]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
04b8595b | 2 | * Copyright (c) 2000-2015 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* @(#)hfs_readwrite.c 1.0 | |
29 | * | |
9bccf70c | 30 | * (c) 1998-2001 Apple Computer, Inc. All Rights Reserved |
1c79356b | 31 | * |
1c79356b A |
32 | * hfs_readwrite.c -- vnode operations to deal with reading and writing files. |
33 | * | |
1c79356b A |
34 | */ |
35 | ||
36 | #include <sys/param.h> | |
37 | #include <sys/systm.h> | |
38 | #include <sys/resourcevar.h> | |
39 | #include <sys/kernel.h> | |
40 | #include <sys/fcntl.h> | |
55e303ae | 41 | #include <sys/filedesc.h> |
1c79356b A |
42 | #include <sys/stat.h> |
43 | #include <sys/buf.h> | |
316670eb | 44 | #include <sys/buf_internal.h> |
1c79356b | 45 | #include <sys/proc.h> |
91447636 | 46 | #include <sys/kauth.h> |
1c79356b | 47 | #include <sys/vnode.h> |
2d21ac55 | 48 | #include <sys/vnode_internal.h> |
1c79356b | 49 | #include <sys/uio.h> |
91447636 | 50 | #include <sys/vfs_context.h> |
2d21ac55 A |
51 | #include <sys/fsevents.h> |
52 | #include <kern/kalloc.h> | |
8f6c56a5 A |
53 | #include <sys/disk.h> |
54 | #include <sys/sysctl.h> | |
b0d623f7 | 55 | #include <sys/fsctl.h> |
316670eb | 56 | #include <sys/mount_internal.h> |
22ba694c | 57 | #include <sys/file_internal.h> |
1c79356b A |
58 | |
59 | #include <miscfs/specfs/specdev.h> | |
60 | ||
1c79356b | 61 | #include <sys/ubc.h> |
2d21ac55 A |
62 | #include <sys/ubc_internal.h> |
63 | ||
1c79356b | 64 | #include <vm/vm_pageout.h> |
91447636 | 65 | #include <vm/vm_kern.h> |
1c79356b | 66 | |
1c79356b A |
67 | #include <sys/kdebug.h> |
68 | ||
69 | #include "hfs.h" | |
2d21ac55 | 70 | #include "hfs_attrlist.h" |
1c79356b | 71 | #include "hfs_endian.h" |
2d21ac55 | 72 | #include "hfs_fsctl.h" |
9bccf70c | 73 | #include "hfs_quota.h" |
1c79356b A |
74 | #include "hfscommon/headers/FileMgrInternal.h" |
75 | #include "hfscommon/headers/BTreesInternal.h" | |
9bccf70c A |
76 | #include "hfs_cnode.h" |
77 | #include "hfs_dbg.h" | |
1c79356b | 78 | |
1c79356b A |
79 | #define can_cluster(size) ((((size & (4096-1))) == 0) && (size <= (MAXPHYSIO/2))) |
80 | ||
81 | enum { | |
82 | MAXHFSFILESIZE = 0x7FFFFFFF /* this needs to go in the mount structure */ | |
83 | }; | |
84 | ||
935ed37a | 85 | /* from bsd/hfs/hfs_vfsops.c */ |
b0d623f7 | 86 | extern int hfs_vfs_vget (struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context); |
91447636 | 87 | |
91447636 A |
88 | static int hfs_clonefile(struct vnode *, int, int, int); |
89 | static int hfs_clonesysfile(struct vnode *, int, int, int, kauth_cred_t, struct proc *); | |
b0d623f7 A |
90 | static int hfs_minorupdate(struct vnode *vp); |
91 | static int do_hfs_truncate(struct vnode *vp, off_t length, int flags, int skip, vfs_context_t context); | |
92 | ||
39236c6e A |
93 | /* from bsd/hfs/hfs_vnops.c */ |
94 | extern decmpfs_cnode* hfs_lazy_init_decmpfs_cnode (struct cnode *cp); | |
95 | ||
96 | ||
55e303ae | 97 | |
8f6c56a5 | 98 | int flush_cache_on_write = 0; |
6d2010ae | 99 | SYSCTL_INT (_kern, OID_AUTO, flush_cache_on_write, CTLFLAG_RW | CTLFLAG_LOCKED, &flush_cache_on_write, 0, "always flush the drive cache on writes to uncached files"); |
8f6c56a5 | 100 | |
91447636 A |
101 | /* |
102 | * Read data from a file. | |
103 | */ | |
1c79356b | 104 | int |
91447636 | 105 | hfs_vnop_read(struct vnop_read_args *ap) |
1c79356b | 106 | { |
316670eb A |
107 | /* |
108 | struct vnop_read_args { | |
109 | struct vnodeop_desc *a_desc; | |
