]>
Commit | Line | Data |
---|---|---|
2d21ac55 A |
1 | /* |
2 | * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | ||
30 | /* | |
31 | * APPLE NOTE: This file is compiled even if dtrace is unconfig'd. A symbol | |
32 | * from this file (_dtrace_register_anon_DOF) always needs to be exported for | |
33 | * an external kext to link against. | |
34 | */ | |
35 | ||
36 | #if CONFIG_DTRACE | |
37 | ||
38 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ | |
39 | #include <kern/thread.h> | |
40 | #include <mach/thread_status.h> | |
41 | ||
42 | #include <stdarg.h> | |
43 | #include <string.h> | |
44 | #include <sys/malloc.h> | |
45 | #include <sys/time.h> | |
46 | #include <sys/proc.h> | |
47 | #include <sys/proc_internal.h> | |
48 | #include <sys/kauth.h> | |
49 | #include <sys/user.h> | |
50 | #include <sys/systm.h> | |
51 | #include <sys/dtrace.h> | |
52 | #include <sys/dtrace_impl.h> | |
53 | #include <libkern/OSAtomic.h> | |
39236c6e A |
54 | #include <kern/kern_types.h> |
55 | #include <kern/timer_call.h> | |
2d21ac55 A |
56 | #include <kern/thread_call.h> |
57 | #include <kern/task.h> | |
58 | #include <kern/sched_prim.h> | |
59 | #include <kern/queue.h> | |
60 | #include <miscfs/devfs/devfs.h> | |
61 | #include <kern/kalloc.h> | |
62 | ||
63 | #include <mach/vm_param.h> | |
64 | #include <mach/mach_vm.h> | |
65 | #include <mach/task.h> | |
66 | #include <vm/pmap.h> | |
67 | #include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */ | |
68 | ||
fe8ab488 A |
69 | /* missing prototypes, not exported by Mach */ |
70 | extern kern_return_t task_suspend_internal(task_t); | |
71 | extern kern_return_t task_resume_internal(task_t); | |
39236c6e | 72 | |
2d21ac55 A |
73 | /* |
74 | * pid/proc | |
75 | */ | |
b0d623f7 A |
76 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ |
77 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ | |
2d21ac55 A |
78 | |
79 | /* Not called from probe context */ | |
80 | proc_t * | |
81 | sprlock(pid_t pid) | |
82 | { | |
83 | proc_t* p; | |
84 | ||
85 | if ((p = proc_find(pid)) == PROC_NULL) { | |
86 | return PROC_NULL; | |
87 | } | |
88 | ||
fe8ab488 | 89 | task_suspend_internal(p->task); |
2d21ac55 A |
90 | |
91 | proc_lock(p); | |
92 | ||
93 | lck_mtx_lock(&p->p_dtrace_sprlock); | |
94 | ||
95 | return p; | |
96 | } | |
97 | ||
98 | /* Not called from probe context */ | |
99 | void | |
100 | sprunlock(proc_t *p) | |
101 | { | |
102 | if (p != PROC_NULL) { | |
103 | lck_mtx_unlock(&p->p_dtrace_sprlock); | |
104 | ||
105 | proc_unlock(p); | |
106 | ||
fe8ab488 | 107 | task_resume_internal(p->task); |
2d21ac55 A |
108 | |
109 | proc_rele(p); | |
110 | } | |
111 | } | |
112 | ||
113 | /* | |
114 | * uread/uwrite | |
115 | */ | |
116 | ||
117 | // These are not exported from vm_map.h. | |
118 | extern kern_return_t vm_map_read_user(vm_map_t map, vm_map_address_t src_addr, void *dst_p, vm_size_t size); | |
119 | extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size); | |
120 | ||
121 | /* Not called from probe context */ | |
122 | int | |
123 | uread(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
124 | { | |
125 | kern_return_t ret; | |
126 | ||
127 | ASSERT(p != PROC_NULL); | |
128 | ASSERT(p->task != NULL); | |
129 | ||
130 | task_t task = p->task; | |
131 | ||
132 | /* | |
133 | * Grab a reference to the task vm_map_t to make sure | |
134 | * the map isn't pulled out from under us. | |
135 | * | |
136 | * Because the proc_lock is not held at all times on all code | |
137 | * paths leading here, it is possible for the proc to have | |
138 | * exited. If the map is null, fail. | |
139 | */ | |
140 | vm_map_t map = get_task_map_reference(task); | |
141 | if (map) { | |
142 | ret = vm_map_read_user( map, (vm_map_address_t)a, buf, (vm_size_t)len); | |
143 | vm_map_deallocate(map); | |
144 | } else | |
145 | ret = KERN_TERMINATED; | |
146 | ||
147 | return (int)ret; | |
148 | } | |
149 | ||
150 | ||
151 | /* Not called from probe context */ | |
152 | int | |
153 | uwrite(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
154 | { | |
155 | kern_return_t ret; | |
156 | ||
157 | ASSERT(p != NULL); | |
158 | ASSERT(p->task != NULL); | |
159 | ||
160 | task_t task = p->task; | |
161 | ||
162 | /* | |
163 | * Grab a reference to the task vm_map_t to make sure | |
164 | * the map isn't pulled out from under us. | |
165 | * | |
166 | * Because the proc_lock is not held at all times on all code | |
167 | * paths leading here, it is possible for the proc to have | |
168 | * exited. If the map is null, fail. | |
169 | */ | |
170 | vm_map_t map = get_task_map_reference(task); | |
171 | if (map) { | |
172 | /* Find the memory permissions. */ | |
173 | uint32_t nestingDepth=999999; | |
174 | vm_region_submap_short_info_data_64_t info; | |
175 | mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; | |
176 | mach_vm_address_t address = (mach_vm_address_t)a; | |
177 | mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len; | |
178 | ||
179 | ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count); | |
180 | if (ret != KERN_SUCCESS) | |
181 | goto done; | |
182 | ||
183 | vm_prot_t reprotect; | |
184 | ||
185 | if (!(info.protection & VM_PROT_WRITE)) { | |
186 | /* Save the original protection values for restoration later */ | |
187 | reprotect = info.protection; | |
188 | ||
189 | if (info.max_protection & VM_PROT_WRITE) { | |
190 | /* The memory is not currently writable, but can be made writable. */ | |
191 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect | VM_PROT_WRITE); | |
192 | } else { | |
193 | /* | |
194 | * The memory is not currently writable, and cannot be made writable. We need to COW this memory. | |
195 | * | |
196 | * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails. | |
197 | */ | |
198 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE); | |
199 | } | |
200 | ||
201 | if (ret != KERN_SUCCESS) | |
202 | goto done; | |
203 | ||
204 | } else { | |
205 | /* The memory was already writable. */ | |
206 | reprotect = VM_PROT_NONE; | |
207 | } | |
208 | ||
209 | ret = vm_map_write_user( map, | |
210 | buf, | |
211 | (vm_map_address_t)a, | |
212 | (vm_size_t)len); | |
213 | ||
214 | if (ret != KERN_SUCCESS) | |
215 | goto done; | |
216 | ||
217 | if (reprotect != VM_PROT_NONE) { | |
218 | ASSERT(reprotect & VM_PROT_EXECUTE); | |
219 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect); | |
220 | } | |
221 | ||
222 | done: | |
223 | vm_map_deallocate(map); | |
224 | } else | |
225 | ret = KERN_TERMINATED; | |
226 | ||
227 | return (int)ret; | |
228 | } | |
229 | ||
230 | /* | |
231 | * cpuvar | |
232 | */ | |
233 | lck_mtx_t cpu_lock; | |
