]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/sys_pipe.c
xnu-792.10.96.tar.gz
[apple/xnu.git] / bsd / kern / sys_pipe.c
CommitLineData
91447636
A
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19/*
20 * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved.
21 *
22 * @APPLE_LICENSE_HEADER_START@
23 *
37839358
A
24 * The contents of this file constitute Original Code as defined in and
25 * are subject to the Apple Public Source License Version 1.1 (the
26 * "License"). You may not use this file except in compliance with the
27 * License. Please obtain a copy of the License at
28 * http://www.apple.com/publicsource and read it before using this file.
91447636 29 *
37839358
A
30 * This Original Code and all software distributed under the License are
31 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
91447636
A
32 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
33 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
37839358
A
34 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
35 * License for the specific language governing rights and limitations
36 * under the License.
91447636
A
37 *
38 * @APPLE_LICENSE_HEADER_END@
39 */
40
41/*
42 * This file contains a high-performance replacement for the socket-based
43 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
44 * all features of sockets, but does do everything that pipes normally
45 * do.
46 */
47
48/*
49 * This code has two modes of operation, a small write mode and a large
50 * write mode. The small write mode acts like conventional pipes with
51 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
52 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
53 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
54 * the receiving process can copy it directly from the pages in the sending
55 * process.
56 *
57 * If the sending process receives a signal, it is possible that it will
58 * go away, and certainly its address space can change, because control
59 * is returned back to the user-mode side. In that case, the pipe code
60 * arranges to copy the buffer supplied by the user process, to a pageable
61 * kernel buffer, and the receiving process will grab the data from the
62 * pageable kernel buffer. Since signals don't happen all that often,
63 * the copy operation is normally eliminated.
64 *
65 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
66 * happen for small transfers so that the system will not spend all of
67 * its time context switching.
68 *
69 * In order to limit the resource use of pipes, two sysctls exist:
70 *
71 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
72 * address space available to us in pipe_map. Whenever the amount in use
73 * exceeds half of this value, all new pipes will be created with size
74 * SMALL_PIPE_SIZE, rather than PIPE_SIZE. Big pipe creation will be limited
75 * as well. This value is loader tunable only.
76 *
77 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
78 * be wired in order to facilitate direct copies using page flipping.
79 * Whenever this value is exceeded, pipes will fall back to using regular
80 * copies. This value is sysctl controllable at all times.
81 *
82 * These values are autotuned in subr_param.c.
83 *
84 * Memory usage may be monitored through the sysctls
85 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
86 *
87 */
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/filedesc.h>
92#include <sys/kernel.h>
93#include <sys/vnode.h>
94#include <sys/proc_internal.h>
95#include <sys/kauth.h>
96#include <sys/file_internal.h>
97#include <sys/stat.h>
98#include <sys/ioctl.h>
99#include <sys/fcntl.h>
100#include <sys/malloc.h>
101#include <sys/syslog.h>
102#include <sys/unistd.h>
103#include <sys/resourcevar.h>
104#include <sys/aio_kern.h>
105#include <sys/signalvar.h>
106#include <sys/pipe.h>
107#include <sys/sysproto.h>
c0fea474 108#include <sys/proc_info.h>
91447636
A
109
110#include <bsm/audit_kernel.h>
111
112#include <sys/kdebug.h>
113
114#include <kern/zalloc.h>
115#include <vm/vm_kern.h>
116#include <libkern/OSAtomic.h>
117
118#define f_flag f_fglob->fg_flag
119#define f_type f_fglob->fg_type
120#define f_msgcount f_fglob->fg_msgcount
121#define f_cred f_fglob->fg_cred
122#define f_ops f_fglob->fg_ops
123#define f_offset f_fglob->fg_offset
124#define f_data f_fglob->fg_data
125/*
126 * Use this define if you want to disable *fancy* VM things. Expect an
127 * approx 30% decrease in transfer rate. This could be useful for
128 * NetBSD or OpenBSD.
129 *
130 * this needs to be ported to X and the performance measured
131 * before committing to supporting it
132 */
133#define PIPE_NODIRECT 1
134
135#ifndef PIPE_NODIRECT
136
137#include <vm/vm.h>
138#include <vm/vm_param.h>
139#include <vm/vm_object.h>
140#include <vm/vm_kern.h>
141#include <vm/vm_extern.h>
142#include <vm/pmap.h>
143#include <vm/vm_map.h>
144#include <vm/vm_page.h>
145#include <vm/uma.h>
146
147#endif
148
149
150/*
151 * interfaces to the outside world
152 */
153static int pipe_read(struct fileproc *fp, struct uio *uio,
154 kauth_cred_t cred, int flags, struct proc *p);
155
156static int pipe_write(struct fileproc *fp, struct uio *uio,
157 kauth_cred_t cred, int flags, struct proc *p);
158
159static int pipe_close(struct fileglob *fg, struct proc *p);
160
161static int pipe_select(struct fileproc *fp, int which, void * wql, struct proc *p);
162
163static int pipe_kqfilter(struct fileproc *fp, struct knote *kn, struct proc *p);
164
165static int pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, struct proc *p);
166
167
168struct fileops pipeops =
169 { pipe_read,
170 pipe_write,
171 pipe_ioctl,
172 pipe_select,
173 pipe_close,
174 pipe_kqfilter,
175 0 };
176
177
178static void filt_pipedetach(struct knote *kn);
179static int filt_piperead(struct knote *kn, long hint);
180static int filt_pipewrite(struct knote *kn, long hint);
181
182static struct filterops pipe_rfiltops =
183 { 1, NULL, filt_pipedetach, filt_piperead };
184static struct filterops pipe_wfiltops =
185 { 1, NULL, filt_pipedetach, filt_pipewrite };
186
187/*
188 * Default pipe buffer size(s), this can be kind-of large now because pipe
189 * space is pageable. The pipe code will try to maintain locality of
190 * reference for performance reasons, so small amounts of outstanding I/O
191 * will not wipe the cache.
