old_sz * 2); | |
271 | if (new_entries == NULL) { | |
272 | template_unlock(template); | |
273 | return (-1); | |
1c79356b | 274 | } |
316670eb A |
275 | memcpy(new_entries, template->lt_entries, old_sz); |
276 | memset(((char *)new_entries) + old_sz, 0, old_sz); | |
277 | template->lt_table_size = old_cnt * 2; | |
278 | ||
279 | old_entries = template->lt_entries; | |
280 | ||
281 | TEMPLATE_INUSE(s, template); | |
282 | template->lt_entries = new_entries; | |
283 | TEMPLATE_IDLE(s, template); | |
284 | ||
285 | kfree(old_entries, old_sz); | |
1c79356b | 286 | } |
316670eb A |
287 | |
288 | et = &template->lt_entries[template->lt_cnt]; | |
289 | strlcpy(et->et_key, key, LEDGER_NAME_MAX); | |
290 | strlcpy(et->et_group, group, LEDGER_NAME_MAX); | |
291 | strlcpy(et->et_units, units, LEDGER_NAME_MAX); | |
39236c6e | 292 | et->et_flags = LF_ENTRY_ACTIVE; |
316670eb A |
293 | et->et_callback = NULL; |
294 | ||
295 | idx = template->lt_cnt++; | |
296 | template_unlock(template); | |
297 | ||
298 | return (idx); | |
299 | } | |
300 | ||
301 | ||
302 | kern_return_t | |
303 | ledger_entry_setactive(ledger_t ledger, int entry) | |
304 | { | |
305 | struct ledger_entry *le; | |
306 | ||
307 | if ((ledger == NULL) || (entry < 0) || (entry >= ledger->l_size)) | |
308 | return (KERN_INVALID_ARGUMENT); | |
309 | ||
310 | le = &ledger->l_entries[entry]; | |
39236c6e A |
311 | if ((le->le_flags & LF_ENTRY_ACTIVE) == 0) { |
312 | flag_set(&le->le_flags, LF_ENTRY_ACTIVE); | |
1c79356b | 313 | } |
316670eb | 314 | return (KERN_SUCCESS); |
1c79356b A |
315 | } |
316 | ||
316670eb A |
317 | |
318 | int | |
319 | ledger_key_lookup(ledger_template_t template, const char *key) | |
1c79356b | 320 | { |
316670eb A |
321 | int idx; |
322 | ||
323 | template_lock(template); | |
324 | for (idx = 0; idx < template->lt_cnt; idx++) | |
325 | if (template->lt_entries[idx].et_key && | |
326 | (strcmp(key, template->lt_entries[idx].et_key) == 0)) | |
327 | break; | |
1c79356b | 328 | |
316670eb A |
329 | if (idx >= template->lt_cnt) |
330 | idx = -1; | |
331 | template_unlock(template); | |
332 | ||
333 | return (idx); | |
334 | } | |
1c79356b | 335 | |
316670eb A |
336 | /* |
337 | * Create a new ledger based on the specified template. As part of the | |
338 | * ledger creation we need to allocate space for a table of ledger entries. | |
339 | * The size of the table is based on the size of the template at the time | |
340 | * the ledger is created. If additional entries are added to the template | |
341 | * after the ledger is created, they will not be tracked in this ledger. | |
342 | */ | |
343 | ledger_t | |
344 | ledger_instantiate(ledger_template_t template, int entry_type) | |
345 | { | |
346 | ledger_t ledger; | |
347 | size_t sz; | |
348 | int i; | |
349 | ||
350 | ledger = (ledger_t)kalloc(sizeof (struct ledger)); | |
351 | if (ledger == NULL) | |
352 | return (LEDGER_NULL); | |
353 | ||
354 | ledger->l_template = template; | |
355 | ledger->l_id = ledger_cnt++; | |
356 | ledger->l_refs = 1; | |
357 | ||
358 | template_lock(template); | |
359 | template->lt_refs++; | |
360 | ledger->l_size = template->lt_cnt; | |
361 | template_unlock(template); | |
362 | ||
363 | sz = ledger->l_size * sizeof (struct ledger_entry); | |
364 | ledger->l_entries = kalloc(sz); | |
365 | if (sz && (ledger->l_entries == NULL)) { | |
366 | ledger_template_dereference(template); | |
367 | kfree(ledger, sizeof(struct ledger)); | |
368 | return (LEDGER_NULL); | |
2d21ac55 | 369 | } |
1c79356b | 370 | |
316670eb A |
371 | template_lock(template); |
372 | assert(ledger->l_size <= template->lt_cnt); | |
373 | for (i = 0; i < ledger->l_size; i++) { | |
374 | struct ledger_entry *le = &ledger->l_entries[i]; | |
375 | struct entry_template *et = &template->lt_entries[i]; | |
1c79356b | 376 | |
316670eb A |
377 | le->le_flags = et->et_flags; |
378 | /* make entry inactive by removing active bit */ | |
379 | if (entry_type == LEDGER_CREATE_INACTIVE_ENTRIES) | |
39236c6e | 380 | flag_clear(&le->le_flags, LF_ENTRY_ACTIVE); |
316670eb A |
381 | /* |
382 | * If template has a callback, this entry is opted-in, | |
383 | * by default. | |
384 | */ | |
385 | if (et->et_callback != NULL) | |
386 | flag_set(&le->le_flags, LEDGER_ACTION_CALLBACK); | |
39236c6e A |
387 | le->le_credit = 0; |
388 | le->le_debit = 0; | |
389 | le->le_limit = LEDGER_LIMIT_INFINITY; | |
390 | le->le_warn_level = LEDGER_LIMIT_INFINITY; | |
391 | le->_le.le_refill.le_refill_period = 0; | |
392 | le->_le.le_refill.le_last_refill = 0; | |
316670eb A |
393 | } |
394 | template_unlock(template); | |
395 | ||
396 | return (ledger); | |
1c79356b A |
397 | } |
398 | ||
316670eb A |
399 | static uint32_t |
400 | flag_set(volatile uint32_t *flags, uint32_t bit) | |
1c79356b | 401 | { |
316670eb A |
402 | return (OSBitOrAtomic(bit, flags)); |
403 | } | |
1c79356b | 404 | |
316670eb A |
405 | static uint32_t |
406 | flag_clear(volatile uint32_t *flags, uint32_t bit) | |
407 | { | |
408 | return (OSBitAndAtomic(~bit, flags)); | |
409 | } | |
410 | ||
411 | /* | |
412 | * Take a reference on a ledger | |
413 | */ | |
414 | kern_return_t | |
415 | ledger_reference(ledger_t ledger) | |
416 | { | |
417 | if (!LEDGER_VALID(ledger)) | |
418 | return (KERN_INVALID_ARGUMENT); | |
419 | OSIncrementAtomic(&ledger->l_refs); | |
420 | return (KERN_SUCCESS); | |
1c79356b A |
421 | } |
422 | ||
316670eb A |
423 | int |
424 | ledger_reference_count(ledger_t ledger) | |
425 | { | |
426 | if (!LEDGER_VALID(ledger)) | |
427 | return (-1); | |
428 | ||
429 | return (ledger->l_refs); | |
430 | } | |
1c79356b A |
431 | |
432 | /* | |
316670eb A |
433 | * Remove a reference on a ledger. If this is the last reference, |
434 | * deallocate the unused ledger. | |
1c79356b | 435 | */ |
316670eb A |
436 | kern_return_t |
437 | ledger_dereference(ledger_t ledger) | |
1c79356b | 438 | { |
316670eb A |
439 | int v; |
440 | ||
441 | if (!LEDGER_VALID(ledger)) | |
442 | return (KERN_INVALID_ARGUMENT); | |
443 | ||
444 | v = OSDecrementAtomic(&ledger->l_refs); | |
445 | ASSERT(v >= 1); | |
1c79356b | 446 | |
316670eb A |
447 | /* Just released the last reference. Free it. */ |
448 | if (v == 1) { | |
449 | kfree(ledger->l_entries, | |
450 | ledger->l_size * sizeof (struct ledger_entry)); | |