fe8ab488 | 234 | lck_mtx_t cyc_lock; |
2d21ac55 A |
235 | lck_mtx_t mod_lock; |
236 | ||
6d2010ae | 237 | dtrace_cpu_t *cpu_list; |
2d21ac55 A |
238 | cpu_core_t *cpu_core; /* XXX TLB lockdown? */ |
239 | ||
240 | /* | |
241 | * cred_t | |
242 | */ | |
243 | ||
244 | /* | |
245 | * dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since | |
246 | * that function may try to resolve a lazy credential binding, which entails taking the proc_lock. | |
247 | */ | |
248 | cred_t * | |
249 | dtrace_CRED(void) | |
250 | { | |
251 | struct uthread *uthread = get_bsdthread_info(current_thread()); | |
252 | ||
253 | if (uthread == NULL) | |
254 | return NULL; | |
255 | else | |
256 | return uthread->uu_ucred; /* May return NOCRED which is defined to be 0 */ | |
257 | } | |
258 | ||
259 | #define HAS_ALLPRIVS(cr) priv_isfullset(&CR_OEPRIV(cr)) | |
260 | #define HAS_PRIVILEGE(cr, pr) ((pr) == PRIV_ALL ? \ | |
261 | HAS_ALLPRIVS(cr) : \ | |
262 | PRIV_ISASSERT(&CR_OEPRIV(cr), pr)) | |
263 | ||
264 | int PRIV_POLICY_CHOICE(void* cred, int priv, int all) | |
265 | { | |
266 | #pragma unused(priv, all) | |
267 | return kauth_cred_issuser(cred); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */ | |
268 | } | |
269 | ||
270 | int | |
271 | PRIV_POLICY_ONLY(void *cr, int priv, int boolean) | |
272 | { | |
273 | #pragma unused(priv, boolean) | |
274 | return kauth_cred_issuser(cr); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */ | |
275 | } | |
276 | ||
6d2010ae | 277 | /* XXX Get around const poisoning using structure assigns */ |
2d21ac55 | 278 | gid_t |
6d2010ae | 279 | crgetgid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getgid(©_cr); } |
2d21ac55 A |
280 | |
281 | uid_t | |
6d2010ae | 282 | crgetuid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getuid(©_cr); } |
2d21ac55 A |
283 | |
284 | /* | |
285 | * "cyclic" | |
286 | */ | |
287 | ||
2d21ac55 | 288 | typedef struct wrap_timer_call { |
fe8ab488 A |
289 | /* node attributes */ |
290 | cyc_handler_t hdlr; | |
291 | cyc_time_t when; | |
292 | uint64_t deadline; | |
293 | int cpuid; | |
294 | boolean_t suspended; | |
295 | struct timer_call call; | |
296 | ||
297 | /* next item in the linked list */ | |
298 | LIST_ENTRY(wrap_timer_call) entries; | |
2d21ac55 A |
299 | } wrap_timer_call_t; |
300 | ||
fe8ab488 A |
301 | #define WAKEUP_REAPER 0x7FFFFFFFFFFFFFFFLL |
302 | #define NEARLY_FOREVER 0x7FFFFFFFFFFFFFFELL | |
303 | ||
304 | /* CPU going online/offline notifications */ | |
305 | void (*dtrace_cpu_state_changed_hook)(int, boolean_t) = NULL; | |
306 | void dtrace_cpu_state_changed(int, boolean_t); | |
307 | ||
308 | void | |
309 | dtrace_install_cpu_hooks(void) { | |
310 | dtrace_cpu_state_changed_hook = dtrace_cpu_state_changed; | |
311 | } | |
312 | ||
313 | void | |
314 | dtrace_cpu_state_changed(int cpuid, boolean_t is_running) { | |
315 | #pragma unused(cpuid) | |
316 | wrap_timer_call_t *wrapTC = NULL; | |
317 | boolean_t suspend = (is_running ? FALSE : TRUE); | |
318 | dtrace_icookie_t s; | |
319 | ||
320 | /* Ensure that we're not going to leave the CPU */ | |
321 | s = dtrace_interrupt_disable(); | |
322 | assert(cpuid == cpu_number()); | |
323 | ||
324 | LIST_FOREACH(wrapTC, &(cpu_list[cpu_number()].cpu_cyc_list), entries) { | |
325 | assert(wrapTC->cpuid == cpu_number()); | |
326 | if (suspend) { | |
327 | assert(!wrapTC->suspended); | |
328 | /* If this fails, we'll panic anyway, so let's do this now. */ | |
329 | if (!timer_call_cancel(&wrapTC->call)) | |
330 | panic("timer_call_set_suspend() failed to cancel a timer call"); | |
331 | wrapTC->suspended = TRUE; | |
332 | } else { | |
333 | /* Rearm the timer, but ensure it was suspended first. */ | |
334 | assert(wrapTC->suspended); | |
335 | clock_deadline_for_periodic_event(wrapTC->when.cyt_interval, mach_absolute_time(), | |
336 | &wrapTC->deadline); | |
337 | timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline, | |
338 | TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
339 | wrapTC->suspended = FALSE; | |
340 | } | |
341 | ||
342 | } | |
343 | ||
344 | /* Restore the previous interrupt state. */ | |
345 | dtrace_interrupt_enable(s); | |
346 | } | |
2d21ac55 A |
347 | |
348 | static void | |
349 | _timer_call_apply_cyclic( void *ignore, void *vTChdl ) | |
350 | { | |
351 | #pragma unused(ignore) | |
352 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)vTChdl; | |
353 | ||
354 | (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg ); | |
355 | ||
356 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) ); | |
39236c6e | 357 | timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL ); |
2d21ac55 A |
358 | } |
359 | ||
360 | static cyclic_id_t | |
361 | timer_call_add_cyclic(wrap_timer_call_t *wrapTC, cyc_handler_t *handler, cyc_time_t *when) | |
362 | { | |
363 | uint64_t now; | |
fe8ab488 | 364 | dtrace_icookie_t s; |
2d21ac55 A |
365 | |
366 | timer_call_setup( &(wrapTC->call), _timer_call_apply_cyclic, NULL ); | |
367 | wrapTC->hdlr = *handler; | |
368 | wrapTC->when = *when; | |
369 | ||
370 | nanoseconds_to_absolutetime( wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval ); | |
371 | ||
372 | now = mach_absolute_time(); | |
373 | wrapTC->deadline = now; | |
374 | ||
375 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) ); | |
fe8ab488 A |
376 | |
377 | /* Insert the timer to the list of the running timers on this CPU, and start it. */ | |
378 | s = dtrace_interrupt_disable(); | |
379 | wrapTC->cpuid = cpu_number(); | |
380 | LIST_INSERT_HEAD(&cpu_list[wrapTC->cpuid].cpu_cyc_list, wrapTC, entries); | |
381 | timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline, | |
382 | TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
383 | wrapTC->suspended = FALSE; | |
384 | dtrace_interrupt_enable(s); | |
2d21ac55 A |
385 | |
386 | return (cyclic_id_t)wrapTC; | |
387 | } | |
388 | ||
fe8ab488 A |
389 | /* |
390 | * Executed on the CPU the timer is running on. | |
391 | */ | |
2d21ac55 A |
392 | static void |
393 | timer_call_remove_cyclic(cyclic_id_t cyclic) | |
394 | { | |
395 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic; | |
396 | ||
fe8ab488 A |
397 | assert(wrapTC); |
398 | assert(cpu_number() == wrapTC->cpuid); | |
2d21ac55 | 399 | |
fe8ab488 A |
400 | if (!timer_call_cancel(&wrapTC->call)) |
401 | panic("timer_call_remove_cyclic() failed to cancel a timer call"); | |
2d21ac55 | 402 | |
fe8ab488 | 403 | LIST_REMOVE(wrapTC, entries); |
2d21ac55 A |
404 | } |
405 | ||
406 | static void * | |
407 | timer_call_get_cyclic_arg(cyclic_id_t cyclic) | |
408 | { | |
409 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic; | |
410 | ||