192 */
193#define MINPIPESIZE (PIPE_SIZE/3)
194
195/*
196 * Limit the number of "big" pipes
197 */
198#define LIMITBIGPIPES 32
199static int nbigpipe;
200
201static int amountpipes;
202static int amountpipekva;
203
204#ifndef PIPE_NODIRECT
205static int amountpipekvawired;
206#endif
207int maxpipekva = 1024 * 1024 * 16;
208
209#if PIPE_SYSCTLS
210SYSCTL_DECL(_kern_ipc);
211
212SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD,
213 &maxpipekva, 0, "Pipe KVA limit");
214SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW,
215 &maxpipekvawired, 0, "Pipe KVA wired limit");
216SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
217 &amountpipes, 0, "Current # of pipes");
218SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
219 &nbigpipe, 0, "Current # of big pipes");
220SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
221 &amountpipekva, 0, "Pipe KVA usage");
222SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD,
223 &amountpipekvawired, 0, "Pipe wired KVA usage");
224#endif
225
226void pipeinit(void *dummy __unused);
227static void pipeclose(struct pipe *cpipe);
228static void pipe_free_kmem(struct pipe *cpipe);
229static int pipe_create(struct pipe **cpipep);
230static void pipeselwakeup(struct pipe *cpipe, struct pipe *spipe);
231static __inline int pipelock(struct pipe *cpipe, int catch);
232static __inline void pipeunlock(struct pipe *cpipe);
233
234#ifndef PIPE_NODIRECT
235static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
236static void pipe_destroy_write_buffer(struct pipe *wpipe);
237static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
238static void pipe_clone_write_buffer(struct pipe *wpipe);
239#endif
240
241extern int postpipeevent(struct pipe *, int);
242extern void evpipefree(struct pipe *cpipe);
243
244
245static int pipespace(struct pipe *cpipe, int size);
246
247static lck_grp_t *pipe_mtx_grp;
248static lck_attr_t *pipe_mtx_attr;
249static lck_grp_attr_t *pipe_mtx_grp_attr;
250
251static zone_t pipe_zone;
252
253SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
254
255void
256pipeinit(void *dummy __unused)
257{
258 pipe_zone = (zone_t)zinit(sizeof(struct pipe), 8192 * sizeof(struct pipe), 4096, "pipe zone");
259
260 /*
261 * allocate lock group attribute and group for pipe mutexes
262 */
263 pipe_mtx_grp_attr = lck_grp_attr_alloc_init();
91447636
A
264 pipe_mtx_grp = lck_grp_alloc_init("pipe", pipe_mtx_grp_attr);
265
266 /*
267 * allocate the lock attribute for pipe mutexes
268 */
269 pipe_mtx_attr = lck_attr_alloc_init();
91447636
A
270}
271
272
273
274/*
275 * The pipe system call for the DTYPE_PIPE type of pipes
276 */
277
278/* ARGSUSED */
279int
280pipe(struct proc *p, __unused struct pipe_args *uap, register_t *retval)
281{
282 struct fileproc *rf, *wf;
283 struct pipe *rpipe, *wpipe;
284 lck_mtx_t *pmtx;
285 int fd, error;
286
287 if ((pmtx = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr)) == NULL)
288 return (ENOMEM);
289
290 rpipe = wpipe = NULL;
291 if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
292 error = ENFILE;
293 goto freepipes;
294 }
295 /*
296 * allocate the space for the normal I/O direction up
297 * front... we'll delay the allocation for the other
298 * direction until a write actually occurs (most
299 * likely it won't)...
300 *
301 * Reduce to 1/4th pipe size if we're over our global max.
302 */
303 if (amountpipekva > maxpipekva / 2)
304 error = pipespace(rpipe, SMALL_PIPE_SIZE);
305 else
306 error = pipespace(rpipe, PIPE_SIZE);
307 if (error)
308 goto freepipes;
309
310#ifndef PIPE_NODIRECT
311 rpipe->pipe_state |= PIPE_DIRECTOK;
312 wpipe->pipe_state |= PIPE_DIRECTOK;
313#endif
314 TAILQ_INIT(&rpipe->pipe_evlist);
315 TAILQ_INIT(&wpipe->pipe_evlist);
316
317 error = falloc(p, &rf, &fd);
318 if (error) {
319 goto freepipes;
320 }
321 retval[0] = fd;
322
323 /*
324 * for now we'll create half-duplex
325 * pipes... this is what we've always
326 * supported..
327 */
328 rf->f_flag = FREAD;
329 rf->f_type = DTYPE_PIPE;
330 rf->f_data = (caddr_t)rpipe;
331 rf->f_ops = &pipeops;
332
333 error = falloc(p, &wf, &fd);
334 if (error) {
335 fp_free(p, retval[0], rf);
336 goto freepipes;
337 }
338 wf->f_flag = FWRITE;
339 wf->f_type = DTYPE_PIPE;
340 wf->f_data = (caddr_t)wpipe;
341 wf->f_ops = &pipeops;
342
343 retval[1] = fd;
344#ifdef MAC
345 /*
346 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
347 *
348 * struct pipe represents a pipe endpoint. The MAC label is shared
349 * between the connected endpoints. As a result mac_init_pipe() and
350 * mac_create_pipe() should only be called on one of the endpoints
351 * after they have been connected.
352 */
353 mac_init_pipe(rpipe);
354 mac_create_pipe(td->td_ucred, rpipe);
355#endif
356 proc_fdlock(p);
357 *fdflags(p, retval[0]) &= ~UF_RESERVED;
358 *fdflags(p, retval[1]) &= ~UF_RESERVED;
359 fp_drop(p, retval[0], rf, 1);
360 fp_drop(p, retval[1], wf, 1);
361 proc_fdunlock(p);
362
363 rpipe->pipe_peer = wpipe;
364 wpipe->pipe_peer = rpipe;
365
366 rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
367
368 return (0);
369
370freepipes:
371 pipeclose(rpipe);
372 pipeclose(wpipe);
373 lck_mtx_free(pmtx, pipe_mtx_grp);
374
375 return (error);
376}
377
378
379int
380pipe_stat(struct pipe *cpipe, struct stat *ub)
381{
382#ifdef MAC
383 int error;
384#endif
385 struct timeval now;
386
387 if (cpipe == NULL)
388 return (EBADF);
389#ifdef MAC
390 PIPE_LOCK(cpipe);
391 error = mac_check_pipe_stat(active_cred, cpipe);
392 PIPE_UNLOCK(cpipe);
393 if (error)
394 return (error);
395#endif
396 if (cpipe->pipe_buffer.buffer == 0) {
397 /*
398 * must be stat'ing the write fd
399 */
400 cpipe = cpipe->pipe_peer;
401
402 if (cpipe == NULL)
403 return (EBADF);
404 }
405 bzero(ub, sizeof(*ub));
406 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
407 ub->st_blksize = cpipe->pipe_buffer.size;
408 ub->st_size = cpipe->pipe_buffer.cnt;
409 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
410 ub->st_nlink = 1;
411
412 ub->st_uid = kauth_getuid();
413 ub->st_gid = kauth_getgid();
414
415 microtime(&now);
416 ub->st_atimespec.tv_sec = now.tv_sec;
417 ub->st_atimespec.tv_nsec = now.tv_usec * 1000;
418
419 ub->st_mtimespec.tv_sec = now.tv_sec;
420 ub->st_mtimespec.tv_nsec = now.tv_usec * 1000;
421
422 ub->st_ctimespec.tv_sec = now.tv_sec;
423 ub->st_ctimespec.tv_nsec = now.tv_usec * 1000;
424
425 /*
426 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
427 * XXX (st_dev, st_ino) should be unique.
