]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
39236c6e | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
39236c6e | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
39236c6e | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
39236c6e | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | * |
28 | */ | |
55e303ae A |
29 | /*- |
30 | * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> | |
31 | * All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * | |
42 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
52 | * SUCH DAMAGE. | |
53 | */ | |
1c79356b A |
54 | /* |
55 | * @(#)kern_event.c 1.0 (3/31/2000) | |
56 | */ | |
91447636 | 57 | #include <stdint.h> |
1c79356b | 58 | |
55e303ae A |
59 | #include <sys/param.h> |
60 | #include <sys/systm.h> | |
61 | #include <sys/filedesc.h> | |
62 | #include <sys/kernel.h> | |
91447636 A |
63 | #include <sys/proc_internal.h> |
64 | #include <sys/kauth.h> | |
39236c6e | 65 | #include <sys/malloc.h> |
55e303ae | 66 | #include <sys/unistd.h> |
91447636 | 67 | #include <sys/file_internal.h> |
55e303ae A |
68 | #include <sys/fcntl.h> |
69 | #include <sys/select.h> | |
70 | #include <sys/queue.h> | |
71 | #include <sys/event.h> | |
72 | #include <sys/eventvar.h> | |
73 | #include <sys/protosw.h> | |
74 | #include <sys/socket.h> | |
75 | #include <sys/socketvar.h> | |
76 | #include <sys/stat.h> | |
77 | #include <sys/sysctl.h> | |
78 | #include <sys/uio.h> | |
91447636 A |
79 | #include <sys/sysproto.h> |
80 | #include <sys/user.h> | |
b0d623f7 | 81 | #include <sys/vnode_internal.h> |
91447636 | 82 | #include <string.h> |
0c530ab8 | 83 | #include <sys/proc_info.h> |
39236c6e | 84 | #include <sys/codesign.h> |
91447636 | 85 | |
fe8ab488 | 86 | #include <kern/locks.h> |
91447636 A |
87 | #include <kern/clock.h> |
88 | #include <kern/thread_call.h> | |
89 | #include <kern/sched_prim.h> | |
04b8595b | 90 | #include <kern/wait_queue.h> |
55e303ae | 91 | #include <kern/zalloc.h> |
91447636 A |
92 | #include <kern/assert.h> |
93 | ||
94 | #include <libkern/libkern.h> | |
b0d623f7 | 95 | #include "net/net_str_id.h" |
55e303ae | 96 | |
6d2010ae | 97 | #include <mach/task.h> |
316670eb A |
98 | |
99 | #if VM_PRESSURE_EVENTS | |
6d2010ae | 100 | #include <kern/vm_pressure.h> |
316670eb | 101 | #endif |
6d2010ae | 102 | |
39236c6e A |
103 | #if CONFIG_MEMORYSTATUS |
104 | #include <sys/kern_memorystatus.h> | |
105 | #endif | |
106 | ||
55e303ae A |
107 | MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); |
108 | ||
39236c6e | 109 | #define KQ_EVENT NULL |
b0d623f7 | 110 | |
91447636 A |
111 | static inline void kqlock(struct kqueue *kq); |
112 | static inline void kqunlock(struct kqueue *kq); | |
113 | ||
39236c6e A |
114 | static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn); |
115 | static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn); | |
116 | static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn); | |
117 | static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn); | |
118 | ||
119 | static void kqueue_wakeup(struct kqueue *kq, int closed); | |
120 | static int kqueue_read(struct fileproc *fp, struct uio *uio, | |
121 | int flags, vfs_context_t ctx); | |
122 | static int kqueue_write(struct fileproc *fp, struct uio *uio, | |
123 | int flags, vfs_context_t ctx); | |
124 | static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data, | |
125 | vfs_context_t ctx); | |
126 | static int kqueue_select(struct fileproc *fp, int which, void *wql, | |
127 | vfs_context_t ctx); | |
128 | static int kqueue_close(struct fileglob *fg, vfs_context_t ctx); | |
129 | static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, | |
130 | vfs_context_t ctx); | |
131 | static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx); | |
39236c6e A |
132 | |
133 | static const struct fileops kqueueops = { | |
134 | .fo_type = DTYPE_KQUEUE, | |
135 | .fo_read = kqueue_read, | |
136 | .fo_write = kqueue_write, | |
137 | .fo_ioctl = kqueue_ioctl, | |
138 | .fo_select = kqueue_select, | |
139 | .fo_close = kqueue_close, | |
140 | .fo_kqfilter = kqueue_kqfilter, | |
b0d623f7 | 141 | .fo_drain = kqueue_drain, |
55e303ae A |
142 | }; |
143 | ||
b0d623f7 | 144 | static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist, |
39236c6e A |
145 | int nchanges, user_addr_t eventlist, int nevents, int fd, |
146 | user_addr_t utimeout, unsigned int flags, int32_t *retval); | |
147 | static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, | |
148 | struct proc *p, int iskev64); | |
149 | static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, | |
150 | struct proc *p, int iskev64); | |
b0d623f7 | 151 | char * kevent_description(struct kevent64_s *kevp, char *s, size_t n); |
91447636 | 152 | |
39236c6e A |
153 | static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp, |
154 | void *data); | |
155 | static void kevent_continue(struct kqueue *kq, void *data, int error); | |
156 | static void kqueue_scan_continue(void *contp, wait_result_t wait_result); | |
157 | static int kqueue_process(struct kqueue *kq, kevent_callback_t callback, | |
158 | void *data, int *countp, struct proc *p); | |
159 | static int kqueue_begin_processing(struct kqueue *kq); | |
160 | static void kqueue_end_processing(struct kqueue *kq); | |
161 | static int knote_process(struct knote *kn, kevent_callback_t callback, | |
162 | void *data, struct kqtailq *inprocessp, struct proc *p); | |
163 | static void knote_put(struct knote *kn); | |
164 | static int knote_fdpattach(struct knote *kn, struct filedesc *fdp, | |
165 | struct proc *p); | |
166 | static void knote_drop(struct knote *kn, struct proc *p); | |
167 | static void knote_activate(struct knote *kn, int); | |
168 | static void knote_deactivate(struct knote *kn); | |
169 | static void knote_enqueue(struct knote *kn); | |
170 | static void knote_dequeue(struct knote *kn); | |
171 | static struct knote *knote_alloc(void); | |
172 | static void knote_free(struct knote *kn); | |
173 | ||
174 | static int filt_fileattach(struct knote *kn); | |
b0d623f7 | 175 | static struct filterops file_filtops = { |
39236c6e A |
176 | .f_isfd = 1, |
177 | .f_attach = filt_fileattach, | |
b0d623f7 | 178 | }; |
55e303ae | 179 | |
39236c6e A |
180 | static void filt_kqdetach(struct knote *kn); |
181 | static int filt_kqueue(struct knote *kn, long hint); | |
b0d623f7 | 182 | static struct filterops kqread_filtops = { |
39236c6e A |
183 | .f_isfd = 1, |
184 | .f_detach = filt_kqdetach, | |
185 | .f_event = filt_kqueue, | |
b0d623f7 | 186 | }; |
55e303ae | 187 | |
39236c6e A |
188 | /* placeholder for not-yet-implemented filters */ |
189 | static int filt_badattach(struct knote *kn); | |
b0d623f7 | 190 | static struct filterops bad_filtops = { |
39236c6e | 191 | .f_attach = filt_badattach, |
b0d623f7 | 192 | }; |
55e303ae | 193 | |
39236c6e A |
194 | static int filt_procattach(struct knote *kn); |
195 | static void filt_procdetach(struct knote *kn); | |
196 | static int filt_proc(struct knote *kn, long hint); | |
b0d623f7 | 197 | static struct filterops proc_filtops = { |
39236c6e A |
198 | .f_attach = filt_procattach, |
199 | .f_detach = filt_procdetach, | |
200 | .f_event = filt_proc, | |
b0d623f7 | 201 | }; |
55e303ae | 202 | |
316670eb | 203 | #if VM_PRESSURE_EVENTS |
6d2010ae A |
204 | static int filt_vmattach(struct knote *kn); |
205 | static void filt_vmdetach(struct knote *kn); | |
206 | static int filt_vm(struct knote *kn, long hint); | |
207 | static struct filterops vm_filtops = { | |
208 | .f_attach = filt_vmattach, | |
209 | .f_detach = filt_vmdetach, | |
210 | .f_event = filt_vm, | |
211 | }; | |
316670eb | 212 | #endif /* VM_PRESSURE_EVENTS */ |
6d2010ae | 213 | |
39236c6e A |
214 | #if CONFIG_MEMORYSTATUS |
215 | extern struct filterops memorystatus_filtops; | |
216 | #endif /* CONFIG_MEMORYSTATUS */ | |
217 | ||
55e303ae A |
218 | extern struct filterops fs_filtops; |
219 | ||
220 | extern struct filterops sig_filtops; | |
221 | ||
91447636 | 222 | /* Timer filter */ |
39236c6e A |
223 | static int filt_timerattach(struct knote *kn); |
224 | static void filt_timerdetach(struct knote *kn); | |
225 | static int filt_timer(struct knote *kn, long hint); | |
226 | static void filt_timertouch(struct knote *kn, struct kevent64_s *kev, | |
227 | long type); | |
b0d623f7 | 228 | static struct filterops timer_filtops = { |
39236c6e A |
229 | .f_attach = filt_timerattach, |
230 | .f_detach = filt_timerdetach, | |
231 | .f_event = filt_timer, | |
232 | .f_touch = filt_timertouch, | |
b0d623f7 | 233 | }; |
55e303ae | 234 | |
b0d623f7 | 235 | /* Helpers */ |
39236c6e A |
236 | static void filt_timerexpire(void *knx, void *param1); |
237 | static int filt_timervalidate(struct knote *kn); | |
238 | static void filt_timerupdate(struct knote *kn); | |
239 | static void filt_timercancel(struct knote *kn); | |
b0d623f7 | 240 | |
39236c6e A |
241 | #define TIMER_RUNNING 0x1 |
242 | #define TIMER_CANCELWAIT 0x2 | |
55e303ae | 243 | |
91447636 | 244 | static lck_mtx_t _filt_timerlock; |
39236c6e A |
245 | static void filt_timerlock(void); |
246 | static void filt_timerunlock(void); | |
55e303ae | 247 | |
39236c6e | 248 | static zone_t knote_zone; |
55e303ae | 249 | |
39236c6e | 250 | #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) |
55e303ae A |
251 | |
252 | #if 0 | |
253 | extern struct filterops aio_filtops; | |
254 | #endif | |
255 | ||
b0d623f7 A |
256 | /* Mach portset filter */ |
257 | extern struct filterops machport_filtops; | |
258 | ||
259 | /* User filter */ | |
39236c6e A |
260 | static int filt_userattach(struct knote *kn); |
261 | static void filt_userdetach(struct knote *kn); | |
262 | static int filt_user(struct knote *kn, long hint); | |
263 | static void filt_usertouch(struct knote *kn, struct kevent64_s *kev, | |
264 | long type); | |
b0d623f7 | 265 | static struct filterops user_filtops = { |
39236c6e A |
266 | .f_attach = filt_userattach, |
267 | .f_detach = filt_userdetach, | |
268 | .f_event = filt_user, | |
269 | .f_touch = filt_usertouch, | |
b0d623f7 A |
270 | }; |
271 | ||
55e303ae | 272 | /* |
39236c6e | 273 | * Table for all system-defined filters. |
55e303ae A |
274 | */ |
275 | static struct filterops *sysfilt_ops[] = { | |
276 | &file_filtops, /* EVFILT_READ */ | |
277 | &file_filtops, /* EVFILT_WRITE */ | |
278 | #if 0 | |
279 | &aio_filtops, /* EVFILT_AIO */ | |
280 | #else | |
281 | &bad_filtops, /* EVFILT_AIO */ | |
282 | #endif | |
283 | &file_filtops, /* EVFILT_VNODE */ | |
284 | &proc_filtops, /* EVFILT_PROC */ | |
285 | &sig_filtops, /* EVFILT_SIGNAL */ | |
55e303ae | 286 | &timer_filtops, /* EVFILT_TIMER */ |
b0d623f7 A |
287 | &machport_filtops, /* EVFILT_MACHPORT */ |
288 | &fs_filtops, /* EVFILT_FS */ | |
289 | &user_filtops, /* EVFILT_USER */ | |
6d2010ae | 290 | &bad_filtops, /* unused */ |
316670eb | 291 | #if VM_PRESSURE_EVENTS |
6d2010ae | 292 | &vm_filtops, /* EVFILT_VM */ |
316670eb A |
293 | #else |
294 | &bad_filtops, /* EVFILT_VM */ | |
295 | #endif | |
296 | &file_filtops, /* EVFILT_SOCK */ | |
39236c6e A |
297 | #if CONFIG_MEMORYSTATUS |
298 | &memorystatus_filtops, /* EVFILT_MEMORYSTATUS */ | |
299 | #else | |
300 | &bad_filtops, /* EVFILT_MEMORYSTATUS */ | |
301 | #endif | |
55e303ae A |
302 | }; |
303 | ||
91447636 A |
304 | /* |
305 | * kqueue/note lock attributes and implementations | |
306 | * | |
307 | * kqueues have locks, while knotes have use counts | |
308 | * Most of the knote state is guarded by the object lock. | |
309 | * the knote "inuse" count and status use the kqueue lock. | |
310 | */ | |
311 | lck_grp_attr_t * kq_lck_grp_attr; | |
312 | lck_grp_t * kq_lck_grp; | |
313 | lck_attr_t * kq_lck_attr; | |
314 | ||
315 | static inline void | |
316 | kqlock(struct kqueue *kq) | |
317 | { | |
318 | lck_spin_lock(&kq->kq_lock); | |
319 | } | |
320 | ||
321 | static inline void | |
322 | kqunlock(struct kqueue *kq) | |
323 | { | |
324 | lck_spin_unlock(&kq->kq_lock); | |
325 | } | |
326 | ||
39236c6e | 327 | /* |
91447636 A |
328 | * Convert a kq lock to a knote use referece. |
329 | * | |
330 | * If the knote is being dropped, we can't get | |
331 | * a use reference, so just return with it | |
332 | * still locked. | |
91447636 A |
333 | * - kq locked at entry |
334 | * - unlock on exit if we get the use reference | |
335 | */ | |
336 | static int | |
337 | kqlock2knoteuse(struct kqueue *kq, struct knote *kn) | |
338 | { | |
339 | if (kn->kn_status & KN_DROPPING) | |
39236c6e | 340 | return (0); |
91447636 A |
341 | kn->kn_inuse++; |
342 | kqunlock(kq); | |
39236c6e A |
343 | return (1); |
344 | } | |
91447636 | 345 | |
39236c6e | 346 | /* |
b0d623f7 A |
347 | * Convert a kq lock to a knote use referece, |
348 | * but wait for attach and drop events to complete. | |
91447636 A |
349 | * |
350 | * If the knote is being dropped, we can't get | |
351 | * a use reference, so just return with it | |
352 | * still locked. | |
91447636 A |
353 | * - kq locked at entry |
354 | * - kq always unlocked on exit | |
355 | */ | |
356 | static int | |
357 | kqlock2knoteusewait(struct kqueue *kq, struct knote *kn) | |
358 | { | |
b0d623f7 A |
359 | if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) { |
360 | kn->kn_status |= KN_USEWAIT; | |
39236c6e A |
361 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, |
362 | &kn->kn_status, THREAD_UNINT, 0); | |
91447636 A |
363 | kqunlock(kq); |
364 | thread_block(THREAD_CONTINUE_NULL); | |
39236c6e | 365 | return (0); |
91447636 | 366 | } |
b0d623f7 A |
367 | kn->kn_inuse++; |
368 | kqunlock(kq); | |
39236c6e A |
369 | return (1); |
370 | } | |
b0d623f7 | 371 | |
39236c6e | 372 | /* |
91447636 A |
373 | * Convert from a knote use reference back to kq lock. |
374 | * | |
375 | * Drop a use reference and wake any waiters if | |
376 | * this is the last one. | |
377 | * | |
378 | * The exit return indicates if the knote is | |
379 | * still alive - but the kqueue lock is taken | |
380 | * unconditionally. | |
381 | */ | |
382 | static int | |
383 | knoteuse2kqlock(struct kqueue *kq, struct knote *kn) | |
384 | { | |
385 | kqlock(kq); | |
b0d623f7 A |
386 | if (--kn->kn_inuse == 0) { |
387 | if ((kn->kn_status & KN_ATTACHING) != 0) { | |
388 | kn->kn_status &= ~KN_ATTACHING; | |
389 | } | |
390 | if ((kn->kn_status & KN_USEWAIT) != 0) { | |
391 | kn->kn_status &= ~KN_USEWAIT; | |
39236c6e A |
392 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, |
393 | &kn->kn_status, THREAD_AWAKENED); | |
b0d623f7 | 394 | } |
91447636 A |
395 | } |
396 | return ((kn->kn_status & KN_DROPPING) == 0); | |
39236c6e | 397 | } |
91447636 | 398 | |
39236c6e A |
399 | /* |
400 | * Convert a kq lock to a knote drop reference. | |
91447636 A |
401 | * |
402 | * If the knote is in use, wait for the use count | |
403 | * to subside. We first mark our intention to drop | |
404 | * it - keeping other users from "piling on." | |
405 | * If we are too late, we have to wait for the | |
406 | * other drop to complete. | |
39236c6e | 407 | * |
91447636 A |
408 | * - kq locked at entry |
409 | * - always unlocked on exit. | |
410 | * - caller can't hold any locks that would prevent | |
411 | * the other dropper from completing. | |
412 | */ | |
413 | static int | |
414 | kqlock2knotedrop(struct kqueue *kq, struct knote *kn) | |
415 | { | |
b0d623f7 | 416 | int oktodrop; |
91447636 | 417 | |
b0d623f7 | 418 | oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0); |
04b8595b | 419 | kn->kn_status &= ~KN_STAYQUEUED; |
b0d623f7 A |
420 | kn->kn_status |= KN_DROPPING; |
421 | if (oktodrop) { | |
422 | if (kn->kn_inuse == 0) { | |
91447636 | 423 | kqunlock(kq); |
39236c6e | 424 | return (oktodrop); |
b0d623f7 | 425 | } |
91447636 | 426 | } |
b0d623f7 | 427 | kn->kn_status |= KN_USEWAIT; |
39236c6e A |
428 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, |
429 | THREAD_UNINT, 0); | |
b0d623f7 A |
430 | kqunlock(kq); |
431 | thread_block(THREAD_CONTINUE_NULL); | |
39236c6e | 432 | return (oktodrop); |
91447636 | 433 | } |
