]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
c0fea474 | 2 | * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved. |
1c79356b A |
3 | * |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
37839358 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 11 | * |
37839358 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
37839358 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
23 | /* | |
24 | * Copyright (c) 1982, 1986, 1989, 1993 | |
25 | * The Regents of the University of California. All rights reserved. | |
26 | * | |
27 | * Redistribution and use in source and binary forms, with or without | |
28 | * modification, are permitted provided that the following conditions | |
29 | * are met: | |
30 | * 1. Redistributions of source code must retain the above copyright | |
31 | * notice, this list of conditions and the following disclaimer. | |
32 | * 2. Redistributions in binary form must reproduce the above copyright | |
33 | * notice, this list of conditions and the following disclaimer in the | |
34 | * documentation and/or other materials provided with the distribution. | |
35 | * 3. All advertising materials mentioning features or use of this software | |
36 | * must display the following acknowledgement: | |
37 | * This product includes software developed by the University of | |
38 | * California, Berkeley and its contributors. | |
39 | * 4. Neither the name of the University nor the names of its contributors | |
40 | * may be used to endorse or promote products derived from this software | |
41 | * without specific prior written permission. | |
42 | * | |
43 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
44 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
45 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
46 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
47 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
48 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
49 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
50 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
51 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
52 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
53 | * SUCH DAMAGE. | |
54 | * | |
55 | * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 | |
56 | */ | |
57 | ||
58 | #include <sys/param.h> | |
59 | #include <sys/resourcevar.h> | |
60 | #include <sys/kernel.h> | |
61 | #include <sys/systm.h> | |
91447636 A |
62 | #include <sys/proc_internal.h> |
63 | #include <sys/kauth.h> | |
1c79356b A |
64 | #include <sys/vnode.h> |
65 | ||
91447636 A |
66 | #include <sys/mount_internal.h> |
67 | #include <sys/sysproto.h> | |
68 | #include <sys/signalvar.h> | |
1c79356b | 69 | |
1c79356b | 70 | #include <kern/clock.h> |
91447636 | 71 | #include <kern/thread_call.h> |
1c79356b A |
72 | |
73 | #define HZ 100 /* XXX */ | |
74 | ||
9bccf70c | 75 | /* simple lock used to access timezone, tz structure */ |
91447636 A |
76 | lck_spin_t * tz_slock; |
77 | lck_grp_t * tz_slock_grp; | |
78 | lck_attr_t * tz_slock_attr; | |
79 | lck_grp_attr_t *tz_slock_grp_attr; | |
80 | ||
81 | static void setthetime( | |
82 | struct timeval *tv); | |
83 | ||
84 | void time_zone_slock_init(void); | |
85 | ||
1c79356b A |
86 | /* |
87 | * Time of day and interval timer support. | |
88 | * | |
89 | * These routines provide the kernel entry points to get and set | |
90 | * the time-of-day and per-process interval timers. Subroutines | |
91 | * here provide support for adding and subtracting timeval structures | |