451 | kfree(ledger, sizeof (*ledger)); | |
452 | } | |
453 | ||
454 | return (KERN_SUCCESS); | |
455 | } | |
456 | ||
39236c6e A |
457 | /* |
458 | * Determine whether an entry has exceeded its warning level. | |
459 | */ | |
460 | static inline int | |
461 | warn_level_exceeded(struct ledger_entry *le) | |
462 | { | |
463 | ledger_amount_t balance; | |
464 | ||
465 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); | |
466 | ||
467 | /* | |
468 | * XXX - Currently, we only support warnings for ledgers which | |
469 | * use positive limits. | |
470 | */ | |
471 | balance = le->le_credit - le->le_debit; | |
472 | if ((le->le_warn_level != LEDGER_LIMIT_INFINITY) && (balance > le->le_warn_level)) | |
473 | return (1); | |
474 | return (0); | |
475 | } | |
476 | ||
316670eb A |
477 | /* |
478 | * Determine whether an entry has exceeded its limit. | |
479 | */ | |
480 | static inline int | |
481 | limit_exceeded(struct ledger_entry *le) | |
482 | { | |
483 | ledger_amount_t balance; | |
484 | ||
39236c6e A |
485 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); |
486 | ||
316670eb A |
487 | balance = le->le_credit - le->le_debit; |
488 | if ((le->le_limit <= 0) && (balance < le->le_limit)) | |
489 | return (1); | |
490 | ||
491 | if ((le->le_limit > 0) && (balance > le->le_limit)) | |
492 | return (1); | |
493 | return (0); | |
494 | } | |
495 | ||
496 | static inline struct ledger_callback * | |
497 | entry_get_callback(ledger_t ledger, int entry) | |
498 | { | |
499 | struct ledger_callback *callback; | |
500 | spl_t s; | |
501 | ||
502 | TEMPLATE_INUSE(s, ledger->l_template); | |
503 | callback = ledger->l_template->lt_entries[entry].et_callback; | |
504 | TEMPLATE_IDLE(s, ledger->l_template); | |
505 | ||
506 | return (callback); | |
507 | } | |
508 | ||
509 | /* | |
510 | * If the ledger value is positive, wake up anybody waiting on it. | |
511 | */ | |
512 | static inline void | |
513 | ledger_limit_entry_wakeup(struct ledger_entry *le) | |
514 | { | |
515 | uint32_t flags; | |
516 | ||
517 | if (!limit_exceeded(le)) { | |
39236c6e | 518 | flags = flag_clear(&le->le_flags, LF_CALLED_BACK); |
316670eb | 519 | |
39236c6e A |
520 | while (le->le_flags & LF_WAKE_NEEDED) { |
521 | flag_clear(&le->le_flags, LF_WAKE_NEEDED); | |
316670eb A |
522 | thread_wakeup((event_t)le); |
523 | } | |
524 | } | |
1c79356b A |
525 | } |
526 | ||
527 | /* | |
316670eb | 528 | * Refill the coffers. |
1c79356b | 529 | */ |
316670eb A |
530 | static void |
531 | ledger_refill(uint64_t now, ledger_t ledger, int entry) | |
1c79356b | 532 | { |
316670eb A |
533 | uint64_t elapsed, period, periods; |
534 | struct ledger_entry *le; | |
535 | ledger_amount_t balance, due; | |
1c79356b | 536 | |
316670eb | 537 | le = &ledger->l_entries[entry]; |
1c79356b | 538 | |
39236c6e A |
539 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); |
540 | ||
1c79356b | 541 | /* |
316670eb | 542 | * If another thread is handling the refill already, we're not |
39236c6e A |
543 | * needed. |
544 | */ | |
545 | if (flag_set(&le->le_flags, LF_REFILL_INPROGRESS) & LF_REFILL_INPROGRESS) { | |
546 | return; | |
547 | } | |
548 | ||
549 | /* | |
550 | * If the timestamp we're about to use to refill is older than the | |
551 | * last refill, then someone else has already refilled this ledger | |
552 | * and there's nothing for us to do here. | |
1c79356b | 553 | */ |
39236c6e A |
554 | if (now <= le->_le.le_refill.le_last_refill) { |
555 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); | |
316670eb | 556 | return; |
1c79356b A |
557 | } |
558 | ||
316670eb A |
559 | /* |
560 | * See how many refill periods have passed since we last | |
561 | * did a refill. | |
562 | */ | |
39236c6e A |
563 | period = le->_le.le_refill.le_refill_period; |
564 | elapsed = now - le->_le.le_refill.le_last_refill; | |
316670eb | 565 | if ((period == 0) || (elapsed < period)) { |
39236c6e | 566 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); |
316670eb | 567 | return; |
1c79356b | 568 | } |
316670eb A |
569 | |
570 | /* | |
571 | * Optimize for the most common case of only one or two | |
572 | * periods elapsing. | |
573 | */ | |
574 | periods = 0; | |
575 | while ((periods < 2) && (elapsed > 0)) { | |
576 | periods++; | |
577 | elapsed -= period; | |
578 | } | |
579 | ||
580 | /* | |
581 | * OK, it's been a long time. Do a divide to figure out | |
582 | * how long. | |
583 | */ | |
584 | if (elapsed > 0) | |
39236c6e | 585 | periods = (now - le->_le.le_refill.le_last_refill) / period; |
316670eb A |
586 | |
587 | balance = le->le_credit - le->le_debit; | |
588 | due = periods * le->le_limit; | |
589 | if (balance - due < 0) | |
590 | due = balance; | |
39236c6e A |
591 | |
592 | assert(due >= 0); | |
593 | ||
316670eb A |
594 | OSAddAtomic64(due, &le->le_debit); |
595 | ||
39236c6e A |
596 | assert(le->le_debit >= 0); |
597 | ||
1c79356b | 598 | /* |
316670eb A |
599 | * If we've completely refilled the pool, set the refill time to now. |
600 | * Otherwise set it to the time at which it last should have been | |
601 | * fully refilled. | |
1c79356b | 602 | */ |
316670eb | 603 | if (balance == due) |
39236c6e | 604 | le->_le.le_refill.le_last_refill = now; |
316670eb | 605 | else |
39236c6e | 606 | le->_le.le_refill.le_last_refill += (le->_le.le_refill.le_refill_period * periods); |
316670eb | 607 | |
39236c6e | 608 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); |
316670eb A |
609 | |
610 | lprintf(("Refill %lld %lld->%lld\n", periods, balance, balance - due)); | |
611 | if (!limit_exceeded(le)) | |
612 | ledger_limit_entry_wakeup(le); | |
613 | } | |
614 | ||
39236c6e A |
615 | /* |
616 | * In tenths of a second, the length of one lookback period (a "tock") for | |
617 | * ledger rolling maximum calculations. The effective lookback window will be this times | |
618 | * NTOCKS. | |
619 | * | |
620 | * Use a tock length of 2.5 seconds to get a total lookback period of 5 seconds. | |
621 | * | |
622 | * XXX Could make this caller-definable, at the point that rolling max tracking | |
623 | * is enabled for the entry. | |
624 | */ | |
625 | #define TOCKLEN 25 | |
626 | ||
627 | /* | |
628 | * How many sched_tick's are there in one tock (one of our lookback periods)? | |