39236c6e A |
434 | |
435 | /* | |
91447636 A |
436 | * Release a knote use count reference. |
437 | */ | |
438 | static void | |
439 | knote_put(struct knote *kn) | |
440 | { | |
441 | struct kqueue *kq = kn->kn_kq; | |
442 | ||
443 | kqlock(kq); | |
b0d623f7 A |
444 | if (--kn->kn_inuse == 0) { |
445 | if ((kn->kn_status & KN_USEWAIT) != 0) { | |
446 | kn->kn_status &= ~KN_USEWAIT; | |
39236c6e A |
447 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, |
448 | &kn->kn_status, THREAD_AWAKENED); | |
b0d623f7 | 449 | } |
91447636 A |
450 | } |
451 | kqunlock(kq); | |
39236c6e | 452 | } |
91447636 | 453 | |
55e303ae A |
454 | static int |
455 | filt_fileattach(struct knote *kn) | |
456 | { | |
2d21ac55 | 457 | return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current())); |
55e303ae A |
458 | } |
459 | ||
39236c6e A |
460 | #define f_flag f_fglob->fg_flag |
461 | #define f_msgcount f_fglob->fg_msgcount | |
462 | #define f_cred f_fglob->fg_cred | |
463 | #define f_ops f_fglob->fg_ops | |
464 | #define f_offset f_fglob->fg_offset | |
465 | #define f_data f_fglob->fg_data | |
91447636 | 466 | |
55e303ae A |
467 | static void |
468 | filt_kqdetach(struct knote *kn) | |
469 | { | |
470 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
471 | ||
91447636 | 472 | kqlock(kq); |
55e303ae | 473 | KNOTE_DETACH(&kq->kq_sel.si_note, kn); |
91447636 | 474 | kqunlock(kq); |
55e303ae A |
475 | } |
476 | ||
477 | /*ARGSUSED*/ | |
478 | static int | |
91447636 | 479 | filt_kqueue(struct knote *kn, __unused long hint) |
55e303ae A |
480 | { |
481 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
482 | ||
483 | kn->kn_data = kq->kq_count; | |
484 | return (kn->kn_data > 0); | |
485 | } | |
486 | ||
487 | static int | |
488 | filt_procattach(struct knote *kn) | |
489 | { | |
490 | struct proc *p; | |
2d21ac55 A |
491 | |
492 | assert(PID_MAX < NOTE_PDATAMASK); | |
39236c6e | 493 | |
2d21ac55 | 494 | if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0) |
39236c6e | 495 | return (ENOTSUP); |
0c530ab8 | 496 | |
2d21ac55 | 497 | p = proc_find(kn->kn_id); |
91447636 | 498 | if (p == NULL) { |
55e303ae | 499 | return (ESRCH); |
91447636 | 500 | } |
55e303ae | 501 | |
99c3a104 A |
502 | const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS; |
503 | ||
504 | if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits) | |
505 | do { | |
506 | pid_t selfpid = proc_selfpid(); | |
507 | ||
508 | if (p->p_ppid == selfpid) | |
509 | break; /* parent => ok */ | |
510 | ||
511 | if ((p->p_lflag & P_LTRACED) != 0 && | |
512 | (p->p_oppid == selfpid)) | |
513 | break; /* parent-in-waiting => ok */ | |
514 | ||
6d2010ae | 515 | proc_rele(p); |
99c3a104 A |
516 | return (EACCES); |
517 | } while (0); | |
6d2010ae | 518 | |
2d21ac55 A |
519 | proc_klist_lock(); |
520 | ||
521 | kn->kn_flags |= EV_CLEAR; /* automatically set */ | |
522 | kn->kn_ptr.p_proc = p; /* store the proc handle */ | |
55e303ae | 523 | |
55e303ae A |
524 | KNOTE_ATTACH(&p->p_klist, kn); |
525 | ||
2d21ac55 A |
526 | proc_klist_unlock(); |
527 | ||
528 | proc_rele(p); | |
91447636 | 529 | |
55e303ae A |
530 | return (0); |
531 | } | |
532 | ||
533 | /* | |
534 | * The knote may be attached to a different process, which may exit, | |
0c530ab8 | 535 | * leaving nothing for the knote to be attached to. In that case, |
2d21ac55 | 536 | * the pointer to the process will have already been nulled out. |
55e303ae A |
537 | */ |
538 | static void | |
539 | filt_procdetach(struct knote *kn) | |
540 | { | |
91447636 | 541 | struct proc *p; |
91447636 | 542 | |
2d21ac55 | 543 | proc_klist_lock(); |
39236c6e | 544 | |
2d21ac55 A |
545 | p = kn->kn_ptr.p_proc; |
546 | if (p != PROC_NULL) { | |
547 | kn->kn_ptr.p_proc = PROC_NULL; | |
91447636 | 548 | KNOTE_DETACH(&p->p_klist, kn); |
0c530ab8 | 549 | } |
2d21ac55 A |
550 | |
551 | proc_klist_unlock(); | |
55e303ae A |
552 | } |
553 | ||
554 | static int | |
555 | filt_proc(struct knote *kn, long hint) | |
556 | { | |
39236c6e A |
557 | /* |
558 | * Note: a lot of bits in hint may be obtained from the knote | |
559 | * To free some of those bits, see <rdar://problem/12592988> Freeing up | |
560 | * bits in hint for filt_proc | |
561 | */ | |
2d21ac55 | 562 | /* hint is 0 when called from above */ |
0c530ab8 A |
563 | if (hint != 0) { |
564 | u_int event; | |
55e303ae | 565 | |
2d21ac55 | 566 | /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */ |
55e303ae | 567 | |
0c530ab8 A |
568 | /* |
569 | * mask off extra data | |
570 | */ | |
571 | event = (u_int)hint & NOTE_PCTRLMASK; | |
4452a7af | 572 | |
4b17d6b6 A |
573 | /* |
574 | * termination lifecycle events can happen while a debugger | |
575 | * has reparented a process, in which case notifications | |
576 | * should be quashed except to the tracing parent. When | |
577 | * the debugger reaps the child (either via wait4(2) or | |
578 | * process exit), the child will be reparented to the original | |
579 | * parent and these knotes re-fired. | |
580 | */ | |
581 | if (event & NOTE_EXIT) { | |
582 | if ((kn->kn_ptr.p_proc->p_oppid != 0) | |
583 | && (kn->kn_kq->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) { | |
584 | /* | |
585 | * This knote is not for the current ptrace(2) parent, ignore. | |
586 | */ | |
587 | return 0; | |
588 | } | |
589 | } | |
590 | ||
0c530ab8 A |
591 | /* |
592 | * if the user is interested in this event, record it. | |
593 | */ | |
594 | if (kn->kn_sfflags & event) | |
595 | kn->kn_fflags |= event; | |
55e303ae | 596 | |
39236c6e A |
597 | #pragma clang diagnostic push |
598 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" | |
599 | if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) { | |
2d21ac55 | 600 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); |
0c530ab8 | 601 | } |
39236c6e A |
602 | #pragma clang diagnostic pop |
603 | ||
fe8ab488 A |
604 | |
605 | /* | |
606 | * The kernel has a wrapper in place that returns the same data | |
607 | * as is collected here, in kn_data. Any changes to how | |
608 | * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected | |
609 | * should also be reflected in the proc_pidnoteexit() wrapper. | |
610 | */ | |
39236c6e A |
611 | if (event == NOTE_EXIT) { |
612 | kn->kn_data = 0; | |
613 | if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) { | |
614 | kn->kn_fflags |= NOTE_EXITSTATUS; | |
615 | kn->kn_data |= (hint & NOTE_PDATAMASK); | |
616 | } | |
617 | if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) { | |
618 | kn->kn_fflags |= NOTE_EXIT_DETAIL; | |
619 | if ((kn->kn_ptr.p_proc->p_lflag & | |
620 | P_LTERM_DECRYPTFAIL) != 0) { | |
621 | kn->kn_data |= NOTE_EXIT_DECRYPTFAIL; | |
622 | } | |
623 | if ((kn->kn_ptr.p_proc->p_lflag & | |
624 | P_LTERM_JETSAM) != 0) { | |
625 | kn->kn_data |= NOTE_EXIT_MEMORY; | |
626 | switch (kn->kn_ptr.p_proc->p_lflag & | |
627 | P_JETSAM_MASK) { | |
628 | case P_JETSAM_VMPAGESHORTAGE: | |
629 | kn->kn_data |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE; | |
630 | break; | |
631 | case P_JETSAM_VMTHRASHING: | |
632 | kn->kn_data |= NOTE_EXIT_MEMORY_VMTHRASHING; | |
633 | break; | |
fe8ab488 A |
634 | case P_JETSAM_FCTHRASHING: |
635 | kn->kn_data |= NOTE_EXIT_MEMORY_FCTHRASHING; | |
636 | break; | |
39236c6e A |
637 | case P_JETSAM_VNODE: |
638 | kn->kn_data |= NOTE_EXIT_MEMORY_VNODE; | |
639 | break; | |
640 | case P_JETSAM_HIWAT: | |
641 | kn->kn_data |= NOTE_EXIT_MEMORY_HIWAT; | |
642 | break; | |
643 | case P_JETSAM_PID: | |
644 | kn->kn_data |= NOTE_EXIT_MEMORY_PID; | |
645 | break; | |
646 | case P_JETSAM_IDLEEXIT: | |
647 | kn->kn_data |= NOTE_EXIT_MEMORY_IDLE; | |
648 | break; | |
649 | } | |
650 | } | |
651 | if ((kn->kn_ptr.p_proc->p_csflags & | |
652 | CS_KILLED) != 0) { | |
653 | kn->kn_data |= NOTE_EXIT_CSERROR; | |
654 | } | |
655 | } | |
316670eb | 656 | } |
0c530ab8 | 657 | } |
6601e61a | 658 | |
2d21ac55 | 659 | /* atomic check, no locking need when called from above */ |
39236c6e | 660 | return (kn->kn_fflags != 0); |
55e303ae A |
661 | } |
662 | ||
316670eb | 663 | #if VM_PRESSURE_EVENTS |
6d2010ae A |
664 | /* |
665 | * Virtual memory kevents | |
666 | * | |
667 | * author: Matt Jacobson [matthew_jacobson@apple.com] | |
668 | */ | |
669 | ||
670 | static int | |
671 | filt_vmattach(struct knote *kn) | |
39236c6e A |
672 | { |
673 | /* | |
674 | * The note will be cleared once the information has been flushed to | |
675 | * the client. If there is still pressure, we will be re-alerted. | |
6d2010ae | 676 | */ |
39236c6e A |
677 | kn->kn_flags |= EV_CLEAR; |
678 | return (vm_knote_register(kn)); | |
6d2010ae A |
679 | } |
680 | ||
681 | static void | |
682 | filt_vmdetach(struct knote *kn) | |
683 | { | |
684 | vm_knote_unregister(kn); | |
685 | } | |
686 | ||
687 | static int | |
688 | filt_vm(struct knote *kn, long hint) | |
689 | { | |
690 | /* hint == 0 means this is just an alive? check (always true) */ | |
39236c6e | 691 | if (hint != 0) { |
316670eb | 692 | const pid_t pid = (pid_t)hint; |
39236c6e A |
693 | if ((kn->kn_sfflags & NOTE_VM_PRESSURE) && |
694 | (kn->kn_kq->kq_p->p_pid == pid)) { | |
316670eb | 695 | kn->kn_fflags |= NOTE_VM_PRESSURE; |
6d2010ae A |
696 | } |
697 | } | |
39236c6e | 698 | |
6d2010ae A |
699 | return (kn->kn_fflags != 0); |
700 | } | |
316670eb | 701 | #endif /* VM_PRESSURE_EVENTS */ |
b0d623f7 | 702 | |
91447636 | 703 | /* |
b0d623f7 | 704 | * filt_timervalidate - process data from user |
39236c6e A |
705 | * |
706 | * Converts to either interval or deadline format. | |
707 | * | |
91447636 A |
708 | * The saved-data field in the knote contains the |
709 | * time value. The saved filter-flags indicates | |
710 | * the unit of measurement. | |
711 | * | |
39236c6e A |
712 | * After validation, either the saved-data field |
713 | * contains the interval in absolute time, or ext[0] | |
714 | * contains the expected deadline. If that deadline | |
b0d623f7 A |
715 | * is in the past, ext[0] is 0. |
716 | * | |
717 | * Returns EINVAL for unrecognized units of time. | |
718 | * | |
719 | * Timer filter lock is held. | |
720 | * | |
91447636 A |
721 | */ |
722 | static int | |
b0d623f7 | 723 | filt_timervalidate(struct knote *kn) |
91447636 A |
724 | { |
725 | uint64_t multiplier; | |
39236c6e | 726 | uint64_t raw = 0; |
91447636 A |
727 | |
728 | switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) { | |
729 | case NOTE_SECONDS: | |
730 | multiplier = NSEC_PER_SEC; | |
731 | break; | |
732 | case NOTE_USECONDS: | |
733 | multiplier = NSEC_PER_USEC; | |
734 | break; | |
735 | case NOTE_NSECONDS: | |
736 | multiplier = 1; | |
737 | break; | |
738 | case 0: /* milliseconds (default) */ | |
739 | multiplier = NSEC_PER_SEC / 1000; | |
740 | break; | |
741 | default: | |
39236c6e A |
742 | return (EINVAL); |
743 | } | |
744 | ||
745 | /* transform the slop delta(leeway) in kn_ext[1] if passed to same time scale */ | |
746 | if(kn->kn_sfflags & NOTE_LEEWAY){ | |
747 | nanoseconds_to_absolutetime((uint64_t)kn->kn_ext[1] * multiplier, &raw); | |
748 | kn->kn_ext[1] = raw; | |
91447636 | 749 | } |
b0d623f7 | 750 | |
91447636 | 751 | nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw); |
b0d623f7 A |
752 | |
753 | kn->kn_ext[0] = 0; | |
754 | kn->kn_sdata = 0; | |
755 | ||
756 | if (kn->kn_sfflags & NOTE_ABSOLUTE) { | |
757 | clock_sec_t seconds; | |
758 | clock_nsec_t nanoseconds; | |
91447636 A |
759 | uint64_t now; |
760 | ||
761 | clock_get_calendar_nanotime(&seconds, &nanoseconds); | |
39236c6e A |
762 | nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC + |
763 | nanoseconds, &now); | |
b0d623f7 A |
764 | |
765 | if (raw < now) { | |
766 | /* time has already passed */ | |
767 | kn->kn_ext[0] = 0; | |
768 | } else { | |
769 | raw -= now; | |
39236c6e A |
770 | clock_absolutetime_interval_to_deadline(raw, |
771 | &kn->kn_ext[0]); | |
91447636 | 772 | } |
b0d623f7 A |
773 | } else { |
774 | kn->kn_sdata = raw; | |
775 | } | |
776 | ||
39236c6e | 777 | return (0); |
91447636 A |
778 | } |
779 | ||
b0d623f7 A |
780 | /* |
781 | * filt_timerupdate - compute the next deadline | |
782 | * | |
783 | * Repeating timers store their interval in kn_sdata. Absolute | |
784 | * timers have already calculated the deadline, stored in ext[0]. | |
785 | * | |
786 | * On return, the next deadline (or zero if no deadline is needed) | |
787 | * is stored in kn_ext[0]. | |
788 | * | |
789 | * Timer filter lock is held. | |
790 | */ | |
39236c6e | 791 | static void |
b0d623f7 A |
792 | filt_timerupdate(struct knote *kn) |
793 | { | |
794 | /* if there's no interval, deadline is just in kn_ext[0] */ | |
795 | if (kn->kn_sdata == 0) | |
796 | return; | |
797 | ||
798 | /* if timer hasn't fired before, fire in interval nsecs */ | |
799 | if (kn->kn_ext[0] == 0) { | |
800 | clock_absolutetime_interval_to_deadline(kn->kn_sdata, | |
39236c6e | 801 | &kn->kn_ext[0]); |
b0d623f7 | 802 | } else { |
39236c6e A |
803 | /* |
804 | * If timer has fired before, schedule the next pop | |
805 | * relative to the last intended deadline. | |
b0d623f7 | 806 | * |
39236c6e | 807 | * We could check for whether the deadline has expired, |
b0d623f7 A |
808 | * but the thread call layer can handle that. |
809 | */ | |
810 | kn->kn_ext[0] += kn->kn_sdata; | |
811 | } | |
812 | } | |
813 | ||
39236c6e | 814 | /* |
91447636 A |
815 | * filt_timerexpire - the timer callout routine |
816 | * | |
39236c6e A |
817 | * Just propagate the timer event into the knote |
818 | * filter routine (by going through the knote | |
819 | * synchronization point). Pass a hint to | |
820 | * indicate this is a real event, not just a | |
821 | * query from above. | |
91447636 | 822 | */ |
55e303ae | 823 | static void |
91447636 | 824 | filt_timerexpire(void *knx, __unused void *spare) |
55e303ae | 825 | { |
91447636 | 826 | struct klist timer_list; |
55e303ae | 827 | struct knote *kn = knx; |
91447636 | 828 | |
b0d623f7 A |
829 | filt_timerlock(); |
830 | ||
831 | kn->kn_hookid &= ~TIMER_RUNNING; | |
832 | ||
91447636 A |
833 | /* no "object" for timers, so fake a list */ |
834 | SLIST_INIT(&timer_list); | |
39236c6e | 835 | SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext); |
91447636 | 836 | KNOTE(&timer_list, 1); |
b0d623f7 A |
837 | |
838 | /* if someone is waiting for timer to pop */ | |
839 | if (kn->kn_hookid & TIMER_CANCELWAIT) { | |
840 | struct kqueue *kq = kn->kn_kq; | |
39236c6e A |
841 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook, |
842 | THREAD_AWAKENED); | |
b0d623f7 A |
843 | } |
844 | ||
845 | filt_timerunlock(); | |
846 | } | |
847 | ||
848 | /* | |
849 | * Cancel a running timer (or wait for the pop). | |
850 | * Timer filter lock is held. | |
851 | */ | |
852 | static void | |
853 | filt_timercancel(struct knote *kn) | |
854 | { | |
855 | struct kqueue *kq = kn->kn_kq; | |
856 | thread_call_t callout = kn->kn_hook; | |
857 | boolean_t cancelled; | |
858 | ||
859 | if (kn->kn_hookid & TIMER_RUNNING) { | |
860 | /* cancel the callout if we can */ | |
861 | cancelled = thread_call_cancel(callout); | |
862 | if (cancelled) { | |
863 | kn->kn_hookid &= ~TIMER_RUNNING; | |
864 | } else { | |
865 | /* we have to wait for the expire routine. */ | |
866 | kn->kn_hookid |= TIMER_CANCELWAIT; | |
39236c6e A |
867 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, |
868 | &kn->kn_hook, THREAD_UNINT, 0); | |
b0d623f7 A |
869 | filt_timerunlock(); |
870 | thread_block(THREAD_CONTINUE_NULL); | |
871 | filt_timerlock(); | |
872 | assert((kn->kn_hookid & TIMER_RUNNING) == 0); | |
873 | } | |
874 | } | |
55e303ae A |
875 | } |
876 | ||
877 | /* | |
b0d623f7 | 878 | * Allocate a thread call for the knote's lifetime, and kick off the timer. |
39236c6e | 879 | */ |
55e303ae A |
880 | static int |
881 | filt_timerattach(struct knote *kn) | |
882 | { | |
91447636 | 883 | thread_call_t callout; |
91447636 | 884 | int error; |
55e303ae | 885 | |
b0d623f7 A |
886 | callout = thread_call_allocate(filt_timerexpire, kn); |
887 | if (NULL == callout) | |
888 | return (ENOMEM); | |
