]>
Commit | Line | Data |
---|---|---|
9bccf70c | 1 | /* |
04b8595b | 2 | * Copyright (c) 1999-2015 Apple Inc. All rights reserved. |
9bccf70c | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
fe8ab488 | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
fe8ab488 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
fe8ab488 | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
fe8ab488 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
9bccf70c | 27 | */ |
9bccf70c A |
28 | |
29 | /* | |
91447636 A |
30 | * Kernel Control domain - allows control connections to |
31 | * and to read/write data. | |
9bccf70c | 32 | * |
91447636 | 33 | * Vincent Lubet, 040506 |
9bccf70c A |
34 | * Christophe Allie, 010928 |
35 | * Justin C. Walker, 990319 | |
36 | */ | |
37 | ||
38 | #include <sys/types.h> | |
39 | #include <sys/param.h> | |
40 | #include <sys/systm.h> | |
41 | #include <sys/syslog.h> | |
42 | #include <sys/socket.h> | |
43 | #include <sys/socketvar.h> | |
44 | #include <sys/protosw.h> | |
45 | #include <sys/domain.h> | |
46 | #include <sys/malloc.h> | |
47 | #include <sys/mbuf.h> | |
9bccf70c A |
48 | #include <sys/sys_domain.h> |
49 | #include <sys/kern_event.h> | |
50 | #include <sys/kern_control.h> | |
2d21ac55 | 51 | #include <sys/kauth.h> |
fe8ab488 | 52 | #include <sys/sysctl.h> |
9bccf70c A |
53 | #include <net/if_var.h> |
54 | ||
55 | #include <mach/vm_types.h> | |
9bccf70c A |
56 | |
57 | #include <kern/thread.h> | |
58 | ||
fe8ab488 A |
59 | #ifndef ROUNDUP64 |
60 | #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t)) | |
61 | #endif | |
62 | ||
63 | #ifndef ADVANCE64 | |
64 | #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n)) | |
65 | #endif | |
66 | ||
9bccf70c A |
67 | /* |
68 | * Definitions and vars for we support | |
69 | */ | |
70 | ||
fe8ab488 A |
71 | #define CTL_SENDSIZE (2 * 1024) /* default buffer size */ |
72 | #define CTL_RECVSIZE (8 * 1024) /* default buffer size */ | |
9bccf70c A |
73 | |
74 | /* | |
91447636 A |
75 | * Definitions and vars for we support |
76 | */ | |
9bccf70c | 77 | |
fe8ab488 | 78 | static u_int32_t ctl_maxunit = 65536; |
91447636 | 79 | static lck_grp_attr_t *ctl_lck_grp_attr = 0; |
fe8ab488 A |
80 | static lck_attr_t *ctl_lck_attr = 0; |
81 | static lck_grp_t *ctl_lck_grp = 0; | |
82 | static lck_mtx_t *ctl_mtx; | |
9bccf70c A |
83 | |
84 | /* all the controllers are chained */ | |
2d21ac55 | 85 | TAILQ_HEAD(kctl_list, kctl) ctl_head; |
91447636 | 86 | |
fe8ab488 | 87 | |
91447636 A |
88 | static int ctl_attach(struct socket *, int, struct proc *); |
89 | static int ctl_detach(struct socket *); | |
90 | static int ctl_sofreelastref(struct socket *so); | |
91 | static int ctl_connect(struct socket *, struct sockaddr *, struct proc *); | |
92 | static int ctl_disconnect(struct socket *); | |
93 | static int ctl_ioctl(struct socket *so, u_long cmd, caddr_t data, | |
fe8ab488 | 94 | struct ifnet *ifp, struct proc *p); |
91447636 | 95 | static int ctl_send(struct socket *, int, struct mbuf *, |
fe8ab488 A |
96 | struct sockaddr *, struct mbuf *, struct proc *); |
97 | static int ctl_send_list(struct socket *, int, struct mbuf *, | |
98 | struct sockaddr *, struct mbuf *, struct proc *); | |
91447636 A |
99 | static int ctl_ctloutput(struct socket *, struct sockopt *); |
100 | static int ctl_peeraddr(struct socket *so, struct sockaddr **nam); | |
39236c6e | 101 | static int ctl_usr_rcvd(struct socket *so, int flags); |
91447636 | 102 | |
91447636 A |
103 | static struct kctl *ctl_find_by_name(const char *); |
104 | static struct kctl *ctl_find_by_id_unit(u_int32_t id, u_int32_t unit); | |
9bccf70c | 105 | |
6d2010ae | 106 | static struct socket *kcb_find_socket(struct kctl *, u_int32_t unit); |
91447636 | 107 | static struct ctl_cb *kcb_find(struct kctl *, u_int32_t unit); |
b0d623f7 | 108 | static void ctl_post_msg(u_int32_t event_code, u_int32_t id); |
9bccf70c | 109 | |
b0d623f7 A |
110 | static int ctl_lock(struct socket *, int, void *); |
111 | static int ctl_unlock(struct socket *, int, void *); | |
91447636 | 112 | static lck_mtx_t * ctl_getlock(struct socket *, int); |
9bccf70c | 113 | |
39236c6e A |
114 | static struct pr_usrreqs ctl_usrreqs = { |
115 | .pru_attach = ctl_attach, | |
116 | .pru_connect = ctl_connect, | |
117 | .pru_control = ctl_ioctl, | |
118 | .pru_detach = ctl_detach, | |
119 | .pru_disconnect = ctl_disconnect, | |
120 | .pru_peeraddr = ctl_peeraddr, | |
121 | .pru_rcvd = ctl_usr_rcvd, | |
122 | .pru_send = ctl_send, | |
fe8ab488 | 123 | .pru_send_list = ctl_send_list, |
39236c6e | 124 | .pru_sosend = sosend, |
fe8ab488 | 125 | .pru_sosend_list = sosend_list, |
39236c6e | 126 | .pru_soreceive = soreceive, |
fe8ab488 | 127 | .pru_soreceive_list = soreceive_list, |
91447636 A |
128 | }; |
129 | ||
39236c6e | 130 | static struct protosw kctlsw[] = { |
91447636 | 131 | { |
fe8ab488 A |
132 | .pr_type = SOCK_DGRAM, |
133 | .pr_protocol = SYSPROTO_CONTROL, | |
134 | .pr_flags = PR_ATOMIC|PR_CONNREQUIRED|PR_PCBLOCK|PR_WANTRCVD, | |
135 | .pr_ctloutput = ctl_ctloutput, | |
136 | .pr_usrreqs = &ctl_usrreqs, | |
137 | .pr_lock = ctl_lock, | |
138 | .pr_unlock = ctl_unlock, | |
139 | .pr_getlock = ctl_getlock, | |
39236c6e | 140 | }, |
9bccf70c | 141 | { |
fe8ab488 A |
142 | .pr_type = SOCK_STREAM, |
143 | .pr_protocol = SYSPROTO_CONTROL, | |
144 | .pr_flags = PR_CONNREQUIRED|PR_PCBLOCK|PR_WANTRCVD, | |
145 | .pr_ctloutput = ctl_ctloutput, | |
146 | .pr_usrreqs = &ctl_usrreqs, | |
147 | .pr_lock = ctl_lock, | |
148 | .pr_unlock = ctl_unlock, | |
149 | .pr_getlock = ctl_getlock, | |
39236c6e | 150 | } |
9bccf70c A |
151 | }; |
152 | ||
fe8ab488 A |
153 | __private_extern__ int kctl_reg_list SYSCTL_HANDLER_ARGS; |
154 | __private_extern__ int kctl_pcblist SYSCTL_HANDLER_ARGS; | |
155 | __private_extern__ int kctl_getstat SYSCTL_HANDLER_ARGS; | |
156 | ||
39236c6e | 157 | static int kctl_proto_count = (sizeof (kctlsw) / sizeof (struct protosw)); |
91447636 | 158 | |
fe8ab488 A |
159 | SYSCTL_NODE(_net_systm, OID_AUTO, kctl, |
160 | CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Kernel control family"); | |
161 | ||
162 | struct kctlstat kctlstat; | |
163 | SYSCTL_PROC(_net_systm_kctl, OID_AUTO, stats, | |
164 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
165 | kctl_getstat, "S,kctlstat", ""); | |
166 | ||
167 | SYSCTL_PROC(_net_systm_kctl, OID_AUTO, reg_list, | |
168 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
169 | kctl_reg_list, "S,xkctl_reg", ""); | |
170 | ||
171 | SYSCTL_PROC(_net_systm_kctl, OID_AUTO, pcblist, | |
172 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
173 | kctl_pcblist, "S,xkctlpcb", ""); | |
174 | ||
175 | u_int32_t ctl_autorcvbuf_max = 256 * 1024; | |
176 | SYSCTL_INT(_net_systm_kctl, OID_AUTO, autorcvbufmax, | |
177 | CTLFLAG_RW | CTLFLAG_LOCKED, &ctl_autorcvbuf_max, 0, ""); | |
178 | ||
179 | u_int32_t ctl_autorcvbuf_high = 0; | |
180 | SYSCTL_INT(_net_systm_kctl, OID_AUTO, autorcvbufhigh, | |
181 | CTLFLAG_RD | CTLFLAG_LOCKED, &ctl_autorcvbuf_high, 0, ""); | |
182 | ||
183 | u_int32_t ctl_debug = 0; | |
184 | SYSCTL_INT(_net_systm_kctl, OID_AUTO, debug, | |
185 | CTLFLAG_RW | CTLFLAG_LOCKED, &ctl_debug, 0, ""); | |
186 | ||
9bccf70c | 187 | /* |
91447636 | 188 | * Install the protosw's for the Kernel Control manager. |
9bccf70c | 189 | */ |
39236c6e A |
190 | __private_extern__ void |
191 | kern_control_init(struct domain *dp) | |
9bccf70c | 192 | { |
39236c6e A |
193 | struct protosw *pr; |
194 | int i; | |
195 | ||
196 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); | |
197 | VERIFY(dp == systemdomain); | |
198 | ||
91447636 | 199 | ctl_lck_grp_attr = lck_grp_attr_alloc_init(); |
39236c6e A |
200 | if (ctl_lck_grp_attr == NULL) { |
