]>
Commit | Line | Data |
---|---|---|
b0d623f7 | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. |
b0d623f7 A |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
39236c6e | 5 | * |
b0d623f7 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
39236c6e | 14 | * |
b0d623f7 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
39236c6e | 17 | * |
b0d623f7 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
39236c6e | 25 | * |
b0d623f7 A |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ | |
28 | ||
1c79356b A |
29 | /* |
30 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. | |
31 | * All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. Neither the name of the project nor the names of its contributors | |
42 | * may be used to endorse or promote products derived from this software | |
43 | * without specific prior written permission. | |
44 | * | |
45 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND | |
46 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
47 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
48 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE | |
49 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
50 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
51 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
52 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
53 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
54 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
55 | * SUCH DAMAGE. | |
56 | */ | |
57 | ||
58 | /* | |
59 | * Copyright (c) 1982, 1986, 1991, 1993 | |
60 | * The Regents of the University of California. All rights reserved. | |
61 | * | |
62 | * Redistribution and use in source and binary forms, with or without | |
63 | * modification, are permitted provided that the following conditions | |
64 | * are met: | |
65 | * 1. Redistributions of source code must retain the above copyright | |
66 | * notice, this list of conditions and the following disclaimer. | |
67 | * 2. Redistributions in binary form must reproduce the above copyright | |
68 | * notice, this list of conditions and the following disclaimer in the | |
69 | * documentation and/or other materials provided with the distribution. | |
70 | * 3. All advertising materials mentioning features or use of this software | |
71 | * must display the following acknowledgement: | |
72 | * This product includes software developed by the University of | |
73 | * California, Berkeley and its contributors. | |
74 | * 4. Neither the name of the University nor the names of its contributors | |
75 | * may be used to endorse or promote products derived from this software | |
76 | * without specific prior written permission. | |
77 | * | |
78 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
79 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
80 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
81 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
82 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
83 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
84 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
85 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
86 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
87 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
88 | * SUCH DAMAGE. | |
89 | * | |
90 | * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 | |
91 | */ | |
92 | ||
1c79356b A |
93 | |
94 | #include <sys/param.h> | |
95 | #include <sys/systm.h> | |
96 | #include <sys/malloc.h> | |
97 | #include <sys/mbuf.h> | |
98 | #include <sys/protosw.h> | |
99 | #include <sys/socket.h> | |
100 | #include <sys/socketvar.h> | |
1c79356b A |
101 | #include <sys/errno.h> |
102 | #include <sys/time.h> | |
103 | #include <sys/proc.h> | |
6d2010ae A |
104 | #include <sys/sysctl.h> |
105 | #include <sys/kauth.h> | |
106 | #include <sys/priv.h> | |
fe8ab488 | 107 | #include <kern/locks.h> |
1c79356b A |
108 | |
109 | #include <net/if.h> | |
6d2010ae | 110 | #include <net/if_types.h> |
1c79356b A |
111 | #include <net/route.h> |
112 | ||
113 | #include <netinet/in.h> | |
114 | #include <netinet/in_var.h> | |
115 | #include <netinet/in_systm.h> | |
116 | #include <netinet/ip.h> | |
117 | #include <netinet/in_pcb.h> | |
118 | #include <netinet6/in6_var.h> | |
119 | #include <netinet/ip6.h> | |
1c79356b | 120 | #include <netinet6/in6_pcb.h> |
1c79356b | 121 | #include <netinet6/ip6_var.h> |
6d2010ae | 122 | #include <netinet6/scope6_var.h> |
1c79356b A |
123 | #include <netinet6/nd6.h> |
124 | ||
125 | #include <net/net_osdep.h> | |
126 | ||
1c79356b | 127 | #include "loop.h" |
1c79356b | 128 | |
6d2010ae A |
129 | SYSCTL_DECL(_net_inet6_ip6); |
130 | ||
131 | static int ip6_select_srcif_debug = 0; | |
132 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcif_debug, | |
39236c6e A |
133 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcif_debug, 0, |
134 | "log source interface selection debug info"); | |
6d2010ae | 135 | |
39236c6e | 136 | #define ADDR_LABEL_NOTAPP (-1) |
6d2010ae A |
137 | struct in6_addrpolicy defaultaddrpolicy; |
138 | ||
139 | int ip6_prefer_tempaddr = 1; | |
140 | #ifdef ENABLE_ADDRSEL | |
141 | extern lck_mtx_t *addrsel_mutex; | |
142 | #define ADDRSEL_LOCK() lck_mtx_lock(addrsel_mutex) | |
143 | #define ADDRSEL_UNLOCK() lck_mtx_unlock(addrsel_mutex) | |
144 | #else | |
145 | #define ADDRSEL_LOCK() | |
146 | #define ADDRSEL_UNLOCK() | |
147 | #endif | |
148 | ||
149 | static int selectroute(struct sockaddr_in6 *, struct sockaddr_in6 *, | |
39236c6e A |
150 | struct ip6_pktopts *, struct ip6_moptions *, struct in6_ifaddr **, |
151 | struct route_in6 *, struct ifnet **, struct rtentry **, int, int, | |
152 | struct ip6_out_args *ip6oa); | |
6d2010ae | 153 | static int in6_selectif(struct sockaddr_in6 *, struct ip6_pktopts *, |
316670eb | 154 | struct ip6_moptions *, struct route_in6 *ro, |
39236c6e | 155 | struct ip6_out_args *, struct ifnet **); |
6d2010ae A |
156 | static void init_policy_queue(void); |
157 | static int add_addrsel_policyent(const struct in6_addrpolicy *); | |
158 | #ifdef ENABLE_ADDRSEL | |
159 | static int delete_addrsel_policyent(const struct in6_addrpolicy *); | |
160 | #endif | |
161 | static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy *, void *), | |
162 | void *); | |
163 | static int dump_addrsel_policyent(const struct in6_addrpolicy *, void *); | |
164 | static struct in6_addrpolicy *match_addrsel_policy(struct sockaddr_in6 *); | |
165 | void addrsel_policy_init(void); | |
166 | ||
1c79356b | 167 | /* |
9bccf70c | 168 | * Return an IPv6 address, which is the most appropriate for a given |
1c79356b | 169 | * destination and user specified options. |
9bccf70c | 170 | * If necessary, this function lookups the routing table and returns |
1c79356b A |
171 | * an entry to the caller for later use. |
172 | */ | |
39236c6e A |
173 | #define REPLACE(r) do {\ |
174 | if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \ | |
175 | sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \ | |
6d2010ae A |
176 | ip6stat.ip6s_sources_rule[(r)]++; \ |
177 | goto replace; \ | |
39236c6e A |
178 | } while (0) |
179 | #define NEXTSRC(r) do {\ | |
180 | if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \ | |
181 | sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \ | |
6d2010ae A |
182 | ip6stat.ip6s_sources_rule[(r)]++; \ |
183 | goto next; /* XXX: we can't use 'continue' here */ \ | |
39236c6e A |
184 | } while (0) |
185 | #define BREAK(r) do { \ | |
186 | if ((r) < sizeof (ip6stat.ip6s_sources_rule) / \ | |
187 | sizeof (ip6stat.ip6s_sources_rule[0])) /* check for safety */ \ | |
6d2010ae A |
188 | ip6stat.ip6s_sources_rule[(r)]++; \ |
189 | goto out; /* XXX: we can't use 'break' here */ \ | |
39236c6e | 190 | } while (0) |
6d2010ae | 191 | |
316670eb A |
192 | /* |
193 | * Regardless of error, it will return an ifp with a reference held if the | |
194 | * caller provides a non-NULL ifpp. The caller is responsible for checking | |
195 | * if the returned ifp is valid and release its reference at all times. | |
196 | */ | |
1c79356b | 197 | struct in6_addr * |
6d2010ae A |
198 | in6_selectsrc(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, |
199 | struct inpcb *inp, struct route_in6 *ro, | |
200 | struct ifnet **ifpp, struct in6_addr *src_storage, unsigned int ifscope, | |
201 | int *errorp) | |
1c79356b | 202 | { |
6d2010ae A |
203 | struct in6_addr dst; |
204 | struct ifnet *ifp = NULL; | |
205 | struct in6_ifaddr *ia = NULL, *ia_best = NULL; | |
1c79356b | 206 | struct in6_pktinfo *pi = NULL; |
6d2010ae A |
207 | int dst_scope = -1, best_scope = -1, best_matchlen = -1; |
208 | struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL; | |
209 | u_int32_t odstzone; | |
210 | int prefer_tempaddr; | |
211 | struct ip6_moptions *mopts; | |
39236c6e | 212 | struct ip6_out_args ip6oa = { ifscope, { 0 }, IP6OAF_SELECT_SRCIF, 0 }; |
6d2010ae | 213 | boolean_t islocal = FALSE; |
39236c6e | 214 | uint64_t secs = net_uptime(); |
6d2010ae A |
215 | |
216 | dst = dstsock->sin6_addr; /* make a copy for local operation */ | |
1c79356b | 217 | *errorp = 0; |
6d2010ae A |
218 | if (ifpp != NULL) |
219 | *ifpp = NULL; | |
220 | ||
221 | if (inp != NULL) { | |
222 | mopts = inp->in6p_moptions; | |
fe8ab488 | 223 | if (INP_NO_CELLULAR(inp)) |
316670eb | 224 | ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR; |