55e303ae | 889 | |
b0d623f7 A |
890 | filt_timerlock(); |
891 | error = filt_timervalidate(kn); | |
39236c6e | 892 | if (error != 0) { |
b0d623f7 A |
893 | filt_timerunlock(); |
894 | return (error); | |
91447636 | 895 | } |
55e303ae | 896 | |
b0d623f7 A |
897 | kn->kn_hook = (void*)callout; |
898 | kn->kn_hookid = 0; | |
55e303ae | 899 | |
91447636 A |
900 | /* absolute=EV_ONESHOT */ |
901 | if (kn->kn_sfflags & NOTE_ABSOLUTE) | |
39236c6e | 902 | kn->kn_flags |= EV_ONESHOT; |
91447636 | 903 | |
b0d623f7 A |
904 | filt_timerupdate(kn); |
905 | if (kn->kn_ext[0]) { | |
91447636 | 906 | kn->kn_flags |= EV_CLEAR; |
39236c6e A |
907 | unsigned int timer_flags = 0; |
908 | if (kn->kn_sfflags & NOTE_CRITICAL) | |
909 | timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; | |
910 | else if (kn->kn_sfflags & NOTE_BACKGROUND) | |
911 | timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; | |
912 | else | |
913 | timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; | |
914 | ||
915 | if (kn->kn_sfflags & NOTE_LEEWAY) | |
916 | timer_flags |= THREAD_CALL_DELAY_LEEWAY; | |
917 | ||
918 | thread_call_enter_delayed_with_leeway(callout, NULL, | |
919 | kn->kn_ext[0], kn->kn_ext[1], timer_flags); | |
920 | ||
b0d623f7 | 921 | kn->kn_hookid |= TIMER_RUNNING; |
91447636 A |
922 | } else { |
923 | /* fake immediate */ | |
b0d623f7 | 924 | kn->kn_data = 1; |
91447636 | 925 | } |
b0d623f7 | 926 | |
91447636 | 927 | filt_timerunlock(); |
55e303ae A |
928 | return (0); |
929 | } | |
930 | ||
b0d623f7 A |
931 | /* |
932 | * Shut down the timer if it's running, and free the callout. | |
933 | */ | |
55e303ae A |
934 | static void |
935 | filt_timerdetach(struct knote *kn) | |
936 | { | |
91447636 A |
937 | thread_call_t callout; |
938 | ||
939 | filt_timerlock(); | |
91447636 | 940 | |
b0d623f7 A |
941 | callout = (thread_call_t)kn->kn_hook; |
942 | filt_timercancel(kn); | |
39236c6e A |
943 | |
944 | filt_timerunlock(); | |
b0d623f7 A |
945 | |
946 | thread_call_free(callout); | |
55e303ae A |
947 | } |
948 | ||
91447636 A |
949 | |
950 | ||
55e303ae | 951 | static int |
b0d623f7 | 952 | filt_timer(struct knote *kn, long hint) |
55e303ae | 953 | { |
91447636 | 954 | int result; |
39236c6e | 955 | |
91447636 | 956 | if (hint) { |
b0d623f7 | 957 | /* real timer pop -- timer lock held by filt_timerexpire */ |
91447636 A |
958 | kn->kn_data++; |
959 | ||
39236c6e | 960 | if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) && |
b0d623f7 | 961 | ((kn->kn_flags & EV_ONESHOT) == 0)) { |
55e303ae | 962 | |
b0d623f7 A |
963 | /* evaluate next time to fire */ |
964 | filt_timerupdate(kn); | |
91447636 | 965 | |
b0d623f7 | 966 | if (kn->kn_ext[0]) { |
39236c6e A |
967 | unsigned int timer_flags = 0; |
968 | ||
91447636 | 969 | /* keep the callout and re-arm */ |
39236c6e A |
970 | if (kn->kn_sfflags & NOTE_CRITICAL) |
971 | timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; | |
972 | else if (kn->kn_sfflags & NOTE_BACKGROUND) | |
973 | timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; | |
974 | else | |
975 | timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; | |
976 | ||
977 | if (kn->kn_sfflags & NOTE_LEEWAY) | |
978 | timer_flags |= THREAD_CALL_DELAY_LEEWAY; | |
979 | ||
980 | thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL, | |
981 | kn->kn_ext[0], kn->kn_ext[1], timer_flags); | |
982 | ||
b0d623f7 | 983 | kn->kn_hookid |= TIMER_RUNNING; |
91447636 A |
984 | } |
985 | } | |
91447636 | 986 | |
39236c6e A |
987 | return (1); |
988 | } | |
91447636 A |
989 | |
990 | /* user-query */ | |
991 | filt_timerlock(); | |
992 | ||
b0d623f7 | 993 | result = (kn->kn_data != 0); |
91447636 | 994 | |
b0d623f7 | 995 | filt_timerunlock(); |
39236c6e A |
996 | |
997 | return (result); | |
b0d623f7 A |
998 | } |
999 | ||
1000 | ||
1001 | /* | |
1002 | * filt_timertouch - update knote with new user input | |
1003 | * | |
39236c6e A |
1004 | * Cancel and restart the timer based on new user data. When |
1005 | * the user picks up a knote, clear the count of how many timer | |
1006 | * pops have gone off (in kn_data). | |
b0d623f7 | 1007 | */ |
39236c6e | 1008 | static void |
b0d623f7 A |
1009 | filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type) |
1010 | { | |
1011 | int error; | |
1012 | filt_timerlock(); | |
1013 | ||
1014 | switch (type) { | |
1015 | case EVENT_REGISTER: | |
1016 | /* cancel current call */ | |
1017 | filt_timercancel(kn); | |
1018 | ||
1019 | /* recalculate deadline */ | |
1020 | kn->kn_sdata = kev->data; | |
1021 | kn->kn_sfflags = kev->fflags; | |
39236c6e A |
1022 | kn->kn_ext[0] = kev->ext[0]; |
1023 | kn->kn_ext[1] = kev->ext[1]; | |
b0d623f7 A |
1024 | |
1025 | error = filt_timervalidate(kn); | |
91447636 | 1026 | if (error) { |
b0d623f7 | 1027 | /* no way to report error, so mark it in the knote */ |
91447636 A |
1028 | kn->kn_flags |= EV_ERROR; |
1029 | kn->kn_data = error; | |
b0d623f7 | 1030 | break; |
39236c6e | 1031 | } |
b0d623f7 A |
1032 | |
1033 | /* start timer if necessary */ | |
1034 | filt_timerupdate(kn); | |
39236c6e | 1035 | |
b0d623f7 | 1036 | if (kn->kn_ext[0]) { |
39236c6e A |
1037 | unsigned int timer_flags = 0; |
1038 | if (kn->kn_sfflags & NOTE_CRITICAL) | |
1039 | timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; | |
1040 | else if (kn->kn_sfflags & NOTE_BACKGROUND) | |
1041 | timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; | |
1042 | else | |
1043 | timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; | |
1044 | ||
1045 | if (kn->kn_sfflags & NOTE_LEEWAY) | |
1046 | timer_flags |= THREAD_CALL_DELAY_LEEWAY; | |
1047 | ||
1048 | thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL, | |
1049 | kn->kn_ext[0], kn->kn_ext[1], timer_flags); | |
1050 | ||
b0d623f7 A |
1051 | kn->kn_hookid |= TIMER_RUNNING; |
1052 | } else { | |
1053 | /* pretend the timer has fired */ | |
1054 | kn->kn_data = 1; | |
91447636 | 1055 | } |
91447636 | 1056 | |
b0d623f7 A |
1057 | break; |
1058 | ||
1059 | case EVENT_PROCESS: | |
1060 | /* reset the timer pop count in kn_data */ | |
1061 | *kev = kn->kn_kevent; | |
1062 | kev->ext[0] = 0; | |
1063 | kn->kn_data = 0; | |
1064 | if (kn->kn_flags & EV_CLEAR) | |
1065 | kn->kn_fflags = 0; | |
1066 | break; | |
1067 | default: | |
39236c6e | 1068 | panic("%s: - invalid type (%ld)", __func__, type); |
b0d623f7 A |
1069 | break; |
1070 | } | |
91447636 | 1071 | |
91447636 | 1072 | filt_timerunlock(); |
91447636 A |
1073 | } |
1074 | ||
1075 | static void | |
1076 | filt_timerlock(void) | |
1077 | { | |
1078 | lck_mtx_lock(&_filt_timerlock); | |
1079 | } | |
1080 | ||
1081 | static void | |
1082 | filt_timerunlock(void) | |
1083 | { | |
1084 | lck_mtx_unlock(&_filt_timerlock); | |
55e303ae | 1085 | } |
55e303ae | 1086 | |
b0d623f7 A |
1087 | static int |
1088 | filt_userattach(struct knote *kn) | |
1089 | { | |
39236c6e A |
1090 | /* EVFILT_USER knotes are not attached to anything in the kernel */ |
1091 | kn->kn_hook = NULL; | |
6d2010ae | 1092 | if (kn->kn_fflags & NOTE_TRIGGER) { |
b0d623f7 A |
1093 | kn->kn_hookid = 1; |
1094 | } else { | |
1095 | kn->kn_hookid = 0; | |
1096 | } | |
39236c6e | 1097 | return (0); |
b0d623f7 A |
1098 | } |
1099 | ||
1100 | static void | |
1101 | filt_userdetach(__unused struct knote *kn) | |
1102 | { | |
39236c6e | 1103 | /* EVFILT_USER knotes are not attached to anything in the kernel */ |
b0d623f7 A |
1104 | } |
1105 | ||
1106 | static int | |
1107 | filt_user(struct knote *kn, __unused long hint) | |
1108 | { | |
39236c6e | 1109 | return (kn->kn_hookid); |
b0d623f7 A |
1110 | } |
1111 | ||
1112 | static void | |
1113 | filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type) | |
1114 | { | |
39236c6e A |
1115 | uint32_t ffctrl; |
1116 | switch (type) { | |
1117 | case EVENT_REGISTER: | |
1118 | if (kev->fflags & NOTE_TRIGGER) { | |
1119 | kn->kn_hookid = 1; | |
1120 | } | |
1121 | ||
1122 | ffctrl = kev->fflags & NOTE_FFCTRLMASK; | |
1123 | kev->fflags &= NOTE_FFLAGSMASK; | |
1124 | switch (ffctrl) { | |
1125 | case NOTE_FFNOP: | |
1126 | break; | |
1127 | case NOTE_FFAND: | |
1128 | OSBitAndAtomic(kev->fflags, &kn->kn_sfflags); | |
1129 | break; | |
1130 | case NOTE_FFOR: | |
1131 | OSBitOrAtomic(kev->fflags, &kn->kn_sfflags); | |
1132 | break; | |
1133 | case NOTE_FFCOPY: | |
1134 | kn->kn_sfflags = kev->fflags; | |
1135 | break; | |
1136 | } | |
1137 | kn->kn_sdata = kev->data; | |
1138 | break; | |
1139 | case EVENT_PROCESS: | |
1140 | *kev = kn->kn_kevent; | |
1141 | kev->fflags = (volatile UInt32)kn->kn_sfflags; | |
1142 | kev->data = kn->kn_sdata; | |
1143 | if (kn->kn_flags & EV_CLEAR) { | |
b0d623f7 A |
1144 | kn->kn_hookid = 0; |
1145 | kn->kn_data = 0; | |
1146 | kn->kn_fflags = 0; | |
1147 | } | |
39236c6e A |
1148 | break; |
1149 | default: | |
1150 | panic("%s: - invalid type (%ld)", __func__, type); | |
1151 | break; | |
1152 | } | |
b0d623f7 A |
1153 | } |
1154 | ||
55e303ae A |
1155 | /* |
1156 | * JMM - placeholder for not-yet-implemented filters | |
39236c6e | 1157 | */ |
55e303ae | 1158 | static int |
91447636 | 1159 | filt_badattach(__unused struct knote *kn) |
55e303ae | 1160 | { |
39236c6e | 1161 | return (ENOTSUP); |
55e303ae A |
1162 | } |
1163 | ||
91447636 A |
1164 | struct kqueue * |
1165 | kqueue_alloc(struct proc *p) | |
1166 | { | |
1167 | struct filedesc *fdp = p->p_fd; | |
1168 | struct kqueue *kq; | |
1169 | ||
39236c6e A |
1170 | MALLOC_ZONE(kq, struct kqueue *, sizeof (struct kqueue), M_KQUEUE, |
1171 | M_WAITOK); | |
91447636 | 1172 | if (kq != NULL) { |
b0d623f7 A |
1173 | wait_queue_set_t wqs; |
1174 | ||
39236c6e A |
1175 | wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO | |
1176 | SYNC_POLICY_PREPOST); | |
b0d623f7 | 1177 | if (wqs != NULL) { |
39236c6e | 1178 | bzero(kq, sizeof (struct kqueue)); |
b0d623f7 A |
1179 | lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr); |
1180 | TAILQ_INIT(&kq->kq_head); | |
1181 | kq->kq_wqs = wqs; | |
1182 | kq->kq_p = p; | |
1183 | } else { | |
39236c6e | 1184 | FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE); |
04b8595b | 1185 | kq = NULL; |
b0d623f7 | 1186 | } |
91447636 A |
1187 | } |
1188 | ||
1189 | if (fdp->fd_knlistsize < 0) { | |
1190 | proc_fdlock(p); | |
1191 | if (fdp->fd_knlistsize < 0) | |
39236c6e | 1192 | fdp->fd_knlistsize = 0; /* this process has had a kq */ |
91447636 A |
1193 | proc_fdunlock(p); |
1194 | } | |
1195 | ||
39236c6e | 1196 | return (kq); |
91447636 A |
1197 | } |
1198 | ||
91447636 A |
1199 | /* |
1200 | * kqueue_dealloc - detach all knotes from a kqueue and free it | |
1201 | * | |
1202 | * We walk each list looking for knotes referencing this | |
1203 | * this kqueue. If we find one, we try to drop it. But | |
1204 | * if we fail to get a drop reference, that will wait | |
1205 | * until it is dropped. So, we can just restart again | |
1206 | * safe in the assumption that the list will eventually | |
1207 | * not contain any more references to this kqueue (either | |
1208 | * we dropped them all, or someone else did). | |
1209 | * | |
1210 | * Assumes no new events are being added to the kqueue. | |
1211 | * Nothing locked on entry or exit. | |
1212 | */ | |
1213 | void | |
2d21ac55 | 1214 | kqueue_dealloc(struct kqueue *kq) |
55e303ae | 1215 | { |
2d21ac55 | 1216 | struct proc *p = kq->kq_p; |
55e303ae | 1217 | struct filedesc *fdp = p->p_fd; |
91447636 A |
1218 | struct knote *kn; |
1219 | int i; | |
1220 | ||
1221 | proc_fdlock(p); | |
1222 | for (i = 0; i < fdp->fd_knlistsize; i++) { | |
1223 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
1224 | while (kn != NULL) { | |
1225 | if (kq == kn->kn_kq) { | |
1226 | kqlock(kq); | |
1227 | proc_fdunlock(p); | |
1228 | /* drop it ourselves or wait */ | |
1229 | if (kqlock2knotedrop(kq, kn)) { | |
1230 | kn->kn_fop->f_detach(kn); | |
1231 | knote_drop(kn, p); | |
1232 | } | |
1233 | proc_fdlock(p); | |
1234 | /* start over at beginning of list */ | |
1235 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
1236 | continue; | |
1237 | } | |
1238 | kn = SLIST_NEXT(kn, kn_link); | |
1239 | } | |
1240 | } | |
1241 | if (fdp->fd_knhashmask != 0) { | |
1242 | for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { | |
1243 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
1244 | while (kn != NULL) { | |
1245 | if (kq == kn->kn_kq) { | |
1246 | kqlock(kq); | |
1247 | proc_fdunlock(p); | |
1248 | /* drop it ourselves or wait */ | |
1249 | if (kqlock2knotedrop(kq, kn)) { | |
1250 | kn->kn_fop->f_detach(kn); | |
1251 | knote_drop(kn, p); | |
1252 | } | |
1253 | proc_fdlock(p); | |
1254 | /* start over at beginning of list */ | |
1255 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
1256 | continue; | |
1257 | } | |
1258 | kn = SLIST_NEXT(kn, kn_link); | |
1259 | } | |
1260 | } | |
1261 | } | |
1262 | proc_fdunlock(p); | |
b0d623f7 | 1263 | |
39236c6e | 1264 | /* |
b0d623f7 A |
1265 | * before freeing the wait queue set for this kqueue, |
1266 | * make sure it is unlinked from all its containing (select) sets. | |
1267 | */ | |
1268 | wait_queue_unlink_all((wait_queue_t)kq->kq_wqs); | |
1269 | wait_queue_set_free(kq->kq_wqs); | |
91447636 | 1270 | lck_spin_destroy(&kq->kq_lock, kq_lck_grp); |
39236c6e | 1271 | FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE); |
91447636 A |
1272 | } |
1273 | ||
1274 | int | |
39236c6e | 1275 | kqueue_body(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval) |
91447636 | 1276 | { |
55e303ae | 1277 | struct kqueue *kq; |
91447636 | 1278 | struct fileproc *fp; |
55e303ae A |
1279 | int fd, error; |
1280 | ||
39236c6e A |
1281 | error = falloc_withalloc(p, |
1282 | &fp, &fd, vfs_context_current(), fp_zalloc, cra); | |
91447636 | 1283 | if (error) { |
55e303ae | 1284 | return (error); |
91447636 A |
1285 | } |
1286 | ||
1287 | kq = kqueue_alloc(p); | |
1288 | if (kq == NULL) { | |
1289 | fp_free(p, fd, fp); | |
1290 | return (ENOMEM); | |
1291 | } | |
1292 | ||
55e303ae | 1293 | fp->f_flag = FREAD | FWRITE; |
55e303ae | 1294 | fp->f_ops = &kqueueops; |
39236c6e | 1295 | fp->f_data = kq; |
91447636 A |
1296 | |
1297 | proc_fdlock(p); | |
8a3053a0 | 1298 | *fdflags(p, fd) |= UF_EXCLOSE; |
6601e61a | 1299 | procfdtbl_releasefd(p, fd, NULL); |
91447636 A |
1300 | fp_drop(p, fd, fp, 1); |
1301 | proc_fdunlock(p); | |
1302 | ||
55e303ae | 1303 | *retval = fd; |
55e303ae A |
1304 | return (error); |
1305 | } | |
1306 | ||
39236c6e A |
1307 | int |
1308 | kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval) | |
1309 | { | |
1310 | return (kqueue_body(p, fileproc_alloc_init, NULL, retval)); | |
1311 | } | |
1312 | ||
91447636 | 1313 | static int |
39236c6e A |
1314 | kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, |
1315 | int iskev64) | |
55e303ae | 1316 | { |
91447636 A |
1317 | int advance; |
1318 | int error; | |
55e303ae | 1319 | |
b0d623f7 | 1320 | if (iskev64) { |
39236c6e | 1321 | advance = sizeof (struct kevent64_s); |
b0d623f7 A |
1322 | error = copyin(*addrp, (caddr_t)kevp, advance); |
1323 | } else if (IS_64BIT_PROCESS(p)) { | |
1324 | struct user64_kevent kev64; | |
39236c6e | 1325 | bzero(kevp, sizeof (struct kevent64_s)); |
91447636 | 1326 | |
39236c6e | 1327 | advance = sizeof (kev64); |
91447636 | 1328 | error = copyin(*addrp, (caddr_t)&kev64, advance); |
55e303ae | 1329 | if (error) |
39236c6e | 1330 | return (error); |
b0d623f7 | 1331 | kevp->ident = kev64.ident; |
91447636 A |
1332 | kevp->filter = kev64.filter; |
1333 | kevp->flags = kev64.flags; | |
1334 | kevp->fflags = kev64.fflags; | |
b0d623f7 | 1335 | kevp->data = kev64.data; |
91447636 A |
1336 | kevp->udata = kev64.udata; |
1337 | } else { | |
b0d623f7 | 1338 | struct user32_kevent kev32; |
39236c6e | 1339 | bzero(kevp, sizeof (struct kevent64_s)); |
b0d623f7 | 1340 | |
39236c6e | 1341 | advance = sizeof (kev32); |
b0d623f7 A |
1342 | error = copyin(*addrp, (caddr_t)&kev32, advance); |
1343 | if (error) | |
39236c6e | 1344 | return (error); |
b0d623f7 A |
1345 | kevp->ident = (uintptr_t)kev32.ident; |