411 | return (wrapTC ? wrapTC->hdlr.cyh_arg : NULL); | |
412 | } | |
413 | ||
414 | cyclic_id_t | |
415 | cyclic_timer_add(cyc_handler_t *handler, cyc_time_t *when) | |
416 | { | |
417 | wrap_timer_call_t *wrapTC = _MALLOC(sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
418 | if (NULL == wrapTC) | |
419 | return CYCLIC_NONE; | |
420 | else | |
421 | return timer_call_add_cyclic( wrapTC, handler, when ); | |
422 | } | |
423 | ||
424 | void | |
425 | cyclic_timer_remove(cyclic_id_t cyclic) | |
426 | { | |
427 | ASSERT( cyclic != CYCLIC_NONE ); | |
428 | ||
fe8ab488 A |
429 | /* Removing a timer call must be done on the CPU the timer is running on. */ |
430 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *) cyclic; | |
431 | dtrace_xcall(wrapTC->cpuid, (dtrace_xcall_t) timer_call_remove_cyclic, (void*) cyclic); | |
432 | ||
2d21ac55 A |
433 | _FREE((void *)cyclic, M_TEMP); |
434 | } | |
435 | ||
436 | static void | |
437 | _cyclic_add_omni(cyclic_id_list_t cyc_list) | |
438 | { | |
439 | cyc_time_t cT; | |
440 | cyc_handler_t cH; | |
441 | wrap_timer_call_t *wrapTC; | |
442 | cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list; | |
443 | char *t; | |
444 | ||
445 | (omni->cyo_online)(omni->cyo_arg, CPU, &cH, &cT); | |
446 | ||
447 | t = (char *)cyc_list; | |
448 | t += sizeof(cyc_omni_handler_t); | |
b0d623f7 | 449 | cyc_list = (cyclic_id_list_t)(uintptr_t)t; |
2d21ac55 A |
450 | |
451 | t += sizeof(cyclic_id_t)*NCPU; | |
452 | t += (sizeof(wrap_timer_call_t))*cpu_number(); | |
b0d623f7 | 453 | wrapTC = (wrap_timer_call_t *)(uintptr_t)t; |
2d21ac55 A |
454 | |
455 | cyc_list[cpu_number()] = timer_call_add_cyclic(wrapTC, &cH, &cT); | |
456 | } | |
457 | ||
458 | cyclic_id_list_t | |
459 | cyclic_add_omni(cyc_omni_handler_t *omni) | |
460 | { | |
461 | cyclic_id_list_t cyc_list = | |
462 | _MALLOC( (sizeof(wrap_timer_call_t))*NCPU + | |
463 | sizeof(cyclic_id_t)*NCPU + | |
464 | sizeof(cyc_omni_handler_t), M_TEMP, M_ZERO | M_WAITOK); | |
465 | if (NULL == cyc_list) | |
466 | return (cyclic_id_list_t)CYCLIC_NONE; | |
467 | ||
468 | *(cyc_omni_handler_t *)cyc_list = *omni; | |
469 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_add_omni, (void *)cyc_list); | |
470 | ||
471 | return cyc_list; | |
472 | } | |
473 | ||
474 | static void | |
475 | _cyclic_remove_omni(cyclic_id_list_t cyc_list) | |
476 | { | |
477 | cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list; | |
478 | void *oarg; | |
479 | cyclic_id_t cid; | |
480 | char *t; | |
481 | ||
482 | t = (char *)cyc_list; | |
483 | t += sizeof(cyc_omni_handler_t); | |
b0d623f7 | 484 | cyc_list = (cyclic_id_list_t)(uintptr_t)t; |
2d21ac55 | 485 | |
fe8ab488 A |
486 | /* |
487 | * If the processor was offline when dtrace started, we did not allocate | |
488 | * a cyclic timer for this CPU. | |
489 | */ | |
490 | if ((cid = cyc_list[cpu_number()]) != CYCLIC_NONE) { | |
491 | oarg = timer_call_get_cyclic_arg(cid); | |
492 | timer_call_remove_cyclic(cid); | |
493 | (omni->cyo_offline)(omni->cyo_arg, CPU, oarg); | |
494 | } | |
2d21ac55 A |
495 | } |
496 | ||
497 | void | |
498 | cyclic_remove_omni(cyclic_id_list_t cyc_list) | |
499 | { | |
500 | ASSERT( cyc_list != (cyclic_id_list_t)CYCLIC_NONE ); | |
501 | ||
502 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_remove_omni, (void *)cyc_list); | |
503 | _FREE(cyc_list, M_TEMP); | |
504 | } | |
505 | ||
506 | typedef struct wrap_thread_call { | |
507 | thread_call_t TChdl; | |
508 | cyc_handler_t hdlr; | |
509 | cyc_time_t when; | |
510 | uint64_t deadline; | |
511 | } wrap_thread_call_t; | |
512 | ||
513 | /* | |
514 | * _cyclic_apply will run on some thread under kernel_task. That's OK for the | |
515 | * cleaner and the deadman, but too distant in time and place for the profile provider. | |
516 | */ | |
517 | static void | |
518 | _cyclic_apply( void *ignore, void *vTChdl ) | |
519 | { | |
520 | #pragma unused(ignore) | |
521 | wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)vTChdl; | |
522 | ||
523 | (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg ); | |
524 | ||
525 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) ); | |
526 | (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline ); | |
527 | ||
528 | /* Did cyclic_remove request a wakeup call when this thread call was re-armed? */ | |
529 | if (wrapTC->when.cyt_interval == WAKEUP_REAPER) | |
530 | thread_wakeup((event_t)wrapTC); | |
531 | } | |
532 | ||
533 | cyclic_id_t | |
534 | cyclic_add(cyc_handler_t *handler, cyc_time_t *when) | |
535 | { | |
536 | uint64_t now; | |
537 | ||
538 | wrap_thread_call_t *wrapTC = _MALLOC(sizeof(wrap_thread_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
539 | if (NULL == wrapTC) | |
540 | return CYCLIC_NONE; | |
541 | ||
542 | wrapTC->TChdl = thread_call_allocate( _cyclic_apply, NULL ); | |
543 | wrapTC->hdlr = *handler; | |
544 | wrapTC->when = *when; | |
545 | ||
546 | ASSERT(when->cyt_when == 0); | |
547 | ASSERT(when->cyt_interval < WAKEUP_REAPER); | |
548 | ||
549 | nanoseconds_to_absolutetime(wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval); | |
550 | ||
551 | now = mach_absolute_time(); | |
552 | wrapTC->deadline = now; | |
553 | ||
554 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) ); | |
555 | (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline ); | |
556 | ||
557 | return (cyclic_id_t)wrapTC; | |
558 | } | |
559 | ||
560 | static void | |
561 | noop_cyh_func(void * ignore) | |
562 | { | |
563 | #pragma unused(ignore) | |
564 | } | |
565 | ||
566 | void | |
567 | cyclic_remove(cyclic_id_t cyclic) | |
568 | { | |
569 | wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)cyclic; | |
570 | ||
571 | ASSERT(cyclic != CYCLIC_NONE); | |
572 | ||
573 | while (!thread_call_cancel(wrapTC->TChdl)) { | |
574 | int ret = assert_wait(wrapTC, THREAD_UNINT); | |
575 | ASSERT(ret == THREAD_WAITING); | |
576 | ||
577 | wrapTC->when.cyt_interval = WAKEUP_REAPER; | |
578 | ||
579 | ret = thread_block(THREAD_CONTINUE_NULL); | |
580 | ASSERT(ret == THREAD_AWAKENED); | |
581 | } | |
582 | ||
583 | if (thread_call_free(wrapTC->TChdl)) | |
584 | _FREE(wrapTC, M_TEMP); | |
585 | else { | |
586 | /* Gut this cyclic and move on ... */ | |
587 | wrapTC->hdlr.cyh_func = noop_cyh_func; | |
588 | wrapTC->when.cyt_interval = NEARLY_FOREVER; | |
589 | } | |
590 | } | |
591 | ||
592 | /* | |
593 | * timeout / untimeout (converted to dtrace_timeout / dtrace_untimeout due to name collision) | |
594 | */ | |
595 | ||
596 | thread_call_t | |
597 | dtrace_timeout(void (*func)(void *, void *), void* arg, uint64_t nanos) | |
598 | { | |
599 | #pragma unused(arg) | |