92 | * and decrementing interval timers, optionally reloading the interval | |
93 | * timers when they expire. | |
94 | */ | |
1c79356b A |
95 | /* ARGSUSED */ |
96 | int | |
c0fea474 A |
97 | gettimeofday( |
98 | __unused struct proc *p, | |
99 | struct gettimeofday_args *uap, | |
100 | register_t *retval) | |
1c79356b | 101 | { |
1c79356b | 102 | int error = 0; |
9bccf70c A |
103 | struct timezone ltz; /* local copy */ |
104 | ||
c0fea474 A |
105 | if (uap->tp) |
106 | clock_gettimeofday(&retval[0], &retval[1]); | |
1c79356b | 107 | |
9bccf70c | 108 | if (uap->tzp) { |
91447636 | 109 | lck_spin_lock(tz_slock); |
9bccf70c | 110 | ltz = tz; |
91447636 | 111 | lck_spin_unlock(tz_slock); |
c0fea474 A |
112 | |
113 | error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof (tz)); | |
9bccf70c | 114 | } |
1c79356b | 115 | |
c0fea474 | 116 | return (error); |
1c79356b A |
117 | } |
118 | ||
91447636 A |
119 | /* |
120 | * XXX Y2038 bug because of setthetime() argument | |
121 | */ | |
1c79356b A |
122 | /* ARGSUSED */ |
123 | int | |
91447636 | 124 | settimeofday(struct proc *p, struct settimeofday_args *uap, __unused register_t *retval) |
1c79356b A |
125 | { |
126 | struct timeval atv; | |
127 | struct timezone atz; | |
91447636 | 128 | int error; |
1c79356b | 129 | |
91447636 | 130 | if ((error = suser(kauth_cred_get(), &p->p_acflag))) |
1c79356b | 131 | return (error); |
91447636 A |
132 | /* Verify all parameters before changing time */ |
133 | if (uap->tv) { | |
134 | if (IS_64BIT_PROCESS(p)) { | |
135 | struct user_timeval user_atv; | |
136 | error = copyin(uap->tv, &user_atv, sizeof(struct user_timeval)); | |
137 | atv.tv_sec = user_atv.tv_sec; | |
138 | atv.tv_usec = user_atv.tv_usec; | |
139 | } else { | |
140 | error = copyin(uap->tv, &atv, sizeof(struct timeval)); | |
141 | } | |
142 | if (error) | |
143 | return (error); | |
144 | } | |
145 | if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) | |
1c79356b | 146 | return (error); |
91447636 A |
147 | if (uap->tv) { |
148 | timevalfix(&atv); | |
149 | if (atv.tv_sec < 0 || (atv.tv_sec == 0 && atv.tv_usec < 0)) | |
150 | return (EPERM); | |
1c79356b | 151 | setthetime(&atv); |
91447636 | 152 | } |
9bccf70c | 153 | if (uap->tzp) { |
91447636 | 154 | lck_spin_lock(tz_slock); |
1c79356b | 155 | tz = atz; |
91447636 | 156 | lck_spin_unlock(tz_slock); |
9bccf70c | 157 | } |
1c79356b A |
158 | return (0); |
159 | } | |
160 | ||
91447636 A |
161 | static void |
162 | setthetime( | |
163 | struct timeval *tv) | |
1c79356b | 164 | { |
55e303ae | 165 | clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec); |
1c79356b A |
166 | } |
167 | ||
91447636 A |
168 | /* |
169 | * XXX Y2038 bug because of clock_adjtime() first argument | |
170 | */ | |
1c79356b A |
171 | /* ARGSUSED */ |
172 | int | |
91447636 | 173 | adjtime(struct proc *p, register struct adjtime_args *uap, __unused register_t *retval) |
1c79356b | 174 | { |
9bccf70c | 175 | struct timeval atv; |
9bccf70c | 176 | int error; |
1c79356b | 177 | |
91447636 | 178 | if ((error = suser(kauth_cred_get(), &p->p_acflag))) |
1c79356b | 179 | return (error); |
91447636 A |
180 | if (IS_64BIT_PROCESS(p)) { |
181 | struct user_timeval user_atv; | |
182 | error = copyin(uap->delta, &user_atv, sizeof(struct user_timeval)); | |
183 | atv.tv_sec = user_atv.tv_sec; | |
184 | atv.tv_usec = user_atv.tv_usec; | |
185 | } else { | |
186 | error = copyin(uap->delta, &atv, sizeof(struct timeval)); | |
187 | } | |
188 | if (error) | |
9bccf70c | 189 | return (error); |
1c79356b | 190 | |
91447636 A |