110 | vnode_t a_vp; | |
111 | struct uio *a_uio; | |
112 | int a_ioflag; | |
113 | vfs_context_t a_context; | |
114 | }; | |
115 | */ | |
116 | ||
91447636 A |
117 | uio_t uio = ap->a_uio; |
118 | struct vnode *vp = ap->a_vp; | |
9bccf70c A |
119 | struct cnode *cp; |
120 | struct filefork *fp; | |
91447636 A |
121 | struct hfsmount *hfsmp; |
122 | off_t filesize; | |
123 | off_t filebytes; | |
124 | off_t start_resid = uio_resid(uio); | |
125 | off_t offset = uio_offset(uio); | |
9bccf70c | 126 | int retval = 0; |
6d2010ae | 127 | int took_truncate_lock = 0; |
316670eb | 128 | int io_throttle = 0; |
fe8ab488 | 129 | int throttled_count = 0; |
55e303ae | 130 | |
9bccf70c | 131 | /* Preflight checks */ |
91447636 A |
132 | if (!vnode_isreg(vp)) { |
133 | /* can only read regular files */ | |
134 | if (vnode_isdir(vp)) | |
135 | return (EISDIR); | |
136 | else | |
137 | return (EPERM); | |
138 | } | |
139 | if (start_resid == 0) | |
9bccf70c | 140 | return (0); /* Nothing left to do */ |
91447636 | 141 | if (offset < 0) |
9bccf70c | 142 | return (EINVAL); /* cant read from a negative offset */ |
fe8ab488 A |
143 | |
144 | if ((ap->a_ioflag & (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) == | |
145 | (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) { | |
146 | /* Don't allow unencrypted io request from user space */ | |
147 | return EPERM; | |
148 | } | |
149 | ||
150 | ||
39236c6e | 151 | |
b0d623f7 A |
152 | #if HFS_COMPRESSION |
153 | if (VNODE_IS_RSRC(vp)) { | |
154 | if (hfs_hides_rsrc(ap->a_context, VTOC(vp), 1)) { /* 1 == don't take the cnode lock */ | |
155 | return 0; | |
156 | } | |
157 | /* otherwise read the resource fork normally */ | |
158 | } else { | |
159 | int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */ | |
160 | if (compressed) { | |
161 | retval = decmpfs_read_compressed(ap, &compressed, VTOCMP(vp)); | |
162 | if (compressed) { | |
163 | if (retval == 0) { | |
164 | /* successful read, update the access time */ | |
165 | VTOC(vp)->c_touch_acctime = TRUE; | |
166 | ||
167 | /* compressed files are not hot file candidates */ | |
168 | if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { | |
169 | VTOF(vp)->ff_bytesread = 0; | |
170 | } | |
171 | } | |
172 | return retval; | |
173 | } | |
174 | /* otherwise the file was converted back to a regular file while we were reading it */ | |
175 | retval = 0; | |
316670eb | 176 | } else if ((VTOC(vp)->c_bsdflags & UF_COMPRESSED)) { |
6d2010ae A |
177 | int error; |
178 | ||
179 | error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP); | |
180 | if (error) { | |
181 | return error; | |
182 | } | |
183 | ||
b0d623f7 A |
184 | } |
185 | } | |
186 | #endif /* HFS_COMPRESSION */ | |
9bccf70c A |
187 | |
188 | cp = VTOC(vp); | |
189 | fp = VTOF(vp); | |
91447636 A |
190 | hfsmp = VTOHFS(vp); |
191 | ||
6d2010ae | 192 | #if CONFIG_PROTECT |
316670eb | 193 | if ((retval = cp_handle_vnop (vp, CP_READ_ACCESS, ap->a_ioflag)) != 0) { |
6d2010ae A |
194 | goto exit; |
195 | } | |
196 | #endif | |
197 | ||
316670eb A |
198 | /* |
199 | * If this read request originated from a syscall (as opposed to | |
200 | * an in-kernel page fault or something), then set it up for | |
39236c6e | 201 | * throttle checks |
316670eb A |
202 | */ |
203 | if (ap->a_ioflag & IO_SYSCALL_DISPATCH) { | |
204 | io_throttle = IO_RETURN_ON_THROTTLE; | |
205 | } | |
206 | ||
207 | read_again: | |
208 | ||
91447636 | 209 | /* Protect against a size change. */ |