600 | thread_call_t call = thread_call_allocate(func, NULL); | |
601 | ||
602 | nanoseconds_to_absolutetime(nanos, &nanos); | |
603 | ||
604 | /* | |
605 | * This method does not use clock_deadline_for_periodic_event() because it is a one-shot, | |
606 | * and clock drift on later invocations is not a worry. | |
607 | */ | |
608 | uint64_t deadline = mach_absolute_time() + nanos; | |
39236c6e | 609 | /* DRK: consider using a lower priority callout here */ |
2d21ac55 A |
610 | thread_call_enter_delayed(call, deadline); |
611 | ||
612 | return call; | |
613 | } | |
614 | ||
615 | /* | |
616 | * ddi | |
617 | */ | |
618 | void | |
619 | ddi_report_dev(dev_info_t *devi) | |
620 | { | |
621 | #pragma unused(devi) | |
622 | } | |
623 | ||
624 | #define NSOFT_STATES 32 /* XXX No more than 32 clients at a time, please. */ | |
625 | static void *soft[NSOFT_STATES]; | |
626 | ||
627 | int | |
628 | ddi_soft_state_init(void **state_p, size_t size, size_t n_items) | |
629 | { | |
630 | #pragma unused(n_items) | |
631 | int i; | |
632 | ||
633 | for (i = 0; i < NSOFT_STATES; ++i) soft[i] = _MALLOC(size, M_TEMP, M_ZERO | M_WAITOK); | |
634 | *(size_t *)state_p = size; | |
635 | return 0; | |
636 | } | |
637 | ||
638 | int | |
639 | ddi_soft_state_zalloc(void *state, int item) | |
640 | { | |
641 | #pragma unused(state) | |
642 | if (item < NSOFT_STATES) | |
643 | return DDI_SUCCESS; | |
644 | else | |
645 | return DDI_FAILURE; | |
646 | } | |
647 | ||
648 | void * | |
649 | ddi_get_soft_state(void *state, int item) | |
650 | { | |
651 | #pragma unused(state) | |
652 | ASSERT(item < NSOFT_STATES); | |
653 | return soft[item]; | |
654 | } | |
655 | ||
656 | int | |
657 | ddi_soft_state_free(void *state, int item) | |
658 | { | |
659 | ASSERT(item < NSOFT_STATES); | |
660 | bzero( soft[item], (size_t)state ); | |
661 | return DDI_SUCCESS; | |
662 | } | |
663 | ||
664 | void | |
665 | ddi_soft_state_fini(void **state_p) | |
666 | { | |
667 | #pragma unused(state_p) | |
668 | int i; | |
669 | ||
670 | for (i = 0; i < NSOFT_STATES; ++i) _FREE( soft[i], M_TEMP ); | |
671 | } | |
672 | ||
673 | static unsigned int gRegisteredProps = 0; | |
674 | static struct { | |
675 | char name[32]; /* enough for "dof-data-" + digits */ | |
676 | int *data; | |
677 | uint_t nelements; | |
678 | } gPropTable[16]; | |
679 | ||
680 | kern_return_t _dtrace_register_anon_DOF(char *, uchar_t *, uint_t); | |
681 | ||
682 | kern_return_t | |
683 | _dtrace_register_anon_DOF(char *name, uchar_t *data, uint_t nelements) | |
684 | { | |
685 | if (gRegisteredProps < sizeof(gPropTable)/sizeof(gPropTable[0])) { | |
686 | int *p = (int *)_MALLOC(nelements*sizeof(int), M_TEMP, M_WAITOK); | |
687 | ||
688 | if (NULL == p) | |
689 | return KERN_FAILURE; | |
690 | ||
691 | strlcpy(gPropTable[gRegisteredProps].name, name, sizeof(gPropTable[0].name)); | |
692 | gPropTable[gRegisteredProps].nelements = nelements; | |
693 | gPropTable[gRegisteredProps].data = p; | |
694 | ||
695 | while (nelements-- > 0) { | |
696 | *p++ = (int)(*data++); | |
697 | } | |
698 | ||
699 | gRegisteredProps++; | |
700 | return KERN_SUCCESS; | |
701 | } | |
702 | else | |
703 | return KERN_FAILURE; | |
704 | } | |
705 | ||
706 | int | |
707 | ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, | |
b0d623f7 | 708 | const char *name, int **data, uint_t *nelements) |
2d21ac55 A |
709 | { |
710 | #pragma unused(match_dev,dip,flags) | |
711 | unsigned int i; | |
712 | for (i = 0; i < gRegisteredProps; ++i) | |
713 | { | |
714 | if (0 == strncmp(name, gPropTable[i].name, | |
715 | sizeof(gPropTable[i].name))) { | |
716 | *data = gPropTable[i].data; | |
717 | *nelements = gPropTable[i].nelements; | |
718 | return DDI_SUCCESS; | |
719 | } | |
720 | } | |
721 | return DDI_FAILURE; | |
722 | } | |
723 | ||
724 | int | |
725 | ddi_prop_free(void *buf) | |
726 | { | |
727 | _FREE(buf, M_TEMP); | |
728 | return DDI_SUCCESS; | |
729 | } | |
730 | ||
731 | int | |
b0d623f7 | 732 | ddi_driver_major(dev_info_t *devi) { return (int)major(CAST_DOWN_EXPLICIT(int,devi)); } |
2d21ac55 A |
733 | |
734 | int | |
735 | ddi_create_minor_node(dev_info_t *dip, const char *name, int spec_type, | |
736 | minor_t minor_num, const char *node_type, int flag) | |
737 | { | |
738 | #pragma unused(spec_type,node_type,flag) | |
b0d623f7 | 739 | dev_t dev = makedev( ddi_driver_major(dip), minor_num ); |
2d21ac55 A |
740 | |
741 | if (NULL == devfs_make_node( dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666, name, 0 )) | |
742 | return DDI_FAILURE; | |
743 | else | |
744 | return DDI_SUCCESS; | |
745 | } | |
746 | ||
747 | void | |
748 | ddi_remove_minor_node(dev_info_t *dip, char *name) | |
749 | { | |
750 | #pragma unused(dip,name) | |
751 | /* XXX called from dtrace_detach, so NOTREACHED for now. */ | |
752 | } | |
753 | ||
754 | major_t | |
755 | getemajor( dev_t d ) | |
756 | { | |
757 | return (major_t) major(d); | |
758 | } | |
759 | ||
760 | minor_t | |
761 | getminor ( dev_t d ) | |
762 | { | |
763 | return (minor_t) minor(d); | |
764 | } | |
765 | ||
766 | dev_t | |
767 | makedevice(major_t major, minor_t minor) | |
768 | { | |
769 | return makedev( major, minor ); | |
770 | } | |
771 | ||
772 | int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, const char *name, int defvalue) | |
773 | { | |
774 | #pragma unused(dev, dip, flags, name) | |
775 | ||
776 | return defvalue; | |
777 | } | |
778 | ||
779 | /* | |
780 | * Kernel Debug Interface | |
781 | */ | |
782 | int | |
783 | kdi_dtrace_set(kdi_dtrace_set_t ignore) | |
784 | { | |
785 | #pragma unused(ignore) | |
786 | return 0; /* Success */ | |
787 | } | |
788 | ||
789 | extern void Debugger(const char*); | |
790 | ||
791 | void | |
792 | debug_enter(char *c) { Debugger(c); } | |
793 | ||
794 | /* | |
795 | * kmem | |
796 | */ | |
797 | ||
798 | void * | |
799 | dt_kmem_alloc(size_t size, int kmflag) | |
800 | { | |
801 | #pragma unused(kmflag) | |
802 | ||
803 | /* | |
804 | * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact). | |
805 | * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock. | |
806 | */ | |
807 | #if defined(DTRACE_MEMORY_ZONES) | |
808 | return dtrace_alloc(size); | |
809 | #else | |
810 | return kalloc(size); | |
811 | #endif | |
812 | } | |
813 | ||
814 | void * | |
815 | dt_kmem_zalloc(size_t size, int kmflag) | |
816 | { | |
817 | #pragma unused(kmflag) | |
818 | ||
819 | /* | |
820 | * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact). | |
821 | * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock. | |
822 | */ | |
823 | #if defined(DTRACE_MEMORY_ZONES) | |
824 | void* buf = dtrace_alloc(size); | |
825 | #else | |
826 | void* buf = kalloc(size); | |