629 | * | |
630 | * X sched_ticks 2.5 sec N sched_ticks | |
631 | * --------------- = ---------- * ------------- | |
632 | * tock tock sec | |
633 | * | |
634 | * where N sched_ticks/sec is calculated via 1 << SCHED_TICK_SHIFT (see sched_prim.h) | |
635 | * | |
636 | * This should give us 20 sched_tick's in one 2.5 second-long tock. | |
637 | */ | |
638 | #define SCHED_TICKS_PER_TOCK ((TOCKLEN * (1 << SCHED_TICK_SHIFT)) / 10) | |
639 | ||
640 | /* | |
641 | * Rolling max timestamps use their own unit (let's call this a "tock"). One tock is the | |
642 | * length of one lookback period that we use for our rolling max calculation. | |
643 | * | |
644 | * Calculate the current time in tocks from sched_tick (which runs at a some | |
645 | * fixed rate). | |
646 | */ | |
647 | #define CURRENT_TOCKSTAMP() (sched_tick / SCHED_TICKS_PER_TOCK) | |
648 | ||
649 | /* | |
650 | * Does the given tockstamp fall in either the current or the previous tocks? | |
651 | */ | |
652 | #define TOCKSTAMP_IS_STALE(now, tock) ((((now) - (tock)) < NTOCKS) ? FALSE : TRUE) | |
653 | ||
316670eb A |
654 | static void |
655 | ledger_check_new_balance(ledger_t ledger, int entry) | |
656 | { | |
657 | struct ledger_entry *le; | |
316670eb A |
658 | |
659 | le = &ledger->l_entries[entry]; | |
660 | ||
39236c6e A |
661 | if (le->le_flags & LF_TRACKING_MAX) { |
662 | ledger_amount_t balance = le->le_credit - le->le_debit; | |
663 | uint32_t now = CURRENT_TOCKSTAMP(); | |
664 | struct _le_peak *p = &le->_le.le_peaks[now % NTOCKS]; | |
665 | ||
666 | if (!TOCKSTAMP_IS_STALE(now, p->le_time) || (balance > p->le_max)) { | |
667 | /* | |
668 | * The current balance is greater than the previously | |
669 | * observed peak for the current time block, *or* we | |
670 | * haven't yet recorded a peak for the current time block -- | |
671 | * so this is our new peak. | |
672 | * | |
673 | * (We only track the lower 32-bits of a balance for rolling | |
674 | * max purposes.) | |
675 | */ | |
676 | p->le_max = (uint32_t)balance; | |
677 | p->le_time = now; | |
678 | } | |
679 | } | |
680 | ||
316670eb | 681 | /* Check to see whether we're due a refill */ |
39236c6e A |
682 | if (le->le_flags & LF_REFILL_SCHEDULED) { |
683 | uint64_t now = mach_absolute_time(); | |
684 | if ((now - le->_le.le_refill.le_last_refill) > le->_le.le_refill.le_refill_period) | |
316670eb A |
685 | ledger_refill(now, ledger, entry); |
686 | } | |
687 | ||
688 | if (limit_exceeded(le)) { | |
689 | /* | |
690 | * We've exceeded the limit for this entry. There | |
691 | * are several possible ways to handle it. We can block, | |
692 | * we can execute a callback, or we can ignore it. In | |
693 | * either of the first two cases, we want to set the AST | |
694 | * flag so we can take the appropriate action just before | |
695 | * leaving the kernel. The one caveat is that if we have | |
696 | * already called the callback, we don't want to do it | |
697 | * again until it gets rearmed. | |
698 | */ | |
699 | if ((le->le_flags & LEDGER_ACTION_BLOCK) || | |
39236c6e | 700 | (!(le->le_flags & LF_CALLED_BACK) && |
316670eb A |
701 | entry_get_callback(ledger, entry))) { |
702 | set_astledger(current_thread()); | |
1c79356b | 703 | } |
316670eb A |
704 | } else { |
705 | /* | |
39236c6e A |
706 | * The balance on the account is below the limit. |
707 | * | |
708 | * If there are any threads blocked on this entry, now would | |
316670eb A |
709 | * be a good time to wake them up. |
710 | */ | |
39236c6e | 711 | if (le->le_flags & LF_WAKE_NEEDED) |
316670eb | 712 | ledger_limit_entry_wakeup(le); |
39236c6e A |
713 | |
714 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { | |
715 | /* | |
716 | * Client has requested that a callback be invoked whenever | |
717 | * the ledger's balance crosses into or out of the warning | |
718 | * level. | |
719 | */ | |
720 | if (warn_level_exceeded(le)) { | |
721 | /* | |
722 | * This ledger's balance is above the warning level. | |
723 | */ | |
724 | if ((le->le_flags & LF_WARNED) == 0) { | |
725 | /* | |
726 | * If we are above the warning level and | |
727 | * have not yet invoked the callback, | |
728 | * set the AST so it can be done before returning | |
729 | * to userland. | |
730 | */ | |
731 | set_astledger(current_thread()); | |
732 | } | |
733 | } else { | |
734 | /* | |
735 | * This ledger's balance is below the warning level. | |
736 | */ | |
737 | if (le->le_flags & LF_WARNED) { | |
738 | /* | |
739 | * If we are below the warning level and | |
740 | * the LF_WARNED flag is still set, we need | |
741 | * to invoke the callback to let the client | |
742 | * know the ledger balance is now back below | |
743 | * the warning level. | |
744 | */ | |
745 | set_astledger(current_thread()); | |
746 | } | |
747 | } | |
748 | } | |
1c79356b | 749 | } |
fe8ab488 A |
750 | |
751 | if ((le->le_flags & LF_PANIC_ON_NEGATIVE) && | |
752 | (le->le_credit < le->le_debit)) { | |
753 | panic("ledger_check_new_balance(%p,%d): negative ledger %p balance:%lld\n", | |
754 | ledger, entry, le, le->le_credit - le->le_debit); | |
755 | } | |
316670eb | 756 | } |
1c79356b | 757 | |
316670eb A |
758 | /* |
759 | * Add value to an entry in a ledger. | |
760 | */ | |
761 | kern_return_t | |
762 | ledger_credit(ledger_t ledger, int entry, ledger_amount_t amount) | |
763 | { | |
764 | ledger_amount_t old, new; | |
765 | struct ledger_entry *le; | |
1c79356b | 766 | |
316670eb A |
767 | if (!ENTRY_VALID(ledger, entry) || (amount < 0)) |
768 | return (KERN_INVALID_VALUE); | |
769 | ||
770 | if (amount == 0) | |
771 | return (KERN_SUCCESS); | |
772 | ||
773 | le = &ledger->l_entries[entry]; | |
774 | ||
775 | old = OSAddAtomic64(amount, &le->le_credit); | |
776 | new = old + amount; | |
777 | lprintf(("%p Credit %lld->%lld\n", current_thread(), old, new)); | |
778 | ledger_check_new_balance(ledger, entry); | |
779 | ||
780 | return (KERN_SUCCESS); | |
1c79356b A |
781 | } |
782 | ||
fe8ab488 A |
783 | /* Add all of one ledger's values into another. |
784 | * They must have been created from the same template. | |
785 | * This is not done atomically. Another thread (if not otherwise synchronized) | |
786 | * may see bogus values when comparing one entry to another. | |