201 | panic("%s: lck_grp_attr_alloc_init failed\n", __func__); | |
202 | /* NOTREACHED */ | |
91447636 | 203 | } |
39236c6e A |
204 | |
205 | ctl_lck_grp = lck_grp_alloc_init("Kernel Control Protocol", | |
206 | ctl_lck_grp_attr); | |
207 | if (ctl_lck_grp == NULL) { | |
208 | panic("%s: lck_grp_alloc_init failed\n", __func__); | |
209 | /* NOTREACHED */ | |
91447636 | 210 | } |
39236c6e | 211 | |
91447636 | 212 | ctl_lck_attr = lck_attr_alloc_init(); |
39236c6e A |
213 | if (ctl_lck_attr == NULL) { |
214 | panic("%s: lck_attr_alloc_init failed\n", __func__); | |
215 | /* NOTREACHED */ | |
91447636 | 216 | } |
39236c6e | 217 | |
91447636 | 218 | ctl_mtx = lck_mtx_alloc_init(ctl_lck_grp, ctl_lck_attr); |
39236c6e A |
219 | if (ctl_mtx == NULL) { |
220 | panic("%s: lck_mtx_alloc_init failed\n", __func__); | |
221 | /* NOTREACHED */ | |
91447636 A |
222 | } |
223 | TAILQ_INIT(&ctl_head); | |
39236c6e A |
224 | |
225 | for (i = 0, pr = &kctlsw[0]; i < kctl_proto_count; i++, pr++) | |
226 | net_add_proto(pr, dp, 1); | |
91447636 | 227 | } |
9bccf70c | 228 | |
91447636 A |
229 | static void |
230 | kcb_delete(struct ctl_cb *kcb) | |
231 | { | |
232 | if (kcb != 0) { | |
233 | if (kcb->mtx != 0) | |
234 | lck_mtx_free(kcb->mtx, ctl_lck_grp); | |
235 | FREE(kcb, M_TEMP); | |
236 | } | |
9bccf70c A |
237 | } |
238 | ||
9bccf70c A |
239 | /* |
240 | * Kernel Controller user-request functions | |
fe8ab488 A |
241 | * attach function must exist and succeed |
242 | * detach not necessary | |
91447636 | 243 | * we need a pcb for the per socket mutex |
9bccf70c | 244 | */ |
91447636 | 245 | static int |
fe8ab488 A |
246 | ctl_attach(struct socket *so, int proto, struct proc *p) |
247 | { | |
248 | #pragma unused(proto, p) | |
91447636 A |
249 | int error = 0; |
250 | struct ctl_cb *kcb = 0; | |
251 | ||
252 | MALLOC(kcb, struct ctl_cb *, sizeof(struct ctl_cb), M_TEMP, M_WAITOK); | |
253 | if (kcb == NULL) { | |
254 | error = ENOMEM; | |
255 | goto quit; | |
256 | } | |
257 | bzero(kcb, sizeof(struct ctl_cb)); | |
fe8ab488 | 258 | |
91447636 A |
259 | kcb->mtx = lck_mtx_alloc_init(ctl_lck_grp, ctl_lck_attr); |
260 | if (kcb->mtx == NULL) { | |
261 | error = ENOMEM; | |
262 | goto quit; | |
263 | } | |
264 | kcb->so = so; | |
265 | so->so_pcb = (caddr_t)kcb; | |
fe8ab488 | 266 | |
91447636 A |
267 | quit: |
268 | if (error != 0) { | |
269 | kcb_delete(kcb); | |
270 | kcb = 0; | |
271 | } | |
fe8ab488 | 272 | return (error); |
91447636 A |
273 | } |
274 | ||
275 | static int | |
276 | ctl_sofreelastref(struct socket *so) | |
277 | { | |
fe8ab488 A |
278 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; |
279 | ||
280 | so->so_pcb = 0; | |
281 | ||
282 | if (kcb != 0) { | |
283 | struct kctl *kctl; | |
284 | if ((kctl = kcb->kctl) != 0) { | |
285 | lck_mtx_lock(ctl_mtx); | |
286 | TAILQ_REMOVE(&kctl->kcb_head, kcb, next); | |
287 | kctlstat.kcs_pcbcount--; | |
288 | kctlstat.kcs_gencnt++; | |
289 | lck_mtx_unlock(ctl_mtx); | |
290 | } | |
291 | kcb_delete(kcb); | |
292 | } | |
293 | sofreelastref(so, 1); | |
294 | return (0); | |
91447636 A |
295 | } |
296 | ||
297 | static int | |
298 | ctl_detach(struct socket *so) | |
299 | { | |
fe8ab488 A |
300 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; |
301 | ||
302 | if (kcb == 0) | |
303 | return (0); | |
304 | ||
305 | soisdisconnected(so); | |
306 | so->so_flags |= SOF_PCBCLEARING; | |
307 | return (0); | |
9bccf70c A |
308 | } |
309 | ||
91447636 A |
310 | |
311 | static int | |
fe8ab488 A |
312 | ctl_connect(struct socket *so, struct sockaddr *nam, struct proc *p) |
313 | { | |
314 | #pragma unused(p) | |
315 | struct kctl *kctl; | |
316 | int error = 0; | |
317 | struct sockaddr_ctl sa; | |
318 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
319 | struct ctl_cb *kcb_next = NULL; | |
04b8595b A |
320 | u_quad_t sbmaxsize; |
321 | u_int32_t recvbufsize, sendbufsize; | |
fe8ab488 A |
322 | |
323 | if (kcb == 0) | |
324 | panic("ctl_connect so_pcb null\n"); | |
325 | ||
326 | if (nam->sa_len != sizeof(struct sockaddr_ctl)) | |
327 | return (EINVAL); | |
328 | ||
329 | bcopy(nam, &sa, sizeof(struct sockaddr_ctl)); | |
330 | ||
331 | lck_mtx_lock(ctl_mtx); | |
332 | kctl = ctl_find_by_id_unit(sa.sc_id, sa.sc_unit); | |
333 | if (kctl == NULL) { | |
334 | lck_mtx_unlock(ctl_mtx); | |
335 | return (ENOENT); | |
336 | } | |
337 | ||
338 | if (((kctl->flags & CTL_FLAG_REG_SOCK_STREAM) && | |
339 | (so->so_type != SOCK_STREAM)) || | |
340 | (!(kctl->flags & CTL_FLAG_REG_SOCK_STREAM) && | |
341 | (so->so_type != SOCK_DGRAM))) { | |
342 | lck_mtx_unlock(ctl_mtx); | |
343 | return (EPROTOTYPE); | |
344 | } | |
345 | ||
346 | if (kctl->flags & CTL_FLAG_PRIVILEGED) { | |
347 | if (p == 0) { | |
348 | lck_mtx_unlock(ctl_mtx); | |
349 | return (EINVAL); | |
350 | } | |
351 | if (kauth_cred_issuser(kauth_cred_get()) == 0) { | |
352 | lck_mtx_unlock(ctl_mtx); | |
353 | return (EPERM); | |
354 | } | |
355 | } | |
91447636 A |
356 | |
357 | if ((kctl->flags & CTL_FLAG_REG_ID_UNIT) || sa.sc_unit != 0) { | |
358 | if (kcb_find(kctl, sa.sc_unit) != NULL) { | |
359 | lck_mtx_unlock(ctl_mtx); | |
fe8ab488 | 360 | return (EBUSY); |
91447636 A |
361 | } |
362 | } else { | |
fe8ab488 A |
363 | /* Find an unused ID, assumes control IDs are in order */ |
364 | u_int32_t unit = 1; | |
365 | ||
366 | TAILQ_FOREACH(kcb_next, &kctl->kcb_head, next) { | |
367 | if (kcb_next->unit > unit) { | |
368 | /* Found a gap, lets fill it in */ | |
369 | break; | |
370 | } | |
371 | unit = kcb_next->unit + 1; | |
372 | if (unit == ctl_maxunit) | |
373 | break; | |
374 | } | |
375 | ||
2d21ac55 A |
376 | if (unit == ctl_maxunit) { |
377 | lck_mtx_unlock(ctl_mtx); | |
fe8ab488 | 378 | return (EBUSY); |
2d21ac55 | 379 | } |
fe8ab488 | 380 | |
2d21ac55 | 381 | sa.sc_unit = unit; |
fe8ab488 | 382 | } |
55e303ae | 383 | |
91447636 | 384 | kcb->unit = sa.sc_unit; |
fe8ab488 A |
385 | kcb->kctl = kctl; |
386 | if (kcb_next != NULL) { | |
387 | TAILQ_INSERT_BEFORE(kcb_next, kcb, next); | |
388 | } else { | |
2d21ac55 A |
389 | TAILQ_INSERT_TAIL(&kctl->kcb_head, kcb, next); |
390 | } | |
fe8ab488 A |
391 | kctlstat.kcs_pcbcount++; |
392 | kctlstat.kcs_gencnt++; | |
393 | kctlstat.kcs_connections++; | |
394 | lck_mtx_unlock(ctl_mtx); | |
9bccf70c | 395 | |
04b8595b A |
396 | /* |
397 | * rdar://15526688: Limit the send and receive sizes to sb_max | |
398 | * by using the same scaling as sbreserve() | |
399 | */ | |
400 | sbmaxsize = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); | |
401 | ||
402 | if (kctl->sendbufsize > sbmaxsize) | |
403 | sendbufsize = sbmaxsize; | |
404 | else | |
405 | sendbufsize = kctl->sendbufsize; | |
406 | ||
407 | if (kctl->recvbufsize > sbmaxsize) | |
408 | recvbufsize = sbmaxsize; | |
409 | else | |
410 | recvbufsize = kctl->recvbufsize; | |
411 | ||
412 | error = soreserve(so, sendbufsize, recvbufsize); | |
fe8ab488 A |
413 | if (error) { |
414 | printf("%s - soreserve(%llx, %u, %u) error %d\n", __func__, | |
415 | (uint64_t)VM_KERNEL_ADDRPERM(so), | |
04b8595b | 416 | sendbufsize, recvbufsize, error); |
91447636 | 417 | goto done; |
fe8ab488 A |
418 | } |
419 | soisconnecting(so); | |
420 | ||
91447636 | 421 | socket_unlock(so, 0); |
fe8ab488 | 422 | error = (*kctl->connect)(kctl, &sa, &kcb->userdata); |
91447636 | 423 | socket_lock(so, 0); |
fe8ab488 | 424 | if (error) |
6d2010ae | 425 | goto end; |
fe8ab488 A |
426 | |
427 | soisconnected(so); | |
91447636 | 428 | |
6d2010ae A |
429 | end: |
430 | if (error && kctl->disconnect) { | |
431 | socket_unlock(so, 0); | |
432 | (*kctl->disconnect)(kctl, kcb->unit, kcb->userdata); | |
433 | socket_lock(so, 0); | |
434 | } | |
91447636 | 435 | done: |
fe8ab488 A |
436 | if (error) { |
437 | soisdisconnected(so); | |