fe8ab488 A |
225 | if (INP_NO_EXPENSIVE(inp)) |
226 | ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE; | |
227 | if (INP_AWDL_UNRESTRICTED(inp)) | |
228 | ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED; | |
229 | ||
6d2010ae A |
230 | } else { |
231 | mopts = NULL; | |
6d2010ae | 232 | } |
1c79356b | 233 | |
316670eb A |
234 | if (ip6oa.ip6oa_boundif != IFSCOPE_NONE) |
235 | ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF; | |
236 | ||
1c79356b A |
237 | /* |
238 | * If the source address is explicitly specified by the caller, | |
6d2010ae A |
239 | * check if the requested source address is indeed a unicast address |
240 | * assigned to the node, and can be used as the packet's source | |
241 | * address. If everything is okay, use the address as source. | |
1c79356b A |
242 | */ |
243 | if (opts && (pi = opts->ip6po_pktinfo) && | |
6d2010ae A |
244 | !IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) { |
245 | struct sockaddr_in6 srcsock; | |
246 | struct in6_ifaddr *ia6; | |
247 | ||
248 | /* get the outgoing interface */ | |
316670eb A |
249 | if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa, |
250 | &ifp)) != 0) { | |
251 | src_storage = NULL; | |
252 | goto done; | |
6d2010ae A |
253 | } |
254 | ||
255 | /* | |
256 | * determine the appropriate zone id of the source based on | |
257 | * the zone of the destination and the outgoing interface. | |
258 | * If the specified address is ambiguous wrt the scope zone, | |
259 | * the interface must be specified; otherwise, ifa_ifwithaddr() | |
260 | * will fail matching the address. | |
261 | */ | |
39236c6e | 262 | bzero(&srcsock, sizeof (srcsock)); |
6d2010ae | 263 | srcsock.sin6_family = AF_INET6; |
39236c6e | 264 | srcsock.sin6_len = sizeof (srcsock); |
6d2010ae | 265 | srcsock.sin6_addr = pi->ipi6_addr; |
316670eb | 266 | if (ifp != NULL) { |
6d2010ae A |
267 | *errorp = in6_setscope(&srcsock.sin6_addr, ifp, NULL); |
268 | if (*errorp != 0) { | |
316670eb A |
269 | src_storage = NULL; |
270 | goto done; | |
6d2010ae A |
271 | } |
272 | } | |
316670eb A |
273 | ia6 = (struct in6_ifaddr *)ifa_ifwithaddr((struct sockaddr *) |
274 | (&srcsock)); | |
6d2010ae A |
275 | if (ia6 == NULL) { |
276 | *errorp = EADDRNOTAVAIL; | |
316670eb A |
277 | src_storage = NULL; |
278 | goto done; | |
6d2010ae A |
279 | } |
280 | IFA_LOCK_SPIN(&ia6->ia_ifa); | |
281 | if ((ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY)) || | |
fe8ab488 | 282 | (inp && inp_restricted_send(inp, ia6->ia_ifa.ifa_ifp))) { |
6d2010ae A |
283 | IFA_UNLOCK(&ia6->ia_ifa); |
284 | IFA_REMREF(&ia6->ia_ifa); | |
39236c6e | 285 | *errorp = EHOSTUNREACH; |
316670eb A |
286 | src_storage = NULL; |
287 | goto done; | |
6d2010ae A |
288 | } |
289 | ||
290 | *src_storage = satosin6(&ia6->ia_addr)->sin6_addr; | |
291 | IFA_UNLOCK(&ia6->ia_ifa); | |
292 | IFA_REMREF(&ia6->ia_ifa); | |
316670eb | 293 | goto done; |
6d2010ae | 294 | } |
1c79356b A |
295 | |
296 | /* | |
6d2010ae | 297 | * Otherwise, if the socket has already bound the source, just use it. |
1c79356b | 298 | */ |
316670eb A |
299 | if (inp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { |
300 | src_storage = &inp->in6p_laddr; | |
301 | goto done; | |
302 | } | |
1c79356b A |
303 | |
304 | /* | |
6d2010ae A |
305 | * If the address is not specified, choose the best one based on |
306 | * the outgoing interface and the destination address. | |
1c79356b | 307 | */ |
6d2010ae A |
308 | |
309 | /* get the outgoing interface */ | |
316670eb A |
310 | if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa, |
311 | &ifp)) != 0) { | |
312 | src_storage = NULL; | |
313 | goto done; | |
314 | } | |
6d2010ae | 315 | |
6d2010ae A |
316 | *errorp = in6_setscope(&dst, ifp, &odstzone); |
317 | if (*errorp != 0) { | |
316670eb A |
318 | src_storage = NULL; |
319 | goto done; | |
6d2010ae A |
320 | } |
321 | lck_rw_lock_shared(&in6_ifaddr_rwlock); | |
322 | ||
323 | for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { | |
324 | int new_scope = -1, new_matchlen = -1; | |
325 | struct in6_addrpolicy *new_policy = NULL; | |
326 | u_int32_t srczone, osrczone, dstzone; | |
327 | struct in6_addr src; | |
328 | struct ifnet *ifp1 = ia->ia_ifp; | |
329 | ||
330 | IFA_LOCK(&ia->ia_ifa); | |
331 | /* | |
332 | * We'll never take an address that breaks the scope zone | |
333 | * of the destination. We also skip an address if its zone | |
334 | * does not contain the outgoing interface. | |
335 | * XXX: we should probably use sin6_scope_id here. | |
336 | */ | |
337 | if (in6_setscope(&dst, ifp1, &dstzone) || | |
338 | odstzone != dstzone) | |
339 | goto next; | |
340 | ||
341 | src = ia->ia_addr.sin6_addr; | |
342 | if (in6_setscope(&src, ifp, &osrczone) || | |
343 | in6_setscope(&src, ifp1, &srczone) || | |
344 | osrczone != srczone) | |
345 | goto next; | |
346 | ||
347 | /* avoid unusable addresses */ | |
348 | if ((ia->ia6_flags & | |
39236c6e | 349 | (IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED))) |
6d2010ae A |
350 | goto next; |
351 | ||
39236c6e | 352 | if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia, secs)) |
6d2010ae A |
353 | goto next; |
354 | ||
316670eb | 355 | if (!nd6_optimistic_dad && |
39236c6e | 356 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) |
316670eb A |
357 | goto next; |
358 | ||
6d2010ae A |
359 | /* Rule 1: Prefer same address */ |
360 | if (IN6_ARE_ADDR_EQUAL(&dst, &ia->ia_addr.sin6_addr)) | |
fe8ab488 | 361 | BREAK(IP6S_SRCRULE_1); /* there should be no better candidate */ |
6d2010ae A |
362 | |
363 | if (ia_best == NULL) | |
fe8ab488 | 364 | REPLACE(IP6S_SRCRULE_0); |
6d2010ae A |
365 | |
366 | /* Rule 2: Prefer appropriate scope */ | |
367 | if (dst_scope < 0) | |
368 | dst_scope = in6_addrscope(&dst); | |
369 | new_scope = in6_addrscope(&ia->ia_addr.sin6_addr); | |
370 | if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) { | |
371 | if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0) | |
fe8ab488 A |
372 | REPLACE(IP6S_SRCRULE_2); |
373 | NEXTSRC(IP6S_SRCRULE_2); | |
6d2010ae A |
374 | } else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) { |
375 | if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0) | |
fe8ab488 A |
376 | NEXTSRC(IP6S_SRCRULE_2); |
377 | REPLACE(IP6S_SRCRULE_2); | |
b0d623f7 | 378 | } |
6d2010ae A |
379 | |
380 | /* | |
381 | * Rule 3: Avoid deprecated addresses. Note that the case of | |
382 | * !ip6_use_deprecated is already rejected above. | |
383 | */ | |
39236c6e A |
384 | if (!IFA6_IS_DEPRECATED(ia_best, secs) && |
385 | IFA6_IS_DEPRECATED(ia, secs)) | |
fe8ab488 | 386 | NEXTSRC(IP6S_SRCRULE_3); |
39236c6e A |
387 | if (IFA6_IS_DEPRECATED(ia_best, secs) && |
388 | !IFA6_IS_DEPRECATED(ia, secs)) | |
fe8ab488 | 389 | REPLACE(IP6S_SRCRULE_3); |
6d2010ae | 390 | |
316670eb A |
391 | /* |
392 | * RFC 4429 says that optimistic addresses are equivalent to | |
393 | * deprecated addresses, so avoid them here. | |
394 | */ | |
395 | if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) == 0 && | |
396 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) | |
fe8ab488 | 397 | NEXTSRC(IP6S_SRCRULE_3); |
316670eb A |
398 | if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) != 0 && |
399 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0) | |
fe8ab488 | 400 | REPLACE(IP6S_SRCRULE_3); |
316670eb | 401 | |
6d2010ae A |
402 | /* Rule 4: Prefer home addresses */ |
403 | /* | |
404 | * XXX: This is a TODO. We should probably merge the MIP6 | |
405 | * case above. | |
406 | */ | |
407 | ||
408 | /* Rule 5: Prefer outgoing interface */ | |
409 | if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp) | |
fe8ab488 | 410 | NEXTSRC(IP6S_SRCRULE_5); |
6d2010ae | 411 | if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp) |
fe8ab488 A |
412 | REPLACE(IP6S_SRCRULE_5); |
413 | ||
414 | /* Rule 5.5: Prefer addresses in a prefix advertised by the next hop. */ | |
415 | if (ro != NULL && ro->ro_rt != NULL && ia_best->ia6_ndpr != NULL && | |
416 | ia->ia6_ndpr != NULL) { | |
417 | struct rtentry *rta, *rtb; | |
418 | int op; | |
419 | ||
420 | NDPR_LOCK(ia_best->ia6_ndpr); | |
421 | rta = ia_best->ia6_ndpr->ndpr_rt; | |
422 | if (rta != NULL) | |
423 | RT_ADDREF(rta); | |
424 | NDPR_UNLOCK(ia_best->ia6_ndpr); | |
425 | ||
426 | NDPR_LOCK(ia->ia6_ndpr); | |
427 | rtb = ia->ia6_ndpr->ndpr_rt; | |
428 | if (rtb != NULL) | |
429 | RT_ADDREF(rtb); | |
430 | NDPR_UNLOCK(ia->ia6_ndpr); | |
431 | ||
432 | if (rta == NULL || rtb == NULL) | |
433 | op = 0; | |
434 | else if (rta == ro->ro_rt && rtb != ro->ro_rt) | |
435 | op = 1; | |
436 | else if (rta != ro->ro_rt && rtb == ro->ro_rt) | |
437 | op = 2; | |
438 | else | |
439 | op = 0; | |
440 | ||
441 | if (rta != NULL) | |
442 | RT_REMREF(rta); | |
443 | if (rtb != NULL) | |
444 | RT_REMREF(rtb); | |
445 | ||
446 | switch (op) { | |
447 | case 1: | |
448 | NEXTSRC(IP6S_SRCRULE_5_5); | |
449 | break; | |
450 | case 2: | |
451 | REPLACE(IP6S_SRCRULE_5_5); | |
452 | break; | |
453 | default: | |
454 | break; | |
455 | } | |
456 | } | |
6d2010ae A |
457 | |
458 | /* | |
459 | * Rule 6: Prefer matching label | |
460 | * Note that best_policy should be non-NULL here. | |
461 | */ | |
462 | if (dst_policy == NULL) | |
463 | dst_policy = in6_addrsel_lookup_policy(dstsock); | |
464 | if (dst_policy->label != ADDR_LABEL_NOTAPP) { | |
465 | new_policy = in6_addrsel_lookup_policy(&ia->ia_addr); | |
