]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
91447636 | 2 | * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved. |
1c79356b A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
37839358 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
e5568f75 | 11 | * |
37839358 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
37839358 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | ||
51 | /* | |
52 | * Default Pager. | |
53 | * Paging File Management. | |
54 | */ | |
55 | ||
91447636 | 56 | #include <mach/host_priv.h> |
0b4e3aa0 | 57 | #include <mach/memory_object_control.h> |
1c79356b | 58 | #include <mach/memory_object_server.h> |
91447636 A |
59 | #include <mach/upl.h> |
60 | #include <default_pager/default_pager_internal.h> | |
1c79356b | 61 | #include <default_pager/default_pager_alerts.h> |
91447636 A |
62 | #include <default_pager/default_pager_object_server.h> |
63 | ||
64 | #include <ipc/ipc_types.h> | |
1c79356b A |
65 | #include <ipc/ipc_port.h> |
66 | #include <ipc/ipc_space.h> | |
91447636 A |
67 | |
68 | #include <kern/kern_types.h> | |
69 | #include <kern/host.h> | |
1c79356b A |
70 | #include <kern/queue.h> |
71 | #include <kern/counters.h> | |
72 | #include <kern/sched_prim.h> | |
91447636 | 73 | |
1c79356b A |
74 | #include <vm/vm_kern.h> |
75 | #include <vm/vm_pageout.h> | |
1c79356b | 76 | #include <vm/vm_map.h> |
91447636 A |
77 | #include <vm/vm_object.h> |
78 | #include <vm/vm_protos.h> | |
79 | ||
80 | /* LP64todo - need large internal object support */ | |
1c79356b | 81 | |
0b4e3aa0 A |
82 | /* |
83 | * ALLOC_STRIDE... the maximum number of bytes allocated from | |
84 | * a swap file before moving on to the next swap file... if | |
85 | * all swap files reside on a single disk, this value should | |
86 | * be very large (this is the default assumption)... if the | |
87 | * swap files are spread across multiple disks, than this value | |
88 | * should be small (128 * 1024)... | |
89 | * | |
90 | * This should be determined dynamically in the future | |
91 | */ | |
1c79356b | 92 | |
0b4e3aa0 | 93 | #define ALLOC_STRIDE (1024 * 1024 * 1024) |
1c79356b A |
94 | int physical_transfer_cluster_count = 0; |
95 | ||
9bccf70c A |
96 | #define VM_SUPER_CLUSTER 0x40000 |
97 | #define VM_SUPER_PAGES 64 | |
1c79356b A |
98 | |
99 | /* | |
100 | * 0 means no shift to pages, so == 1 page/cluster. 1 would mean | |
101 | * 2 pages/cluster, 2 means 4 pages/cluster, and so on. | |
102 | */ | |
103 | #define VSTRUCT_DEF_CLSHIFT 2 | |
104 | int vstruct_def_clshift = VSTRUCT_DEF_CLSHIFT; | |
105 | int default_pager_clsize = 0; | |
106 | ||
107 | /* statistics */ | |
0b4e3aa0 A |
108 | unsigned int clustered_writes[VM_SUPER_PAGES+1]; |
109 | unsigned int clustered_reads[VM_SUPER_PAGES+1]; | |
1c79356b A |
110 | |
111 | /* | |
112 | * Globals used for asynchronous paging operations: | |
113 | * vs_async_list: head of list of to-be-completed I/O ops | |
114 | * async_num_queued: number of pages completed, but not yet | |
115 | * processed by async thread. | |
116 | * async_requests_out: number of pages of requests not completed. | |
117 | */ | |
118 | ||
119 | #if 0 | |
120 | struct vs_async *vs_async_list; | |
121 | int async_num_queued; | |
122 | int async_requests_out; | |
123 | #endif | |
124 | ||
125 | ||
126 | #define VS_ASYNC_REUSE 1 | |
127 | struct vs_async *vs_async_free_list; | |
128 | ||
129 | mutex_t default_pager_async_lock; /* Protects globals above */ | |
130 | ||
131 | ||
132 | int vs_alloc_async_failed = 0; /* statistics */ | |
133 | int vs_alloc_async_count = 0; /* statistics */ | |
134 | struct vs_async *vs_alloc_async(void); /* forward */ | |
135 | void vs_free_async(struct vs_async *vsa); /* forward */ | |
136 | ||
137 | ||
138 | #define VS_ALLOC_ASYNC() vs_alloc_async() | |
139 | #define VS_FREE_ASYNC(vsa) vs_free_async(vsa) | |
140 | ||
141 | #define VS_ASYNC_LOCK() mutex_lock(&default_pager_async_lock) | |
142 | #define VS_ASYNC_UNLOCK() mutex_unlock(&default_pager_async_lock) | |
91447636 | 143 | #define VS_ASYNC_LOCK_INIT() mutex_init(&default_pager_async_lock, 0) |
1c79356b A |
144 | #define VS_ASYNC_LOCK_ADDR() (&default_pager_async_lock) |
145 | /* | |
146 | * Paging Space Hysteresis triggers and the target notification port | |
147 | * | |
148 | */ | |
149 | ||
150 | unsigned int minimum_pages_remaining = 0; | |
151 | unsigned int maximum_pages_free = 0; | |
152 | ipc_port_t min_pages_trigger_port = NULL; | |
153 | ipc_port_t max_pages_trigger_port = NULL; | |
154 | ||
155 | boolean_t bs_low = FALSE; | |
0b4e3aa0 | 156 | int backing_store_release_trigger_disable = 0; |
91447636 A |
157 | |
158 | ||
159 | /* Have we decided if swap needs to be encrypted yet ? */ | |
160 | boolean_t dp_encryption_inited = FALSE; | |
161 | /* Should we encrypt swap ? */ | |
162 | boolean_t dp_encryption = FALSE; | |
1c79356b A |
163 | |
164 | ||
165 | /* | |
166 | * Object sizes are rounded up to the next power of 2, | |
167 | * unless they are bigger than a given maximum size. | |
168 | */ | |
169 | vm_size_t max_doubled_size = 4 * 1024 * 1024; /* 4 meg */ | |
170 | ||
171 | /* | |
172 | * List of all backing store and segments. | |
173 | */ | |
174 | struct backing_store_list_head backing_store_list; | |
175 | paging_segment_t paging_segments[MAX_NUM_PAGING_SEGMENTS]; | |
176 | mutex_t paging_segments_lock; | |
177 | int paging_segment_max = 0; | |
178 | int paging_segment_count = 0; | |
179 | int ps_select_array[BS_MAXPRI+1] = { -1,-1,-1,-1,-1 }; | |
180 | ||
181 | ||
182 | /* | |
183 | * Total pages free in system | |
184 | * This differs from clusters committed/avail which is a measure of the | |
185 | * over commitment of paging segments to backing store. An idea which is | |
186 | * likely to be deprecated. | |
187 | */ | |
188 | unsigned int dp_pages_free = 0; | |
189 | unsigned int cluster_transfer_minimum = 100; | |
190 | ||
91447636 A |
191 | /* forward declarations */ |
192 | kern_return_t ps_write_file(paging_segment_t, upl_t, upl_offset_t, vm_offset_t, unsigned int, int); /* forward */ | |
193 | kern_return_t ps_read_file (paging_segment_t, upl_t, upl_offset_t, vm_offset_t, unsigned int, unsigned int *, int); /* forward */ | |
194 | default_pager_thread_t *get_read_buffer( void ); | |
195 | kern_return_t ps_vstruct_transfer_from_segment( | |
196 | vstruct_t vs, | |
197 | paging_segment_t segment, | |
198 | upl_t upl); | |
199 | kern_return_t ps_read_device(paging_segment_t, vm_offset_t, vm_offset_t *, unsigned int, unsigned int *, int); /* forward */ | |
200 | kern_return_t ps_write_device(paging_segment_t, vm_offset_t, vm_offset_t, unsigned int, struct vs_async *); /* forward */ | |
201 | kern_return_t vs_cluster_transfer( | |
202 | vstruct_t vs, | |
203 | upl_offset_t offset, | |
204 | upl_size_t cnt, | |
205 | upl_t upl); | |
206 | vs_map_t vs_get_map_entry( | |
207 | vstruct_t vs, | |
208 | vm_offset_t offset); | |
0b4e3aa0 | 209 | |
1c79356b A |
210 | |
211 | default_pager_thread_t * | |
91447636 | 212 | get_read_buffer( void ) |
1c79356b A |
213 | { |
214 | int i; | |
215 | ||
216 | DPT_LOCK(dpt_lock); | |
217 | while(TRUE) { | |
218 | for (i=0; i<default_pager_internal_count; i++) { | |
219 | if(dpt_array[i]->checked_out == FALSE) { | |
220 | dpt_array[i]->checked_out = TRUE; | |
221 | DPT_UNLOCK(dpt_lock); | |
222 | return dpt_array[i]; | |
223 | } | |
224 | } | |
9bccf70c | 225 | DPT_SLEEP(dpt_lock, &dpt_array, THREAD_UNINT); |
1c79356b A |
226 | } |
227 | } | |
228 | ||
229 | void | |
230 | bs_initialize(void) | |
231 | { | |
232 | int i; | |
233 | ||
234 | /* | |
235 | * List of all backing store. | |
236 | */ | |
237 | BSL_LOCK_INIT(); | |
238 | queue_init(&backing_store_list.bsl_queue); | |
239 | PSL_LOCK_INIT(); | |
240 | ||
241 | VS_ASYNC_LOCK_INIT(); | |
242 | #if VS_ASYNC_REUSE | |
243 | vs_async_free_list = NULL; | |
244 | #endif /* VS_ASYNC_REUSE */ | |
245 | ||
0b4e3aa0 | 246 | for (i = 0; i < VM_SUPER_PAGES + 1; i++) { |
1c79356b A |
247 | clustered_writes[i] = 0; |
248 | clustered_reads[i] = 0; | |
249 | } | |
250 | ||
251 | } | |
252 | ||
253 | /* | |
254 | * When things do not quite workout... | |
255 | */ | |
256 | void bs_no_paging_space(boolean_t); /* forward */ | |
257 | ||
258 | void | |
259 | bs_no_paging_space( | |
260 | boolean_t out_of_memory) | |
261 | { | |
1c79356b A |
262 | |
263 | if (out_of_memory) | |
264 | dprintf(("*** OUT OF MEMORY ***\n")); | |
265 | panic("bs_no_paging_space: NOT ENOUGH PAGING SPACE"); | |
266 | } | |
267 | ||
268 | void bs_more_space(int); /* forward */ | |
269 | void bs_commit(int); /* forward */ | |
270 | ||
271 | boolean_t user_warned = FALSE; | |
272 | unsigned int clusters_committed = 0; | |
273 | unsigned int clusters_available = 0; | |
274 | unsigned int clusters_committed_peak = 0; | |
275 | ||
276 | void | |
277 | bs_more_space( | |
278 | int nclusters) | |
279 | { | |
280 | BSL_LOCK(); | |
281 | /* | |
282 | * Account for new paging space. | |
283 | */ | |
284 | clusters_available += nclusters; | |
285 | ||
286 | if (clusters_available >= clusters_committed) { | |
287 | if (verbose && user_warned) { | |
288 | printf("%s%s - %d excess clusters now.\n", | |
289 | my_name, | |
290 | "paging space is OK now", | |
291 | clusters_available - clusters_committed); | |
292 | user_warned = FALSE; | |
293 | clusters_committed_peak = 0; | |
294 | } | |
295 | } else { | |
296 | if (verbose && user_warned) { | |
297 | printf("%s%s - still short of %d clusters.\n", | |
298 | my_name, | |
299 | "WARNING: paging space over-committed", | |
300 | clusters_committed - clusters_available); | |
301 | clusters_committed_peak -= nclusters; | |
302 | } | |
303 | } | |
304 | BSL_UNLOCK(); | |
305 | ||
306 | return; | |
307 | } | |
308 | ||
309 | void | |
310 | bs_commit( | |
311 | int nclusters) | |
312 | { | |
313 | BSL_LOCK(); | |
314 | clusters_committed += nclusters; | |
315 | if (clusters_committed > clusters_available) { | |
316 | if (verbose && !user_warned) { | |
317 | user_warned = TRUE; | |
318 | printf("%s%s - short of %d clusters.\n", | |
319 | my_name, | |
320 | "WARNING: paging space over-committed", | |
321 | clusters_committed - clusters_available); | |
322 | } | |
323 | if (clusters_committed > clusters_committed_peak) { | |
324 | clusters_committed_peak = clusters_committed; | |
325 | } | |
326 | } else { | |
327 | if (verbose && user_warned) { | |
328 | printf("%s%s - was short of up to %d clusters.\n", | |
329 | my_name, | |
330 | "paging space is OK now", | |
331 | clusters_committed_peak - clusters_available); | |
332 | user_warned = FALSE; | |
333 | clusters_committed_peak = 0; | |
334 | } | |
335 | } | |
336 | BSL_UNLOCK(); | |
337 | ||
338 | return; | |
339 | } | |
340 | ||
341 | int default_pager_info_verbose = 1; | |
342 | ||
343 | void | |
344 | bs_global_info( | |
345 | vm_size_t *totalp, | |
346 | vm_size_t *freep) | |
347 | { | |
348 | vm_size_t pages_total, pages_free; | |
349 | paging_segment_t ps; | |
350 | int i; | |
1c79356b A |
351 | |
352 | PSL_LOCK(); | |
353 | pages_total = pages_free = 0; | |
354 | for (i = 0; i <= paging_segment_max; i++) { | |
355 | ps = paging_segments[i]; | |
356 | if (ps == PAGING_SEGMENT_NULL) | |
357 | continue; | |
358 | ||
359 | /* | |
360 | * no need to lock: by the time this data | |
361 | * gets back to any remote requestor it | |
362 | * will be obsolete anyways | |
363 | */ | |
364 | pages_total += ps->ps_pgnum; | |
365 | pages_free += ps->ps_clcount << ps->ps_clshift; | |
91447636 A |
366 | DP_DEBUG(DEBUG_BS_INTERNAL, |
367 | ("segment #%d: %d total, %d free\n", | |
368 | i, ps->ps_pgnum, ps->ps_clcount << ps->ps_clshift)); | |
1c79356b A |
369 | } |
370 | *totalp = pages_total; | |
371 | *freep = pages_free; | |
372 | if (verbose && user_warned && default_pager_info_verbose) { | |
373 | if (clusters_available < clusters_committed) { | |
374 | printf("%s %d clusters committed, %d available.\n", | |
375 | my_name, | |
376 | clusters_committed, | |
377 | clusters_available); | |
378 | } | |
379 | } | |
380 | PSL_UNLOCK(); | |
381 | } | |
382 | ||
383 | backing_store_t backing_store_alloc(void); /* forward */ | |
384 | ||
385 | backing_store_t | |
386 | backing_store_alloc(void) | |
387 | { | |
388 | backing_store_t bs; | |
1c79356b A |
389 | |
390 | bs = (backing_store_t) kalloc(sizeof (struct backing_store)); | |
391 | if (bs == BACKING_STORE_NULL) | |
392 | panic("backing_store_alloc: no memory"); | |
393 | ||
394 | BS_LOCK_INIT(bs); | |
395 | bs->bs_port = MACH_PORT_NULL; | |
396 | bs->bs_priority = 0; | |
397 | bs->bs_clsize = 0; | |
398 | bs->bs_pages_total = 0; | |
399 | bs->bs_pages_in = 0; | |
400 | bs->bs_pages_in_fail = 0; | |
401 | bs->bs_pages_out = 0; | |
402 | bs->bs_pages_out_fail = 0; | |
403 | ||
404 | return bs; | |
405 | } | |
406 | ||
407 | backing_store_t backing_store_lookup(MACH_PORT_FACE); /* forward */ | |
408 | ||
409 | /* Even in both the component space and external versions of this pager, */ | |
410 | /* backing_store_lookup will be called from tasks in the application space */ | |
411 | backing_store_t | |
412 | backing_store_lookup( | |
413 | MACH_PORT_FACE port) | |
414 | { | |
415 | backing_store_t bs; | |
416 | ||
417 | /* | |
418 | port is currently backed with a vs structure in the alias field | |
419 | we could create an ISBS alias and a port_is_bs call but frankly | |
420 | I see no reason for the test, the bs->port == port check below | |
421 | will work properly on junk entries. | |
422 | ||
423 | if ((port == MACH_PORT_NULL) || port_is_vs(port)) | |
424 | */ | |
425 | if ((port == MACH_PORT_NULL)) | |
426 | return BACKING_STORE_NULL; | |
427 | ||
428 | BSL_LOCK(); | |
429 | queue_iterate(&backing_store_list.bsl_queue, bs, backing_store_t, | |
430 | bs_links) { | |
431 | BS_LOCK(bs); | |
432 | if (bs->bs_port == port) { | |
433 | BSL_UNLOCK(); | |
434 | /* Success, return it locked. */ | |
435 | return bs; | |
436 | } | |
437 | BS_UNLOCK(bs); | |
438 | } | |
439 | BSL_UNLOCK(); | |
440 | return BACKING_STORE_NULL; | |
441 | } | |
442 | ||
443 | void backing_store_add(backing_store_t); /* forward */ | |
444 | ||
445 | void | |
446 | backing_store_add( | |
91447636 | 447 | __unused backing_store_t bs) |
1c79356b | 448 | { |
91447636 A |
449 | // MACH_PORT_FACE port = bs->bs_port; |
450 | // MACH_PORT_FACE pset = default_pager_default_set; | |
1c79356b | 451 | kern_return_t kr = KERN_SUCCESS; |
1c79356b A |
452 | |
453 | if (kr != KERN_SUCCESS) | |
454 | panic("backing_store_add: add to set"); | |
455 | ||
456 | } | |
457 | ||
458 | /* | |
459 | * Set up default page shift, but only if not already | |
460 | * set and argument is within range. | |
461 | */ | |
462 | boolean_t | |
463 | bs_set_default_clsize(unsigned int npages) | |
464 | { | |
465 | switch(npages){ | |
466 | case 1: | |
467 | case 2: | |
468 | case 4: | |
469 | case 8: | |
470 | if (default_pager_clsize == 0) /* if not yet set */ | |
471 | vstruct_def_clshift = local_log2(npages); | |
472 | return(TRUE); | |
473 | } | |
474 | return(FALSE); | |
475 | } | |
476 | ||
477 | int bs_get_global_clsize(int clsize); /* forward */ | |
478 | ||
479 | int | |
480 | bs_get_global_clsize( | |
481 | int clsize) | |
482 | { | |
483 | int i; | |
0b4e3aa0 | 484 | memory_object_default_t dmm; |
1c79356b | 485 | kern_return_t kr; |
1c79356b A |
486 | |
487 | /* | |
488 | * Only allow setting of cluster size once. If called | |
489 | * with no cluster size (default), we use the compiled-in default | |
490 | * for the duration. The same cluster size is used for all | |
491 | * paging segments. | |
492 | */ | |
493 | if (default_pager_clsize == 0) { | |
1c79356b A |
494 | /* |
495 | * Keep cluster size in bit shift because it's quicker | |
496 | * arithmetic, and easier to keep at a power of 2. | |
497 | */ | |
498 | if (clsize != NO_CLSIZE) { | |
499 | for (i = 0; (1 << i) < clsize; i++); | |
500 | if (i > MAX_CLUSTER_SHIFT) | |
501 | i = MAX_CLUSTER_SHIFT; | |
502 | vstruct_def_clshift = i; | |
503 | } | |
504 | default_pager_clsize = (1 << vstruct_def_clshift); | |
505 | ||
506 | /* | |
507 | * Let the user know the new (and definitive) cluster size. | |
508 | */ | |
509 | if (verbose) | |
510 | printf("%scluster size = %d page%s\n", | |
511 | my_name, default_pager_clsize, | |
512 | (default_pager_clsize == 1) ? "" : "s"); | |
0b4e3aa0 | 513 | |
1c79356b A |
514 | /* |
515 | * Let the kernel know too, in case it hasn't used the | |
516 | * default value provided in main() yet. | |
517 | */ | |
0b4e3aa0 | 518 | dmm = default_pager_object; |
1c79356b A |
519 | clsize = default_pager_clsize * vm_page_size; /* in bytes */ |
520 | kr = host_default_memory_manager(host_priv_self(), | |
0b4e3aa0 | 521 | &dmm, |
1c79356b | 522 | clsize); |
0b4e3aa0 A |
523 | memory_object_default_deallocate(dmm); |
524 | ||
1c79356b A |
525 | if (kr != KERN_SUCCESS) { |
526 | panic("bs_get_global_cl_size:host_default_memory_manager"); | |
527 | } | |
0b4e3aa0 | 528 | if (dmm != default_pager_object) { |
1c79356b A |
529 | panic("bs_get_global_cl_size:there is another default pager"); |
530 | } | |
531 | } | |
532 | ASSERT(default_pager_clsize > 0 && | |
533 | (default_pager_clsize & (default_pager_clsize - 1)) == 0); | |
534 | ||
535 | return default_pager_clsize; | |
536 | } | |
537 | ||
538 | kern_return_t | |