438 | lck_mtx_lock(ctl_mtx); | |
439 | kcb->kctl = 0; | |
440 | kcb->unit = 0; | |
441 | TAILQ_REMOVE(&kctl->kcb_head, kcb, next); | |
442 | kctlstat.kcs_pcbcount--; | |
443 | kctlstat.kcs_gencnt++; | |
444 | kctlstat.kcs_conn_fail++; | |
445 | lck_mtx_unlock(ctl_mtx); | |
446 | } | |
447 | return (error); | |
9bccf70c A |
448 | } |
449 | ||
91447636 | 450 | static int |
9bccf70c A |
451 | ctl_disconnect(struct socket *so) |
452 | { | |
fe8ab488 A |
453 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; |
454 | ||
455 | if ((kcb = (struct ctl_cb *)so->so_pcb)) { | |
456 | struct kctl *kctl = kcb->kctl; | |
457 | ||
458 | if (kctl && kctl->disconnect) { | |
459 | socket_unlock(so, 0); | |
460 | (*kctl->disconnect)(kctl, kcb->unit, kcb->userdata); | |
461 | socket_lock(so, 0); | |
462 | } | |
463 | ||
464 | soisdisconnected(so); | |
465 | ||
6d2010ae | 466 | socket_unlock(so, 0); |
fe8ab488 A |
467 | lck_mtx_lock(ctl_mtx); |
468 | kcb->kctl = 0; | |
469 | kcb->unit = 0; | |
470 | while (kcb->usecount != 0) { | |
471 | msleep(&kcb->usecount, ctl_mtx, 0, "kcb->usecount", 0); | |
472 | } | |
473 | TAILQ_REMOVE(&kctl->kcb_head, kcb, next); | |
474 | kctlstat.kcs_pcbcount--; | |
475 | kctlstat.kcs_gencnt++; | |
476 | lck_mtx_unlock(ctl_mtx); | |
6d2010ae | 477 | socket_lock(so, 0); |
fe8ab488 A |
478 | } |
479 | return (0); | |
9bccf70c A |
480 | } |
481 | ||
91447636 A |
482 | static int |
483 | ctl_peeraddr(struct socket *so, struct sockaddr **nam) | |
9bccf70c | 484 | { |
91447636 A |
485 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; |
486 | struct kctl *kctl; | |
487 | struct sockaddr_ctl sc; | |
fe8ab488 | 488 | |
91447636 | 489 | if (kcb == NULL) /* sanity check */ |
fe8ab488 A |
490 | return (ENOTCONN); |
491 | ||
91447636 | 492 | if ((kctl = kcb->kctl) == NULL) |
fe8ab488 A |
493 | return (EINVAL); |
494 | ||
91447636 A |
495 | bzero(&sc, sizeof(struct sockaddr_ctl)); |
496 | sc.sc_len = sizeof(struct sockaddr_ctl); | |
497 | sc.sc_family = AF_SYSTEM; | |
498 | sc.ss_sysaddr = AF_SYS_CONTROL; | |
499 | sc.sc_id = kctl->id; | |
500 | sc.sc_unit = kcb->unit; | |
fe8ab488 | 501 | |
91447636 | 502 | *nam = dup_sockaddr((struct sockaddr *)&sc, 1); |
fe8ab488 A |
503 | |
504 | return (0); | |
505 | } | |
506 | ||
507 | static void | |
508 | ctl_sbrcv_trim(struct socket *so) | |
509 | { | |
510 | struct sockbuf *sb = &so->so_rcv; | |
511 | ||
512 | if (sb->sb_hiwat > sb->sb_idealsize) { | |
513 | u_int32_t diff; | |
514 | int32_t trim; | |
515 | ||
516 | /* | |
517 | * The difference between the ideal size and the | |
518 | * current size is the upper bound of the trimage | |
519 | */ | |
520 | diff = sb->sb_hiwat - sb->sb_idealsize; | |
521 | /* | |
522 | * We cannot trim below the outstanding data | |
523 | */ | |
524 | trim = sb->sb_hiwat - sb->sb_cc; | |
525 | ||
526 | trim = imin(trim, (int32_t)diff); | |
527 | ||
528 | if (trim > 0) { | |
529 | sbreserve(sb, (sb->sb_hiwat - trim)); | |
530 | ||
531 | if (ctl_debug) | |
532 | printf("%s - shrunk to %d\n", | |
533 | __func__, sb->sb_hiwat); | |
534 | } | |
535 | } | |
9bccf70c A |
536 | } |
537 | ||
39236c6e A |
538 | static int |
539 | ctl_usr_rcvd(struct socket *so, int flags) | |
540 | { | |
541 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
542 | struct kctl *kctl; | |
543 | ||
544 | if ((kctl = kcb->kctl) == NULL) { | |
fe8ab488 | 545 | return (EINVAL); |
39236c6e A |
546 | } |
547 | ||
548 | if (kctl->rcvd) { | |
549 | socket_unlock(so, 0); | |
550 | (*kctl->rcvd)(kctl, kcb->unit, kcb->userdata, flags); | |
551 | socket_lock(so, 0); | |
552 | } | |
553 | ||
fe8ab488 A |
554 | ctl_sbrcv_trim(so); |
555 | ||
556 | return (0); | |
39236c6e A |
557 | } |
558 | ||
91447636 A |
559 | static int |
560 | ctl_send(struct socket *so, int flags, struct mbuf *m, | |
fe8ab488 A |
561 | struct sockaddr *addr, struct mbuf *control, |
562 | struct proc *p) | |
9bccf70c | 563 | { |
fe8ab488 A |
564 | #pragma unused(addr, p) |
565 | int error = 0; | |
91447636 | 566 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; |
fe8ab488 A |
567 | struct kctl *kctl; |
568 | ||
569 | if (control) | |
570 | m_freem(control); | |
571 | ||
91447636 | 572 | if (kcb == NULL) /* sanity check */ |
6d2010ae | 573 | error = ENOTCONN; |
fe8ab488 | 574 | |
6d2010ae A |
575 | if (error == 0 && (kctl = kcb->kctl) == NULL) |
576 | error = EINVAL; | |
fe8ab488 | 577 | |
6d2010ae | 578 | if (error == 0 && kctl->send) { |
fe8ab488 | 579 | so_tc_update_stats(m, so, m_get_service_class(m)); |
91447636 A |
580 | socket_unlock(so, 0); |
581 | error = (*kctl->send)(kctl, kcb->unit, kcb->userdata, m, flags); | |
582 | socket_lock(so, 0); | |
6d2010ae A |
583 | } else { |
584 | m_freem(m); | |
585 | if (error == 0) | |
586 | error = ENOTSUP; | |
91447636 | 587 | } |
fe8ab488 A |
588 | if (error != 0) |
589 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_send_fail); | |
590 | return (error); | |
591 | } | |
592 | ||
593 | static int | |
594 | ctl_send_list(struct socket *so, int flags, struct mbuf *m, | |
595 | __unused struct sockaddr *addr, struct mbuf *control, | |
596 | __unused struct proc *p) | |
597 | { | |
598 | int error = 0; | |
599 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
600 | struct kctl *kctl; | |
601 | ||
602 | if (control) | |
603 | m_freem_list(control); | |
604 | ||
605 | if (kcb == NULL) /* sanity check */ | |
606 | error = ENOTCONN; | |
607 | ||
608 | if (error == 0 && (kctl = kcb->kctl) == NULL) | |
609 | error = EINVAL; | |
610 | ||
611 | if (error == 0 && kctl->send_list) { | |
612 | struct mbuf *nxt; | |
613 | ||
614 | for (nxt = m; nxt != NULL; nxt = nxt->m_nextpkt) | |
615 | so_tc_update_stats(nxt, so, m_get_service_class(nxt)); | |
616 | ||
617 | socket_unlock(so, 0); | |
618 | error = (*kctl->send_list)(kctl, kcb->unit, kcb->userdata, m, | |
619 | flags); | |
620 | socket_lock(so, 0); | |
621 | } else if (error == 0 && kctl->send) { | |
622 | while (m != NULL && error == 0) { | |
623 | struct mbuf *nextpkt = m->m_nextpkt; | |
624 | ||
625 | m->m_nextpkt = NULL; | |
626 | so_tc_update_stats(m, so, m_get_service_class(m)); | |
627 | socket_unlock(so, 0); | |
628 | error = (*kctl->send)(kctl, kcb->unit, kcb->userdata, m, | |
629 | flags); | |
630 | socket_lock(so, 0); | |
631 | m = nextpkt; | |
632 | } | |
633 | if (m != NULL) | |
634 | m_freem_list(m); | |
635 | } else { | |
636 | m_freem_list(m); | |
637 | if (error == 0) | |
638 | error = ENOTSUP; | |
639 | } | |
640 | if (error != 0) | |
641 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_send_list_fail); | |
642 | return (error); | |
643 | } | |
644 | ||
645 | static errno_t | |
646 | ctl_rcvbspace(struct kctl *kctl, struct socket *so, u_int32_t datasize, | |
647 | u_int32_t flags) | |
648 | { | |
649 | struct sockbuf *sb = &so->so_rcv; | |
650 | u_int32_t space = sbspace(sb); | |
651 | errno_t error; | |
04b8595b | 652 | |
fe8ab488 A |
653 | if ((kctl->flags & CTL_FLAG_REG_CRIT) == 0) { |
654 | if ((u_int32_t) space >= datasize) | |
655 | error = 0; | |
656 | else | |
657 | error = ENOBUFS; | |
658 | } else if ((flags & CTL_DATA_CRIT) == 0) { | |
659 | /* | |
660 | * Reserve 25% for critical messages | |
661 | */ | |
662 | if (space < (sb->sb_hiwat >> 2) || | |
663 | space < datasize) | |
664 | error = ENOBUFS; | |
665 | else | |
666 | error = 0; | |
667 | } else { | |
668 | u_int32_t autorcvbuf_max; | |
669 | ||
670 | /* | |
671 | * Allow overcommit of 25% | |
672 | */ | |
673 | autorcvbuf_max = min(sb->sb_idealsize + (sb->sb_idealsize >> 2), | |
674 | ctl_autorcvbuf_max); | |
675 | ||
676 | if ((u_int32_t) space >= datasize) { | |
677 | error = 0; | |
678 | } else if (tcp_cansbgrow(sb) && | |
679 | sb->sb_hiwat < autorcvbuf_max) { | |
680 | /* | |