466 | if (dst_policy->label == best_policy->label && | |
467 | dst_policy->label != new_policy->label) | |
fe8ab488 | 468 | NEXTSRC(IP6S_SRCRULE_6); |
6d2010ae A |
469 | if (dst_policy->label != best_policy->label && |
470 | dst_policy->label == new_policy->label) | |
fe8ab488 | 471 | REPLACE(IP6S_SRCRULE_6); |
1c79356b | 472 | } |
6d2010ae A |
473 | |
474 | /* | |
fe8ab488 | 475 | * Rule 7: Prefer temporary addresses. |
6d2010ae | 476 | * We allow users to reverse the logic by configuring |
fe8ab488 A |
477 | * a sysctl variable, so that transparency conscious users can |
478 | * always prefer stable addresses. | |
6d2010ae A |
479 | * Don't use temporary addresses for local destinations or |
480 | * for multicast addresses unless we were passed in an option. | |
481 | */ | |
482 | if (IN6_IS_ADDR_MULTICAST(&dst) || | |
483 | in6_matchlen(&ia_best->ia_addr.sin6_addr, &dst) >= | |
39236c6e | 484 | ia_best->ia_plen) |
6d2010ae A |
485 | islocal = TRUE; |
486 | if (opts == NULL || | |
487 | opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) { | |
488 | prefer_tempaddr = islocal ? 0 : ip6_prefer_tempaddr; | |
489 | } else if (opts->ip6po_prefer_tempaddr == | |
490 | IP6PO_TEMPADDR_NOTPREFER) { | |
491 | prefer_tempaddr = 0; | |
492 | } else | |
493 | prefer_tempaddr = 1; | |
494 | if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) && | |
495 | (ia->ia6_flags & IN6_IFF_TEMPORARY)) { | |
496 | if (prefer_tempaddr) | |
fe8ab488 | 497 | REPLACE(IP6S_SRCRULE_7); |
6d2010ae | 498 | else |
fe8ab488 | 499 | NEXTSRC(IP6S_SRCRULE_7); |
6d2010ae A |
500 | } |
501 | if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) && | |
502 | !(ia->ia6_flags & IN6_IFF_TEMPORARY)) { | |
503 | if (prefer_tempaddr) | |
fe8ab488 | 504 | NEXTSRC(IP6S_SRCRULE_7); |
6d2010ae | 505 | else |
fe8ab488 | 506 | REPLACE(IP6S_SRCRULE_7); |
6d2010ae A |
507 | } |
508 | ||
509 | /* | |
fe8ab488 | 510 | * Rule 7x: prefer addresses on alive interfaces. |
6d2010ae A |
511 | * This is a KAME specific rule. |
512 | */ | |
513 | if ((ia_best->ia_ifp->if_flags & IFF_UP) && | |
514 | !(ia->ia_ifp->if_flags & IFF_UP)) | |
fe8ab488 | 515 | NEXTSRC(IP6S_SRCRULE_7x); |
6d2010ae A |
516 | if (!(ia_best->ia_ifp->if_flags & IFF_UP) && |
517 | (ia->ia_ifp->if_flags & IFF_UP)) | |
fe8ab488 | 518 | REPLACE(IP6S_SRCRULE_7x); |
6d2010ae A |
519 | |
520 | /* | |
fe8ab488 | 521 | * Rule 8: Use longest matching prefix. |
6d2010ae A |
522 | */ |
523 | new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst); | |
524 | if (best_matchlen < new_matchlen) | |
fe8ab488 | 525 | REPLACE(IP6S_SRCRULE_8); |
6d2010ae | 526 | if (new_matchlen < best_matchlen) |
fe8ab488 | 527 | NEXTSRC(IP6S_SRCRULE_8); |
6d2010ae A |
528 | |
529 | /* | |
530 | * Last resort: just keep the current candidate. | |
531 | * Or, do we need more rules? | |
532 | */ | |
533 | IFA_UNLOCK(&ia->ia_ifa); | |
534 | continue; | |
535 | ||
536 | replace: | |
537 | best_scope = (new_scope >= 0 ? new_scope : | |
39236c6e | 538 | in6_addrscope(&ia->ia_addr.sin6_addr)); |
6d2010ae | 539 | best_policy = (new_policy ? new_policy : |
39236c6e | 540 | in6_addrsel_lookup_policy(&ia->ia_addr)); |
6d2010ae | 541 | best_matchlen = (new_matchlen >= 0 ? new_matchlen : |
39236c6e | 542 | in6_matchlen(&ia->ia_addr.sin6_addr, &dst)); |
6d2010ae A |
543 | IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for ia_best */ |
544 | IFA_UNLOCK(&ia->ia_ifa); | |
545 | if (ia_best != NULL) | |
546 | IFA_REMREF(&ia_best->ia_ifa); | |
547 | ia_best = ia; | |
548 | continue; | |
549 | ||
550 | next: | |
551 | IFA_UNLOCK(&ia->ia_ifa); | |
552 | continue; | |
553 | ||
554 | out: | |
555 | IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for ia_best */ | |
556 | IFA_UNLOCK(&ia->ia_ifa); | |
557 | if (ia_best != NULL) | |
558 | IFA_REMREF(&ia_best->ia_ifa); | |
559 | ia_best = ia; | |
560 | break; | |
561 | } | |
562 | ||
563 | lck_rw_done(&in6_ifaddr_rwlock); | |
564 | ||
fe8ab488 A |
565 | if (ia_best != NULL && inp && |
566 | inp_restricted_send(inp, ia_best->ia_ifa.ifa_ifp)) { | |
6d2010ae A |
567 | IFA_REMREF(&ia_best->ia_ifa); |
568 | ia_best = NULL; | |
39236c6e | 569 | *errorp = EHOSTUNREACH; |
6d2010ae A |
570 | } |
571 | ||
316670eb | 572 | if ((ia = ia_best) == NULL) { |
39236c6e A |
573 | if (*errorp == 0) |
574 | *errorp = EADDRNOTAVAIL; | |
316670eb A |
575 | src_storage = NULL; |
576 | goto done; | |
1c79356b A |
577 | } |
578 | ||
6d2010ae A |
579 | IFA_LOCK_SPIN(&ia->ia_ifa); |
580 | *src_storage = satosin6(&ia->ia_addr)->sin6_addr; | |
581 | IFA_UNLOCK(&ia->ia_ifa); | |
582 | IFA_REMREF(&ia->ia_ifa); | |
316670eb | 583 | done: |
6d2010ae A |
584 | if (ifpp != NULL) { |
585 | /* if ifp is non-NULL, refcnt held in in6_selectif() */ | |
586 | *ifpp = ifp; | |
587 | } else if (ifp != NULL) { | |
588 | ifnet_release(ifp); | |
589 | } | |
590 | return (src_storage); | |
591 | } | |
592 | ||
593 | /* | |
594 | * Given a source IPv6 address (and route, if available), determine the best | |
595 | * interface to send the packet from. Checking for (and updating) the | |
596 | * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done | |
597 | * without any locks, based on the assumption that in the event this is | |
598 | * called from ip6_output(), the output operation is single-threaded per-pcb, | |
599 | * i.e. for any given pcb there can only be one thread performing output at | |
600 | * the IPv6 layer. | |
601 | * | |
316670eb A |
602 | * This routine is analogous to in_selectsrcif() for IPv4. Regardless of |
603 | * error, it will return an ifp with a reference held if the caller provides | |
604 | * a non-NULL retifp. The caller is responsible for checking if the | |
605 | * returned ifp is valid and release its reference at all times. | |
6d2010ae A |
606 | * |
607 | * clone - meaningful only for bsdi and freebsd | |
608 | */ | |
609 | static int | |
610 | selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock, | |
39236c6e A |
611 | struct ip6_pktopts *opts, struct ip6_moptions *mopts, |
612 | struct in6_ifaddr **retsrcia, struct route_in6 *ro, | |
6d2010ae | 613 | struct ifnet **retifp, struct rtentry **retrt, int clone, |
39236c6e | 614 | int norouteok, struct ip6_out_args *ip6oa) |
6d2010ae A |
615 | { |
616 | int error = 0; | |
316670eb | 617 | struct ifnet *ifp = NULL, *ifp0 = NULL; |
6d2010ae A |
618 | struct route_in6 *route = NULL; |
619 | struct sockaddr_in6 *sin6_next; | |
620 | struct in6_pktinfo *pi = NULL; | |
621 | struct in6_addr *dst = &dstsock->sin6_addr; | |
622 | struct ifaddr *ifa = NULL; | |
623 | char s_src[MAX_IPv6_STR_LEN], s_dst[MAX_IPv6_STR_LEN]; | |
39236c6e A |
624 | boolean_t select_srcif, proxied_ifa = FALSE, local_dst = FALSE; |
625 | unsigned int ifscope = ((ip6oa != NULL) ? | |
626 | ip6oa->ip6oa_boundif : IFSCOPE_NONE); | |
6d2010ae A |
627 | |
628 | #if 0 | |
629 | char ip6buf[INET6_ADDRSTRLEN]; | |
630 | ||
631 | if (dstsock->sin6_addr.s6_addr32[0] == 0 && | |
632 | dstsock->sin6_addr.s6_addr32[1] == 0 && | |
633 | !IN6_IS_ADDR_LOOPBACK(&dstsock->sin6_addr)) { | |
634 | printf("in6_selectroute: strange destination %s\n", | |
39236c6e | 635 | ip6_sprintf(ip6buf, &dstsock->sin6_addr)); |
6d2010ae A |
636 | } else { |
637 | printf("in6_selectroute: destination = %s%%%d\n", | |
39236c6e A |
638 | ip6_sprintf(ip6buf, &dstsock->sin6_addr), |
639 | dstsock->sin6_scope_id); /* for debug */ | |
6d2010ae A |
640 | } |
641 | #endif | |
642 | ||
643 | if (retifp != NULL) | |
644 | *retifp = NULL; | |
645 | ||
646 | if (retrt != NULL) | |
647 | *retrt = NULL; | |
648 | ||
649 | if (ip6_select_srcif_debug) { | |
650 | struct in6_addr src; | |
651 | src = (srcsock != NULL) ? srcsock->sin6_addr : in6addr_any; | |
652 | (void) inet_ntop(AF_INET6, &src, s_src, sizeof (s_src)); | |
653 | (void) inet_ntop(AF_INET6, dst, s_dst, sizeof (s_dst)); | |
654 | } | |
655 | ||
656 | /* | |
657 | * If the destination address is UNSPECIFIED addr, bail out. | |
658 | */ | |
659 | if (IN6_IS_ADDR_UNSPECIFIED(dst)) { | |
660 | error = EHOSTUNREACH; | |
661 | goto done; | |
662 | } | |
663 | ||
664 | /* | |
665 | * Perform source interface selection only if Scoped Routing | |
666 | * is enabled and a source address that isn't unspecified. | |
667 | */ | |
668 | select_srcif = (ip6_doscopedroute && srcsock != NULL && | |
669 | !IN6_IS_ADDR_UNSPECIFIED(&srcsock->sin6_addr)); | |
670 | ||
1c79356b | 671 | /* |
6d2010ae A |
672 | * If Scoped Routing is disabled, ignore the given ifscope. |
673 | * Otherwise even if source selection won't be performed, | |
674 | * we still obey IPV6_BOUND_IF. | |
1c79356b | 675 | */ |
6d2010ae A |
676 | if (!ip6_doscopedroute && ifscope != IFSCOPE_NONE) |
677 | ifscope = IFSCOPE_NONE; | |
678 | ||
679 | /* If the caller specified the outgoing interface explicitly, use it */ | |
680 | if (opts != NULL && (pi = opts->ip6po_pktinfo) != NULL && | |
681 | pi->ipi6_ifindex != 0) { | |
1c79356b | 682 | /* |
6d2010ae | 683 | * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF. |
1c79356b | 684 | */ |
6d2010ae | 685 | ifscope = pi->ipi6_ifindex; |
b0d623f7 | 686 | ifnet_head_lock_shared(); |
6d2010ae | 687 | /* ifp may be NULL if detached or out of range */ |
316670eb A |
688 | ifp = ifp0 = |
689 | ((ifscope <= if_index) ? ifindex2ifnet[ifscope] : NULL); | |
6d2010ae A |
690 | ifnet_head_done(); |
691 | if (norouteok || retrt == NULL || IN6_IS_ADDR_MULTICAST(dst)) { | |
692 | /* | |
