]>
Commit | Line | Data |
---|---|---|
6d2010ae A |
1 | /* |
2 | * Copyright (c) 2009 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <unistd.h> | |
29 | #include <stdio.h> | |
30 | #include <math.h> | |
31 | #include <sys/wait.h> | |
32 | #include <sys/syscall.h> | |
33 | #include <sys/types.h> | |
34 | #include <sys/ptrace.h> | |
35 | #include <semaphore.h> | |
36 | #include <stdlib.h> | |
37 | #include <pthread.h> | |
38 | #include <fcntl.h> | |
39 | #include <errno.h> | |
40 | #include <string.h> | |
41 | ||
42 | #include <libkern/OSAtomic.h> | |
43 | ||
44 | #include <mach/mach_time.h> | |
45 | #include <mach/mach.h> | |
46 | #include <mach/task.h> | |
47 | #include <mach/semaphore.h> | |
48 | ||
49 | typedef enum wake_type { WAKE_BROADCAST_ONESEM, WAKE_BROADCAST_PERTHREAD, WAKE_CHAIN } wake_type_t; | |
50 | typedef enum my_policy_type { MY_POLICY_REALTIME, MY_POLICY_TIMESHARE, MY_POLICY_FIXEDPRI } my_policy_type_t; | |
51 | ||
52 | #define assert(truth, label) do { if(!(truth)) { printf("Thread %p: failure on line %d\n", pthread_self(), __LINE__); goto label; } } while (0) | |
53 | ||
54 | #define CONSTRAINT_NANOS (20000000ll) /* 20 ms */ | |
55 | #define COMPUTATION_NANOS (10000000ll) /* 10 ms */ | |
56 | #define TRACEWORTHY_NANOS (10000000ll) /* 10 ms */ | |
57 | ||
58 | #if DEBUG | |
59 | #define debug_log(args...) printf(args) | |
60 | #else | |
61 | #define debug_log(args...) do { } while(0) | |
62 | #endif | |
63 | ||
64 | /* Declarations */ | |
65 | void* child_thread_func(void *arg); | |
66 | void print_usage(); | |
67 | int thread_setup(); | |
68 | my_policy_type_t parse_thread_policy(const char *str); | |
69 | int thread_finish_iteration(); | |
70 | ||
71 | /* Global variables (general) */ | |
72 | int g_numthreads; | |
73 | wake_type_t g_waketype; | |
74 | policy_t g_policy; | |
75 | int g_iterations; | |
76 | struct mach_timebase_info g_mti; | |
77 | semaphore_t g_main_sem; | |
78 | uint64_t *g_thread_endtimes_abs; | |
79 | volatile int32_t g_done_threads; | |
80 | boolean_t g_do_spin = FALSE; | |
81 | boolean_t g_verbose = FALSE; | |
82 | uint64_t g_starttime_abs; | |
83 | #if MIMIC_DIGI_LEAD_TIME | |
84 | int g_long_spinid; | |
85 | uint64_t g_spinlength_abs; | |
86 | #endif /* MIMIC_DIGI_LEAD_TIME */ | |
87 | ||
88 | /* Global variables (broadcast) */ | |
89 | semaphore_t g_machsem; | |
90 | semaphore_t g_leadersem; | |
91 | ||
92 | /* Global variables (chain) */ | |
93 | semaphore_t *g_semarr; | |
94 | ||
95 | uint64_t | |
96 | abs_to_nanos(uint64_t abstime) | |
97 | { | |
98 | return (uint64_t)(abstime * (((double)g_mti.numer) / ((double)g_mti.denom))); | |
99 | } | |
100 | ||
101 | uint64_t | |
102 | nanos_to_abs(uint64_t ns) | |
103 | { | |
104 | return (uint64_t)(ns * (((double)g_mti.denom) / ((double)g_mti.numer))); | |
105 | } | |
106 | ||
107 | /* | |
108 | * Figure out what thread policy to use | |
109 | */ | |
110 | my_policy_type_t | |
111 | parse_thread_policy(const char *str) | |