681 | * Grow with a little bit of leeway | |
682 | */ | |
683 | u_int32_t grow = datasize - space + MSIZE; | |
684 | ||
685 | if (sbreserve(sb, | |
686 | min((sb->sb_hiwat + grow), autorcvbuf_max)) == 1) { | |
687 | ||
688 | if (sb->sb_hiwat > ctl_autorcvbuf_high) | |
689 | ctl_autorcvbuf_high = sb->sb_hiwat; | |
690 | ||
691 | if (ctl_debug) | |
692 | printf("%s - grown to %d\n", | |
693 | __func__, sb->sb_hiwat); | |
694 | error = 0; | |
695 | } else { | |
696 | error = ENOBUFS; | |
697 | } | |
698 | } else { | |
699 | error = ENOBUFS; | |
700 | } | |
701 | } | |
702 | return (error); | |
9bccf70c A |
703 | } |
704 | ||
91447636 A |
705 | errno_t |
706 | ctl_enqueuembuf(void *kctlref, u_int32_t unit, struct mbuf *m, u_int32_t flags) | |
9bccf70c | 707 | { |
91447636 | 708 | struct socket *so; |
fe8ab488 A |
709 | errno_t error = 0; |
710 | struct kctl *kctl = (struct kctl *)kctlref; | |
711 | int len = m->m_pkthdr.len; | |
712 | ||
91447636 | 713 | if (kctl == NULL) |
fe8ab488 A |
714 | return (EINVAL); |
715 | ||
6d2010ae | 716 | so = kcb_find_socket(kctl, unit); |
fe8ab488 | 717 | |
6d2010ae | 718 | if (so == NULL) |
fe8ab488 A |
719 | return (EINVAL); |
720 | ||
721 | if (ctl_rcvbspace(kctl, so, len, flags) != 0) { | |
91447636 | 722 | error = ENOBUFS; |
fe8ab488 | 723 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock); |
91447636 A |
724 | goto bye; |
725 | } | |
726 | if ((flags & CTL_DATA_EOR)) | |
727 | m->m_flags |= M_EOR; | |
fe8ab488 A |
728 | |
729 | so_recv_data_stat(so, m, 0); | |
730 | if (sbappend(&so->so_rcv, m) != 0) { | |
731 | if ((flags & CTL_DATA_NOWAKEUP) == 0) | |
732 | sorwakeup(so); | |
733 | } else { | |
734 | error = ENOBUFS; | |
735 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
736 | } | |
91447636 | 737 | bye: |
fe8ab488 A |
738 | if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) |
739 | printf("%s - crit data err %d len %d hiwat %d cc: %d\n", | |
740 | __func__, error, len, | |
741 | so->so_rcv.sb_hiwat, so->so_rcv.sb_cc); | |
742 | ||
91447636 | 743 | socket_unlock(so, 1); |
fe8ab488 A |
744 | if (error != 0) |
745 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail); | |
746 | ||
747 | return (error); | |
748 | } | |
749 | ||
750 | /* | |
751 | * Compute space occupied by mbuf like sbappendrecord | |
752 | */ | |
753 | static int | |
754 | m_space(struct mbuf *m) | |
755 | { | |
756 | int space = 0; | |
757 | struct mbuf *nxt; | |
758 | ||
759 | for (nxt = m; nxt != NULL; nxt = nxt->m_next) | |
760 | space += nxt->m_len; | |
761 | ||
762 | return (space); | |
763 | } | |
764 | ||
765 | errno_t | |
766 | ctl_enqueuembuf_list(void *kctlref, u_int32_t unit, struct mbuf *m_list, | |
767 | u_int32_t flags, struct mbuf **m_remain) | |
768 | { | |
769 | struct socket *so = NULL; | |
770 | errno_t error = 0; | |
771 | struct kctl *kctl = (struct kctl *)kctlref; | |
772 | struct mbuf *m, *nextpkt; | |
773 | int needwakeup = 0; | |
774 | int len; | |
775 | ||
776 | /* | |
777 | * Need to point the beginning of the list in case of early exit | |
778 | */ | |
779 | m = m_list; | |
780 | ||
781 | if (kctl == NULL) { | |
782 | error = EINVAL; | |
783 | goto done; | |
784 | } | |
785 | if (kctl->flags & CTL_FLAG_REG_SOCK_STREAM) { | |
786 | error = EOPNOTSUPP; | |
787 | goto done; | |
788 | } | |
789 | if (flags & CTL_DATA_EOR) { | |
790 | error = EINVAL; | |
791 | goto done; | |
792 | } | |
793 | /* | |
794 | * kcb_find_socket takes the socket lock with a reference | |
795 | */ | |
796 | so = kcb_find_socket(kctl, unit); | |
797 | if (so == NULL) { | |
798 | error = EINVAL; | |
799 | goto done; | |
800 | } | |
801 | ||
802 | for (m = m_list; m != NULL; m = nextpkt) { | |
803 | nextpkt = m->m_nextpkt; | |
804 | ||
805 | if (m->m_pkthdr.len == 0) | |
806 | printf("%s: %llx m_pkthdr.len is 0", | |
807 | __func__, (uint64_t)VM_KERNEL_ADDRPERM(m)); | |
808 | ||
809 | /* | |
810 | * The mbuf is either appended or freed by sbappendrecord() | |
811 | * so it's not reliable from a data standpoint | |
812 | */ | |
813 | len = m_space(m); | |
814 | if (ctl_rcvbspace(kctl, so, len, flags) != 0) { | |
815 | error = ENOBUFS; | |
816 | OSIncrementAtomic64( | |
817 | (SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
818 | break; | |
819 | } else { | |
820 | /* | |
821 | * Unlink from the list, m is on its own | |
822 | */ | |
823 | m->m_nextpkt = NULL; | |
824 | so_recv_data_stat(so, m, 0); | |
825 | if (sbappendrecord(&so->so_rcv, m) != 0) { | |
826 | needwakeup = 1; | |
827 | } else { | |
828 | /* | |
829 | * We free or return the remaining | |
830 | * mbufs in the list | |
831 | */ | |
832 | m = nextpkt; | |
833 | error = ENOBUFS; | |
834 | OSIncrementAtomic64( | |
835 | (SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
836 | break; | |
837 | } | |
838 | } | |
839 | } | |
840 | if (needwakeup && (flags & CTL_DATA_NOWAKEUP) == 0) | |
841 | sorwakeup(so); | |
842 | ||
843 | done: | |
844 | if (so != NULL) { | |
845 | if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) | |
846 | printf("%s - crit data err %d len %d hiwat %d cc: %d\n", | |
847 | __func__, error, len, | |
848 | so->so_rcv.sb_hiwat, so->so_rcv.sb_cc); | |
849 | ||
850 | socket_unlock(so, 1); | |
851 | } | |
852 | if (m_remain) { | |
853 | *m_remain = m; | |
854 | ||
855 | if (m != NULL && socket_debug && so != NULL && | |
856 | (so->so_options & SO_DEBUG)) { | |
857 | struct mbuf *n; | |
858 | ||
859 | printf("%s m_list %llx\n", __func__, | |
860 | (uint64_t) VM_KERNEL_ADDRPERM(m_list)); | |
861 | for (n = m; n != NULL; n = n->m_nextpkt) | |
862 | printf(" remain %llx m_next %llx\n", | |
863 | (uint64_t) VM_KERNEL_ADDRPERM(n), | |
864 | (uint64_t) VM_KERNEL_ADDRPERM(n->m_next)); | |
865 | } | |
866 | } else { | |
867 | if (m != NULL) | |
868 | m_freem_list(m); | |
869 | } | |
870 | if (error != 0) | |
871 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail); | |
872 | return (error); | |
91447636 | 873 | } |
9bccf70c | 874 | |
91447636 | 875 | errno_t |
fe8ab488 A |
876 | ctl_enqueuedata(void *kctlref, u_int32_t unit, void *data, size_t len, |
877 | u_int32_t flags) | |
91447636 | 878 | { |
91447636 A |
879 | struct socket *so; |
880 | struct mbuf *m; | |
fe8ab488 A |
881 | errno_t error = 0; |
882 | struct kctl *kctl = (struct kctl *)kctlref; | |
91447636 A |
883 | unsigned int num_needed; |
884 | struct mbuf *n; | |
fe8ab488 A |
885 | size_t curlen = 0; |
886 | ||
91447636 | 887 | if (kctlref == NULL) |
fe8ab488 A |
888 | return (EINVAL); |
889 | ||
6d2010ae A |
890 | so = kcb_find_socket(kctl, unit); |
891 | if (so == NULL) | |
fe8ab488 A |
892 | return (EINVAL); |
893 | ||
894 | if (ctl_rcvbspace(kctl, so, len, flags) != 0) { | |
91447636 | 895 | error = ENOBUFS; |
fe8ab488 | 896 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock); |
91447636 A |
897 | goto bye; |
898 | } | |
899 | ||
900 | num_needed = 1; | |
901 | m = m_allocpacket_internal(&num_needed, len, NULL, M_NOWAIT, 1, 0); | |
902 | if (m == NULL) { | |
fe8ab488 A |
903 | printf("ctl_enqueuedata: m_allocpacket_internal(%lu) failed\n", |
904 | len); | |
905 | error = ENOMEM; | |
91447636 A |
906 | goto bye; |
907 | } | |
fe8ab488 | 908 | |
91447636 A |
909 | for (n = m; n != NULL; n = n->m_next) { |
910 | size_t mlen = mbuf_maxlen(n); | |
fe8ab488 | 911 | |
91447636 A |
912 | if (mlen + curlen > len) |
913 | mlen = len - curlen; | |
914 | n->m_len = mlen; | |
915 | bcopy((char *)data + curlen, n->m_data, mlen); | |
916 | curlen += mlen; | |
917 | } | |
918 | mbuf_pkthdr_setlen(m, curlen); | |
919 | ||
920 | if ((flags & CTL_DATA_EOR)) | |
921 | m->m_flags |= M_EOR; | |
fe8ab488 A |
922 | so_recv_data_stat(so, m, 0); |
923 | if (sbappend(&so->so_rcv, m) != 0) { | |
924 | if ((flags & CTL_DATA_NOWAKEUP) == 0) | |