693 | * We do not have to check or get the route for | |
694 | * multicast. If the caller didn't ask/care for | |
695 | * the route and we have no interface to use, | |
696 | * it's an error. | |
697 | */ | |
698 | if (ifp == NULL) | |
699 | error = EHOSTUNREACH; | |
700 | goto done; | |
b0d623f7 | 701 | } else { |
6d2010ae | 702 | goto getsrcif; |
1c79356b | 703 | } |
6d2010ae | 704 | } |
b0d623f7 | 705 | |
6d2010ae A |
706 | /* |
707 | * If the destination address is a multicast address and the outgoing | |
708 | * interface for the address is specified by the caller, use it. | |
709 | */ | |
710 | if (IN6_IS_ADDR_MULTICAST(dst) && mopts != NULL) { | |
711 | IM6O_LOCK(mopts); | |
316670eb | 712 | if ((ifp = ifp0 = mopts->im6o_multicast_ifp) != NULL) { |
6d2010ae A |
713 | IM6O_UNLOCK(mopts); |
714 | goto done; /* we do not need a route for multicast. */ | |
1c79356b | 715 | } |
6d2010ae A |
716 | IM6O_UNLOCK(mopts); |
717 | } | |
718 | ||
719 | getsrcif: | |
720 | /* | |
721 | * If the outgoing interface was not set via IPV6_BOUND_IF or | |
722 | * IPV6_PKTINFO, use the scope ID in the destination address. | |
723 | */ | |
724 | if (ip6_doscopedroute && ifscope == IFSCOPE_NONE) | |
725 | ifscope = dstsock->sin6_scope_id; | |
726 | ||
727 | /* | |
728 | * Perform source interface selection; the source IPv6 address | |
729 | * must belong to one of the addresses of the interface used | |
730 | * by the route. For performance reasons, do this only if | |
731 | * there is no route, or if the routing table has changed, | |
732 | * or if we haven't done source interface selection on this | |
733 | * route (for this PCB instance) before. | |
734 | */ | |
39236c6e A |
735 | if (!select_srcif) { |
736 | goto getroute; | |
737 | } else if (!ROUTE_UNUSABLE(ro) && ro->ro_srcia != NULL && | |
738 | (ro->ro_flags & ROF_SRCIF_SELECTED)) { | |
739 | if (ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) | |
740 | local_dst = TRUE; | |
741 | ifa = ro->ro_srcia; | |
742 | IFA_ADDREF(ifa); /* for caller */ | |
6d2010ae | 743 | goto getroute; |
1c79356b A |
744 | } |
745 | ||
746 | /* | |
6d2010ae A |
747 | * Given the source IPv6 address, find a suitable source interface |
748 | * to use for transmission; if a scope ID has been specified, | |
749 | * optimize the search by looking at the addresses only for that | |
750 | * interface. This is still suboptimal, however, as we need to | |
751 | * traverse the per-interface list. | |
1c79356b | 752 | */ |
6d2010ae A |
753 | if (ifscope != IFSCOPE_NONE || (ro != NULL && ro->ro_rt != NULL)) { |
754 | unsigned int scope = ifscope; | |
755 | struct ifnet *rt_ifp; | |
756 | ||
757 | rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL; | |
1c79356b | 758 | |
6d2010ae A |
759 | /* |
760 | * If no scope is specified and the route is stale (pointing | |
761 | * to a defunct interface) use the current primary interface; | |
762 | * this happens when switching between interfaces configured | |
763 | * with the same IPv6 address. Otherwise pick up the scope | |
764 | * information from the route; the ULP may have looked up a | |
765 | * correct route and we just need to verify it here and mark | |
766 | * it with the ROF_SRCIF_SELECTED flag below. | |
767 | */ | |
768 | if (scope == IFSCOPE_NONE) { | |
769 | scope = rt_ifp->if_index; | |
770 | if (scope != get_primary_ifscope(AF_INET6) && | |
39236c6e | 771 | ROUTE_UNUSABLE(ro)) |
6d2010ae | 772 | scope = get_primary_ifscope(AF_INET6); |
1c79356b A |
773 | } |
774 | ||
6d2010ae A |
775 | ifa = (struct ifaddr *) |
776 | ifa_foraddr6_scoped(&srcsock->sin6_addr, scope); | |
777 | ||
316670eb A |
778 | /* |
779 | * If we are forwarding and proxying prefix(es), see if the | |
780 | * source address is one of ours and is a proxied address; | |
781 | * if so, use it. | |
782 | */ | |
783 | if (ifa == NULL && ip6_forwarding && nd6_prproxy) { | |
784 | ifa = (struct ifaddr *) | |
785 | ifa_foraddr6(&srcsock->sin6_addr); | |
786 | if (ifa != NULL && !(proxied_ifa = | |
787 | nd6_prproxy_ifaddr((struct in6_ifaddr *)ifa))) { | |
788 | IFA_REMREF(ifa); | |
789 | ifa = NULL; | |
790 | } | |
791 | } | |
792 | ||
6d2010ae A |
793 | if (ip6_select_srcif_debug && ifa != NULL) { |
794 | if (ro->ro_rt != NULL) { | |
795 | printf("%s->%s ifscope %d->%d ifa_if %s " | |
796 | "ro_if %s\n", s_src, s_dst, ifscope, | |
797 | scope, if_name(ifa->ifa_ifp), | |
798 | if_name(rt_ifp)); | |
799 | } else { | |
800 | printf("%s->%s ifscope %d->%d ifa_if %s\n", | |
801 | s_src, s_dst, ifscope, scope, | |
802 | if_name(ifa->ifa_ifp)); | |
1c79356b | 803 | } |
1c79356b A |
804 | } |
805 | } | |
806 | ||
807 | /* | |
6d2010ae A |
808 | * Slow path; search for an interface having the corresponding source |
809 | * IPv6 address if the scope was not specified by the caller, and: | |
810 | * | |
811 | * 1) There currently isn't any route, or, | |
812 | * 2) The interface used by the route does not own that source | |
813 | * IPv6 address; in this case, the route will get blown away | |
814 | * and we'll do a more specific scoped search using the newly | |
815 | * found interface. | |
1c79356b | 816 | */ |
6d2010ae | 817 | if (ifa == NULL && ifscope == IFSCOPE_NONE) { |
39236c6e A |
818 | struct ifaddr *ifadst; |
819 | ||
820 | /* Check if the destination address is one of ours */ | |
821 | ifadst = (struct ifaddr *)ifa_foraddr6(&dstsock->sin6_addr); | |
822 | if (ifadst != NULL) { | |
823 | local_dst = TRUE; | |
824 | IFA_REMREF(ifadst); | |
825 | } | |
826 | ||
6d2010ae A |
827 | ifa = (struct ifaddr *)ifa_foraddr6(&srcsock->sin6_addr); |
828 | ||
829 | if (ip6_select_srcif_debug && ifa != NULL) { | |
830 | printf("%s->%s ifscope %d ifa_if %s\n", | |
831 | s_src, s_dst, ifscope, if_name(ifa->ifa_ifp)); | |
832 | } | |
833 | ||
834 | } | |
835 | ||
836 | getroute: | |
39236c6e | 837 | if (ifa != NULL && !proxied_ifa && !local_dst) |
6d2010ae A |
838 | ifscope = ifa->ifa_ifp->if_index; |
839 | ||
840 | /* | |
841 | * If the next hop address for the packet is specified by the caller, | |
842 | * use it as the gateway. | |
843 | */ | |
844 | if (opts != NULL && opts->ip6po_nexthop != NULL) { | |
845 | struct route_in6 *ron; | |
846 | ||
847 | sin6_next = satosin6(opts->ip6po_nexthop); | |
848 | ||
849 | /* at this moment, we only support AF_INET6 next hops */ | |
850 | if (sin6_next->sin6_family != AF_INET6) { | |
851 | error = EAFNOSUPPORT; /* or should we proceed? */ | |
852 | goto done; | |
853 | } | |
854 | ||
855 | /* | |
856 | * If the next hop is an IPv6 address, then the node identified | |
857 | * by that address must be a neighbor of the sending host. | |
858 | */ | |
859 | ron = &opts->ip6po_nextroute; | |
860 | if (ron->ro_rt != NULL) | |
861 | RT_LOCK(ron->ro_rt); | |
39236c6e A |
862 | if (ROUTE_UNUSABLE(ron) || (ron->ro_rt != NULL && |
863 | (!(ron->ro_rt->rt_flags & RTF_LLINFO) || | |
6d2010ae | 864 | (select_srcif && (ifa == NULL || |
316670eb | 865 | (ifa->ifa_ifp != ron->ro_rt->rt_ifp && !proxied_ifa))))) || |
6d2010ae A |
866 | !IN6_ARE_ADDR_EQUAL(&satosin6(&ron->ro_dst)->sin6_addr, |
867 | &sin6_next->sin6_addr)) { | |
39236c6e | 868 | if (ron->ro_rt != NULL) |
6d2010ae | 869 | RT_UNLOCK(ron->ro_rt); |
39236c6e A |
870 | |
871 | ROUTE_RELEASE(ron); | |
6d2010ae A |
872 | *satosin6(&ron->ro_dst) = *sin6_next; |
873 | } | |
874 | if (ron->ro_rt == NULL) { | |
875 | rtalloc_scoped((struct route *)ron, ifscope); | |
876 | if (ron->ro_rt != NULL) | |
877 | RT_LOCK(ron->ro_rt); | |
39236c6e | 878 | if (ROUTE_UNUSABLE(ron) || |
6d2010ae A |
879 | !(ron->ro_rt->rt_flags & RTF_LLINFO) || |
880 | !IN6_ARE_ADDR_EQUAL(&satosin6(rt_key(ron->ro_rt))-> | |
881 | sin6_addr, &sin6_next->sin6_addr)) { | |
39236c6e | 882 | if (ron->ro_rt != NULL) |
6d2010ae | 883 | RT_UNLOCK(ron->ro_rt); |
39236c6e A |
884 | |
885 | ROUTE_RELEASE(ron); | |
6d2010ae A |
886 | error = EHOSTUNREACH; |
887 | goto done; | |
888 | } | |
889 | } | |
890 | route = ron; | |
316670eb | 891 | ifp = ifp0 = ron->ro_rt->rt_ifp; |
6d2010ae A |
892 | |
893 | /* | |
894 | * When cloning is required, try to allocate a route to the | |
895 | * destination so that the caller can store path MTU | |
896 | * information. | |
897 | */ | |
898 | if (!clone) { | |
899 | if (select_srcif) { | |
900 | /* Keep the route locked */ | |
901 | goto validateroute; | |
1c79356b | 902 | } |
6d2010ae A |
903 | RT_UNLOCK(ron->ro_rt); |
904 | goto done; | |
1c79356b | 905 | } |
6d2010ae | 906 | RT_UNLOCK(ron->ro_rt); |
1c79356b A |
907 | } |
908 | ||
1c79356b | 909 | /* |
6d2010ae A |
910 | * Use a cached route if it exists and is valid, else try to allocate |
911 | * a new one. Note that we should check the address family of the | |
912 | * cached destination, in case of sharing the cache with IPv4. | |
1c79356b | 913 | */ |
6d2010ae A |
914 | if (ro == NULL) |
915 | goto done; | |
916 | if (ro->ro_rt != NULL) | |
39236c6e A |
917 | RT_LOCK_SPIN(ro->ro_rt); |
918 | if (ROUTE_UNUSABLE(ro) || (ro->ro_rt != NULL && | |
919 | (satosin6(&ro->ro_dst)->sin6_family != AF_INET6 || | |
6d2010ae A |
920 | !IN6_ARE_ADDR_EQUAL(&satosin6(&ro->ro_dst)->sin6_addr, dst) || |
921 | (select_srcif && (ifa == NULL || | |
39236c6e A |
922 | (ifa->ifa_ifp != ro->ro_rt->rt_ifp && !proxied_ifa)))))) { |
923 | if (ro->ro_rt != NULL) | |
924 | RT_UNLOCK(ro->ro_rt); | |
925 | ||
926 | ROUTE_RELEASE(ro); | |
6d2010ae A |
927 | } |
928 | if (ro->ro_rt == NULL) { | |