112 | { | |
113 | if (strcmp(str, "timeshare") == 0) { | |
114 | return MY_POLICY_TIMESHARE; | |
115 | } else if (strcmp(str, "realtime") == 0) { | |
116 | return MY_POLICY_REALTIME; | |
117 | } else if (strcmp(str, "fixed") == 0) { | |
118 | return MY_POLICY_FIXEDPRI; | |
119 | } else { | |
120 | printf("Invalid thread policy %s\n", str); | |
121 | exit(1); | |
122 | } | |
123 | } | |
124 | ||
125 | /* | |
126 | * Figure out what wakeup pattern to use | |
127 | */ | |
128 | wake_type_t | |
129 | parse_wakeup_pattern(const char *str) | |
130 | { | |
131 | if (strcmp(str, "chain") == 0) { | |
132 | return WAKE_CHAIN; | |
133 | } else if (strcmp(str, "broadcast-single-sem") == 0) { | |
134 | return WAKE_BROADCAST_ONESEM; | |
135 | } else if (strcmp(str, "broadcast-per-thread") == 0) { | |
136 | return WAKE_BROADCAST_PERTHREAD; | |
137 | } else { | |
138 | print_usage(); | |
139 | exit(1); | |
140 | } | |
141 | } | |
142 | ||
143 | /* | |
144 | * Set policy | |
145 | */ | |
146 | int | |
147 | thread_setup() | |
148 | { | |
149 | int res; | |
150 | ||
151 | switch (g_policy) { | |
152 | case MY_POLICY_TIMESHARE: | |
153 | { | |
154 | return 0; | |
155 | } | |
156 | case MY_POLICY_REALTIME: | |
157 | { | |
158 | thread_time_constraint_policy_data_t pol; | |
159 | ||
160 | /* Hard-coded realtime parameters (similar to what Digi uses) */ | |
161 | pol.period = 100000; | |
162 | pol.constraint = nanos_to_abs(CONSTRAINT_NANOS); | |
163 | pol.computation = nanos_to_abs(COMPUTATION_NANOS); | |
164 | pol.preemptible = 0; /* Ignored by OS */ | |
165 | ||
166 | res = thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY, (thread_policy_t) &pol, THREAD_TIME_CONSTRAINT_POLICY_COUNT); | |
167 | assert(res == 0, fail); | |
168 | break; | |
169 | } | |
170 | case MY_POLICY_FIXEDPRI: | |
171 | { | |
172 | thread_extended_policy_data_t pol; | |
173 | pol.timeshare = 0; | |
174 | ||
175 | res = thread_policy_set(mach_thread_self(), THREAD_EXTENDED_POLICY, (thread_policy_t) &pol, THREAD_EXTENDED_POLICY_COUNT); | |
176 | assert(res == 0, fail); | |
177 | break; | |
178 | } | |
179 | default: | |
180 | { | |
181 | printf("invalid policy type\n"); | |
182 | return 1; | |
183 | } | |
184 | } | |
185 | ||
186 | return 0; | |
187 | fail: | |
188 | return 1; | |
189 | } | |
190 | ||
191 | /* | |
192 | * Wake up main thread if everyone's done | |
193 | */ | |
194 | int | |
195 | thread_finish_iteration(int id) | |
196 | { | |
197 | int32_t new; | |
198 | int res = 0; | |
199 | volatile float x = 0.0; | |
200 | volatile float y = 0.0; | |
201 | ||
202 | debug_log("Thread %p finished iteration.\n", pthread_self()); | |
203 | ||
204 | #if MIMIC_DIGI_LEAD_TIME | |
205 | /* | |
206 | * One randomly chosen thread determines when everybody gets to stop. | |
207 | */ | |
208 | if (g_do_spin) { | |
209 | if (g_long_spinid == id) { | |
210 | uint64_t endspin; | |
211 | ||
212 | /* This thread took up fully half of his computation */ | |