1346 | kevp->filter = kev32.filter; | |
1347 | kevp->flags = kev32.flags; | |
1348 | kevp->fflags = kev32.fflags; | |
1349 | kevp->data = (intptr_t)kev32.data; | |
1350 | kevp->udata = CAST_USER_ADDR_T(kev32.udata); | |
55e303ae | 1351 | } |
91447636 A |
1352 | if (!error) |
1353 | *addrp += advance; | |
39236c6e | 1354 | return (error); |
91447636 | 1355 | } |
55e303ae | 1356 | |
91447636 | 1357 | static int |
39236c6e A |
1358 | kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, |
1359 | int iskev64) | |
91447636 A |
1360 | { |
1361 | int advance; | |
1362 | int error; | |
1363 | ||
b0d623f7 | 1364 | if (iskev64) { |
39236c6e | 1365 | advance = sizeof (struct kevent64_s); |
b0d623f7 A |
1366 | error = copyout((caddr_t)kevp, *addrp, advance); |
1367 | } else if (IS_64BIT_PROCESS(p)) { | |
1368 | struct user64_kevent kev64; | |
91447636 | 1369 | |
2d21ac55 A |
1370 | /* |
1371 | * deal with the special case of a user-supplied | |
1372 | * value of (uintptr_t)-1. | |
1373 | */ | |
1374 | kev64.ident = (kevp->ident == (uintptr_t)-1) ? | |
39236c6e | 1375 | (uint64_t)-1LL : (uint64_t)kevp->ident; |
2d21ac55 | 1376 | |
91447636 A |
1377 | kev64.filter = kevp->filter; |
1378 | kev64.flags = kevp->flags; | |
1379 | kev64.fflags = kevp->fflags; | |
1380 | kev64.data = (int64_t) kevp->data; | |
1381 | kev64.udata = kevp->udata; | |
39236c6e | 1382 | advance = sizeof (kev64); |
91447636 A |
1383 | error = copyout((caddr_t)&kev64, *addrp, advance); |
1384 | } else { | |
b0d623f7 A |
1385 | struct user32_kevent kev32; |
1386 | ||
1387 | kev32.ident = (uint32_t)kevp->ident; | |
1388 | kev32.filter = kevp->filter; | |
1389 | kev32.flags = kevp->flags; | |
1390 | kev32.fflags = kevp->fflags; | |
1391 | kev32.data = (int32_t)kevp->data; | |
1392 | kev32.udata = kevp->udata; | |
39236c6e | 1393 | advance = sizeof (kev32); |
b0d623f7 | 1394 | error = copyout((caddr_t)&kev32, *addrp, advance); |
91447636 A |
1395 | } |
1396 | if (!error) | |
1397 | *addrp += advance; | |
39236c6e | 1398 | return (error); |
91447636 | 1399 | } |
55e303ae | 1400 | |
91447636 A |
1401 | /* |
1402 | * kevent_continue - continue a kevent syscall after blocking | |
1403 | * | |
1404 | * assume we inherit a use count on the kq fileglob. | |
1405 | */ | |
55e303ae | 1406 | |
91447636 A |
1407 | static void |
1408 | kevent_continue(__unused struct kqueue *kq, void *data, int error) | |
1409 | { | |
1410 | struct _kevent *cont_args; | |
1411 | struct fileproc *fp; | |
b0d623f7 | 1412 | int32_t *retval; |
91447636 A |
1413 | int noutputs; |
1414 | int fd; | |
1415 | struct proc *p = current_proc(); | |
1416 | ||
1417 | cont_args = (struct _kevent *)data; | |
1418 | noutputs = cont_args->eventout; | |
1419 | retval = cont_args->retval; | |
1420 | fd = cont_args->fd; | |
1421 | fp = cont_args->fp; | |
1422 | ||
1423 | fp_drop(p, fd, fp, 0); | |
1424 | ||
1425 | /* don't restart after signals... */ | |
1426 | if (error == ERESTART) | |
1427 | error = EINTR; | |
1428 | else if (error == EWOULDBLOCK) | |
1429 | error = 0; | |
1430 | if (error == 0) | |
1431 | *retval = noutputs; | |
1432 | unix_syscall_return(error); | |
1433 | } | |
55e303ae | 1434 | |
91447636 A |
1435 | /* |
1436 | * kevent - [syscall] register and wait for kernel events | |
1437 | * | |
1438 | */ | |
91447636 | 1439 | int |
b0d623f7 A |
1440 | kevent(struct proc *p, struct kevent_args *uap, int32_t *retval) |
1441 | { | |
39236c6e A |
1442 | return (kevent_internal(p, |
1443 | 0, | |
1444 | uap->changelist, | |
1445 | uap->nchanges, | |
1446 | uap->eventlist, | |
1447 | uap->nevents, | |
1448 | uap->fd, | |
1449 | uap->timeout, | |
1450 | 0, /* no flags from old kevent() call */ | |
1451 | retval)); | |
1452 | } | |
1453 | ||
b0d623f7 A |
1454 | int |
1455 | kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval) | |
1456 | { | |
39236c6e A |
1457 | return (kevent_internal(p, |
1458 | 1, | |
1459 | uap->changelist, | |
1460 | uap->nchanges, | |
1461 | uap->eventlist, | |
1462 | uap->nevents, | |
1463 | uap->fd, | |
1464 | uap->timeout, | |
1465 | uap->flags, | |
1466 | retval)); | |
b0d623f7 | 1467 | } |
91447636 | 1468 | |
b0d623f7 | 1469 | static int |
39236c6e A |
1470 | kevent_internal(struct proc *p, int iskev64, user_addr_t changelist, |
1471 | int nchanges, user_addr_t ueventlist, int nevents, int fd, | |
1472 | user_addr_t utimeout, __unused unsigned int flags, | |
1473 | int32_t *retval) | |
b0d623f7 | 1474 | { |
91447636 A |
1475 | struct _kevent *cont_args; |
1476 | uthread_t ut; | |
1477 | struct kqueue *kq; | |
1478 | struct fileproc *fp; | |
b0d623f7 | 1479 | struct kevent64_s kev; |
91447636 A |
1480 | int error, noutputs; |
1481 | struct timeval atv; | |
1482 | ||
1483 | /* convert timeout to absolute - if we have one */ | |
b0d623f7 | 1484 | if (utimeout != USER_ADDR_NULL) { |
91447636 | 1485 | struct timeval rtv; |
b0d623f7 A |
1486 | if (IS_64BIT_PROCESS(p)) { |
1487 | struct user64_timespec ts; | |
1488 | error = copyin(utimeout, &ts, sizeof(ts)); | |
91447636 A |
1489 | if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0) |
1490 | error = EINVAL; | |
1491 | else | |
1492 | TIMESPEC_TO_TIMEVAL(&rtv, &ts); | |
1493 | } else { | |
b0d623f7 A |
1494 | struct user32_timespec ts; |
1495 | error = copyin(utimeout, &ts, sizeof(ts)); | |
91447636 A |
1496 | TIMESPEC_TO_TIMEVAL(&rtv, &ts); |
1497 | } | |
55e303ae | 1498 | if (error) |
39236c6e | 1499 | return (error); |
91447636 | 1500 | if (itimerfix(&rtv)) |
39236c6e | 1501 | return (EINVAL); |
91447636 A |
1502 | getmicrouptime(&atv); |
1503 | timevaladd(&atv, &rtv); | |
1504 | } else { | |
1505 | atv.tv_sec = 0; | |
1506 | atv.tv_usec = 0; | |
1507 | } | |
55e303ae | 1508 | |
91447636 A |
1509 | /* get a usecount for the kq itself */ |
1510 | if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0) | |
39236c6e A |
1511 | return (error); |
1512 | ||
b0d623f7 A |
1513 | /* each kq should only be used for events of one type */ |
1514 | kqlock(kq); | |
1515 | if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) { | |
1516 | if (((iskev64 && (kq->kq_state & KQ_KEV32)) || | |
1517 | (!iskev64 && (kq->kq_state & KQ_KEV64)))) { | |
1518 | error = EINVAL; | |
1519 | kqunlock(kq); | |
1520 | goto errorout; | |
1521 | } | |
1522 | } else { | |
1523 | kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32); | |
1524 | } | |
1525 | kqunlock(kq); | |
91447636 A |
1526 | |
1527 | /* register all the change requests the user provided... */ | |
1528 | noutputs = 0; | |
3a60a9f5 | 1529 | while (nchanges > 0 && error == 0) { |
b0d623f7 | 1530 | error = kevent_copyin(&changelist, &kev, p, iskev64); |
91447636 A |
1531 | if (error) |
1532 | break; | |
39236c6e | 1533 | |
91447636 A |
1534 | kev.flags &= ~EV_SYSFLAGS; |
1535 | error = kevent_register(kq, &kev, p); | |
2d21ac55 | 1536 | if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) { |
91447636 A |
1537 | kev.flags = EV_ERROR; |
1538 | kev.data = error; | |
b0d623f7 | 1539 | error = kevent_copyout(&kev, &ueventlist, p, iskev64); |
3a60a9f5 A |
1540 | if (error == 0) { |
1541 | nevents--; | |
1542 | noutputs++; | |
1543 | } | |
55e303ae | 1544 | } |
91447636 | 1545 | nchanges--; |
55e303ae A |
1546 | } |
1547 | ||
91447636 A |
1548 | /* store the continuation/completion data in the uthread */ |
1549 | ut = (uthread_t)get_bsdthread_info(current_thread()); | |
b0d623f7 | 1550 | cont_args = &ut->uu_kevent.ss_kevent; |
91447636 A |
1551 | cont_args->fp = fp; |
1552 | cont_args->fd = fd; | |
1553 | cont_args->retval = retval; | |
1554 | cont_args->eventlist = ueventlist; | |
1555 | cont_args->eventcount = nevents; | |
1556 | cont_args->eventout = noutputs; | |
b0d623f7 | 1557 | cont_args->eventsize = iskev64; |
91447636 A |
1558 | |
1559 | if (nevents > 0 && noutputs == 0 && error == 0) | |
b0d623f7 | 1560 | error = kqueue_scan(kq, kevent_callback, |
39236c6e A |
1561 | kevent_continue, cont_args, |
1562 | &atv, p); | |
91447636 | 1563 | kevent_continue(kq, cont_args, error); |
b0d623f7 A |
1564 | |
1565 | errorout: | |
1566 | fp_drop(p, fd, fp, 0); | |
39236c6e | 1567 | return (error); |
91447636 A |
1568 | } |
1569 | ||
1570 | ||
1571 | /* | |
1572 | * kevent_callback - callback for each individual event | |
1573 | * | |
39236c6e A |
1574 | * called with nothing locked |
1575 | * caller holds a reference on the kqueue | |
91447636 | 1576 | */ |
91447636 | 1577 | static int |
39236c6e A |
1578 | kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp, |
1579 | void *data) | |
91447636 A |
1580 | { |
1581 | struct _kevent *cont_args; | |
1582 | int error; | |
b0d623f7 | 1583 | int iskev64; |
91447636 A |
1584 | |
1585 | cont_args = (struct _kevent *)data; | |
2d21ac55 | 1586 | assert(cont_args->eventout < cont_args->eventcount); |
91447636 | 1587 | |
b0d623f7 A |
1588 | iskev64 = cont_args->eventsize; |
1589 | ||
91447636 A |
1590 | /* |
1591 | * Copy out the appropriate amount of event data for this user. | |
1592 | */ | |
39236c6e A |
1593 | error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), |
1594 | iskev64); | |
91447636 A |
1595 | |
1596 | /* | |
1597 | * If there isn't space for additional events, return | |
1598 | * a harmless error to stop the processing here | |
1599 | */ | |
1600 | if (error == 0 && ++cont_args->eventout == cont_args->eventcount) | |
39236c6e A |
1601 | error = EWOULDBLOCK; |
1602 | return (error); | |
55e303ae A |
1603 | } |
1604 | ||
b0d623f7 A |
1605 | /* |
1606 | * kevent_description - format a description of a kevent for diagnostic output | |
1607 | * | |
39236c6e | 1608 | * called with a 128-byte string buffer |
b0d623f7 A |
1609 | */ |
1610 | ||
1611 | char * | |
1612 | kevent_description(struct kevent64_s *kevp, char *s, size_t n) | |
1613 | { | |
39236c6e A |
1614 | snprintf(s, n, |
1615 | "kevent=" | |
1616 | "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}", | |
1617 | kevp->ident, | |
1618 | kevp->filter, | |
1619 | kevp->flags, | |
1620 | kevp->fflags, | |
1621 | kevp->data, | |
1622 | kevp->udata, | |
1623 | kevp->ext[0], | |
1624 | kevp->ext[1]); | |
1625 | ||
1626 | return (s); | |
b0d623f7 A |
1627 | } |
1628 | ||
91447636 A |
1629 | /* |
1630 | * kevent_register - add a new event to a kqueue | |
1631 | * | |
1632 | * Creates a mapping between the event source and | |
1633 | * the kqueue via a knote data structure. | |
1634 | * | |
1635 | * Because many/most the event sources are file | |
1636 | * descriptor related, the knote is linked off | |
1637 | * the filedescriptor table for quick access. | |
1638 | * | |
1639 | * called with nothing locked | |
1640 | * caller holds a reference on the kqueue | |
1641 | */ | |
1642 | ||
55e303ae | 1643 | int |
39236c6e A |
1644 | kevent_register(struct kqueue *kq, struct kevent64_s *kev, |
1645 | __unused struct proc *ctxp) | |
55e303ae | 1646 | { |
2d21ac55 A |
1647 | struct proc *p = kq->kq_p; |
1648 | struct filedesc *fdp = p->p_fd; | |
55e303ae | 1649 | struct filterops *fops; |
91447636 | 1650 | struct fileproc *fp = NULL; |
55e303ae | 1651 | struct knote *kn = NULL; |
91447636 | 1652 | int error = 0; |
55e303ae A |
1653 | |
1654 | if (kev->filter < 0) { | |
1655 | if (kev->filter + EVFILT_SYSCOUNT < 0) | |
1656 | return (EINVAL); | |
1657 | fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ | |
1658 | } else { | |
1659 | /* | |
1660 | * XXX | |
1661 | * filter attach routine is responsible for insuring that | |
1662 | * the identifier can be attached to it. | |
1663 | */ | |
1664 | printf("unknown filter: %d\n", kev->filter); | |
1665 | return (EINVAL); | |
1666 | } | |
1667 | ||
39236c6e | 1668 | restart: |
91447636 | 1669 | /* this iocount needs to be dropped if it is not registered */ |
b0d623f7 A |
1670 | proc_fdlock(p); |
1671 | if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) { | |
1672 | proc_fdunlock(p); | |
39236c6e | 1673 | return (error); |
b0d623f7 | 1674 | } |
55e303ae | 1675 | |
91447636 A |
1676 | if (fops->f_isfd) { |
1677 | /* fd-based knotes are linked off the fd table */ | |
1678 | if (kev->ident < (u_int)fdp->fd_knlistsize) { | |
55e303ae A |
1679 | SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link) |
1680 | if (kq == kn->kn_kq && | |
1681 | kev->filter == kn->kn_filter) | |
1682 | break; | |
1683 | } | |
1684 | } else { | |
91447636 | 1685 | /* hash non-fd knotes here too */ |
55e303ae A |
1686 | if (fdp->fd_knhashmask != 0) { |
1687 | struct klist *list; | |
39236c6e | 1688 | |
55e303ae A |
1689 | list = &fdp->fd_knhash[ |
1690 | KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; | |
1691 | SLIST_FOREACH(kn, list, kn_link) | |
1692 | if (kev->ident == kn->kn_id && | |
1693 | kq == kn->kn_kq && | |
1694 | kev->filter == kn->kn_filter) | |
1695 | break; | |
1696 | } | |
1697 | } | |
1698 | ||
91447636 A |
1699 | /* |
1700 | * kn now contains the matching knote, or NULL if no match | |
1701 | */ | |
1702 | if (kn == NULL) { | |
1703 | if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) { | |
1704 | kn = knote_alloc(); | |
1705 | if (kn == NULL) { | |
1706 | proc_fdunlock(p); | |
1707 | error = ENOMEM; | |
1708 | goto done; | |
1709 | } | |
1710 | kn->kn_fp = fp; | |
1711 | kn->kn_kq = kq; | |
1712 | kn->kn_tq = &kq->kq_head; | |
1713 | kn->kn_fop = fops; | |
1714 | kn->kn_sfflags = kev->fflags; | |
1715 | kn->kn_sdata = kev->data; | |
1716 | kev->fflags = 0; | |
1717 | kev->data = 0; | |
1718 | kn->kn_kevent = *kev; | |
1719 | kn->kn_inuse = 1; /* for f_attach() */ | |
b0d623f7 | 1720 | kn->kn_status = KN_ATTACHING; |
91447636 A |
1721 | |
1722 | /* before anyone can find it */ | |
1723 | if (kev->flags & EV_DISABLE) | |
1724 | kn->kn_status |= KN_DISABLED; | |
1725 | ||
1726 | error = knote_fdpattach(kn, fdp, p); | |
1727 | proc_fdunlock(p); | |
1728 | ||
1729 | if (error) { | |
1730 | knote_free(kn); | |
1731 | goto done; | |
1732 | } | |
1733 | ||
1734 | /* | |
1735 | * apply reference count to knote structure, and | |
1736 | * do not release it at the end of this routine. | |
1737 | */ | |
1738 | fp = NULL; | |
1739 | ||
b0d623f7 A |
1740 | error = fops->f_attach(kn); |
1741 | ||
b0d623f7 | 1742 | kqlock(kq); |
6d2010ae | 1743 | |
7e4a7d39 A |
1744 | if (error != 0) { |
1745 | /* | |
1746 | * Failed to attach correctly, so drop. | |
1747 | * All other possible users/droppers | |
1748 | * have deferred to us. | |
1749 | */ | |
b0d623f7 A |
1750 | kn->kn_status |= KN_DROPPING; |
1751 | kqunlock(kq); | |
91447636 A |
1752 | knote_drop(kn, p); |
1753 | goto done; | |
7e4a7d39 A |
1754 | } else if (kn->kn_status & KN_DROPPING) { |
1755 | /* | |
1756 | * Attach succeeded, but someone else | |
1757 | * deferred their drop - now we have | |
1758 | * to do it for them (after detaching). | |
1759 | */ | |
1760 | kqunlock(kq); | |
1761 | kn->kn_fop->f_detach(kn); | |
1762 | knote_drop(kn, p); | |
1763 | goto done; | |
91447636 | 1764 | } |
b0d623f7 A |
1765 | kn->kn_status &= ~KN_ATTACHING; |
1766 | kqunlock(kq); | |
91447636 A |
1767 | } else { |
1768 | proc_fdunlock(p); | |
1769 | error = ENOENT; | |
1770 | goto done; | |
1771 | } | |
1772 | } else { | |
1773 | /* existing knote - get kqueue lock */ | |
1774 | kqlock(kq); | |
1775 | proc_fdunlock(p); | |
39236c6e | 1776 | |
91447636 A |
1777 | if (kev->flags & EV_DELETE) { |
1778 | knote_dequeue(kn); | |
1779 | kn->kn_status |= KN_DISABLED; | |
1780 | if (kqlock2knotedrop(kq, kn)) { | |
1781 | kn->kn_fop->f_detach(kn); | |
1782 | knote_drop(kn, p); | |
1783 | } | |
1784 | goto done; | |
1785 | } | |
39236c6e | 1786 | |
91447636 A |
1787 | /* update status flags for existing knote */ |
1788 | if (kev->flags & EV_DISABLE) { | |
1789 | knote_dequeue(kn); | |
1790 | kn->kn_status |= KN_DISABLED; | |
1791 | } else if (kev->flags & EV_ENABLE) { | |
1792 | kn->kn_status &= ~KN_DISABLED; | |
1793 | if (kn->kn_status & KN_ACTIVE) | |
1794 | knote_enqueue(kn); | |
1795 | } | |
1796 | ||
b7266188 A |
1797 | /* |
1798 | * The user may change some filter values after the | |
39236c6e | 1799 | * initial EV_ADD, but doing so will not reset any |
b7266188 A |