787 | * As each entry's credit & debit are modified one at a time, the warning/limit | |
788 | * may spuriously trip, or spuriously fail to trip, or another thread (if not | |
789 | * otherwise synchronized) may see a bogus balance. | |
790 | */ | |
791 | kern_return_t | |
792 | ledger_rollup(ledger_t to_ledger, ledger_t from_ledger) | |
793 | { | |
794 | int i; | |
795 | struct ledger_entry *from_le, *to_le; | |
796 | ||
797 | assert(to_ledger->l_template == from_ledger->l_template); | |
798 | ||
799 | for (i = 0; i < to_ledger->l_size; i++) { | |
800 | if (ENTRY_VALID(from_ledger, i) && ENTRY_VALID(to_ledger, i)) { | |
801 | from_le = &from_ledger->l_entries[i]; | |
802 | to_le = &to_ledger->l_entries[i]; | |
803 | OSAddAtomic64(from_le->le_credit, &to_le->le_credit); | |
804 | OSAddAtomic64(from_le->le_debit, &to_le->le_debit); | |
805 | } | |
806 | } | |
807 | ||
808 | return (KERN_SUCCESS); | |
809 | } | |
810 | ||
39236c6e A |
811 | /* |
812 | * Zero the balance of a ledger by adding to its credit or debit, whichever is smaller. | |
813 | * Note that some clients of ledgers (notably, task wakeup statistics) require that | |
814 | * le_credit only ever increase as a function of ledger_credit(). | |
815 | */ | |
816 | kern_return_t | |
817 | ledger_zero_balance(ledger_t ledger, int entry) | |
818 | { | |
819 | struct ledger_entry *le; | |
820 | ||
821 | if (!ENTRY_VALID(ledger, entry)) | |
822 | return (KERN_INVALID_VALUE); | |
823 | ||
824 | le = &ledger->l_entries[entry]; | |
825 | ||
826 | top: | |
827 | if (le->le_credit > le->le_debit) { | |
828 | if (!OSCompareAndSwap64(le->le_debit, le->le_credit, &le->le_debit)) | |
829 | goto top; | |
830 | lprintf(("%p zeroed %lld->%lld\n", current_thread(), le->le_debit, le->le_credit)); | |
831 | } else if (le->le_credit < le->le_debit) { | |
832 | if (!OSCompareAndSwap64(le->le_credit, le->le_debit, &le->le_credit)) | |
833 | goto top; | |
834 | lprintf(("%p zeroed %lld->%lld\n", current_thread(), le->le_credit, le->le_debit)); | |
835 | } | |
836 | ||
837 | return (KERN_SUCCESS); | |
838 | } | |
839 | ||
840 | kern_return_t | |
841 | ledger_get_limit(ledger_t ledger, int entry, ledger_amount_t *limit) | |
842 | { | |
843 | struct ledger_entry *le; | |
844 | ||
845 | if (!ENTRY_VALID(ledger, entry)) | |
846 | return (KERN_INVALID_VALUE); | |
847 | ||
848 | le = &ledger->l_entries[entry]; | |
849 | *limit = le->le_limit; | |
850 | ||
851 | lprintf(("ledger_get_limit: %lld\n", *limit)); | |
852 | ||
853 | return (KERN_SUCCESS); | |
854 | } | |
316670eb | 855 | |
1c79356b | 856 | /* |
316670eb A |
857 | * Adjust the limit of a limited resource. This does not affect the |
858 | * current balance, so the change doesn't affect the thread until the | |
859 | * next refill. | |
39236c6e A |
860 | * |
861 | * warn_level: If non-zero, causes the callback to be invoked when | |
862 | * the balance exceeds this level. Specified as a percentage [of the limit]. | |
1c79356b | 863 | */ |
316670eb | 864 | kern_return_t |
39236c6e A |
865 | ledger_set_limit(ledger_t ledger, int entry, ledger_amount_t limit, |
866 | uint8_t warn_level_percentage) | |
1c79356b | 867 | { |
316670eb | 868 | struct ledger_entry *le; |
1c79356b | 869 | |
316670eb A |
870 | if (!ENTRY_VALID(ledger, entry)) |
871 | return (KERN_INVALID_VALUE); | |
872 | ||
39236c6e | 873 | lprintf(("ledger_set_limit: %lld\n", limit)); |
316670eb | 874 | le = &ledger->l_entries[entry]; |
39236c6e A |
875 | |
876 | if (limit == LEDGER_LIMIT_INFINITY) { | |
877 | /* | |
878 | * Caller wishes to disable the limit. This will implicitly | |
879 | * disable automatic refill, as refills implicitly depend | |
880 | * on the limit. | |
881 | */ | |
882 | ledger_disable_refill(ledger, entry); | |
883 | } | |
884 | ||
316670eb | 885 | le->le_limit = limit; |
39236c6e A |
886 | le->_le.le_refill.le_last_refill = 0; |
887 | flag_clear(&le->le_flags, LF_CALLED_BACK); | |
888 | flag_clear(&le->le_flags, LF_WARNED); | |
316670eb A |
889 | ledger_limit_entry_wakeup(le); |
890 | ||
39236c6e A |
891 | if (warn_level_percentage != 0) { |
892 | assert(warn_level_percentage <= 100); | |
893 | assert(limit > 0); /* no negative limit support for warnings */ | |
894 | assert(limit != LEDGER_LIMIT_INFINITY); /* warn % without limit makes no sense */ | |
895 | le->le_warn_level = (le->le_limit * warn_level_percentage) / 100; | |
896 | } else { | |
897 | le->le_warn_level = LEDGER_LIMIT_INFINITY; | |
898 | } | |
899 | ||
900 | return (KERN_SUCCESS); | |
901 | } | |
902 | ||
903 | kern_return_t | |
904 | ledger_get_maximum(ledger_t ledger, int entry, | |
905 | ledger_amount_t *max_observed_balance) | |
906 | { | |
907 | struct ledger_entry *le; | |
908 | uint32_t now = CURRENT_TOCKSTAMP(); | |
909 | int i; | |
910 | ||
911 | le = &ledger->l_entries[entry]; | |
912 | ||
913 | if (!ENTRY_VALID(ledger, entry) || !(le->le_flags & LF_TRACKING_MAX)) { | |
914 | return (KERN_INVALID_VALUE); | |
915 | } | |
916 | ||
917 | /* | |
918 | * Start with the current balance; if neither of the recorded peaks are | |
919 | * within recent history, we use this. | |
920 | */ | |
921 | *max_observed_balance = le->le_credit - le->le_debit; | |
922 | ||
923 | for (i = 0; i < NTOCKS; i++) { | |
924 | if (!TOCKSTAMP_IS_STALE(now, le->_le.le_peaks[i].le_time) && | |
925 | (le->_le.le_peaks[i].le_max > *max_observed_balance)) { | |
926 | /* | |
927 | * The peak for this time block isn't stale, and it | |
928 | * is greater than the current balance -- so use it. | |
929 | */ | |
930 | *max_observed_balance = le->_le.le_peaks[i].le_max; | |
931 | } | |
932 | } | |
933 | ||
934 | lprintf(("ledger_get_maximum: %lld\n", *max_observed_balance)); | |
935 | ||
936 | return (KERN_SUCCESS); | |
937 | } | |
938 | ||
939 | /* | |
940 | * Enable tracking of periodic maximums for this ledger entry. | |
941 | */ | |
942 | kern_return_t | |
943 | ledger_track_maximum(ledger_template_t template, int entry, | |
944 | __unused int period_in_secs) | |
945 | { | |
946 | template_lock(template); | |
947 | ||
948 | if ((entry < 0) || (entry >= template->lt_cnt)) { | |
949 | template_unlock(template); | |
950 | return (KERN_INVALID_VALUE); | |
951 | } | |
952 | ||
953 | template->lt_entries[entry].et_flags |= LF_TRACKING_MAX; | |
954 | template_unlock(template); | |