213 | endspin = g_starttime_abs + g_spinlength_abs; | |
214 | while (mach_absolute_time() < endspin) { | |
215 | y = y + 1.5 + x; | |
216 | x = sqrt(y); | |
217 | } | |
218 | } | |
219 | } | |
220 | #endif /* MIMIC_DIGI_LEAD_TIME */ | |
221 | ||
222 | new = OSAtomicIncrement32(&g_done_threads); | |
223 | ||
224 | debug_log("New value is %d\n", new); | |
225 | ||
226 | /* | |
227 | * When the last thread finishes, everyone gets to go back to sleep. | |
228 | */ | |
229 | if (new == g_numthreads) { | |
230 | debug_log("Thread %p signalling main thread.\n", pthread_self()); | |
231 | res = semaphore_signal(g_main_sem); | |
232 | } else { | |
233 | if (g_do_spin) { | |
234 | while (g_done_threads < g_numthreads) { | |
235 | y = y + 1.5 + x; | |
236 | x = sqrt(y); | |
237 | } | |
238 | } | |
239 | } | |
240 | ||
241 | return res; | |
242 | } | |
243 | ||
244 | /* | |
245 | * Wait for a wakeup, potentially wake up another of the "0-N" threads, | |
246 | * and notify the main thread when done. | |
247 | */ | |
248 | void* | |
249 | child_thread_func(void *arg) | |
250 | { | |
251 | int my_id = (int)(uintptr_t)arg; | |
252 | int res; | |
253 | int i, j; | |
254 | int32_t new; | |
255 | ||
256 | /* Set policy and so forth */ | |
257 | thread_setup(); | |
258 | ||
259 | /* Tell main thread when everyone has set up */ | |
260 | new = OSAtomicIncrement32(&g_done_threads); | |
261 | if (new == g_numthreads) { | |
262 | semaphore_signal(g_main_sem); | |
263 | } | |
264 | ||
265 | /* For each iteration */ | |
266 | for (i = 0; i < g_iterations; i++) { | |
267 | /* | |
268 | * Leader thread either wakes everyone up or starts the chain going. | |
269 | */ | |
270 | if (my_id == 0) { | |
271 | res = semaphore_wait(g_leadersem); | |
272 | assert(res == 0, fail); | |
273 | ||
274 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
275 | ||
276 | #if MIMIC_DIGI_LEAD_TIME | |
277 | g_long_spinid = rand() % g_numthreads; | |
278 | #endif /* MIMIC_DIGI_LEAD_TIME */ | |
279 | ||
280 | switch (g_waketype) { | |
281 | case WAKE_CHAIN: | |
282 | semaphore_signal(g_semarr[my_id + 1]); | |
283 | break; | |
284 | case WAKE_BROADCAST_ONESEM: | |
285 | semaphore_signal_all(g_machsem); | |
286 | break; | |
287 | case WAKE_BROADCAST_PERTHREAD: | |
288 | for (j = 1; j < g_numthreads; j++) { | |
289 | semaphore_signal(g_semarr[j]); | |
290 | } | |
291 | break; | |
292 | default: | |
293 | printf("Invalid wakeup type?!\n"); | |
294 | exit(1); | |
295 | } | |
296 | } else { | |
297 | /* | |
298 | * Everyone else waits to be woken up, | |
299 | * records when she wake up, and possibly | |
300 | * wakes up a friend. | |
301 | */ | |
302 | switch(g_waketype) { | |
303 | case WAKE_BROADCAST_ONESEM: | |
304 | res = semaphore_wait(g_machsem); | |
305 | assert(res == KERN_SUCCESS, fail); | |
306 | ||
307 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
308 | ||
309 | break; | |
310 | /* | |
311 | * For the chain wakeup case: | |
312 | * wait, record time, signal next thread if appropriate | |