1800 | * filter which have already been triggered. |
1801 | */ | |
1802 | kn->kn_kevent.udata = kev->udata; | |
1803 | if (fops->f_isfd || fops->f_touch == NULL) { | |
39236c6e A |
1804 | kn->kn_sfflags = kev->fflags; |
1805 | kn->kn_sdata = kev->data; | |
b7266188 A |
1806 | } |
1807 | ||
91447636 A |
1808 | /* |
1809 | * If somebody is in the middle of dropping this | |
1810 | * knote - go find/insert a new one. But we have | |
b0d623f7 A |
1811 | * wait for this one to go away first. Attaches |
1812 | * running in parallel may also drop/modify the | |
1813 | * knote. Wait for those to complete as well and | |
1814 | * then start over if we encounter one. | |
91447636 | 1815 | */ |
b0d623f7 A |
1816 | if (!kqlock2knoteusewait(kq, kn)) { |
1817 | /* kqueue, proc_fdlock both unlocked */ | |
91447636 | 1818 | goto restart; |
b0d623f7 | 1819 | } |
91447636 A |
1820 | |
1821 | /* | |
b7266188 A |
1822 | * Call touch routine to notify filter of changes |
1823 | * in filter values. | |
91447636 | 1824 | */ |
b0d623f7 | 1825 | if (!fops->f_isfd && fops->f_touch != NULL) |
39236c6e | 1826 | fops->f_touch(kn, kev, EVENT_REGISTER); |
91447636 | 1827 | } |
91447636 | 1828 | /* still have use ref on knote */ |
b0d623f7 A |
1829 | |
1830 | /* | |
1831 | * If the knote is not marked to always stay enqueued, | |
1832 | * invoke the filter routine to see if it should be | |
1833 | * enqueued now. | |
1834 | */ | |
1835 | if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) { | |
91447636 | 1836 | if (knoteuse2kqlock(kq, kn)) |
b0d623f7 | 1837 | knote_activate(kn, 1); |
91447636 A |
1838 | kqunlock(kq); |
1839 | } else { | |
1840 | knote_put(kn); | |
1841 | } | |
1842 | ||
1843 | done: | |
1844 | if (fp != NULL) | |
1845 | fp_drop(p, kev->ident, fp, 0); | |
1846 | return (error); | |
1847 | } | |
1848 | ||
b0d623f7 A |
1849 | |
1850 | /* | |
1851 | * knote_process - process a triggered event | |
1852 | * | |
1853 | * Validate that it is really still a triggered event | |
1854 | * by calling the filter routines (if necessary). Hold | |
1855 | * a use reference on the knote to avoid it being detached. | |
1856 | * If it is still considered triggered, invoke the callback | |
1857 | * routine provided and move it to the provided inprocess | |
1858 | * queue. | |
1859 | * | |
1860 | * caller holds a reference on the kqueue. | |
1861 | * kqueue locked on entry and exit - but may be dropped | |
1862 | */ | |
1863 | static int | |
39236c6e A |
1864 | knote_process(struct knote *kn, |
1865 | kevent_callback_t callback, | |
1866 | void *data, | |
1867 | struct kqtailq *inprocessp, | |
1868 | struct proc *p) | |
b0d623f7 A |
1869 | { |
1870 | struct kqueue *kq = kn->kn_kq; | |
1871 | struct kevent64_s kev; | |
1872 | int touch; | |
1873 | int result; | |
1874 | int error; | |
1875 | ||
1876 | /* | |
1877 | * Determine the kevent state we want to return. | |
1878 | * | |
1879 | * Some event states need to be revalidated before returning | |
1880 | * them, others we take the snapshot at the time the event | |
1881 | * was enqueued. | |
1882 | * | |
1883 | * Events with non-NULL f_touch operations must be touched. | |
1884 | * Triggered events must fill in kev for the callback. | |
1885 | * | |
1886 | * Convert our lock to a use-count and call the event's | |
1887 | * filter routine(s) to update. | |
1888 | */ | |
1889 | if ((kn->kn_status & KN_DISABLED) != 0) { | |
1890 | result = 0; | |
1891 | touch = 0; | |
1892 | } else { | |
1893 | int revalidate; | |
1894 | ||
1895 | result = 1; | |
1896 | revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 || | |
39236c6e A |
1897 | (kn->kn_flags & EV_ONESHOT) == 0); |
1898 | touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL); | |
b0d623f7 A |
1899 | |
1900 | if (revalidate || touch) { | |
1901 | if (revalidate) | |
1902 | knote_deactivate(kn); | |
39236c6e | 1903 | |
b0d623f7 A |
1904 | /* call the filter/touch routines with just a ref */ |
1905 | if (kqlock2knoteuse(kq, kn)) { | |
b0d623f7 A |
1906 | /* if we have to revalidate, call the filter */ |
1907 | if (revalidate) { | |
1908 | result = kn->kn_fop->f_event(kn, 0); | |
1909 | } | |
1910 | ||
39236c6e A |
1911 | /* |
1912 | * capture the kevent data - using touch if | |
1913 | * specified | |
1914 | */ | |
b7266188 | 1915 | if (result && touch) { |
39236c6e A |
1916 | kn->kn_fop->f_touch(kn, &kev, |
1917 | EVENT_PROCESS); | |
b0d623f7 | 1918 | } |
b7266188 | 1919 | |
39236c6e A |
1920 | /* |
1921 | * convert back to a kqlock - bail if the knote | |
1922 | * went away | |
1923 | */ | |
b0d623f7 | 1924 | if (!knoteuse2kqlock(kq, kn)) { |
39236c6e | 1925 | return (EJUSTRETURN); |
b0d623f7 | 1926 | } else if (result) { |
39236c6e A |
1927 | /* |
1928 | * if revalidated as alive, make sure | |
1929 | * it's active | |
1930 | */ | |
b0d623f7 A |
1931 | if (!(kn->kn_status & KN_ACTIVE)) { |
1932 | knote_activate(kn, 0); | |
1933 | } | |
b7266188 | 1934 | |
39236c6e A |
1935 | /* |
1936 | * capture all events that occurred | |
1937 | * during filter | |
1938 | */ | |
b7266188 A |
1939 | if (!touch) { |
1940 | kev = kn->kn_kevent; | |
1941 | } | |
1942 | ||
b0d623f7 | 1943 | } else if ((kn->kn_status & KN_STAYQUEUED) == 0) { |
39236c6e A |
1944 | /* |
1945 | * was already dequeued, so just bail on | |
1946 | * this one | |
1947 | */ | |
1948 | return (EJUSTRETURN); | |
b0d623f7 A |
1949 | } |
1950 | } else { | |
39236c6e | 1951 | return (EJUSTRETURN); |
b0d623f7 A |
1952 | } |
1953 | } else { | |
1954 | kev = kn->kn_kevent; | |
1955 | } | |
1956 | } | |
39236c6e | 1957 | |
b0d623f7 A |
1958 | /* move knote onto inprocess queue */ |
1959 | assert(kn->kn_tq == &kq->kq_head); | |
1960 | TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); | |
1961 | kn->kn_tq = inprocessp; | |
1962 | TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe); | |
1963 | ||
1964 | /* | |
1965 | * Determine how to dispatch the knote for future event handling. | |
1966 | * not-fired: just return (do not callout). | |
1967 | * One-shot: deactivate it. | |
1968 | * Clear: deactivate and clear the state. | |
1969 | * Dispatch: don't clear state, just deactivate it and mark it disabled. | |
1970 | * All others: just leave where they are. | |
1971 | */ | |
1972 | ||
1973 | if (result == 0) { | |
39236c6e | 1974 | return (EJUSTRETURN); |
b7266188 | 1975 | } else if ((kn->kn_flags & EV_ONESHOT) != 0) { |
b0d623f7 A |
1976 | knote_deactivate(kn); |
1977 | if (kqlock2knotedrop(kq, kn)) { | |
1978 | kn->kn_fop->f_detach(kn); | |
1979 | knote_drop(kn, p); | |
1980 | } | |
b7266188 A |
1981 | } else if ((kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) != 0) { |
1982 | if ((kn->kn_flags & EV_DISPATCH) != 0) { | |
1983 | /* deactivate and disable all dispatch knotes */ | |
1984 | knote_deactivate(kn); | |
1985 | kn->kn_status |= KN_DISABLED; | |
1986 | } else if (!touch || kn->kn_fflags == 0) { | |
1987 | /* only deactivate if nothing since the touch */ | |
1988 | knote_deactivate(kn); | |
1989 | } | |
1990 | if (!touch && (kn->kn_flags & EV_CLEAR) != 0) { | |
1991 | /* manually clear non-touch knotes */ | |
b0d623f7 A |
1992 | kn->kn_data = 0; |
1993 | kn->kn_fflags = 0; | |
1994 | } | |
b0d623f7 A |
1995 | kqunlock(kq); |
1996 | } else { | |
1997 | /* | |
1998 | * leave on inprocess queue. We'll | |
1999 | * move all the remaining ones back | |
2000 | * the kq queue and wakeup any | |
2001 | * waiters when we are done. | |
2002 | */ | |
2003 | kqunlock(kq); | |
2004 | } | |
2005 | ||
2006 | /* callback to handle each event as we find it */ | |
2007 | error = (callback)(kq, &kev, data); | |
39236c6e | 2008 | |
b0d623f7 | 2009 | kqlock(kq); |
39236c6e | 2010 | return (error); |
b0d623f7 A |
2011 | } |
2012 | ||
6d2010ae A |
2013 | /* |
2014 | * Return 0 to indicate that processing should proceed, | |
2015 | * -1 if there is nothing to process. | |
2016 | * | |
2017 | * Called with kqueue locked and returns the same way, | |
2018 | * but may drop lock temporarily. | |
2019 | */ | |
2020 | static int | |
2021 | kqueue_begin_processing(struct kqueue *kq) | |
2022 | { | |
2023 | for (;;) { | |
2024 | if (kq->kq_count == 0) { | |
39236c6e | 2025 | return (-1); |
6d2010ae A |
2026 | } |
2027 | ||
2028 | /* if someone else is processing the queue, wait */ | |
2029 | if (kq->kq_nprocess != 0) { | |
39236c6e A |
2030 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, |
2031 | &kq->kq_nprocess, THREAD_UNINT, 0); | |
6d2010ae A |
2032 | kq->kq_state |= KQ_PROCWAIT; |
2033 | kqunlock(kq); | |
2034 | thread_block(THREAD_CONTINUE_NULL); | |
2035 | kqlock(kq); | |
2036 | } else { | |
2037 | kq->kq_nprocess = 1; | |
39236c6e | 2038 | return (0); |
6d2010ae A |
2039 | } |
2040 | } | |
2041 | } | |
2042 | ||
2043 | /* | |
2044 | * Called with kqueue lock held. | |
2045 | */ | |
2046 | static void | |
2047 | kqueue_end_processing(struct kqueue *kq) | |
2048 | { | |
2049 | kq->kq_nprocess = 0; | |
2050 | if (kq->kq_state & KQ_PROCWAIT) { | |
2051 | kq->kq_state &= ~KQ_PROCWAIT; | |
39236c6e A |
2052 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, |
2053 | &kq->kq_nprocess, THREAD_AWAKENED); | |
6d2010ae A |
2054 | } |
2055 | } | |
b0d623f7 | 2056 | |
91447636 | 2057 | /* |
b0d623f7 | 2058 | * kqueue_process - process the triggered events in a kqueue |
91447636 A |
2059 | * |
2060 | * Walk the queued knotes and validate that they are | |
2061 | * really still triggered events by calling the filter | |
2062 | * routines (if necessary). Hold a use reference on | |
2063 | * the knote to avoid it being detached. For each event | |
2064 | * that is still considered triggered, invoke the | |
2065 | * callback routine provided. | |
2066 | * | |
2067 | * caller holds a reference on the kqueue. | |
2068 | * kqueue locked on entry and exit - but may be dropped | |
b0d623f7 | 2069 | * kqueue list locked (held for duration of call) |
91447636 A |
2070 | */ |
2071 | ||
2072 | static int | |
b0d623f7 | 2073 | kqueue_process(struct kqueue *kq, |
39236c6e A |
2074 | kevent_callback_t callback, |
2075 | void *data, | |
2076 | int *countp, | |
2077 | struct proc *p) | |
91447636 | 2078 | { |
39236c6e | 2079 | struct kqtailq inprocess; |
91447636 | 2080 | struct knote *kn; |
91447636 A |
2081 | int nevents; |
2082 | int error; | |
2083 | ||
39236c6e | 2084 | TAILQ_INIT(&inprocess); |
6d2010ae A |
2085 | |
2086 | if (kqueue_begin_processing(kq) == -1) { | |
91447636 | 2087 | *countp = 0; |
6d2010ae | 2088 | /* Nothing to process */ |
39236c6e | 2089 | return (0); |
91447636 A |
2090 | } |
2091 | ||
b0d623f7 | 2092 | /* |
39236c6e A |
2093 | * Clear any pre-posted status from previous runs, so we |
2094 | * only detect events that occur during this run. | |
b0d623f7 A |
2095 | */ |
2096 | wait_queue_sub_clearrefs(kq->kq_wqs); | |
2097 | ||
2098 | /* | |
2099 | * loop through the enqueued knotes, processing each one and | |
2100 | * revalidating those that need it. As they are processed, | |
2101 | * they get moved to the inprocess queue (so the loop can end). | |
2102 | */ | |
91447636 A |
2103 | error = 0; |
2104 | nevents = 0; | |
b0d623f7 | 2105 | |
91447636 | 2106 | while (error == 0 && |
39236c6e | 2107 | (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) { |
b0d623f7 A |
2108 | error = knote_process(kn, callback, data, &inprocess, p); |
2109 | if (error == EJUSTRETURN) | |
2110 | error = 0; | |
2111 | else | |
2112 | nevents++; | |
55e303ae A |
2113 | } |
2114 | ||
91447636 A |
2115 | /* |
2116 | * With the kqueue still locked, move any knotes | |
b0d623f7 | 2117 | * remaining on the inprocess queue back to the |
91447636 A |
2118 | * kq's queue and wake up any waiters. |
2119 | */ | |
b0d623f7 A |
2120 | while ((kn = TAILQ_FIRST(&inprocess)) != NULL) { |
2121 | assert(kn->kn_tq == &inprocess); | |
2122 | TAILQ_REMOVE(&inprocess, kn, kn_tqe); | |
91447636 A |
2123 | kn->kn_tq = &kq->kq_head; |
2124 | TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); | |
55e303ae | 2125 | } |
6d2010ae A |
2126 | |
2127 | kqueue_end_processing(kq); | |
55e303ae | 2128 | |
91447636 | 2129 | *countp = nevents; |
39236c6e | 2130 | return (error); |
55e303ae A |
2131 | } |
2132 | ||
91447636 A |
2133 | |
2134 | static void | |
b0d623f7 | 2135 | kqueue_scan_continue(void *data, wait_result_t wait_result) |
55e303ae | 2136 | { |
b0d623f7 A |
2137 | thread_t self = current_thread(); |
2138 | uthread_t ut = (uthread_t)get_bsdthread_info(self); | |
2139 | struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan; | |
91447636 A |
2140 | struct kqueue *kq = (struct kqueue *)data; |
2141 | int error; | |
2142 | int count; | |
2143 | ||
2144 | /* convert the (previous) wait_result to a proper error */ | |
2145 | switch (wait_result) { | |
2146 | case THREAD_AWAKENED: | |
2147 | kqlock(kq); | |
39236c6e A |
2148 | error = kqueue_process(kq, cont_args->call, cont_args, &count, |
2149 | current_proc()); | |
91447636 | 2150 | if (error == 0 && count == 0) { |
39236c6e A |
2151 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, |
2152 | KQ_EVENT, THREAD_ABORTSAFE, cont_args->deadline); | |
91447636 A |
2153 | kq->kq_state |= KQ_SLEEP; |
2154 | kqunlock(kq); | |
b0d623f7 | 2155 | thread_block_parameter(kqueue_scan_continue, kq); |
91447636 | 2156 | /* NOTREACHED */ |
55e303ae | 2157 | } |
91447636 A |
2158 | kqunlock(kq); |
2159 | break; | |
2160 | case THREAD_TIMED_OUT: | |
39236c6e | 2161 | error = EWOULDBLOCK; |
91447636 A |
2162 | break; |
2163 | case THREAD_INTERRUPTED: | |
2164 | error = EINTR; | |
2165 | break; | |
2166 | default: | |
39236c6e A |
2167 | panic("%s: - invalid wait_result (%d)", __func__, |
2168 | wait_result); | |
91447636 | 2169 | error = 0; |
55e303ae | 2170 | } |
39236c6e | 2171 | |
91447636 A |
2172 | /* call the continuation with the results */ |
2173 | assert(cont_args->cont != NULL); | |
2174 | (cont_args->cont)(kq, cont_args->data, error); | |
2175 | } | |
55e303ae | 2176 | |
55e303ae | 2177 | |
91447636 | 2178 | /* |
b0d623f7 | 2179 | * kqueue_scan - scan and wait for events in a kqueue |
91447636 A |
2180 | * |
2181 | * Process the triggered events in a kqueue. | |
2182 | * | |
2183 | * If there are no events triggered arrange to | |
2184 | * wait for them. If the caller provided a | |
2185 | * continuation routine, then kevent_scan will | |
2186 | * also. | |
2187 | * | |
2188 | * The callback routine must be valid. | |
2189 | * The caller must hold a use-count reference on the kq. | |
2190 | */ | |
55e303ae | 2191 | |
91447636 | 2192 | int |
39236c6e | 2193 | kqueue_scan(struct kqueue *kq, |
91447636 | 2194 | kevent_callback_t callback, |
b0d623f7 | 2195 | kqueue_continue_t continuation, |
91447636 A |
2196 | void *data, |
2197 | struct timeval *atvp, | |
2198 | struct proc *p) | |
2199 | { | |
2200 | thread_continue_t cont = THREAD_CONTINUE_NULL; | |
2201 | uint64_t deadline; | |
2202 | int error; | |
2203 | int first; | |
55e303ae | 2204 | |
91447636 | 2205 | assert(callback != NULL); |
55e303ae | 2206 | |
91447636 A |
2207 | first = 1; |
2208 | for (;;) { | |
2209 | wait_result_t wait_result; | |
2210 | int count; | |
2211 | ||
2212 | /* | |
2213 | * Make a pass through the kq to find events already | |
39236c6e | 2214 | * triggered. |
91447636 A |
2215 | */ |
2216 | kqlock(kq); | |
b0d623f7 | 2217 | error = kqueue_process(kq, callback, data, &count, p); |
91447636 A |
2218 | if (error || count) |
2219 | break; /* lock still held */ | |
2220 | ||
2221 | /* looks like we have to consider blocking */ | |
2222 | if (first) { | |
2223 | first = 0; | |
2224 | /* convert the timeout to a deadline once */ | |
2225 | if (atvp->tv_sec || atvp->tv_usec) { | |
91447636 | 2226 | uint64_t now; |
39236c6e | 2227 | |
91447636 A |
2228 | clock_get_uptime(&now); |
2229 | nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC + | |
39236c6e | 2230 | atvp->tv_usec * (long)NSEC_PER_USEC, |
91447636 A |
2231 | &deadline); |
2232 | if (now >= deadline) { | |
2233 | /* non-blocking call */ | |
2234 | error = EWOULDBLOCK; | |
2235 | break; /* lock still held */ | |