925 | sorwakeup(so); | |
926 | } else { | |
927 | error = ENOBUFS; | |
928 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
929 | } | |
930 | ||
91447636 | 931 | bye: |
fe8ab488 A |
932 | if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) |
933 | printf("%s - crit data err %d len %d hiwat %d cc: %d\n", | |
934 | __func__, error, (int)len, | |
935 | so->so_rcv.sb_hiwat, so->so_rcv.sb_cc); | |
936 | ||
91447636 | 937 | socket_unlock(so, 1); |
fe8ab488 A |
938 | if (error != 0) |
939 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail); | |
940 | return (error); | |
91447636 | 941 | } |
9bccf70c | 942 | |
55e303ae | 943 | |
fe8ab488 | 944 | errno_t |
91447636 A |
945 | ctl_getenqueuespace(kern_ctl_ref kctlref, u_int32_t unit, size_t *space) |
946 | { | |
91447636 A |
947 | struct kctl *kctl = (struct kctl *)kctlref; |
948 | struct socket *so; | |
2d21ac55 | 949 | long avail; |
fe8ab488 | 950 | |
91447636 | 951 | if (kctlref == NULL || space == NULL) |
fe8ab488 A |
952 | return (EINVAL); |
953 | ||
6d2010ae A |
954 | so = kcb_find_socket(kctl, unit); |
955 | if (so == NULL) | |
fe8ab488 A |
956 | return (EINVAL); |
957 | ||
2d21ac55 A |
958 | avail = sbspace(&so->so_rcv); |
959 | *space = (avail < 0) ? 0 : avail; | |
91447636 | 960 | socket_unlock(so, 1); |
fe8ab488 A |
961 | |
962 | return (0); | |
963 | } | |
964 | ||
965 | errno_t | |
966 | ctl_getenqueuereadable(kern_ctl_ref kctlref, u_int32_t unit, | |
967 | u_int32_t *difference) | |
968 | { | |
969 | struct kctl *kctl = (struct kctl *)kctlref; | |
970 | struct socket *so; | |
971 | ||
972 | if (kctlref == NULL || difference == NULL) | |
973 | return (EINVAL); | |
974 | ||
975 | so = kcb_find_socket(kctl, unit); | |
976 | if (so == NULL) | |
977 | return (EINVAL); | |
978 | ||
979 | if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat) { | |
980 | *difference = 0; | |
981 | } else { | |
982 | *difference = (so->so_rcv.sb_lowat - so->so_rcv.sb_cc); | |
983 | } | |
984 | socket_unlock(so, 1); | |
985 | ||
986 | return (0); | |
9bccf70c A |
987 | } |
988 | ||
91447636 | 989 | static int |
9bccf70c A |
990 | ctl_ctloutput(struct socket *so, struct sockopt *sopt) |
991 | { | |
91447636 A |
992 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; |
993 | struct kctl *kctl; | |
994 | int error = 0; | |
995 | void *data; | |
996 | size_t len; | |
fe8ab488 | 997 | |
91447636 | 998 | if (sopt->sopt_level != SYSPROTO_CONTROL) { |
fe8ab488 | 999 | return (EINVAL); |
91447636 | 1000 | } |
fe8ab488 | 1001 | |
91447636 | 1002 | if (kcb == NULL) /* sanity check */ |
fe8ab488 A |
1003 | return (ENOTCONN); |
1004 | ||
91447636 | 1005 | if ((kctl = kcb->kctl) == NULL) |
fe8ab488 A |
1006 | return (EINVAL); |
1007 | ||
91447636 A |
1008 | switch (sopt->sopt_dir) { |
1009 | case SOPT_SET: | |
1010 | if (kctl->setopt == NULL) | |
fe8ab488 | 1011 | return (ENOTSUP); |
2d21ac55 A |
1012 | if (sopt->sopt_valsize == 0) { |
1013 | data = NULL; | |
1014 | } else { | |
fe8ab488 A |
1015 | MALLOC(data, void *, sopt->sopt_valsize, M_TEMP, |
1016 | M_WAITOK); | |
2d21ac55 | 1017 | if (data == NULL) |
fe8ab488 A |
1018 | return (ENOMEM); |
1019 | error = sooptcopyin(sopt, data, | |
1020 | sopt->sopt_valsize, | |
1021 | sopt->sopt_valsize); | |
2d21ac55 | 1022 | } |
91447636 A |
1023 | if (error == 0) { |
1024 | socket_unlock(so, 0); | |
fe8ab488 A |
1025 | error = (*kctl->setopt)(kcb->kctl, kcb->unit, |
1026 | kcb->userdata, | |
1027 | sopt->sopt_name, | |
1028 | data, | |
1029 | sopt->sopt_valsize); | |
91447636 A |
1030 | socket_lock(so, 0); |
1031 | } | |
1032 | FREE(data, M_TEMP); | |
1033 | break; | |
fe8ab488 | 1034 | |
91447636 A |
1035 | case SOPT_GET: |
1036 | if (kctl->getopt == NULL) | |
fe8ab488 | 1037 | return (ENOTSUP); |
91447636 A |
1038 | data = NULL; |
1039 | if (sopt->sopt_valsize && sopt->sopt_val) { | |
fe8ab488 A |
1040 | MALLOC(data, void *, sopt->sopt_valsize, M_TEMP, |
1041 | M_WAITOK); | |
91447636 | 1042 | if (data == NULL) |
fe8ab488 A |
1043 | return (ENOMEM); |
1044 | /* | |
1045 | * 4108337 - copy user data in case the | |
1046 | * kernel control needs it | |
1047 | */ | |
1048 | error = sooptcopyin(sopt, data, | |
1049 | sopt->sopt_valsize, sopt->sopt_valsize); | |
91447636 A |
1050 | } |
1051 | len = sopt->sopt_valsize; | |
1052 | socket_unlock(so, 0); | |
fe8ab488 A |
1053 | error = (*kctl->getopt)(kcb->kctl, kcb->unit, |
1054 | kcb->userdata, sopt->sopt_name, | |
91447636 | 1055 | data, &len); |
6d2010ae | 1056 | if (data != NULL && len > sopt->sopt_valsize) |
fe8ab488 A |
1057 | panic_plain("ctl_ctloutput: ctl %s returned " |
1058 | "len (%lu) > sopt_valsize (%lu)\n", | |
1059 | kcb->kctl->name, len, | |
1060 | sopt->sopt_valsize); | |
1061 | socket_lock(so, 0); | |
91447636 A |
1062 | if (error == 0) { |
1063 | if (data != NULL) | |
1064 | error = sooptcopyout(sopt, data, len); | |
fe8ab488 | 1065 | else |
91447636 A |
1066 | sopt->sopt_valsize = len; |
1067 | } | |
1068 | if (data != NULL) | |
fe8ab488 | 1069 | FREE(data, M_TEMP); |
91447636 A |
1070 | break; |
1071 | } | |
fe8ab488 | 1072 | return (error); |
91447636 | 1073 | } |
9bccf70c | 1074 | |
fe8ab488 A |
1075 | static int |
1076 | ctl_ioctl(struct socket *so, u_long cmd, caddr_t data, | |
1077 | struct ifnet *ifp, struct proc *p) | |
91447636 | 1078 | { |
fe8ab488 | 1079 | #pragma unused(so, ifp, p) |
91447636 | 1080 | int error = ENOTSUP; |
fe8ab488 | 1081 | |
91447636 A |
1082 | switch (cmd) { |
1083 | /* get the number of controllers */ | |
1084 | case CTLIOCGCOUNT: { | |
1085 | struct kctl *kctl; | |
316670eb | 1086 | u_int32_t n = 0; |
91447636 A |
1087 | |
1088 | lck_mtx_lock(ctl_mtx); | |
1089 | TAILQ_FOREACH(kctl, &ctl_head, next) | |
1090 | n++; | |
1091 | lck_mtx_unlock(ctl_mtx); | |
fe8ab488 | 1092 | |
316670eb | 1093 | bcopy(&n, data, sizeof (n)); |
91447636 A |
1094 | error = 0; |
1095 | break; | |
1096 | } | |
1097 | case CTLIOCGINFO: { | |
316670eb | 1098 | struct ctl_info ctl_info; |
91447636 | 1099 | struct kctl *kctl = 0; |
316670eb A |
1100 | size_t name_len; |
1101 | ||
1102 | bcopy(data, &ctl_info, sizeof (ctl_info)); | |
1103 | name_len = strnlen(ctl_info.ctl_name, MAX_KCTL_NAME); | |
1104 | ||
91447636 A |
1105 | if (name_len == 0 || name_len + 1 > MAX_KCTL_NAME) { |
1106 | error = EINVAL; | |
1107 | break; | |
1108 | } | |
1109 | lck_mtx_lock(ctl_mtx); | |
316670eb | 1110 | kctl = ctl_find_by_name(ctl_info.ctl_name); |
91447636 A |
1111 | lck_mtx_unlock(ctl_mtx); |
1112 | if (kctl == 0) { | |
1113 | error = ENOENT; | |
1114 | break; | |
1115 | } | |
316670eb A |
1116 | ctl_info.ctl_id = kctl->id; |
1117 | bcopy(&ctl_info, data, sizeof (ctl_info)); | |
91447636 A |
1118 | error = 0; |
1119 | break; | |
1120 | } | |
fe8ab488 | 1121 | |
91447636 | 1122 | /* add controls to get list of NKEs */ |
fe8ab488 | 1123 | |
91447636 | 1124 | } |
fe8ab488 A |
1125 | |
1126 | return (error); | |
91447636 | 1127 | } |
9bccf70c | 1128 | |
91447636 A |
1129 | /* |
1130 | * Register/unregister a NKE | |
1131 | */ | |
1132 | errno_t | |
1133 | ctl_register(struct kern_ctl_reg *userkctl, kern_ctl_ref *kctlref) | |
2d21ac55 A |
1134 | { |
1135 | struct kctl *kctl = NULL; | |
1136 | struct kctl *kctl_next = NULL; | |
04b8595b A |
1137 | u_int32_t id = 1; |
1138 | size_t name_len; | |
1139 | int is_extended = 0; | |
fe8ab488 | 1140 | |
91447636 | 1141 | if (userkctl == NULL) /* sanity check */ |
fe8ab488 | 1142 | return (EINVAL); |
91447636 | 1143 | if (userkctl->ctl_connect == NULL) |
fe8ab488 | 1144 | return (EINVAL); |
91447636 A |
1145 | name_len = strlen(userkctl->ctl_name); |
1146 | if (name_len == 0 || name_len + 1 > MAX_KCTL_NAME) | |
fe8ab488 A |
1147 | return (EINVAL); |
1148 | ||
91447636 A |