827 | #endif | |
828 | ||
829 | if(!buf) | |
830 | return NULL; | |
831 | ||
832 | bzero(buf, size); | |
833 | ||
834 | return buf; | |
835 | } | |
836 | ||
837 | void | |
838 | dt_kmem_free(void *buf, size_t size) | |
839 | { | |
840 | #pragma unused(size) | |
841 | /* | |
842 | * DTrace relies on this, its doing a lot of NULL frees. | |
843 | * A null free causes the debug builds to panic. | |
844 | */ | |
845 | if (buf == NULL) return; | |
846 | ||
847 | ASSERT(size > 0); | |
848 | ||
849 | #if defined(DTRACE_MEMORY_ZONES) | |
850 | dtrace_free(buf, size); | |
851 | #else | |
852 | kfree(buf, size); | |
853 | #endif | |
854 | } | |
855 | ||
856 | ||
857 | ||
858 | /* | |
859 | * aligned kmem allocator | |
860 | * align should be a power of two | |
861 | */ | |
862 | ||
863 | void* dt_kmem_alloc_aligned(size_t size, size_t align, int kmflag) | |
864 | { | |
fe8ab488 A |
865 | void *mem, **addr_to_free; |
866 | intptr_t mem_aligned; | |
867 | size_t *size_to_free, hdr_size; | |
2d21ac55 | 868 | |
fe8ab488 A |
869 | /* Must be a power of two. */ |
870 | assert(align != 0); | |
871 | assert((align & (align - 1)) == 0); | |
2d21ac55 | 872 | |
fe8ab488 A |
873 | /* |
874 | * We are going to add a header to the allocation. It contains | |
875 | * the address to free and the total size of the buffer. | |
876 | */ | |
877 | hdr_size = sizeof(size_t) + sizeof(void*); | |
878 | mem = dt_kmem_alloc(size + align + hdr_size, kmflag); | |
879 | if (mem == NULL) | |
2d21ac55 A |
880 | return NULL; |
881 | ||
fe8ab488 A |
882 | mem_aligned = (intptr_t) (((intptr_t) mem + align + hdr_size) & ~(align - 1)); |
883 | ||
884 | /* Write the address to free in the header. */ | |
885 | addr_to_free = (void**) (mem_aligned - sizeof(void*)); | |
886 | *addr_to_free = mem; | |
2d21ac55 | 887 | |
fe8ab488 A |
888 | /* Write the size to free in the header. */ |
889 | size_to_free = (size_t*) (mem_aligned - hdr_size); | |
890 | *size_to_free = size + align + hdr_size; | |
2d21ac55 | 891 | |
fe8ab488 | 892 | return (void*) mem_aligned; |
2d21ac55 A |
893 | } |
894 | ||
895 | void* dt_kmem_zalloc_aligned(size_t size, size_t align, int kmflag) | |
896 | { | |
897 | void* buf; | |
898 | ||
899 | buf = dt_kmem_alloc_aligned(size, align, kmflag); | |
900 | ||
901 | if(!buf) | |
902 | return NULL; | |
903 | ||
904 | bzero(buf, size); | |
905 | ||
906 | return buf; | |
907 | } | |
908 | ||
909 | void dt_kmem_free_aligned(void* buf, size_t size) | |
910 | { | |
911 | #pragma unused(size) | |
fe8ab488 A |
912 | intptr_t ptr = (intptr_t) buf; |
913 | void **addr_to_free = (void**) (ptr - sizeof(void*)); | |
914 | size_t *size_to_free = (size_t*) (ptr - (sizeof(size_t) + sizeof(void*))); | |
2d21ac55 | 915 | |
fe8ab488 A |
916 | if (buf == NULL) |
917 | return; | |
2d21ac55 | 918 | |
fe8ab488 | 919 | dt_kmem_free(*addr_to_free, *size_to_free); |
2d21ac55 A |
920 | } |
921 | ||
922 | /* | |
923 | * dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and | |
924 | * doesn't specify constructor, destructor, or reclaim methods. | |
925 | * At present, it always zeroes the block it obtains from kmem_cache_alloc(). | |
926 | * We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE. | |
927 | */ | |
928 | kmem_cache_t * | |
929 | kmem_cache_create( | |
b0d623f7 | 930 | const char *name, /* descriptive name for this cache */ |
2d21ac55 A |
931 | size_t bufsize, /* size of the objects it manages */ |
932 | size_t align, /* required object alignment */ | |
933 | int (*constructor)(void *, void *, int), /* object constructor */ | |
934 | void (*destructor)(void *, void *), /* object destructor */ | |
935 | void (*reclaim)(void *), /* memory reclaim callback */ | |
936 | void *private, /* pass-thru arg for constr/destr/reclaim */ | |
937 | vmem_t *vmp, /* vmem source for slab allocation */ | |
938 | int cflags) /* cache creation flags */ | |
939 | { | |
940 | #pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags) | |
941 | return (kmem_cache_t *)bufsize; /* A cookie that tracks the single object size. */ | |
942 | } | |
943 | ||
944 | void * | |
945 | kmem_cache_alloc(kmem_cache_t *cp, int kmflag) | |
946 | { | |
947 | #pragma unused(kmflag) | |
948 | size_t bufsize = (size_t)cp; | |
949 | return (void *)_MALLOC(bufsize, M_TEMP, M_WAITOK); | |
950 | } | |
951 | ||
952 | void | |
953 | kmem_cache_free(kmem_cache_t *cp, void *buf) | |
954 | { | |
955 | #pragma unused(cp) | |
956 | _FREE(buf, M_TEMP); | |
957 | } | |
958 | ||
959 | void | |
960 | kmem_cache_destroy(kmem_cache_t *cp) | |
961 | { | |
962 | #pragma unused(cp) | |
963 | } | |
964 | ||
965 | /* | |
966 | * taskq | |
967 | */ | |
968 | extern void thread_call_setup(thread_call_t, thread_call_func_t, thread_call_param_t); /* XXX MACH_KERNEL_PRIVATE */ | |
969 | ||
970 | static void | |
971 | _taskq_apply( task_func_t func, thread_call_param_t arg ) | |
972 | { | |
973 | func( (void *)arg ); | |
974 | } | |
975 | ||
976 | taskq_t * | |
977 | taskq_create(const char *name, int nthreads, pri_t pri, int minalloc, | |
978 | int maxalloc, uint_t flags) | |
979 | { | |
980 | #pragma unused(name,nthreads,pri,minalloc,maxalloc,flags) | |
981 | ||
982 | return (taskq_t *)thread_call_allocate( (thread_call_func_t)_taskq_apply, NULL ); | |
983 | } | |
984 | ||
985 | taskqid_t | |
986 | taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) | |
987 | { | |
988 | #pragma unused(flags) | |
989 | thread_call_setup( (thread_call_t) tq, (thread_call_func_t)_taskq_apply, (thread_call_param_t)func ); | |
990 | thread_call_enter1( (thread_call_t) tq, (thread_call_param_t)arg ); | |
991 | return (taskqid_t) tq /* for lack of anything better */; | |
992 | } | |
993 | ||
994 | void | |
995 | taskq_destroy(taskq_t *tq) | |
996 | { | |
997 | thread_call_cancel( (thread_call_t) tq ); | |
998 | thread_call_free( (thread_call_t) tq ); | |
999 | } | |
1000 | ||
1001 | pri_t maxclsyspri; | |
1002 | ||
1003 | /* | |
1004 | * vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids | |
1005 | */ | |
1006 | typedef unsigned int u_daddr_t; | |
1007 | #include "blist.h" | |
1008 | ||
1009 | /* By passing around blist *handles*, the underlying blist can be resized as needed. */ | |
1010 | struct blist_hdl { | |
1011 | blist_t blist; | |
1012 | }; | |
1013 | ||
1014 | vmem_t * | |
1015 | vmem_create(const char *name, void *base, size_t size, size_t quantum, void *ignore5, | |
1016 | void *ignore6, vmem_t *source, size_t qcache_max, int vmflag) | |
1017 | { | |
1018 | #pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag) | |
1019 | blist_t bl; | |
1020 | struct blist_hdl *p = _MALLOC(sizeof(struct blist_hdl), M_TEMP, M_WAITOK); | |