2236 | } | |
2237 | deadline -= now; | |
2238 | clock_absolutetime_interval_to_deadline(deadline, &deadline); | |
55e303ae | 2239 | } else { |
91447636 A |
2240 | deadline = 0; /* block forever */ |
2241 | } | |
2242 | ||
2243 | if (continuation) { | |
2244 | uthread_t ut = (uthread_t)get_bsdthread_info(current_thread()); | |
b0d623f7 | 2245 | struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan; |
39236c6e | 2246 | |
91447636 A |
2247 | cont_args->call = callback; |
2248 | cont_args->cont = continuation; | |
2249 | cont_args->deadline = deadline; | |
2250 | cont_args->data = data; | |
b0d623f7 | 2251 | cont = kqueue_scan_continue; |
55e303ae A |
2252 | } |
2253 | } | |
91447636 A |
2254 | |
2255 | /* go ahead and wait */ | |
39236c6e A |
2256 | wait_queue_assert_wait_with_leeway((wait_queue_t)kq->kq_wqs, |
2257 | KQ_EVENT, THREAD_ABORTSAFE, TIMEOUT_URGENCY_USER_NORMAL, | |
2258 | deadline, 0); | |
91447636 A |
2259 | kq->kq_state |= KQ_SLEEP; |
2260 | kqunlock(kq); | |
2261 | wait_result = thread_block_parameter(cont, kq); | |
2262 | /* NOTREACHED if (continuation != NULL) */ | |
2263 | ||
2264 | switch (wait_result) { | |
2265 | case THREAD_AWAKENED: | |
2266 | continue; | |
2267 | case THREAD_TIMED_OUT: | |
39236c6e | 2268 | return (EWOULDBLOCK); |
91447636 | 2269 | case THREAD_INTERRUPTED: |
39236c6e | 2270 | return (EINTR); |
91447636 | 2271 | default: |
39236c6e A |
2272 | panic("%s: - bad wait_result (%d)", __func__, |
2273 | wait_result); | |
91447636 A |
2274 | error = 0; |
2275 | } | |
55e303ae | 2276 | } |
91447636 | 2277 | kqunlock(kq); |
39236c6e | 2278 | return (error); |
55e303ae A |
2279 | } |
2280 | ||
91447636 | 2281 | |
55e303ae A |
2282 | /* |
2283 | * XXX | |
2284 | * This could be expanded to call kqueue_scan, if desired. | |
2285 | */ | |
2286 | /*ARGSUSED*/ | |
2287 | static int | |
39236c6e A |
2288 | kqueue_read(__unused struct fileproc *fp, |
2289 | __unused struct uio *uio, | |
2290 | __unused int flags, | |
2291 | __unused vfs_context_t ctx) | |
55e303ae A |
2292 | { |
2293 | return (ENXIO); | |
2294 | } | |
2295 | ||
2296 | /*ARGSUSED*/ | |
2297 | static int | |
39236c6e A |
2298 | kqueue_write(__unused struct fileproc *fp, |
2299 | __unused struct uio *uio, | |
2300 | __unused int flags, | |
2301 | __unused vfs_context_t ctx) | |
55e303ae A |
2302 | { |
2303 | return (ENXIO); | |
2304 | } | |
2305 | ||
2306 | /*ARGSUSED*/ | |
2307 | static int | |
39236c6e A |
2308 | kqueue_ioctl(__unused struct fileproc *fp, |
2309 | __unused u_long com, | |
2310 | __unused caddr_t data, | |
2311 | __unused vfs_context_t ctx) | |
55e303ae A |
2312 | { |
2313 | return (ENOTTY); | |
2314 | } | |
2315 | ||
2316 | /*ARGSUSED*/ | |
2317 | static int | |
39236c6e A |
2318 | kqueue_select(struct fileproc *fp, int which, void *wql, |
2319 | __unused vfs_context_t ctx) | |
55e303ae A |
2320 | { |
2321 | struct kqueue *kq = (struct kqueue *)fp->f_data; | |
6d2010ae A |
2322 | struct knote *kn; |
2323 | struct kqtailq inprocessq; | |
2324 | int retnum = 0; | |
39236c6e | 2325 | |
b0d623f7 | 2326 | if (which != FREAD) |
39236c6e | 2327 | return (0); |
b0d623f7 | 2328 | |
6d2010ae A |
2329 | TAILQ_INIT(&inprocessq); |
2330 | ||
b0d623f7 | 2331 | kqlock(kq); |
39236c6e | 2332 | /* |
b0d623f7 A |
2333 | * If this is the first pass, link the wait queue associated with the |
2334 | * the kqueue onto the wait queue set for the select(). Normally we | |
2335 | * use selrecord() for this, but it uses the wait queue within the | |
2336 | * selinfo structure and we need to use the main one for the kqueue to | |
2337 | * catch events from KN_STAYQUEUED sources. So we do the linkage manually. | |
2338 | * (The select() call will unlink them when it ends). | |
2339 | */ | |
2340 | if (wql != NULL) { | |
39236c6e | 2341 | thread_t cur_act = current_thread(); |
b0d623f7 A |
2342 | struct uthread * ut = get_bsdthread_info(cur_act); |
2343 | ||
2344 | kq->kq_state |= KQ_SEL; | |
2345 | wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset, | |
39236c6e | 2346 | (wait_queue_link_t)wql); |
b0d623f7 A |
2347 | } |
2348 | ||
6d2010ae A |
2349 | if (kqueue_begin_processing(kq) == -1) { |
2350 | kqunlock(kq); | |
39236c6e | 2351 | return (0); |
6d2010ae | 2352 | } |
b0d623f7 | 2353 | |
6d2010ae | 2354 | if (kq->kq_count != 0) { |
b0d623f7 A |
2355 | /* |
2356 | * there is something queued - but it might be a | |
2357 | * KN_STAYQUEUED knote, which may or may not have | |
2358 | * any events pending. So, we have to walk the | |
2359 | * list of knotes to see, and peek at the stay- | |
2360 | * queued ones to be really sure. | |
2361 | */ | |
39236c6e | 2362 | while ((kn = (struct knote *)TAILQ_FIRST(&kq->kq_head)) != NULL) { |
6d2010ae A |
2363 | if ((kn->kn_status & KN_STAYQUEUED) == 0) { |
2364 | retnum = 1; | |
2365 | goto out; | |
b0d623f7 | 2366 | } |
6d2010ae A |
2367 | |
2368 | TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); | |
2369 | TAILQ_INSERT_TAIL(&inprocessq, kn, kn_tqe); | |
2370 | ||
2371 | if (kqlock2knoteuse(kq, kn)) { | |
2372 | unsigned peek; | |
2373 | ||
2374 | peek = kn->kn_fop->f_peek(kn); | |
2375 | if (knoteuse2kqlock(kq, kn)) { | |
2376 | if (peek > 0) { | |
2377 | retnum = 1; | |
2378 | goto out; | |
2379 | } | |
2380 | } else { | |
2381 | retnum = 0; | |
2382 | } | |
39236c6e | 2383 | } |
55e303ae | 2384 | } |
b0d623f7 A |
2385 | } |
2386 | ||
6d2010ae A |
2387 | out: |
2388 | /* Return knotes to active queue */ | |
2389 | while ((kn = TAILQ_FIRST(&inprocessq)) != NULL) { | |
2390 | TAILQ_REMOVE(&inprocessq, kn, kn_tqe); | |
2391 | kn->kn_tq = &kq->kq_head; | |
2392 | TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); | |
55e303ae | 2393 | } |
b0d623f7 | 2394 | |
6d2010ae | 2395 | kqueue_end_processing(kq); |
b0d623f7 | 2396 | kqunlock(kq); |
39236c6e | 2397 | return (retnum); |
55e303ae A |
2398 | } |
2399 | ||
91447636 A |
2400 | /* |
2401 | * kqueue_close - | |
2402 | */ | |
55e303ae A |
2403 | /*ARGSUSED*/ |
2404 | static int | |
2d21ac55 | 2405 | kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx) |
55e303ae | 2406 | { |
91447636 | 2407 | struct kqueue *kq = (struct kqueue *)fg->fg_data; |
55e303ae | 2408 | |
2d21ac55 | 2409 | kqueue_dealloc(kq); |
91447636 | 2410 | fg->fg_data = NULL; |
55e303ae A |
2411 | return (0); |
2412 | } | |
2413 | ||
2414 | /*ARGSUSED*/ | |
91447636 A |
2415 | /* |
2416 | * The callers has taken a use-count reference on this kqueue and will donate it | |
2417 | * to the kqueue we are being added to. This keeps the kqueue from closing until | |
2418 | * that relationship is torn down. | |
2419 | */ | |
55e303ae | 2420 | static int |
2d21ac55 | 2421 | kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx) |
55e303ae A |
2422 | { |
2423 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
2d21ac55 | 2424 | struct kqueue *parentkq = kn->kn_kq; |
55e303ae | 2425 | |
2d21ac55 A |
2426 | if (parentkq == kq || |
2427 | kn->kn_filter != EVFILT_READ) | |
55e303ae A |
2428 | return (1); |
2429 | ||
2d21ac55 A |
2430 | /* |
2431 | * We have to avoid creating a cycle when nesting kqueues | |
2432 | * inside another. Rather than trying to walk the whole | |
2433 | * potential DAG of nested kqueues, we just use a simple | |
2434 | * ceiling protocol. When a kqueue is inserted into another, | |
2435 | * we check that the (future) parent is not already nested | |
2436 | * into another kqueue at a lower level than the potenial | |
2437 | * child (because it could indicate a cycle). If that test | |
2438 | * passes, we just mark the nesting levels accordingly. | |
2439 | */ | |
2440 | ||
2441 | kqlock(parentkq); | |
39236c6e | 2442 | if (parentkq->kq_level > 0 && |
2d21ac55 A |
2443 | parentkq->kq_level < kq->kq_level) |
2444 | { | |
2445 | kqunlock(parentkq); | |
2446 | return (1); | |
2447 | } else { | |
2448 | /* set parent level appropriately */ | |
2449 | if (parentkq->kq_level == 0) | |
2450 | parentkq->kq_level = 2; | |
2451 | if (parentkq->kq_level < kq->kq_level + 1) | |
2452 | parentkq->kq_level = kq->kq_level + 1; | |
2453 | kqunlock(parentkq); | |
2454 | ||
2455 | kn->kn_fop = &kqread_filtops; | |
2456 | kqlock(kq); | |
2457 | KNOTE_ATTACH(&kq->kq_sel.si_note, kn); | |
2458 | /* indicate nesting in child, if needed */ | |
2459 | if (kq->kq_level == 0) | |
2460 | kq->kq_level = 1; | |
2461 | kqunlock(kq); | |
2462 | return (0); | |
2463 | } | |
55e303ae A |
2464 | } |
2465 | ||
b0d623f7 A |
2466 | /* |
2467 | * kqueue_drain - called when kq is closed | |
2468 | */ | |
2469 | /*ARGSUSED*/ | |
2470 | static int | |
2471 | kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx) | |
2472 | { | |
2473 | struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data; | |
2474 | kqlock(kq); | |
2475 | kqueue_wakeup(kq, 1); | |
2476 | kqunlock(kq); | |
39236c6e | 2477 | return (0); |
b0d623f7 A |
2478 | } |
2479 | ||
55e303ae A |
2480 | /*ARGSUSED*/ |
2481 | int | |
fe8ab488 | 2482 | kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p) |
55e303ae | 2483 | { |
fe8ab488 | 2484 | kqlock(kq); |
2d21ac55 | 2485 | if (isstat64 != 0) { |
b0d623f7 A |
2486 | struct stat64 *sb64 = (struct stat64 *)ub; |
2487 | ||
2d21ac55 A |
2488 | bzero((void *)sb64, sizeof(*sb64)); |
2489 | sb64->st_size = kq->kq_count; | |
b0d623f7 A |
2490 | if (kq->kq_state & KQ_KEV64) |
2491 | sb64->st_blksize = sizeof(struct kevent64_s); | |
2492 | else | |
fe8ab488 | 2493 | sb64->st_blksize = IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) : sizeof(struct user32_kevent); |
2d21ac55 A |
2494 | sb64->st_mode = S_IFIFO; |
2495 | } else { | |
b0d623f7 A |
2496 | struct stat *sb = (struct stat *)ub; |
2497 | ||
2d21ac55 A |
2498 | bzero((void *)sb, sizeof(*sb)); |
2499 | sb->st_size = kq->kq_count; | |
b0d623f7 A |
2500 | if (kq->kq_state & KQ_KEV64) |
2501 | sb->st_blksize = sizeof(struct kevent64_s); | |
2502 | else | |
fe8ab488 | 2503 | sb->st_blksize = IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) : sizeof(struct user32_kevent); |
2d21ac55 A |
2504 | sb->st_mode = S_IFIFO; |
2505 | } | |
fe8ab488 | 2506 | kqunlock(kq); |
55e303ae A |
2507 | return (0); |
2508 | } | |
2509 | ||
91447636 A |
2510 | /* |
2511 | * Called with the kqueue locked | |
2512 | */ | |
55e303ae | 2513 | static void |
b0d623f7 | 2514 | kqueue_wakeup(struct kqueue *kq, int closed) |
55e303ae | 2515 | { |
b0d623f7 A |
2516 | if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) { |
2517 | kq->kq_state &= ~(KQ_SLEEP | KQ_SEL); | |
39236c6e A |
2518 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT, |
2519 | (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED); | |
91447636 | 2520 | } |
55e303ae A |
2521 | } |
2522 | ||
2523 | void | |
2524 | klist_init(struct klist *list) | |
2525 | { | |
2526 | SLIST_INIT(list); | |
2527 | } | |
2528 | ||
91447636 | 2529 | |
55e303ae | 2530 | /* |
91447636 A |
2531 | * Query/Post each knote in the object's list |
2532 | * | |
2533 | * The object lock protects the list. It is assumed | |
2534 | * that the filter/event routine for the object can | |
2535 | * determine that the object is already locked (via | |
b0d623f7 | 2536 | * the hint) and not deadlock itself. |
91447636 A |
2537 | * |
2538 | * The object lock should also hold off pending | |
2539 | * detach/drop operations. But we'll prevent it here | |
2540 | * too - just in case. | |
55e303ae A |
2541 | */ |
2542 | void | |
2543 | knote(struct klist *list, long hint) | |
2544 | { | |
2545 | struct knote *kn; | |
2546 | ||
91447636 A |
2547 | SLIST_FOREACH(kn, list, kn_selnext) { |
2548 | struct kqueue *kq = kn->kn_kq; | |
2549 | ||
2550 | kqlock(kq); | |
2551 | if (kqlock2knoteuse(kq, kn)) { | |
2552 | int result; | |
2553 | ||
2554 | /* call the event with only a use count */ | |
2555 | result = kn->kn_fop->f_event(kn, hint); | |
2556 | ||
2557 | /* if its not going away and triggered */ | |
2558 | if (knoteuse2kqlock(kq, kn) && result) | |
b0d623f7 | 2559 | knote_activate(kn, 1); |
91447636 A |
2560 | /* lock held again */ |
2561 | } | |
2562 | kqunlock(kq); | |
2563 | } | |
55e303ae A |
2564 | } |
2565 | ||
2566 | /* | |
2567 | * attach a knote to the specified list. Return true if this is the first entry. | |
91447636 | 2568 | * The list is protected by whatever lock the object it is associated with uses. |
55e303ae A |
2569 | */ |
2570 | int | |
2571 | knote_attach(struct klist *list, struct knote *kn) | |
2572 | { | |
2573 | int ret = SLIST_EMPTY(list); | |
2574 | SLIST_INSERT_HEAD(list, kn, kn_selnext); | |
39236c6e | 2575 | return (ret); |
55e303ae A |
2576 | } |
2577 | ||
2578 | /* | |
2579 | * detach a knote from the specified list. Return true if that was the last entry. | |
91447636 | 2580 | * The list is protected by whatever lock the object it is associated with uses. |
55e303ae A |
2581 | */ |
2582 | int | |
2583 | knote_detach(struct klist *list, struct knote *kn) | |
2584 | { | |
2585 | SLIST_REMOVE(list, kn, knote, kn_selnext); | |
39236c6e | 2586 | return (SLIST_EMPTY(list)); |
55e303ae A |
2587 | } |
2588 | ||
b0d623f7 A |
2589 | /* |
2590 | * For a given knote, link a provided wait queue directly with the kqueue. | |
39236c6e | 2591 | * Wakeups will happen via recursive wait queue support. But nothing will move |
b0d623f7 A |
2592 | * the knote to the active list at wakeup (nothing calls knote()). Instead, |
2593 | * we permanently enqueue them here. | |
2594 | * | |
2595 | * kqueue and knote references are held by caller. | |
316670eb A |
2596 | * |
2597 | * caller provides the wait queue link structure. | |
b0d623f7 A |
2598 | */ |
2599 | int | |
316670eb | 2600 | knote_link_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t wql) |
b0d623f7 A |
2601 | { |
2602 | struct kqueue *kq = kn->kn_kq; | |
2603 | kern_return_t kr; | |
2604 | ||
316670eb | 2605 | kr = wait_queue_link_noalloc(wq, kq->kq_wqs, wql); |
b0d623f7 | 2606 | if (kr == KERN_SUCCESS) { |
6d2010ae | 2607 | knote_markstayqueued(kn); |
39236c6e | 2608 | return (0); |
b0d623f7 | 2609 | } else { |
39236c6e | 2610 | return (EINVAL); |
b0d623f7 A |
2611 | } |
2612 | } | |
2613 | ||
2614 | /* | |
2615 | * Unlink the provided wait queue from the kqueue associated with a knote. | |
2616 | * Also remove it from the magic list of directly attached knotes. | |
2617 | * | |
2618 | * Note that the unlink may have already happened from the other side, so | |
2619 | * ignore any failures to unlink and just remove it from the kqueue list. | |
316670eb A |
2620 | * |
2621 | * On success, caller is responsible for the link structure | |
b0d623f7 | 2622 | */ |
316670eb A |
2623 | int |
2624 | knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t *wqlp) | |
b0d623f7 A |
2625 | { |
2626 | struct kqueue *kq = kn->kn_kq; | |
316670eb | 2627 | kern_return_t kr; |
b0d623f7 | 2628 | |
316670eb | 2629 | kr = wait_queue_unlink_nofree(wq, kq->kq_wqs, wqlp); |
04b8595b | 2630 | knote_clearstayqueued(kn); |
39236c6e | 2631 | return ((kr != KERN_SUCCESS) ? EINVAL : 0); |
b0d623f7 A |
2632 | } |
2633 | ||
55e303ae | 2634 | /* |
91447636 A |
2635 | * remove all knotes referencing a specified fd |
2636 | * | |
2637 | * Essentially an inlined knote_remove & knote_drop | |
2638 | * when we know for sure that the thing is a file | |
39236c6e | 2639 | * |
91447636 A |
2640 | * Entered with the proc_fd lock already held. |
2641 | * It returns the same way, but may drop it temporarily. | |
55e303ae A |
2642 | */ |
2643 | void | |
91447636 | 2644 | knote_fdclose(struct proc *p, int fd) |
55e303ae | 2645 | { |
91447636 A |
2646 | struct filedesc *fdp = p->p_fd; |
2647 | struct klist *list; | |
55e303ae A |
2648 | struct knote *kn; |
2649 | ||
91447636 | 2650 | list = &fdp->fd_knlist[fd]; |
55e303ae | 2651 | while ((kn = SLIST_FIRST(list)) != NULL) { |
91447636 | 2652 | struct kqueue *kq = kn->kn_kq; |
55e303ae | 2653 | |
2d21ac55 | 2654 | if (kq->kq_p != p) |
39236c6e A |
2655 | panic("%s: proc mismatch (kq->kq_p=%p != p=%p)", |
2656 | __func__, kq->kq_p, p); | |
2d21ac55 | 2657 | |
91447636 A |