539 | default_pager_backing_store_create( | |
0b4e3aa0 A |
540 | memory_object_default_t pager, |
541 | int priority, | |
542 | int clsize, /* in bytes */ | |
543 | MACH_PORT_FACE *backing_store) | |
1c79356b A |
544 | { |
545 | backing_store_t bs; | |
546 | MACH_PORT_FACE port; | |
91447636 | 547 | // kern_return_t kr; |
1c79356b | 548 | struct vstruct_alias *alias_struct; |
1c79356b | 549 | |
0b4e3aa0 | 550 | if (pager != default_pager_object) |
1c79356b A |
551 | return KERN_INVALID_ARGUMENT; |
552 | ||
553 | bs = backing_store_alloc(); | |
554 | port = ipc_port_alloc_kernel(); | |
555 | ipc_port_make_send(port); | |
556 | assert (port != IP_NULL); | |
557 | ||
91447636 A |
558 | DP_DEBUG(DEBUG_BS_EXTERNAL, |
559 | ("priority=%d clsize=%d bs_port=0x%x\n", | |
560 | priority, clsize, (int) backing_store)); | |
1c79356b A |
561 | |
562 | alias_struct = (struct vstruct_alias *) | |
563 | kalloc(sizeof (struct vstruct_alias)); | |
564 | if(alias_struct != NULL) { | |
565 | alias_struct->vs = (struct vstruct *)bs; | |
c0fea474 | 566 | alias_struct->name = &default_pager_ops; |
1c79356b A |
567 | port->alias = (int) alias_struct; |
568 | } | |
569 | else { | |
570 | ipc_port_dealloc_kernel((MACH_PORT_FACE)(port)); | |
91447636 | 571 | kfree(bs, sizeof (struct backing_store)); |
1c79356b A |
572 | return KERN_RESOURCE_SHORTAGE; |
573 | } | |
574 | ||
575 | bs->bs_port = port; | |
576 | if (priority == DEFAULT_PAGER_BACKING_STORE_MAXPRI) | |
577 | priority = BS_MAXPRI; | |
578 | else if (priority == BS_NOPRI) | |
579 | priority = BS_MAXPRI; | |
580 | else | |
581 | priority = BS_MINPRI; | |
582 | bs->bs_priority = priority; | |
583 | ||
55e303ae | 584 | bs->bs_clsize = bs_get_global_clsize(atop_32(clsize)); |
1c79356b A |
585 | |
586 | BSL_LOCK(); | |
587 | queue_enter(&backing_store_list.bsl_queue, bs, backing_store_t, | |
588 | bs_links); | |
589 | BSL_UNLOCK(); | |
590 | ||
591 | backing_store_add(bs); | |
592 | ||
593 | *backing_store = port; | |
594 | return KERN_SUCCESS; | |
595 | } | |
596 | ||
597 | kern_return_t | |
598 | default_pager_backing_store_info( | |
599 | MACH_PORT_FACE backing_store, | |
600 | backing_store_flavor_t flavour, | |
601 | backing_store_info_t info, | |
602 | mach_msg_type_number_t *size) | |
603 | { | |
604 | backing_store_t bs; | |
605 | backing_store_basic_info_t basic; | |
606 | int i; | |
607 | paging_segment_t ps; | |
608 | ||
609 | if (flavour != BACKING_STORE_BASIC_INFO || | |
610 | *size < BACKING_STORE_BASIC_INFO_COUNT) | |
611 | return KERN_INVALID_ARGUMENT; | |
612 | ||
613 | basic = (backing_store_basic_info_t)info; | |
614 | *size = BACKING_STORE_BASIC_INFO_COUNT; | |
615 | ||
616 | VSTATS_LOCK(&global_stats.gs_lock); | |
617 | basic->pageout_calls = global_stats.gs_pageout_calls; | |
618 | basic->pagein_calls = global_stats.gs_pagein_calls; | |
619 | basic->pages_in = global_stats.gs_pages_in; | |
620 | basic->pages_out = global_stats.gs_pages_out; | |
621 | basic->pages_unavail = global_stats.gs_pages_unavail; | |
622 | basic->pages_init = global_stats.gs_pages_init; | |
623 | basic->pages_init_writes= global_stats.gs_pages_init_writes; | |
624 | VSTATS_UNLOCK(&global_stats.gs_lock); | |
625 | ||
626 | if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL) | |
627 | return KERN_INVALID_ARGUMENT; | |
628 | ||
629 | basic->bs_pages_total = bs->bs_pages_total; | |
630 | PSL_LOCK(); | |
631 | bs->bs_pages_free = 0; | |
632 | for (i = 0; i <= paging_segment_max; i++) { | |
633 | ps = paging_segments[i]; | |
634 | if (ps != PAGING_SEGMENT_NULL && ps->ps_bs == bs) { | |
635 | PS_LOCK(ps); | |
636 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
637 | PS_UNLOCK(ps); | |
638 | } | |
639 | } | |
640 | PSL_UNLOCK(); | |
641 | basic->bs_pages_free = bs->bs_pages_free; | |
642 | basic->bs_pages_in = bs->bs_pages_in; | |
643 | basic->bs_pages_in_fail = bs->bs_pages_in_fail; | |
644 | basic->bs_pages_out = bs->bs_pages_out; | |
645 | basic->bs_pages_out_fail= bs->bs_pages_out_fail; | |
646 | ||
647 | basic->bs_priority = bs->bs_priority; | |
55e303ae | 648 | basic->bs_clsize = ptoa_32(bs->bs_clsize); /* in bytes */ |
1c79356b A |
649 | |
650 | BS_UNLOCK(bs); | |
651 | ||
652 | return KERN_SUCCESS; | |
653 | } | |
654 | ||
655 | int ps_delete(paging_segment_t); /* forward */ | |
656 | ||
657 | int | |
658 | ps_delete( | |
659 | paging_segment_t ps) | |
660 | { | |
661 | vstruct_t vs; | |
662 | kern_return_t error = KERN_SUCCESS; | |
663 | int vs_count; | |
664 | ||
665 | VSL_LOCK(); /* get the lock on the list of vs's */ | |
666 | ||
667 | /* The lock relationship and sequence is farily complicated */ | |
668 | /* this code looks at a live list, locking and unlocking the list */ | |
669 | /* as it traverses it. It depends on the locking behavior of */ | |
670 | /* default_pager_no_senders. no_senders always locks the vstruct */ | |
671 | /* targeted for removal before locking the vstruct list. However */ | |
672 | /* it will remove that member of the list without locking its */ | |
673 | /* neighbors. We can be sure when we hold a lock on a vstruct */ | |
674 | /* it cannot be removed from the list but we must hold the list */ | |
675 | /* lock to be sure that its pointers to its neighbors are valid. */ | |
676 | /* Also, we can hold off destruction of a vstruct when the list */ | |
677 | /* lock and the vs locks are not being held by bumping the */ | |
678 | /* vs_async_pending count. */ | |
679 | ||
0b4e3aa0 A |
680 | |
681 | while(backing_store_release_trigger_disable != 0) { | |
9bccf70c | 682 | VSL_SLEEP(&backing_store_release_trigger_disable, THREAD_UNINT); |
0b4e3aa0 A |
683 | } |
684 | ||
1c79356b A |
685 | /* we will choose instead to hold a send right */ |
686 | vs_count = vstruct_list.vsl_count; | |
687 | vs = (vstruct_t) queue_first((queue_entry_t)&(vstruct_list.vsl_queue)); | |
688 | if(vs == (vstruct_t)&vstruct_list) { | |
689 | VSL_UNLOCK(); | |
690 | return KERN_SUCCESS; | |
691 | } | |
692 | VS_LOCK(vs); | |
693 | vs_async_wait(vs); /* wait for any pending async writes */ | |
694 | if ((vs_count != 0) && (vs != NULL)) | |
695 | vs->vs_async_pending += 1; /* hold parties calling */ | |
696 | /* vs_async_wait */ | |
697 | VS_UNLOCK(vs); | |
698 | VSL_UNLOCK(); | |
699 | while((vs_count != 0) && (vs != NULL)) { | |
700 | /* We take the count of AMO's before beginning the */ | |
701 | /* transfer of of the target segment. */ | |
702 | /* We are guaranteed that the target segment cannot get */ | |
703 | /* more users. We also know that queue entries are */ | |
704 | /* made at the back of the list. If some of the entries */ | |
705 | /* we would check disappear while we are traversing the */ | |
706 | /* list then we will either check new entries which */ | |
707 | /* do not have any backing store in the target segment */ | |
708 | /* or re-check old entries. This might not be optimal */ | |
709 | /* but it will always be correct. The alternative is to */ | |
710 | /* take a snapshot of the list. */ | |
711 | vstruct_t next_vs; | |
712 | ||
713 | if(dp_pages_free < cluster_transfer_minimum) | |
714 | error = KERN_FAILURE; | |
715 | else { | |
716 | vm_object_t transfer_object; | |
c0fea474 | 717 | unsigned int count; |
1c79356b A |
718 | upl_t upl; |
719 | ||
91447636 | 720 | transfer_object = vm_object_allocate((vm_object_size_t)VM_SUPER_CLUSTER); |
0b4e3aa0 A |
721 | count = 0; |
722 | error = vm_object_upl_request(transfer_object, | |
723 | (vm_object_offset_t)0, VM_SUPER_CLUSTER, | |
724 | &upl, NULL, &count, | |
725 | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | |
726 | | UPL_SET_INTERNAL); | |
1c79356b | 727 | if(error == KERN_SUCCESS) { |
1c79356b A |
728 | error = ps_vstruct_transfer_from_segment( |
729 | vs, ps, upl); | |
91447636 | 730 | upl_commit(upl, NULL, 0); |
0b4e3aa0 | 731 | upl_deallocate(upl); |
1c79356b | 732 | } else { |
1c79356b A |
733 | error = KERN_FAILURE; |
734 | } | |
9bccf70c | 735 | vm_object_deallocate(transfer_object); |
1c79356b A |
736 | } |
737 | if(error) { | |
738 | VS_LOCK(vs); | |
739 | vs->vs_async_pending -= 1; /* release vs_async_wait */ | |
0b4e3aa0 A |
740 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
741 | vs->vs_waiting_async = FALSE; | |
1c79356b | 742 | VS_UNLOCK(vs); |
0b4e3aa0 | 743 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
744 | } else { |
745 | VS_UNLOCK(vs); | |
746 | } | |
747 | return KERN_FAILURE; | |
748 | } | |
749 | ||
750 | VSL_LOCK(); | |
0b4e3aa0 A |
751 | |
752 | while(backing_store_release_trigger_disable != 0) { | |
9bccf70c A |
753 | VSL_SLEEP(&backing_store_release_trigger_disable, |
754 | THREAD_UNINT); | |
0b4e3aa0 A |
755 | } |
756 | ||
1c79356b A |
757 | next_vs = (vstruct_t) queue_next(&(vs->vs_links)); |
758 | if((next_vs != (vstruct_t)&vstruct_list) && | |
759 | (vs != next_vs) && (vs_count != 1)) { | |
760 | VS_LOCK(next_vs); | |
761 | vs_async_wait(next_vs); /* wait for any */ | |
762 | /* pending async writes */ | |
763 | next_vs->vs_async_pending += 1; /* hold parties */ | |
764 | /* calling vs_async_wait */ | |
765 | VS_UNLOCK(next_vs); | |
766 | } | |
767 | VSL_UNLOCK(); | |
768 | VS_LOCK(vs); | |
769 | vs->vs_async_pending -= 1; | |
0b4e3aa0 A |
770 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
771 | vs->vs_waiting_async = FALSE; | |
1c79356b | 772 | VS_UNLOCK(vs); |
0b4e3aa0 | 773 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
774 | } else { |
775 | VS_UNLOCK(vs); | |
776 | } | |
777 | if((vs == next_vs) || (next_vs == (vstruct_t)&vstruct_list)) | |
778 | vs = NULL; | |
779 | else | |
780 | vs = next_vs; | |
781 | vs_count--; | |
782 | } | |
783 | return KERN_SUCCESS; | |
784 | } | |
785 | ||
786 | ||
787 | kern_return_t | |
788 | default_pager_backing_store_delete( | |
789 | MACH_PORT_FACE backing_store) | |
790 | { | |
791 | backing_store_t bs; | |
792 | int i; | |
793 | paging_segment_t ps; | |
794 | int error; | |
795 | int interim_pages_removed = 0; | |
91447636 | 796 | // kern_return_t kr; |
1c79356b A |
797 | |
798 | if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL) | |
799 | return KERN_INVALID_ARGUMENT; | |
800 | ||
801 | #if 0 | |
802 | /* not implemented */ | |
803 | BS_UNLOCK(bs); | |
804 | return KERN_FAILURE; | |
805 | #endif | |
806 | ||
807 | restart: | |
808 | PSL_LOCK(); | |
809 | error = KERN_SUCCESS; | |
810 | for (i = 0; i <= paging_segment_max; i++) { | |
811 | ps = paging_segments[i]; | |
812 | if (ps != PAGING_SEGMENT_NULL && | |
813 | ps->ps_bs == bs && | |
814 | ! ps->ps_going_away) { | |
815 | PS_LOCK(ps); | |
816 | /* disable access to this segment */ | |
817 | ps->ps_going_away = TRUE; | |
818 | PS_UNLOCK(ps); | |
819 | /* | |
820 | * The "ps" segment is "off-line" now, | |
821 | * we can try and delete it... | |
822 | */ | |
823 | if(dp_pages_free < (cluster_transfer_minimum | |
824 | + ps->ps_pgcount)) { | |
825 | error = KERN_FAILURE; | |
826 | PSL_UNLOCK(); | |
827 | } | |
828 | else { | |
829 | /* remove all pages associated with the */ | |
830 | /* segment from the list of free pages */ | |
831 | /* when transfer is through, all target */ | |
832 | /* segment pages will appear to be free */ | |
833 | ||
834 | dp_pages_free -= ps->ps_pgcount; | |
835 | interim_pages_removed += ps->ps_pgcount; | |
836 | PSL_UNLOCK(); | |
837 | error = ps_delete(ps); | |
838 | } | |
839 | if (error != KERN_SUCCESS) { | |
840 | /* | |
841 | * We couldn't delete the segment, | |
842 | * probably because there's not enough | |
843 | * virtual memory left. | |
844 | * Re-enable all the segments. | |
845 | */ | |
846 | PSL_LOCK(); | |
847 | break; | |
848 | } | |
849 | goto restart; | |
850 | } | |
851 | } | |
852 | ||
853 | if (error != KERN_SUCCESS) { | |
854 | for (i = 0; i <= paging_segment_max; i++) { | |
855 | ps = paging_segments[i]; | |
856 | if (ps != PAGING_SEGMENT_NULL && | |
857 | ps->ps_bs == bs && | |
858 | ps->ps_going_away) { | |
859 | PS_LOCK(ps); | |
860 | /* re-enable access to this segment */ | |
861 | ps->ps_going_away = FALSE; | |
862 | PS_UNLOCK(ps); | |
863 | } | |
864 | } | |
865 | dp_pages_free += interim_pages_removed; | |
866 | PSL_UNLOCK(); | |
867 | BS_UNLOCK(bs); | |
868 | return error; | |
869 | } | |
870 | ||
871 | for (i = 0; i <= paging_segment_max; i++) { | |
872 | ps = paging_segments[i]; | |
873 | if (ps != PAGING_SEGMENT_NULL && | |
874 | ps->ps_bs == bs) { | |
875 | if(ps->ps_going_away) { | |
876 | paging_segments[i] = PAGING_SEGMENT_NULL; | |
877 | paging_segment_count--; | |
878 | PS_LOCK(ps); | |
91447636 A |
879 | kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); |
880 | kfree(ps, sizeof *ps); | |
1c79356b A |
881 | } |
882 | } | |
883 | } | |
884 | ||
885 | /* Scan the entire ps array separately to make certain we find the */ | |
886 | /* proper paging_segment_max */ | |
887 | for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) { | |
888 | if(paging_segments[i] != PAGING_SEGMENT_NULL) | |
889 | paging_segment_max = i; | |
890 | } | |
891 | ||
892 | PSL_UNLOCK(); | |
893 | ||
894 | /* | |
895 | * All the segments have been deleted. | |
896 | * We can remove the backing store. | |
897 | */ | |
898 | ||
899 | /* | |
900 | * Disable lookups of this backing store. | |
901 | */ | |
902 | if((void *)bs->bs_port->alias != NULL) | |
91447636 A |
903 | kfree((void *) bs->bs_port->alias, |
904 | sizeof (struct vstruct_alias)); | |
1c79356b A |
905 | ipc_port_dealloc_kernel((ipc_port_t) (bs->bs_port)); |
906 | bs->bs_port = MACH_PORT_NULL; | |
907 | BS_UNLOCK(bs); | |
908 | ||
909 | /* | |
910 | * Remove backing store from backing_store list. | |
911 | */ | |
912 | BSL_LOCK(); | |
913 | queue_remove(&backing_store_list.bsl_queue, bs, backing_store_t, | |
914 | bs_links); | |
915 | BSL_UNLOCK(); | |
916 | ||
917 | /* | |
918 | * Free the backing store structure. | |
919 | */ | |
91447636 | 920 | kfree(bs, sizeof *bs); |
1c79356b A |
921 | |
922 | return KERN_SUCCESS; | |
923 | } | |
924 | ||
925 | int ps_enter(paging_segment_t); /* forward */ | |
926 | ||
927 | int | |
928 | ps_enter( | |
929 | paging_segment_t ps) | |
930 | { | |
931 | int i; | |
932 | ||
933 | PSL_LOCK(); | |
934 | ||
935 | for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) { | |
936 | if (paging_segments[i] == PAGING_SEGMENT_NULL) | |
937 | break; | |
938 | } | |
939 | ||
940 | if (i < MAX_NUM_PAGING_SEGMENTS) { | |
941 | paging_segments[i] = ps; | |
942 | if (i > paging_segment_max) | |
943 | paging_segment_max = i; | |
944 | paging_segment_count++; | |
945 | if ((ps_select_array[ps->ps_bs->bs_priority] == BS_NOPRI) || | |
946 | (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI)) | |
947 | ps_select_array[ps->ps_bs->bs_priority] = 0; | |
948 | i = 0; | |
949 | } else { | |
950 | PSL_UNLOCK(); | |
951 | return KERN_RESOURCE_SHORTAGE; | |
952 | } | |
953 | ||
954 | PSL_UNLOCK(); | |
955 | return i; | |
956 | } | |
957 | ||
958 | #ifdef DEVICE_PAGING | |
959 | kern_return_t | |
960 | default_pager_add_segment( | |
961 | MACH_PORT_FACE backing_store, | |
962 | MACH_PORT_FACE device, | |
963 | recnum_t offset, | |
964 | recnum_t count, | |
965 | int record_size) | |
966 | { | |
967 | backing_store_t bs; | |
968 | paging_segment_t ps; | |
969 | int i; | |
970 | int error; | |
1c79356b A |
971 | |
972 | if ((bs = backing_store_lookup(backing_store)) | |
973 | == BACKING_STORE_NULL) | |
974 | return KERN_INVALID_ARGUMENT; | |
975 | ||
976 | PSL_LOCK(); | |
977 | for (i = 0; i <= paging_segment_max; i++) { | |
978 | ps = paging_segments[i]; | |
979 | if (ps == PAGING_SEGMENT_NULL) | |
980 | continue; | |
981 | ||
982 | /* | |
983 | * Check for overlap on same device. | |
984 | */ | |
985 | if (!(ps->ps_device != device | |
986 | || offset >= ps->ps_offset + ps->ps_recnum | |
987 | || offset + count <= ps->ps_offset)) { | |
988 | PSL_UNLOCK(); | |
989 | BS_UNLOCK(bs); | |
990 | return KERN_INVALID_ARGUMENT; | |
991 | } | |
992 | } | |
993 | PSL_UNLOCK(); | |
994 | ||
995 | /* | |
996 | * Set up the paging segment | |
997 | */ | |
998 | ps = (paging_segment_t) kalloc(sizeof (struct paging_segment)); | |
999 | if (ps == PAGING_SEGMENT_NULL) { | |
1000 | BS_UNLOCK(bs); | |
1001 | return KERN_RESOURCE_SHORTAGE; | |
1002 | } | |
1003 | ||
1004 | ps->ps_segtype = PS_PARTITION; | |
1005 | ps->ps_device = device; | |
1006 | ps->ps_offset = offset; | |
1007 | ps->ps_record_shift = local_log2(vm_page_size / record_size); | |
1008 | ps->ps_recnum = count; | |
1009 | ps->ps_pgnum = count >> ps->ps_record_shift; | |
1010 | ||
1011 | ps->ps_pgcount = ps->ps_pgnum; | |
1012 | ps->ps_clshift = local_log2(bs->bs_clsize); | |
1013 | ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift; | |
1014 | ps->ps_hint = 0; | |
1015 | ||
1016 | PS_LOCK_INIT(ps); | |
1017 | ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls)); | |
1018 | if (!ps->ps_bmap) { | |
91447636 | 1019 | kfree(ps, sizeof *ps); |
1c79356b A |
1020 | BS_UNLOCK(bs); |
1021 | return KERN_RESOURCE_SHORTAGE; | |
1022 | } | |
1023 | for (i = 0; i < ps->ps_ncls; i++) { | |
1024 | clrbit(ps->ps_bmap, i); | |
1025 | } | |
1026 | ||
1027 | ps->ps_going_away = FALSE; | |
1028 | ps->ps_bs = bs; | |
1029 | ||
1030 | if ((error = ps_enter(ps)) != 0) { | |
91447636 A |
1031 | kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); |
1032 | kfree(ps, sizeof *ps); | |
1c79356b A |
1033 | BS_UNLOCK(bs); |