955 | ||
316670eb A |
956 | return (KERN_SUCCESS); |
957 | } | |
958 | ||
fe8ab488 A |
959 | kern_return_t |
960 | ledger_panic_on_negative(ledger_template_t template, int entry) | |
961 | { | |
962 | template_lock(template); | |
963 | ||
964 | if ((entry < 0) || (entry >= template->lt_cnt)) { | |
965 | template_unlock(template); | |
966 | return (KERN_INVALID_VALUE); | |
967 | } | |
968 | ||
969 | template->lt_entries[entry].et_flags |= LF_PANIC_ON_NEGATIVE; | |
970 | ||
971 | template_unlock(template); | |
972 | ||
973 | return (KERN_SUCCESS); | |
974 | } | |
316670eb | 975 | /* |
39236c6e | 976 | * Add a callback to be executed when the resource goes into deficit. |
316670eb A |
977 | */ |
978 | kern_return_t | |
979 | ledger_set_callback(ledger_template_t template, int entry, | |
980 | ledger_callback_t func, const void *param0, const void *param1) | |
981 | { | |
982 | struct entry_template *et; | |
983 | struct ledger_callback *old_cb, *new_cb; | |
984 | ||
985 | if ((entry < 0) || (entry >= template->lt_cnt)) | |
986 | return (KERN_INVALID_VALUE); | |
987 | ||
988 | if (func) { | |
989 | new_cb = (struct ledger_callback *)kalloc(sizeof (*new_cb)); | |
990 | new_cb->lc_func = func; | |
991 | new_cb->lc_param0 = param0; | |
992 | new_cb->lc_param1 = param1; | |
993 | } else { | |
994 | new_cb = NULL; | |
1c79356b | 995 | } |
1c79356b | 996 | |
316670eb A |
997 | template_lock(template); |
998 | et = &template->lt_entries[entry]; | |
999 | old_cb = et->et_callback; | |
1000 | et->et_callback = new_cb; | |
1001 | template_unlock(template); | |
1002 | if (old_cb) | |
1003 | kfree(old_cb, sizeof (*old_cb)); | |
1c79356b | 1004 | |
316670eb A |
1005 | return (KERN_SUCCESS); |
1006 | } | |
1c79356b | 1007 | |
316670eb A |
1008 | /* |
1009 | * Disable callback notification for a specific ledger entry. | |
1010 | * | |
1011 | * Otherwise, if using a ledger template which specified a | |
1012 | * callback function (ledger_set_callback()), it will be invoked when | |
1013 | * the resource goes into deficit. | |
1014 | */ | |
1015 | kern_return_t | |
1016 | ledger_disable_callback(ledger_t ledger, int entry) | |
1017 | { | |
1018 | if (!ENTRY_VALID(ledger, entry)) | |
1019 | return (KERN_INVALID_VALUE); | |
1020 | ||
39236c6e A |
1021 | /* |
1022 | * le_warn_level is used to indicate *if* this ledger has a warning configured, | |
1023 | * in addition to what that warning level is set to. | |
1024 | * This means a side-effect of ledger_disable_callback() is that the | |
1025 | * warning level is forgotten. | |
1026 | */ | |
1027 | ledger->l_entries[entry].le_warn_level = LEDGER_LIMIT_INFINITY; | |
316670eb A |
1028 | flag_clear(&ledger->l_entries[entry].le_flags, LEDGER_ACTION_CALLBACK); |
1029 | return (KERN_SUCCESS); | |
1c79356b A |
1030 | } |
1031 | ||
1032 | /* | |
39236c6e A |
1033 | * Enable callback notification for a specific ledger entry. |
1034 | * | |
1035 | * This is only needed if ledger_disable_callback() has previously | |
1036 | * been invoked against an entry; there must already be a callback | |
1037 | * configured. | |
1c79356b | 1038 | */ |
316670eb | 1039 | kern_return_t |
39236c6e | 1040 | ledger_enable_callback(ledger_t ledger, int entry) |
1c79356b | 1041 | { |
316670eb A |
1042 | if (!ENTRY_VALID(ledger, entry)) |
1043 | return (KERN_INVALID_VALUE); | |
1c79356b | 1044 | |
39236c6e A |
1045 | assert(entry_get_callback(ledger, entry) != NULL); |
1046 | ||
1047 | flag_set(&ledger->l_entries[entry].le_flags, LEDGER_ACTION_CALLBACK); | |
1048 | return (KERN_SUCCESS); | |
1049 | } | |
1050 | ||
1051 | /* | |
1052 | * Query the automatic refill period for this ledger entry. | |
1053 | * | |
1054 | * A period of 0 means this entry has none configured. | |
1055 | */ | |
1056 | kern_return_t | |
1057 | ledger_get_period(ledger_t ledger, int entry, uint64_t *period) | |
1058 | { | |
1059 | struct ledger_entry *le; | |
1060 | ||
1061 | if (!ENTRY_VALID(ledger, entry)) | |
1062 | return (KERN_INVALID_VALUE); | |
1063 | ||
1064 | le = &ledger->l_entries[entry]; | |
1065 | *period = abstime_to_nsecs(le->_le.le_refill.le_refill_period); | |
1066 | lprintf(("ledger_get_period: %llx\n", *period)); | |
316670eb | 1067 | return (KERN_SUCCESS); |
1c79356b A |
1068 | } |
1069 | ||
1070 | /* | |
316670eb | 1071 | * Adjust the automatic refill period. |
1c79356b | 1072 | */ |
316670eb A |
1073 | kern_return_t |
1074 | ledger_set_period(ledger_t ledger, int entry, uint64_t period) | |
1c79356b | 1075 | { |
316670eb | 1076 | struct ledger_entry *le; |
1c79356b | 1077 | |
316670eb A |
1078 | lprintf(("ledger_set_period: %llx\n", period)); |
1079 | if (!ENTRY_VALID(ledger, entry)) | |
1080 | return (KERN_INVALID_VALUE); | |
1c79356b | 1081 | |
316670eb | 1082 | le = &ledger->l_entries[entry]; |
1c79356b | 1083 | |
39236c6e A |
1084 | /* |
1085 | * A refill period refills the ledger in multiples of the limit, | |
1086 | * so if you haven't set one yet, you need a lesson on ledgers. | |
1087 | */ | |
1088 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); | |
1089 | ||
1090 | if (le->le_flags & LF_TRACKING_MAX) { | |
1091 | /* | |
1092 | * Refill is incompatible with rolling max tracking. | |
1093 | */ | |
1094 | return (KERN_INVALID_VALUE); | |
1095 | } | |
1096 | ||
1097 | le->_le.le_refill.le_refill_period = nsecs_to_abstime(period); | |
1098 | ||
1099 | /* | |
1100 | * Set the 'starting time' for the next refill to now. Since | |
1101 | * we're resetting the balance to zero here, we consider this | |
1102 | * moment the starting time for accumulating a balance that | |
1103 | * counts towards the limit. | |
1104 | */ | |
1105 | le->_le.le_refill.le_last_refill = mach_absolute_time(); | |
1106 | ledger_zero_balance(ledger, entry); | |
1107 | ||
1108 | flag_set(&le->le_flags, LF_REFILL_SCHEDULED); | |
1109 | ||
1110 | return (KERN_SUCCESS); | |
1111 | } | |
1112 | ||
1113 | /* | |
1114 | * Disable automatic refill. | |
1115 | */ | |
1116 | kern_return_t | |
1117 | ledger_disable_refill(ledger_t ledger, int entry) | |
1118 | { | |
1119 | struct ledger_entry *le; | |
1120 | ||
1121 | if (!ENTRY_VALID(ledger, entry)) | |
1122 | return (KERN_INVALID_VALUE); | |
1123 | ||
1124 | le = &ledger->l_entries[entry]; | |
1125 | ||