428 */
429 return (0);
430}
431
432
433/*
434 * Allocate kva for pipe circular buffer, the space is pageable
435 * This routine will 'realloc' the size of a pipe safely, if it fails
436 * it will retain the old buffer.
437 * If it fails it will return ENOMEM.
438 */
439static int
440pipespace(struct pipe *cpipe, int size)
441{
442 vm_offset_t buffer;
443
444 size = round_page(size);
445
446 if (kmem_alloc(kernel_map, &buffer, size) != KERN_SUCCESS)
447 return(ENOMEM);
448
449 /* free old resources if we're resizing */
450 pipe_free_kmem(cpipe);
451 cpipe->pipe_buffer.buffer = (caddr_t)buffer;
452 cpipe->pipe_buffer.size = size;
453 cpipe->pipe_buffer.in = 0;
454 cpipe->pipe_buffer.out = 0;
455 cpipe->pipe_buffer.cnt = 0;
456
457 OSAddAtomic(1, (SInt32 *)&amountpipes);
458 OSAddAtomic(cpipe->pipe_buffer.size, (SInt32 *)&amountpipekva);
459
460 return (0);
461}
462
463/*
464 * initialize and allocate VM and memory for pipe
465 */
466static int
467pipe_create(struct pipe **cpipep)
468{
469 struct pipe *cpipe;
470
471 cpipe = (struct pipe *)zalloc(pipe_zone);
472
473 if ((*cpipep = cpipe) == NULL)
474 return (ENOMEM);
475
476 /*
477 * protect so pipespace or pipeclose don't follow a junk pointer
478 * if pipespace() fails.
479 */
480 bzero(cpipe, sizeof *cpipe);
481
482 return (0);
483}
484
485
486/*
487 * lock a pipe for I/O, blocking other access
488 */
489static __inline int
490pipelock(cpipe, catch)
491 struct pipe *cpipe;
492 int catch;
493{
494 int error;
495
496 while (cpipe->pipe_state & PIPE_LOCKFL) {
497 cpipe->pipe_state |= PIPE_LWANT;
498
499 error = msleep(cpipe, PIPE_MTX(cpipe), catch ? (PRIBIO | PCATCH) : PRIBIO,
500 "pipelk", 0);
501 if (error != 0)
502 return (error);
503 }
504 cpipe->pipe_state |= PIPE_LOCKFL;
505
506 return (0);
507}
508
509/*
510 * unlock a pipe I/O lock
511 */
512static __inline void
513pipeunlock(cpipe)
514 struct pipe *cpipe;
515{
516
517 cpipe->pipe_state &= ~PIPE_LOCKFL;
518
519 if (cpipe->pipe_state & PIPE_LWANT) {
520 cpipe->pipe_state &= ~PIPE_LWANT;
521 wakeup(cpipe);
522 }
523}
524
525static void
526pipeselwakeup(cpipe, spipe)
527 struct pipe *cpipe;
528 struct pipe *spipe;
529{
530
531 if (cpipe->pipe_state & PIPE_SEL) {
532 cpipe->pipe_state &= ~PIPE_SEL;
533 selwakeup(&cpipe->pipe_sel);
534 }
535 if (cpipe->pipe_state & PIPE_KNOTE)
536 KNOTE(&cpipe->pipe_sel.si_note, 1);
537
538 postpipeevent(cpipe, EV_RWBYTES);
539
540 if (spipe && (spipe->pipe_state & PIPE_ASYNC) && spipe->pipe_pgid) {
541 struct proc *p;
542
543 if (spipe->pipe_pgid < 0)
544 gsignal(-spipe->pipe_pgid, SIGIO);
545 else if ((p = pfind(spipe->pipe_pgid)) != (struct proc *)0)
546 psignal(p, SIGIO);
547 }
548}
549
550/* ARGSUSED */
551static int
552pipe_read(struct fileproc *fp, struct uio *uio, __unused kauth_cred_t active_cred, __unused int flags, __unused struct proc *p)
553{
554 struct pipe *rpipe = (struct pipe *)fp->f_data;
555 int error;
556 int nread = 0;
557 u_int size;
558
559 PIPE_LOCK(rpipe);
560 ++rpipe->pipe_busy;
561
562 error = pipelock(rpipe, 1);
563 if (error)
564 goto unlocked_error;
565
566#ifdef MAC
567 error = mac_check_pipe_read(active_cred, rpipe);
568 if (error)
569 goto locked_error;
570#endif
571
572 while (uio_resid(uio)) {
573 /*
574 * normal pipe buffer receive
575 */
576 if (rpipe->pipe_buffer.cnt > 0) {
577 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
578 if (size > rpipe->pipe_buffer.cnt)
579 size = rpipe->pipe_buffer.cnt;
580 // LP64todo - fix this!
581 if (size > (u_int) uio_resid(uio))
582 size = (u_int) uio_resid(uio);
583
584 PIPE_UNLOCK(rpipe);
585 error = uiomove(
586 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
587 size, uio);
588 PIPE_LOCK(rpipe);
589 if (error)
590 break;
591
592 rpipe->pipe_buffer.out += size;
593 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
594 rpipe->pipe_buffer.out = 0;
595
596 rpipe->pipe_buffer.cnt -= size;
597
598 /*
599 * If there is no more to read in the pipe, reset
600 * its pointers to the beginning. This improves
601 * cache hit stats.
602 */
603 if (rpipe->pipe_buffer.cnt == 0) {
604 rpipe->pipe_buffer.in = 0;
605 rpipe->pipe_buffer.out = 0;
606 }
607 nread += size;
608#ifndef PIPE_NODIRECT
609 /*
610 * Direct copy, bypassing a kernel buffer.
611 */
612 } else if ((size = rpipe->pipe_map.cnt) &&
613 (rpipe->pipe_state & PIPE_DIRECTW)) {
614 caddr_t va;
615 // LP64todo - fix this!
616 if (size > (u_int) uio_resid(uio))
617 size = (u_int) uio_resid(uio);
618
619 va = (caddr_t) rpipe->pipe_map.kva +
620 rpipe->pipe_map.pos;
621 PIPE_UNLOCK(rpipe);
622 error = uiomove(va, size, uio);
623 PIPE_LOCK(rpipe);
624 if (error)
625 break;
626 nread += size;
627 rpipe->pipe_map.pos += size;
628 rpipe->pipe_map.cnt -= size;
629 if (rpipe->pipe_map.cnt == 0) {
630 rpipe->pipe_state &= ~PIPE_DIRECTW;
631 wakeup(rpipe);
632 }
633#endif
634 } else {
635 /*
636 * detect EOF condition
637 * read returns 0 on EOF, no need to set error
638 */
639 if (rpipe->pipe_state & PIPE_EOF)
640 break;
641
642 /*
643 * If the "write-side" has been blocked, wake it up now.