1034 | return KERN_RESOURCE_SHORTAGE; | |
1035 | } | |
1036 | ||
1037 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
1038 | bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift; | |
1039 | BS_UNLOCK(bs); | |
1040 | ||
1041 | PSL_LOCK(); | |
1042 | dp_pages_free += ps->ps_pgcount; | |
1043 | PSL_UNLOCK(); | |
1044 | ||
1045 | bs_more_space(ps->ps_clcount); | |
1046 | ||
91447636 A |
1047 | DP_DEBUG(DEBUG_BS_INTERNAL, |
1048 | ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n", | |
1049 | device, offset, count, record_size, | |
1050 | ps->ps_record_shift, ps->ps_pgnum)); | |
1c79356b A |
1051 | |
1052 | return KERN_SUCCESS; | |
1053 | } | |
1054 | ||
1055 | boolean_t | |
1056 | bs_add_device( | |
1057 | char *dev_name, | |
1058 | MACH_PORT_FACE master) | |
1059 | { | |
1060 | security_token_t null_security_token = { | |
1061 | { 0, 0 } | |
1062 | }; | |
1063 | MACH_PORT_FACE device; | |
1064 | int info[DEV_GET_SIZE_COUNT]; | |
1065 | mach_msg_type_number_t info_count; | |
1066 | MACH_PORT_FACE bs = MACH_PORT_NULL; | |
1067 | unsigned int rec_size; | |
1068 | recnum_t count; | |
1069 | int clsize; | |
1070 | MACH_PORT_FACE reply_port; | |
1071 | ||
1072 | if (ds_device_open_sync(master, MACH_PORT_NULL, D_READ | D_WRITE, | |
1073 | null_security_token, dev_name, &device)) | |
1074 | return FALSE; | |
1075 | ||
1076 | info_count = DEV_GET_SIZE_COUNT; | |
1077 | if (!ds_device_get_status(device, DEV_GET_SIZE, info, &info_count)) { | |
1078 | rec_size = info[DEV_GET_SIZE_RECORD_SIZE]; | |
1079 | count = info[DEV_GET_SIZE_DEVICE_SIZE] / rec_size; | |
1080 | clsize = bs_get_global_clsize(0); | |
1081 | if (!default_pager_backing_store_create( | |
0b4e3aa0 | 1082 | default_pager_object, |
1c79356b A |
1083 | DEFAULT_PAGER_BACKING_STORE_MAXPRI, |
1084 | (clsize * vm_page_size), | |
1085 | &bs)) { | |
1086 | if (!default_pager_add_segment(bs, device, | |
1087 | 0, count, rec_size)) { | |
1088 | return TRUE; | |
1089 | } | |
1090 | ipc_port_release_receive(bs); | |
1091 | } | |
1092 | } | |
1093 | ||
1094 | ipc_port_release_send(device); | |
1095 | return FALSE; | |
1096 | } | |
1097 | #endif /* DEVICE_PAGING */ | |
1098 | ||
1099 | #if VS_ASYNC_REUSE | |
1100 | ||
1101 | struct vs_async * | |
1102 | vs_alloc_async(void) | |
1103 | { | |
1104 | struct vs_async *vsa; | |
1105 | MACH_PORT_FACE reply_port; | |
91447636 | 1106 | // kern_return_t kr; |
1c79356b A |
1107 | |
1108 | VS_ASYNC_LOCK(); | |
1109 | if (vs_async_free_list == NULL) { | |
1110 | VS_ASYNC_UNLOCK(); | |
1111 | vsa = (struct vs_async *) kalloc(sizeof (struct vs_async)); | |
1112 | if (vsa != NULL) { | |
1113 | /* | |
1114 | * Try allocating a reply port named after the | |
1115 | * address of the vs_async structure. | |
1116 | */ | |
1117 | struct vstruct_alias *alias_struct; | |
1118 | ||
1119 | reply_port = ipc_port_alloc_kernel(); | |
1120 | alias_struct = (struct vstruct_alias *) | |
1121 | kalloc(sizeof (struct vstruct_alias)); | |
1122 | if(alias_struct != NULL) { | |
1123 | alias_struct->vs = (struct vstruct *)vsa; | |
c0fea474 | 1124 | alias_struct->name = &default_pager_ops; |
1c79356b A |
1125 | reply_port->alias = (int) alias_struct; |
1126 | vsa->reply_port = reply_port; | |
1127 | vs_alloc_async_count++; | |
1128 | } | |
1129 | else { | |
1130 | vs_alloc_async_failed++; | |
1131 | ipc_port_dealloc_kernel((MACH_PORT_FACE) | |
1132 | (reply_port)); | |
91447636 | 1133 | kfree(vsa, sizeof (struct vs_async)); |
1c79356b A |
1134 | vsa = NULL; |
1135 | } | |
1136 | } | |
1137 | } else { | |
1138 | vsa = vs_async_free_list; | |
1139 | vs_async_free_list = vs_async_free_list->vsa_next; | |
1140 | VS_ASYNC_UNLOCK(); | |
1141 | } | |
1142 | ||
1143 | return vsa; | |
1144 | } | |
1145 | ||
1146 | void | |
1147 | vs_free_async( | |
1148 | struct vs_async *vsa) | |
1149 | { | |
1150 | VS_ASYNC_LOCK(); | |
1151 | vsa->vsa_next = vs_async_free_list; | |
1152 | vs_async_free_list = vsa; | |
1153 | VS_ASYNC_UNLOCK(); | |
1154 | } | |
1155 | ||
1156 | #else /* VS_ASYNC_REUSE */ | |
1157 | ||
1158 | struct vs_async * | |
1159 | vs_alloc_async(void) | |
1160 | { | |
1161 | struct vs_async *vsa; | |
1162 | MACH_PORT_FACE reply_port; | |
1163 | kern_return_t kr; | |
1164 | ||
1165 | vsa = (struct vs_async *) kalloc(sizeof (struct vs_async)); | |
1166 | if (vsa != NULL) { | |
1167 | /* | |
1168 | * Try allocating a reply port named after the | |
1169 | * address of the vs_async structure. | |
1170 | */ | |
1171 | reply_port = ipc_port_alloc_kernel(); | |
1172 | alias_struct = (vstruct_alias *) | |
1173 | kalloc(sizeof (struct vstruct_alias)); | |
1174 | if(alias_struct != NULL) { | |
1175 | alias_struct->vs = reply_port; | |
c0fea474 | 1176 | alias_struct->name = &default_pager_ops; |
1c79356b A |
1177 | reply_port->alias = (int) vsa; |
1178 | vsa->reply_port = reply_port; | |
1179 | vs_alloc_async_count++; | |
1180 | } | |
1181 | else { | |
1182 | vs_alloc_async_failed++; | |
1183 | ipc_port_dealloc_kernel((MACH_PORT_FACE) | |
1184 | (reply_port)); | |
91447636 | 1185 | kfree(vsa, sizeof (struct vs_async)); |
1c79356b A |
1186 | vsa = NULL; |
1187 | } | |
1188 | } | |
1189 | ||
1190 | return vsa; | |
1191 | } | |
1192 | ||
1193 | void | |
1194 | vs_free_async( | |
1195 | struct vs_async *vsa) | |
1196 | { | |
1c79356b A |
1197 | MACH_PORT_FACE reply_port; |
1198 | kern_return_t kr; | |
1199 | ||
1200 | reply_port = vsa->reply_port; | |
91447636 A |
1201 | kfree(reply_port->alias, sizeof (struct vstuct_alias)); |
1202 | kfree(vsa, sizeof (struct vs_async)); | |
1c79356b A |
1203 | ipc_port_dealloc_kernel((MACH_PORT_FACE) (reply_port)); |
1204 | #if 0 | |
1205 | VS_ASYNC_LOCK(); | |
1206 | vs_alloc_async_count--; | |
1207 | VS_ASYNC_UNLOCK(); | |
1208 | #endif | |
1209 | } | |
1210 | ||
1211 | #endif /* VS_ASYNC_REUSE */ | |
1212 | ||
0b4e3aa0 A |
1213 | zone_t vstruct_zone; |
1214 | ||
1c79356b A |
1215 | vstruct_t |
1216 | ps_vstruct_create( | |
1217 | vm_size_t size) | |
1218 | { | |
1219 | vstruct_t vs; | |
91447636 | 1220 | unsigned int i; |
1c79356b | 1221 | |
0b4e3aa0 | 1222 | vs = (vstruct_t) zalloc(vstruct_zone); |
1c79356b A |
1223 | if (vs == VSTRUCT_NULL) { |
1224 | return VSTRUCT_NULL; | |
1225 | } | |
1226 | ||
1227 | VS_LOCK_INIT(vs); | |
1228 | ||
1229 | /* | |
1230 | * The following fields will be provided later. | |
1231 | */ | |
c0fea474 | 1232 | vs->vs_pager_ops = NULL; |
0b4e3aa0 A |
1233 | vs->vs_control = MEMORY_OBJECT_CONTROL_NULL; |
1234 | vs->vs_references = 1; | |
1c79356b | 1235 | vs->vs_seqno = 0; |
1c79356b A |
1236 | |
1237 | #ifdef MACH_KERNEL | |
1238 | vs->vs_waiting_seqno = FALSE; | |
1239 | vs->vs_waiting_read = FALSE; | |
1240 | vs->vs_waiting_write = FALSE; | |
1c79356b A |
1241 | vs->vs_waiting_async = FALSE; |
1242 | #else | |
91447636 A |
1243 | mutex_init(&vs->vs_waiting_seqno, 0); |
1244 | mutex_init(&vs->vs_waiting_read, 0); | |
1245 | mutex_init(&vs->vs_waiting_write, 0); | |
1246 | mutex_init(&vs->vs_waiting_refs, 0); | |
1247 | mutex_init(&vs->vs_waiting_async, 0); | |
1c79356b A |
1248 | #endif |
1249 | ||
1250 | vs->vs_readers = 0; | |
1251 | vs->vs_writers = 0; | |
1252 | ||
1253 | vs->vs_errors = 0; | |
1254 | ||
1255 | vs->vs_clshift = local_log2(bs_get_global_clsize(0)); | |
55e303ae | 1256 | vs->vs_size = ((atop_32(round_page_32(size)) - 1) >> vs->vs_clshift) + 1; |
1c79356b A |
1257 | vs->vs_async_pending = 0; |
1258 | ||
1259 | /* | |
1260 | * Allocate the pmap, either CLMAP_SIZE or INDIRECT_CLMAP_SIZE | |
1261 | * depending on the size of the memory object. | |
1262 | */ | |
1263 | if (INDIRECT_CLMAP(vs->vs_size)) { | |
1264 | vs->vs_imap = (struct vs_map **) | |
1265 | kalloc(INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1266 | vs->vs_indirect = TRUE; | |
1267 | } else { | |
1268 | vs->vs_dmap = (struct vs_map *) | |
1269 | kalloc(CLMAP_SIZE(vs->vs_size)); | |
1270 | vs->vs_indirect = FALSE; | |
1271 | } | |
1272 | vs->vs_xfer_pending = FALSE; | |
91447636 A |
1273 | DP_DEBUG(DEBUG_VS_INTERNAL, |
1274 | ("map=0x%x, indirect=%d\n", (int) vs->vs_dmap, vs->vs_indirect)); | |
1c79356b A |
1275 | |
1276 | /* | |
1277 | * Check to see that we got the space. | |
1278 | */ | |
1279 | if (!vs->vs_dmap) { | |
91447636 | 1280 | kfree(vs, sizeof *vs); |
1c79356b A |
1281 | return VSTRUCT_NULL; |
1282 | } | |
1283 | ||
1284 | /* | |
1285 | * Zero the indirect pointers, or clear the direct pointers. | |
1286 | */ | |
1287 | if (vs->vs_indirect) | |
1288 | memset(vs->vs_imap, 0, | |
1289 | INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1290 | else | |
1291 | for (i = 0; i < vs->vs_size; i++) | |
1292 | VSM_CLR(vs->vs_dmap[i]); | |
1293 | ||
1294 | VS_MAP_LOCK_INIT(vs); | |
1295 | ||
1296 | bs_commit(vs->vs_size); | |
1297 | ||
1298 | return vs; | |
1299 | } | |
1300 | ||
91447636 | 1301 | paging_segment_t ps_select_segment(unsigned int, int *); /* forward */ |
1c79356b A |
1302 | |
1303 | paging_segment_t | |
1304 | ps_select_segment( | |
91447636 A |
1305 | unsigned int shift, |
1306 | int *psindex) | |
1c79356b A |
1307 | { |
1308 | paging_segment_t ps; | |
1309 | int i; | |
1310 | int j; | |
1c79356b A |
1311 | |
1312 | /* | |
1313 | * Optimize case where there's only one segment. | |
1314 | * paging_segment_max will index the one and only segment. | |
1315 | */ | |
1316 | ||
1317 | PSL_LOCK(); | |
1318 | if (paging_segment_count == 1) { | |
1319 | paging_segment_t lps; /* used to avoid extra PS_UNLOCK */ | |
0b4e3aa0 | 1320 | ipc_port_t trigger = IP_NULL; |
1c79356b A |
1321 | |
1322 | ps = paging_segments[paging_segment_max]; | |
1323 | *psindex = paging_segment_max; | |
1324 | PS_LOCK(ps); | |
1325 | if (ps->ps_going_away) { | |
1326 | /* this segment is being turned off */ | |
1327 | lps = PAGING_SEGMENT_NULL; | |
1328 | } else { | |
1329 | ASSERT(ps->ps_clshift >= shift); | |
1330 | if (ps->ps_clcount) { | |
1331 | ps->ps_clcount--; | |
1332 | dp_pages_free -= 1 << ps->ps_clshift; | |
1333 | if(min_pages_trigger_port && | |
1334 | (dp_pages_free < minimum_pages_remaining)) { | |
0b4e3aa0 | 1335 | trigger = min_pages_trigger_port; |
1c79356b A |
1336 | min_pages_trigger_port = NULL; |
1337 | bs_low = TRUE; | |
1338 | } | |
1339 | lps = ps; | |
1340 | } else | |
1341 | lps = PAGING_SEGMENT_NULL; | |
1342 | } | |
1343 | PS_UNLOCK(ps); | |
1344 | PSL_UNLOCK(); | |
0b4e3aa0 A |
1345 | |
1346 | if (trigger != IP_NULL) { | |
1347 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1348 | ipc_port_release_send(trigger); | |
1349 | } | |
1c79356b A |
1350 | return lps; |
1351 | } | |
1352 | ||
1353 | if (paging_segment_count == 0) { | |
1354 | PSL_UNLOCK(); | |
1355 | return PAGING_SEGMENT_NULL; | |
1356 | } | |
1357 | ||
1358 | for (i = BS_MAXPRI; | |
1359 | i >= BS_MINPRI; i--) { | |
1360 | int start_index; | |
1361 | ||
1362 | if ((ps_select_array[i] == BS_NOPRI) || | |
1363 | (ps_select_array[i] == BS_FULLPRI)) | |
1364 | continue; | |
1365 | start_index = ps_select_array[i]; | |
1366 | ||
1367 | if(!(paging_segments[start_index])) { | |
1368 | j = start_index+1; | |
1369 | physical_transfer_cluster_count = 0; | |
1370 | } | |
0b4e3aa0 | 1371 | else if ((physical_transfer_cluster_count+1) == (ALLOC_STRIDE >> |
1c79356b | 1372 | (((paging_segments[start_index])->ps_clshift) |
0b4e3aa0 | 1373 | + vm_page_shift))) { |
1c79356b A |
1374 | physical_transfer_cluster_count = 0; |
1375 | j = start_index + 1; | |
1376 | } else { | |
1377 | physical_transfer_cluster_count+=1; | |
1378 | j = start_index; | |
1379 | if(start_index == 0) | |
1380 | start_index = paging_segment_max; | |
1381 | else | |
1382 | start_index = start_index - 1; | |
1383 | } | |
1384 | ||
1385 | while (1) { | |
1386 | if (j > paging_segment_max) | |
1387 | j = 0; | |
1388 | if ((ps = paging_segments[j]) && | |
1389 | (ps->ps_bs->bs_priority == i)) { | |
1390 | /* | |
1391 | * Force the ps cluster size to be | |
1392 | * >= that of the vstruct. | |
1393 | */ | |
1394 | PS_LOCK(ps); | |
1395 | if (ps->ps_going_away) { | |
1396 | /* this segment is being turned off */ | |
1397 | } else if ((ps->ps_clcount) && | |
1398 | (ps->ps_clshift >= shift)) { | |
0b4e3aa0 A |
1399 | ipc_port_t trigger = IP_NULL; |
1400 | ||
1c79356b A |
1401 | ps->ps_clcount--; |
1402 | dp_pages_free -= 1 << ps->ps_clshift; | |
1403 | if(min_pages_trigger_port && | |
1404 | (dp_pages_free < | |
1405 | minimum_pages_remaining)) { | |
0b4e3aa0 | 1406 | trigger = min_pages_trigger_port; |
1c79356b A |
1407 | min_pages_trigger_port = NULL; |
1408 | } | |
1409 | PS_UNLOCK(ps); | |
1410 | /* | |
1411 | * found one, quit looking. | |
1412 | */ | |
1413 | ps_select_array[i] = j; | |
1414 | PSL_UNLOCK(); | |
0b4e3aa0 A |
1415 | |
1416 | if (trigger != IP_NULL) { | |
1417 | default_pager_space_alert( | |
1418 | trigger, | |
1419 | HI_WAT_ALERT); | |
1420 | ipc_port_release_send(trigger); | |
1421 | } | |
1c79356b A |
1422 | *psindex = j; |
1423 | return ps; | |
1424 | } | |
1425 | PS_UNLOCK(ps); | |
1426 | } | |
1427 | if (j == start_index) { | |
1428 | /* | |
1429 | * none at this priority -- mark it full | |
1430 | */ | |
1431 | ps_select_array[i] = BS_FULLPRI; | |
1432 | break; | |
1433 | } | |
1434 | j++; | |
1435 | } | |
1436 | } | |
1437 | PSL_UNLOCK(); | |
1438 | return PAGING_SEGMENT_NULL; | |
1439 | } | |
1440 | ||
1441 | vm_offset_t ps_allocate_cluster(vstruct_t, int *, paging_segment_t); /*forward*/ | |
1442 | ||
1443 | vm_offset_t | |
1444 | ps_allocate_cluster( | |
1445 | vstruct_t vs, | |
1446 | int *psindex, | |
1447 | paging_segment_t use_ps) | |
1448 | { | |
91447636 | 1449 | unsigned int byte_num; |
1c79356b A |
1450 | int bit_num = 0; |
1451 | paging_segment_t ps; | |
1452 | vm_offset_t cluster; | |
0b4e3aa0 | 1453 | ipc_port_t trigger = IP_NULL; |
1c79356b A |
1454 | |
1455 | /* | |
1456 | * Find best paging segment. | |
1457 | * ps_select_segment will decrement cluster count on ps. | |
1458 | * Must pass cluster shift to find the most appropriate segment. | |
1459 | */ | |
1460 | /* NOTE: The addition of paging segment delete capability threatened | |
1461 | * to seriously complicate the treatment of paging segments in this | |
1462 | * module and the ones that call it (notably ps_clmap), because of the | |
1463 | * difficulty in assuring that the paging segment would continue to | |
1464 | * exist between being unlocked and locked. This was | |
1465 | * avoided because all calls to this module are based in either | |
1466 | * dp_memory_object calls which rely on the vs lock, or by | |
1467 | * the transfer function which is part of the segment delete path. | |
1468 | * The transfer function which is part of paging segment delete is | |
1469 | * protected from multiple callers by the backing store lock. | |
1470 | * The paging segment delete function treats mappings to a paging | |
1471 | * segment on a vstruct by vstruct basis, locking the vstruct targeted | |
1472 | * while data is transferred to the remaining segments. This is in | |
1473 | * line with the view that incomplete or in-transition mappings between | |
1474 | * data, a vstruct, and backing store are protected by the vs lock. | |
1475 | * This and the ordering of the paging segment "going_away" bit setting | |
1476 | * protects us. | |
1477 | */ | |
1478 | if (use_ps != PAGING_SEGMENT_NULL) { | |
1479 | ps = use_ps; | |
1480 | PSL_LOCK(); | |
1481 | PS_LOCK(ps); | |
55e303ae A |
1482 | |
1483 | ASSERT(ps->ps_clcount != 0); | |
1484 | ||
1c79356b A |
1485 | ps->ps_clcount--; |
1486 | dp_pages_free -= 1 << ps->ps_clshift; | |
1c79356b A |
1487 | if(min_pages_trigger_port && |
1488 | (dp_pages_free < minimum_pages_remaining)) { | |
0b4e3aa0 | 1489 | trigger = min_pages_trigger_port; |
1c79356b A |
1490 | min_pages_trigger_port = NULL; |
1491 | } | |
0b4e3aa0 | 1492 | PSL_UNLOCK(); |
1c79356b | 1493 | PS_UNLOCK(ps); |
0b4e3aa0 A |
1494 | if (trigger != IP_NULL) { |
1495 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1496 | ipc_port_release_send(trigger); | |
1497 | } | |
1498 | ||
1c79356b A |
1499 | } else if ((ps = ps_select_segment(vs->vs_clshift, psindex)) == |
1500 | PAGING_SEGMENT_NULL) { | |
91447636 A |
1501 | static uint32_t lastnotify = 0; |
1502 | uint32_t now, nanoseconds_dummy; | |
1503 | ||
1504 | /* | |
1505 | * Emit a notification of the low-paging resource condition | |
1506 | * but don't issue it more than once every five seconds. This | |
1507 | * prevents us from overflowing logs with thousands of | |
1508 | * repetitions of the message. | |
1509 | */ | |
1510 | clock_get_system_nanotime(&now, &nanoseconds_dummy); | |
1511 | if (now > lastnotify + 5) { | |
1512 | dprintf(("no space in available paging segments\n")); | |
1513 | lastnotify = now; | |
1514 | } | |
1515 | ||
1c79356b | 1516 | /* the count got off maybe, reset to zero */ |
0b4e3aa0 | 1517 | PSL_LOCK(); |
1c79356b A |
1518 | dp_pages_free = 0; |
1519 | if(min_pages_trigger_port) { | |
0b4e3aa0 | 1520 | trigger = min_pages_trigger_port; |
1c79356b A |
1521 | min_pages_trigger_port = NULL; |
1522 | bs_low = TRUE; | |
1523 | } | |
0b4e3aa0 A |
1524 | PSL_UNLOCK(); |
1525 | if (trigger != IP_NULL) { | |
1526 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1527 | ipc_port_release_send(trigger); | |
1528 | } | |
1c79356b A |
1529 | return (vm_offset_t) -1; |
1530 | } | |
1c79356b A |
1531 | |
1532 | /* | |