313 | */ | |
314 | case WAKE_BROADCAST_PERTHREAD: | |
315 | res = semaphore_wait(g_semarr[my_id]); | |
316 | assert(res == 0, fail); | |
317 | ||
318 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
319 | break; | |
320 | ||
321 | case WAKE_CHAIN: | |
322 | res = semaphore_wait(g_semarr[my_id]); | |
323 | assert(res == 0, fail); | |
324 | ||
325 | g_thread_endtimes_abs[my_id] = mach_absolute_time(); | |
326 | ||
327 | if (my_id < (g_numthreads - 1)) { | |
328 | res = semaphore_signal(g_semarr[my_id + 1]); | |
329 | assert(res == 0, fail); | |
330 | } | |
331 | ||
332 | break; | |
333 | default: | |
334 | printf("Invalid wake type.\n"); | |
335 | goto fail; | |
336 | } | |
337 | } | |
338 | ||
339 | res = thread_finish_iteration(my_id); | |
340 | assert(res == 0, fail); | |
341 | } | |
342 | ||
343 | return 0; | |
344 | fail: | |
345 | exit(1); | |
346 | } | |
347 | ||
348 | /* | |
349 | * Admittedly not very attractive. | |
350 | */ | |
351 | void | |
352 | print_usage() | |
353 | { | |
354 | printf("Usage: zn <num threads> <chain | broadcast-single-sem | broadcast-per-thread> <realtime | timeshare | fixed> <num iterations> [-trace <traceworthy latency in ns>] [-spin] [-verbose]\n"); | |
355 | } | |
356 | ||
357 | /* | |
358 | * Given an array of uint64_t values, compute average, max, min, and standard deviation | |
359 | */ | |
360 | void | |
361 | compute_stats(uint64_t *values, uint64_t count, float *averagep, uint64_t *maxp, uint64_t *minp, float *stddevp) | |
362 | { | |
363 | int i; | |
364 | uint64_t _sum = 0; | |
365 | uint64_t _max = 0; | |
366 | uint64_t _min = UINT64_MAX; | |
367 | float _avg = 0; | |
368 | float _dev = 0; | |
369 | ||
370 | for (i = 0; i < count; i++) { | |
371 | _sum += values[i]; | |
372 | _max = values[i] > _max ? values[i] : _max; | |
373 | _min = values[i] < _min ? values[i] : _min; | |
374 | } | |
375 | ||
376 | _avg = ((float)_sum) / ((float)count); | |
377 | ||
378 | _dev = 0; | |
379 | for (i = 0; i < count; i++) { | |
380 | _dev += powf((((float)values[i]) - _avg), 2); | |
381 | } | |
382 | ||
383 | _dev /= count; | |
384 | _dev = sqrtf(_dev); | |
385 | ||
386 | *averagep = _avg; | |
387 | *maxp = _max; | |
388 | *minp = _min; | |
389 | *stddevp = _dev; | |
390 | } | |
391 | ||
392 | int | |
393 | main(int argc, char **argv) | |
394 | { | |
395 | int i; | |
396 | int res; | |
397 | pthread_t *threads; | |
398 | uint64_t *worst_latencies_ns; | |
399 | uint64_t *worst_latencies_from_first_ns; | |
400 | uint64_t last_end; | |
401 | uint64_t max, min; | |
402 | uint64_t traceworthy_latency_ns = TRACEWORTHY_NANOS; | |
403 | float avg, stddev; | |
404 | ||
405 | srand(time(NULL)); | |
406 | ||
407 | if (argc < 5 || argc > 9) { | |
408 | print_usage(); | |
409 | goto fail; | |
410 | } | |
411 | ||
412 | /* How many threads? */ | |
413 | g_numthreads = atoi(argv[1]); | |
414 | ||
415 | /* What wakeup pattern? */ | |
416 | g_waketype = parse_wakeup_pattern(argv[2]); | |