644 */
645 if (rpipe->pipe_state & PIPE_WANTW) {
646 rpipe->pipe_state &= ~PIPE_WANTW;
647 wakeup(rpipe);
648 }
649
650 /*
651 * Break if some data was read.
652 */
653 if (nread > 0)
654 break;
655
656 /*
657 * Unlock the pipe buffer for our remaining processing.
658 * We will either break out with an error or we will
659 * sleep and relock to loop.
660 */
661 pipeunlock(rpipe);
662
663 /*
664 * Handle non-blocking mode operation or
665 * wait for more data.
666 */
667 if (fp->f_flag & FNONBLOCK) {
668 error = EAGAIN;
669 } else {
670 rpipe->pipe_state |= PIPE_WANTR;
671
672 error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "piperd", 0);
673
674 if (error == 0)
675 error = pipelock(rpipe, 1);
676 }
677 if (error)
678 goto unlocked_error;
679 }
680 }
681#ifdef MAC
682locked_error:
683#endif
684 pipeunlock(rpipe);
685
686unlocked_error:
687 --rpipe->pipe_busy;
688
689 /*
690 * PIPE_WANT processing only makes sense if pipe_busy is 0.
691 */
692 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
693 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
694 wakeup(rpipe);
695 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
696 /*
697 * Handle write blocking hysteresis.
698 */
699 if (rpipe->pipe_state & PIPE_WANTW) {
700 rpipe->pipe_state &= ~PIPE_WANTW;
701 wakeup(rpipe);
702 }
703 }
704
705 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
706 pipeselwakeup(rpipe, rpipe->pipe_peer);
707
708 PIPE_UNLOCK(rpipe);
709
710 return (error);
711}
712
713
714
715#ifndef PIPE_NODIRECT
716/*
717 * Map the sending processes' buffer into kernel space and wire it.
718 * This is similar to a physical write operation.
719 */
720static int
721pipe_build_write_buffer(wpipe, uio)
722 struct pipe *wpipe;
723 struct uio *uio;
724{
725 pmap_t pmap;
726 u_int size;
727 int i, j;
728 vm_offset_t addr, endaddr;
729
730
731 size = (u_int) uio->uio_iov->iov_len;
732 if (size > wpipe->pipe_buffer.size)
733 size = wpipe->pipe_buffer.size;
734
735 pmap = vmspace_pmap(curproc->p_vmspace);
736 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
737 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
738 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
739 /*
740 * vm_fault_quick() can sleep. Consequently,
741 * vm_page_lock_queue() and vm_page_unlock_queue()
742 * should not be performed outside of this loop.
743 */
744 race:
745 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
746 vm_page_lock_queues();
747 for (j = 0; j < i; j++)
748 vm_page_unhold(wpipe->pipe_map.ms[j]);
749 vm_page_unlock_queues();
750 return (EFAULT);
751 }
752 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
753 VM_PROT_READ);
754 if (wpipe->pipe_map.ms[i] == NULL)
755 goto race;
756 }
757
758/*
759 * set up the control block
760 */
761 wpipe->pipe_map.npages = i;
762 wpipe->pipe_map.pos =
763 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
764 wpipe->pipe_map.cnt = size;
765
766/*
767 * and map the buffer
768 */
769 if (wpipe->pipe_map.kva == 0) {
770 /*
771 * We need to allocate space for an extra page because the
772 * address range might (will) span pages at times.
773 */
774 wpipe->pipe_map.kva = kmem_alloc_nofault(kernel_map,
775 wpipe->pipe_buffer.size + PAGE_SIZE);
776 atomic_add_int(&amountpipekvawired,
777 wpipe->pipe_buffer.size + PAGE_SIZE);
778 }
779 pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
780 wpipe->pipe_map.npages);
781
782/*
783 * and update the uio data
784 */
785
786 uio->uio_iov->iov_len -= size;
787 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
788 if (uio->uio_iov->iov_len == 0)
789 uio->uio_iov++;
790 uio_setresid(uio, (uio_resid(uio) - size));
791 uio->uio_offset += size;
792 return (0);
793}
794
795/*
796 * unmap and unwire the process buffer
797 */
798static void
799pipe_destroy_write_buffer(wpipe)
800 struct pipe *wpipe;
801{
802 int i;
803
804 if (wpipe->pipe_map.kva) {
805 pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
806
807 if (amountpipekvawired > maxpipekvawired / 2) {
808 /* Conserve address space */
809 vm_offset_t kva = wpipe->pipe_map.kva;
810 wpipe->pipe_map.kva = 0;
811 kmem_free(kernel_map, kva,
812 wpipe->pipe_buffer.size + PAGE_SIZE);
813 atomic_subtract_int(&amountpipekvawired,
814 wpipe->pipe_buffer.size + PAGE_SIZE);
815 }
816 }
817 vm_page_lock_queues();
818 for (i = 0; i < wpipe->pipe_map.npages; i++) {
819 vm_page_unhold(wpipe->pipe_map.ms[i]);
820 }
821 vm_page_unlock_queues();
822 wpipe->pipe_map.npages = 0;
823}
824
825/*
826 * In the case of a signal, the writing process might go away. This
827 * code copies the data into the circular buffer so that the source
828 * pages can be freed without loss of data.
829 */
830static void
831pipe_clone_write_buffer(wpipe)
832 struct pipe *wpipe;
833{
834 int size;
835 int pos;
836
837 size = wpipe->pipe_map.cnt;
838 pos = wpipe->pipe_map.pos;
839
840 wpipe->pipe_buffer.in = size;
841 wpipe->pipe_buffer.out = 0;
842 wpipe->pipe_buffer.cnt = size;
843 wpipe->pipe_state &= ~PIPE_DIRECTW;
844
845 PIPE_UNLOCK(wpipe);
846 bcopy((caddr_t) wpipe->pipe_map.kva + pos,
847 wpipe->pipe_buffer.buffer, size);
848 pipe_destroy_write_buffer(wpipe);
849 PIPE_LOCK(wpipe);
850}
851
852/*
853 * This implements the pipe buffer write mechanism. Note that only
854 * a direct write OR a normal pipe write can be pending at any given time.
855 * If there are any characters in the pipe buffer, the direct write will
856 * be deferred until the receiving process grabs all of the bytes from
857 * the pipe buffer. Then the direct mapping write is set-up.