1533 | * Look for an available cluster. At the end of the loop, | |
1534 | * byte_num is the byte offset and bit_num is the bit offset of the | |
1535 | * first zero bit in the paging segment bitmap. | |
1536 | */ | |
1537 | PS_LOCK(ps); | |
1538 | byte_num = ps->ps_hint; | |
1539 | for (; byte_num < howmany(ps->ps_ncls, NBBY); byte_num++) { | |
1540 | if (*(ps->ps_bmap + byte_num) != BYTEMASK) { | |
1541 | for (bit_num = 0; bit_num < NBBY; bit_num++) { | |
1542 | if (isclr((ps->ps_bmap + byte_num), bit_num)) | |
1543 | break; | |
1544 | } | |
1545 | ASSERT(bit_num != NBBY); | |
1546 | break; | |
1547 | } | |
1548 | } | |
1549 | ps->ps_hint = byte_num; | |
1550 | cluster = (byte_num*NBBY) + bit_num; | |
1551 | ||
1552 | /* Space was reserved, so this must be true */ | |
1553 | ASSERT(cluster < ps->ps_ncls); | |
1554 | ||
1555 | setbit(ps->ps_bmap, cluster); | |
1556 | PS_UNLOCK(ps); | |
1557 | ||
1558 | return cluster; | |
1559 | } | |
1560 | ||
1561 | void ps_deallocate_cluster(paging_segment_t, vm_offset_t); /* forward */ | |
1562 | ||
1563 | void | |
1564 | ps_deallocate_cluster( | |
1565 | paging_segment_t ps, | |
1566 | vm_offset_t cluster) | |
1567 | { | |
1568 | ||
1569 | if (cluster >= (vm_offset_t) ps->ps_ncls) | |
1570 | panic("ps_deallocate_cluster: Invalid cluster number"); | |
1571 | ||
1572 | /* | |
1573 | * Lock the paging segment, clear the cluster's bitmap and increment the | |
1574 | * number of free cluster. | |
1575 | */ | |
1576 | PSL_LOCK(); | |
1577 | PS_LOCK(ps); | |
1578 | clrbit(ps->ps_bmap, cluster); | |
1579 | ++ps->ps_clcount; | |
1580 | dp_pages_free += 1 << ps->ps_clshift; | |
0b4e3aa0 | 1581 | PSL_UNLOCK(); |
1c79356b A |
1582 | |
1583 | /* | |
1584 | * Move the hint down to the freed cluster if it is | |
1585 | * less than the current hint. | |
1586 | */ | |
1587 | if ((cluster/NBBY) < ps->ps_hint) { | |
1588 | ps->ps_hint = (cluster/NBBY); | |
1589 | } | |
1590 | ||
1591 | PS_UNLOCK(ps); | |
1592 | ||
1593 | /* | |
1594 | * If we're freeing space on a full priority, reset the array. | |
1595 | */ | |
1596 | PSL_LOCK(); | |
1597 | if (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI) | |
1598 | ps_select_array[ps->ps_bs->bs_priority] = 0; | |
1599 | PSL_UNLOCK(); | |
1600 | ||
1601 | return; | |
1602 | } | |
1603 | ||
1604 | void ps_dealloc_vsmap(struct vs_map *, vm_size_t); /* forward */ | |
1605 | ||
1606 | void | |
1607 | ps_dealloc_vsmap( | |
1608 | struct vs_map *vsmap, | |
1609 | vm_size_t size) | |
1610 | { | |
91447636 | 1611 | unsigned int i; |
1c79356b A |
1612 | for (i = 0; i < size; i++) |
1613 | if (!VSM_ISCLR(vsmap[i]) && !VSM_ISERR(vsmap[i])) | |
1614 | ps_deallocate_cluster(VSM_PS(vsmap[i]), | |
1615 | VSM_CLOFF(vsmap[i])); | |
1616 | } | |
1617 | ||
1618 | void | |
1619 | ps_vstruct_dealloc( | |
1620 | vstruct_t vs) | |
1621 | { | |
91447636 A |
1622 | unsigned int i; |
1623 | // spl_t s; | |
1c79356b A |
1624 | |
1625 | VS_MAP_LOCK(vs); | |
1626 | ||
1627 | /* | |
1628 | * If this is an indirect structure, then we walk through the valid | |
1629 | * (non-zero) indirect pointers and deallocate the clusters | |
1630 | * associated with each used map entry (via ps_dealloc_vsmap). | |
1631 | * When all of the clusters in an indirect block have been | |
1632 | * freed, we deallocate the block. When all of the indirect | |
1633 | * blocks have been deallocated we deallocate the memory | |
1634 | * holding the indirect pointers. | |
1635 | */ | |
1636 | if (vs->vs_indirect) { | |
1637 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
1638 | if (vs->vs_imap[i] != NULL) { | |
1639 | ps_dealloc_vsmap(vs->vs_imap[i], CLMAP_ENTRIES); | |
91447636 | 1640 | kfree(vs->vs_imap[i], CLMAP_THRESHOLD); |
1c79356b A |
1641 | } |
1642 | } | |
91447636 | 1643 | kfree(vs->vs_imap, INDIRECT_CLMAP_SIZE(vs->vs_size)); |
1c79356b A |
1644 | } else { |
1645 | /* | |
1646 | * Direct map. Free used clusters, then memory. | |
1647 | */ | |
1648 | ps_dealloc_vsmap(vs->vs_dmap, vs->vs_size); | |
91447636 | 1649 | kfree(vs->vs_dmap, CLMAP_SIZE(vs->vs_size)); |
1c79356b A |
1650 | } |
1651 | VS_MAP_UNLOCK(vs); | |
1652 | ||
1653 | bs_commit(- vs->vs_size); | |
1654 | ||
91447636 | 1655 | zfree(vstruct_zone, vs); |
1c79356b A |
1656 | } |
1657 | ||
91447636 | 1658 | int ps_map_extend(vstruct_t, unsigned int); /* forward */ |
1c79356b A |
1659 | |
1660 | int ps_map_extend( | |
1661 | vstruct_t vs, | |
91447636 | 1662 | unsigned int new_size) |
1c79356b A |
1663 | { |
1664 | struct vs_map **new_imap; | |
1665 | struct vs_map *new_dmap = NULL; | |
1666 | int newdsize; | |
1667 | int i; | |
1668 | void *old_map = NULL; | |
1669 | int old_map_size = 0; | |
1670 | ||
1671 | if (vs->vs_size >= new_size) { | |
1672 | /* | |
1673 | * Someone has already done the work. | |
1674 | */ | |
1675 | return 0; | |
1676 | } | |
1677 | ||
1678 | /* | |
1679 | * If the new size extends into the indirect range, then we have one | |
1680 | * of two cases: we are going from indirect to indirect, or we are | |
1681 | * going from direct to indirect. If we are going from indirect to | |
1682 | * indirect, then it is possible that the new size will fit in the old | |
1683 | * indirect map. If this is the case, then just reset the size of the | |
1684 | * vstruct map and we are done. If the new size will not | |
1685 | * fit into the old indirect map, then we have to allocate a new | |
1686 | * indirect map and copy the old map pointers into this new map. | |
1687 | * | |
1688 | * If we are going from direct to indirect, then we have to allocate a | |
1689 | * new indirect map and copy the old direct pages into the first | |
1690 | * indirect page of the new map. | |
1691 | * NOTE: allocating memory here is dangerous, as we're in the | |
1692 | * pageout path. | |
1693 | */ | |
1694 | if (INDIRECT_CLMAP(new_size)) { | |
1695 | int new_map_size = INDIRECT_CLMAP_SIZE(new_size); | |
1696 | ||
1697 | /* | |
1698 | * Get a new indirect map and zero it. | |
1699 | */ | |
1700 | old_map_size = INDIRECT_CLMAP_SIZE(vs->vs_size); | |
1701 | if (vs->vs_indirect && | |
1702 | (new_map_size == old_map_size)) { | |
1703 | bs_commit(new_size - vs->vs_size); | |
1704 | vs->vs_size = new_size; | |
1705 | return 0; | |
1706 | } | |
1707 | ||
1708 | new_imap = (struct vs_map **)kalloc(new_map_size); | |
1709 | if (new_imap == NULL) { | |
1710 | return -1; | |
1711 | } | |
1712 | memset(new_imap, 0, new_map_size); | |
1713 | ||
1714 | if (vs->vs_indirect) { | |
1715 | /* Copy old entries into new map */ | |
1716 | memcpy(new_imap, vs->vs_imap, old_map_size); | |
1717 | /* Arrange to free the old map */ | |
1718 | old_map = (void *) vs->vs_imap; | |
1719 | newdsize = 0; | |
1720 | } else { /* Old map was a direct map */ | |
1721 | /* Allocate an indirect page */ | |
1722 | if ((new_imap[0] = (struct vs_map *) | |
1723 | kalloc(CLMAP_THRESHOLD)) == NULL) { | |
91447636 | 1724 | kfree(new_imap, new_map_size); |
1c79356b A |
1725 | return -1; |
1726 | } | |
1727 | new_dmap = new_imap[0]; | |
1728 | newdsize = CLMAP_ENTRIES; | |
1729 | } | |
1730 | } else { | |
1731 | new_imap = NULL; | |
1732 | newdsize = new_size; | |
1733 | /* | |
1734 | * If the new map is a direct map, then the old map must | |
1735 | * also have been a direct map. All we have to do is | |
1736 | * to allocate a new direct map, copy the old entries | |
1737 | * into it and free the old map. | |
1738 | */ | |
1739 | if ((new_dmap = (struct vs_map *) | |
1740 | kalloc(CLMAP_SIZE(new_size))) == NULL) { | |
1741 | return -1; | |
1742 | } | |
1743 | } | |
1744 | if (newdsize) { | |
1745 | ||
1746 | /* Free the old map */ | |
1747 | old_map = (void *) vs->vs_dmap; | |
1748 | old_map_size = CLMAP_SIZE(vs->vs_size); | |
1749 | ||
1750 | /* Copy info from the old map into the new map */ | |
1751 | memcpy(new_dmap, vs->vs_dmap, old_map_size); | |
1752 | ||
1753 | /* Initialize the rest of the new map */ | |
1754 | for (i = vs->vs_size; i < newdsize; i++) | |
1755 | VSM_CLR(new_dmap[i]); | |
1756 | } | |
1757 | if (new_imap) { | |
1758 | vs->vs_imap = new_imap; | |
1759 | vs->vs_indirect = TRUE; | |
1760 | } else | |
1761 | vs->vs_dmap = new_dmap; | |
1762 | bs_commit(new_size - vs->vs_size); | |
1763 | vs->vs_size = new_size; | |
1764 | if (old_map) | |
91447636 | 1765 | kfree(old_map, old_map_size); |
1c79356b A |
1766 | return 0; |
1767 | } | |
1768 | ||
1769 | vm_offset_t | |
1770 | ps_clmap( | |
1771 | vstruct_t vs, | |
1772 | vm_offset_t offset, | |
1773 | struct clmap *clmap, | |
1774 | int flag, | |
1775 | vm_size_t size, | |
1776 | int error) | |
1777 | { | |
1778 | vm_offset_t cluster; /* The cluster of offset. */ | |
1779 | vm_offset_t newcl; /* The new cluster allocated. */ | |
1780 | vm_offset_t newoff; | |
91447636 | 1781 | unsigned int i; |
1c79356b | 1782 | struct vs_map *vsmap; |
1c79356b A |
1783 | |
1784 | VS_MAP_LOCK(vs); | |
1785 | ||
1786 | ASSERT(vs->vs_dmap); | |
55e303ae | 1787 | cluster = atop_32(offset) >> vs->vs_clshift; |
1c79356b A |
1788 | |
1789 | /* | |
1790 | * Initialize cluster error value | |
1791 | */ | |
1792 | clmap->cl_error = 0; | |
1793 | ||
1794 | /* | |
1795 | * If the object has grown, extend the page map. | |
1796 | */ | |
1797 | if (cluster >= vs->vs_size) { | |
1798 | if (flag == CL_FIND) { | |
1799 | /* Do not allocate if just doing a lookup */ | |
1800 | VS_MAP_UNLOCK(vs); | |
1801 | return (vm_offset_t) -1; | |
1802 | } | |
1803 | if (ps_map_extend(vs, cluster + 1)) { | |
1804 | VS_MAP_UNLOCK(vs); | |
1805 | return (vm_offset_t) -1; | |
1806 | } | |
1807 | } | |
1808 | ||
1809 | /* | |
1810 | * Look for the desired cluster. If the map is indirect, then we | |
1811 | * have a two level lookup. First find the indirect block, then | |
1812 | * find the actual cluster. If the indirect block has not yet | |
1813 | * been allocated, then do so. If the cluster has not yet been | |
1814 | * allocated, then do so. | |
1815 | * | |
1816 | * If any of the allocations fail, then return an error. | |
1817 | * Don't allocate if just doing a lookup. | |
1818 | */ | |
1819 | if (vs->vs_indirect) { | |
1820 | long ind_block = cluster/CLMAP_ENTRIES; | |
1821 | ||
1822 | /* Is the indirect block allocated? */ | |
1823 | vsmap = vs->vs_imap[ind_block]; | |
1824 | if (vsmap == NULL) { | |
1825 | if (flag == CL_FIND) { | |
1826 | VS_MAP_UNLOCK(vs); | |
1827 | return (vm_offset_t) -1; | |
1828 | } | |
1829 | ||
1830 | /* Allocate the indirect block */ | |
1831 | vsmap = (struct vs_map *) kalloc(CLMAP_THRESHOLD); | |
1832 | if (vsmap == NULL) { | |
1833 | VS_MAP_UNLOCK(vs); | |
1834 | return (vm_offset_t) -1; | |
1835 | } | |
1836 | /* Initialize the cluster offsets */ | |
1837 | for (i = 0; i < CLMAP_ENTRIES; i++) | |
1838 | VSM_CLR(vsmap[i]); | |
1839 | vs->vs_imap[ind_block] = vsmap; | |
1840 | } | |
1841 | } else | |
1842 | vsmap = vs->vs_dmap; | |
1843 | ||
1844 | ASSERT(vsmap); | |
1845 | vsmap += cluster%CLMAP_ENTRIES; | |
1846 | ||
1847 | /* | |
1848 | * At this point, vsmap points to the struct vs_map desired. | |
1849 | * | |
1850 | * Look in the map for the cluster, if there was an error on a | |
1851 | * previous write, flag it and return. If it is not yet | |
1852 | * allocated, then allocate it, if we're writing; if we're | |
1853 | * doing a lookup and the cluster's not allocated, return error. | |
1854 | */ | |
1855 | if (VSM_ISERR(*vsmap)) { | |
1856 | clmap->cl_error = VSM_GETERR(*vsmap); | |
1857 | VS_MAP_UNLOCK(vs); | |
1858 | return (vm_offset_t) -1; | |
1859 | } else if (VSM_ISCLR(*vsmap)) { | |
1860 | int psindex; | |
1861 | ||
1862 | if (flag == CL_FIND) { | |
1863 | /* | |
1864 | * If there's an error and the entry is clear, then | |
1865 | * we've run out of swap space. Record the error | |
1866 | * here and return. | |
1867 | */ | |
1868 | if (error) { | |
1869 | VSM_SETERR(*vsmap, error); | |
1870 | } | |
1871 | VS_MAP_UNLOCK(vs); | |
1872 | return (vm_offset_t) -1; | |
1873 | } else { | |
1874 | /* | |
1875 | * Attempt to allocate a cluster from the paging segment | |
1876 | */ | |
1877 | newcl = ps_allocate_cluster(vs, &psindex, | |
1878 | PAGING_SEGMENT_NULL); | |
91447636 | 1879 | if (newcl == (vm_offset_t) -1) { |
1c79356b A |
1880 | VS_MAP_UNLOCK(vs); |
1881 | return (vm_offset_t) -1; | |
1882 | } | |
1883 | VSM_CLR(*vsmap); | |
1884 | VSM_SETCLOFF(*vsmap, newcl); | |
1885 | VSM_SETPS(*vsmap, psindex); | |
1886 | } | |
1887 | } else | |
1888 | newcl = VSM_CLOFF(*vsmap); | |
1889 | ||
1890 | /* | |
1891 | * Fill in pertinent fields of the clmap | |
1892 | */ | |
1893 | clmap->cl_ps = VSM_PS(*vsmap); | |
1894 | clmap->cl_numpages = VSCLSIZE(vs); | |
1895 | clmap->cl_bmap.clb_map = (unsigned int) VSM_BMAP(*vsmap); | |
1896 | ||
1897 | /* | |
1898 | * Byte offset in paging segment is byte offset to cluster plus | |
1899 | * byte offset within cluster. It looks ugly, but should be | |
1900 | * relatively quick. | |
1901 | */ | |
1902 | ASSERT(trunc_page(offset) == offset); | |
55e303ae | 1903 | newcl = ptoa_32(newcl) << vs->vs_clshift; |
1c79356b A |
1904 | newoff = offset & ((1<<(vm_page_shift + vs->vs_clshift)) - 1); |
1905 | if (flag == CL_ALLOC) { | |
1906 | /* | |
1907 | * set bits in the allocation bitmap according to which | |
1908 | * pages were requested. size is in bytes. | |
1909 | */ | |
55e303ae | 1910 | i = atop_32(newoff); |
1c79356b A |
1911 | while ((size > 0) && (i < VSCLSIZE(vs))) { |
1912 | VSM_SETALLOC(*vsmap, i); | |
1913 | i++; | |
1914 | size -= vm_page_size; | |
1915 | } | |
1916 | } | |
1917 | clmap->cl_alloc.clb_map = (unsigned int) VSM_ALLOC(*vsmap); | |
1918 | if (newoff) { | |
1919 | /* | |
1920 | * Offset is not cluster aligned, so number of pages | |
1921 | * and bitmaps must be adjusted | |
1922 | */ | |
55e303ae | 1923 | clmap->cl_numpages -= atop_32(newoff); |
1c79356b A |
1924 | CLMAP_SHIFT(clmap, vs); |
1925 | CLMAP_SHIFTALLOC(clmap, vs); | |
1926 | } | |
1927 | ||
1928 | /* | |
1929 | * | |
1930 | * The setting of valid bits and handling of write errors | |
1931 | * must be done here, while we hold the lock on the map. | |
1932 | * It logically should be done in ps_vs_write_complete(). | |
1933 | * The size and error information has been passed from | |
1934 | * ps_vs_write_complete(). If the size parameter is non-zero, | |
1935 | * then there is work to be done. If error is also non-zero, | |
1936 | * then the error number is recorded in the cluster and the | |
1937 | * entire cluster is in error. | |
1938 | */ | |
1939 | if (size && flag == CL_FIND) { | |
1940 | vm_offset_t off = (vm_offset_t) 0; | |
1941 | ||
1942 | if (!error) { | |
1943 | for (i = VSCLSIZE(vs) - clmap->cl_numpages; size > 0; | |
1944 | i++) { | |
1945 | VSM_SETPG(*vsmap, i); | |
1946 | size -= vm_page_size; | |
1947 | } | |
1948 | ASSERT(i <= VSCLSIZE(vs)); | |
1949 | } else { | |
1950 | BS_STAT(clmap->cl_ps->ps_bs, | |
1951 | clmap->cl_ps->ps_bs->bs_pages_out_fail += | |
55e303ae | 1952 | atop_32(size)); |
1c79356b A |
1953 | off = VSM_CLOFF(*vsmap); |
1954 | VSM_SETERR(*vsmap, error); | |
1955 | } | |
1956 | /* | |
1957 | * Deallocate cluster if error, and no valid pages | |
1958 | * already present. | |
1959 | */ | |
1960 | if (off != (vm_offset_t) 0) | |
1961 | ps_deallocate_cluster(clmap->cl_ps, off); | |
1962 | VS_MAP_UNLOCK(vs); | |
1963 | return (vm_offset_t) 0; | |
1964 | } else | |
1965 | VS_MAP_UNLOCK(vs); | |
1966 | ||
91447636 A |
1967 | DP_DEBUG(DEBUG_VS_INTERNAL, |
1968 | ("returning 0x%X,vs=0x%X,vsmap=0x%X,flag=%d\n", | |
1969 | newcl+newoff, (int) vs, (int) vsmap, flag)); | |
1970 | DP_DEBUG(DEBUG_VS_INTERNAL, | |
1971 | (" clmap->cl_ps=0x%X,cl_numpages=%d,clbmap=0x%x,cl_alloc=%x\n", | |
1972 | (int) clmap->cl_ps, clmap->cl_numpages, | |
1973 | (int) clmap->cl_bmap.clb_map, (int) clmap->cl_alloc.clb_map)); | |
1c79356b A |
1974 | |
1975 | return (newcl + newoff); | |
1976 | } | |
1977 | ||
1978 | void ps_clunmap(vstruct_t, vm_offset_t, vm_size_t); /* forward */ | |
1979 | ||
1980 | void | |
1981 | ps_clunmap( | |
1982 | vstruct_t vs, | |
1983 | vm_offset_t offset, | |
1984 | vm_size_t length) | |
1985 | { | |
1986 | vm_offset_t cluster; /* The cluster number of offset */ | |
1987 | struct vs_map *vsmap; | |
1c79356b A |
1988 | |
1989 | VS_MAP_LOCK(vs); | |
1990 | ||
1991 | /* | |
1992 | * Loop through all clusters in this range, freeing paging segment | |
1993 | * clusters and map entries as encountered. | |
1994 | */ | |
1995 | while (length > 0) { | |
1996 | vm_offset_t newoff; | |
91447636 | 1997 | unsigned int i; |
1c79356b | 1998 | |
55e303ae | 1999 | cluster = atop_32(offset) >> vs->vs_clshift; |
1c79356b A |
2000 | if (vs->vs_indirect) /* indirect map */ |
2001 | vsmap = vs->vs_imap[cluster/CLMAP_ENTRIES]; | |
2002 | else | |
2003 | vsmap = vs->vs_dmap; | |
2004 | if (vsmap == NULL) { | |
2005 | VS_MAP_UNLOCK(vs); | |
2006 | return; | |
2007 | } | |
2008 | vsmap += cluster%CLMAP_ENTRIES; | |
2009 | if (VSM_ISCLR(*vsmap)) { | |
2010 | length -= vm_page_size; | |
2011 | offset += vm_page_size; | |
2012 | continue; | |
2013 | } | |
2014 | /* | |
2015 | * We've got a valid mapping. Clear it and deallocate | |
2016 | * paging segment cluster pages. | |
2017 | * Optimize for entire cluster cleraing. | |
2018 | */ | |
91447636 | 2019 | if ( (newoff = (offset&((1<<(vm_page_shift+vs->vs_clshift))-1))) ) { |
1c79356b A |
2020 | /* |