191 | /* |
192 | * Compute the total correction and the rate at which to apply it. | |
193 | */ | |
194 | clock_adjtime((int32_t *)&atv.tv_sec, &atv.tv_usec); | |
1c79356b | 195 | |
1c79356b | 196 | if (uap->olddelta) { |
91447636 A |
197 | if (IS_64BIT_PROCESS(p)) { |
198 | struct user_timeval user_atv; | |
199 | user_atv.tv_sec = atv.tv_sec; | |
200 | user_atv.tv_usec = atv.tv_usec; | |
201 | error = copyout(&user_atv, uap->olddelta, sizeof(struct user_timeval)); | |
202 | } else { | |
203 | error = copyout(&atv, uap->olddelta, sizeof(struct timeval)); | |
204 | } | |
1c79356b | 205 | } |
1c79356b | 206 | |
9bccf70c | 207 | return (0); |
1c79356b A |
208 | } |
209 | ||
1c79356b | 210 | /* |
91447636 A |
211 | * Verify the calendar value. If negative, |
212 | * reset to zero (the epoch). | |
1c79356b A |
213 | */ |
214 | void | |
91447636 A |
215 | inittodr( |
216 | __unused time_t base) | |
1c79356b | 217 | { |
55e303ae A |
218 | struct timeval tv; |
219 | ||
1c79356b | 220 | /* |
0b4e3aa0 A |
221 | * Assertion: |
222 | * The calendar has already been | |
91447636 | 223 | * set up from the platform clock. |
0b4e3aa0 | 224 | * |
1c79356b A |
225 | * The value returned by microtime() |
226 | * is gotten from the calendar. | |
227 | */ | |
55e303ae | 228 | microtime(&tv); |
1c79356b | 229 | |
91447636 | 230 | if (tv.tv_sec < 0 || tv.tv_usec < 0) { |
1c79356b | 231 | printf ("WARNING: preposterous time in Real Time Clock"); |
91447636 A |
232 | tv.tv_sec = 0; /* the UNIX epoch */ |
233 | tv.tv_usec = 0; | |
234 | setthetime(&tv); | |
1c79356b A |
235 | printf(" -- CHECK AND RESET THE DATE!\n"); |
236 | } | |
1c79356b A |
237 | } |
238 | ||
91447636 A |
239 | time_t |
240 | boottime_sec(void) | |
241 | { | |
242 | uint32_t sec, nanosec; | |
243 | clock_get_boottime_nanotime(&sec, &nanosec); | |
244 | return (sec); | |
245 | } | |
9bccf70c | 246 | |
91447636 | 247 | uint64_t tvtoabstime(struct timeval *tvp); |
9bccf70c | 248 | |
1c79356b A |
249 | /* |
250 | * Get value of an interval timer. The process virtual and | |
9bccf70c | 251 | * profiling virtual time timers are kept internally in the |
1c79356b A |
252 | * way they are specified externally: in time until they expire. |
253 | * | |
9bccf70c A |
254 | * The real time interval timer expiration time (p_rtime) |
255 | * is kept as an absolute time rather than as a delta, so that | |
256 | * it is easy to keep periodic real-time signals from drifting. | |
1c79356b A |
257 | * |
258 | * Virtual time timers are processed in the hardclock() routine of | |
9bccf70c A |
259 | * kern_clock.c. The real time timer is processed by a callout |
260 | * routine. Since a callout may be delayed in real time due to | |
261 | * other processing in the system, it is possible for the real | |
262 | * time callout routine (realitexpire, given below), to be delayed | |
263 | * in real time past when it is supposed to occur. It does not | |
264 | * suffice, therefore, to reload the real time .it_value from the | |
265 | * real time .it_interval. Rather, we compute the next time in | |
266 | * absolute time when the timer should go off. | |
1c79356b A |
267 | */ |
268 | ||
1c79356b A |
269 | /* ARGSUSED */ |
270 | int | |
91447636 | 271 | getitimer(struct proc *p, register struct getitimer_args *uap, __unused register_t *retval) |
1c79356b A |
272 | { |
273 | struct itimerval aitv; | |
1c79356b A |
274 | |
275 | if (uap->which > ITIMER_PROF) | |
276 | return(EINVAL); | |
1c79356b A |
277 | if (uap->which == ITIMER_REAL) { |
278 | /* | |
9bccf70c A |