39236c6e | 210 | hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT); |
6d2010ae | 211 | took_truncate_lock = 1; |
91447636 | 212 | |
9bccf70c | 213 | filesize = fp->ff_size; |
91447636 | 214 | filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; |
fe8ab488 A |
215 | |
216 | /* | |
217 | * Check the file size. Note that per POSIX spec, we return 0 at | |
218 | * file EOF, so attempting a read at an offset that is too big | |
219 | * should just return 0 on HFS+. Since the return value was initialized | |
220 | * to 0 above, we just jump to exit. HFS Standard has its own behavior. | |
221 | */ | |
91447636 A |
222 | if (offset > filesize) { |
223 | if ((hfsmp->hfs_flags & HFS_STANDARD) && | |
224 | (offset > (off_t)MAXHFSFILESIZE)) { | |
225 | retval = EFBIG; | |
226 | } | |
227 | goto exit; | |
9bccf70c | 228 | } |
1c79356b | 229 | |
fe8ab488 | 230 | KERNEL_DEBUG(HFSDBG_READ | DBG_FUNC_START, |
91447636 | 231 | (int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0); |
1c79356b | 232 | |
39236c6e | 233 | retval = cluster_read(vp, uio, filesize, ap->a_ioflag |io_throttle); |
1c79356b | 234 | |
91447636 | 235 | cp->c_touch_acctime = TRUE; |
1c79356b | 236 | |
fe8ab488 | 237 | KERNEL_DEBUG(HFSDBG_READ | DBG_FUNC_END, |
91447636 | 238 | (int)uio_offset(uio), uio_resid(uio), (int)filesize, (int)filebytes, 0); |
1c79356b | 239 | |
55e303ae A |
240 | /* |
241 | * Keep track blocks read | |
242 | */ | |
2d21ac55 | 243 | if (hfsmp->hfc_stage == HFC_RECORDING && retval == 0) { |
91447636 A |
244 | int took_cnode_lock = 0; |
245 | off_t bytesread; | |
246 | ||
247 | bytesread = start_resid - uio_resid(uio); | |
248 | ||
249 | /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */ | |
250 | if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff) { | |
39236c6e | 251 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
91447636 A |
252 | took_cnode_lock = 1; |
253 | } | |
55e303ae A |
254 | /* |
255 | * If this file hasn't been seen since the start of | |
256 | * the current sampling period then start over. | |
257 | */ | |
2d21ac55 | 258 | if (cp->c_atime < hfsmp->hfc_timebase) { |
91447636 A |
259 | struct timeval tv; |
260 | ||
261 | fp->ff_bytesread = bytesread; | |
262 | microtime(&tv); | |
263 | cp->c_atime = tv.tv_sec; | |
55e303ae | 264 | } else { |
91447636 | 265 | fp->ff_bytesread += bytesread; |
55e303ae | 266 | } |
91447636 A |
267 | if (took_cnode_lock) |
268 | hfs_unlock(cp); | |
55e303ae | 269 | } |
91447636 | 270 | exit: |
6d2010ae | 271 | if (took_truncate_lock) { |
39236c6e | 272 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
6d2010ae | 273 | } |
316670eb A |
274 | if (retval == EAGAIN) { |
275 | throttle_lowpri_io(1); | |
fe8ab488 | 276 | throttled_count++; |
6d2010ae | 277 | |
316670eb A |
278 | retval = 0; |
279 | goto read_again; | |
280 | } | |
fe8ab488 A |
281 | if (throttled_count) { |
282 | throttle_info_reset_window((uthread_t)get_bsdthread_info(current_thread())); | |
283 | } | |
9bccf70c | 284 | return (retval); |
1c79356b A |
285 | } |
286 | ||
287 | /* | |
91447636 A |
288 | * Write data to a file. |
289 | */ | |
1c79356b | 290 | int |
91447636 | 291 | hfs_vnop_write(struct vnop_write_args *ap) |
1c79356b | 292 | { |
91447636 | 293 | uio_t uio = ap->a_uio; |
9bccf70c | 294 | struct vnode *vp = ap->a_vp; |
9bccf70c A |
295 | struct cnode *cp; |
296 | struct filefork *fp; | |
91447636 A |
297 | struct hfsmount *hfsmp; |
298 | kauth_cred_t cred = NULL; | |
299 | off_t origFileSize; | |