2021 | * Not cluster aligned. | |
2022 | */ | |
2023 | ASSERT(trunc_page(newoff) == newoff); | |
55e303ae | 2024 | i = atop_32(newoff); |
1c79356b A |
2025 | } else |
2026 | i = 0; | |
2027 | while ((i < VSCLSIZE(vs)) && (length > 0)) { | |
2028 | VSM_CLRPG(*vsmap, i); | |
2029 | VSM_CLRALLOC(*vsmap, i); | |
2030 | length -= vm_page_size; | |
2031 | offset += vm_page_size; | |
2032 | i++; | |
2033 | } | |
2034 | ||
2035 | /* | |
2036 | * If map entry is empty, clear and deallocate cluster. | |
2037 | */ | |
2038 | if (!VSM_ALLOC(*vsmap)) { | |
2039 | ps_deallocate_cluster(VSM_PS(*vsmap), | |
2040 | VSM_CLOFF(*vsmap)); | |
2041 | VSM_CLR(*vsmap); | |
2042 | } | |
2043 | } | |
2044 | ||
2045 | VS_MAP_UNLOCK(vs); | |
2046 | } | |
2047 | ||
2048 | void ps_vs_write_complete(vstruct_t, vm_offset_t, vm_size_t, int); /* forward */ | |
2049 | ||
2050 | void | |
2051 | ps_vs_write_complete( | |
2052 | vstruct_t vs, | |
2053 | vm_offset_t offset, | |
2054 | vm_size_t size, | |
2055 | int error) | |
2056 | { | |
2057 | struct clmap clmap; | |
2058 | ||
2059 | /* | |
2060 | * Get the struct vsmap for this cluster. | |
2061 | * Use READ, even though it was written, because the | |
2062 | * cluster MUST be present, unless there was an error | |
2063 | * in the original ps_clmap (e.g. no space), in which | |
2064 | * case, nothing happens. | |
2065 | * | |
2066 | * Must pass enough information to ps_clmap to allow it | |
2067 | * to set the vs_map structure bitmap under lock. | |
2068 | */ | |
2069 | (void) ps_clmap(vs, offset, &clmap, CL_FIND, size, error); | |
2070 | } | |
2071 | ||
2072 | void vs_cl_write_complete(vstruct_t, paging_segment_t, vm_offset_t, vm_offset_t, vm_size_t, boolean_t, int); /* forward */ | |
2073 | ||
2074 | void | |
2075 | vs_cl_write_complete( | |
91447636 A |
2076 | vstruct_t vs, |
2077 | __unused paging_segment_t ps, | |
2078 | vm_offset_t offset, | |
2079 | __unused vm_offset_t addr, | |
2080 | vm_size_t size, | |
2081 | boolean_t async, | |
2082 | int error) | |
1c79356b | 2083 | { |
91447636 | 2084 | // kern_return_t kr; |
1c79356b A |
2085 | |
2086 | if (error) { | |
2087 | /* | |
2088 | * For internal objects, the error is recorded on a | |
2089 | * per-cluster basis by ps_clmap() which is called | |
2090 | * by ps_vs_write_complete() below. | |
2091 | */ | |
2092 | dprintf(("write failed error = 0x%x\n", error)); | |
2093 | /* add upl_abort code here */ | |
2094 | } else | |
55e303ae | 2095 | GSTAT(global_stats.gs_pages_out += atop_32(size)); |
1c79356b A |
2096 | /* |
2097 | * Notify the vstruct mapping code, so it can do its accounting. | |
2098 | */ | |
2099 | ps_vs_write_complete(vs, offset, size, error); | |
2100 | ||
2101 | if (async) { | |
2102 | VS_LOCK(vs); | |
2103 | ASSERT(vs->vs_async_pending > 0); | |
2104 | vs->vs_async_pending -= size; | |
0b4e3aa0 A |
2105 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
2106 | vs->vs_waiting_async = FALSE; | |
1c79356b A |
2107 | VS_UNLOCK(vs); |
2108 | /* mutex_unlock(&vs->vs_waiting_async); */ | |
0b4e3aa0 | 2109 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
2110 | } else { |
2111 | VS_UNLOCK(vs); | |
2112 | } | |
2113 | } | |
2114 | } | |
2115 | ||
2116 | #ifdef DEVICE_PAGING | |
2117 | kern_return_t device_write_reply(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2118 | ||
2119 | kern_return_t | |
2120 | device_write_reply( | |
2121 | MACH_PORT_FACE reply_port, | |
2122 | kern_return_t device_code, | |
2123 | io_buf_len_t bytes_written) | |
2124 | { | |
2125 | struct vs_async *vsa; | |
1c79356b A |
2126 | |
2127 | vsa = (struct vs_async *) | |
2128 | ((struct vstruct_alias *)(reply_port->alias))->vs; | |
2129 | ||
2130 | if (device_code == KERN_SUCCESS && bytes_written != vsa->vsa_size) { | |
2131 | device_code = KERN_FAILURE; | |
2132 | } | |
2133 | ||
2134 | vsa->vsa_error = device_code; | |
2135 | ||
2136 | ||
2137 | ASSERT(vsa->vsa_vs != VSTRUCT_NULL); | |
2138 | if(vsa->vsa_flags & VSA_TRANSFER) { | |
2139 | /* revisit when async disk segments redone */ | |
2140 | if(vsa->vsa_error) { | |
2141 | /* need to consider error condition. re-write data or */ | |
2142 | /* throw it away here. */ | |
91447636 | 2143 | vm_map_copy_discard((vm_map_copy_t)vsa->vsa_addr); |
1c79356b A |
2144 | } |
2145 | ps_vs_write_complete(vsa->vsa_vs, vsa->vsa_offset, | |
2146 | vsa->vsa_size, vsa->vsa_error); | |
2147 | } else { | |
2148 | vs_cl_write_complete(vsa->vsa_vs, vsa->vsa_ps, vsa->vsa_offset, | |
2149 | vsa->vsa_addr, vsa->vsa_size, TRUE, | |
2150 | vsa->vsa_error); | |
2151 | } | |
2152 | VS_FREE_ASYNC(vsa); | |
2153 | ||
2154 | return KERN_SUCCESS; | |
2155 | } | |
2156 | ||
2157 | kern_return_t device_write_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2158 | kern_return_t | |
2159 | device_write_reply_inband( | |
2160 | MACH_PORT_FACE reply_port, | |
2161 | kern_return_t return_code, | |
2162 | io_buf_len_t bytes_written) | |
2163 | { | |
2164 | panic("device_write_reply_inband: illegal"); | |
2165 | return KERN_SUCCESS; | |
2166 | } | |
2167 | ||
2168 | kern_return_t device_read_reply(MACH_PORT_FACE, kern_return_t, io_buf_ptr_t, mach_msg_type_number_t); | |
2169 | kern_return_t | |
2170 | device_read_reply( | |
2171 | MACH_PORT_FACE reply_port, | |
2172 | kern_return_t return_code, | |
2173 | io_buf_ptr_t data, | |
2174 | mach_msg_type_number_t dataCnt) | |
2175 | { | |
2176 | struct vs_async *vsa; | |
2177 | vsa = (struct vs_async *) | |
2178 | ((struct vstruct_alias *)(reply_port->alias))->vs; | |
2179 | vsa->vsa_addr = (vm_offset_t)data; | |
2180 | vsa->vsa_size = (vm_size_t)dataCnt; | |
2181 | vsa->vsa_error = return_code; | |
2182 | thread_wakeup(&vsa->vsa_lock); | |
2183 | return KERN_SUCCESS; | |
2184 | } | |
2185 | ||
2186 | kern_return_t device_read_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_ptr_inband_t, mach_msg_type_number_t); | |
2187 | kern_return_t | |
2188 | device_read_reply_inband( | |
2189 | MACH_PORT_FACE reply_port, | |
2190 | kern_return_t return_code, | |
2191 | io_buf_ptr_inband_t data, | |
2192 | mach_msg_type_number_t dataCnt) | |
2193 | { | |
2194 | panic("device_read_reply_inband: illegal"); | |
2195 | return KERN_SUCCESS; | |
2196 | } | |
2197 | ||
2198 | kern_return_t device_read_reply_overwrite(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2199 | kern_return_t | |
2200 | device_read_reply_overwrite( | |
2201 | MACH_PORT_FACE reply_port, | |
2202 | kern_return_t return_code, | |
2203 | io_buf_len_t bytes_read) | |
2204 | { | |
2205 | panic("device_read_reply_overwrite: illegal\n"); | |
2206 | return KERN_SUCCESS; | |
2207 | } | |
2208 | ||
2209 | kern_return_t device_open_reply(MACH_PORT_FACE, kern_return_t, MACH_PORT_FACE); | |
2210 | kern_return_t | |
2211 | device_open_reply( | |
2212 | MACH_PORT_FACE reply_port, | |
2213 | kern_return_t return_code, | |
2214 | MACH_PORT_FACE device_port) | |
2215 | { | |
2216 | panic("device_open_reply: illegal\n"); | |
2217 | return KERN_SUCCESS; | |
2218 | } | |
2219 | ||
1c79356b A |
2220 | kern_return_t |
2221 | ps_read_device( | |
2222 | paging_segment_t ps, | |
2223 | vm_offset_t offset, | |
2224 | vm_offset_t *bufferp, | |
2225 | unsigned int size, | |
2226 | unsigned int *residualp, | |
2227 | int flags) | |
2228 | { | |
2229 | kern_return_t kr; | |
2230 | recnum_t dev_offset; | |
2231 | unsigned int bytes_wanted; | |
2232 | unsigned int bytes_read; | |
2233 | unsigned int total_read; | |
2234 | vm_offset_t dev_buffer; | |
2235 | vm_offset_t buf_ptr; | |
2236 | unsigned int records_read; | |
1c79356b A |
2237 | struct vs_async *vsa; |
2238 | mutex_t vs_waiting_read_reply; | |
2239 | ||
2240 | device_t device; | |
2241 | vm_map_copy_t device_data = NULL; | |
2242 | default_pager_thread_t *dpt = NULL; | |
2243 | ||
2244 | device = dev_port_lookup(ps->ps_device); | |
55e303ae | 2245 | clustered_reads[atop_32(size)]++; |
1c79356b A |
2246 | |
2247 | dev_offset = (ps->ps_offset + | |
2248 | (offset >> (vm_page_shift - ps->ps_record_shift))); | |
2249 | bytes_wanted = size; | |
2250 | total_read = 0; | |
2251 | *bufferp = (vm_offset_t)NULL; | |
2252 | ||
2253 | do { | |
2254 | vsa = VS_ALLOC_ASYNC(); | |
2255 | if (vsa) { | |
2256 | vsa->vsa_vs = NULL; | |
2257 | vsa->vsa_addr = 0; | |
2258 | vsa->vsa_offset = 0; | |
2259 | vsa->vsa_size = 0; | |
2260 | vsa->vsa_ps = NULL; | |
2261 | } | |
91447636 | 2262 | mutex_init(&vsa->vsa_lock, 0); |
1c79356b A |
2263 | ip_lock(vsa->reply_port); |
2264 | vsa->reply_port->ip_sorights++; | |
2265 | ip_reference(vsa->reply_port); | |
2266 | ip_unlock(vsa->reply_port); | |
2267 | kr = ds_device_read_common(device, | |
2268 | vsa->reply_port, | |
2269 | (mach_msg_type_name_t) | |
2270 | MACH_MSG_TYPE_MOVE_SEND_ONCE, | |
2271 | (dev_mode_t) 0, | |
2272 | dev_offset, | |
2273 | bytes_wanted, | |
2274 | (IO_READ | IO_CALL), | |
2275 | (io_buf_ptr_t *) &dev_buffer, | |
2276 | (mach_msg_type_number_t *) &bytes_read); | |
2277 | if(kr == MIG_NO_REPLY) { | |
2278 | assert_wait(&vsa->vsa_lock, THREAD_UNINT); | |
9bccf70c | 2279 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
2280 | |
2281 | dev_buffer = vsa->vsa_addr; | |
2282 | bytes_read = (unsigned int)vsa->vsa_size; | |
2283 | kr = vsa->vsa_error; | |
2284 | } | |
2285 | VS_FREE_ASYNC(vsa); | |
2286 | if (kr != KERN_SUCCESS || bytes_read == 0) { | |
2287 | break; | |
2288 | } | |
2289 | total_read += bytes_read; | |
2290 | ||
2291 | /* | |
2292 | * If we got the entire range, use the returned dev_buffer. | |
2293 | */ | |
2294 | if (bytes_read == size) { | |
2295 | *bufferp = (vm_offset_t)dev_buffer; | |
2296 | break; | |
2297 | } | |
2298 | ||
2299 | #if 1 | |
2300 | dprintf(("read only %d bytes out of %d\n", | |
2301 | bytes_read, bytes_wanted)); | |
2302 | #endif | |
2303 | if(dpt == NULL) { | |
2304 | dpt = get_read_buffer(); | |
2305 | buf_ptr = dpt->dpt_buffer; | |
2306 | *bufferp = (vm_offset_t)buf_ptr; | |
2307 | } | |
2308 | /* | |
2309 | * Otherwise, copy the data into the provided buffer (*bufferp) | |
2310 | * and append the rest of the range as it comes in. | |
2311 | */ | |
2312 | memcpy((void *) buf_ptr, (void *) dev_buffer, bytes_read); | |
2313 | buf_ptr += bytes_read; | |
2314 | bytes_wanted -= bytes_read; | |
2315 | records_read = (bytes_read >> | |
2316 | (vm_page_shift - ps->ps_record_shift)); | |
2317 | dev_offset += records_read; | |
91447636 A |
2318 | DP_DEBUG(DEBUG_VS_INTERNAL, |
2319 | ("calling vm_deallocate(addr=0x%X,size=0x%X)\n", | |
2320 | dev_buffer, bytes_read)); | |
1c79356b A |
2321 | if (vm_deallocate(kernel_map, dev_buffer, bytes_read) |
2322 | != KERN_SUCCESS) | |
2323 | Panic("dealloc buf"); | |
2324 | } while (bytes_wanted); | |
2325 | ||
2326 | *residualp = size - total_read; | |
2327 | if((dev_buffer != *bufferp) && (total_read != 0)) { | |
2328 | vm_offset_t temp_buffer; | |
91447636 | 2329 | vm_allocate(kernel_map, &temp_buffer, total_read, VM_FLAGS_ANYWHERE); |
1c79356b A |
2330 | memcpy((void *) temp_buffer, (void *) *bufferp, total_read); |
2331 | if(vm_map_copyin_page_list(kernel_map, temp_buffer, total_read, | |
2332 | VM_MAP_COPYIN_OPT_SRC_DESTROY | | |
2333 | VM_MAP_COPYIN_OPT_STEAL_PAGES | | |
2334 | VM_MAP_COPYIN_OPT_PMAP_ENTER, | |
2335 | (vm_map_copy_t *)&device_data, FALSE)) | |
2336 | panic("ps_read_device: cannot copyin locally provided buffer\n"); | |
2337 | } | |
2338 | else if((kr == KERN_SUCCESS) && (total_read != 0) && (dev_buffer != 0)){ | |
2339 | if(vm_map_copyin_page_list(kernel_map, dev_buffer, bytes_read, | |
2340 | VM_MAP_COPYIN_OPT_SRC_DESTROY | | |
2341 | VM_MAP_COPYIN_OPT_STEAL_PAGES | | |
2342 | VM_MAP_COPYIN_OPT_PMAP_ENTER, | |
2343 | (vm_map_copy_t *)&device_data, FALSE)) | |
2344 | panic("ps_read_device: cannot copyin backing store provided buffer\n"); | |
2345 | } | |
2346 | else { | |
2347 | device_data = NULL; | |
2348 | } | |
2349 | *bufferp = (vm_offset_t)device_data; | |
2350 | ||
2351 | if(dpt != NULL) { | |
2352 | /* Free the receive buffer */ | |
2353 | dpt->checked_out = 0; | |
2354 | thread_wakeup(&dpt_array); | |
2355 | } | |
2356 | return KERN_SUCCESS; | |
2357 | } | |
2358 | ||
1c79356b A |
2359 | kern_return_t |
2360 | ps_write_device( | |
2361 | paging_segment_t ps, | |
2362 | vm_offset_t offset, | |
2363 | vm_offset_t addr, | |
2364 | unsigned int size, | |
2365 | struct vs_async *vsa) | |
2366 | { | |
2367 | recnum_t dev_offset; | |
2368 | io_buf_len_t bytes_to_write, bytes_written; | |
2369 | recnum_t records_written; | |
2370 | kern_return_t kr; | |
2371 | MACH_PORT_FACE reply_port; | |
1c79356b A |
2372 | |
2373 | ||
2374 | ||
55e303ae | 2375 | clustered_writes[atop_32(size)]++; |
1c79356b A |
2376 | |
2377 | dev_offset = (ps->ps_offset + | |
2378 | (offset >> (vm_page_shift - ps->ps_record_shift))); | |
2379 | bytes_to_write = size; | |
2380 | ||
2381 | if (vsa) { | |
2382 | /* | |
2383 | * Asynchronous write. | |
2384 | */ | |
2385 | reply_port = vsa->reply_port; | |
2386 | ip_lock(reply_port); | |
2387 | reply_port->ip_sorights++; | |
2388 | ip_reference(reply_port); | |
2389 | ip_unlock(reply_port); | |
2390 | { | |
2391 | device_t device; | |
2392 | device = dev_port_lookup(ps->ps_device); | |
2393 | ||
2394 | vsa->vsa_addr = addr; | |
2395 | kr=ds_device_write_common(device, | |
2396 | reply_port, | |
2397 | (mach_msg_type_name_t) MACH_MSG_TYPE_MOVE_SEND_ONCE, | |
2398 | (dev_mode_t) 0, | |
2399 | dev_offset, | |
2400 | (io_buf_ptr_t) addr, | |
2401 | size, | |
2402 | (IO_WRITE | IO_CALL), | |
2403 | &bytes_written); | |
2404 | } | |
2405 | if ((kr != KERN_SUCCESS) && (kr != MIG_NO_REPLY)) { | |
2406 | if (verbose) | |
2407 | dprintf(("%s0x%x, addr=0x%x," | |
2408 | "size=0x%x,offset=0x%x\n", | |
2409 | "device_write_request returned ", | |
2410 | kr, addr, size, offset)); | |
2411 | BS_STAT(ps->ps_bs, | |
55e303ae | 2412 | ps->ps_bs->bs_pages_out_fail += atop_32(size)); |
1c79356b A |
2413 | /* do the completion notification to free resources */ |
2414 | device_write_reply(reply_port, kr, 0); | |
2415 | return PAGER_ERROR; | |
2416 | } | |
2417 | } else do { | |
2418 | /* | |
2419 | * Synchronous write. | |
2420 | */ | |
2421 | { | |
2422 | device_t device; | |
2423 | device = dev_port_lookup(ps->ps_device); | |
2424 | kr=ds_device_write_common(device, | |
2425 | IP_NULL, 0, | |
2426 | (dev_mode_t) 0, | |
2427 | dev_offset, | |
2428 | (io_buf_ptr_t) addr, | |
2429 | size, | |
2430 | (IO_WRITE | IO_SYNC | IO_KERNEL_BUF), | |
2431 | &bytes_written); | |
2432 | } | |
2433 | if (kr != KERN_SUCCESS) { | |
2434 | dprintf(("%s0x%x, addr=0x%x,size=0x%x,offset=0x%x\n", | |
2435 | "device_write returned ", | |
2436 | kr, addr, size, offset)); | |
2437 | BS_STAT(ps->ps_bs, | |
55e303ae | 2438 | ps->ps_bs->bs_pages_out_fail += atop_32(size)); |
1c79356b A |
2439 | return PAGER_ERROR; |
2440 | } | |
2441 | if (bytes_written & ((vm_page_size >> ps->ps_record_shift) - 1)) | |
2442 | Panic("fragmented write"); | |
2443 | records_written = (bytes_written >> | |
2444 | (vm_page_shift - ps->ps_record_shift)); | |
2445 | dev_offset += records_written; | |
2446 | #if 1 | |
2447 | if (bytes_written != bytes_to_write) { | |
2448 | dprintf(("wrote only %d bytes out of %d\n", | |
2449 | bytes_written, bytes_to_write)); | |
2450 | } | |
2451 | #endif | |
2452 | bytes_to_write -= bytes_written; | |
2453 | addr += bytes_written; | |
2454 | } while (bytes_to_write > 0); | |
2455 | ||
2456 | return PAGER_SUCCESS; | |
2457 | } | |
2458 | ||
2459 | ||
2460 | #else /* !DEVICE_PAGING */ | |
2461 | ||
2462 | kern_return_t | |
2463 | ps_read_device( | |
91447636 A |
2464 | __unused paging_segment_t ps, |
2465 | __unused vm_offset_t offset, | |
2466 | __unused vm_offset_t *bufferp, | |
2467 | __unused unsigned int size, | |
2468 | __unused unsigned int *residualp, | |
2469 | __unused int flags) | |
1c79356b A |
2470 | { |
2471 | panic("ps_read_device not supported"); | |
c0fea474 | 2472 | return KERN_FAILURE; |
1c79356b A |
2473 | } |
2474 | ||
91447636 | 2475 | kern_return_t |
1c79356b | 2476 | ps_write_device( |
91447636 A |
2477 | __unused paging_segment_t ps, |
2478 | __unused vm_offset_t offset, | |
2479 | __unused vm_offset_t addr, | |
2480 | __unused unsigned int size, | |
2481 | __unused struct vs_async *vsa) | |
1c79356b A |
2482 | { |
2483 | panic("ps_write_device not supported"); | |
c0fea474 | 2484 | return KERN_FAILURE; |
1c79356b A |
2485 | } |
2486 | ||
2487 | #endif /* DEVICE_PAGING */ | |
91447636 | 2488 | void pvs_object_data_provided(vstruct_t, upl_t, upl_offset_t, upl_size_t); /* forward */ |
1c79356b A |
2489 | |
2490 | void | |
2491 | pvs_object_data_provided( | |
91447636 A |
2492 | __unused vstruct_t vs, |
2493 | __unused upl_t upl, | |
2494 | __unused upl_offset_t offset, | |
2495 | upl_size_t size) | |
1c79356b | 2496 | { |
1c79356b | 2497 | |
91447636 A |
2498 | DP_DEBUG(DEBUG_VS_INTERNAL, |
2499 | ("buffer=0x%x,offset=0x%x,size=0x%x\n", | |
2500 | upl, offset, size)); | |
1c79356b A |
2501 | |
2502 | ASSERT(size > 0); | |
55e303ae | 2503 | GSTAT(global_stats.gs_pages_in += atop_32(size)); |
1c79356b A |
2504 | |
2505 | ||
2506 | #if USE_PRECIOUS | |
2507 | ps_clunmap(vs, offset, size); | |
2508 | #endif /* USE_PRECIOUS */ | |
2509 | ||
2510 | } | |
2511 | ||
2512 | kern_return_t | |
2513 | pvs_cluster_read( | |
2514 | vstruct_t vs, | |
0b4e3aa0 | 2515 | vm_offset_t vs_offset, |