279 | * If time for real time timer has passed return 0, |
280 | * else return difference between current time and | |
281 | * time for the timer to go off. | |
1c79356b A |
282 | */ |
283 | aitv = p->p_realtimer; | |
9bccf70c A |
284 | if (timerisset(&p->p_rtime)) { |
285 | struct timeval now; | |
286 | ||
287 | microuptime(&now); | |
288 | if (timercmp(&p->p_rtime, &now, <)) | |
1c79356b | 289 | timerclear(&aitv.it_value); |
9bccf70c A |
290 | else { |
291 | aitv.it_value = p->p_rtime; | |
292 | timevalsub(&aitv.it_value, &now); | |
293 | } | |
294 | } | |
295 | else | |
296 | timerclear(&aitv.it_value); | |
297 | } | |
298 | else | |
299 | aitv = p->p_stats->p_timer[uap->which]; | |
300 | ||
91447636 A |
301 | if (IS_64BIT_PROCESS(p)) { |
302 | struct user_itimerval user_itv; | |
303 | user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec; | |
304 | user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; | |
305 | user_itv.it_value.tv_sec = aitv.it_value.tv_sec; | |
306 | user_itv.it_value.tv_usec = aitv.it_value.tv_usec; | |
307 | return (copyout((caddr_t)&user_itv, uap->itv, sizeof (struct user_itimerval))); | |
308 | } else { | |
309 | return (copyout((caddr_t)&aitv, uap->itv, sizeof (struct itimerval))); | |
310 | } | |
1c79356b A |
311 | } |
312 | ||
1c79356b A |
313 | /* ARGSUSED */ |
314 | int | |
315 | setitimer(p, uap, retval) | |
316 | struct proc *p; | |
317 | register struct setitimer_args *uap; | |
318 | register_t *retval; | |
319 | { | |
320 | struct itimerval aitv; | |
91447636 | 321 | user_addr_t itvp; |
9bccf70c | 322 | int error; |
1c79356b A |
323 | |
324 | if (uap->which > ITIMER_PROF) | |
9bccf70c | 325 | return (EINVAL); |
91447636 A |
326 | if ((itvp = uap->itv)) { |
327 | if (IS_64BIT_PROCESS(p)) { | |
328 | struct user_itimerval user_itv; | |
329 | if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (struct user_itimerval)))) | |
330 | return (error); | |
331 | aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec; | |
332 | aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; | |
333 | aitv.it_value.tv_sec = user_itv.it_value.tv_sec; | |
334 | aitv.it_value.tv_usec = user_itv.it_value.tv_usec; | |
335 | } else { | |
336 | if ((error = copyin(itvp, (caddr_t)&aitv, sizeof (struct itimerval)))) | |
337 | return (error); | |
338 | } | |
339 | } | |
340 | if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval))) | |
1c79356b A |
341 | return (error); |
342 | if (itvp == 0) | |
343 | return (0); | |
344 | if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) | |
345 | return (EINVAL); | |
1c79356b | 346 | if (uap->which == ITIMER_REAL) { |
91447636 | 347 | thread_call_func_cancel((thread_call_func_t)realitexpire, (void *)p->p_pid, FALSE); |
1c79356b | 348 | if (timerisset(&aitv.it_value)) { |
9bccf70c A |
349 | microuptime(&p->p_rtime); |
350 | timevaladd(&p->p_rtime, &aitv.it_value); | |
351 | thread_call_func_delayed( | |
91447636 | 352 | (thread_call_func_t)realitexpire, (void *)p->p_pid, |
9bccf70c | 353 | tvtoabstime(&p->p_rtime)); |
1c79356b | 354 | } |
9bccf70c A |
355 | else |
356 | timerclear(&p->p_rtime); | |
357 | ||
1c79356b | 358 | p->p_realtimer = aitv; |
9bccf70c A |
359 | } |
360 | else | |
1c79356b | 361 | p->p_stats->p_timer[uap->which] = aitv; |
9bccf70c A |
362 | |
363 | return (0); | |
1c79356b A |
364 | } |
365 | ||
366 | /* | |
367 | * Real interval timer expired: | |
368 | * send process whose timer expired an alarm signal. | |
369 | * If time is not set up to reload, then just return. | |