1021 | ||
1022 | ASSERT(quantum == 1); | |
1023 | ASSERT(NULL == ignore5); | |
1024 | ASSERT(NULL == ignore6); | |
1025 | ASSERT(NULL == source); | |
1026 | ASSERT(0 == qcache_max); | |
1027 | ASSERT(vmflag & VMC_IDENTIFIER); | |
1028 | ||
1029 | size = MIN(128, size); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */ | |
1030 | ||
1031 | p->blist = bl = blist_create( size ); | |
1032 | blist_free(bl, 0, size); | |
b0d623f7 | 1033 | if (base) blist_alloc( bl, (daddr_t)(uintptr_t)base ); /* Chomp off initial ID(s) */ |
2d21ac55 A |
1034 | |
1035 | return (vmem_t *)p; | |
1036 | } | |
1037 | ||
1038 | void * | |
1039 | vmem_alloc(vmem_t *vmp, size_t size, int vmflag) | |
1040 | { | |
1041 | #pragma unused(vmflag) | |
1042 | struct blist_hdl *q = (struct blist_hdl *)vmp; | |
1043 | blist_t bl = q->blist; | |
1044 | daddr_t p; | |
1045 | ||
1046 | p = blist_alloc(bl, (daddr_t)size); | |
1047 | ||
1048 | if ((daddr_t)-1 == p) { | |
1049 | blist_resize(&bl, (bl->bl_blocks) << 1, 1); | |
1050 | q->blist = bl; | |
1051 | p = blist_alloc(bl, (daddr_t)size); | |
1052 | if ((daddr_t)-1 == p) | |
1053 | panic("vmem_alloc: failure after blist_resize!"); | |
1054 | } | |
1055 | ||
b0d623f7 | 1056 | return (void *)(uintptr_t)p; |
2d21ac55 A |
1057 | } |
1058 | ||
1059 | void | |
1060 | vmem_free(vmem_t *vmp, void *vaddr, size_t size) | |
1061 | { | |
1062 | struct blist_hdl *p = (struct blist_hdl *)vmp; | |
1063 | ||
b0d623f7 | 1064 | blist_free( p->blist, (daddr_t)(uintptr_t)vaddr, (daddr_t)size ); |
2d21ac55 A |
1065 | } |
1066 | ||
1067 | void | |
1068 | vmem_destroy(vmem_t *vmp) | |
1069 | { | |
1070 | struct blist_hdl *p = (struct blist_hdl *)vmp; | |
1071 | ||
1072 | blist_destroy( p->blist ); | |
1073 | _FREE( p, sizeof(struct blist_hdl) ); | |
1074 | } | |
1075 | ||
1076 | /* | |
1077 | * Timing | |
1078 | */ | |
1079 | ||
1080 | /* | |
1081 | * dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at | |
1082 | * January 1, 1970. Because it can be called from probe context, it must take no locks. | |
1083 | */ | |
1084 | ||
1085 | hrtime_t | |
1086 | dtrace_gethrestime(void) | |
1087 | { | |
b0d623f7 A |
1088 | clock_sec_t secs; |
1089 | clock_nsec_t nanosecs; | |
2d21ac55 A |
1090 | uint64_t secs64, ns64; |
1091 | ||
1092 | clock_get_calendar_nanotime_nowait(&secs, &nanosecs); | |
1093 | secs64 = (uint64_t)secs; | |
1094 | ns64 = (uint64_t)nanosecs; | |
1095 | ||
1096 | ns64 = ns64 + (secs64 * 1000000000LL); | |
1097 | return ns64; | |
1098 | } | |
1099 | ||
1100 | /* | |
1101 | * dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin. | |
1102 | * Hence its primary use is to specify intervals. | |
1103 | */ | |
1104 | ||
1105 | hrtime_t | |
1106 | dtrace_abs_to_nano(uint64_t elapsed) | |
1107 | { | |
1108 | static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 }; | |
1109 | ||
1110 | /* | |
1111 | * If this is the first time we've run, get the timebase. | |
1112 | * We can use denom == 0 to indicate that sTimebaseInfo is | |
1113 | * uninitialised because it makes no sense to have a zero | |
1114 | * denominator in a fraction. | |
1115 | */ | |
1116 | ||
1117 | if ( sTimebaseInfo.denom == 0 ) { | |
1118 | (void) clock_timebase_info(&sTimebaseInfo); | |
1119 | } | |
1120 | ||
1121 | /* | |
1122 | * Convert to nanoseconds. | |
1123 | * return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom; | |
1124 | * | |
1125 | * Provided the final result is representable in 64 bits the following maneuver will | |
1126 | * deliver that result without intermediate overflow. | |
1127 | */ | |
1128 | if (sTimebaseInfo.denom == sTimebaseInfo.numer) | |
1129 | return elapsed; | |
1130 | else if (sTimebaseInfo.denom == 1) | |
1131 | return elapsed * (uint64_t)sTimebaseInfo.numer; | |
1132 | else { | |
1133 | /* Decompose elapsed = eta32 * 2^32 + eps32: */ | |
1134 | uint64_t eta32 = elapsed >> 32; | |
1135 | uint64_t eps32 = elapsed & 0x00000000ffffffffLL; | |
1136 | ||
1137 | uint32_t numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom; | |
1138 | ||
1139 | /* Form product of elapsed64 (decomposed) and numer: */ | |
1140 | uint64_t mu64 = numer * eta32; | |
1141 | uint64_t lambda64 = numer * eps32; | |
1142 | ||
1143 | /* Divide the constituents by denom: */ | |
1144 | uint64_t q32 = mu64/denom; | |
1145 | uint64_t r32 = mu64 - (q32 * denom); /* mu64 % denom */ | |
1146 | ||
1147 | return (q32 << 32) + ((r32 << 32) + lambda64)/denom; | |
1148 | } | |
1149 | } | |
1150 | ||
1151 | hrtime_t | |
1152 | dtrace_gethrtime(void) | |
1153 | { | |
1154 | static uint64_t start = 0; | |
1155 | ||
1156 | if (start == 0) | |
1157 | start = mach_absolute_time(); | |
1158 | ||
1159 | return dtrace_abs_to_nano(mach_absolute_time() - start); | |
1160 | } | |
1161 | ||
1162 | /* | |
1163 | * Atomicity and synchronization | |
1164 | */ | |
1165 | uint32_t | |
1166 | dtrace_cas32(uint32_t *target, uint32_t cmp, uint32_t new) | |
1167 | { | |
b0d623f7 | 1168 | if (OSCompareAndSwap( (UInt32)cmp, (UInt32)new, (volatile UInt32 *)target )) |
2d21ac55 A |
1169 | return cmp; |
1170 | else | |
1171 | return ~cmp; /* Must return something *other* than cmp */ | |
1172 | } | |
1173 | ||
1174 | void * | |
1175 | dtrace_casptr(void *target, void *cmp, void *new) | |
1176 | { | |
b0d623f7 | 1177 | if (OSCompareAndSwapPtr( cmp, new, (void**)target )) |
2d21ac55 A |
1178 | return cmp; |
1179 | else | |
1180 | return (void *)(~(uintptr_t)cmp); /* Must return something *other* than cmp */ | |
2d21ac55 A |
1181 | } |
1182 | ||
1183 | /* | |
1184 | * Interrupt manipulation | |
1185 | */ | |
1186 | dtrace_icookie_t | |
1187 | dtrace_interrupt_disable(void) | |
1188 | { | |
1189 | return (dtrace_icookie_t)ml_set_interrupts_enabled(FALSE); | |
1190 | } | |
1191 | ||
1192 | void | |
1193 | dtrace_interrupt_enable(dtrace_icookie_t reenable) | |
1194 | { | |
1195 | (void)ml_set_interrupts_enabled((boolean_t)reenable); | |
1196 | } | |
1197 | ||
1198 | /* | |
1199 | * MP coordination | |
1200 | */ | |
1201 | static void | |
1202 | dtrace_sync_func(void) {} | |
1203 | ||
1204 | /* | |
1205 | * dtrace_sync() is not called from probe context. | |
1206 | */ | |
1207 | void | |
1208 | dtrace_sync(void) | |
1209 | { | |
1210 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); | |
1211 | } | |
1212 | ||
1213 | /* | |
1214 | * The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context. | |
1215 | */ | |
1216 | ||
1217 | extern kern_return_t dtrace_copyio_preflight(addr64_t); | |
1218 | extern kern_return_t dtrace_copyio_postflight(addr64_t); | |
1219 | ||
1220 | static int | |
1221 | dtrace_copycheck(user_addr_t uaddr, uintptr_t kaddr, size_t size) | |