858 */
859static int
860pipe_direct_write(wpipe, uio)
861 struct pipe *wpipe;
862 struct uio *uio;
863{
864 int error;
865
866retry:
867 while (wpipe->pipe_state & PIPE_DIRECTW) {
868 if (wpipe->pipe_state & PIPE_WANTR) {
869 wpipe->pipe_state &= ~PIPE_WANTR;
870 wakeup(wpipe);
871 }
872 wpipe->pipe_state |= PIPE_WANTW;
873 error = msleep(wpipe, PIPE_MTX(wpipe),
874 PRIBIO | PCATCH, "pipdww", 0);
875 if (error)
876 goto error1;
877 if (wpipe->pipe_state & PIPE_EOF) {
878 error = EPIPE;
879 goto error1;
880 }
881 }
882 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
883 if (wpipe->pipe_buffer.cnt > 0) {
884 if (wpipe->pipe_state & PIPE_WANTR) {
885 wpipe->pipe_state &= ~PIPE_WANTR;
886 wakeup(wpipe);
887 }
888
889 wpipe->pipe_state |= PIPE_WANTW;
890 error = msleep(wpipe, PIPE_MTX(wpipe),
891 PRIBIO | PCATCH, "pipdwc", 0);
892 if (error)
893 goto error1;
894 if (wpipe->pipe_state & PIPE_EOF) {
895 error = EPIPE;
896 goto error1;
897 }
898 goto retry;
899 }
900
901 wpipe->pipe_state |= PIPE_DIRECTW;
902
903 pipelock(wpipe, 0);
904 PIPE_UNLOCK(wpipe);
905 error = pipe_build_write_buffer(wpipe, uio);
906 PIPE_LOCK(wpipe);
907 pipeunlock(wpipe);
908 if (error) {
909 wpipe->pipe_state &= ~PIPE_DIRECTW;
910 goto error1;
911 }
912
913 error = 0;
914 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
915 if (wpipe->pipe_state & PIPE_EOF) {
916 pipelock(wpipe, 0);
917 PIPE_UNLOCK(wpipe);
918 pipe_destroy_write_buffer(wpipe);
919 PIPE_LOCK(wpipe);
920 pipeselwakeup(wpipe, wpipe);
921 pipeunlock(wpipe);
922 error = EPIPE;
923 goto error1;
924 }
925 if (wpipe->pipe_state & PIPE_WANTR) {
926 wpipe->pipe_state &= ~PIPE_WANTR;
927 wakeup(wpipe);
928 }
929 pipeselwakeup(wpipe, wpipe);
930 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
931 "pipdwt", 0);
932 }
933
934 pipelock(wpipe,0);
935 if (wpipe->pipe_state & PIPE_DIRECTW) {
936 /*
937 * this bit of trickery substitutes a kernel buffer for
938 * the process that might be going away.
939 */
940 pipe_clone_write_buffer(wpipe);
941 } else {
942 PIPE_UNLOCK(wpipe);
943 pipe_destroy_write_buffer(wpipe);
944 PIPE_LOCK(wpipe);
945 }
946 pipeunlock(wpipe);
947 return (error);
948
949error1:
950 wakeup(wpipe);
951 return (error);
952}
953#endif
954
955
956
957static int
958pipe_write(struct fileproc *fp, struct uio *uio, __unused kauth_cred_t active_cred, __unused int flags, __unused struct proc *p)
959{
960 int error = 0;
961 int orig_resid;
962 int pipe_size;
963 struct pipe *wpipe, *rpipe;
964
965 rpipe = (struct pipe *)fp->f_data;
966
967 PIPE_LOCK(rpipe);
968 wpipe = rpipe->pipe_peer;
969
970 /*
971 * detect loss of pipe read side, issue SIGPIPE if lost.
972 */
973 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF)) {
974 PIPE_UNLOCK(rpipe);
975 return (EPIPE);
976 }
977#ifdef MAC
978 error = mac_check_pipe_write(active_cred, wpipe);
979 if (error) {
980 PIPE_UNLOCK(rpipe);
981 return (error);
982 }
983#endif
984 ++wpipe->pipe_busy;
985
986 pipe_size = 0;
987
988 if (wpipe->pipe_buffer.buffer == 0) {
989 /*
990 * need to allocate some storage... we delay the allocation
991 * until the first write on fd[0] to avoid allocating storage for both
992 * 'pipe ends'... most pipes are half-duplex with the writes targeting
993 * fd[1], so allocating space for both ends is a waste...
994 *
995 * Reduce to 1/4th pipe size if we're over our global max.
996 */
997 if (amountpipekva > maxpipekva / 2)
998 pipe_size = SMALL_PIPE_SIZE;
999 else
1000 pipe_size = PIPE_SIZE;
1001 }
1002
1003 /*
1004 * If it is advantageous to resize the pipe buffer, do
1005 * so.
1006 */
1007 if ((uio_resid(uio) > PIPE_SIZE) &&
1008 (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
1009 (amountpipekva < maxpipekva / 2) &&
1010 (nbigpipe < LIMITBIGPIPES) &&
1011#ifndef PIPE_NODIRECT
1012 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1013#endif
1014 (wpipe->pipe_buffer.cnt == 0)) {
1015
1016 pipe_size = BIG_PIPE_SIZE;
1017
1018 }
1019 if (pipe_size) {
1020 /*
1021 * need to do initial allocation or resizing of pipe
1022 */
1023 if ((error = pipelock(wpipe, 1)) == 0) {
1024 PIPE_UNLOCK(wpipe);
1025 if (pipespace(wpipe, pipe_size) == 0)
1026 OSAddAtomic(1, (SInt32 *)&nbigpipe);
1027 PIPE_LOCK(wpipe);
1028 pipeunlock(wpipe);
1029
1030 if (wpipe->pipe_buffer.buffer == 0) {
1031 /*
1032 * initial allocation failed
1033 */
1034 error = ENOMEM;
1035 }
1036 }
1037 if (error) {
1038 /*
1039 * If an error occurred unbusy and return, waking up any pending
1040 * readers.
1041 */
1042 --wpipe->pipe_busy;
1043 if ((wpipe->pipe_busy == 0) &&
1044 (wpipe->pipe_state & PIPE_WANT)) {
1045 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1046 wakeup(wpipe);
1047 }
1048 PIPE_UNLOCK(rpipe);
1049 return(error);
1050 }
1051 }
1052 // LP64todo - fix this!
1053 orig_resid = uio_resid(uio);
1054
1055 while (uio_resid(uio)) {
1056 int space;
1057
1058#ifndef PIPE_NODIRECT
1059 /*
1060 * If the transfer is large, we can gain performance if
1061 * we do process-to-process copies directly.
1062 * If the write is non-blocking, we don't use the
1063 * direct write mechanism.
1064 *
1065 * The direct write mechanism will detect the reader going
1066 * away on us.