1126 | flag_clear(&le->le_flags, LF_REFILL_SCHEDULED); | |
1127 | ||
1128 | return (KERN_SUCCESS); | |
1129 | } | |
1130 | ||
1131 | kern_return_t | |
1132 | ledger_get_actions(ledger_t ledger, int entry, int *actions) | |
1133 | { | |
1134 | if (!ENTRY_VALID(ledger, entry)) | |
1135 | return (KERN_INVALID_VALUE); | |
1136 | ||
1137 | *actions = ledger->l_entries[entry].le_flags & LEDGER_ACTION_MASK; | |
1138 | lprintf(("ledger_get_actions: %#x\n", *actions)); | |
316670eb A |
1139 | return (KERN_SUCCESS); |
1140 | } | |
1141 | ||
1142 | kern_return_t | |
1143 | ledger_set_action(ledger_t ledger, int entry, int action) | |
1144 | { | |
39236c6e | 1145 | lprintf(("ledger_set_action: %#x\n", action)); |
316670eb A |
1146 | if (!ENTRY_VALID(ledger, entry)) |
1147 | return (KERN_INVALID_VALUE); | |
1148 | ||
1149 | flag_set(&ledger->l_entries[entry].le_flags, action); | |
1150 | return (KERN_SUCCESS); | |
1151 | } | |
1152 | ||
1153 | void | |
1154 | set_astledger(thread_t thread) | |
1155 | { | |
1156 | spl_t s = splsched(); | |
1157 | ||
1158 | if (thread == current_thread()) { | |
1159 | thread_ast_set(thread, AST_LEDGER); | |
1160 | ast_propagate(thread->ast); | |
1161 | } else { | |
1162 | processor_t p; | |
1163 | ||
1164 | thread_lock(thread); | |
1165 | thread_ast_set(thread, AST_LEDGER); | |
1166 | p = thread->last_processor; | |
1167 | if ((p != PROCESSOR_NULL) && (p->state == PROCESSOR_RUNNING) && | |
1168 | (p->active_thread == thread)) | |
1169 | cause_ast_check(p); | |
1170 | thread_unlock(thread); | |
1c79356b | 1171 | } |
316670eb A |
1172 | |
1173 | splx(s); | |
1174 | } | |
1175 | ||
1176 | kern_return_t | |
1177 | ledger_debit(ledger_t ledger, int entry, ledger_amount_t amount) | |
1178 | { | |
1179 | struct ledger_entry *le; | |
1180 | ledger_amount_t old, new; | |
1181 | ||
1182 | if (!ENTRY_VALID(ledger, entry) || (amount < 0)) | |
1183 | return (KERN_INVALID_ARGUMENT); | |
1184 | ||
1185 | if (amount == 0) | |
1186 | return (KERN_SUCCESS); | |
1187 | ||
1188 | le = &ledger->l_entries[entry]; | |
1189 | ||
1190 | old = OSAddAtomic64(amount, &le->le_debit); | |
1191 | new = old + amount; | |
1192 | ||
1193 | lprintf(("%p Debit %lld->%lld\n", thread, old, new)); | |
1194 | ledger_check_new_balance(ledger, entry); | |
1195 | return (KERN_SUCCESS); | |
1c79356b | 1196 | |
316670eb A |
1197 | } |
1198 | ||
1199 | void | |
1200 | ledger_ast(thread_t thread) | |
1201 | { | |
39236c6e A |
1202 | struct ledger *l = thread->t_ledger; |
1203 | struct ledger *thl; | |
1204 | uint32_t block; | |
1205 | uint64_t now; | |
1206 | uint8_t task_flags; | |
1207 | uint8_t task_percentage; | |
1208 | uint64_t task_interval; | |
1209 | ||
316670eb A |
1210 | kern_return_t ret; |
1211 | task_t task = thread->task; | |
1212 | ||
1213 | lprintf(("Ledger AST for %p\n", thread)); | |
1214 | ||
1215 | ASSERT(task != NULL); | |
1216 | ASSERT(thread == current_thread()); | |
1217 | ||
1218 | top: | |
39236c6e A |
1219 | /* |
1220 | * Take a self-consistent snapshot of the CPU usage monitor parameters. The task | |
1221 | * can change them at any point (with the task locked). | |
1222 | */ | |
1223 | task_lock(task); | |
1224 | task_flags = task->rusage_cpu_flags; | |
1225 | task_percentage = task->rusage_cpu_perthr_percentage; | |
1226 | task_interval = task->rusage_cpu_perthr_interval; | |
1227 | task_unlock(task); | |
1228 | ||
316670eb A |
1229 | /* |
1230 | * Make sure this thread is up to date with regards to any task-wide per-thread | |
39236c6e | 1231 | * CPU limit, but only if it doesn't have a thread-private blocking CPU limit. |
316670eb | 1232 | */ |
39236c6e A |
1233 | if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) && |
1234 | ((thread->options & TH_OPT_PRVT_CPULIMIT) == 0)) { | |
1235 | uint8_t percentage; | |
1236 | uint64_t interval; | |
1237 | int action; | |
1238 | ||
1239 | thread_get_cpulimit(&action, &percentage, &interval); | |
1240 | ||
316670eb | 1241 | /* |
39236c6e A |
1242 | * If the thread's CPU limits no longer match the task's, or the |
1243 | * task has a limit but the thread doesn't, update the limit. | |
316670eb | 1244 | */ |
39236c6e A |
1245 | if (((thread->options & TH_OPT_PROC_CPULIMIT) == 0) || |
1246 | (interval != task_interval) || (percentage != task_percentage)) { | |
1247 | thread_set_cpulimit(THREAD_CPULIMIT_EXCEPTION, task_percentage, task_interval); | |
1248 | assert((thread->options & TH_OPT_PROC_CPULIMIT) != 0); | |
1249 | } | |
1250 | } else if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) && | |
1251 | (thread->options & TH_OPT_PROC_CPULIMIT)) { | |
1252 | assert((thread->options & TH_OPT_PRVT_CPULIMIT) == 0); | |
1253 | ||
316670eb A |
1254 | /* |
1255 | * Task no longer has a per-thread CPU limit; remove this thread's | |
1256 | * corresponding CPU limit. | |
1257 | */ | |
39236c6e | 1258 | thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, 0, 0); |
316670eb | 1259 | assert((thread->options & TH_OPT_PROC_CPULIMIT) == 0); |
1c79356b | 1260 | } |
316670eb A |
1261 | |
1262 | /* | |
1263 | * If the task or thread is being terminated, let's just get on with it | |
1264 | */ | |
1265 | if ((l == NULL) || !task->active || task->halting || !thread->active) | |
1266 | return; | |
1267 | ||
1268 | /* | |
1269 | * Examine all entries in deficit to see which might be eligble for | |
1270 | * an automatic refill, which require callbacks to be issued, and | |
1271 | * which require blocking. | |
1272 | */ | |
1273 | block = 0; | |
1274 | now = mach_absolute_time(); | |
1275 | ||
39236c6e A |
1276 | /* |
1277 | * Note that thread->t_threadledger may have been changed by the | |
1278 | * thread_set_cpulimit() call above - so don't examine it until afterwards. | |
1279 | */ | |
1280 | thl = thread->t_threadledger; | |
316670eb A |
1281 | if (LEDGER_VALID(thl)) { |
1282 | block |= ledger_check_needblock(thl, now); | |
1c79356b | 1283 | } |
316670eb | 1284 | block |= ledger_check_needblock(l, now); |
1c79356b | 1285 | |
316670eb A |
1286 | /* |
1287 | * If we are supposed to block on the availability of one or more | |
1288 | * resources, find the first entry in deficit for which we should wait. | |
1289 | * Schedule a refill if necessary and then sleep until the resource | |
1290 | * becomes available. | |
1291 | */ | |