1149 | MALLOC(kctl, struct kctl *, sizeof(*kctl), M_TEMP, M_WAITOK); |
1150 | if (kctl == NULL) | |
fe8ab488 | 1151 | return (ENOMEM); |
91447636 | 1152 | bzero((char *)kctl, sizeof(*kctl)); |
fe8ab488 | 1153 | |
91447636 | 1154 | lck_mtx_lock(ctl_mtx); |
fe8ab488 | 1155 | |
2d21ac55 A |
1156 | /* |
1157 | * Kernel Control IDs | |
1158 | * | |
1159 | * CTL_FLAG_REG_ID_UNIT indicates the control ID and unit number are | |
1160 | * static. If they do not exist, add them to the list in order. If the | |
1161 | * flag is not set, we must find a new unique value. We assume the | |
1162 | * list is in order. We find the last item in the list and add one. If | |
1163 | * this leads to wrapping the id around, we start at the front of the | |
1164 | * list and look for a gap. | |
1165 | */ | |
fe8ab488 | 1166 | |
2d21ac55 A |
1167 | if ((userkctl->ctl_flags & CTL_FLAG_REG_ID_UNIT) == 0) { |
1168 | /* Must dynamically assign an unused ID */ | |
fe8ab488 | 1169 | |
2d21ac55 | 1170 | /* Verify the same name isn't already registered */ |
91447636 A |
1171 | if (ctl_find_by_name(userkctl->ctl_name) != NULL) { |
1172 | lck_mtx_unlock(ctl_mtx); | |
1173 | FREE(kctl, M_TEMP); | |
fe8ab488 | 1174 | return (EEXIST); |
91447636 | 1175 | } |
fe8ab488 | 1176 | |
2d21ac55 A |
1177 | /* Start with 1 in case the list is empty */ |
1178 | id = 1; | |
1179 | kctl_next = TAILQ_LAST(&ctl_head, kctl_list); | |
fe8ab488 | 1180 | |
2d21ac55 | 1181 | if (kctl_next != NULL) { |
fe8ab488 | 1182 | /* List was not empty, add one to the last item */ |
2d21ac55 A |
1183 | id = kctl_next->id + 1; |
1184 | kctl_next = NULL; | |
fe8ab488 | 1185 | |
2d21ac55 | 1186 | /* |
fe8ab488 A |
1187 | * If this wrapped the id number, start looking at |
1188 | * the front of the list for an unused id. | |
2d21ac55 | 1189 | */ |
91447636 | 1190 | if (id == 0) { |
2d21ac55 A |
1191 | /* Find the next unused ID */ |
1192 | id = 1; | |
fe8ab488 | 1193 | |
2d21ac55 A |
1194 | TAILQ_FOREACH(kctl_next, &ctl_head, next) { |
1195 | if (kctl_next->id > id) { | |
1196 | /* We found a gap */ | |
1197 | break; | |
1198 | } | |
fe8ab488 | 1199 | |
2d21ac55 A |
1200 | id = kctl_next->id + 1; |
1201 | } | |
91447636 | 1202 | } |
91447636 | 1203 | } |
fe8ab488 | 1204 | |
2d21ac55 | 1205 | userkctl->ctl_id = id; |
91447636 A |
1206 | kctl->id = id; |
1207 | kctl->reg_unit = -1; | |
1208 | } else { | |
2d21ac55 A |
1209 | TAILQ_FOREACH(kctl_next, &ctl_head, next) { |
1210 | if (kctl_next->id > userkctl->ctl_id) | |
1211 | break; | |
1212 | } | |
fe8ab488 A |
1213 | |
1214 | if (ctl_find_by_id_unit(userkctl->ctl_id, userkctl->ctl_unit)) { | |
91447636 A |
1215 | lck_mtx_unlock(ctl_mtx); |
1216 | FREE(kctl, M_TEMP); | |
fe8ab488 | 1217 | return (EEXIST); |
91447636 A |
1218 | } |
1219 | kctl->id = userkctl->ctl_id; | |
1220 | kctl->reg_unit = userkctl->ctl_unit; | |
1221 | } | |
39236c6e A |
1222 | |
1223 | is_extended = (userkctl->ctl_flags & CTL_FLAG_REG_EXTENDED); | |
1224 | ||
2d21ac55 | 1225 | strlcpy(kctl->name, userkctl->ctl_name, MAX_KCTL_NAME); |
91447636 A |
1226 | kctl->flags = userkctl->ctl_flags; |
1227 | ||
fe8ab488 A |
1228 | /* |
1229 | * Let the caller know the default send and receive sizes | |
fe8ab488 | 1230 | */ |
04b8595b | 1231 | if (userkctl->ctl_sendsize == 0) { |
fe8ab488 | 1232 | kctl->sendbufsize = CTL_SENDSIZE; |
04b8595b A |
1233 | userkctl->ctl_sendsize = kctl->sendbufsize; |
1234 | } else { | |
1235 | kctl->sendbufsize = userkctl->ctl_sendsize; | |
1236 | } | |
1237 | if (userkctl->ctl_recvsize == 0) { | |
fe8ab488 | 1238 | kctl->recvbufsize = CTL_RECVSIZE; |
04b8595b A |
1239 | userkctl->ctl_recvsize = kctl->recvbufsize; |
1240 | } else { | |
1241 | kctl->recvbufsize = userkctl->ctl_recvsize; | |
1242 | } | |
91447636 A |
1243 | |
1244 | kctl->connect = userkctl->ctl_connect; | |
1245 | kctl->disconnect = userkctl->ctl_disconnect; | |
1246 | kctl->send = userkctl->ctl_send; | |
1247 | kctl->setopt = userkctl->ctl_setopt; | |
1248 | kctl->getopt = userkctl->ctl_getopt; | |
39236c6e A |
1249 | if (is_extended) { |
1250 | kctl->rcvd = userkctl->ctl_rcvd; | |
fe8ab488 | 1251 | kctl->send_list = userkctl->ctl_send_list; |
39236c6e | 1252 | } |
fe8ab488 | 1253 | |
91447636 | 1254 | TAILQ_INIT(&kctl->kcb_head); |
fe8ab488 | 1255 | |
2d21ac55 A |
1256 | if (kctl_next) |
1257 | TAILQ_INSERT_BEFORE(kctl_next, kctl, next); | |
1258 | else | |
1259 | TAILQ_INSERT_TAIL(&ctl_head, kctl, next); | |
fe8ab488 A |
1260 | |
1261 | kctlstat.kcs_reg_count++; | |
1262 | kctlstat.kcs_gencnt++; | |
1263 | ||
91447636 | 1264 | lck_mtx_unlock(ctl_mtx); |
fe8ab488 | 1265 | |
91447636 | 1266 | *kctlref = kctl; |
fe8ab488 | 1267 | |
91447636 | 1268 | ctl_post_msg(KEV_CTL_REGISTERED, kctl->id); |
fe8ab488 | 1269 | return (0); |
9bccf70c A |
1270 | } |
1271 | ||
91447636 A |
1272 | errno_t |
1273 | ctl_deregister(void *kctlref) | |
fe8ab488 A |
1274 | { |
1275 | struct kctl *kctl; | |
1276 | ||
1277 | if (kctlref == NULL) /* sanity check */ | |
1278 | return (EINVAL); | |
1279 | ||
1280 | lck_mtx_lock(ctl_mtx); | |
1281 | TAILQ_FOREACH(kctl, &ctl_head, next) { | |
1282 | if (kctl == (struct kctl *)kctlref) | |
1283 | break; | |
1284 | } | |
1285 | if (kctl != (struct kctl *)kctlref) { | |
1286 | lck_mtx_unlock(ctl_mtx); | |
1287 | return (EINVAL); | |
1288 | } | |
91447636 | 1289 | if (!TAILQ_EMPTY(&kctl->kcb_head)) { |
fe8ab488 A |
1290 | lck_mtx_unlock(ctl_mtx); |
1291 | return (EBUSY); | |
91447636 A |
1292 | } |
1293 | ||
fe8ab488 A |
1294 | TAILQ_REMOVE(&ctl_head, kctl, next); |
1295 | ||
1296 | kctlstat.kcs_reg_count--; | |
1297 | kctlstat.kcs_gencnt++; | |
91447636 | 1298 | |
fe8ab488 A |
1299 | lck_mtx_unlock(ctl_mtx); |
1300 | ||
1301 | ctl_post_msg(KEV_CTL_DEREGISTERED, kctl->id); | |
1302 | FREE(kctl, M_TEMP); | |
1303 | return (0); | |
9bccf70c A |
1304 | } |
1305 | ||
91447636 A |
1306 | /* |
1307 | * Must be called with global ctl_mtx lock taked | |
1308 | */ | |
1309 | static struct kctl * | |
1310 | ctl_find_by_name(const char *name) | |
fe8ab488 A |
1311 | { |
1312 | struct kctl *kctl; | |
1313 | ||
1314 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
9bccf70c | 1315 | |
fe8ab488 A |
1316 | TAILQ_FOREACH(kctl, &ctl_head, next) |
1317 | if (strncmp(kctl->name, name, sizeof(kctl->name)) == 0) | |
1318 | return (kctl); | |
9bccf70c | 1319 | |
fe8ab488 | 1320 | return (NULL); |
91447636 | 1321 | } |
9bccf70c | 1322 | |
6d2010ae A |
1323 | u_int32_t |
1324 | ctl_id_by_name(const char *name) | |
1325 | { | |
1326 | u_int32_t ctl_id = 0; | |
fe8ab488 A |
1327 | struct kctl *kctl; |
1328 | ||
6d2010ae | 1329 | lck_mtx_lock(ctl_mtx); |
fe8ab488 A |
1330 | kctl = ctl_find_by_name(name); |
1331 | if (kctl) | |
1332 | ctl_id = kctl->id; | |
6d2010ae | 1333 | lck_mtx_unlock(ctl_mtx); |
fe8ab488 A |
1334 | |
1335 | return (ctl_id); | |
6d2010ae A |
1336 | } |
1337 | ||
1338 | errno_t | |
fe8ab488 | 1339 | ctl_name_by_id(u_int32_t id, char *out_name, size_t maxsize) |
6d2010ae A |
1340 | { |
1341 | int found = 0; | |
6d2010ae | 1342 | struct kctl *kctl; |
fe8ab488 A |
1343 | |
1344 | lck_mtx_lock(ctl_mtx); | |
1345 | TAILQ_FOREACH(kctl, &ctl_head, next) { | |
1346 | if (kctl->id == id) | |
1347 | break; | |
1348 | } | |
1349 | ||
1350 | if (kctl && kctl->name) { | |
1351 | if (maxsize > MAX_KCTL_NAME) | |
1352 | maxsize = MAX_KCTL_NAME; | |
1353 | strlcpy(out_name, kctl->name, maxsize); | |
1354 | found = 1; | |
1355 | } | |
6d2010ae | 1356 | lck_mtx_unlock(ctl_mtx); |
fe8ab488 A |
1357 | |
1358 | return (found ? 0 : ENOENT); | |
6d2010ae A |
1359 | } |
1360 | ||
91447636 A |
1361 | /* |
1362 | * Must be called with global ctl_mtx lock taked | |
1363 | * | |
1364 | */ | |
1365 | static struct kctl * | |
1366 | ctl_find_by_id_unit(u_int32_t id, u_int32_t unit) | |