1067 */
1068 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
1069 (fp->f_flag & FNONBLOCK) == 0 &&
1070 amountpipekvawired + uio->uio_resid < maxpipekvawired) {
1071 error = pipe_direct_write(wpipe, uio);
1072 if (error)
1073 break;
1074 continue;
1075 }
1076
1077 /*
1078 * Pipe buffered writes cannot be coincidental with
1079 * direct writes. We wait until the currently executing
1080 * direct write is completed before we start filling the
1081 * pipe buffer. We break out if a signal occurs or the
1082 * reader goes away.
1083 */
1084 retrywrite:
1085 while (wpipe->pipe_state & PIPE_DIRECTW) {
1086 if (wpipe->pipe_state & PIPE_WANTR) {
1087 wpipe->pipe_state &= ~PIPE_WANTR;
1088 wakeup(wpipe);
1089 }
1090 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipbww", 0);
1091
1092 if (wpipe->pipe_state & PIPE_EOF)
1093 break;
1094 if (error)
1095 break;
1096 }
1097#else
1098 retrywrite:
1099#endif
1100 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1101
1102 /*
1103 * Writes of size <= PIPE_BUF must be atomic.
1104 */
1105 if ((space < uio_resid(uio)) && (orig_resid <= PIPE_BUF))
1106 space = 0;
1107
1108 if (space > 0) {
1109
1110 if ((error = pipelock(wpipe,1)) == 0) {
1111 int size; /* Transfer size */
1112 int segsize; /* first segment to transfer */
1113
1114 if (wpipe->pipe_state & PIPE_EOF) {
1115 pipeunlock(wpipe);
1116 error = EPIPE;
1117 break;
1118 }
1119#ifndef PIPE_NODIRECT
1120 /*
1121 * It is possible for a direct write to
1122 * slip in on us... handle it here...
1123 */
1124 if (wpipe->pipe_state & PIPE_DIRECTW) {
1125 pipeunlock(wpipe);
1126 goto retrywrite;
1127 }
1128#endif
1129 /*
1130 * If a process blocked in pipelock, our
1131 * value for space might be bad... the mutex
1132 * is dropped while we're blocked
1133 */
1134 if (space > (int)(wpipe->pipe_buffer.size -
1135 wpipe->pipe_buffer.cnt)) {
1136 pipeunlock(wpipe);
1137 goto retrywrite;
1138 }
1139
1140 /*
1141 * Transfer size is minimum of uio transfer
1142 * and free space in pipe buffer.
1143 */
1144 // LP64todo - fix this!
1145 if (space > uio_resid(uio))
1146 size = uio_resid(uio);
1147 else
1148 size = space;
1149 /*
1150 * First segment to transfer is minimum of
1151 * transfer size and contiguous space in
1152 * pipe buffer. If first segment to transfer
1153 * is less than the transfer size, we've got
1154 * a wraparound in the buffer.
1155 */
1156 segsize = wpipe->pipe_buffer.size -
1157 wpipe->pipe_buffer.in;
1158 if (segsize > size)
1159 segsize = size;
1160
1161 /* Transfer first segment */
1162
1163 PIPE_UNLOCK(rpipe);
1164 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1165 segsize, uio);
1166 PIPE_LOCK(rpipe);
1167
1168 if (error == 0 && segsize < size) {
1169 /*
1170 * Transfer remaining part now, to
1171 * support atomic writes. Wraparound
1172 * happened.
1173 */
1174 if (wpipe->pipe_buffer.in + segsize !=
1175 wpipe->pipe_buffer.size)
1176 panic("Expected pipe buffer "
1177 "wraparound disappeared");
1178
1179 PIPE_UNLOCK(rpipe);
1180 error = uiomove(
1181 &wpipe->pipe_buffer.buffer[0],
1182 size - segsize, uio);
1183 PIPE_LOCK(rpipe);
1184 }
1185 if (error == 0) {
1186 wpipe->pipe_buffer.in += size;
1187 if (wpipe->pipe_buffer.in >=
1188 wpipe->pipe_buffer.size) {
1189 if (wpipe->pipe_buffer.in !=
1190 size - segsize +
1191 wpipe->pipe_buffer.size)
1192 panic("Expected "
1193 "wraparound bad");
1194 wpipe->pipe_buffer.in = size -
1195 segsize;
1196 }
1197
1198 wpipe->pipe_buffer.cnt += size;
1199 if (wpipe->pipe_buffer.cnt >
1200 wpipe->pipe_buffer.size)
1201 panic("Pipe buffer overflow");
1202
1203 }
1204 pipeunlock(wpipe);
1205 }
1206 if (error)
1207 break;
1208
1209 } else {
1210 /*
1211 * If the "read-side" has been blocked, wake it up now.
1212 */
1213 if (wpipe->pipe_state & PIPE_WANTR) {
1214 wpipe->pipe_state &= ~PIPE_WANTR;
1215 wakeup(wpipe);
1216 }
1217 /*
1218 * don't block on non-blocking I/O
1219 * we'll do the pipeselwakeup on the way out
1220 */
1221 if (fp->f_flag & FNONBLOCK) {
1222 error = EAGAIN;
1223 break;
1224 }
1225 /*
1226 * We have no more space and have something to offer,
1227 * wake up select/poll.
1228 */
1229 pipeselwakeup(wpipe, wpipe);
1230
1231 wpipe->pipe_state |= PIPE_WANTW;
1232
1233 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipewr", 0);
1234
1235 if (error != 0)
1236 break;
1237 /*
1238 * If read side wants to go away, we just issue a signal
1239 * to ourselves.
1240 */
1241 if (wpipe->pipe_state & PIPE_EOF) {
1242 error = EPIPE;
1243 break;
1244 }
1245 }
1246 }
1247 --wpipe->pipe_busy;
1248
1249 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1250 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1251 wakeup(wpipe);
1252 }
1253 if (wpipe->pipe_buffer.cnt > 0) {
1254 /*
1255 * If there are any characters in the buffer, we wake up
1256 * the reader if it was blocked waiting for data.
1257 */
1258 if (wpipe->pipe_state & PIPE_WANTR) {
1259 wpipe->pipe_state &= ~PIPE_WANTR;
1260 wakeup(wpipe);
1261 }
1262 /*
1263 * wake up thread blocked in select/poll or post the notification
1264 */
1265 pipeselwakeup(wpipe, wpipe);
1266 }
1267 PIPE_UNLOCK(rpipe);
1268
1269 return (error);
1270}
1271
1272/*
1273 * we implement a very minimal set of ioctls for compatibility with sockets.