1c79356b A |
2516 | vm_size_t cnt) |
2517 | { | |
1c79356b A |
2518 | upl_t upl; |
2519 | kern_return_t error = KERN_SUCCESS; | |
91447636 | 2520 | int size; |
c0fea474 | 2521 | unsigned int residual; |
1c79356b | 2522 | unsigned int request_flags; |
91447636 A |
2523 | int seg_index; |
2524 | int pages_in_cl; | |
0b4e3aa0 A |
2525 | int cl_size; |
2526 | int cl_mask; | |
91447636 A |
2527 | int cl_index; |
2528 | int xfer_size; | |
0b4e3aa0 A |
2529 | vm_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; |
2530 | paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2531 | struct clmap clmap; | |
2532 | ||
2533 | pages_in_cl = 1 << vs->vs_clshift; | |
2534 | cl_size = pages_in_cl * vm_page_size; | |
2535 | cl_mask = cl_size - 1; | |
1c79356b A |
2536 | |
2537 | /* | |
0b4e3aa0 A |
2538 | * This loop will be executed multiple times until the entire |
2539 | * request has been satisfied... if the request spans cluster | |
2540 | * boundaries, the clusters will be checked for logical continunity, | |
2541 | * if contiguous the I/O request will span multiple clusters, otherwise | |
2542 | * it will be broken up into the minimal set of I/O's | |
1c79356b | 2543 | * |
0b4e3aa0 A |
2544 | * If there are holes in a request (either unallocated pages in a paging |
2545 | * segment or an unallocated paging segment), we stop | |
1c79356b A |
2546 | * reading at the hole, inform the VM of any data read, inform |
2547 | * the VM of an unavailable range, then loop again, hoping to | |
0b4e3aa0 | 2548 | * find valid pages later in the requested range. This continues until |
1c79356b A |
2549 | * the entire range has been examined, and read, if present. |
2550 | */ | |
2551 | ||
2552 | #if USE_PRECIOUS | |
9bccf70c | 2553 | request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_PRECIOUS | UPL_RET_ONLY_ABSENT; |
1c79356b | 2554 | #else |
9bccf70c | 2555 | request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_RET_ONLY_ABSENT; |
1c79356b | 2556 | #endif |
91447636 A |
2557 | |
2558 | assert(dp_encryption_inited); | |
2559 | if (dp_encryption) { | |
2560 | /* | |
2561 | * ENCRYPTED SWAP: | |
2562 | * request that the UPL be prepared for | |
2563 | * decryption. | |
2564 | */ | |
2565 | request_flags |= UPL_ENCRYPT; | |
2566 | } | |
2567 | ||
1c79356b | 2568 | while (cnt && (error == KERN_SUCCESS)) { |
c0fea474 A |
2569 | int ps_info_valid; |
2570 | unsigned int page_list_count; | |
1c79356b | 2571 | |
d12e1678 A |
2572 | if((vs_offset & cl_mask) && |
2573 | (cnt > (VM_SUPER_CLUSTER - | |
2574 | (vs_offset & cl_mask)))) { | |
2575 | size = VM_SUPER_CLUSTER; | |
2576 | size -= vs_offset & cl_mask; | |
2577 | } else if (cnt > VM_SUPER_CLUSTER) { | |
0b4e3aa0 | 2578 | size = VM_SUPER_CLUSTER; |
d12e1678 | 2579 | } else { |
0b4e3aa0 | 2580 | size = cnt; |
d12e1678 | 2581 | } |
0b4e3aa0 | 2582 | cnt -= size; |
1c79356b | 2583 | |
0b4e3aa0 A |
2584 | ps_info_valid = 0; |
2585 | seg_index = 0; | |
1c79356b | 2586 | |
0b4e3aa0 A |
2587 | while (size > 0 && error == KERN_SUCCESS) { |
2588 | int abort_size; | |
2589 | int failed_size; | |
2590 | int beg_pseg; | |
2591 | int beg_indx; | |
2592 | vm_offset_t cur_offset; | |
1c79356b | 2593 | |
0b4e3aa0 A |
2594 | |
2595 | if ( !ps_info_valid) { | |
2596 | ps_offset[seg_index] = ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0); | |
2597 | psp[seg_index] = CLMAP_PS(clmap); | |
2598 | ps_info_valid = 1; | |
1c79356b | 2599 | } |
0b4e3aa0 A |
2600 | /* |
2601 | * skip over unallocated physical segments | |
2602 | */ | |
2603 | if (ps_offset[seg_index] == (vm_offset_t) -1) { | |
2604 | abort_size = cl_size - (vs_offset & cl_mask); | |
2605 | abort_size = MIN(abort_size, size); | |
2606 | ||
2607 | page_list_count = 0; | |
2608 | memory_object_super_upl_request( | |
2609 | vs->vs_control, | |
2610 | (memory_object_offset_t)vs_offset, | |
2611 | abort_size, abort_size, | |
2612 | &upl, NULL, &page_list_count, | |
2613 | request_flags); | |
1c79356b | 2614 | |
0b4e3aa0 A |
2615 | if (clmap.cl_error) { |
2616 | upl_abort(upl, UPL_ABORT_ERROR); | |
2617 | } else { | |
2618 | upl_abort(upl, UPL_ABORT_UNAVAILABLE); | |
2619 | } | |
2620 | upl_deallocate(upl); | |
1c79356b | 2621 | |
0b4e3aa0 A |
2622 | size -= abort_size; |
2623 | vs_offset += abort_size; | |
1c79356b | 2624 | |
0b4e3aa0 A |
2625 | seg_index++; |
2626 | ps_info_valid = 0; | |
2627 | continue; | |
1c79356b | 2628 | } |
0b4e3aa0 A |
2629 | cl_index = (vs_offset & cl_mask) / vm_page_size; |
2630 | ||
2631 | for (abort_size = 0; cl_index < pages_in_cl && abort_size < size; cl_index++) { | |
2632 | /* | |
2633 | * skip over unallocated pages | |
2634 | */ | |
2635 | if (CLMAP_ISSET(clmap, cl_index)) | |
2636 | break; | |
2637 | abort_size += vm_page_size; | |
2638 | } | |
2639 | if (abort_size) { | |
2640 | /* | |
2641 | * Let VM system know about holes in clusters. | |
2642 | */ | |
55e303ae | 2643 | GSTAT(global_stats.gs_pages_unavail += atop_32(abort_size)); |
0b4e3aa0 A |
2644 | |
2645 | page_list_count = 0; | |
2646 | memory_object_super_upl_request( | |
2647 | vs->vs_control, | |
2648 | (memory_object_offset_t)vs_offset, | |
2649 | abort_size, abort_size, | |
2650 | &upl, NULL, &page_list_count, | |
1c79356b | 2651 | request_flags); |
1c79356b | 2652 | |
0b4e3aa0 A |
2653 | upl_abort(upl, UPL_ABORT_UNAVAILABLE); |
2654 | upl_deallocate(upl); | |
1c79356b | 2655 | |
0b4e3aa0 A |
2656 | size -= abort_size; |
2657 | vs_offset += abort_size; | |
2658 | ||
2659 | if (cl_index == pages_in_cl) { | |
2660 | /* | |
2661 | * if we're at the end of this physical cluster | |
2662 | * then bump to the next one and continue looking | |
2663 | */ | |
2664 | seg_index++; | |
2665 | ps_info_valid = 0; | |
2666 | continue; | |
2667 | } | |
2668 | if (size == 0) | |
2669 | break; | |
2670 | } | |
1c79356b | 2671 | /* |
0b4e3aa0 A |
2672 | * remember the starting point of the first allocated page |
2673 | * for the I/O we're about to issue | |
1c79356b | 2674 | */ |
0b4e3aa0 A |
2675 | beg_pseg = seg_index; |
2676 | beg_indx = cl_index; | |
2677 | cur_offset = vs_offset; | |
2678 | ||
2679 | /* | |
2680 | * calculate the size of the I/O that we can do... | |
2681 | * this may span multiple physical segments if | |
2682 | * they are contiguous | |
2683 | */ | |
2684 | for (xfer_size = 0; xfer_size < size; ) { | |
2685 | ||
d12e1678 A |
2686 | while (cl_index < pages_in_cl |
2687 | && xfer_size < size) { | |
0b4e3aa0 | 2688 | /* |
55e303ae | 2689 | * accumulate allocated pages within |
d12e1678 | 2690 | * a physical segment |
1c79356b | 2691 | */ |
0b4e3aa0 A |
2692 | if (CLMAP_ISSET(clmap, cl_index)) { |
2693 | xfer_size += vm_page_size; | |
2694 | cur_offset += vm_page_size; | |
2695 | cl_index++; | |
2696 | ||
2697 | BS_STAT(psp[seg_index]->ps_bs, | |
2698 | psp[seg_index]->ps_bs->bs_pages_in++); | |
2699 | } else | |
2700 | break; | |
2701 | } | |
d12e1678 A |
2702 | if (cl_index < pages_in_cl |
2703 | || xfer_size >= size) { | |
0b4e3aa0 | 2704 | /* |
55e303ae | 2705 | * we've hit an unallocated page or |
d12e1678 A |
2706 | * the end of this request... go fire |
2707 | * the I/O | |
1c79356b | 2708 | */ |
0b4e3aa0 A |
2709 | break; |
2710 | } | |
2711 | /* | |
d12e1678 | 2712 | * we've hit the end of the current physical |
55e303ae | 2713 | * segment and there's more to do, so try |
d12e1678 | 2714 | * moving to the next one |
0b4e3aa0 A |
2715 | */ |
2716 | seg_index++; | |
2717 | ||
d12e1678 | 2718 | ps_offset[seg_index] = |
55e303ae A |
2719 | ps_clmap(vs, |
2720 | cur_offset & ~cl_mask, | |
d12e1678 A |
2721 | &clmap, CL_FIND, 0, 0); |
2722 | psp[seg_index] = CLMAP_PS(clmap); | |
0b4e3aa0 A |
2723 | ps_info_valid = 1; |
2724 | ||
2725 | if ((ps_offset[seg_index - 1] != (ps_offset[seg_index] - cl_size)) || (psp[seg_index - 1] != psp[seg_index])) { | |
2726 | /* | |
55e303ae A |
2727 | * if the physical segment we're about |
2728 | * to step into is not contiguous to | |
2729 | * the one we're currently in, or it's | |
d12e1678 | 2730 | * in a different paging file, or |
0b4e3aa0 A |
2731 | * it hasn't been allocated.... |
2732 | * we stop here and generate the I/O | |
2733 | */ | |
2734 | break; | |
1c79356b | 2735 | } |
0b4e3aa0 | 2736 | /* |
d12e1678 | 2737 | * start with first page of the next physical |
55e303ae | 2738 | * segment |
0b4e3aa0 A |
2739 | */ |
2740 | cl_index = 0; | |
1c79356b | 2741 | } |
0b4e3aa0 A |
2742 | if (xfer_size) { |
2743 | /* | |
2744 | * we have a contiguous range of allocated pages | |
2745 | * to read from | |
2746 | */ | |
2747 | page_list_count = 0; | |
2748 | memory_object_super_upl_request(vs->vs_control, | |
d12e1678 A |
2749 | (memory_object_offset_t)vs_offset, |
2750 | xfer_size, xfer_size, | |
2751 | &upl, NULL, &page_list_count, | |
2752 | request_flags | UPL_SET_INTERNAL); | |
0b4e3aa0 | 2753 | |
55e303ae | 2754 | error = ps_read_file(psp[beg_pseg], |
91447636 | 2755 | upl, (upl_offset_t) 0, |
55e303ae A |
2756 | ps_offset[beg_pseg] + |
2757 | (beg_indx * vm_page_size), | |
d12e1678 | 2758 | xfer_size, &residual, 0); |
0b4e3aa0 A |
2759 | } else |
2760 | continue; | |
1c79356b | 2761 | |
0b4e3aa0 A |
2762 | failed_size = 0; |
2763 | ||
2764 | /* | |
55e303ae | 2765 | * Adjust counts and send response to VM. Optimize |
d12e1678 | 2766 | * for the common case, i.e. no error and/or partial |
55e303ae | 2767 | * data. If there was an error, then we need to error |
d12e1678 | 2768 | * the entire range, even if some data was successfully |
55e303ae | 2769 | * read. If there was a partial read we may supply some |
0b4e3aa0 | 2770 | * data and may error some as well. In all cases the |
55e303ae A |
2771 | * VM must receive some notification for every page |
2772 | * in the range. | |
0b4e3aa0 A |
2773 | */ |
2774 | if ((error == KERN_SUCCESS) && (residual == 0)) { | |
2775 | /* | |
d12e1678 | 2776 | * Got everything we asked for, supply the data |
55e303ae A |
2777 | * to the VM. Note that as a side effect of |
2778 | * supplying the data, the buffer holding the | |
2779 | * supplied data is deallocated from the pager's | |
2780 | * address space. | |
0b4e3aa0 | 2781 | */ |
d12e1678 A |
2782 | pvs_object_data_provided( |
2783 | vs, upl, vs_offset, xfer_size); | |
0b4e3aa0 A |
2784 | } else { |
2785 | failed_size = xfer_size; | |
2786 | ||
2787 | if (error == KERN_SUCCESS) { | |
c0fea474 | 2788 | if ((signed) residual == xfer_size) { |
d12e1678 A |
2789 | /* |
2790 | * If a read operation returns no error | |
2791 | * and no data moved, we turn it into | |
2792 | * an error, assuming we're reading at | |
2793 | * or beyong EOF. | |
2794 | * Fall through and error the entire | |
2795 | * range. | |
2796 | */ | |
0b4e3aa0 A |
2797 | error = KERN_FAILURE; |
2798 | } else { | |
d12e1678 A |
2799 | /* |
2800 | * Otherwise, we have partial read. If | |
2801 | * the part read is a integral number | |
2802 | * of pages supply it. Otherwise round | |
2803 | * it up to a page boundary, zero fill | |
2804 | * the unread part, and supply it. | |
2805 | * Fall through and error the remainder | |
2806 | * of the range, if any. | |
2807 | */ | |
0b4e3aa0 A |
2808 | int fill, lsize; |
2809 | ||
d12e1678 A |
2810 | fill = residual |
2811 | & ~vm_page_size; | |
55e303ae | 2812 | lsize = (xfer_size - residual) |
d12e1678 A |
2813 | + fill; |
2814 | pvs_object_data_provided( | |
55e303ae | 2815 | vs, upl, |
d12e1678 | 2816 | vs_offset, lsize); |
0b4e3aa0 A |
2817 | |
2818 | if (lsize < xfer_size) { | |
d12e1678 A |
2819 | failed_size = |
2820 | xfer_size - lsize; | |
0b4e3aa0 A |
2821 | error = KERN_FAILURE; |
2822 | } | |
2823 | } | |
2824 | } | |
2825 | } | |
1c79356b A |
2826 | /* |
2827 | * If there was an error in any part of the range, tell | |
d12e1678 | 2828 | * the VM. Note that error is explicitly checked again |
55e303ae | 2829 | * since it can be modified above. |
1c79356b A |
2830 | */ |
2831 | if (error != KERN_SUCCESS) { | |
0b4e3aa0 | 2832 | BS_STAT(psp[beg_pseg]->ps_bs, |
d12e1678 | 2833 | psp[beg_pseg]->ps_bs->bs_pages_in_fail |
55e303ae | 2834 | += atop_32(failed_size)); |
1c79356b | 2835 | } |
0b4e3aa0 A |
2836 | size -= xfer_size; |
2837 | vs_offset += xfer_size; | |
1c79356b | 2838 | } |
1c79356b A |
2839 | |
2840 | } /* END while (cnt && (error == 0)) */ | |
2841 | return error; | |
2842 | } | |
2843 | ||
2844 | int vs_do_async_write = 1; | |
2845 | ||
2846 | kern_return_t | |
2847 | vs_cluster_write( | |
2848 | vstruct_t vs, | |
2849 | upl_t internal_upl, | |
91447636 A |
2850 | upl_offset_t offset, |
2851 | upl_size_t cnt, | |
1c79356b A |
2852 | boolean_t dp_internal, |
2853 | int flags) | |
2854 | { | |
91447636 | 2855 | upl_size_t transfer_size; |
1c79356b A |
2856 | int error = 0; |
2857 | struct clmap clmap; | |
0b4e3aa0 A |
2858 | |
2859 | vm_offset_t actual_offset; /* Offset within paging segment */ | |
1c79356b | 2860 | paging_segment_t ps; |
0b4e3aa0 A |
2861 | vm_offset_t mobj_base_addr; |
2862 | vm_offset_t mobj_target_addr; | |
1c79356b A |
2863 | |
2864 | upl_t upl; | |
0b4e3aa0 | 2865 | upl_page_info_t *pl; |
1c79356b A |
2866 | int page_index; |
2867 | int list_size; | |
55e303ae | 2868 | int pages_in_cl; |
91447636 | 2869 | unsigned int cl_size; |
55e303ae | 2870 | int base_index; |
91447636 | 2871 | unsigned int seg_size; |
55e303ae A |
2872 | |
2873 | pages_in_cl = 1 << vs->vs_clshift; | |
2874 | cl_size = pages_in_cl * vm_page_size; | |
1c79356b | 2875 | |
1c79356b | 2876 | if (!dp_internal) { |
c0fea474 | 2877 | unsigned int page_list_count; |
1c79356b | 2878 | int request_flags; |
91447636 | 2879 | unsigned int super_size; |
0b4e3aa0 A |
2880 | int first_dirty; |
2881 | int num_dirty; | |
2882 | int num_of_pages; | |
2883 | int seg_index; | |
91447636 | 2884 | upl_offset_t upl_offset; |
0b4e3aa0 | 2885 | vm_offset_t seg_offset; |
55e303ae A |
2886 | vm_offset_t ps_offset[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT) + 1]; |
2887 | paging_segment_t psp[((VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT) + 1]; | |
0b4e3aa0 | 2888 | |
1c79356b | 2889 | |
1c79356b A |
2890 | if (bs_low) { |
2891 | super_size = cl_size; | |
0b4e3aa0 | 2892 | |
1c79356b A |
2893 | request_flags = UPL_NOBLOCK | |
2894 | UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM | | |
2895 | UPL_NO_SYNC | UPL_SET_INTERNAL; | |
2896 | } else { | |
2897 | super_size = VM_SUPER_CLUSTER; | |
0b4e3aa0 | 2898 | |
1c79356b A |
2899 | request_flags = UPL_NOBLOCK | UPL_CLEAN_IN_PLACE | |
2900 | UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM | | |
2901 | UPL_NO_SYNC | UPL_SET_INTERNAL; | |
2902 | } | |
2903 | ||
91447636 A |
2904 | if (!dp_encryption_inited) { |
2905 | /* | |
2906 | * ENCRYPTED SWAP: | |
2907 | * Once we've started using swap, we | |
2908 | * can't change our mind on whether | |
2909 | * it needs to be encrypted or | |
2910 | * not. | |
2911 | */ | |
2912 | dp_encryption_inited = TRUE; | |
2913 | } | |
2914 | if (dp_encryption) { | |
2915 | /* | |
2916 | * ENCRYPTED SWAP: | |
2917 | * request that the UPL be prepared for | |
2918 | * encryption. | |
2919 | */ | |
2920 | request_flags |= UPL_ENCRYPT; | |
2921 | flags |= UPL_PAGING_ENCRYPTED; | |
2922 | } | |
2923 | ||
0b4e3aa0 A |
2924 | page_list_count = 0; |
2925 | memory_object_super_upl_request(vs->vs_control, | |
2926 | (memory_object_offset_t)offset, | |
2927 | cnt, super_size, | |
2928 | &upl, NULL, &page_list_count, | |
55e303ae | 2929 | request_flags | UPL_FOR_PAGEOUT); |
1c79356b | 2930 | |
0b4e3aa0 | 2931 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
1c79356b | 2932 | |
55e303ae A |
2933 | seg_size = cl_size - (upl->offset % cl_size); |
2934 | upl_offset = upl->offset & ~(cl_size - 1); | |
2935 | ||
d12e1678 A |
2936 | for (seg_index = 0, transfer_size = upl->size; |
2937 | transfer_size > 0; ) { | |
d12e1678 | 2938 | ps_offset[seg_index] = |
55e303ae A |
2939 | ps_clmap(vs, |
2940 | upl_offset, | |
2941 | &clmap, CL_ALLOC, | |
2942 | cl_size, 0); | |
1c79356b | 2943 | |
0b4e3aa0 A |
2944 | if (ps_offset[seg_index] == (vm_offset_t) -1) { |
2945 | upl_abort(upl, 0); | |
2946 | upl_deallocate(upl); | |
2947 | ||
2948 | return KERN_FAILURE; | |
1c79356b | 2949 | |
0b4e3aa0 A |
2950 | } |
2951 | psp[seg_index] = CLMAP_PS(clmap); | |
1c79356b | 2952 | |
55e303ae A |
2953 | if (transfer_size > seg_size) { |
2954 | transfer_size -= seg_size; | |
2955 | upl_offset += cl_size; | |
2956 | seg_size = cl_size; | |
0b4e3aa0 A |
2957 | seg_index++; |
2958 | } else | |
2959 | transfer_size = 0; | |
2960 | } | |
55e303ae A |
2961 | /* |
2962 | * Ignore any non-present pages at the end of the | |
2963 | * UPL. | |
2964 | */ | |
2965 | for (page_index = upl->size / vm_page_size; page_index > 0;) | |
2966 | if (UPL_PAGE_PRESENT(pl, --page_index)) | |
2967 | break; | |
2968 | num_of_pages = page_index + 1; | |
2969 | ||
2970 | base_index = (upl->offset % cl_size) / PAGE_SIZE; | |
2971 | ||
2972 | for (page_index = 0; page_index < num_of_pages; ) { | |
0b4e3aa0 A |
2973 | /* |
2974 | * skip over non-dirty pages | |
2975 | */ | |
2976 | for ( ; page_index < num_of_pages; page_index++) { | |
55e303ae | 2977 | if (UPL_DIRTY_PAGE(pl, page_index) |
d12e1678 | 2978 | || UPL_PRECIOUS_PAGE(pl, page_index)) |
0b4e3aa0 A |
2979 | /* |
2980 | * this is a page we need to write | |
55e303ae | 2981 | * go see if we can buddy it up with |