fe8ab488 A |
1367 | { |
1368 | struct kctl *kctl; | |
1369 | ||
1370 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
1371 | ||
1372 | TAILQ_FOREACH(kctl, &ctl_head, next) { | |
1373 | if (kctl->id == id && (kctl->flags & CTL_FLAG_REG_ID_UNIT) == 0) | |
1374 | return (kctl); | |
1375 | else if (kctl->id == id && kctl->reg_unit == unit) | |
1376 | return (kctl); | |
1377 | } | |
1378 | return (NULL); | |
9bccf70c A |
1379 | } |
1380 | ||
1381 | /* | |
91447636 | 1382 | * Must be called with kernel controller lock taken |
9bccf70c | 1383 | */ |
91447636 A |
1384 | static struct ctl_cb * |
1385 | kcb_find(struct kctl *kctl, u_int32_t unit) | |
fe8ab488 A |
1386 | { |
1387 | struct ctl_cb *kcb; | |
9bccf70c | 1388 | |
fe8ab488 | 1389 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); |
9bccf70c | 1390 | |
fe8ab488 A |
1391 | TAILQ_FOREACH(kcb, &kctl->kcb_head, next) |
1392 | if (kcb->unit == unit) | |
1393 | return (kcb); | |
1394 | ||
1395 | return (NULL); | |
9bccf70c A |
1396 | } |
1397 | ||
6d2010ae A |
1398 | static struct socket * |
1399 | kcb_find_socket(struct kctl *kctl, u_int32_t unit) | |
1400 | { | |
1401 | struct socket *so = NULL; | |
fe8ab488 A |
1402 | struct ctl_cb *kcb; |
1403 | void *lr_saved; | |
1404 | ||
1405 | lr_saved = __builtin_return_address(0); | |
1406 | ||
6d2010ae | 1407 | lck_mtx_lock(ctl_mtx); |
fe8ab488 | 1408 | kcb = kcb_find(kctl, unit); |
6d2010ae A |
1409 | if (kcb && kcb->kctl == kctl) { |
1410 | so = kcb->so; | |
1411 | if (so) { | |
1412 | kcb->usecount++; | |
1413 | } | |
1414 | } | |
1415 | lck_mtx_unlock(ctl_mtx); | |
fe8ab488 | 1416 | |
6d2010ae | 1417 | if (so == NULL) { |
fe8ab488 | 1418 | return (NULL); |
6d2010ae | 1419 | } |
fe8ab488 | 1420 | |
6d2010ae | 1421 | socket_lock(so, 1); |
fe8ab488 | 1422 | |
6d2010ae | 1423 | lck_mtx_lock(ctl_mtx); |
fe8ab488 | 1424 | if (kcb->kctl == NULL) { |
6d2010ae A |
1425 | lck_mtx_unlock(ctl_mtx); |
1426 | socket_unlock(so, 1); | |
1427 | so = NULL; | |
1428 | lck_mtx_lock(ctl_mtx); | |
fe8ab488 A |
1429 | } else { |
1430 | /* | |
1431 | * The socket lock history is more useful if we store | |
1432 | * the address of the caller. | |
1433 | */ | |
1434 | int i = (so->next_lock_lr + SO_LCKDBG_MAX - 1) % SO_LCKDBG_MAX; | |
1435 | ||
1436 | so->lock_lr[i] = lr_saved; | |
6d2010ae A |
1437 | } |
1438 | kcb->usecount--; | |
1439 | if (kcb->usecount == 0) | |
1440 | wakeup((event_t)&kcb->usecount); | |
1441 | lck_mtx_unlock(ctl_mtx); | |
fe8ab488 A |
1442 | |
1443 | return (so); | |
6d2010ae A |
1444 | } |
1445 | ||
fe8ab488 A |
1446 | static void |
1447 | ctl_post_msg(u_int32_t event_code, u_int32_t id) | |
9bccf70c | 1448 | { |
fe8ab488 A |
1449 | struct ctl_event_data ctl_ev_data; |
1450 | struct kev_msg ev_msg; | |
1451 | ||
1452 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_NOTOWNED); | |
1453 | ||
1454 | bzero(&ev_msg, sizeof(struct kev_msg)); | |
1455 | ev_msg.vendor_code = KEV_VENDOR_APPLE; | |
1456 | ||
1457 | ev_msg.kev_class = KEV_SYSTEM_CLASS; | |
1458 | ev_msg.kev_subclass = KEV_CTL_SUBCLASS; | |
1459 | ev_msg.event_code = event_code; | |
1460 | ||
1461 | /* common nke subclass data */ | |
1462 | bzero(&ctl_ev_data, sizeof(ctl_ev_data)); | |
1463 | ctl_ev_data.ctl_id = id; | |
1464 | ev_msg.dv[0].data_ptr = &ctl_ev_data; | |
1465 | ev_msg.dv[0].data_length = sizeof(ctl_ev_data); | |
1466 | ||
1467 | ev_msg.dv[1].data_length = 0; | |
1468 | ||
1469 | kev_post_msg(&ev_msg); | |
9bccf70c A |
1470 | } |
1471 | ||
91447636 | 1472 | static int |
b0d623f7 A |
1473 | ctl_lock(struct socket *so, int refcount, void *lr) |
1474 | { | |
1475 | void *lr_saved; | |
1476 | ||
1477 | if (lr == NULL) | |
1478 | lr_saved = __builtin_return_address(0); | |
1479 | else | |
1480 | lr_saved = lr; | |
1481 | ||
1482 | if (so->so_pcb != NULL) { | |
91447636 A |
1483 | lck_mtx_lock(((struct ctl_cb *)so->so_pcb)->mtx); |
1484 | } else { | |
fe8ab488 | 1485 | panic("ctl_lock: so=%p NO PCB! lr=%p lrh= %s\n", |
b0d623f7 A |
1486 | so, lr_saved, solockhistory_nr(so)); |
1487 | /* NOTREACHED */ | |
91447636 | 1488 | } |
b0d623f7 A |
1489 | |
1490 | if (so->so_usecount < 0) { | |
1491 | panic("ctl_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n", | |
fe8ab488 A |
1492 | so, so->so_pcb, lr_saved, so->so_usecount, |
1493 | solockhistory_nr(so)); | |
b0d623f7 A |
1494 | /* NOTREACHED */ |
1495 | } | |
1496 | ||
91447636 A |
1497 | if (refcount) |
1498 | so->so_usecount++; | |
0c530ab8 | 1499 | |
2d21ac55 | 1500 | so->lock_lr[so->next_lock_lr] = lr_saved; |
0c530ab8 | 1501 | so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; |
91447636 A |
1502 | return (0); |
1503 | } | |
1504 | ||
1505 | static int | |
b0d623f7 | 1506 | ctl_unlock(struct socket *so, int refcount, void *lr) |
91447636 | 1507 | { |
b0d623f7 A |
1508 | void *lr_saved; |
1509 | lck_mtx_t *mutex_held; | |
1510 | ||
1511 | if (lr == NULL) | |
1512 | lr_saved = __builtin_return_address(0); | |
1513 | else | |
1514 | lr_saved = lr; | |
1515 | ||
91447636 | 1516 | #ifdef MORE_KCTLLOCK_DEBUG |
fe8ab488 A |
1517 | printf("ctl_unlock: so=%llx sopcb=%x lock=%llx ref=%u lr=%llx\n", |
1518 | (uint64_t)VM_KERNEL_ADDRPERM(so), | |
1519 | (uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb, | |
1520 | (uint64_t)VM_KERNEL_ADDRPERM(((struct ctl_cb *)so->so_pcb)->mtx), | |
1521 | so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved)); | |
91447636 A |
1522 | #endif |
1523 | if (refcount) | |
1524 | so->so_usecount--; | |
b0d623f7 A |
1525 | |
1526 | if (so->so_usecount < 0) { | |
fe8ab488 | 1527 | panic("ctl_unlock: so=%p usecount=%x lrh= %s\n", |
b0d623f7 A |
1528 | so, so->so_usecount, solockhistory_nr(so)); |
1529 | /* NOTREACHED */ | |
1530 | } | |
91447636 | 1531 | if (so->so_pcb == NULL) { |
fe8ab488 A |
1532 | panic("ctl_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n", |
1533 | so, so->so_usecount, (void *)lr_saved, | |
1534 | solockhistory_nr(so)); | |
b0d623f7 | 1535 | /* NOTREACHED */ |
91447636 | 1536 | } |
b0d623f7 A |
1537 | mutex_held = ((struct ctl_cb *)so->so_pcb)->mtx; |
1538 | ||
91447636 | 1539 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); |
2d21ac55 | 1540 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
0c530ab8 | 1541 | so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; |
91447636 | 1542 | lck_mtx_unlock(mutex_held); |
b0d623f7 | 1543 | |
91447636 A |
1544 | if (so->so_usecount == 0) |
1545 | ctl_sofreelastref(so); | |
b0d623f7 | 1546 | |
91447636 A |
1547 | return (0); |
1548 | } | |
1549 | ||
1550 | static lck_mtx_t * | |
fe8ab488 | 1551 | ctl_getlock(struct socket *so, int locktype) |
91447636 | 1552 | { |
fe8ab488 | 1553 | #pragma unused(locktype) |
91447636 | 1554 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; |
fe8ab488 | 1555 | |
91447636 A |
1556 | if (so->so_pcb) { |
1557 | if (so->so_usecount < 0) | |
fe8ab488 | 1558 | panic("ctl_getlock: so=%p usecount=%x lrh= %s\n", |
b0d623f7 | 1559 | so, so->so_usecount, solockhistory_nr(so)); |
fe8ab488 | 1560 | return (kcb->mtx); |
91447636 | 1561 | } else { |
fe8ab488 | 1562 | panic("ctl_getlock: so=%p NULL NO so_pcb %s\n", |
b0d623f7 | 1563 | so, solockhistory_nr(so)); |
91447636 A |
1564 | return (so->so_proto->pr_domain->dom_mtx); |
1565 | } | |
1566 | } | |
fe8ab488 A |
1567 | |
1568 | __private_extern__ int | |
1569 | kctl_reg_list SYSCTL_HANDLER_ARGS | |
1570 | { | |
1571 | #pragma unused(oidp, arg1, arg2) | |
1572 | int error = 0; | |
1573 | int n, i; | |
1574 | struct xsystmgen xsg; | |
1575 | void *buf = NULL; | |
1576 | struct kctl *kctl; | |
1577 | size_t item_size = ROUNDUP64(sizeof (struct xkctl_reg)); | |
1578 | ||
1579 | buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); | |
1580 | if (buf == NULL) | |