1274 */
1275/* ARGSUSED 3 */
1276static int
1277pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, __unused struct proc *p)
1278{
1279 struct pipe *mpipe = (struct pipe *)fp->f_data;
1280#ifdef MAC
1281 int error;
1282#endif
1283
1284 PIPE_LOCK(mpipe);
1285
1286#ifdef MAC
1287 error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
1288 if (error) {
1289 PIPE_UNLOCK(mpipe);
1290
1291 return (error);
1292 }
1293#endif
1294
1295 switch (cmd) {
1296
1297 case FIONBIO:
1298 PIPE_UNLOCK(mpipe);
1299 return (0);
1300
1301 case FIOASYNC:
1302 if (*(int *)data) {
1303 mpipe->pipe_state |= PIPE_ASYNC;
1304 } else {
1305 mpipe->pipe_state &= ~PIPE_ASYNC;
1306 }
1307 PIPE_UNLOCK(mpipe);
1308 return (0);
1309
1310 case FIONREAD:
1311#ifndef PIPE_NODIRECT
1312 if (mpipe->pipe_state & PIPE_DIRECTW)
1313 *(int *)data = mpipe->pipe_map.cnt;
1314 else
1315#endif
1316 *(int *)data = mpipe->pipe_buffer.cnt;
1317 PIPE_UNLOCK(mpipe);
1318 return (0);
1319
1320 case TIOCSPGRP:
1321 mpipe->pipe_pgid = *(int *)data;
1322
1323 PIPE_UNLOCK(mpipe);
1324 return (0);
1325
1326 case TIOCGPGRP:
1327 *(int *)data = mpipe->pipe_pgid;
1328
1329 PIPE_UNLOCK(mpipe);
1330 return (0);
1331
1332 }
1333 PIPE_UNLOCK(mpipe);
1334 return (ENOTTY);
1335}
1336
1337
1338static int
1339pipe_select(struct fileproc *fp, int which, void *wql, struct proc *p)
1340{
1341 struct pipe *rpipe = (struct pipe *)fp->f_data;
1342 struct pipe *wpipe;
1343 int retnum = 0;
1344
1345 if (rpipe == NULL || rpipe == (struct pipe *)-1)
1346 return (retnum);
1347
1348 PIPE_LOCK(rpipe);
1349
1350 wpipe = rpipe->pipe_peer;
1351
1352 switch (which) {
1353
1354 case FREAD:
1355 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1356 (rpipe->pipe_buffer.cnt > 0) ||
1357 (rpipe->pipe_state & PIPE_EOF)) {
1358
1359 retnum = 1;
1360 } else {
1361 rpipe->pipe_state |= PIPE_SEL;
1362 selrecord(p, &rpipe->pipe_sel, wql);
1363 }
1364 break;
1365
1366 case FWRITE:
1367 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1368 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1369 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) {
1370
1371 retnum = 1;
1372 } else {
1373 wpipe->pipe_state |= PIPE_SEL;
1374 selrecord(p, &wpipe->pipe_sel, wql);
1375 }
1376 break;
1377 case 0:
1378 rpipe->pipe_state |= PIPE_SEL;
1379 selrecord(p, &rpipe->pipe_sel, wql);
1380 break;
1381 }
1382 PIPE_UNLOCK(rpipe);
1383
1384 return (retnum);
1385}
1386
1387
1388/* ARGSUSED 1 */
1389static int
1390pipe_close(struct fileglob *fg, __unused struct proc *p)
1391{
1392 struct pipe *cpipe;
1393
1394 proc_fdlock(p);
1395 cpipe = (struct pipe *)fg->fg_data;
1396 fg->fg_data = NULL;
1397 proc_fdunlock(p);
1398
1399 if (cpipe)
1400 pipeclose(cpipe);
1401
1402 return (0);
1403}
1404
1405static void
1406pipe_free_kmem(struct pipe *cpipe)
1407{
1408
1409 if (cpipe->pipe_buffer.buffer != NULL) {
1410 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1411 OSAddAtomic(-1, (SInt32 *)&nbigpipe);
c0fea474 1412 OSAddAtomic(-(cpipe->pipe_buffer.size), (SInt32 *)&amountpipekva);
91447636
A
1413 OSAddAtomic(-1, (SInt32 *)&amountpipes);
1414
1415 kmem_free(kernel_map, (vm_offset_t)cpipe->pipe_buffer.buffer,
1416 cpipe->pipe_buffer.size);
1417 cpipe->pipe_buffer.buffer = NULL;
1418 }
1419#ifndef PIPE_NODIRECT
1420 if (cpipe->pipe_map.kva != 0) {
1421 atomic_subtract_int(&amountpipekvawired,
1422 cpipe->pipe_buffer.size + PAGE_SIZE);
1423 kmem_free(kernel_map,
1424 cpipe->pipe_map.kva,
1425 cpipe->pipe_buffer.size + PAGE_SIZE);
1426 cpipe->pipe_map.cnt = 0;
1427 cpipe->pipe_map.kva = 0;
1428 cpipe->pipe_map.pos = 0;
1429 cpipe->pipe_map.npages = 0;
1430 }
1431#endif
1432}
1433
1434/*
1435 * shutdown the pipe
1436 */
1437static void
1438pipeclose(struct pipe *cpipe)
1439{
1440 struct pipe *ppipe;
1441
1442 if (cpipe == NULL)
1443 return;
1444
1445 /* partially created pipes won't have a valid mutex. */
1446 if (PIPE_MTX(cpipe) != NULL)
1447 PIPE_LOCK(cpipe);
1448
1449 pipeselwakeup(cpipe, cpipe);
1450
1451 /*
1452 * If the other side is blocked, wake it up saying that
1453 * we want to close it down.