d12e1678 | 2982 | * others that are contiguous to it |
0b4e3aa0 A |
2983 | */ |
2984 | break; | |
2985 | /* | |
d12e1678 | 2986 | * if the page is not-dirty, but present we |
55e303ae | 2987 | * need to commit it... This is an unusual |
d12e1678 | 2988 | * case since we only asked for dirty pages |
0b4e3aa0 A |
2989 | */ |
2990 | if (UPL_PAGE_PRESENT(pl, page_index)) { | |
2991 | boolean_t empty = FALSE; | |
2992 | upl_commit_range(upl, | |
2993 | page_index * vm_page_size, | |
2994 | vm_page_size, | |
2995 | UPL_COMMIT_NOTIFY_EMPTY, | |
2996 | pl, | |
d52fe63f | 2997 | page_list_count, |
0b4e3aa0 | 2998 | &empty); |
55e303ae A |
2999 | if (empty) { |
3000 | assert(page_index == | |
3001 | num_of_pages - 1); | |
0b4e3aa0 | 3002 | upl_deallocate(upl); |
55e303ae | 3003 | } |
1c79356b | 3004 | } |
1c79356b | 3005 | } |
0b4e3aa0 A |
3006 | if (page_index == num_of_pages) |
3007 | /* | |
3008 | * no more pages to look at, we're out of here | |
3009 | */ | |
3010 | break; | |
1c79356b | 3011 | |
0b4e3aa0 | 3012 | /* |
55e303ae A |
3013 | * gather up contiguous dirty pages... we have at |
3014 | * least 1 * otherwise we would have bailed above | |
0b4e3aa0 A |
3015 | * make sure that each physical segment that we step |
3016 | * into is contiguous to the one we're currently in | |
3017 | * if it's not, we have to stop and write what we have | |
3018 | */ | |
55e303ae | 3019 | for (first_dirty = page_index; |
d12e1678 | 3020 | page_index < num_of_pages; ) { |
55e303ae | 3021 | if ( !UPL_DIRTY_PAGE(pl, page_index) |
d12e1678 | 3022 | && !UPL_PRECIOUS_PAGE(pl, page_index)) |
0b4e3aa0 A |
3023 | break; |
3024 | page_index++; | |
3025 | /* | |
3026 | * if we just looked at the last page in the UPL | |
3027 | * we don't need to check for physical segment | |
3028 | * continuity | |
3029 | */ | |
3030 | if (page_index < num_of_pages) { | |
3031 | int cur_seg; | |
3032 | int nxt_seg; | |
3033 | ||
55e303ae A |
3034 | cur_seg = (base_index + (page_index - 1))/pages_in_cl; |
3035 | nxt_seg = (base_index + page_index)/pages_in_cl; | |
0b4e3aa0 A |
3036 | |
3037 | if (cur_seg != nxt_seg) { | |
3038 | if ((ps_offset[cur_seg] != (ps_offset[nxt_seg] - cl_size)) || (psp[cur_seg] != psp[nxt_seg])) | |
55e303ae A |
3039 | /* |
3040 | * if the segment we're about | |
3041 | * to step into is not | |
3042 | * contiguous to the one we're | |
3043 | * currently in, or it's in a | |
d12e1678 | 3044 | * different paging file.... |
55e303ae | 3045 | * we stop here and generate |
d12e1678 A |
3046 | * the I/O |
3047 | */ | |
0b4e3aa0 | 3048 | break; |
1c79356b | 3049 | } |
1c79356b | 3050 | } |
0b4e3aa0 A |
3051 | } |
3052 | num_dirty = page_index - first_dirty; | |
1c79356b | 3053 | |
0b4e3aa0 A |
3054 | if (num_dirty) { |
3055 | upl_offset = first_dirty * vm_page_size; | |
0b4e3aa0 A |
3056 | transfer_size = num_dirty * vm_page_size; |
3057 | ||
d12e1678 | 3058 | while (transfer_size) { |
1c79356b | 3059 | |
d12e1678 | 3060 | if ((seg_size = cl_size - |
55e303ae | 3061 | ((upl->offset + upl_offset) % cl_size)) |
d12e1678 A |
3062 | > transfer_size) |
3063 | seg_size = transfer_size; | |
0b4e3aa0 | 3064 | |
d12e1678 A |
3065 | ps_vs_write_complete(vs, |
3066 | upl->offset + upl_offset, | |
3067 | seg_size, error); | |
0b4e3aa0 | 3068 | |
d12e1678 A |
3069 | transfer_size -= seg_size; |
3070 | upl_offset += seg_size; | |
0b4e3aa0 | 3071 | } |
d12e1678 A |
3072 | upl_offset = first_dirty * vm_page_size; |
3073 | transfer_size = num_dirty * vm_page_size; | |
55e303ae A |
3074 | |
3075 | seg_index = (base_index + first_dirty) / pages_in_cl; | |
3076 | seg_offset = (upl->offset + upl_offset) % cl_size; | |
3077 | ||
d12e1678 A |
3078 | error = ps_write_file(psp[seg_index], |
3079 | upl, upl_offset, | |
3080 | ps_offset[seg_index] | |
3081 | + seg_offset, | |
3082 | transfer_size, flags); | |
55e303ae | 3083 | } else { |
0b4e3aa0 A |
3084 | boolean_t empty = FALSE; |
3085 | upl_abort_range(upl, | |
3086 | first_dirty * vm_page_size, | |
3087 | num_dirty * vm_page_size, | |
3088 | UPL_ABORT_NOTIFY_EMPTY, | |
3089 | &empty); | |
55e303ae A |
3090 | if (empty) { |
3091 | assert(page_index == num_of_pages); | |
0b4e3aa0 | 3092 | upl_deallocate(upl); |
55e303ae | 3093 | } |
1c79356b | 3094 | } |
1c79356b | 3095 | } |
0b4e3aa0 | 3096 | |
1c79356b A |
3097 | } else { |
3098 | assert(cnt <= (vm_page_size << vs->vs_clshift)); | |
3099 | list_size = cnt; | |
3100 | ||
3101 | page_index = 0; | |
3102 | /* The caller provides a mapped_data which is derived */ | |
3103 | /* from a temporary object. The targeted pages are */ | |
3104 | /* guaranteed to be set at offset 0 in the mapped_data */ | |
3105 | /* The actual offset however must still be derived */ | |
3106 | /* from the offset in the vs in question */ | |
3107 | mobj_base_addr = offset; | |
3108 | mobj_target_addr = mobj_base_addr; | |
3109 | ||
3110 | for (transfer_size = list_size; transfer_size != 0;) { | |
3111 | actual_offset = ps_clmap(vs, mobj_target_addr, | |
3112 | &clmap, CL_ALLOC, | |
3113 | transfer_size < cl_size ? | |
3114 | transfer_size : cl_size, 0); | |
3115 | if(actual_offset == (vm_offset_t) -1) { | |
3116 | error = 1; | |
3117 | break; | |
3118 | } | |
3119 | cnt = MIN(transfer_size, | |
3120 | CLMAP_NPGS(clmap) * vm_page_size); | |
3121 | ps = CLMAP_PS(clmap); | |
3122 | /* Assume that the caller has given us contiguous */ | |
3123 | /* pages */ | |
3124 | if(cnt) { | |
d12e1678 A |
3125 | ps_vs_write_complete(vs, mobj_target_addr, |
3126 | cnt, error); | |
1c79356b A |
3127 | error = ps_write_file(ps, internal_upl, |
3128 | 0, actual_offset, | |
3129 | cnt, flags); | |
3130 | if (error) | |
3131 | break; | |
55e303ae | 3132 | } |
1c79356b A |
3133 | if (error) |
3134 | break; | |
3135 | actual_offset += cnt; | |
3136 | mobj_target_addr += cnt; | |
3137 | transfer_size -= cnt; | |
3138 | cnt = 0; | |
3139 | ||
3140 | if (error) | |
3141 | break; | |
3142 | } | |
3143 | } | |
3144 | if(error) | |
3145 | return KERN_FAILURE; | |
3146 | else | |
3147 | return KERN_SUCCESS; | |
3148 | } | |
3149 | ||
3150 | vm_size_t | |
3151 | ps_vstruct_allocated_size( | |
3152 | vstruct_t vs) | |
3153 | { | |
3154 | int num_pages; | |
3155 | struct vs_map *vsmap; | |
91447636 | 3156 | unsigned int i, j, k; |
1c79356b A |
3157 | |
3158 | num_pages = 0; | |
3159 | if (vs->vs_indirect) { | |
3160 | /* loop on indirect maps */ | |
3161 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3162 | vsmap = vs->vs_imap[i]; | |
3163 | if (vsmap == NULL) | |
3164 | continue; | |
3165 | /* loop on clusters in this indirect map */ | |
3166 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3167 | if (VSM_ISCLR(vsmap[j]) || | |
3168 | VSM_ISERR(vsmap[j])) | |
3169 | continue; | |
3170 | /* loop on pages in this cluster */ | |
3171 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3172 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) | |
3173 | num_pages++; | |
3174 | } | |
3175 | } | |
3176 | } | |
3177 | } else { | |
3178 | vsmap = vs->vs_dmap; | |
3179 | if (vsmap == NULL) | |
3180 | return 0; | |
3181 | /* loop on clusters in the direct map */ | |
3182 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3183 | if (VSM_ISCLR(vsmap[j]) || | |
3184 | VSM_ISERR(vsmap[j])) | |
3185 | continue; | |
3186 | /* loop on pages in this cluster */ | |
3187 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3188 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) | |
3189 | num_pages++; | |
3190 | } | |
3191 | } | |
3192 | } | |
3193 | ||
55e303ae | 3194 | return ptoa_32(num_pages); |
1c79356b A |
3195 | } |
3196 | ||
3197 | size_t | |
3198 | ps_vstruct_allocated_pages( | |
3199 | vstruct_t vs, | |
3200 | default_pager_page_t *pages, | |
3201 | size_t pages_size) | |
3202 | { | |
91447636 | 3203 | unsigned int num_pages; |
1c79356b A |
3204 | struct vs_map *vsmap; |
3205 | vm_offset_t offset; | |
91447636 | 3206 | unsigned int i, j, k; |
1c79356b A |
3207 | |
3208 | num_pages = 0; | |
3209 | offset = 0; | |
3210 | if (vs->vs_indirect) { | |
3211 | /* loop on indirect maps */ | |
3212 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3213 | vsmap = vs->vs_imap[i]; | |
3214 | if (vsmap == NULL) { | |
3215 | offset += (vm_page_size * CLMAP_ENTRIES * | |
3216 | VSCLSIZE(vs)); | |
3217 | continue; | |
3218 | } | |
3219 | /* loop on clusters in this indirect map */ | |
3220 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3221 | if (VSM_ISCLR(vsmap[j]) || | |
3222 | VSM_ISERR(vsmap[j])) { | |
3223 | offset += vm_page_size * VSCLSIZE(vs); | |
3224 | continue; | |
3225 | } | |
3226 | /* loop on pages in this cluster */ | |
3227 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3228 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) { | |
3229 | num_pages++; | |
3230 | if (num_pages < pages_size) | |
3231 | pages++->dpp_offset = | |
3232 | offset; | |
3233 | } | |
3234 | offset += vm_page_size; | |
3235 | } | |
3236 | } | |
3237 | } | |
3238 | } else { | |
3239 | vsmap = vs->vs_dmap; | |
3240 | if (vsmap == NULL) | |
3241 | return 0; | |
3242 | /* loop on clusters in the direct map */ | |
3243 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3244 | if (VSM_ISCLR(vsmap[j]) || | |
3245 | VSM_ISERR(vsmap[j])) { | |
3246 | offset += vm_page_size * VSCLSIZE(vs); | |
3247 | continue; | |
3248 | } | |
3249 | /* loop on pages in this cluster */ | |
3250 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3251 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) { | |
3252 | num_pages++; | |
3253 | if (num_pages < pages_size) | |
3254 | pages++->dpp_offset = offset; | |
3255 | } | |
3256 | offset += vm_page_size; | |
3257 | } | |
3258 | } | |
3259 | } | |
3260 | ||
3261 | return num_pages; | |
3262 | } | |
3263 | ||
3264 | ||
3265 | kern_return_t | |
3266 | ps_vstruct_transfer_from_segment( | |
3267 | vstruct_t vs, | |
3268 | paging_segment_t segment, | |
1c79356b | 3269 | upl_t upl) |
1c79356b A |
3270 | { |
3271 | struct vs_map *vsmap; | |
91447636 A |
3272 | // struct vs_map old_vsmap; |
3273 | // struct vs_map new_vsmap; | |
3274 | unsigned int i, j; | |
1c79356b A |
3275 | |
3276 | VS_LOCK(vs); /* block all work on this vstruct */ | |
3277 | /* can't allow the normal multiple write */ | |
3278 | /* semantic because writes may conflict */ | |
3279 | vs->vs_xfer_pending = TRUE; | |
3280 | vs_wait_for_sync_writers(vs); | |
3281 | vs_start_write(vs); | |
3282 | vs_wait_for_readers(vs); | |
3283 | /* we will unlock the vs to allow other writes while transferring */ | |
3284 | /* and will be guaranteed of the persistance of the vs struct */ | |
3285 | /* because the caller of ps_vstruct_transfer_from_segment bumped */ | |
3286 | /* vs_async_pending */ | |
3287 | /* OK we now have guaranteed no other parties are accessing this */ | |
3288 | /* vs. Now that we are also supporting simple lock versions of */ | |
3289 | /* vs_lock we cannot hold onto VS_LOCK as we may block below. */ | |
3290 | /* our purpose in holding it before was the multiple write case */ | |
3291 | /* we now use the boolean xfer_pending to do that. We can use */ | |
3292 | /* a boolean instead of a count because we have guaranteed single */ | |
3293 | /* file access to this code in its caller */ | |
3294 | VS_UNLOCK(vs); | |
3295 | vs_changed: | |
3296 | if (vs->vs_indirect) { | |
91447636 A |
3297 | unsigned int vsmap_size; |
3298 | int clmap_off; | |
1c79356b A |
3299 | /* loop on indirect maps */ |
3300 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3301 | vsmap = vs->vs_imap[i]; | |
3302 | if (vsmap == NULL) | |
3303 | continue; | |
3304 | /* loop on clusters in this indirect map */ | |
3305 | clmap_off = (vm_page_size * CLMAP_ENTRIES * | |
3306 | VSCLSIZE(vs) * i); | |
3307 | if(i+1 == INDIRECT_CLMAP_ENTRIES(vs->vs_size)) | |
3308 | vsmap_size = vs->vs_size - (CLMAP_ENTRIES * i); | |
3309 | else | |
3310 | vsmap_size = CLMAP_ENTRIES; | |
3311 | for (j = 0; j < vsmap_size; j++) { | |
3312 | if (VSM_ISCLR(vsmap[j]) || | |
3313 | VSM_ISERR(vsmap[j]) || | |
3314 | (VSM_PS(vsmap[j]) != segment)) | |
3315 | continue; | |
3316 | if(vs_cluster_transfer(vs, | |
3317 | (vm_page_size * (j << vs->vs_clshift)) | |
3318 | + clmap_off, | |
3319 | vm_page_size << vs->vs_clshift, | |
1c79356b | 3320 | upl) |
1c79356b A |
3321 | != KERN_SUCCESS) { |
3322 | VS_LOCK(vs); | |
3323 | vs->vs_xfer_pending = FALSE; | |
3324 | VS_UNLOCK(vs); | |
3325 | vs_finish_write(vs); | |
3326 | return KERN_FAILURE; | |
3327 | } | |
3328 | /* allow other readers/writers during transfer*/ | |
3329 | VS_LOCK(vs); | |
3330 | vs->vs_xfer_pending = FALSE; | |
3331 | VS_UNLOCK(vs); | |
3332 | vs_finish_write(vs); | |
3333 | VS_LOCK(vs); | |
3334 | vs->vs_xfer_pending = TRUE; | |
1c79356b A |
3335 | vs_wait_for_sync_writers(vs); |
3336 | vs_start_write(vs); | |
3337 | vs_wait_for_readers(vs); | |
0b4e3aa0 | 3338 | VS_UNLOCK(vs); |
1c79356b A |
3339 | if (!(vs->vs_indirect)) { |
3340 | goto vs_changed; | |
3341 | } | |
3342 | } | |
3343 | } | |
3344 | } else { | |
3345 | vsmap = vs->vs_dmap; | |
3346 | if (vsmap == NULL) { | |
3347 | VS_LOCK(vs); | |
3348 | vs->vs_xfer_pending = FALSE; | |
3349 | VS_UNLOCK(vs); | |
3350 | vs_finish_write(vs); | |
3351 | return KERN_SUCCESS; | |
3352 | } | |
3353 | /* loop on clusters in the direct map */ | |
3354 | for (j = 0; j < vs->vs_size; j++) { | |
3355 | if (VSM_ISCLR(vsmap[j]) || | |
3356 | VSM_ISERR(vsmap[j]) || | |
3357 | (VSM_PS(vsmap[j]) != segment)) | |
3358 | continue; | |
3359 | if(vs_cluster_transfer(vs, | |
3360 | vm_page_size * (j << vs->vs_clshift), | |
3361 | vm_page_size << vs->vs_clshift, | |
1c79356b | 3362 | upl) != KERN_SUCCESS) { |
1c79356b A |
3363 | VS_LOCK(vs); |
3364 | vs->vs_xfer_pending = FALSE; | |
3365 | VS_UNLOCK(vs); | |
3366 | vs_finish_write(vs); | |
3367 | return KERN_FAILURE; | |
3368 | } | |
3369 | /* allow other readers/writers during transfer*/ | |
3370 | VS_LOCK(vs); | |
3371 | vs->vs_xfer_pending = FALSE; | |
3372 | VS_UNLOCK(vs); | |
3373 | vs_finish_write(vs); | |
3374 | VS_LOCK(vs); | |
3375 | vs->vs_xfer_pending = TRUE; | |
3376 | VS_UNLOCK(vs); | |
3377 | vs_wait_for_sync_writers(vs); | |
3378 | vs_start_write(vs); | |
3379 | vs_wait_for_readers(vs); | |
3380 | if (vs->vs_indirect) { | |
3381 | goto vs_changed; | |
3382 | } | |
3383 | } | |
3384 | } | |
3385 | ||
3386 | VS_LOCK(vs); | |
3387 | vs->vs_xfer_pending = FALSE; | |
3388 | VS_UNLOCK(vs); | |
3389 | vs_finish_write(vs); | |
3390 | return KERN_SUCCESS; | |
3391 | } | |
3392 | ||
3393 | ||
3394 | ||
3395 | vs_map_t | |
3396 | vs_get_map_entry( | |
3397 | vstruct_t vs, | |
3398 | vm_offset_t offset) | |
3399 | { | |
3400 | struct vs_map *vsmap; | |
3401 | vm_offset_t cluster; | |
3402 | ||
55e303ae | 3403 | cluster = atop_32(offset) >> vs->vs_clshift; |
1c79356b A |
3404 | if (vs->vs_indirect) { |
3405 | long ind_block = cluster/CLMAP_ENTRIES; | |
3406 | ||
3407 | /* Is the indirect block allocated? */ | |
3408 | vsmap = vs->vs_imap[ind_block]; | |
3409 | if(vsmap == (vs_map_t) NULL) | |
3410 | return vsmap; | |
3411 | } else | |
3412 | vsmap = vs->vs_dmap; | |
3413 | vsmap += cluster%CLMAP_ENTRIES; | |
3414 | return vsmap; | |
3415 | } | |
3416 | ||
3417 | kern_return_t | |
3418 | vs_cluster_transfer( | |
3419 | vstruct_t vs, | |
3420 | vm_offset_t offset, | |
3421 | vm_size_t cnt, | |
1c79356b | 3422 | upl_t upl) |
1c79356b A |
3423 | { |
3424 | vm_offset_t actual_offset; | |
3425 | paging_segment_t ps; | |
3426 | struct clmap clmap; | |
3427 | kern_return_t error = KERN_SUCCESS; | |
91447636 A |
3428 | unsigned int size, size_wanted; |
3429 | int i; | |
c0fea474 | 3430 | unsigned int residual = 0; |
91447636 A |
3431 | unsigned int unavail_size; |
3432 | // default_pager_thread_t *dpt; | |
3433 | // boolean_t dealloc; | |
3434 | struct vs_map *vsmap_ptr = NULL; | |
1c79356b A |
3435 | struct vs_map read_vsmap; |
3436 | struct vs_map original_read_vsmap; | |
3437 | struct vs_map write_vsmap; | |
91447636 A |
3438 | // upl_t sync_upl; |
3439 | // vm_offset_t ioaddr; | |
1c79356b | 3440 | |
1c79356b A |
3441 | /* vs_cluster_transfer reads in the pages of a cluster and |
3442 | * then writes these pages back to new backing store. The | |
3443 | * segment the pages are being read from is assumed to have | |
3444 | * been taken off-line and is no longer considered for new | |
3445 | * space requests. | |
3446 | */ | |
3447 | ||
3448 | /* | |
3449 | * This loop will be executed once per cluster referenced. | |
3450 | * Typically this means once, since it's unlikely that the | |
3451 | * VM system will ask for anything spanning cluster boundaries. | |
3452 | * | |
3453 | * If there are holes in a cluster (in a paging segment), we stop | |
3454 | * reading at the hole, then loop again, hoping to | |
3455 | * find valid pages later in the cluster. This continues until | |
3456 | * the entire range has been examined, and read, if present. The | |
3457 | * pages are written as they are read. If a failure occurs after | |
3458 | * some pages are written the unmap call at the bottom of the loop | |
3459 | * recovers the backing store and the old backing store remains | |
3460 | * in effect. | |
3461 | */ | |
3462 | ||
1c79356b A |
3463 | VSM_CLR(write_vsmap); |
3464 | VSM_CLR(original_read_vsmap); | |
3465 | /* grab the actual object's pages to sync with I/O */ | |