370 | * Else compute next time timer should go off which is > current time. | |
371 | * This is where delay in processing this timeout causes multiple | |
372 | * SIGALRM calls to be compressed into one. | |
373 | */ | |
374 | void | |
9bccf70c A |
375 | realitexpire( |
376 | void *pid) | |
1c79356b A |
377 | { |
378 | register struct proc *p; | |
9bccf70c | 379 | struct timeval now; |
91447636 | 380 | boolean_t funnel_state; |
1c79356b | 381 | |
91447636 | 382 | funnel_state = thread_funnel_set(kernel_flock, TRUE); |
9bccf70c A |
383 | p = pfind((pid_t)pid); |
384 | if (p == NULL) { | |
385 | (void) thread_funnel_set(kernel_flock, FALSE); | |
1c79356b A |
386 | return; |
387 | } | |
9bccf70c A |
388 | |
389 | if (!timerisset(&p->p_realtimer.it_interval)) { | |
390 | timerclear(&p->p_rtime); | |
391 | psignal(p, SIGALRM); | |
392 | ||
393 | (void) thread_funnel_set(kernel_flock, FALSE); | |
1c79356b | 394 | return; |
1c79356b | 395 | } |
9bccf70c A |
396 | |
397 | microuptime(&now); | |
398 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |
399 | if (timercmp(&p->p_rtime, &now, <=)) { | |
400 | if ((p->p_rtime.tv_sec + 2) >= now.tv_sec) { | |
401 | for (;;) { | |
402 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |
403 | if (timercmp(&p->p_rtime, &now, >)) | |
404 | break; | |
405 | } | |
406 | } | |
407 | else { | |
408 | p->p_rtime = p->p_realtimer.it_interval; | |
409 | timevaladd(&p->p_rtime, &now); | |
1c79356b | 410 | } |
1c79356b | 411 | } |
9bccf70c | 412 | |
9bccf70c A |
413 | psignal(p, SIGALRM); |
414 | ||
91447636 | 415 | thread_call_func_delayed((thread_call_func_t)realitexpire, pid, tvtoabstime(&p->p_rtime)); |
55e303ae | 416 | |
1c79356b A |
417 | (void) thread_funnel_set(kernel_flock, FALSE); |
418 | } | |
419 | ||
420 | /* | |
421 | * Check that a proposed value to load into the .it_value or | |
422 | * .it_interval part of an interval timer is acceptable, and | |
423 | * fix it to have at least minimal value (i.e. if it is less | |
424 | * than the resolution of the clock, round it up.) | |
425 | */ | |
426 | int | |
427 | itimerfix(tv) | |
428 | struct timeval *tv; | |
429 | { | |
430 | ||
431 | if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || | |
432 | tv->tv_usec < 0 || tv->tv_usec >= 1000000) | |
433 | return (EINVAL); | |
434 | if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) | |
435 | tv->tv_usec = tick; | |
436 | return (0); | |
437 | } | |
438 | ||
439 | /* | |
440 | * Decrement an interval timer by a specified number | |
441 | * of microseconds, which must be less than a second, | |
442 | * i.e. < 1000000. If the timer expires, then reload | |
443 | * it. In this case, carry over (usec - old value) to | |
444 | * reducint the value reloaded into the timer so that | |
445 | * the timer does not drift. This routine assumes | |
446 | * that it is called in a context where the timers | |
447 | * on which it is operating cannot change in value. | |
448 | */ | |
449 | int | |
450 | itimerdecr(itp, usec) | |
451 | register struct itimerval *itp; | |
452 | int usec; | |
453 | { | |
454 | ||
455 | if (itp->it_value.tv_usec < usec) { | |
456 | if (itp->it_value.tv_sec == 0) { | |
457 | /* expired, and already in next interval */ | |
458 | usec -= itp->it_value.tv_usec; | |
459 | goto expire; | |
460 | } | |
461 | itp->it_value.tv_usec += 1000000; | |
462 | itp->it_value.tv_sec--; | |
463 | } | |
464 | itp->it_value.tv_usec -= usec; | |
465 | usec = 0; | |
466 | if (timerisset(&itp->it_value)) | |
467 | return (1); | |
468 | /* expired, exactly at end of interval */ | |