929 | struct sockaddr_in6 *sa6; | |
930 | ||
b0d623f7 | 931 | if (ro->ro_rt != NULL) |
b0d623f7 | 932 | RT_UNLOCK(ro->ro_rt); |
6d2010ae | 933 | /* No route yet, so try to acquire one */ |
39236c6e | 934 | bzero(&ro->ro_dst, sizeof (struct sockaddr_in6)); |
6d2010ae A |
935 | sa6 = (struct sockaddr_in6 *)&ro->ro_dst; |
936 | sa6->sin6_family = AF_INET6; | |
39236c6e | 937 | sa6->sin6_len = sizeof (struct sockaddr_in6); |
6d2010ae A |
938 | sa6->sin6_addr = *dst; |
939 | if (IN6_IS_ADDR_MULTICAST(dst)) { | |
940 | ro->ro_rt = rtalloc1_scoped( | |
941 | &((struct route *)ro)->ro_dst, 0, 0, ifscope); | |
942 | } else { | |
943 | rtalloc_scoped((struct route *)ro, ifscope); | |
1c79356b | 944 | } |
6d2010ae | 945 | if (ro->ro_rt != NULL) |
39236c6e | 946 | RT_LOCK_SPIN(ro->ro_rt); |
6d2010ae | 947 | } |
1c79356b | 948 | |
6d2010ae A |
949 | /* |
950 | * Do not care about the result if we have the nexthop | |
951 | * explicitly specified (in case we're asked to clone.) | |
952 | */ | |
953 | if (opts != NULL && opts->ip6po_nexthop != NULL) { | |
954 | if (ro->ro_rt != NULL) | |
955 | RT_UNLOCK(ro->ro_rt); | |
956 | goto done; | |
957 | } | |
958 | ||
959 | if (ro->ro_rt != NULL) { | |
960 | RT_LOCK_ASSERT_HELD(ro->ro_rt); | |
316670eb | 961 | ifp = ifp0 = ro->ro_rt->rt_ifp; |
6d2010ae A |
962 | } else { |
963 | error = EHOSTUNREACH; | |
964 | } | |
965 | route = ro; | |
966 | ||
967 | validateroute: | |
968 | if (select_srcif) { | |
969 | boolean_t has_route = (route != NULL && route->ro_rt != NULL); | |
316670eb | 970 | boolean_t srcif_selected = FALSE; |
6d2010ae A |
971 | |
972 | if (has_route) | |
973 | RT_LOCK_ASSERT_HELD(route->ro_rt); | |
1c79356b | 974 | /* |
6d2010ae A |
975 | * If there is a non-loopback route with the wrong interface, |
976 | * or if there is no interface configured with such an address, | |
977 | * blow it away. Except for local/loopback, we look for one | |
978 | * with a matching interface scope/index. | |
1c79356b | 979 | */ |
6d2010ae A |
980 | if (has_route && (ifa == NULL || |
981 | (ifa->ifa_ifp != ifp && ifp != lo_ifp) || | |
982 | !(route->ro_rt->rt_flags & RTF_UP))) { | |
316670eb A |
983 | /* |
984 | * If the destination address belongs to a proxied | |
985 | * prefix, relax the requirement and allow the packet | |
986 | * to come out of the proxy interface with the source | |
987 | * address of the real interface. | |
988 | */ | |
989 | if (ifa != NULL && proxied_ifa && | |
990 | (route->ro_rt->rt_flags & (RTF_UP|RTF_PROXY)) == | |
991 | (RTF_UP|RTF_PROXY)) { | |
992 | srcif_selected = TRUE; | |
993 | } else { | |
994 | if (ip6_select_srcif_debug) { | |
995 | if (ifa != NULL) { | |
996 | printf("%s->%s ifscope %d " | |
997 | "ro_if %s != ifa_if %s " | |
998 | "(cached route cleared)\n", | |
999 | s_src, s_dst, | |
1000 | ifscope, if_name(ifp), | |
1001 | if_name(ifa->ifa_ifp)); | |
1002 | } else { | |
1003 | printf("%s->%s ifscope %d " | |
1004 | "ro_if %s (no ifa_if " | |
1005 | "found)\n", s_src, s_dst, | |
1006 | ifscope, if_name(ifp)); | |
1007 | } | |
6d2010ae | 1008 | } |
316670eb | 1009 | RT_UNLOCK(route->ro_rt); |
39236c6e | 1010 | ROUTE_RELEASE(route); |
316670eb A |
1011 | error = EHOSTUNREACH; |
1012 | /* Undo the settings done above */ | |
1013 | route = NULL; | |
1014 | ifp = NULL; /* ditch ifp; keep ifp0 */ | |
1015 | has_route = FALSE; | |
91447636 | 1016 | } |
6d2010ae | 1017 | } else if (has_route) { |
316670eb A |
1018 | srcif_selected = TRUE; |
1019 | } | |
1020 | ||
1021 | if (srcif_selected) { | |
1022 | VERIFY(has_route); | |
39236c6e A |
1023 | if (ifa != route->ro_srcia || |
1024 | !(route->ro_flags & ROF_SRCIF_SELECTED)) { | |
1025 | RT_CONVERT_LOCK(route->ro_rt); | |
1026 | if (ifa != NULL) | |
1027 | IFA_ADDREF(ifa); /* for route_in6 */ | |
1028 | if (route->ro_srcia != NULL) | |
1029 | IFA_REMREF(route->ro_srcia); | |
1030 | route->ro_srcia = ifa; | |
1031 | route->ro_flags |= ROF_SRCIF_SELECTED; | |
1032 | RT_GENID_SYNC(route->ro_rt); | |
1033 | } | |
6d2010ae A |
1034 | RT_UNLOCK(route->ro_rt); |
1035 | } | |
1036 | } else { | |
1037 | if (ro->ro_rt != NULL) | |
b0d623f7 | 1038 | RT_UNLOCK(ro->ro_rt); |
6d2010ae A |
1039 | if (ifp != NULL && opts != NULL && |
1040 | opts->ip6po_pktinfo != NULL && | |
1041 | opts->ip6po_pktinfo->ipi6_ifindex != 0) { | |
1042 | /* | |
1043 | * Check if the outgoing interface conflicts with the | |
1044 | * interface specified by ipi6_ifindex (if specified). | |
1045 | * Note that loopback interface is always okay. | |
1046 | * (this may happen when we are sending a packet to | |
1047 | * one of our own addresses.) | |
1048 | */ | |
1049 | if (!(ifp->if_flags & IFF_LOOPBACK) && ifp->if_index != | |
1050 | opts->ip6po_pktinfo->ipi6_ifindex) { | |
1051 | error = EHOSTUNREACH; | |
1052 | goto done; | |
1053 | } | |
1c79356b | 1054 | } |
6d2010ae A |
1055 | } |
1056 | ||
1057 | done: | |
fe8ab488 A |
1058 | /* |
1059 | * Check for interface restrictions. | |
1060 | */ | |
1061 | #define CHECK_RESTRICTIONS(_ip6oa, _ifp) \ | |
1062 | ((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \ | |
1063 | IFNET_IS_CELLULAR(_ifp)) || \ | |
1064 | (((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \ | |
1065 | IFNET_IS_EXPENSIVE(_ifp)) || \ | |
1066 | (!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \ | |
1067 | IFNET_IS_AWDL_RESTRICTED(_ifp))) | |
1068 | ||
1069 | if (error == 0 && ip6oa != NULL && | |
1070 | ((ifp && CHECK_RESTRICTIONS(ip6oa, ifp)) || | |
1071 | (route && route->ro_rt && | |
1072 | CHECK_RESTRICTIONS(ip6oa, route->ro_rt->rt_ifp)))) { | |
1073 | if (route != NULL && route->ro_rt != NULL) { | |
1074 | ROUTE_RELEASE(route); | |
1075 | route = NULL; | |
6d2010ae | 1076 | } |
fe8ab488 A |
1077 | ifp = NULL; /* ditch ifp; keep ifp0 */ |
1078 | error = EHOSTUNREACH; | |
1079 | ip6oa->ip6oa_retflags |= IP6OARF_IFDENIED; | |
6d2010ae | 1080 | } |
fe8ab488 | 1081 | #undef CHECK_RESTRICTIONS |
6d2010ae | 1082 | |
39236c6e A |
1083 | /* |
1084 | * If the interface is disabled for IPv6, then ENETDOWN error. | |
1085 | */ | |
1086 | if (error == 0 && | |
1087 | ifp != NULL && (ifp->if_eflags & IFEF_IPV6_DISABLED)) { | |
1088 | error = ENETDOWN; | |
1089 | } | |
1090 | ||
6d2010ae | 1091 | if (ifp == NULL && (route == NULL || route->ro_rt == NULL)) { |
1c79356b | 1092 | /* |
6d2010ae A |
1093 | * This can happen if the caller did not pass a cached route |
1094 | * nor any other hints. We treat this case an error. | |
1c79356b | 1095 | */ |
6d2010ae A |
1096 | error = EHOSTUNREACH; |
1097 | } | |
39236c6e | 1098 | if (error == EHOSTUNREACH || error == ENETDOWN) |
6d2010ae | 1099 | ip6stat.ip6s_noroute++; |
1c79356b | 1100 | |
316670eb A |
1101 | /* |
1102 | * We'll return ifp regardless of error, so pick it up from ifp0 | |
1103 | * in case it was nullified above. Caller is responsible for | |
1104 | * releasing the ifp if it is non-NULL. | |
1105 | */ | |
1106 | ifp = ifp0; | |
1107 | if (retifp != NULL) { | |
1108 | if (ifp != NULL) | |
1109 | ifnet_reference(ifp); /* for caller */ | |
1110 | *retifp = ifp; | |
1111 | } | |
1112 | ||
39236c6e A |
1113 | if (retsrcia != NULL) { |
1114 | if (ifa != NULL) | |
1115 | IFA_ADDREF(ifa); /* for caller */ | |
1116 | *retsrcia = (struct in6_ifaddr *)ifa; | |
1117 | } | |
1118 | ||
6d2010ae | 1119 | if (error == 0) { |
6d2010ae A |
1120 | if (retrt != NULL && route != NULL) |
1121 | *retrt = route->ro_rt; /* ro_rt may be NULL */ | |
1122 | } else if (select_srcif && ip6_select_srcif_debug) { | |
1123 | printf("%s->%s ifscope %d ifa_if %s ro_if %s (error=%d)\n", | |
1124 | s_src, s_dst, ifscope, | |
1125 | (ifa != NULL) ? if_name(ifa->ifa_ifp) : "NONE", | |
1126 | (ifp != NULL) ? if_name(ifp) : "NONE", error); | |
1c79356b A |
1127 | } |
1128 | ||
6d2010ae A |
1129 | if (ifa != NULL) |
1130 | IFA_REMREF(ifa); | |
1131 | ||
1132 | return (error); | |
1133 | } | |
1134 | ||
316670eb A |
1135 | /* |
1136 | * Regardless of error, it will return an ifp with a reference held if the | |
1137 | * caller provides a non-NULL retifp. The caller is responsible for checking | |
1138 | * if the returned ifp is valid and release its reference at all times. | |
1139 | */ | |
6d2010ae A |
1140 | static int |
1141 | in6_selectif(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, | |
316670eb | 1142 | struct ip6_moptions *mopts, struct route_in6 *ro, |
39236c6e | 1143 | struct ip6_out_args *ip6oa, struct ifnet **retifp) |
6d2010ae | 1144 | { |
316670eb | 1145 | int err = 0; |
6d2010ae A |
1146 | struct route_in6 sro; |
1147 | struct rtentry *rt = NULL; | |
1148 | ||
1149 | if (ro == NULL) { | |
39236c6e | 1150 | bzero(&sro, sizeof (sro)); |
6d2010ae A |
1151 | ro = &sro; |
1152 | } | |
1153 | ||
39236c6e | 1154 | if ((err = selectroute(NULL, dstsock, opts, mopts, NULL, ro, retifp, |
316670eb A |
1155 | &rt, 0, 1, ip6oa)) != 0) |
1156 | goto done; | |
6d2010ae A |
1157 | |
1158 | /* | |
1159 | * do not use a rejected or black hole route. | |
1160 | * XXX: this check should be done in the L2 output routine. | |
1161 | * However, if we skipped this check here, we'd see the following | |
1162 | * scenario: | |
1163 | * - install a rejected route for a scoped address prefix | |
1164 | * (like fe80::/10) | |
1165 | * - send a packet to a destination that matches the scoped prefix, | |
1166 | * with ambiguity about the scope zone. | |
1167 | * - pick the outgoing interface from the route, and disambiguate the | |