300 | off_t writelimit; | |
2d21ac55 | 301 | off_t bytesToAdd = 0; |
55e303ae | 302 | off_t actualBytesAdded; |
9bccf70c | 303 | off_t filebytes; |
91447636 | 304 | off_t offset; |
b0d623f7 | 305 | ssize_t resid; |
91447636 A |
306 | int eflags; |
307 | int ioflag = ap->a_ioflag; | |
308 | int retval = 0; | |
309 | int lockflags; | |
310 | int cnode_locked = 0; | |
2d21ac55 | 311 | int partialwrite = 0; |
6d2010ae A |
312 | int do_snapshot = 1; |
313 | time_t orig_ctime=VTOC(vp)->c_ctime; | |
314 | int took_truncate_lock = 0; | |
316670eb | 315 | int io_return_on_throttle = 0; |
fe8ab488 | 316 | int throttled_count = 0; |
7ddcb079 | 317 | struct rl_entry *invalid_range; |
1c79356b | 318 | |
b0d623f7 A |
319 | #if HFS_COMPRESSION |
320 | if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */ | |
321 | int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp)); | |
322 | switch(state) { | |
323 | case FILE_IS_COMPRESSED: | |
324 | return EACCES; | |
325 | case FILE_IS_CONVERTING: | |
6d2010ae A |
326 | /* if FILE_IS_CONVERTING, we allow writes but do not |
327 | bother with snapshots or else we will deadlock. | |
328 | */ | |
329 | do_snapshot = 0; | |
b0d623f7 A |
330 | break; |
331 | default: | |
332 | printf("invalid state %d for compressed file\n", state); | |
333 | /* fall through */ | |
334 | } | |
316670eb | 335 | } else if ((VTOC(vp)->c_bsdflags & UF_COMPRESSED)) { |
6d2010ae A |
336 | int error; |
337 | ||
338 | error = check_for_dataless_file(vp, NAMESPACE_HANDLER_WRITE_OP); | |
339 | if (error != 0) { | |
340 | return error; | |
341 | } | |
b0d623f7 | 342 | } |
6d2010ae A |
343 | |
344 | if (do_snapshot) { | |
345 | check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_WRITE_OP, uio); | |
346 | } | |
347 | ||
b0d623f7 A |
348 | #endif |
349 | ||
fe8ab488 A |
350 | if ((ioflag & (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) == |
351 | (IO_SKIP_ENCRYPTION|IO_SYSCALL_DISPATCH)) { | |
352 | /* Don't allow unencrypted io request from user space */ | |
353 | return EPERM; | |
354 | } | |
355 | ||
356 | ||
91447636 A |
357 | resid = uio_resid(uio); |
358 | offset = uio_offset(uio); | |
1c79356b | 359 | |
91447636 | 360 | if (offset < 0) |
9bccf70c | 361 | return (EINVAL); |
91447636 | 362 | if (resid == 0) |
9bccf70c | 363 | return (E_NONE); |
91447636 A |
364 | if (!vnode_isreg(vp)) |
365 | return (EPERM); /* Can only write regular files */ | |
366 | ||
9bccf70c A |
367 | cp = VTOC(vp); |
368 | fp = VTOF(vp); | |
91447636 | 369 | hfsmp = VTOHFS(vp); |
b4c24cb9 | 370 | |
6d2010ae | 371 | #if CONFIG_PROTECT |
316670eb | 372 | if ((retval = cp_handle_vnop (vp, CP_WRITE_ACCESS, 0)) != 0) { |
6d2010ae A |
373 | goto exit; |
374 | } | |
375 | #endif | |
376 | ||
9bccf70c | 377 | eflags = kEFDeferMask; /* defer file block allocations */ |
6d2010ae | 378 | #if HFS_SPARSE_DEV |
55e303ae A |
379 | /* |
380 | * When the underlying device is sparse and space | |
381 | * is low (< 8MB), stop doing delayed allocations | |
382 | * and begin doing synchronous I/O. | |
383 | */ | |
384 | if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && | |
385 | (hfs_freeblks(hfsmp, 0) < 2048)) { | |
386 | eflags &= ~kEFDeferMask; | |
387 | ioflag |= IO_SYNC; | |
388 | } | |
389 | #endif /* HFS_SPARSE_DEV */ | |
390 | ||
39236c6e A |
391 | if ((ioflag & (IO_SINGLE_WRITER | IO_SYSCALL_DISPATCH)) == |
392 | (IO_SINGLE_WRITER | IO_SYSCALL_DISPATCH)) { | |
316670eb A |
393 | io_return_on_throttle = IO_RETURN_ON_THROTTLE; |