1454 */
1455 while (cpipe->pipe_busy) {
1456 cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1457
1458 wakeup(cpipe);
1459
1460 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1461 }
1462
1463#ifdef MAC
1464 if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1465 mac_destroy_pipe(cpipe);
1466#endif
1467
1468 /*
1469 * Disconnect from peer
1470 */
1471 if ((ppipe = cpipe->pipe_peer) != NULL) {
1472
1473 ppipe->pipe_state |= PIPE_EOF;
1474
1475 pipeselwakeup(ppipe, ppipe);
1476 wakeup(ppipe);
1477
1478 if (cpipe->pipe_state & PIPE_KNOTE)
1479 KNOTE(&ppipe->pipe_sel.si_note, 1);
1480
1481 postpipeevent(ppipe, EV_RCLOSED);
1482
1483 ppipe->pipe_peer = NULL;
1484 }
1485 evpipefree(cpipe);
1486
1487 /*
1488 * free resources
1489 */
1490 if (PIPE_MTX(cpipe) != NULL) {
1491 if (ppipe != NULL) {
1492 /*
1493 * since the mutex is shared and the peer is still
1494 * alive, we need to release the mutex, not free it
1495 */
1496 PIPE_UNLOCK(cpipe);
1497 } else {
1498 /*
1499 * peer is gone, so we're the sole party left with
1500 * interest in this mutex... we can just free it
1501 */
1502 lck_mtx_free(PIPE_MTX(cpipe), pipe_mtx_grp);
1503 }
1504 }
1505 pipe_free_kmem(cpipe);
1506
1507 zfree(pipe_zone, cpipe);
1508}
1509
1510
1511/*ARGSUSED*/
1512static int
1513pipe_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused struct proc *p)
1514{
1515 struct pipe *cpipe;
1516
1517 cpipe = (struct pipe *)kn->kn_fp->f_data;
1518
1519 PIPE_LOCK(cpipe);
1520
1521 switch (kn->kn_filter) {
1522 case EVFILT_READ:
1523 kn->kn_fop = &pipe_rfiltops;
1524 break;
1525 case EVFILT_WRITE:
1526 kn->kn_fop = &pipe_wfiltops;
1527
1528 if (cpipe->pipe_peer == NULL) {
1529 /*
1530 * other end of pipe has been closed
1531 */
1532 PIPE_UNLOCK(cpipe);
1533 return (EPIPE);
1534 }
1535 cpipe = cpipe->pipe_peer;
1536 break;
1537 default:
1538 PIPE_UNLOCK(cpipe);
1539 return (1);
1540 }
1541
1542 if (KNOTE_ATTACH(&cpipe->pipe_sel.si_note, kn))
1543 cpipe->pipe_state |= PIPE_KNOTE;
1544
1545 PIPE_UNLOCK(cpipe);
1546 return (0);
1547}
1548
1549static void
1550filt_pipedetach(struct knote *kn)
1551{
1552 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1553
1554 PIPE_LOCK(cpipe);
1555
1556 if (kn->kn_filter == EVFILT_WRITE) {
1557 if (cpipe->pipe_peer == NULL) {
1558 PIPE_UNLOCK(cpipe);
1559 return;
1560 }
1561 cpipe = cpipe->pipe_peer;
1562 }
1563 if (cpipe->pipe_state & PIPE_KNOTE) {
1564 if (KNOTE_DETACH(&cpipe->pipe_sel.si_note, kn))
1565 cpipe->pipe_state &= ~PIPE_KNOTE;
1566 }
1567 PIPE_UNLOCK(cpipe);
1568}
1569
1570/*ARGSUSED*/
1571static int
1572filt_piperead(struct knote *kn, long hint)
1573{
1574 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1575 struct pipe *wpipe;
1576 int retval;
1577
1578 /*
1579 * if hint == 0, then we've been called from the kevent
1580 * world directly and do not currently hold the pipe mutex...
1581 * if hint == 1, we're being called back via the KNOTE post
1582 * we made in pipeselwakeup, and we already hold the mutex...
1583 */
1584 if (hint == 0)
1585 PIPE_LOCK(rpipe);
1586
1587 wpipe = rpipe->pipe_peer;
1588 kn->kn_data = rpipe->pipe_buffer.cnt;
1589
1590#ifndef PIPE_NODIRECT
1591 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1592 kn->kn_data = rpipe->pipe_map.cnt;
1593#endif
1594 if ((rpipe->pipe_state & PIPE_EOF) ||
1595 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1596 kn->kn_flags |= EV_EOF;
1597 retval = 1;
1598 } else
1599 retval = (kn->kn_sfflags & NOTE_LOWAT) ?
1600 (kn->kn_data >= kn->kn_sdata) : (kn->kn_data > 0);
1601
1602 if (hint == 0)
1603 PIPE_UNLOCK(rpipe);
1604
1605 return (retval);
1606}
1607
1608/*ARGSUSED*/
1609static int
1610filt_pipewrite(struct knote *kn, long hint)
1611{
1612 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1613 struct pipe *wpipe;
1614
1615 /*
1616 * if hint == 0, then we've been called from the kevent
1617 * world directly and do not currently hold the pipe mutex...
1618 * if hint == 1, we're being called back via the KNOTE post
1619 * we made in pipeselwakeup, and we already hold the mutex...
1620 */
1621 if (hint == 0)
1622 PIPE_LOCK(rpipe);
1623
1624 wpipe = rpipe->pipe_peer;
1625
1626 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1627 kn->kn_data = 0;
1628 kn->kn_flags |= EV_EOF;
1629
1630 if (hint == 0)
1631 PIPE_UNLOCK(rpipe);
1632 return (1);
1633 }
1634 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1635
1636#ifndef PIPE_NODIRECT
1637 if (wpipe->pipe_state & PIPE_DIRECTW)
1638 kn->kn_data = 0;
1639#endif
1640 if (hint == 0)
1641 PIPE_UNLOCK(rpipe);
1642
1643 return (kn->kn_data >= ((kn->kn_sfflags & NOTE_LOWAT) ?
1644 kn->kn_sdata : PIPE_BUF));
1645}
c0fea474
A
1646
1647int
1648fill_pipeinfo(struct pipe * cpipe, struct pipe_info * pinfo)
1649{
1650#ifdef MAC
1651 int error;
1652#endif
1653 struct timeval now;
1654 struct stat * ub;
1655
1656 if (cpipe == NULL)
1657 return (EBADF);
1658#ifdef MAC
1659 PIPE_LOCK(cpipe);
1660 error = mac_check_pipe_stat(active_cred, cpipe);
1661 PIPE_UNLOCK(cpipe);
1662 if (error)
1663 return (error);
1664#endif
1665 if (cpipe->pipe_buffer.buffer == 0) {
1666 /*
1667 * must be stat'ing the write fd
1668 */
1669 cpipe = cpipe->pipe_peer;
1670
1671 if (cpipe == NULL)
1672 return (EBADF);
1673 }
1674
1675 ub = &pinfo->pipe_stat;
1676
1677 bzero(ub, sizeof(*ub));
1678 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
1679 ub->st_blksize = cpipe->pipe_buffer.size;
1680 ub->st_size = cpipe->pipe_buffer.cnt;
1681 if (ub->st_blksize != 0);
1682 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1683 ub->st_nlink = 1;
1684
1685 ub->st_uid = kauth_getuid();
1686 ub->st_gid = kauth_getgid();
1687
1688 microtime(&now);
1689 ub->st_atimespec.tv_sec = now.tv_sec;
1690 ub->st_atimespec.tv_nsec = now.tv_usec * 1000;
1691
1692 ub->st_mtimespec.tv_sec = now.tv_sec;
1693 ub->st_mtimespec.tv_nsec = now.tv_usec * 1000;
1694
1695 ub->st_ctimespec.tv_sec = now.tv_sec;
1696 ub->st_ctimespec.tv_nsec = now.tv_usec * 1000;
1697
1698 /*
1699 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
1700 * XXX (st_dev, st_ino) should be unique.
1701 */
1702
1703 pinfo->pipe_handle = (uint64_t)((uintptr_t)cpipe);
1704 pinfo->pipe_peerhandle = (uint64_t)((uintptr_t)(cpipe->pipe_peer));
1705 pinfo->pipe_status = cpipe->pipe_state;
1706 return (0);
1707}
1708