469 | expire: | |
470 | if (timerisset(&itp->it_interval)) { | |
471 | itp->it_value = itp->it_interval; | |
472 | itp->it_value.tv_usec -= usec; | |
473 | if (itp->it_value.tv_usec < 0) { | |
474 | itp->it_value.tv_usec += 1000000; | |
475 | itp->it_value.tv_sec--; | |
476 | } | |
477 | } else | |
478 | itp->it_value.tv_usec = 0; /* sec is already 0 */ | |
479 | return (0); | |
480 | } | |
481 | ||
482 | /* | |
483 | * Add and subtract routines for timevals. | |
484 | * N.B.: subtract routine doesn't deal with | |
485 | * results which are before the beginning, | |
486 | * it just gets very confused in this case. | |
487 | * Caveat emptor. | |
488 | */ | |
489 | void | |
9bccf70c A |
490 | timevaladd( |
491 | struct timeval *t1, | |
492 | struct timeval *t2) | |
1c79356b A |
493 | { |
494 | ||
495 | t1->tv_sec += t2->tv_sec; | |
496 | t1->tv_usec += t2->tv_usec; | |
497 | timevalfix(t1); | |
498 | } | |
499 | void | |
9bccf70c A |
500 | timevalsub( |
501 | struct timeval *t1, | |
502 | struct timeval *t2) | |
1c79356b A |
503 | { |
504 | ||
505 | t1->tv_sec -= t2->tv_sec; | |
506 | t1->tv_usec -= t2->tv_usec; | |
507 | timevalfix(t1); | |
508 | } | |
509 | void | |
9bccf70c A |
510 | timevalfix( |
511 | struct timeval *t1) | |
1c79356b A |
512 | { |
513 | ||
514 | if (t1->tv_usec < 0) { | |
515 | t1->tv_sec--; | |
516 | t1->tv_usec += 1000000; | |
517 | } | |
518 | if (t1->tv_usec >= 1000000) { | |
519 | t1->tv_sec++; | |
520 | t1->tv_usec -= 1000000; | |
521 | } | |
522 | } | |
523 | ||
524 | /* | |
525 | * Return the best possible estimate of the time in the timeval | |
526 | * to which tvp points. | |
527 | */ | |
528 | void | |
9bccf70c A |
529 | microtime( |
530 | struct timeval *tvp) | |
1c79356b | 531 | { |
91447636 | 532 | clock_get_calendar_microtime((uint32_t *)&tvp->tv_sec, &tvp->tv_usec); |
1c79356b | 533 | } |
9bccf70c A |
534 | |
535 | void | |
536 | microuptime( | |
537 | struct timeval *tvp) | |
538 | { | |
91447636 | 539 | clock_get_system_microtime((uint32_t *)&tvp->tv_sec, &tvp->tv_usec); |
9bccf70c A |
540 | } |
541 | ||
542 | /* | |
543 | * Ditto for timespec. | |
544 | */ | |
545 | void | |
546 | nanotime( | |
547 | struct timespec *tsp) | |
548 | { | |
91447636 | 549 | clock_get_calendar_nanotime((uint32_t *)&tsp->tv_sec, (uint32_t *)&tsp->tv_nsec); |
9bccf70c A |
550 | } |
551 | ||
552 | void | |
553 | nanouptime( | |
554 | struct timespec *tsp) | |
555 | { | |
91447636 | 556 | clock_get_system_nanotime((uint32_t *)&tsp->tv_sec, (uint32_t *)&tsp->tv_nsec); |
9bccf70c A |
557 | } |
558 | ||
559 | uint64_t | |
560 | tvtoabstime( | |
561 | struct timeval *tvp) | |
562 | { | |
563 | uint64_t result, usresult; | |
564 | ||
565 | clock_interval_to_absolutetime_interval( | |
566 | tvp->tv_sec, NSEC_PER_SEC, &result); | |
567 | clock_interval_to_absolutetime_interval( | |
568 | tvp->tv_usec, NSEC_PER_USEC, &usresult); | |
569 | ||
570 | return (result + usresult); | |
571 | } | |
572 | void | |
573 | time_zone_slock_init(void) | |
574 | { | |
91447636 A |
575 | /* allocate lock group attribute and group */ |
576 | tz_slock_grp_attr = lck_grp_attr_alloc_init(); | |
9bccf70c | 577 | |
91447636 | 578 | tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr); |
9bccf70c | 579 | |
91447636 A |
580 | /* Allocate lock attribute */ |
581 | tz_slock_attr = lck_attr_alloc_init(); | |
9bccf70c | 582 | |
91447636 A |
583 | /* Allocate the spin lock */ |
584 | tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr); | |
9bccf70c | 585 | } |
91447636 | 586 |