1168 | * scope zone with the interface. | |
1169 | * - ip6_output() would try to get another route with the "new" | |
1170 | * destination, which may be valid. | |
1171 | * - we'd see no error on output. | |
1172 | * Although this may not be very harmful, it should still be confusing. | |
1173 | * We thus reject the case here. | |
1174 | */ | |
1175 | if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE))) { | |
316670eb A |
1176 | err = ((rt->rt_flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH); |
1177 | goto done; | |
6d2010ae A |
1178 | } |
1179 | ||
1180 | /* | |
1181 | * Adjust the "outgoing" interface. If we're going to loop the packet | |
1182 | * back to ourselves, the ifp would be the loopback interface. | |
1183 | * However, we'd rather know the interface associated to the | |
1184 | * destination address (which should probably be one of our own | |
1185 | * addresses.) | |
1186 | */ | |
316670eb A |
1187 | if (rt != NULL && rt->rt_ifa != NULL && rt->rt_ifa->ifa_ifp != NULL && |
1188 | retifp != NULL) { | |
1189 | ifnet_reference(rt->rt_ifa->ifa_ifp); | |
6d2010ae A |
1190 | if (*retifp != NULL) |
1191 | ifnet_release(*retifp); | |
1192 | *retifp = rt->rt_ifa->ifa_ifp; | |
6d2010ae A |
1193 | } |
1194 | ||
316670eb | 1195 | done: |
39236c6e A |
1196 | if (ro == &sro) { |
1197 | VERIFY(rt == NULL || rt == ro->ro_rt); | |
1198 | ROUTE_RELEASE(ro); | |
1199 | } | |
316670eb A |
1200 | |
1201 | /* | |
1202 | * retifp might point to a valid ifp with a reference held; | |
1203 | * caller is responsible for releasing it if non-NULL. | |
1204 | */ | |
1205 | return (err); | |
6d2010ae A |
1206 | } |
1207 | ||
1208 | /* | |
316670eb A |
1209 | * Regardless of error, it will return an ifp with a reference held if the |
1210 | * caller provides a non-NULL retifp. The caller is responsible for checking | |
1211 | * if the returned ifp is valid and release its reference at all times. | |
1212 | * | |
6d2010ae A |
1213 | * clone - meaningful only for bsdi and freebsd |
1214 | */ | |
1215 | int | |
1216 | in6_selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock, | |
39236c6e A |
1217 | struct ip6_pktopts *opts, struct ip6_moptions *mopts, |
1218 | struct in6_ifaddr **retsrcia, struct route_in6 *ro, struct ifnet **retifp, | |
1219 | struct rtentry **retrt, int clone, struct ip6_out_args *ip6oa) | |
6d2010ae A |
1220 | { |
1221 | ||
39236c6e | 1222 | return (selectroute(srcsock, dstsock, opts, mopts, retsrcia, ro, retifp, |
316670eb | 1223 | retrt, clone, 0, ip6oa)); |
1c79356b A |
1224 | } |
1225 | ||
1226 | /* | |
1227 | * Default hop limit selection. The precedence is as follows: | |
1228 | * 1. Hoplimit value specified via ioctl. | |
1229 | * 2. (If the outgoing interface is detected) the current | |
1230 | * hop limit of the interface specified by router advertisement. | |
1231 | * 3. The system default hoplimit. | |
39236c6e | 1232 | */ |
1c79356b | 1233 | int |
39236c6e | 1234 | in6_selecthlim(struct in6pcb *in6p, struct ifnet *ifp) |
1c79356b | 1235 | { |
b0d623f7 | 1236 | if (in6p && in6p->in6p_hops >= 0) { |
39236c6e | 1237 | return (in6p->in6p_hops); |
b0d623f7 A |
1238 | } else { |
1239 | lck_rw_lock_shared(nd_if_rwlock); | |
1240 | if (ifp && ifp->if_index < nd_ifinfo_indexlim) { | |
316670eb A |
1241 | u_int8_t chlim; |
1242 | struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index]; | |
1243 | ||
1244 | if (ndi->initialized) { | |
39236c6e | 1245 | /* access chlim without lock, for performance */ |
316670eb | 1246 | chlim = ndi->chlim; |
316670eb A |
1247 | } else { |
1248 | chlim = ip6_defhlim; | |
1249 | } | |
b0d623f7 A |
1250 | lck_rw_done(nd_if_rwlock); |
1251 | return (chlim); | |
1252 | } else { | |
1253 | lck_rw_done(nd_if_rwlock); | |
39236c6e | 1254 | return (ip6_defhlim); |
b0d623f7 A |
1255 | } |
1256 | } | |
1c79356b | 1257 | } |
1c79356b | 1258 | |
1c79356b | 1259 | /* |
9bccf70c A |
1260 | * XXX: this is borrowed from in6_pcbbind(). If possible, we should |
1261 | * share this function by all *bsd*... | |
1c79356b | 1262 | */ |
1c79356b | 1263 | int |
39236c6e A |
1264 | in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct proc *p, |
1265 | int locked) | |
1c79356b | 1266 | { |
39236c6e | 1267 | #pragma unused(laddr) |
9bccf70c A |
1268 | struct socket *so = inp->inp_socket; |
1269 | u_int16_t lport = 0, first, last, *lastport; | |
1270 | int count, error = 0, wild = 0; | |
1271 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; | |
6d2010ae | 1272 | kauth_cred_t cred; |
91447636 | 1273 | if (!locked) { /* Make sure we don't run into a deadlock: 4052373 */ |
39236c6e | 1274 | if (!lck_rw_try_lock_exclusive(pcbinfo->ipi_lock)) { |
91447636 | 1275 | socket_unlock(inp->inp_socket, 0); |
39236c6e | 1276 | lck_rw_lock_exclusive(pcbinfo->ipi_lock); |
91447636 A |
1277 | socket_lock(inp->inp_socket, 0); |
1278 | } | |
fe8ab488 A |
1279 | |
1280 | /* | |
1281 | * Check if a local port was assigned to the inp while | |
1282 | * this thread was waiting for the pcbinfo lock | |
1283 | */ | |
1284 | if (inp->inp_lport != 0) { | |
1285 | VERIFY(inp->inp_flags2 & INP2_INHASHLIST); | |
1286 | lck_rw_done(pcbinfo->ipi_lock); | |
1287 | ||
1288 | /* | |
1289 | * It is not an error if another thread allocated | |
1290 | * a port | |
1291 | */ | |
1292 | return (0); | |
1293 | } | |
91447636 | 1294 | } |
1c79356b A |
1295 | |
1296 | /* XXX: this is redundant when called from in6_pcbbind */ | |
9bccf70c A |
1297 | if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) |
1298 | wild = INPLOOKUP_WILDCARD; | |
1299 | ||
9bccf70c A |
1300 | if (inp->inp_flags & INP_HIGHPORT) { |
1301 | first = ipport_hifirstauto; /* sysctl */ | |
1302 | last = ipport_hilastauto; | |
39236c6e | 1303 | lastport = &pcbinfo->ipi_lasthi; |
9bccf70c | 1304 | } else if (inp->inp_flags & INP_LOWPORT) { |
6d2010ae A |
1305 | cred = kauth_cred_proc_ref(p); |
1306 | error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); | |
1307 | kauth_cred_unref(&cred); | |
1308 | if (error != 0) { | |
91447636 | 1309 | if (!locked) |
39236c6e A |
1310 | lck_rw_done(pcbinfo->ipi_lock); |
1311 | return (error); | |
91447636 | 1312 | } |
9bccf70c A |
1313 | first = ipport_lowfirstauto; /* 1023 */ |
1314 | last = ipport_lowlastauto; /* 600 */ | |
39236c6e | 1315 | lastport = &pcbinfo->ipi_lastlow; |
1c79356b | 1316 | } else { |
9bccf70c A |
1317 | first = ipport_firstauto; /* sysctl */ |
1318 | last = ipport_lastauto; | |
39236c6e | 1319 | lastport = &pcbinfo->ipi_lastport; |
9bccf70c A |
1320 | } |
1321 | /* | |
1322 | * Simple check to ensure all ports are not used up causing | |
1323 | * a deadlock here. | |
1324 | * | |
1325 | * We split the two cases (up and down) so that the direction | |
1326 | * is not being tested on each round of the loop. | |
1327 | */ | |
1328 | if (first > last) { | |
1329 | /* | |
1330 | * counting down | |
1331 | */ | |
1332 | count = first - last; | |
1333 | ||
1334 | do { | |
1335 | if (count-- < 0) { /* completely used? */ | |
1336 | /* | |
1337 | * Undo any address bind that may have | |
1338 | * occurred above. | |
1339 | */ | |
1340 | inp->in6p_laddr = in6addr_any; | |
316670eb | 1341 | inp->in6p_last_outifp = NULL; |
91447636 | 1342 | if (!locked) |
39236c6e | 1343 | lck_rw_done(pcbinfo->ipi_lock); |
9bccf70c A |
1344 | return (EAGAIN); |
1345 | } | |
1346 | --*lastport; | |
1347 | if (*lastport > first || *lastport < last) | |
1348 | *lastport = first; | |
1349 | lport = htons(*lastport); | |
39236c6e A |
1350 | } while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, |
1351 | wild)); | |
9bccf70c | 1352 | } else { |
39236c6e | 1353 | /* counting up */ |
9bccf70c A |
1354 | count = last - first; |
1355 | ||
1356 | do { | |
1357 | if (count-- < 0) { /* completely used? */ | |
1358 | /* | |
1359 | * Undo any address bind that may have | |
1360 | * occurred above. | |
1361 | */ | |
1362 | inp->in6p_laddr = in6addr_any; | |
316670eb | 1363 | inp->in6p_last_outifp = NULL; |
91447636 | 1364 | if (!locked) |
39236c6e | 1365 | lck_rw_done(pcbinfo->ipi_lock); |
9bccf70c A |
1366 | return (EAGAIN); |
1367 | } | |
1368 | ++*lastport; | |
1369 | if (*lastport < first || *lastport > last) | |
1370 | *lastport = first; | |
1371 | lport = htons(*lastport); | |
39236c6e A |
1372 | } while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, |
1373 | wild)); | |
1c79356b A |
1374 | } |
1375 | ||
9bccf70c | 1376 | inp->inp_lport = lport; |
fe8ab488 A |
1377 | inp->inp_flags |= INP_ANONPORT; |
1378 | ||
91447636 | 1379 | if (in_pcbinshash(inp, 1) != 0) { |
9bccf70c | 1380 | inp->in6p_laddr = in6addr_any; |
316670eb | 1381 | inp->in6p_last_outifp = NULL; |
fe8ab488 A |
1382 | |
1383 | inp->inp_lport = 0; | |
1384 | inp->inp_flags &= ~INP_ANONPORT; | |
91447636 | 1385 | if (!locked) |
39236c6e | 1386 | lck_rw_done(pcbinfo->ipi_lock); |
9bccf70c A |
1387 | return (EAGAIN); |
1388 | } | |
1389 | ||
91447636 | 1390 | if (!locked) |
39236c6e A |
1391 | lck_rw_done(pcbinfo->ipi_lock); |
1392 | return (0); | |
9bccf70c A |
1393 | } |
1394 | ||
6d2010ae | 1395 | /* |
39236c6e A |
1396 | * The followings are implementation of the policy table using a |
1397 | * simple tail queue. | |
1398 | * XXX such details should be hidden. | |
1399 | * XXX implementation using binary tree should be more efficient. | |
1400 | */ | |
6d2010ae | 1401 | struct addrsel_policyent { |
39236c6e A |