1222 | { | |
1223 | #pragma unused(kaddr) | |
1224 | ||
1225 | vm_offset_t recover = dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */ | |
1226 | dtrace_set_thread_recover( current_thread(), recover ); /* Put it back. We *must not* re-enter and overwrite. */ | |
1227 | ||
1228 | ASSERT(kaddr + size >= kaddr); | |
1229 | ||
39236c6e | 1230 | if ( uaddr + size < uaddr || /* Avoid address wrap. */ |
2d21ac55 A |
1231 | KERN_FAILURE == dtrace_copyio_preflight(uaddr)) /* Machine specific setup/constraints. */ |
1232 | { | |
1233 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1234 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1235 | return (0); | |
1236 | } | |
1237 | return (1); | |
1238 | } | |
1239 | ||
1240 | void | |
b0d623f7 | 1241 | dtrace_copyin(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags) |
2d21ac55 | 1242 | { |
b0d623f7 A |
1243 | #pragma unused(flags) |
1244 | ||
2d21ac55 A |
1245 | if (dtrace_copycheck( src, dst, len )) { |
1246 | if (copyin((const user_addr_t)src, (char *)dst, (vm_size_t)len)) { | |
1247 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1248 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src; | |
1249 | } | |
1250 | dtrace_copyio_postflight(src); | |
1251 | } | |
1252 | } | |
1253 | ||
1254 | void | |
b0d623f7 | 1255 | dtrace_copyinstr(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags) |
2d21ac55 | 1256 | { |
b0d623f7 A |
1257 | #pragma unused(flags) |
1258 | ||
2d21ac55 A |
1259 | size_t actual; |
1260 | ||
1261 | if (dtrace_copycheck( src, dst, len )) { | |
4a3eedf9 A |
1262 | /* copyin as many as 'len' bytes. */ |
1263 | int error = copyinstr((const user_addr_t)src, (char *)dst, (vm_size_t)len, &actual); | |
1264 | ||
1265 | /* | |
1266 | * ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was | |
1267 | * not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on. | |
1268 | * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left | |
1269 | * to the caller. | |
1270 | */ | |
1271 | if (error && error != ENAMETOOLONG) { | |
2d21ac55 A |
1272 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
1273 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src; | |
1274 | } | |
1275 | dtrace_copyio_postflight(src); | |
1276 | } | |
1277 | } | |
1278 | ||
1279 | void | |
b0d623f7 | 1280 | dtrace_copyout(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags) |
2d21ac55 | 1281 | { |
b0d623f7 A |
1282 | #pragma unused(flags) |
1283 | ||
2d21ac55 A |
1284 | if (dtrace_copycheck( dst, src, len )) { |
1285 | if (copyout((const void *)src, dst, (vm_size_t)len)) { | |
1286 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1287 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst; | |
1288 | } | |
1289 | dtrace_copyio_postflight(dst); | |
1290 | } | |
1291 | } | |
1292 | ||
1293 | void | |
b0d623f7 | 1294 | dtrace_copyoutstr(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags) |
2d21ac55 | 1295 | { |
b0d623f7 A |
1296 | #pragma unused(flags) |
1297 | ||
2d21ac55 A |
1298 | size_t actual; |
1299 | ||
1300 | if (dtrace_copycheck( dst, src, len )) { | |
4a3eedf9 A |
1301 | |
1302 | /* | |
1303 | * ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was | |
1304 | * not encountered. We raise CPU_DTRACE_BADADDR in that case. | |
1305 | * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left | |
1306 | * to the caller. | |
1307 | */ | |
2d21ac55 A |
1308 | if (copyoutstr((const void *)src, dst, (size_t)len, &actual)) { |
1309 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1310 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst; | |
1311 | } | |
1312 | dtrace_copyio_postflight(dst); | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | uint8_t | |
1317 | dtrace_fuword8(user_addr_t uaddr) | |
1318 | { | |
1319 | uint8_t ret = 0; | |
1320 | ||
1321 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1322 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1323 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1324 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1325 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1326 | } | |
1327 | dtrace_copyio_postflight(uaddr); | |
1328 | } | |
1329 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1330 | ||
1331 | return(ret); | |
1332 | } | |
1333 | ||
1334 | uint16_t | |
1335 | dtrace_fuword16(user_addr_t uaddr) | |
1336 | { | |
1337 | uint16_t ret = 0; | |
1338 | ||
1339 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1340 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1341 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1342 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1343 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1344 | } | |
1345 | dtrace_copyio_postflight(uaddr); | |
1346 | } | |
1347 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1348 | ||
1349 | return(ret); | |
1350 | } | |
1351 | ||
1352 | uint32_t | |
1353 | dtrace_fuword32(user_addr_t uaddr) | |
1354 | { | |
1355 | uint32_t ret = 0; | |
1356 | ||
1357 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1358 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1359 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1360 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1361 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1362 | } | |
1363 | dtrace_copyio_postflight(uaddr); | |
1364 | } | |
1365 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1366 | ||
1367 | return(ret); | |
1368 | } | |
1369 | ||
1370 | uint64_t | |
1371 | dtrace_fuword64(user_addr_t uaddr) | |
1372 | { | |
1373 | uint64_t ret = 0; | |
1374 | ||
1375 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1376 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1377 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1378 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1379 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1380 | } | |
1381 | dtrace_copyio_postflight(uaddr); | |
1382 | } | |
1383 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1384 | ||
1385 | return(ret); | |
1386 | } | |
1387 | ||
1388 | /* | |
1389 | * Emulation of Solaris fuword / suword | |
1390 | * Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds. | |
1391 | */ | |
1392 | ||
1393 | int | |
1394 | fuword8(user_addr_t uaddr, uint8_t *value) | |
1395 | { | |
1396 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t)) != 0) { | |
1397 | return -1; | |
1398 | } | |
1399 | ||
1400 | return 0; | |
1401 | } | |
1402 | ||
1403 | int | |
1404 | fuword16(user_addr_t uaddr, uint16_t *value) | |
1405 | { | |
1406 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t)) != 0) { | |
1407 | return -1; | |
1408 | } | |