394 | } | |
39236c6e | 395 | |
2d21ac55 | 396 | again: |
7ddcb079 A |
397 | /* |
398 | * Protect against a size change. | |
399 | * | |
400 | * Note: If took_truncate_lock is true, then we previously got the lock shared | |
401 | * but needed to upgrade to exclusive. So try getting it exclusive from the | |
402 | * start. | |
403 | */ | |
404 | if (ioflag & IO_APPEND || took_truncate_lock) { | |
39236c6e | 405 | hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
6d2010ae A |
406 | } |
407 | else { | |
39236c6e | 408 | hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT); |
6d2010ae A |
409 | } |
410 | took_truncate_lock = 1; | |
91447636 | 411 | |
6d2010ae | 412 | /* Update UIO */ |
2d21ac55 A |
413 | if (ioflag & IO_APPEND) { |
414 | uio_setoffset(uio, fp->ff_size); | |
415 | offset = fp->ff_size; | |
416 | } | |
316670eb | 417 | if ((cp->c_bsdflags & APPEND) && offset != fp->ff_size) { |
2d21ac55 A |
418 | retval = EPERM; |
419 | goto exit; | |
420 | } | |
91447636 | 421 | |
2d21ac55 | 422 | origFileSize = fp->ff_size; |
91447636 | 423 | writelimit = offset + resid; |
2d21ac55 A |
424 | filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; |
425 | ||
7ddcb079 A |
426 | /* |
427 | * We may need an exclusive truncate lock for several reasons, all | |
428 | * of which are because we may be writing to a (portion of a) block | |
429 | * for the first time, and we need to make sure no readers see the | |
430 | * prior, uninitialized contents of the block. The cases are: | |
431 | * | |
432 | * 1. We have unallocated (delayed allocation) blocks. We may be | |
433 | * allocating new blocks to the file and writing to them. | |
434 | * (A more precise check would be whether the range we're writing | |
435 | * to contains delayed allocation blocks.) | |
436 | * 2. We need to extend the file. The bytes between the old EOF | |
437 | * and the new EOF are not yet initialized. This is important | |
438 | * even if we're not allocating new blocks to the file. If the | |
439 | * old EOF and new EOF are in the same block, we still need to | |
440 | * protect that range of bytes until they are written for the | |
441 | * first time. | |
442 | * 3. The write overlaps some invalid ranges (delayed zero fill; that | |
443 | * part of the file has been allocated, but not yet written). | |
444 | * | |
445 | * If we had a shared lock with the above cases, we need to try to upgrade | |
446 | * to an exclusive lock. If the upgrade fails, we will lose the shared | |
447 | * lock, and will need to take the truncate lock again; the took_truncate_lock | |
448 | * flag will still be set, causing us to try for an exclusive lock next time. | |
449 | * | |
450 | * NOTE: Testing for #3 (delayed zero fill) needs to be done while the cnode | |
451 | * lock is held, since it protects the range lists. | |
2d21ac55 | 452 | */ |
6d2010ae | 453 | if ((cp->c_truncatelockowner == HFS_SHARED_OWNER) && |
7ddcb079 A |
454 | ((fp->ff_unallocblocks != 0) || |
455 | (writelimit > origFileSize))) { | |
2d21ac55 | 456 | if (lck_rw_lock_shared_to_exclusive(&cp->c_truncatelock) == FALSE) { |
7ddcb079 A |
457 | /* |
458 | * Lock upgrade failed and we lost our shared lock, try again. | |
459 | * Note: we do not set took_truncate_lock=0 here. Leaving it | |
460 | * set to 1 will cause us to try to get the lock exclusive. | |
461 | */ | |
2d21ac55 A |
462 | goto again; |
463 | } | |
6d2010ae A |
464 | else { |
465 | /* Store the owner in the c_truncatelockowner field if we successfully upgrade */ | |