1402 | TAILQ_ENTRY(addrsel_policyent) ape_entry; |
1403 | struct in6_addrpolicy ape_policy; | |
6d2010ae A |
1404 | }; |
1405 | ||
1406 | TAILQ_HEAD(addrsel_policyhead, addrsel_policyent); | |
1407 | ||
1408 | struct addrsel_policyhead addrsel_policytab; | |
1409 | ||
1410 | static void | |
1411 | init_policy_queue(void) | |
1412 | { | |
39236c6e | 1413 | TAILQ_INIT(&addrsel_policytab); |
6d2010ae A |
1414 | } |
1415 | ||
1416 | void | |
1417 | addrsel_policy_init(void) | |
1418 | { | |
1419 | /* | |
fe8ab488 | 1420 | * Default address selection policy based on RFC 6724. |
6d2010ae A |
1421 | */ |
1422 | static const struct in6_addrpolicy defaddrsel[] = { | |
fe8ab488 | 1423 | /* Loopback -- prefix=::1/128, precedence=50, label=0 */ |
39236c6e A |
1424 | { |
1425 | .addr = { | |
1426 | .sin6_family = AF_INET6, | |
6d2010ae | 1427 | .sin6_addr = IN6ADDR_LOOPBACK_INIT, |
39236c6e A |
1428 | .sin6_len = sizeof (struct sockaddr_in6) |
1429 | }, | |
1430 | .addrmask = { | |
1431 | .sin6_family = AF_INET6, | |
1432 | .sin6_addr = IN6MASK128, | |
1433 | .sin6_len = sizeof (struct sockaddr_in6) | |
1434 | }, | |
fe8ab488 | 1435 | .preced = 50, |
39236c6e A |
1436 | .label = 0 |
1437 | }, | |
1438 | ||
fe8ab488 | 1439 | /* Unspecified -- prefix=::/0, precedence=40, label=1 */ |
39236c6e A |
1440 | { |
1441 | .addr = { | |
1442 | .sin6_family = AF_INET6, | |
fe8ab488 | 1443 | .sin6_addr = IN6ADDR_ANY_INIT, |
39236c6e A |
1444 | .sin6_len = sizeof (struct sockaddr_in6) |
1445 | }, | |
1446 | .addrmask = { | |
1447 | .sin6_family = AF_INET6, | |
fe8ab488 | 1448 | .sin6_addr = IN6MASK0, |
39236c6e A |
1449 | .sin6_len = sizeof (struct sockaddr_in6) |
1450 | }, | |
fe8ab488 | 1451 | .preced = 40, |
39236c6e A |
1452 | .label = 1 |
1453 | }, | |
1454 | ||
fe8ab488 | 1455 | /* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */ |
39236c6e A |
1456 | { |
1457 | .addr = { | |
1458 | .sin6_family = AF_INET6, | |
fe8ab488 | 1459 | .sin6_addr = IN6ADDR_V4MAPPED_INIT, |
39236c6e A |
1460 | .sin6_len = sizeof (struct sockaddr_in6) |
1461 | }, | |
1462 | .addrmask = { | |
1463 | .sin6_family = AF_INET6, | |
fe8ab488 | 1464 | .sin6_addr = IN6MASK96, |
39236c6e A |
1465 | .sin6_len = sizeof (struct sockaddr_in6) |
1466 | }, | |
fe8ab488 A |
1467 | .preced = 35, |
1468 | .label = 4 | |
1469 | }, | |
39236c6e | 1470 | |
fe8ab488 | 1471 | /* 6to4 -- prefix=2002::/16, precedence=30, label=2 */ |
39236c6e A |
1472 | { |
1473 | .addr = { | |
1474 | .sin6_family = AF_INET6, | |
fe8ab488 | 1475 | .sin6_addr = {{{ 0x20, 0x02 }}}, |
39236c6e A |
1476 | .sin6_len = sizeof (struct sockaddr_in6) |
1477 | }, | |
1478 | .addrmask = { | |
1479 | .sin6_family = AF_INET6, | |
fe8ab488 | 1480 | .sin6_addr = IN6MASK16, |
39236c6e A |
1481 | .sin6_len = sizeof (struct sockaddr_in6) |
1482 | }, | |
1483 | .preced = 30, | |
fe8ab488 | 1484 | .label = 2 |
39236c6e A |
1485 | }, |
1486 | ||
fe8ab488 | 1487 | /* Teredo -- prefix=2001::/32, precedence=5, label=5 */ |
39236c6e A |
1488 | { |
1489 | .addr = { | |
1490 | .sin6_family = AF_INET6, | |
fe8ab488 | 1491 | .sin6_addr = {{{ 0x20, 0x01 }}}, |
39236c6e A |
1492 | .sin6_len = sizeof (struct sockaddr_in6) |
1493 | }, | |
1494 | .addrmask = { | |
1495 | .sin6_family = AF_INET6, | |
fe8ab488 | 1496 | .sin6_addr = IN6MASK32, |
39236c6e A |
1497 | .sin6_len = sizeof (struct sockaddr_in6) |
1498 | }, | |
fe8ab488 A |
1499 | .preced = 5, |
1500 | .label = 5 | |
39236c6e A |
1501 | }, |
1502 | ||
fe8ab488 | 1503 | /* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */ |
39236c6e A |
1504 | { |
1505 | .addr = { | |
1506 | .sin6_family = AF_INET6, | |
fe8ab488 | 1507 | .sin6_addr = {{{ 0xfc }}}, |
39236c6e A |
1508 | .sin6_len = sizeof (struct sockaddr_in6) |
1509 | }, | |
1510 | .addrmask = { | |
1511 | .sin6_family = AF_INET6, | |
fe8ab488 | 1512 | .sin6_addr = IN6MASK7, |
39236c6e A |
1513 | .sin6_len = sizeof (struct sockaddr_in6) |
1514 | }, | |
fe8ab488 A |
1515 | .preced = 3, |
1516 | .label = 13 | |
39236c6e A |
1517 | }, |
1518 | ||
fe8ab488 | 1519 | /* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */ |
39236c6e A |
1520 | { |
1521 | .addr = { | |
1522 | .sin6_family = AF_INET6, | |
6d2010ae | 1523 | .sin6_addr = IN6ADDR_ANY_INIT, |
39236c6e A |
1524 | .sin6_len = sizeof (struct sockaddr_in6) |
1525 | }, | |
1526 | .addrmask = { | |
1527 | .sin6_family = AF_INET6, | |
1528 | .sin6_addr = IN6MASK96, | |
1529 | .sin6_len = sizeof (struct sockaddr_in6) | |
1530 | }, | |
1531 | .preced = 1, | |
fe8ab488 | 1532 | .label = 3 |
39236c6e A |
1533 | }, |
1534 | ||
fe8ab488 | 1535 | /* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */ |
39236c6e A |
1536 | { |
1537 | .addr = { | |
1538 | .sin6_family = AF_INET6, | |
6d2010ae | 1539 | .sin6_addr = {{{ 0xfe, 0xc0 }}}, |
39236c6e A |
1540 | .sin6_len = sizeof (struct sockaddr_in6) |
1541 | }, | |
1542 | .addrmask = { | |
1543 | .sin6_family = AF_INET6, | |
1544 | .sin6_addr = IN6MASK16, | |
1545 | .sin6_len = sizeof (struct sockaddr_in6) | |
1546 | }, | |
1547 | .preced = 1, | |
1548 | .label = 11 | |
1549 | }, | |
1550 | ||
fe8ab488 | 1551 | /* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */ |
39236c6e A |
1552 | { |
1553 | .addr = { | |
1554 | .sin6_family = AF_INET6, | |
6d2010ae | 1555 | .sin6_addr = {{{ 0x3f, 0xfe }}}, |
39236c6e A |
1556 | .sin6_len = sizeof (struct sockaddr_in6) |
1557 | }, | |
1558 | .addrmask = { | |
1559 | .sin6_family = AF_INET6, | |
1560 | .sin6_addr = IN6MASK16, | |
1561 | .sin6_len = sizeof (struct sockaddr_in6) | |
1562 | }, | |
1563 | .preced = 1, | |
1564 | .label = 12 | |
1565 | }, | |
6d2010ae A |
1566 | }; |
1567 | int i; | |
1568 | ||
1569 | init_policy_queue(); | |
1570 | ||
1571 | /* initialize the "last resort" policy */ | |
39236c6e | 1572 | bzero(&defaultaddrpolicy, sizeof (defaultaddrpolicy)); |
6d2010ae A |
1573 | defaultaddrpolicy.label = ADDR_LABEL_NOTAPP; |
1574 | ||
39236c6e | 1575 | for (i = 0; i < sizeof (defaddrsel) / sizeof (defaddrsel[0]); i++) |
6d2010ae A |
1576 | add_addrsel_policyent(&defaddrsel[i]); |
1577 | ||
1578 | } | |
1579 | ||
1580 | struct in6_addrpolicy * | |
1581 | in6_addrsel_lookup_policy(struct sockaddr_in6 *key) | |
1582 | { | |
1583 | struct in6_addrpolicy *match = NULL; | |
1584 | ||
1585 | ADDRSEL_LOCK(); | |
1586 | match = match_addrsel_policy(key); | |
1587 | ||
1588 | if (match == NULL) | |
1589 | match = &defaultaddrpolicy; | |
1590 | else | |
1591 | match->use++; | |
1592 | ADDRSEL_UNLOCK(); | |
1593 | ||
1594 | return (match); | |
1595 | } | |
1596 | ||
1597 | static struct in6_addrpolicy * | |
1598 | match_addrsel_policy(struct sockaddr_in6 *key) | |
1599 | { | |
1600 | struct addrsel_policyent *pent; | |
1601 | struct in6_addrpolicy *bestpol = NULL, *pol; | |
1602 | int matchlen, bestmatchlen = -1; | |
1603 | u_char *mp, *ep, *k, *p, m; | |
1604 | ||
1605 | TAILQ_FOREACH(pent, &addrsel_policytab, ape_entry) { | |
1606 | matchlen = 0; | |
1607 | ||
1608 | pol = &pent->ape_policy; | |
1609 | mp = (u_char *)&pol->addrmask.sin6_addr; | |
1610 | ep = mp + 16; /* XXX: scope field? */ | |
1611 | k = (u_char *)&key->sin6_addr; | |
1612 | p = (u_char *)&pol->addr.sin6_addr; | |
1613 | for (; mp < ep && *mp; mp++, k++, p++) { | |
1614 | m = *mp; | |
1615 | if ((*k & m) != *p) | |
1616 | goto next; /* not match */ | |
1617 | if (m == 0xff) /* short cut for a typical case */ | |
1618 | matchlen += 8; | |
1619 | else { | |
1620 | while (m >= 0x80) { | |
1621 | matchlen++; | |
1622 | m <<= 1; | |
1623 | } | |
1624 | } | |
1625 | } | |
1626 | ||
1627 | /* matched. check if this is better than the current best. */ | |
1628 | if (bestpol == NULL || | |
1629 | matchlen > bestmatchlen) { | |
1630 | bestpol = pol; | |
1631 | bestmatchlen = matchlen; | |
1632 | } | |
1633 | ||
39236c6e | 1634 | next: |
6d2010ae A |
1635 | continue; |
1636 | } | |
1637 | ||
1638 | return (bestpol); | |
39236c6e | 1639 | } |
6d2010ae A |
1640 | |
1641 | static int | |
1642 | add_addrsel_policyent(const struct in6_addrpolicy *newpolicy) | |
1643 | { | |
1644 | struct addrsel_policyent *new, *pol; | |
1645 | ||
39236c6e A |
1646 | MALLOC(new, struct addrsel_policyent *, sizeof (*new), M_IFADDR, |
1647 | M_WAITOK); | |
6d2010ae A |
1648 | |
1649 | ADDRSEL_LOCK(); | |
1650 | ||
1651 | /* duplication check */ | |
1652 | TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) { | |
1653 | if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr, | |
39236c6e | 1654 | &pol->ape_policy.addr.sin6_addr) && |
6d2010ae | 1655 | IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr, |
39236c6e | 1656 | &pol->ape_policy.addrmask.sin6_addr)) { |
6d2010ae A |
1657 | ADDRSEL_UNLOCK(); |
1658 | FREE(new, M_IFADDR); | |
1659 | return (EEXIST); /* or override it? */ | |
1660 | } | |
1661 | } | |
1662 | ||
39236c6e | 1663 | bzero(new, sizeof (*new)); |
6d2010ae A |
1664 | |
1665 | /* XXX: should validate entry */ | |
1666 | new->ape_policy = *newpolicy; | |
1667 | ||
1668 | TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry); | |
1669 | ADDRSEL_UNLOCK(); | |
1670 | ||
1671 | return (0); | |
1672 | } | |
1673 | #ifdef ENABLE_ADDRSEL | |
1674 | static int | |
1675 | delete_addrsel_policyent(const struct in6_addrpolicy *key) | |
1676 | { | |
1677 | struct addrsel_policyent *pol; | |
1678 | ||
1679 | ||
1680 | ADDRSEL_LOCK(); | |
1681 | ||
1682 | /* search for the entry in the table */ | |
1683 | TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) { | |