417 | ||
418 | /* Policy */ | |
419 | g_policy = parse_thread_policy(argv[3]); | |
420 | ||
421 | /* Iterations */ | |
422 | g_iterations = atoi(argv[4]); | |
423 | ||
424 | /* Optional args */ | |
425 | for (i = 5; i < argc; i++) { | |
426 | if (strcmp(argv[i], "-spin") == 0) { | |
427 | g_do_spin = TRUE; | |
428 | } else if (strcmp(argv[i], "-verbose") == 0) { | |
429 | g_verbose = TRUE; | |
430 | } else if ((strcmp(argv[i], "-trace") == 0) && | |
431 | (i < (argc - 1))) { | |
432 | traceworthy_latency_ns = strtoull(argv[++i], NULL, 10); | |
433 | } else { | |
434 | print_usage(); | |
435 | goto fail; | |
436 | } | |
437 | } | |
438 | ||
439 | mach_timebase_info(&g_mti); | |
440 | ||
441 | #if MIMIC_DIGI_LEAD_TIME | |
442 | g_spinlength_abs = nanos_to_abs(COMPUTATION_NANOS) / 2; | |
443 | #endif /* MIMIC_DIGI_LEAD_TIME */ | |
444 | ||
445 | /* Arrays for threads and their wakeup times */ | |
446 | threads = (pthread_t*) malloc(sizeof(pthread_t) * g_numthreads); | |
447 | assert(threads, fail); | |
448 | ||
449 | g_thread_endtimes_abs = (uint64_t*) malloc(sizeof(uint64_t) * g_numthreads); | |
450 | assert(g_thread_endtimes_abs, fail); | |
451 | ||
452 | worst_latencies_ns = (uint64_t*) malloc(sizeof(uint64_t) * g_iterations); | |
453 | assert(worst_latencies_ns, fail); | |
454 | ||
455 | worst_latencies_from_first_ns = (uint64_t*) malloc(sizeof(uint64_t) * g_iterations); | |
456 | assert(worst_latencies_from_first_ns, fail); | |
457 | res = semaphore_create(mach_task_self(), &g_main_sem, SYNC_POLICY_FIFO, 0); | |
458 | assert(res == KERN_SUCCESS, fail); | |
459 | ||
460 | /* Either one big semaphore or one per thread */ | |
461 | if (g_waketype == WAKE_CHAIN || g_waketype == WAKE_BROADCAST_PERTHREAD) { | |
462 | g_semarr = malloc(sizeof(semaphore_t) * g_numthreads); | |
463 | assert(g_semarr != NULL, fail); | |
464 | ||
465 | for (i = 0; i < g_numthreads; i++) { | |
466 | res = semaphore_create(mach_task_self(), &g_semarr[i], SYNC_POLICY_FIFO, 0); | |
467 | assert(res == KERN_SUCCESS, fail); | |
468 | } | |
469 | ||
470 | g_leadersem = g_semarr[0]; | |
471 | } else { | |
472 | res = semaphore_create(mach_task_self(), &g_machsem, SYNC_POLICY_FIFO, 0); | |
473 | assert(res == KERN_SUCCESS, fail); | |
474 | res = semaphore_create(mach_task_self(), &g_leadersem, SYNC_POLICY_FIFO, 0); | |
475 | assert(res == KERN_SUCCESS, fail); | |
476 | } | |
477 | ||
478 | /* Create the threads */ | |
479 | g_done_threads = 0; | |
480 | for (i = 0; i < g_numthreads; i++) { | |
481 | res = pthread_create(&threads[i], NULL, child_thread_func, (void*)(uintptr_t)i); | |
482 | assert(res == 0, fail); | |
483 | } | |
484 | ||
485 | /* Let everyone get settled */ | |
486 | semaphore_wait(g_main_sem); | |
487 | sleep(1); | |
488 | ||
489 | /* Go! */ | |
490 | for (i = 0; i < g_iterations; i++) { | |
491 | int j; | |
492 | uint64_t worst_abs = 0, best_abs = UINT64_MAX; | |
493 | ||
494 | g_done_threads = 0; | |
495 | OSMemoryBarrier(); | |
496 | ||