1409 | ||
1410 | return 0; | |
1411 | } | |
1412 | ||
1413 | int | |
1414 | fuword32(user_addr_t uaddr, uint32_t *value) | |
1415 | { | |
1416 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t)) != 0) { | |
1417 | return -1; | |
1418 | } | |
1419 | ||
1420 | return 0; | |
1421 | } | |
1422 | ||
1423 | int | |
1424 | fuword64(user_addr_t uaddr, uint64_t *value) | |
1425 | { | |
1426 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t)) != 0) { | |
1427 | return -1; | |
1428 | } | |
1429 | ||
1430 | return 0; | |
1431 | } | |
1432 | ||
1433 | void | |
1434 | fuword8_noerr(user_addr_t uaddr, uint8_t *value) | |
1435 | { | |
1436 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t))) { | |
1437 | *value = 0; | |
1438 | } | |
1439 | } | |
1440 | ||
1441 | void | |
1442 | fuword16_noerr(user_addr_t uaddr, uint16_t *value) | |
1443 | { | |
1444 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t))) { | |
1445 | *value = 0; | |
1446 | } | |
1447 | } | |
1448 | ||
1449 | void | |
1450 | fuword32_noerr(user_addr_t uaddr, uint32_t *value) | |
1451 | { | |
1452 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t))) { | |
1453 | *value = 0; | |
1454 | } | |
1455 | } | |
1456 | ||
1457 | void | |
1458 | fuword64_noerr(user_addr_t uaddr, uint64_t *value) | |
1459 | { | |
1460 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t))) { | |
1461 | *value = 0; | |
1462 | } | |
1463 | } | |
1464 | ||
1465 | int | |
1466 | suword64(user_addr_t addr, uint64_t value) | |
1467 | { | |
1468 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1469 | return -1; | |
1470 | } | |
1471 | ||
1472 | return 0; | |
1473 | } | |
1474 | ||
1475 | int | |
1476 | suword32(user_addr_t addr, uint32_t value) | |
1477 | { | |
1478 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1479 | return -1; | |
1480 | } | |
1481 | ||
1482 | return 0; | |
1483 | } | |
1484 | ||
1485 | int | |
1486 | suword16(user_addr_t addr, uint16_t value) | |
1487 | { | |
1488 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1489 | return -1; | |
1490 | } | |
1491 | ||
1492 | return 0; | |
1493 | } | |
1494 | ||
1495 | int | |
1496 | suword8(user_addr_t addr, uint8_t value) | |
1497 | { | |
1498 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1499 | return -1; | |
1500 | } | |
1501 | ||
1502 | return 0; | |
1503 | } | |
1504 | ||
1505 | ||
1506 | /* | |
1507 | * Miscellaneous | |
1508 | */ | |
1509 | extern boolean_t dtrace_tally_fault(user_addr_t); | |
1510 | ||
1511 | boolean_t | |
1512 | dtrace_tally_fault(user_addr_t uaddr) | |
1513 | { | |
1514 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1515 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1516 | return( DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT) ? TRUE : FALSE ); | |
1517 | } | |
1518 | ||
2d21ac55 A |
1519 | #define TOTTY 0x02 |
1520 | extern int prf(const char *, va_list, int, struct tty *); /* bsd/kern/subr_prf.h */ | |
1521 | ||
1522 | int | |
1523 | vuprintf(const char *format, va_list ap) | |
1524 | { | |
1525 | return prf(format, ap, TOTTY, NULL); | |
1526 | } | |
1527 | ||
1528 | /* Not called from probe context */ | |
1529 | void cmn_err( int level, const char *format, ... ) | |
1530 | { | |
1531 | #pragma unused(level) | |
1532 | va_list alist; | |
1533 | ||
1534 | va_start(alist, format); | |
1535 | vuprintf(format, alist); | |
1536 | va_end(alist); | |
1537 | uprintf("\n"); | |
1538 | } | |
1539 | ||
1540 | /* | |
1541 | * History: | |
1542 | * 2002-01-24 gvdl Initial implementation of strstr | |
1543 | */ | |
1544 | ||
b0d623f7 | 1545 | __private_extern__ const char * |
2d21ac55 A |
1546 | strstr(const char *in, const char *str) |
1547 | { | |
1548 | char c; | |
1549 | size_t len; | |
1550 | ||
1551 | c = *str++; | |
1552 | if (!c) | |
b0d623f7 | 1553 | return (const char *) in; // Trivial empty string case |
2d21ac55 A |
1554 | |
1555 | len = strlen(str); | |
1556 | do { | |
1557 | char sc; | |
1558 | ||
1559 | do { | |
1560 | sc = *in++; | |
1561 | if (!sc) | |
1562 | return (char *) 0; | |
1563 | } while (sc != c); | |
1564 | } while (strncmp(in, str, len) != 0); | |
1565 | ||
b0d623f7 | 1566 | return (const char *) (in - 1); |
2d21ac55 A |
1567 | } |
1568 | ||
1569 | /* | |
1570 | * Runtime and ABI | |
1571 | */ | |
1572 | uintptr_t | |
1573 | dtrace_caller(int ignore) | |
1574 | { | |
1575 | #pragma unused(ignore) | |
1576 | return -1; /* Just as in Solaris dtrace_asm.s */ | |
1577 | } | |
1578 | ||
1579 | int | |
1580 | dtrace_getstackdepth(int aframes) | |
1581 | { | |
b0d623f7 | 1582 | struct frame *fp = (struct frame *)__builtin_frame_address(0); |
2d21ac55 A |
1583 | struct frame *nextfp, *minfp, *stacktop; |
1584 | int depth = 0; | |
1585 | int on_intr; | |
1586 | ||
1587 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) | |
1588 | stacktop = (struct frame *)dtrace_get_cpu_int_stack_top(); | |
1589 | else | |
b0d623f7 | 1590 | stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); |
2d21ac55 A |
1591 | |
1592 | minfp = fp; | |
1593 | ||
1594 | aframes++; | |
1595 | ||
1596 | for (;;) { | |
1597 | depth++; | |
1598 | ||
1599 | nextfp = *(struct frame **)fp; | |
1600 | ||
1601 | if (nextfp <= minfp || nextfp >= stacktop) { | |
1602 | if (on_intr) { | |
1603 | /* | |
1604 | * Hop from interrupt stack to thread stack. | |
1605 | */ | |
1606 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); | |
1607 | ||
1608 | minfp = (struct frame *)kstack_base; | |
b0d623f7 | 1609 | stacktop = (struct frame *)(kstack_base + kernel_stack_size); |
2d21ac55 A |
1610 | |
1611 | on_intr = 0; | |
1612 | continue; | |
1613 | } | |
1614 | break; | |
1615 | } | |
1616 | ||
1617 | fp = nextfp; | |
1618 | minfp = fp; | |
1619 | } | |
1620 | ||
1621 | if (depth <= aframes) | |
1622 | return (0); | |
1623 | ||
1624 | return (depth - aframes); | |
1625 | } | |
1626 | ||
1627 | /* | |
1628 | * Unconsidered | |
1629 | */ | |
1630 | void | |
1631 | dtrace_vtime_enable(void) {} | |
1632 | ||
1633 | void | |
1634 | dtrace_vtime_disable(void) {} | |
1635 | ||
1636 | #else /* else ! CONFIG_DTRACE */ | |
1637 | ||
1638 | #include <sys/types.h> | |
1639 | #include <mach/vm_types.h> | |
1640 | #include <mach/kmod.h> | |
1641 | ||
1642 | /* | |
1643 | * This exists to prevent build errors when dtrace is unconfigured. | |
1644 | */ | |
1645 | ||
1646 | kern_return_t _dtrace_register_anon_DOF(char *, unsigned char *, uint32_t); | |
1647 | ||
1648 | kern_return_t _dtrace_register_anon_DOF(char *arg1, unsigned char *arg2, uint32_t arg3) { | |
1649 | #pragma unused(arg1, arg2, arg3) | |
1650 | ||
1651 | return KERN_FAILURE; | |
1652 | } | |
1653 | ||
1654 | #endif /* CONFIG_DTRACE */ |