1292 | if (block) { | |
1293 | if (LEDGER_VALID(thl)) { | |
1294 | ret = ledger_perform_blocking(thl); | |
1295 | if (ret != KERN_SUCCESS) | |
1296 | goto top; | |
1c79356b | 1297 | } |
316670eb A |
1298 | ret = ledger_perform_blocking(l); |
1299 | if (ret != KERN_SUCCESS) | |
1300 | goto top; | |
1301 | } /* block */ | |
1302 | } | |
1c79356b | 1303 | |
316670eb A |
1304 | static uint32_t |
1305 | ledger_check_needblock(ledger_t l, uint64_t now) | |
1306 | { | |
1307 | int i; | |
1308 | uint32_t flags, block = 0; | |
1309 | struct ledger_entry *le; | |
1310 | struct ledger_callback *lc; | |
1311 | ||
1312 | ||
1313 | for (i = 0; i < l->l_size; i++) { | |
1314 | le = &l->l_entries[i]; | |
39236c6e A |
1315 | |
1316 | lc = entry_get_callback(l, i); | |
1317 | ||
1318 | if (limit_exceeded(le) == FALSE) { | |
1319 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { | |
1320 | /* | |
1321 | * If needed, invoke the callback as a warning. | |
1322 | * This needs to happen both when the balance rises above | |
1323 | * the warning level, and also when it dips back below it. | |
1324 | */ | |
1325 | assert(lc != NULL); | |
1326 | /* | |
1327 | * See comments for matching logic in ledger_check_new_balance(). | |
1328 | */ | |
1329 | if (warn_level_exceeded(le)) { | |
1330 | flags = flag_set(&le->le_flags, LF_WARNED); | |
1331 | if ((flags & LF_WARNED) == 0) { | |
1332 | lc->lc_func(LEDGER_WARNING_ROSE_ABOVE, lc->lc_param0, lc->lc_param1); | |
1333 | } | |
1334 | } else { | |
1335 | flags = flag_clear(&le->le_flags, LF_WARNED); | |
1336 | if (flags & LF_WARNED) { | |
1337 | lc->lc_func(LEDGER_WARNING_DIPPED_BELOW, lc->lc_param0, lc->lc_param1); | |
1338 | } | |
1339 | } | |
1340 | } | |
1341 | ||
316670eb | 1342 | continue; |
39236c6e | 1343 | } |
316670eb | 1344 | |
39236c6e A |
1345 | /* We're over the limit, so refill if we are eligible and past due. */ |
1346 | if (le->le_flags & LF_REFILL_SCHEDULED) { | |
1347 | if ((le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period) > now) { | |
316670eb A |
1348 | ledger_refill(now, l, i); |
1349 | if (limit_exceeded(le) == FALSE) | |
1350 | continue; | |
1351 | } | |
1352 | } | |
1353 | ||
1354 | if (le->le_flags & LEDGER_ACTION_BLOCK) | |
1355 | block = 1; | |
1356 | if ((le->le_flags & LEDGER_ACTION_CALLBACK) == 0) | |
1357 | continue; | |
39236c6e A |
1358 | |
1359 | /* | |
1360 | * If the LEDGER_ACTION_CALLBACK flag is on, we expect there to | |
1361 | * be a registered callback. | |
1362 | */ | |
316670eb | 1363 | assert(lc != NULL); |
39236c6e | 1364 | flags = flag_set(&le->le_flags, LF_CALLED_BACK); |
316670eb | 1365 | /* Callback has already been called */ |
39236c6e | 1366 | if (flags & LF_CALLED_BACK) |
316670eb | 1367 | continue; |
39236c6e | 1368 | lc->lc_func(FALSE, lc->lc_param0, lc->lc_param1); |
1c79356b | 1369 | } |
316670eb A |
1370 | return(block); |
1371 | } | |
1c79356b | 1372 | |
316670eb A |
1373 | |
1374 | /* return KERN_SUCCESS to continue, KERN_FAILURE to restart */ | |
1375 | static kern_return_t | |
1376 | ledger_perform_blocking(ledger_t l) | |
1377 | { | |
1378 | int i; | |
1379 | kern_return_t ret; | |
1380 | struct ledger_entry *le; | |
1381 | ||
1382 | for (i = 0; i < l->l_size; i++) { | |
1383 | le = &l->l_entries[i]; | |
1384 | if ((!limit_exceeded(le)) || | |
1385 | ((le->le_flags & LEDGER_ACTION_BLOCK) == 0)) | |
1386 | continue; | |
1387 | ||
1388 | /* Prepare to sleep until the resource is refilled */ | |
1389 | ret = assert_wait_deadline(le, TRUE, | |
39236c6e | 1390 | le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period); |
316670eb A |
1391 | if (ret != THREAD_WAITING) |
1392 | return(KERN_SUCCESS); | |
1393 | ||
1394 | /* Mark that somebody is waiting on this entry */ | |
39236c6e | 1395 | flag_set(&le->le_flags, LF_WAKE_NEEDED); |
316670eb A |
1396 | |
1397 | ret = thread_block_reason(THREAD_CONTINUE_NULL, NULL, | |
1398 | AST_LEDGER); | |
1399 | if (ret != THREAD_AWAKENED) | |
1400 | return(KERN_SUCCESS); | |
1401 | ||
1402 | /* | |
1403 | * The world may have changed while we were asleep. | |
1404 | * Some other resource we need may have gone into | |
1405 | * deficit. Or maybe we're supposed to die now. | |
1406 | * Go back to the top and reevaluate. | |
1407 | */ | |
1408 | return(KERN_FAILURE); | |
1409 | } | |
1c79356b | 1410 | return(KERN_SUCCESS); |
1c79356b A |
1411 | } |
1412 | ||
1c79356b | 1413 | |
316670eb A |
1414 | kern_return_t |
1415 | ledger_get_entries(ledger_t ledger, int entry, ledger_amount_t *credit, | |
1416 | ledger_amount_t *debit) | |
1417 | { | |
1418 | struct ledger_entry *le; | |
1419 | ||
1420 | if (!ENTRY_VALID(ledger, entry)) | |
1421 | return (KERN_INVALID_ARGUMENT); | |
1422 | ||
1423 | le = &ledger->l_entries[entry]; | |
1424 | ||
1425 | *credit = le->le_credit; | |
1426 | *debit = le->le_debit; | |
1427 | ||
1428 | return (KERN_SUCCESS); | |
1429 | } | |
1430 | ||
fe8ab488 A |
1431 | kern_return_t |
1432 | ledger_reset_callback_state(ledger_t ledger, int entry) | |
1433 | { | |
1434 | struct ledger_entry *le; | |
1435 | ||
1436 | if (!ENTRY_VALID(ledger, entry)) | |
1437 | return (KERN_INVALID_ARGUMENT); | |
1438 | ||
1439 | le = &ledger->l_entries[entry]; | |
1440 | ||
1441 | flag_clear(&le->le_flags, LF_CALLED_BACK); | |
1442 | ||
1443 | return (KERN_SUCCESS); | |
1444 | } | |
1445 | ||
1446 | kern_return_t | |
1447 | ledger_disable_panic_on_negative(ledger_t ledger, int entry) | |
1448 | { | |
1449 | struct ledger_entry *le; | |
1450 | ||
1451 | if (!ENTRY_VALID(ledger, entry)) | |
1452 | return (KERN_INVALID_ARGUMENT); | |
1453 | ||
1454 | le = &ledger->l_entries[entry]; | |
1455 | ||
1456 | flag_clear(&le->le_flags, LF_PANIC_ON_NEGATIVE); | |
1457 | ||
1458 | return (KERN_SUCCESS); | |
1459 | } | |
1460 | ||
39236c6e A |
1461 | kern_return_t |
1462 | ledger_get_balance(ledger_t ledger, int entry, ledger_amount_t *balance) | |
1463 | { | |
1464 | struct ledger_entry *le; | |
1465 | ||
1466 | if (!ENTRY_VALID(ledger, entry)) | |
1467 | return (KERN_INVALID_ARGUMENT); | |
1468 | ||
1469 | le = &ledger->l_entries[entry]; | |
1470 | ||
1471 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); | |
1472 | ||
1473 | *balance = le->le_credit - le->le_debit; | |
1474 | ||
1475 | return (KERN_SUCCESS); | |