2658 | kqlock(kq); |
2659 | proc_fdunlock(p); | |
2660 | ||
2661 | /* | |
2662 | * Convert the lock to a drop ref. | |
2663 | * If we get it, go ahead and drop it. | |
2664 | * Otherwise, we waited for it to | |
2665 | * be dropped by the other guy, so | |
2666 | * it is safe to move on in the list. | |
2667 | */ | |
2668 | if (kqlock2knotedrop(kq, kn)) { | |
2669 | kn->kn_fop->f_detach(kn); | |
2670 | knote_drop(kn, p); | |
2671 | } | |
39236c6e | 2672 | |
91447636 | 2673 | proc_fdlock(p); |
55e303ae | 2674 | |
91447636 A |
2675 | /* the fd tables may have changed - start over */ |
2676 | list = &fdp->fd_knlist[fd]; | |
2677 | } | |
55e303ae A |
2678 | } |
2679 | ||
91447636 A |
2680 | /* proc_fdlock held on entry (and exit) */ |
2681 | static int | |
316670eb | 2682 | knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p) |
55e303ae | 2683 | { |
91447636 | 2684 | struct klist *list = NULL; |
55e303ae A |
2685 | |
2686 | if (! kn->kn_fop->f_isfd) { | |
2687 | if (fdp->fd_knhashmask == 0) | |
2d21ac55 | 2688 | fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE, |
55e303ae A |
2689 | &fdp->fd_knhashmask); |
2690 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; | |
91447636 A |
2691 | } else { |
2692 | if ((u_int)fdp->fd_knlistsize <= kn->kn_id) { | |
2693 | u_int size = 0; | |
2694 | ||
39236c6e | 2695 | if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur |
316670eb A |
2696 | || kn->kn_id >= (uint64_t)maxfiles) |
2697 | return (EINVAL); | |
39236c6e | 2698 | |
91447636 A |
2699 | /* have to grow the fd_knlist */ |
2700 | size = fdp->fd_knlistsize; | |
2701 | while (size <= kn->kn_id) | |
2702 | size += KQEXTENT; | |
316670eb A |
2703 | |
2704 | if (size >= (UINT_MAX/sizeof(struct klist *))) | |
2705 | return (EINVAL); | |
2706 | ||
91447636 | 2707 | MALLOC(list, struct klist *, |
39236c6e | 2708 | size * sizeof(struct klist *), M_KQUEUE, M_WAITOK); |
91447636 A |
2709 | if (list == NULL) |
2710 | return (ENOMEM); | |
39236c6e | 2711 | |
91447636 | 2712 | bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list, |
39236c6e | 2713 | fdp->fd_knlistsize * sizeof(struct klist *)); |
91447636 | 2714 | bzero((caddr_t)list + |
39236c6e A |
2715 | fdp->fd_knlistsize * sizeof(struct klist *), |
2716 | (size - fdp->fd_knlistsize) * sizeof(struct klist *)); | |
55e303ae | 2717 | FREE(fdp->fd_knlist, M_KQUEUE); |
91447636 A |
2718 | fdp->fd_knlist = list; |
2719 | fdp->fd_knlistsize = size; | |
2720 | } | |
2721 | list = &fdp->fd_knlist[kn->kn_id]; | |
55e303ae | 2722 | } |
55e303ae | 2723 | SLIST_INSERT_HEAD(list, kn, kn_link); |
91447636 | 2724 | return (0); |
55e303ae A |
2725 | } |
2726 | ||
91447636 A |
2727 | |
2728 | ||
55e303ae A |
2729 | /* |
2730 | * should be called at spl == 0, since we don't want to hold spl | |
2731 | * while calling fdrop and free. | |
2732 | */ | |
2733 | static void | |
2d21ac55 | 2734 | knote_drop(struct knote *kn, __unused struct proc *ctxp) |
55e303ae | 2735 | { |
91447636 | 2736 | struct kqueue *kq = kn->kn_kq; |
2d21ac55 | 2737 | struct proc *p = kq->kq_p; |
39236c6e | 2738 | struct filedesc *fdp = p->p_fd; |
55e303ae | 2739 | struct klist *list; |
b0d623f7 | 2740 | int needswakeup; |
55e303ae | 2741 | |
91447636 | 2742 | proc_fdlock(p); |
55e303ae A |
2743 | if (kn->kn_fop->f_isfd) |
2744 | list = &fdp->fd_knlist[kn->kn_id]; | |
2745 | else | |
2746 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; | |
2747 | ||
2748 | SLIST_REMOVE(list, kn, knote, kn_link); | |
91447636 A |
2749 | kqlock(kq); |
2750 | knote_dequeue(kn); | |
b0d623f7 | 2751 | needswakeup = (kn->kn_status & KN_USEWAIT); |
91447636 A |
2752 | kqunlock(kq); |
2753 | proc_fdunlock(p); | |
2754 | ||
b0d623f7 | 2755 | if (needswakeup) |
39236c6e A |
2756 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, |
2757 | THREAD_AWAKENED); | |
b0d623f7 | 2758 | |
55e303ae | 2759 | if (kn->kn_fop->f_isfd) |
91447636 A |
2760 | fp_drop(p, kn->kn_id, kn->kn_fp, 0); |
2761 | ||
55e303ae A |
2762 | knote_free(kn); |
2763 | } | |
2764 | ||
91447636 A |
2765 | /* called with kqueue lock held */ |
2766 | static void | |
b0d623f7 | 2767 | knote_activate(struct knote *kn, int propagate) |
91447636 A |
2768 | { |
2769 | struct kqueue *kq = kn->kn_kq; | |
2770 | ||
2771 | kn->kn_status |= KN_ACTIVE; | |
2772 | knote_enqueue(kn); | |
b0d623f7 A |
2773 | kqueue_wakeup(kq, 0); |
2774 | ||
2775 | /* this is a real event: wake up the parent kq, too */ | |
2776 | if (propagate) | |
2777 | KNOTE(&kq->kq_sel.si_note, 0); | |
2778 | } | |
91447636 A |
2779 | |
2780 | /* called with kqueue lock held */ | |
2781 | static void | |
2782 | knote_deactivate(struct knote *kn) | |
39236c6e | 2783 | { |
91447636 A |
2784 | kn->kn_status &= ~KN_ACTIVE; |
2785 | knote_dequeue(kn); | |
2786 | } | |
55e303ae | 2787 | |
91447636 | 2788 | /* called with kqueue lock held */ |
55e303ae A |
2789 | static void |
2790 | knote_enqueue(struct knote *kn) | |
2791 | { | |
b0d623f7 A |
2792 | if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED || |
2793 | (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) { | |
91447636 | 2794 | struct kqtailq *tq = kn->kn_tq; |
b0d623f7 | 2795 | struct kqueue *kq = kn->kn_kq; |
55e303ae | 2796 | |
39236c6e | 2797 | TAILQ_INSERT_TAIL(tq, kn, kn_tqe); |
91447636 A |
2798 | kn->kn_status |= KN_QUEUED; |
2799 | kq->kq_count++; | |
2800 | } | |
55e303ae A |
2801 | } |
2802 | ||
91447636 | 2803 | /* called with kqueue lock held */ |
55e303ae A |
2804 | static void |
2805 | knote_dequeue(struct knote *kn) | |
2806 | { | |
2807 | struct kqueue *kq = kn->kn_kq; | |
55e303ae | 2808 | |
b0d623f7 | 2809 | if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) { |
91447636 | 2810 | struct kqtailq *tq = kn->kn_tq; |
55e303ae | 2811 | |
39236c6e | 2812 | TAILQ_REMOVE(tq, kn, kn_tqe); |
91447636 A |
2813 | kn->kn_tq = &kq->kq_head; |
2814 | kn->kn_status &= ~KN_QUEUED; | |
2815 | kq->kq_count--; | |
2816 | } | |
55e303ae A |
2817 | } |
2818 | ||
2819 | void | |
2820 | knote_init(void) | |
2821 | { | |
39236c6e A |
2822 | knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), |
2823 | 8192, "knote zone"); | |
91447636 A |
2824 | |
2825 | /* allocate kq lock group attribute and group */ | |
39236c6e | 2826 | kq_lck_grp_attr = lck_grp_attr_alloc_init(); |
91447636 A |
2827 | |
2828 | kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr); | |
2829 | ||
2830 | /* Allocate kq lock attribute */ | |
2831 | kq_lck_attr = lck_attr_alloc_init(); | |
91447636 A |
2832 | |
2833 | /* Initialize the timer filter lock */ | |
2834 | lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr); | |
39236c6e | 2835 | |
316670eb A |
2836 | #if VM_PRESSURE_EVENTS |
2837 | /* Initialize the vm pressure list lock */ | |
2838 | vm_pressure_init(kq_lck_grp, kq_lck_attr); | |
2839 | #endif | |
39236c6e A |
2840 | |
2841 | #if CONFIG_MEMORYSTATUS | |
2842 | /* Initialize the memorystatus list lock */ | |
2843 | memorystatus_kevent_init(kq_lck_grp, kq_lck_attr); | |
2844 | #endif | |
55e303ae A |
2845 | } |
2846 | SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL) | |
2847 | ||
2848 | static struct knote * | |
2849 | knote_alloc(void) | |
2850 | { | |
2851 | return ((struct knote *)zalloc(knote_zone)); | |
2852 | } | |
2853 | ||
2854 | static void | |
2855 | knote_free(struct knote *kn) | |
2856 | { | |
91447636 | 2857 | zfree(knote_zone, kn); |
55e303ae A |
2858 | } |
2859 | ||
2d21ac55 | 2860 | #if SOCKETS |
1c79356b A |
2861 | #include <sys/param.h> |
2862 | #include <sys/socket.h> | |
2863 | #include <sys/protosw.h> | |
2864 | #include <sys/domain.h> | |
2865 | #include <sys/mbuf.h> | |
2866 | #include <sys/kern_event.h> | |
2867 | #include <sys/malloc.h> | |
9bccf70c A |
2868 | #include <sys/sys_domain.h> |
2869 | #include <sys/syslog.h> | |
1c79356b | 2870 | |
fe8ab488 A |
2871 | #ifndef ROUNDUP64 |
2872 | #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t)) | |
2873 | #endif | |
2874 | ||
2875 | #ifndef ADVANCE64 | |
2876 | #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n)) | |
2877 | #endif | |
2878 | ||
39236c6e A |
2879 | static lck_grp_attr_t *kev_lck_grp_attr; |
2880 | static lck_attr_t *kev_lck_attr; | |
2881 | static lck_grp_t *kev_lck_grp; | |
2882 | static decl_lck_rw_data(,kev_lck_data); | |
2883 | static lck_rw_t *kev_rwlock = &kev_lck_data; | |
1c79356b | 2884 | |
91447636 A |
2885 | static int kev_attach(struct socket *so, int proto, struct proc *p); |
2886 | static int kev_detach(struct socket *so); | |
39236c6e A |
2887 | static int kev_control(struct socket *so, u_long cmd, caddr_t data, |
2888 | struct ifnet *ifp, struct proc *p); | |
2889 | static lck_mtx_t * event_getlock(struct socket *, int); | |
2890 | static int event_lock(struct socket *, int, void *); | |
2891 | static int event_unlock(struct socket *, int, void *); | |
2892 | ||
2893 | static int event_sofreelastref(struct socket *); | |
2894 | static void kev_delete(struct kern_event_pcb *); | |
2895 | ||
2896 | static struct pr_usrreqs event_usrreqs = { | |
2897 | .pru_attach = kev_attach, | |
2898 | .pru_control = kev_control, | |
2899 | .pru_detach = kev_detach, | |
2900 | .pru_soreceive = soreceive, | |
91447636 | 2901 | }; |
1c79356b | 2902 | |
39236c6e A |
2903 | static struct protosw eventsw[] = { |
2904 | { | |
2905 | .pr_type = SOCK_RAW, | |
2906 | .pr_protocol = SYSPROTO_EVENT, | |
2907 | .pr_flags = PR_ATOMIC, | |
2908 | .pr_usrreqs = &event_usrreqs, | |
2909 | .pr_lock = event_lock, | |
2910 | .pr_unlock = event_unlock, | |
2911 | .pr_getlock = event_getlock, | |
2912 | } | |
1c79356b A |
2913 | }; |
2914 | ||
fe8ab488 A |
2915 | __private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS; |
2916 | __private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS; | |
2917 | ||
2918 | SYSCTL_NODE(_net_systm, OID_AUTO, kevt, | |
2919 | CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Kernel event family"); | |
2920 | ||
2921 | struct kevtstat kevtstat; | |
2922 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats, | |
2923 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
2924 | kevt_getstat, "S,kevtstat", ""); | |
2925 | ||
2926 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist, | |
2927 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
2928 | kevt_pcblist, "S,xkevtpcb", ""); | |
2929 | ||
39236c6e A |
2930 | static lck_mtx_t * |
2931 | event_getlock(struct socket *so, int locktype) | |
2932 | { | |
2933 | #pragma unused(locktype) | |
2934 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; | |
2935 | ||
2936 | if (so->so_pcb != NULL) { | |
2937 | if (so->so_usecount < 0) | |
2938 | panic("%s: so=%p usecount=%d lrh= %s\n", __func__, | |
2939 | so, so->so_usecount, solockhistory_nr(so)); | |
2940 | /* NOTREACHED */ | |
2941 | } else { | |
2942 | panic("%s: so=%p NULL NO so_pcb %s\n", __func__, | |
2943 | so, solockhistory_nr(so)); | |
2944 | /* NOTREACHED */ | |
2945 | } | |
2946 | return (&ev_pcb->evp_mtx); | |
2947 | } | |
2948 | ||
2949 | static int | |
2950 | event_lock(struct socket *so, int refcount, void *lr) | |
2951 | { | |
2952 | void *lr_saved; | |
2953 | ||
2954 | if (lr == NULL) | |
2955 | lr_saved = __builtin_return_address(0); | |
2956 | else | |
2957 | lr_saved = lr; | |
2958 | ||
2959 | if (so->so_pcb != NULL) { | |
2960 | lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); | |
2961 | } else { | |
2962 | panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__, | |
2963 | so, lr_saved, solockhistory_nr(so)); | |
2964 | /* NOTREACHED */ | |
2965 | } | |
2966 | ||
2967 | if (so->so_usecount < 0) { | |
2968 | panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n", __func__, | |
2969 | so, so->so_pcb, lr_saved, so->so_usecount, | |
2970 | solockhistory_nr(so)); | |
2971 | /* NOTREACHED */ | |
2972 | } | |
2973 | ||
2974 | if (refcount) | |
2975 | so->so_usecount++; | |
2976 | ||
2977 | so->lock_lr[so->next_lock_lr] = lr_saved; | |
2978 | so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; | |
2979 | return (0); | |
2980 | } | |
2981 | ||
2982 | static int | |
2983 | event_unlock(struct socket *so, int refcount, void *lr) | |
2984 | { | |
2985 | void *lr_saved; | |
2986 | lck_mtx_t *mutex_held; | |
2987 | ||
2988 | if (lr == NULL) | |
2989 | lr_saved = __builtin_return_address(0); | |
2990 | else | |
2991 | lr_saved = lr; | |
2992 | ||
2993 | if (refcount) | |
2994 | so->so_usecount--; | |
2995 | ||
2996 | if (so->so_usecount < 0) { | |
2997 | panic("%s: so=%p usecount=%d lrh= %s\n", __func__, | |
2998 | so, so->so_usecount, solockhistory_nr(so)); | |
2999 | /* NOTREACHED */ | |
3000 | } | |
3001 | if (so->so_pcb == NULL) { | |
3002 | panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n", __func__, | |
3003 | so, so->so_usecount, (void *)lr_saved, | |
3004 | solockhistory_nr(so)); | |
3005 | /* NOTREACHED */ | |
3006 | } | |
3007 | mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); | |
3008 | ||
3009 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); | |
3010 | so->unlock_lr[so->next_unlock_lr] = lr_saved; | |
3011 | so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; | |
3012 | ||
3013 | if (so->so_usecount == 0) { | |
3014 | VERIFY(so->so_flags & SOF_PCBCLEARING); | |
3015 | event_sofreelastref(so); | |
3016 | } else { | |
3017 | lck_mtx_unlock(mutex_held); | |
3018 | } | |
3019 | ||
3020 | return (0); | |
3021 | } | |
3022 | ||
3023 | static int | |
3024 | event_sofreelastref(struct socket *so) | |
3025 | { | |
3026 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; | |
3027 | ||
3028 | lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED); | |
3029 | ||
3030 | so->so_pcb = NULL; | |
3031 | ||
3032 | /* | |
3033 | * Disable upcall in the event another thread is in kev_post_msg() | |
3034 | * appending record to the receive socket buffer, since sbwakeup() | |
3035 | * may release the socket lock otherwise. | |
3036 | */ | |
3037 | so->so_rcv.sb_flags &= ~SB_UPCALL; | |
3038 | so->so_snd.sb_flags &= ~SB_UPCALL; | |
fe8ab488 | 3039 | so->so_event = sonullevent; |
39236c6e A |
3040 | lck_mtx_unlock(&(ev_pcb->evp_mtx)); |
3041 | ||
3042 | lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED); | |
3043 | lck_rw_lock_exclusive(kev_rwlock); | |
3044 | LIST_REMOVE(ev_pcb, evp_link); | |
fe8ab488 A |
3045 | kevtstat.kes_pcbcount--; |
3046 | kevtstat.kes_gencnt++; | |
39236c6e A |
3047 | lck_rw_done(kev_rwlock); |
3048 | kev_delete(ev_pcb); | |
3049 | ||
3050 | sofreelastref(so, 1); | |
3051 | return (0); | |
3052 | } | |
3053 | ||
3054 | static int event_proto_count = (sizeof (eventsw) / sizeof (struct protosw)); | |
3055 | ||
1c79356b A |
3056 | static |
3057 | struct kern_event_head kern_event_head; | |
3058 | ||
b0d623f7 | 3059 | static u_int32_t static_event_id = 0; |
39236c6e A |
3060 | |
3061 | #define EVPCB_ZONE_MAX 65536 | |
3062 | #define EVPCB_ZONE_NAME "kerneventpcb" | |
3063 | static struct zone *ev_pcb_zone; | |
1c79356b | 3064 | |
9bccf70c | 3065 | /* |
39236c6e | 3066 | * Install the protosw's for the NKE manager. Invoked at extension load time |
9bccf70c | 3067 | */ |
39236c6e A |
3068 | void |
3069 | kern_event_init(struct domain *dp) | |
9bccf70c | 3070 | { |
39236c6e A |
3071 | struct protosw *pr; |
3072 | int i; | |
3073 | ||
3074 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); | |
3075 | VERIFY(dp == systemdomain); | |
3076 | ||
3077 | kev_lck_grp_attr = lck_grp_attr_alloc_init(); | |
3078 | if (kev_lck_grp_attr == NULL) { | |
3079 | panic("%s: lck_grp_attr_alloc_init failed\n", __func__); | |
3080 | /* NOTREACHED */ | |
3081 | } | |
3082 | ||
3083 | kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol", | |
3084 | kev_lck_grp_attr); | |
3085 | if (kev_lck_grp == NULL) { | |
3086 | panic("%s: lck_grp_alloc_init failed\n", __func__); | |
3087 | /* NOTREACHED */ | |
3088 | } | |
3089 | ||
3090 | kev_lck_attr = lck_attr_alloc_init(); | |
3091 | if (kev_lck_attr == NULL) { | |
3092 | panic("%s: lck_attr_alloc_init failed\n", __func__); | |
3093 | /* NOTREACHED */ | |
3094 | } | |