1684 | if (IN6_ARE_ADDR_EQUAL(&key->addr.sin6_addr, | |
1685 | &pol->ape_policy.addr.sin6_addr) && | |
1686 | IN6_ARE_ADDR_EQUAL(&key->addrmask.sin6_addr, | |
1687 | &pol->ape_policy.addrmask.sin6_addr)) { | |
1688 | break; | |
1689 | } | |
1690 | } | |
1691 | if (pol == NULL) { | |
1692 | ADDRSEL_UNLOCK(); | |
1693 | return (ESRCH); | |
1694 | } | |
1695 | ||
1696 | TAILQ_REMOVE(&addrsel_policytab, pol, ape_entry); | |
1697 | FREE(pol, M_IFADDR); | |
1698 | pol = NULL; | |
1699 | ADDRSEL_UNLOCK(); | |
1700 | ||
1701 | return (0); | |
1702 | } | |
1703 | #endif /* ENABLE_ADDRSEL */ | |
1704 | ||
1705 | int | |
1706 | walk_addrsel_policy(int (*callback)(const struct in6_addrpolicy *, void *), | |
1707 | void *w) | |
1708 | { | |
1709 | struct addrsel_policyent *pol; | |
1710 | int error = 0; | |
1711 | ||
1712 | ADDRSEL_LOCK(); | |
1713 | TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) { | |
1714 | if ((error = (*callback)(&pol->ape_policy, w)) != 0) { | |
1715 | ADDRSEL_UNLOCK(); | |
1716 | return (error); | |
1717 | } | |
1718 | } | |
1719 | ADDRSEL_UNLOCK(); | |
1720 | return (error); | |
1721 | } | |
1722 | /* | |
1723 | * Subroutines to manage the address selection policy table via sysctl. | |
1724 | */ | |
1725 | struct walkarg { | |
1726 | struct sysctl_req *w_req; | |
1727 | }; | |
1728 | ||
1729 | ||
1730 | static int | |
1731 | dump_addrsel_policyent(const struct in6_addrpolicy *pol, void *arg) | |
1732 | { | |
1733 | int error = 0; | |
1734 | struct walkarg *w = arg; | |
1735 | ||
39236c6e | 1736 | error = SYSCTL_OUT(w->w_req, pol, sizeof (*pol)); |
6d2010ae A |
1737 | |
1738 | return (error); | |
1739 | } | |
1740 | ||
1741 | static int | |
39236c6e | 1742 | in6_src_sysctl SYSCTL_HANDLER_ARGS |
6d2010ae A |
1743 | { |
1744 | #pragma unused(oidp, arg1, arg2) | |
1745 | struct walkarg w; | |
1746 | ||
1747 | if (req->newptr) | |
39236c6e A |
1748 | return (EPERM); |
1749 | bzero(&w, sizeof (w)); | |
6d2010ae A |
1750 | w.w_req = req; |
1751 | ||
1752 | return (walk_addrsel_policy(dump_addrsel_policyent, &w)); | |
1753 | } | |
1754 | ||
1755 | ||
1756 | SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy, | |
1757 | CTLFLAG_RD | CTLFLAG_LOCKED, in6_src_sysctl, ""); | |
1758 | int | |
1759 | in6_src_ioctl(u_long cmd, caddr_t data) | |
1760 | { | |
1761 | int i; | |
1762 | struct in6_addrpolicy ent0; | |
1763 | ||
1764 | if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY) | |
1765 | return (EOPNOTSUPP); /* check for safety */ | |
1766 | ||
316670eb | 1767 | bcopy(data, &ent0, sizeof (ent0)); |
6d2010ae A |
1768 | |
1769 | if (ent0.label == ADDR_LABEL_NOTAPP) | |
1770 | return (EINVAL); | |
1771 | /* check if the prefix mask is consecutive. */ | |
1772 | if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0) | |
1773 | return (EINVAL); | |
1774 | /* clear trailing garbages (if any) of the prefix address. */ | |
1775 | for (i = 0; i < 4; i++) { | |
1776 | ent0.addr.sin6_addr.s6_addr32[i] &= | |
1777 | ent0.addrmask.sin6_addr.s6_addr32[i]; | |
1778 | } | |
1779 | ent0.use = 0; | |
1780 | ||
1781 | switch (cmd) { | |
1782 | case SIOCAADDRCTL_POLICY: | |
1783 | #ifdef ENABLE_ADDRSEL | |
1784 | return (add_addrsel_policyent(&ent0)); | |
1785 | #else | |
1786 | return (ENOTSUP); | |
1787 | #endif | |
1788 | case SIOCDADDRCTL_POLICY: | |
1789 | #ifdef ENABLE_ADDRSEL | |
1790 | return (delete_addrsel_policyent(&ent0)); | |
1791 | #else | |
1792 | return (ENOTSUP); | |
1793 | #endif | |
1794 | } | |
1795 | ||
1796 | return (0); /* XXX: compromise compilers */ | |
1797 | } | |
1798 | ||
9bccf70c A |
1799 | /* |
1800 | * generate kernel-internal form (scopeid embedded into s6_addr16[1]). | |
1801 | * If the address scope of is link-local, embed the interface index in the | |
1802 | * address. The routine determines our precedence | |
1803 | * between advanced API scope/interface specification and basic API | |
1804 | * specification. | |
1805 | * | |
1806 | * this function should be nuked in the future, when we get rid of | |
1807 | * embedded scopeid thing. | |
1808 | * | |
1809 | * XXX actually, it is over-specification to return ifp against sin6_scope_id. | |
1810 | * there can be multiple interfaces that belong to a particular scope zone | |
1811 | * (in specification, we have 1:N mapping between a scope zone and interfaces). | |
1812 | * we may want to change the function to return something other than ifp. | |
1813 | */ | |
1814 | int | |
39236c6e A |
1815 | in6_embedscope(struct in6_addr *in6, const struct sockaddr_in6 *sin6, |
1816 | struct in6pcb *in6p, struct ifnet **ifpp, struct ip6_pktopts *opt) | |
9bccf70c A |
1817 | { |
1818 | struct ifnet *ifp = NULL; | |
1819 | u_int32_t scopeid; | |
6d2010ae | 1820 | struct ip6_pktopts *optp = NULL; |
9bccf70c A |
1821 | |
1822 | *in6 = sin6->sin6_addr; | |
1823 | scopeid = sin6->sin6_scope_id; | |
6d2010ae | 1824 | if (ifpp != NULL) |
9bccf70c A |
1825 | *ifpp = NULL; |
1826 | ||
1827 | /* | |
1828 | * don't try to read sin6->sin6_addr beyond here, since the caller may | |
1829 | * ask us to overwrite existing sockaddr_in6 | |
1830 | */ | |
1831 | ||
1832 | #ifdef ENABLE_DEFAULT_SCOPE | |
1833 | if (scopeid == 0) | |
1834 | scopeid = scope6_addr2default(in6); | |
1c79356b | 1835 | #endif |
9bccf70c | 1836 | |
fe8ab488 | 1837 | if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) { |
9bccf70c | 1838 | struct in6_pktinfo *pi; |
6d2010ae A |
1839 | struct ifnet *im6o_multicast_ifp = NULL; |
1840 | ||
1841 | if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) && | |
1842 | in6p->in6p_moptions != NULL) { | |
1843 | IM6O_LOCK(in6p->in6p_moptions); | |
1844 | im6o_multicast_ifp = | |
1845 | in6p->in6p_moptions->im6o_multicast_ifp; | |
1846 | IM6O_UNLOCK(in6p->in6p_moptions); | |
1847 | } | |
9bccf70c | 1848 | |
39236c6e | 1849 | if (opt != NULL) |
6d2010ae | 1850 | optp = opt; |
39236c6e | 1851 | else if (in6p != NULL) |
6d2010ae | 1852 | optp = in6p->in6p_outputopts; |
9bccf70c A |
1853 | /* |
1854 | * KAME assumption: link id == interface id | |
1855 | */ | |
39236c6e A |
1856 | if (in6p != NULL && optp != NULL && |
1857 | (pi = optp->ip6po_pktinfo) != NULL && | |
1858 | pi->ipi6_ifindex != 0) { | |
1859 | /* ifp is needed here if only we're returning it */ | |
1860 | if (ifpp != NULL) { | |
1861 | ifnet_head_lock_shared(); | |
1862 | ifp = ifindex2ifnet[pi->ipi6_ifindex]; | |
1863 | ifnet_head_done(); | |
1864 | } | |
9bccf70c | 1865 | in6->s6_addr16[1] = htons(pi->ipi6_ifindex); |
39236c6e | 1866 | } else if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) && |
6d2010ae A |
1867 | in6p->in6p_moptions != NULL && im6o_multicast_ifp != NULL) { |
1868 | ifp = im6o_multicast_ifp; | |
9bccf70c | 1869 | in6->s6_addr16[1] = htons(ifp->if_index); |
39236c6e A |
1870 | } else if (scopeid != 0) { |
1871 | /* | |
b0d623f7 | 1872 | * Since scopeid is unsigned, we only have to check it |
39236c6e A |
1873 | * against if_index (ifnet_head_lock not needed since |
1874 | * if_index is an ever-increasing integer.) | |
b0d623f7 | 1875 | */ |
39236c6e A |
1876 | if (if_index < scopeid) |
1877 | return (ENXIO); /* XXX EINVAL? */ | |
b0d623f7 | 1878 | |
39236c6e A |
1879 | /* ifp is needed here only if we're returning it */ |
1880 | if (ifpp != NULL) { | |
1881 | ifnet_head_lock_shared(); | |
1882 | ifp = ifindex2ifnet[scopeid]; | |
1883 | ifnet_head_done(); | |
b0d623f7 | 1884 | } |
39236c6e | 1885 | /* XXX assignment to 16bit from 32bit variable */ |
9bccf70c | 1886 | in6->s6_addr16[1] = htons(scopeid & 0xffff); |
1c79356b | 1887 | } |
9bccf70c | 1888 | |
6d2010ae A |
1889 | if (ifpp != NULL) { |
1890 | if (ifp != NULL) | |
1891 | ifnet_reference(ifp); /* for caller */ | |
9bccf70c | 1892 | *ifpp = ifp; |
6d2010ae | 1893 | } |
1c79356b A |
1894 | } |
1895 | ||
39236c6e | 1896 | return (0); |
1c79356b | 1897 | } |
9bccf70c A |
1898 | |
1899 | /* | |
1900 | * generate standard sockaddr_in6 from embedded form. | |
1901 | * touches sin6_addr and sin6_scope_id only. | |
1902 | * | |
1903 | * this function should be nuked in the future, when we get rid of | |
1904 | * embedded scopeid thing. | |
1905 | */ | |
1906 | int | |
91447636 A |
1907 | in6_recoverscope( |
1908 | struct sockaddr_in6 *sin6, | |
1909 | const struct in6_addr *in6, | |
1910 | struct ifnet *ifp) | |
9bccf70c A |
1911 | { |
1912 | u_int32_t scopeid; | |
1913 | ||
1914 | sin6->sin6_addr = *in6; | |
1915 | ||
1916 | /* | |
1917 | * don't try to read *in6 beyond here, since the caller may | |
1918 | * ask us to overwrite existing sockaddr_in6 | |
1919 | */ | |
1920 | ||
1921 | sin6->sin6_scope_id = 0; | |
fe8ab488 | 1922 | if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) { |
9bccf70c A |
1923 | /* |
1924 | * KAME assumption: link id == interface id | |
1925 | */ | |
1926 | scopeid = ntohs(sin6->sin6_addr.s6_addr16[1]); | |
1927 | if (scopeid) { | |
39236c6e A |
1928 | /* |
1929 | * sanity check | |
b0d623f7 A |
1930 | * |
1931 | * Since scopeid is unsigned, we only have to check it | |
1932 | * against if_index | |
1933 | */ | |
1934 | if (if_index < scopeid) | |
39236c6e | 1935 | return (ENXIO); |
9bccf70c | 1936 | if (ifp && ifp->if_index != scopeid) |
39236c6e | 1937 | return (ENXIO); |
9bccf70c A |
1938 | sin6->sin6_addr.s6_addr16[1] = 0; |
1939 | sin6->sin6_scope_id = scopeid; | |
1940 | } | |
1941 | } | |
1942 | ||
39236c6e | 1943 | return (0); |
9bccf70c | 1944 | } |