497 | g_starttime_abs = mach_absolute_time(); | |
498 | ||
499 | /* Fire them off */ | |
500 | semaphore_signal(g_leadersem); | |
501 | ||
502 | /* Wait for worker threads to finish */ | |
503 | semaphore_wait(g_main_sem); | |
504 | assert(res == KERN_SUCCESS, fail); | |
505 | ||
506 | /* | |
507 | * We report the worst latencies relative to start time | |
508 | * and relative to the lead worker thread. | |
509 | */ | |
510 | for (j = 0; j < g_numthreads; j++) { | |
511 | uint64_t latency_abs; | |
512 | ||
513 | latency_abs = g_thread_endtimes_abs[j] - g_starttime_abs; | |
514 | worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs; | |
515 | } | |
516 | ||
517 | worst_latencies_ns[i] = abs_to_nanos(worst_abs); | |
518 | ||
519 | worst_abs = 0; | |
520 | for (j = 1; j < g_numthreads; j++) { | |
521 | uint64_t latency_abs; | |
522 | ||
523 | latency_abs = g_thread_endtimes_abs[j] - g_thread_endtimes_abs[0]; | |
524 | worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs; | |
525 | best_abs = best_abs > latency_abs ? latency_abs : best_abs; | |
526 | } | |
527 | ||
528 | worst_latencies_from_first_ns[i] = abs_to_nanos(worst_abs); | |
529 | ||
530 | /* | |
531 | * In the event of a bad run, cut a trace point. | |
532 | */ | |
533 | if (worst_latencies_from_first_ns[i] > traceworthy_latency_ns) { | |
534 | int _tmp; | |
535 | ||
536 | if (g_verbose) { | |
537 | printf("Worst on this round was %.2f us.\n", ((float)worst_latencies_from_first_ns[i]) / 1000.0); | |
538 | } | |
539 | ||
540 | _tmp = syscall(SYS_kdebug_trace, 0xEEEEEEEE, 0, 0, 0, 0); | |
541 | } | |
542 | ||
543 | /* Let worker threads get back to sleep... */ | |
544 | usleep(g_numthreads * 10); | |
545 | } | |
546 | ||
547 | /* Rejoin threads */ | |
548 | last_end = 0; | |
549 | for (i = 0; i < g_numthreads; i++) { | |
550 | res = pthread_join(threads[i], NULL); | |
551 | assert(res == 0, fail); | |
552 | } | |
553 | ||
554 | compute_stats(worst_latencies_ns, g_iterations, &avg, &max, &min, &stddev); | |
555 | printf("Results (from a stop):\n"); | |
556 | printf("Max:\t\t%.2f us\n", ((float)max) / 1000.0); | |
557 | printf("Min:\t\t%.2f us\n", ((float)min) / 1000.0); | |
558 | printf("Avg:\t\t%.2f us\n", avg / 1000.0); | |
559 | printf("Stddev:\t\t%.2f us\n", stddev / 1000.0); | |
560 | ||
561 | putchar('\n'); | |
562 | ||
563 | compute_stats(worst_latencies_from_first_ns, g_iterations, &avg, &max, &min, &stddev); | |
564 | printf("Results (relative to first thread):\n"); | |
565 | printf("Max:\t\t%.2f us\n", ((float)max) / 1000.0); | |
566 | printf("Min:\t\t%.2f us\n", ((float)min) / 1000.0); | |
567 | printf("Avg:\t\t%.2f us\n", avg / 1000.0); | |
568 | printf("Stddev:\t\t%.2f us\n", stddev / 1000.0); | |
569 | ||
570 | #if 0 | |
571 | for (i = 0; i < g_iterations; i++) { | |
572 | printf("Iteration %d: %f us\n", i, worst_latencies_ns[i] / 1000.0); | |
573 | } | |
574 | #endif | |
575 | ||
576 | return 0; | |
577 | fail: | |
578 | return 1; | |
579 | } |