3466 | while (cnt && (error == KERN_SUCCESS)) { | |
3467 | vsmap_ptr = vs_get_map_entry(vs, offset); | |
3468 | actual_offset = ps_clmap(vs, offset, &clmap, CL_FIND, 0, 0); | |
3469 | ||
3470 | if (actual_offset == (vm_offset_t) -1) { | |
3471 | ||
3472 | /* | |
3473 | * Nothing left to write in this cluster at least | |
3474 | * set write cluster information for any previous | |
3475 | * write, clear for next cluster, if there is one | |
3476 | */ | |
3477 | unsigned int local_size, clmask, clsize; | |
3478 | ||
3479 | clsize = vm_page_size << vs->vs_clshift; | |
3480 | clmask = clsize - 1; | |
3481 | local_size = clsize - (offset & clmask); | |
3482 | ASSERT(local_size); | |
3483 | local_size = MIN(local_size, cnt); | |
3484 | ||
3485 | /* This cluster has no data in it beyond what may */ | |
3486 | /* have been found on a previous iteration through */ | |
3487 | /* the loop "write_vsmap" */ | |
3488 | *vsmap_ptr = write_vsmap; | |
3489 | VSM_CLR(write_vsmap); | |
3490 | VSM_CLR(original_read_vsmap); | |
3491 | ||
3492 | cnt -= local_size; | |
3493 | offset += local_size; | |
3494 | continue; | |
3495 | } | |
3496 | ||
3497 | /* | |
3498 | * Count up contiguous available or unavailable | |
3499 | * pages. | |
3500 | */ | |
3501 | ps = CLMAP_PS(clmap); | |
3502 | ASSERT(ps); | |
3503 | size = 0; | |
3504 | unavail_size = 0; | |
3505 | for (i = 0; | |
3506 | (size < cnt) && (unavail_size < cnt) && | |
3507 | (i < CLMAP_NPGS(clmap)); i++) { | |
3508 | if (CLMAP_ISSET(clmap, i)) { | |
3509 | if (unavail_size != 0) | |
3510 | break; | |
3511 | size += vm_page_size; | |
3512 | BS_STAT(ps->ps_bs, | |
3513 | ps->ps_bs->bs_pages_in++); | |
3514 | } else { | |
3515 | if (size != 0) | |
3516 | break; | |
3517 | unavail_size += vm_page_size; | |
3518 | } | |
3519 | } | |
3520 | ||
3521 | if (size == 0) { | |
3522 | ASSERT(unavail_size); | |
3523 | cnt -= unavail_size; | |
3524 | offset += unavail_size; | |
3525 | if((offset & ((vm_page_size << vs->vs_clshift) - 1)) | |
3526 | == 0) { | |
3527 | /* There is no more to transfer in this | |
3528 | cluster | |
3529 | */ | |
3530 | *vsmap_ptr = write_vsmap; | |
3531 | VSM_CLR(write_vsmap); | |
3532 | VSM_CLR(original_read_vsmap); | |
3533 | } | |
3534 | continue; | |
3535 | } | |
3536 | ||
3537 | if(VSM_ISCLR(original_read_vsmap)) | |
3538 | original_read_vsmap = *vsmap_ptr; | |
3539 | ||
3540 | if(ps->ps_segtype == PS_PARTITION) { | |
c0fea474 A |
3541 | panic("swap partition not supported\n"); |
3542 | /*NOTREACHED*/ | |
3543 | error = KERN_FAILURE; | |
3544 | residual = size; | |
1c79356b | 3545 | /* |
9bccf70c | 3546 | NEED TO ISSUE WITH SYNC & NO COMMIT |
1c79356b A |
3547 | error = ps_read_device(ps, actual_offset, &buffer, |
3548 | size, &residual, flags); | |
3549 | */ | |
3550 | } else { | |
9bccf70c | 3551 | /* NEED TO ISSUE WITH SYNC & NO COMMIT */ |
91447636 | 3552 | error = ps_read_file(ps, upl, (upl_offset_t) 0, actual_offset, |
1c79356b | 3553 | size, &residual, |
9bccf70c | 3554 | (UPL_IOSYNC | UPL_NOCOMMIT)); |
1c79356b A |
3555 | } |
3556 | ||
3557 | read_vsmap = *vsmap_ptr; | |
3558 | ||
3559 | ||
3560 | /* | |
3561 | * Adjust counts and put data in new BS. Optimize for the | |
3562 | * common case, i.e. no error and/or partial data. | |
3563 | * If there was an error, then we need to error the entire | |
3564 | * range, even if some data was successfully read. | |
3565 | * | |
3566 | */ | |
3567 | if ((error == KERN_SUCCESS) && (residual == 0)) { | |
0b4e3aa0 | 3568 | |
1c79356b A |
3569 | /* |
3570 | * Got everything we asked for, supply the data to | |
3571 | * the new BS. Note that as a side effect of supplying | |
3572 | * the data, the buffer holding the supplied data is | |
3573 | * deallocated from the pager's address space unless | |
3574 | * the write is unsuccessful. | |
3575 | */ | |
3576 | ||
3577 | /* note buffer will be cleaned up in all cases by */ | |
3578 | /* internal_cluster_write or if an error on write */ | |
3579 | /* the vm_map_copy_page_discard call */ | |
3580 | *vsmap_ptr = write_vsmap; | |
3581 | ||
1c79356b A |
3582 | if(vs_cluster_write(vs, upl, offset, |
3583 | size, TRUE, UPL_IOSYNC | UPL_NOCOMMIT ) != KERN_SUCCESS) { | |
1c79356b A |
3584 | error = KERN_FAILURE; |
3585 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3586 | /* unmap the new backing store object */ | |
3587 | ps_clunmap(vs, offset, size); | |
3588 | } | |
3589 | /* original vsmap */ | |
3590 | *vsmap_ptr = original_read_vsmap; | |
3591 | VSM_CLR(write_vsmap); | |
3592 | } else { | |
3593 | if((offset + size) & | |
3594 | ((vm_page_size << vs->vs_clshift) | |
3595 | - 1)) { | |
3596 | /* There is more to transfer in this | |
3597 | cluster | |
3598 | */ | |
3599 | write_vsmap = *vsmap_ptr; | |
3600 | *vsmap_ptr = read_vsmap; | |
3601 | } else { | |
3602 | /* discard the old backing object */ | |
3603 | write_vsmap = *vsmap_ptr; | |
3604 | *vsmap_ptr = read_vsmap; | |
3605 | ps_clunmap(vs, offset, size); | |
3606 | *vsmap_ptr = write_vsmap; | |
3607 | VSM_CLR(write_vsmap); | |
3608 | VSM_CLR(original_read_vsmap); | |
3609 | } | |
3610 | } | |
3611 | } else { | |
3612 | size_wanted = size; | |
3613 | if (error == KERN_SUCCESS) { | |
3614 | if (residual == size) { | |
3615 | /* | |
3616 | * If a read operation returns no error | |
3617 | * and no data moved, we turn it into | |
3618 | * an error, assuming we're reading at | |
3619 | * or beyond EOF. | |
3620 | * Fall through and error the entire | |
3621 | * range. | |
3622 | */ | |
3623 | error = KERN_FAILURE; | |
3624 | *vsmap_ptr = write_vsmap; | |
3625 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3626 | /* unmap the new backing store object */ | |
3627 | ps_clunmap(vs, offset, size); | |
3628 | } | |
3629 | *vsmap_ptr = original_read_vsmap; | |
3630 | VSM_CLR(write_vsmap); | |
3631 | continue; | |
3632 | } else { | |
3633 | /* | |
3634 | * Otherwise, we have partial read. | |
3635 | * This is also considered an error | |
3636 | * for the purposes of cluster transfer | |
3637 | */ | |
3638 | error = KERN_FAILURE; | |
3639 | *vsmap_ptr = write_vsmap; | |
3640 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3641 | /* unmap the new backing store object */ | |
3642 | ps_clunmap(vs, offset, size); | |
3643 | } | |
3644 | *vsmap_ptr = original_read_vsmap; | |
3645 | VSM_CLR(write_vsmap); | |
3646 | continue; | |
3647 | } | |
3648 | } | |
3649 | ||
3650 | } | |
3651 | cnt -= size; | |
3652 | offset += size; | |
3653 | ||
3654 | } /* END while (cnt && (error == 0)) */ | |
3655 | if(!VSM_ISCLR(write_vsmap)) | |
3656 | *vsmap_ptr = write_vsmap; | |
3657 | ||
1c79356b A |
3658 | return error; |
3659 | } | |
3660 | ||
3661 | kern_return_t | |
91447636 A |
3662 | default_pager_add_file( |
3663 | MACH_PORT_FACE backing_store, | |
3664 | vnode_ptr_t vp, | |
1c79356b | 3665 | int record_size, |
91447636 | 3666 | vm_size_t size) |
1c79356b A |
3667 | { |
3668 | backing_store_t bs; | |
3669 | paging_segment_t ps; | |
3670 | int i; | |
91447636 | 3671 | unsigned int j; |
1c79356b | 3672 | int error; |
1c79356b A |
3673 | |
3674 | if ((bs = backing_store_lookup(backing_store)) | |
3675 | == BACKING_STORE_NULL) | |
3676 | return KERN_INVALID_ARGUMENT; | |
3677 | ||
3678 | PSL_LOCK(); | |
3679 | for (i = 0; i <= paging_segment_max; i++) { | |
3680 | ps = paging_segments[i]; | |
3681 | if (ps == PAGING_SEGMENT_NULL) | |
3682 | continue; | |
3683 | if (ps->ps_segtype != PS_FILE) | |
3684 | continue; | |
3685 | ||
3686 | /* | |
3687 | * Check for overlap on same device. | |
3688 | */ | |
3689 | if (ps->ps_vnode == (struct vnode *)vp) { | |
3690 | PSL_UNLOCK(); | |
3691 | BS_UNLOCK(bs); | |
3692 | return KERN_INVALID_ARGUMENT; | |
3693 | } | |
3694 | } | |
3695 | PSL_UNLOCK(); | |
3696 | ||
3697 | /* | |
3698 | * Set up the paging segment | |
3699 | */ | |
3700 | ps = (paging_segment_t) kalloc(sizeof (struct paging_segment)); | |
3701 | if (ps == PAGING_SEGMENT_NULL) { | |
3702 | BS_UNLOCK(bs); | |
3703 | return KERN_RESOURCE_SHORTAGE; | |
3704 | } | |
3705 | ||
3706 | ps->ps_segtype = PS_FILE; | |
3707 | ps->ps_vnode = (struct vnode *)vp; | |
3708 | ps->ps_offset = 0; | |
3709 | ps->ps_record_shift = local_log2(vm_page_size / record_size); | |
3710 | ps->ps_recnum = size; | |
3711 | ps->ps_pgnum = size >> ps->ps_record_shift; | |
3712 | ||
3713 | ps->ps_pgcount = ps->ps_pgnum; | |
3714 | ps->ps_clshift = local_log2(bs->bs_clsize); | |
3715 | ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift; | |
3716 | ps->ps_hint = 0; | |
3717 | ||
3718 | PS_LOCK_INIT(ps); | |
3719 | ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls)); | |
3720 | if (!ps->ps_bmap) { | |
91447636 | 3721 | kfree(ps, sizeof *ps); |
1c79356b A |
3722 | BS_UNLOCK(bs); |
3723 | return KERN_RESOURCE_SHORTAGE; | |
3724 | } | |
91447636 A |
3725 | for (j = 0; j < ps->ps_ncls; j++) { |
3726 | clrbit(ps->ps_bmap, j); | |
1c79356b A |
3727 | } |
3728 | ||
3729 | ps->ps_going_away = FALSE; | |
3730 | ps->ps_bs = bs; | |
3731 | ||
3732 | if ((error = ps_enter(ps)) != 0) { | |
91447636 A |
3733 | kfree(ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); |
3734 | kfree(ps, sizeof *ps); | |
1c79356b A |
3735 | BS_UNLOCK(bs); |
3736 | return KERN_RESOURCE_SHORTAGE; | |
3737 | } | |
3738 | ||
3739 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
3740 | bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift; | |
3741 | PSL_LOCK(); | |
3742 | dp_pages_free += ps->ps_pgcount; | |
3743 | PSL_UNLOCK(); | |
3744 | ||
3745 | BS_UNLOCK(bs); | |
3746 | ||
3747 | bs_more_space(ps->ps_clcount); | |
3748 | ||
91447636 A |
3749 | DP_DEBUG(DEBUG_BS_INTERNAL, |
3750 | ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n", | |
3751 | device, offset, size, record_size, | |
3752 | ps->ps_record_shift, ps->ps_pgnum)); | |
1c79356b A |
3753 | |
3754 | return KERN_SUCCESS; | |
3755 | } | |
3756 | ||
3757 | ||
3758 | ||
1c79356b A |
3759 | kern_return_t |
3760 | ps_read_file( | |
3761 | paging_segment_t ps, | |
3762 | upl_t upl, | |
91447636 | 3763 | upl_offset_t upl_offset, |
1c79356b | 3764 | vm_offset_t offset, |
91447636 | 3765 | upl_size_t size, |
1c79356b A |
3766 | unsigned int *residualp, |
3767 | int flags) | |
3768 | { | |
3769 | vm_object_offset_t f_offset; | |
3770 | int error = 0; | |
3771 | int result; | |
1c79356b | 3772 | |
91447636 | 3773 | assert(dp_encryption_inited); |
1c79356b | 3774 | |
55e303ae | 3775 | clustered_reads[atop_32(size)]++; |
1c79356b A |
3776 | |
3777 | f_offset = (vm_object_offset_t)(ps->ps_offset + offset); | |
3778 | ||
3779 | /* for transfer case we need to pass uploffset and flags */ | |
3780 | error = vnode_pagein(ps->ps_vnode, | |
0b4e3aa0 | 3781 | upl, upl_offset, f_offset, (vm_size_t)size, flags | UPL_NORDAHEAD, NULL); |
1c79356b A |
3782 | |
3783 | /* The vnode_pagein semantic is somewhat at odds with the existing */ | |
3784 | /* device_read semantic. Partial reads are not experienced at this */ | |
3785 | /* level. It is up to the bit map code and cluster read code to */ | |
3786 | /* check that requested data locations are actually backed, and the */ | |
3787 | /* pagein code to either read all of the requested data or return an */ | |
3788 | /* error. */ | |
3789 | ||
3790 | if (error) | |
3791 | result = KERN_FAILURE; | |
3792 | else { | |
3793 | *residualp = 0; | |
3794 | result = KERN_SUCCESS; | |
3795 | } | |
3796 | return result; | |
1c79356b A |
3797 | } |
3798 | ||
3799 | kern_return_t | |
3800 | ps_write_file( | |
3801 | paging_segment_t ps, | |
3802 | upl_t upl, | |
91447636 | 3803 | upl_offset_t upl_offset, |
1c79356b A |
3804 | vm_offset_t offset, |
3805 | unsigned int size, | |
3806 | int flags) | |
3807 | { | |
3808 | vm_object_offset_t f_offset; | |
3809 | kern_return_t result; | |
1c79356b | 3810 | |
91447636 | 3811 | assert(dp_encryption_inited); |
1c79356b | 3812 | |
55e303ae | 3813 | clustered_writes[atop_32(size)]++; |
1c79356b A |
3814 | f_offset = (vm_object_offset_t)(ps->ps_offset + offset); |
3815 | ||
91447636 A |
3816 | if (flags & UPL_PAGING_ENCRYPTED) { |
3817 | /* | |
3818 | * ENCRYPTED SWAP: | |
3819 | * encrypt all the pages that we're going | |
3820 | * to pageout. | |
3821 | */ | |
3822 | upl_encrypt(upl, upl_offset, size); | |
3823 | } | |
3824 | ||
1c79356b A |
3825 | if (vnode_pageout(ps->ps_vnode, |
3826 | upl, upl_offset, f_offset, (vm_size_t)size, flags, NULL)) | |
3827 | result = KERN_FAILURE; | |
3828 | else | |
3829 | result = KERN_SUCCESS; | |
3830 | ||
3831 | return result; | |
3832 | } | |
3833 | ||
3834 | kern_return_t | |
91447636 | 3835 | default_pager_triggers( __unused MACH_PORT_FACE default_pager, |
1c79356b A |
3836 | int hi_wat, |
3837 | int lo_wat, | |
3838 | int flags, | |
3839 | MACH_PORT_FACE trigger_port) | |
3840 | { | |
0b4e3aa0 A |
3841 | MACH_PORT_FACE release; |
3842 | kern_return_t kr; | |
1c79356b | 3843 | |
0b4e3aa0 | 3844 | PSL_LOCK(); |
91447636 A |
3845 | if (flags == SWAP_ENCRYPT_ON) { |
3846 | /* ENCRYPTED SWAP: turn encryption on */ | |
3847 | release = trigger_port; | |
3848 | if (!dp_encryption_inited) { | |
3849 | dp_encryption_inited = TRUE; | |
3850 | dp_encryption = TRUE; | |
3851 | kr = KERN_SUCCESS; | |
3852 | } else { | |
3853 | kr = KERN_FAILURE; | |
3854 | } | |
3855 | } else if (flags == SWAP_ENCRYPT_OFF) { | |
3856 | /* ENCRYPTED SWAP: turn encryption off */ | |
3857 | release = trigger_port; | |
3858 | if (!dp_encryption_inited) { | |
3859 | dp_encryption_inited = TRUE; | |
3860 | dp_encryption = FALSE; | |
3861 | kr = KERN_SUCCESS; | |
3862 | } else { | |
3863 | kr = KERN_FAILURE; | |
3864 | } | |
3865 | } else if (flags == HI_WAT_ALERT) { | |
0b4e3aa0 | 3866 | release = min_pages_trigger_port; |
1c79356b A |
3867 | min_pages_trigger_port = trigger_port; |
3868 | minimum_pages_remaining = hi_wat/vm_page_size; | |
3869 | bs_low = FALSE; | |
0b4e3aa0 A |
3870 | kr = KERN_SUCCESS; |
3871 | } else if (flags == LO_WAT_ALERT) { | |
3872 | release = max_pages_trigger_port; | |
1c79356b A |
3873 | max_pages_trigger_port = trigger_port; |
3874 | maximum_pages_free = lo_wat/vm_page_size; | |
0b4e3aa0 A |
3875 | kr = KERN_SUCCESS; |
3876 | } else { | |
3877 | release = trigger_port; | |
3878 | kr = KERN_INVALID_ARGUMENT; | |
1c79356b | 3879 | } |
0b4e3aa0 A |
3880 | PSL_UNLOCK(); |
3881 | ||
3882 | if (IP_VALID(release)) | |
3883 | ipc_port_release_send(release); | |
3884 | ||
3885 | return kr; | |
1c79356b | 3886 | } |
55e303ae A |
3887 | |
3888 | /* | |
3889 | * Monitor the amount of available backing store vs. the amount of | |
3890 | * required backing store, notify a listener (if present) when | |
3891 | * backing store may safely be removed. | |
3892 | * | |
3893 | * We attempt to avoid the situation where backing store is | |
3894 | * discarded en masse, as this can lead to thrashing as the | |
3895 | * backing store is compacted. | |
3896 | */ | |
3897 | ||
3898 | #define PF_INTERVAL 3 /* time between free level checks */ | |
3899 | #define PF_LATENCY 10 /* number of intervals before release */ | |
3900 | ||
3901 | static int dp_pages_free_low_count = 0; | |
91447636 | 3902 | thread_call_t default_pager_backing_store_monitor_callout; |
55e303ae A |
3903 | |
3904 | void | |
91447636 A |
3905 | default_pager_backing_store_monitor(__unused thread_call_param_t p1, |
3906 | __unused thread_call_param_t p2) | |
55e303ae | 3907 | { |
91447636 | 3908 | // unsigned long long average; |
55e303ae A |
3909 | ipc_port_t trigger; |
3910 | uint64_t deadline; | |
3911 | ||
3912 | /* | |
3913 | * We determine whether it will be safe to release some | |
3914 | * backing store by watching the free page level. If | |
3915 | * it remains below the maximum_pages_free threshold for | |
3916 | * at least PF_LATENCY checks (taken at PF_INTERVAL seconds) | |
3917 | * then we deem it safe. | |
3918 | * | |
3919 | * Note that this establishes a maximum rate at which backing | |
3920 | * store will be released, as each notification (currently) | |
3921 | * only results in a single backing store object being | |
3922 | * released. | |
3923 | */ | |
3924 | if (dp_pages_free > maximum_pages_free) { | |
3925 | dp_pages_free_low_count++; | |
3926 | } else { | |
3927 | dp_pages_free_low_count = 0; | |
3928 | } | |
3929 | ||
3930 | /* decide whether to send notification */ | |
3931 | trigger = IP_NULL; | |
3932 | if (max_pages_trigger_port && | |
3933 | (backing_store_release_trigger_disable == 0) && | |
3934 | (dp_pages_free_low_count > PF_LATENCY)) { | |
3935 | trigger = max_pages_trigger_port; | |
3936 | max_pages_trigger_port = NULL; | |
3937 | } | |
3938 | ||
3939 | /* send notification */ | |
3940 | if (trigger != IP_NULL) { | |
3941 | VSL_LOCK(); | |
3942 | if(backing_store_release_trigger_disable != 0) { | |
3943 | assert_wait((event_t) | |
3944 | &backing_store_release_trigger_disable, | |
3945 | THREAD_UNINT); | |
3946 | VSL_UNLOCK(); | |
3947 | thread_block(THREAD_CONTINUE_NULL); | |
3948 | } else { | |
3949 | VSL_UNLOCK(); | |
3950 | } | |
3951 | default_pager_space_alert(trigger, LO_WAT_ALERT); | |
3952 | ipc_port_release_send(trigger); | |
3953 | dp_pages_free_low_count = 0; | |
3954 | } | |
3955 | ||
3956 | clock_interval_to_deadline(PF_INTERVAL, NSEC_PER_SEC, &deadline); | |
91447636 | 3957 | thread_call_enter_delayed(default_pager_backing_store_monitor_callout, deadline); |
55e303ae | 3958 | } |