1476 | } | |
1477 | ||
316670eb A |
1478 | int |
1479 | ledger_template_info(void **buf, int *len) | |
1c79356b | 1480 | { |
316670eb A |
1481 | struct ledger_template_info *lti; |
1482 | struct entry_template *et; | |
1483 | int i; | |
1484 | ledger_t l; | |
1c79356b | 1485 | |
316670eb A |
1486 | /* |
1487 | * Since all tasks share a ledger template, we'll just use the | |
1488 | * caller's as the source. | |
1489 | */ | |
1490 | l = current_task()->ledger; | |
1491 | if ((*len < 0) || (l == NULL)) | |
1492 | return (EINVAL); | |
1493 | ||
1494 | if (*len > l->l_size) | |
1495 | *len = l->l_size; | |
1496 | lti = kalloc((*len) * sizeof (struct ledger_template_info)); | |
1497 | if (lti == NULL) | |
1498 | return (ENOMEM); | |
1499 | *buf = lti; | |
1500 | ||
1501 | template_lock(l->l_template); | |
1502 | et = l->l_template->lt_entries; | |
1503 | ||
1504 | for (i = 0; i < *len; i++) { | |
1505 | memset(lti, 0, sizeof (*lti)); | |
1506 | strlcpy(lti->lti_name, et->et_key, LEDGER_NAME_MAX); | |
1507 | strlcpy(lti->lti_group, et->et_group, LEDGER_NAME_MAX); | |
1508 | strlcpy(lti->lti_units, et->et_units, LEDGER_NAME_MAX); | |
1509 | et++; | |
1510 | lti++; | |
1c79356b | 1511 | } |
316670eb | 1512 | template_unlock(l->l_template); |
1c79356b | 1513 | |
316670eb | 1514 | return (0); |
1c79356b A |
1515 | } |
1516 | ||
39236c6e A |
1517 | static void |
1518 | ledger_fill_entry_info(struct ledger_entry *le, | |
1519 | struct ledger_entry_info *lei, | |
1520 | uint64_t now) | |
1521 | { | |
1522 | assert(le != NULL); | |
1523 | assert(lei != NULL); | |
1524 | ||
1525 | memset(lei, 0, sizeof (*lei)); | |
1526 | ||
1527 | lei->lei_limit = le->le_limit; | |
1528 | lei->lei_credit = le->le_credit; | |
1529 | lei->lei_debit = le->le_debit; | |
1530 | lei->lei_balance = lei->lei_credit - lei->lei_debit; | |
1531 | lei->lei_refill_period = (le->le_flags & LF_REFILL_SCHEDULED) ? | |
1532 | abstime_to_nsecs(le->_le.le_refill.le_refill_period) : 0; | |
1533 | lei->lei_last_refill = abstime_to_nsecs(now - le->_le.le_refill.le_last_refill); | |
1534 | } | |
1535 | ||
316670eb | 1536 | int |
39236c6e | 1537 | ledger_get_task_entry_info_multiple(task_t task, void **buf, int *len) |
316670eb A |
1538 | { |
1539 | struct ledger_entry_info *lei; | |
1540 | struct ledger_entry *le; | |
1541 | uint64_t now = mach_absolute_time(); | |
1542 | int i; | |
1543 | ledger_t l; | |
1544 | ||
1545 | if ((*len < 0) || ((l = task->ledger) == NULL)) | |
1546 | return (EINVAL); | |
1c79356b | 1547 | |
316670eb A |
1548 | if (*len > l->l_size) |
1549 | *len = l->l_size; | |
1550 | lei = kalloc((*len) * sizeof (struct ledger_entry_info)); | |
1551 | if (lei == NULL) | |
1552 | return (ENOMEM); | |
1553 | *buf = lei; | |
1554 | ||
1555 | le = l->l_entries; | |
1556 | ||
1557 | for (i = 0; i < *len; i++) { | |
39236c6e | 1558 | ledger_fill_entry_info(le, lei, now); |
316670eb A |
1559 | le++; |
1560 | lei++; | |
1561 | } | |
1562 | ||
1563 | return (0); | |
1564 | } | |
1565 | ||
39236c6e A |
1566 | void |
1567 | ledger_get_entry_info(ledger_t ledger, | |
1568 | int entry, | |
1569 | struct ledger_entry_info *lei) | |
1570 | { | |
1571 | uint64_t now = mach_absolute_time(); | |
1572 | ||
1573 | assert(ledger != NULL); | |
1574 | assert(lei != NULL); | |
1575 | assert(entry < ledger->l_size); | |
1576 | ||
1577 | struct ledger_entry *le = &ledger->l_entries[entry]; | |
1578 | ||
1579 | ledger_fill_entry_info(le, lei, now); | |
1580 | } | |
1581 | ||
316670eb A |
1582 | int |
1583 | ledger_info(task_t task, struct ledger_info *info) | |
1c79356b | 1584 | { |
316670eb A |
1585 | ledger_t l; |
1586 | ||
1587 | if ((l = task->ledger) == NULL) | |
1588 | return (ENOENT); | |
1c79356b | 1589 | |
316670eb | 1590 | memset(info, 0, sizeof (*info)); |
1c79356b | 1591 | |
316670eb A |
1592 | strlcpy(info->li_name, l->l_template->lt_name, LEDGER_NAME_MAX); |
1593 | info->li_id = l->l_id; | |
1594 | info->li_entries = l->l_size; | |
1595 | return (0); | |
1c79356b A |
1596 | } |
1597 | ||
316670eb A |
1598 | #ifdef LEDGER_DEBUG |
1599 | int | |
1600 | ledger_limit(task_t task, struct ledger_limit_args *args) | |
1c79356b | 1601 | { |
316670eb A |
1602 | ledger_t l; |
1603 | int64_t limit; | |
1604 | int idx; | |
1605 | ||
1606 | if ((l = task->ledger) == NULL) | |
1607 | return (EINVAL); | |
1608 | ||
1609 | idx = ledger_key_lookup(l->l_template, args->lla_name); | |
1610 | if ((idx < 0) || (idx >= l->l_size)) | |
1611 | return (EINVAL); | |
1612 | ||
1613 | /* | |
1614 | * XXX - this doesn't really seem like the right place to have | |
1615 | * a context-sensitive conversion of userspace units into kernel | |
1616 | * units. For now I'll handwave and say that the ledger() system | |
1617 | * call isn't meant for civilians to use - they should be using | |
1618 | * the process policy interfaces. | |
1619 | */ | |
1620 | if (idx == task_ledgers.cpu_time) { | |
1621 | int64_t nsecs; | |
1622 | ||
1623 | if (args->lla_refill_period) { | |
1624 | /* | |
1625 | * If a refill is scheduled, then the limit is | |
1626 | * specified as a percentage of one CPU. The | |
1627 | * syscall specifies the refill period in terms of | |
1628 | * milliseconds, so we need to convert to nsecs. | |
1629 | */ | |
1630 | args->lla_refill_period *= 1000000; | |
1631 | nsecs = args->lla_limit * | |
1632 | (args->lla_refill_period / 100); | |
1633 | lprintf(("CPU limited to %lld nsecs per second\n", | |
1634 | nsecs)); | |
1635 | } else { | |
1636 | /* | |
1637 | * If no refill is scheduled, then this is a | |
1638 | * fixed amount of CPU time (in nsecs) that can | |
1639 | * be consumed. | |
1640 | */ | |
1641 | nsecs = args->lla_limit; | |
1642 | lprintf(("CPU limited to %lld nsecs\n", nsecs)); | |
1643 | } | |
1644 | limit = nsecs_to_abstime(nsecs); | |
1645 | } else { | |
1646 | limit = args->lla_limit; | |
1647 | lprintf(("%s limited to %lld\n", args->lla_name, limit)); | |
1648 | } | |
1649 | ||
1650 | if (args->lla_refill_period > 0) | |
1651 | ledger_set_period(l, idx, args->lla_refill_period); | |
b0d623f7 | 1652 | |
316670eb A |
1653 | ledger_set_limit(l, idx, limit); |
1654 | flag_set(&l->l_entries[idx].le_flags, LEDGER_ACTION_BLOCK); | |
1655 | return (0); | |
1c79356b | 1656 | } |
316670eb | 1657 | #endif |