9bccf70c | 3095 | |
39236c6e A |
3096 | lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr); |
3097 | if (kev_rwlock == NULL) { | |
3098 | panic("%s: lck_mtx_alloc_init failed\n", __func__); | |
3099 | /* NOTREACHED */ | |
91447636 | 3100 | } |
39236c6e A |
3101 | |
3102 | for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++) | |
3103 | net_add_proto(pr, dp, 1); | |
3104 | ||
3105 | ev_pcb_zone = zinit(sizeof(struct kern_event_pcb), | |
3106 | EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME); | |
3107 | if (ev_pcb_zone == NULL) { | |
3108 | panic("%s: failed allocating ev_pcb_zone", __func__); | |
3109 | /* NOTREACHED */ | |
3110 | } | |
3111 | zone_change(ev_pcb_zone, Z_EXPAND, TRUE); | |
3112 | zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE); | |
9bccf70c A |
3113 | } |
3114 | ||
91447636 A |
3115 | static int |
3116 | kev_attach(struct socket *so, __unused int proto, __unused struct proc *p) | |
1c79356b | 3117 | { |
39236c6e A |
3118 | int error = 0; |
3119 | struct kern_event_pcb *ev_pcb; | |
1c79356b | 3120 | |
39236c6e A |
3121 | error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE); |
3122 | if (error != 0) | |
3123 | return (error); | |
55e303ae | 3124 | |
39236c6e A |
3125 | if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) { |
3126 | return (ENOBUFS); | |
3127 | } | |
3128 | bzero(ev_pcb, sizeof(struct kern_event_pcb)); | |
3129 | lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr); | |
1c79356b | 3130 | |
39236c6e A |
3131 | ev_pcb->evp_socket = so; |
3132 | ev_pcb->evp_vendor_code_filter = 0xffffffff; | |
1c79356b | 3133 | |
39236c6e A |
3134 | so->so_pcb = (caddr_t) ev_pcb; |
3135 | lck_rw_lock_exclusive(kev_rwlock); | |
3136 | LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link); | |
fe8ab488 A |
3137 | kevtstat.kes_pcbcount++; |
3138 | kevtstat.kes_gencnt++; | |
39236c6e | 3139 | lck_rw_done(kev_rwlock); |
1c79356b | 3140 | |
39236c6e | 3141 | return (error); |
1c79356b A |
3142 | } |
3143 | ||
39236c6e A |
3144 | static void |
3145 | kev_delete(struct kern_event_pcb *ev_pcb) | |
3146 | { | |
3147 | VERIFY(ev_pcb != NULL); | |
3148 | lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp); | |
3149 | zfree(ev_pcb_zone, ev_pcb); | |
3150 | } | |
1c79356b | 3151 | |
91447636 A |
3152 | static int |
3153 | kev_detach(struct socket *so) | |
1c79356b | 3154 | { |
39236c6e | 3155 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb; |
1c79356b | 3156 | |
39236c6e A |
3157 | if (ev_pcb != NULL) { |
3158 | soisdisconnected(so); | |
91447636 | 3159 | so->so_flags |= SOF_PCBCLEARING; |
39236c6e | 3160 | } |
1c79356b | 3161 | |
39236c6e | 3162 | return (0); |
1c79356b A |
3163 | } |
3164 | ||
91447636 | 3165 | /* |
2d21ac55 | 3166 | * For now, kev_vendor_code and mbuf_tags use the same |
91447636 A |
3167 | * mechanism. |
3168 | */ | |
91447636 A |
3169 | errno_t kev_vendor_code_find( |
3170 | const char *string, | |
2d21ac55 | 3171 | u_int32_t *out_vendor_code) |
91447636 A |
3172 | { |
3173 | if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) { | |
39236c6e | 3174 | return (EINVAL); |
91447636 | 3175 | } |
39236c6e A |
3176 | return (net_str_id_find_internal(string, out_vendor_code, |
3177 | NSI_VENDOR_CODE, 1)); | |
91447636 A |
3178 | } |
3179 | ||
39236c6e A |
3180 | errno_t |
3181 | kev_msg_post(struct kev_msg *event_msg) | |
91447636 | 3182 | { |
39236c6e A |
3183 | mbuf_tag_id_t min_vendor, max_vendor; |
3184 | ||
b0d623f7 | 3185 | net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE); |
39236c6e | 3186 | |
91447636 | 3187 | if (event_msg == NULL) |
39236c6e A |
3188 | return (EINVAL); |
3189 | ||
3190 | /* | |
3191 | * Limit third parties to posting events for registered vendor codes | |
3192 | * only | |
3193 | */ | |
91447636 | 3194 | if (event_msg->vendor_code < min_vendor || |
fe8ab488 A |
3195 | event_msg->vendor_code > max_vendor) { |
3196 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_badvendor); | |
39236c6e | 3197 | return (EINVAL); |
fe8ab488 | 3198 | } |
39236c6e | 3199 | return (kev_post_msg(event_msg)); |
91447636 | 3200 | } |
1c79356b | 3201 | |
39236c6e A |
3202 | int |
3203 | kev_post_msg(struct kev_msg *event_msg) | |
1c79356b | 3204 | { |
39236c6e A |
3205 | struct mbuf *m, *m2; |
3206 | struct kern_event_pcb *ev_pcb; | |
3207 | struct kern_event_msg *ev; | |
3208 | char *tmp; | |
3209 | u_int32_t total_size; | |
3210 | int i; | |
1c79356b | 3211 | |
91447636 A |
3212 | /* Verify the message is small enough to fit in one mbuf w/o cluster */ |
3213 | total_size = KEV_MSG_HEADER_SIZE; | |
39236c6e | 3214 | |
91447636 A |
3215 | for (i = 0; i < 5; i++) { |
3216 | if (event_msg->dv[i].data_length == 0) | |
3217 | break; | |
3218 | total_size += event_msg->dv[i].data_length; | |
3219 | } | |
39236c6e | 3220 | |
91447636 | 3221 | if (total_size > MLEN) { |
fe8ab488 | 3222 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_toobig); |
39236c6e A |
3223 | return (EMSGSIZE); |
3224 | } | |
3225 | ||
3226 | m = m_get(M_DONTWAIT, MT_DATA); | |
fe8ab488 A |
3227 | if (m == 0) { |
3228 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem); | |
3229 | return (ENOMEM); | |
3230 | } | |
39236c6e A |
3231 | ev = mtod(m, struct kern_event_msg *); |
3232 | total_size = KEV_MSG_HEADER_SIZE; | |
3233 | ||
3234 | tmp = (char *) &ev->event_data[0]; | |
3235 | for (i = 0; i < 5; i++) { | |
3236 | if (event_msg->dv[i].data_length == 0) | |
3237 | break; | |
3238 | ||
3239 | total_size += event_msg->dv[i].data_length; | |
3240 | bcopy(event_msg->dv[i].data_ptr, tmp, | |
3241 | event_msg->dv[i].data_length); | |
3242 | tmp += event_msg->dv[i].data_length; | |
3243 | } | |
3244 | ||
3245 | ev->id = ++static_event_id; | |
3246 | ev->total_size = total_size; | |
3247 | ev->vendor_code = event_msg->vendor_code; | |
3248 | ev->kev_class = event_msg->kev_class; | |
3249 | ev->kev_subclass = event_msg->kev_subclass; | |
3250 | ev->event_code = event_msg->event_code; | |
3251 | ||
3252 | m->m_len = total_size; | |
3253 | lck_rw_lock_shared(kev_rwlock); | |
3254 | for (ev_pcb = LIST_FIRST(&kern_event_head); | |
3255 | ev_pcb; | |
3256 | ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { | |
3257 | lck_mtx_lock(&ev_pcb->evp_mtx); | |
3258 | if (ev_pcb->evp_socket->so_pcb == NULL) { | |
3259 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
3260 | continue; | |
3261 | } | |
3262 | if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) { | |
3263 | if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) { | |
3264 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
3265 | continue; | |
3266 | } | |
3267 | ||
3268 | if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) { | |
3269 | if (ev_pcb->evp_class_filter != ev->kev_class) { | |
3270 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
3271 | continue; | |
3272 | } | |
3273 | ||
fe8ab488 A |
3274 | if ((ev_pcb->evp_subclass_filter != |
3275 | KEV_ANY_SUBCLASS) && | |
3276 | (ev_pcb->evp_subclass_filter != | |
3277 | ev->kev_subclass)) { | |
39236c6e A |
3278 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
3279 | continue; | |
3280 | } | |
3281 | } | |
3282 | } | |
3283 | ||
3284 | m2 = m_copym(m, 0, m->m_len, M_NOWAIT); | |
3285 | if (m2 == 0) { | |
fe8ab488 | 3286 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem); |
39236c6e A |
3287 | m_free(m); |
3288 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
3289 | lck_rw_done(kev_rwlock); | |
fe8ab488 | 3290 | return (ENOMEM); |
39236c6e | 3291 | } |
fe8ab488 A |
3292 | if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2)) { |
3293 | /* | |
3294 | * We use "m" for the socket stats as it would be | |
3295 | * unsafe to use "m2" | |
3296 | */ | |
3297 | so_inc_recv_data_stat(ev_pcb->evp_socket, | |
3298 | 1, m->m_len, SO_TC_BE); | |
3299 | ||
39236c6e | 3300 | sorwakeup(ev_pcb->evp_socket); |
fe8ab488 A |
3301 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_posted); |
3302 | } else { | |
3303 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_fullsock); | |
3304 | } | |
39236c6e A |
3305 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
3306 | } | |
3307 | m_free(m); | |
3308 | lck_rw_done(kev_rwlock); | |
3309 | ||
3310 | return (0); | |
1c79356b A |
3311 | } |
3312 | ||
91447636 | 3313 | static int |
39236c6e A |
3314 | kev_control(struct socket *so, |
3315 | u_long cmd, | |
3316 | caddr_t data, | |
3317 | __unused struct ifnet *ifp, | |
3318 | __unused struct proc *p) | |
1c79356b | 3319 | { |
91447636 A |
3320 | struct kev_request *kev_req = (struct kev_request *) data; |
3321 | struct kern_event_pcb *ev_pcb; | |
3322 | struct kev_vendor_code *kev_vendor; | |
b0d623f7 | 3323 | u_int32_t *id_value = (u_int32_t *) data; |
39236c6e | 3324 | |
91447636 | 3325 | switch (cmd) { |
91447636 A |
3326 | case SIOCGKEVID: |
3327 | *id_value = static_event_id; | |
3328 | break; | |
91447636 A |
3329 | case SIOCSKEVFILT: |
3330 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
39236c6e A |
3331 | ev_pcb->evp_vendor_code_filter = kev_req->vendor_code; |
3332 | ev_pcb->evp_class_filter = kev_req->kev_class; | |
3333 | ev_pcb->evp_subclass_filter = kev_req->kev_subclass; | |
91447636 | 3334 | break; |
91447636 A |
3335 | case SIOCGKEVFILT: |
3336 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
39236c6e A |
3337 | kev_req->vendor_code = ev_pcb->evp_vendor_code_filter; |
3338 | kev_req->kev_class = ev_pcb->evp_class_filter; | |
3339 | kev_req->kev_subclass = ev_pcb->evp_subclass_filter; | |
91447636 | 3340 | break; |
91447636 | 3341 | case SIOCGKEVVENDOR: |
39236c6e | 3342 | kev_vendor = (struct kev_vendor_code *)data; |
91447636 A |
3343 | /* Make sure string is NULL terminated */ |
3344 | kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0; | |
39236c6e A |
3345 | return (net_str_id_find_internal(kev_vendor->vendor_string, |
3346 | &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0)); | |
91447636 | 3347 | default: |
39236c6e | 3348 | return (ENOTSUP); |
91447636 | 3349 | } |
39236c6e A |
3350 | |
3351 | return (0); | |
1c79356b A |
3352 | } |
3353 | ||
fe8ab488 A |
3354 | int |
3355 | kevt_getstat SYSCTL_HANDLER_ARGS | |
3356 | { | |
3357 | #pragma unused(oidp, arg1, arg2) | |
3358 | int error = 0; | |
3359 | ||
3360 | lck_rw_lock_shared(kev_rwlock); | |
3361 | ||
3362 | if (req->newptr != USER_ADDR_NULL) { | |
3363 | error = EPERM; | |
3364 | goto done; | |
3365 | } | |
3366 | if (req->oldptr == USER_ADDR_NULL) { | |
3367 | req->oldidx = sizeof(struct kevtstat); | |
3368 | goto done; | |
3369 | } | |
3370 | ||
3371 | error = SYSCTL_OUT(req, &kevtstat, | |
3372 | MIN(sizeof(struct kevtstat), req->oldlen)); | |
3373 | done: | |
3374 | lck_rw_done(kev_rwlock); | |
3375 | ||
3376 | return (error); | |
3377 | } | |
3378 | ||
3379 | __private_extern__ int | |
3380 | kevt_pcblist SYSCTL_HANDLER_ARGS | |
3381 | { | |
3382 | #pragma unused(oidp, arg1, arg2) | |
3383 | int error = 0; | |
3384 | int n, i; | |
3385 | struct xsystmgen xsg; | |
3386 | void *buf = NULL; | |
3387 | size_t item_size = ROUNDUP64(sizeof (struct xkevtpcb)) + | |
3388 | ROUNDUP64(sizeof (struct xsocket_n)) + | |
3389 | 2 * ROUNDUP64(sizeof (struct xsockbuf_n)) + | |
3390 | ROUNDUP64(sizeof (struct xsockstat_n)); | |
3391 | struct kern_event_pcb *ev_pcb; | |
3392 | ||
3393 | buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); | |
3394 | if (buf == NULL) | |
3395 | return (ENOMEM); | |
3396 | ||
3397 | lck_rw_lock_shared(kev_rwlock); | |
3398 | ||
3399 | n = kevtstat.kes_pcbcount; | |
3400 | ||
3401 | if (req->oldptr == USER_ADDR_NULL) { | |
3402 | req->oldidx = (n + n/8) * item_size; | |
3403 | goto done; | |
3404 | } | |
3405 | if (req->newptr != USER_ADDR_NULL) { | |
3406 | error = EPERM; | |
3407 | goto done; | |
3408 | } | |
3409 | bzero(&xsg, sizeof (xsg)); | |
3410 | xsg.xg_len = sizeof (xsg); | |
3411 | xsg.xg_count = n; | |
3412 | xsg.xg_gen = kevtstat.kes_gencnt; | |
3413 | xsg.xg_sogen = so_gencnt; | |
3414 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); | |
3415 | if (error) { | |
3416 | goto done; | |
3417 | } | |
3418 | /* | |
3419 | * We are done if there is no pcb | |
3420 | */ | |
3421 | if (n == 0) { | |
3422 | goto done; | |
3423 | } | |
3424 | ||
3425 | i = 0; | |
3426 | for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head); | |
3427 | i < n && ev_pcb != NULL; | |
3428 | i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { | |
3429 | struct xkevtpcb *xk = (struct xkevtpcb *)buf; | |
3430 | struct xsocket_n *xso = (struct xsocket_n *) | |
3431 | ADVANCE64(xk, sizeof (*xk)); | |
3432 | struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *) | |
3433 | ADVANCE64(xso, sizeof (*xso)); | |
3434 | struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *) | |
3435 | ADVANCE64(xsbrcv, sizeof (*xsbrcv)); | |
3436 | struct xsockstat_n *xsostats = (struct xsockstat_n *) | |
3437 | ADVANCE64(xsbsnd, sizeof (*xsbsnd)); | |
3438 | ||
3439 | bzero(buf, item_size); | |
3440 | ||
3441 | lck_mtx_lock(&ev_pcb->evp_mtx); | |
3442 | ||
3443 | xk->kep_len = sizeof(struct xkevtpcb); | |
3444 | xk->kep_kind = XSO_EVT; | |
3445 | xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRPERM(ev_pcb); | |
3446 | xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter; | |
3447 | xk->kep_class_filter = ev_pcb->evp_class_filter; | |
3448 | xk->kep_subclass_filter = ev_pcb->evp_subclass_filter; | |
3449 | ||
3450 | sotoxsocket_n(ev_pcb->evp_socket, xso); | |
3451 | sbtoxsockbuf_n(ev_pcb->evp_socket ? | |
3452 | &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv); | |
3453 | sbtoxsockbuf_n(ev_pcb->evp_socket ? | |
3454 | &ev_pcb->evp_socket->so_snd : NULL, xsbsnd); | |
3455 | sbtoxsockstat_n(ev_pcb->evp_socket, xsostats); | |
3456 | ||
3457 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
3458 | ||
3459 | error = SYSCTL_OUT(req, buf, item_size); | |
3460 | } | |
3461 | ||
3462 | if (error == 0) { | |
3463 | /* | |
3464 | * Give the user an updated idea of our state. | |
3465 | * If the generation differs from what we told | |
3466 | * her before, she knows that something happened | |
3467 | * while we were processing this request, and it | |
3468 | * might be necessary to retry. | |
3469 | */ | |
3470 | bzero(&xsg, sizeof (xsg)); | |
3471 | xsg.xg_len = sizeof (xsg); | |
3472 | xsg.xg_count = n; | |
3473 | xsg.xg_gen = kevtstat.kes_gencnt; | |
3474 | xsg.xg_sogen = so_gencnt; | |
3475 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); | |
3476 | if (error) { | |
3477 | goto done; | |
3478 | } | |
3479 | } | |
3480 | ||
3481 | done: | |
3482 | lck_rw_done(kev_rwlock); | |
3483 | ||
3484 | return (error); | |
3485 | } | |
3486 | ||
2d21ac55 | 3487 | #endif /* SOCKETS */ |
1c79356b | 3488 | |
1c79356b | 3489 | |
0c530ab8 A |
3490 | int |
3491 | fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo) | |
3492 | { | |
2d21ac55 | 3493 | struct vinfo_stat * st; |
0c530ab8 | 3494 | |
0c530ab8 A |
3495 | st = &kinfo->kq_stat; |
3496 | ||
2d21ac55 | 3497 | st->vst_size = kq->kq_count; |
b0d623f7 A |
3498 | if (kq->kq_state & KQ_KEV64) |
3499 | st->vst_blksize = sizeof(struct kevent64_s); | |
3500 | else | |
3501 | st->vst_blksize = sizeof(struct kevent); | |
2d21ac55 | 3502 | st->vst_mode = S_IFIFO; |
0c530ab8 A |
3503 | if (kq->kq_state & KQ_SEL) |
3504 | kinfo->kq_state |= PROC_KQUEUE_SELECT; | |
3505 | if (kq->kq_state & KQ_SLEEP) | |
3506 | kinfo->kq_state |= PROC_KQUEUE_SLEEP; | |
3507 | ||
39236c6e | 3508 | return (0); |
0c530ab8 | 3509 | } |
1c79356b | 3510 | |
6d2010ae A |
3511 | |
3512 | void | |
3513 | knote_markstayqueued(struct knote *kn) | |
3514 | { | |
3515 | kqlock(kn->kn_kq); | |
3516 | kn->kn_status |= KN_STAYQUEUED; | |
3517 | knote_enqueue(kn); | |
3518 | kqunlock(kn->kn_kq); | |
3519 | } | |
04b8595b A |
3520 | |
3521 | void | |
3522 | knote_clearstayqueued(struct knote *kn) | |
3523 | { | |
3524 | kqlock(kn->kn_kq); | |
3525 | kn->kn_status &= ~KN_STAYQUEUED; | |
3526 | knote_dequeue(kn); | |
3527 | kqunlock(kn->kn_kq); | |
3528 | } |