1581 | return (ENOMEM); | |
1582 | ||
1583 | lck_mtx_lock(ctl_mtx); | |
1584 | ||
1585 | n = kctlstat.kcs_reg_count; | |
1586 | ||
1587 | if (req->oldptr == USER_ADDR_NULL) { | |
1588 | req->oldidx = (n + n/8) * sizeof(struct xkctl_reg); | |
1589 | goto done; | |
1590 | } | |
1591 | if (req->newptr != USER_ADDR_NULL) { | |
1592 | error = EPERM; | |
1593 | goto done; | |
1594 | } | |
1595 | bzero(&xsg, sizeof (xsg)); | |
1596 | xsg.xg_len = sizeof (xsg); | |
1597 | xsg.xg_count = n; | |
1598 | xsg.xg_gen = kctlstat.kcs_gencnt; | |
1599 | xsg.xg_sogen = so_gencnt; | |
1600 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); | |
1601 | if (error) { | |
1602 | goto done; | |
1603 | } | |
1604 | /* | |
1605 | * We are done if there is no pcb | |
1606 | */ | |
1607 | if (n == 0) { | |
1608 | goto done; | |
1609 | } | |
1610 | ||
1611 | i = 0; | |
1612 | for (i = 0, kctl = TAILQ_FIRST(&ctl_head); | |
1613 | i < n && kctl != NULL; | |
1614 | i++, kctl = TAILQ_NEXT(kctl, next)) { | |
1615 | struct xkctl_reg *xkr = (struct xkctl_reg *)buf; | |
1616 | struct ctl_cb *kcb; | |
1617 | u_int32_t pcbcount = 0; | |
1618 | ||
1619 | TAILQ_FOREACH(kcb, &kctl->kcb_head, next) | |
1620 | pcbcount++; | |
1621 | ||
1622 | bzero(buf, item_size); | |
1623 | ||
1624 | xkr->xkr_len = sizeof(struct xkctl_reg); | |
1625 | xkr->xkr_kind = XSO_KCREG; | |
1626 | xkr->xkr_id = kctl->id; | |
1627 | xkr->xkr_reg_unit = kctl->reg_unit; | |
1628 | xkr->xkr_flags = kctl->flags; | |
1629 | xkr->xkr_kctlref = (uint64_t)VM_KERNEL_ADDRPERM(kctl); | |
1630 | xkr->xkr_recvbufsize = kctl->recvbufsize; | |
1631 | xkr->xkr_sendbufsize = kctl->sendbufsize; | |
1632 | xkr->xkr_lastunit = kctl->lastunit; | |
1633 | xkr->xkr_pcbcount = pcbcount; | |
1634 | xkr->xkr_connect = (uint64_t)VM_KERNEL_ADDRPERM(kctl->connect); | |
1635 | xkr->xkr_disconnect = | |
1636 | (uint64_t)VM_KERNEL_ADDRPERM(kctl->disconnect); | |
1637 | xkr->xkr_send = (uint64_t)VM_KERNEL_ADDRPERM(kctl->send); | |
1638 | xkr->xkr_send_list = | |
1639 | (uint64_t)VM_KERNEL_ADDRPERM(kctl->send_list); | |
1640 | xkr->xkr_setopt = (uint64_t)VM_KERNEL_ADDRPERM(kctl->setopt); | |
1641 | xkr->xkr_getopt = (uint64_t)VM_KERNEL_ADDRPERM(kctl->getopt); | |
1642 | xkr->xkr_rcvd = (uint64_t)VM_KERNEL_ADDRPERM(kctl->rcvd); | |
1643 | strlcpy(xkr->xkr_name, kctl->name, sizeof(xkr->xkr_name)); | |
1644 | ||
1645 | error = SYSCTL_OUT(req, buf, item_size); | |
1646 | } | |
1647 | ||
1648 | if (error == 0) { | |
1649 | /* | |
1650 | * Give the user an updated idea of our state. | |
1651 | * If the generation differs from what we told | |
1652 | * her before, she knows that something happened | |
1653 | * while we were processing this request, and it | |
1654 | * might be necessary to retry. | |
1655 | */ | |
1656 | bzero(&xsg, sizeof (xsg)); | |
1657 | xsg.xg_len = sizeof (xsg); | |
1658 | xsg.xg_count = n; | |
1659 | xsg.xg_gen = kctlstat.kcs_gencnt; | |
1660 | xsg.xg_sogen = so_gencnt; | |
1661 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); | |
1662 | if (error) { | |
1663 | goto done; | |
1664 | } | |
1665 | } | |
1666 | ||
1667 | done: | |
1668 | lck_mtx_unlock(ctl_mtx); | |
1669 | ||
1670 | if (buf != NULL) | |
1671 | FREE(buf, M_TEMP); | |
1672 | ||
1673 | return (error); | |
1674 | } | |
1675 | ||
1676 | __private_extern__ int | |
1677 | kctl_pcblist SYSCTL_HANDLER_ARGS | |
1678 | { | |
1679 | #pragma unused(oidp, arg1, arg2) | |
1680 | int error = 0; | |
1681 | int n, i; | |
1682 | struct xsystmgen xsg; | |
1683 | void *buf = NULL; | |
1684 | struct kctl *kctl; | |
1685 | size_t item_size = ROUNDUP64(sizeof (struct xkctlpcb)) + | |
1686 | ROUNDUP64(sizeof (struct xsocket_n)) + | |
1687 | 2 * ROUNDUP64(sizeof (struct xsockbuf_n)) + | |
1688 | ROUNDUP64(sizeof (struct xsockstat_n)); | |
1689 | ||
1690 | buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); | |
1691 | if (buf == NULL) | |
1692 | return (ENOMEM); | |
1693 | ||
1694 | lck_mtx_lock(ctl_mtx); | |
1695 | ||
1696 | n = kctlstat.kcs_pcbcount; | |
1697 | ||
1698 | if (req->oldptr == USER_ADDR_NULL) { | |
1699 | req->oldidx = (n + n/8) * item_size; | |
1700 | goto done; | |
1701 | } | |
1702 | if (req->newptr != USER_ADDR_NULL) { | |
1703 | error = EPERM; | |
1704 | goto done; | |
1705 | } | |
1706 | bzero(&xsg, sizeof (xsg)); | |
1707 | xsg.xg_len = sizeof (xsg); | |
1708 | xsg.xg_count = n; | |
1709 | xsg.xg_gen = kctlstat.kcs_gencnt; | |
1710 | xsg.xg_sogen = so_gencnt; | |
1711 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); | |
1712 | if (error) { | |
1713 | goto done; | |
1714 | } | |
1715 | /* | |
1716 | * We are done if there is no pcb | |
1717 | */ | |
1718 | if (n == 0) { | |
1719 | goto done; | |
1720 | } | |
1721 | ||
1722 | i = 0; | |
1723 | for (i = 0, kctl = TAILQ_FIRST(&ctl_head); | |
1724 | i < n && kctl != NULL; | |
1725 | kctl = TAILQ_NEXT(kctl, next)) { | |
1726 | struct ctl_cb *kcb; | |
1727 | ||
1728 | for (kcb = TAILQ_FIRST(&kctl->kcb_head); | |
1729 | i < n && kcb != NULL; | |
1730 | i++, kcb = TAILQ_NEXT(kcb, next)) { | |
1731 | struct xkctlpcb *xk = (struct xkctlpcb *)buf; | |
1732 | struct xsocket_n *xso = (struct xsocket_n *) | |
1733 | ADVANCE64(xk, sizeof (*xk)); | |
1734 | struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *) | |
1735 | ADVANCE64(xso, sizeof (*xso)); | |
1736 | struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *) | |
1737 | ADVANCE64(xsbrcv, sizeof (*xsbrcv)); | |
1738 | struct xsockstat_n *xsostats = (struct xsockstat_n *) | |
1739 | ADVANCE64(xsbsnd, sizeof (*xsbsnd)); | |
1740 | ||
1741 | bzero(buf, item_size); | |
1742 | ||
1743 | xk->xkp_len = sizeof(struct xkctlpcb); | |
1744 | xk->xkp_kind = XSO_KCB; | |
1745 | xk->xkp_unit = kcb->unit; | |
1746 | xk->xkp_kctpcb = (uint64_t)VM_KERNEL_ADDRPERM(kcb); | |
1747 | xk->xkp_kctlref = (uint64_t)VM_KERNEL_ADDRPERM(kctl); | |
1748 | xk->xkp_kctlid = kctl->id; | |
1749 | strlcpy(xk->xkp_kctlname, kctl->name, | |
1750 | sizeof(xk->xkp_kctlname)); | |
1751 | ||
1752 | sotoxsocket_n(kcb->so, xso); | |
1753 | sbtoxsockbuf_n(kcb->so ? | |
1754 | &kcb->so->so_rcv : NULL, xsbrcv); | |
1755 | sbtoxsockbuf_n(kcb->so ? | |
1756 | &kcb->so->so_snd : NULL, xsbsnd); | |
1757 | sbtoxsockstat_n(kcb->so, xsostats); | |
1758 | ||
1759 | error = SYSCTL_OUT(req, buf, item_size); | |
1760 | } | |
1761 | } | |
1762 | ||
1763 | if (error == 0) { | |
1764 | /* | |
1765 | * Give the user an updated idea of our state. | |
1766 | * If the generation differs from what we told | |
1767 | * her before, she knows that something happened | |
1768 | * while we were processing this request, and it | |
1769 | * might be necessary to retry. | |
1770 | */ | |
1771 | bzero(&xsg, sizeof (xsg)); | |
1772 | xsg.xg_len = sizeof (xsg); | |
1773 | xsg.xg_count = n; | |
1774 | xsg.xg_gen = kctlstat.kcs_gencnt; | |
1775 | xsg.xg_sogen = so_gencnt; | |
1776 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); | |
1777 | if (error) { | |
1778 | goto done; | |
1779 | } | |
1780 | } | |
1781 | ||
1782 | done: | |
1783 | lck_mtx_unlock(ctl_mtx); | |
1784 | ||
1785 | return (error); | |
1786 | } | |
1787 | ||
1788 | int | |
1789 | kctl_getstat SYSCTL_HANDLER_ARGS | |
1790 | { | |
1791 | #pragma unused(oidp, arg1, arg2) | |
1792 | int error = 0; | |
1793 | ||
1794 | lck_mtx_lock(ctl_mtx); | |
1795 | ||
1796 | if (req->newptr != USER_ADDR_NULL) { | |
1797 | error = EPERM; | |
1798 | goto done; | |
1799 | } | |
1800 | if (req->oldptr == USER_ADDR_NULL) { | |
1801 | req->oldidx = sizeof(struct kctlstat); | |
1802 | goto done; | |
1803 | } | |
1804 | ||
1805 | error = SYSCTL_OUT(req, &kctlstat, | |
1806 | MIN(sizeof(struct kctlstat), req->oldlen)); | |
1807 | done: | |
1808 | lck_mtx_unlock(ctl_mtx); | |
1809 | return (error); | |
1810 | } |