466 | cp->c_truncatelockowner = current_thread(); | |
467 | } | |
2d21ac55 A |
468 | } |
469 | ||
39236c6e | 470 | if ( (retval = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { |
2d21ac55 A |
471 | goto exit; |
472 | } | |
473 | cnode_locked = 1; | |
474 | ||
7ddcb079 A |
475 | /* |
476 | * Now that we have the cnode lock, see if there are delayed zero fill ranges | |
477 | * overlapping our write. If so, we need the truncate lock exclusive (see above). | |
478 | */ | |
479 | if ((cp->c_truncatelockowner == HFS_SHARED_OWNER) && | |
480 | (rl_scan(&fp->ff_invalidranges, offset, writelimit-1, &invalid_range) != RL_NOOVERLAP)) { | |
481 | /* | |
482 | * When testing, it appeared that calling lck_rw_lock_shared_to_exclusive() causes | |
483 | * a deadlock, rather than simply returning failure. (That is, it apparently does | |
484 | * not behave like a "try_lock"). Since this condition is rare, just drop the | |
485 | * cnode lock and try again. Since took_truncate_lock is set, we will | |
486 | * automatically take the truncate lock exclusive. | |
487 | */ | |
488 | hfs_unlock(cp); | |
489 | cnode_locked = 0; | |
39236c6e | 490 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
7ddcb079 | 491 | goto again; |
2d21ac55 | 492 | } |
7ddcb079 | 493 | |
fe8ab488 | 494 | KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_START, |
7ddcb079 A |
495 | (int)offset, uio_resid(uio), (int)fp->ff_size, |
496 | (int)filebytes, 0); | |
2d21ac55 A |
497 | |
498 | /* Check if we do not need to extend the file */ | |
499 | if (writelimit <= filebytes) { | |
91447636 | 500 | goto sizeok; |
2d21ac55 | 501 | } |
91447636 A |
502 | |
503 | cred = vfs_context_ucred(ap->a_context); | |
91447636 | 504 | bytesToAdd = writelimit - filebytes; |
2d21ac55 A |
505 | |
506 | #if QUOTA | |
91447636 A |
507 | retval = hfs_chkdq(cp, (int64_t)(roundup(bytesToAdd, hfsmp->blockSize)), |
508 | cred, 0); | |
509 | if (retval) | |
510 | goto exit; | |
511 | #endif /* QUOTA */ | |
512 | ||
513 | if (hfs_start_transaction(hfsmp) != 0) { | |
514 | retval = EINVAL; | |
515 | goto exit; | |
b4c24cb9 A |
516 | } |
517 | ||
9bccf70c | 518 | while (writelimit > filebytes) { |
9bccf70c | 519 | bytesToAdd = writelimit - filebytes; |
91447636 | 520 | if (cred && suser(cred, NULL) != 0) |
9bccf70c A |
521 | eflags |= kEFReserveMask; |
522 | ||
91447636 A |
523 | /* Protect extents b-tree and allocation bitmap */ |
524 | lockflags = SFL_BITMAP; | |
525 | if (overflow_extents(fp)) | |
526 | lockflags |= SFL_EXTENTS; | |
527 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
55e303ae A |
528 | |
529 | /* Files that are changing size are not hot file candidates. */ | |
530 | if (hfsmp->hfc_stage == HFC_RECORDING) { | |
531 | fp->ff_bytesread = 0; | |
532 | } | |
91447636 | 533 | retval = MacToVFSError(ExtendFileC (hfsmp, (FCB*)fp, bytesToAdd, |
9bccf70c A |
534 | 0, eflags, &actualBytesAdded)); |
535 | ||
91447636 A |
536 | hfs_systemfile_unlock(hfsmp, lockflags); |
537 | ||
9bccf70c A |
538 | if ((actualBytesAdded == 0) && (retval == E_NONE)) |
539 | retval = ENOSPC; | |
540 | if (retval != E_NONE) | |
541 | break; | |
91447636 | 542 | filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; |
fe8ab488 | 543 | KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_NONE, |
91447636 | 544 | (int)offset, uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0); |
b4c24cb9 | 545 | } |
91447636 A |
546 | (void) hfs_update(vp, TRUE); |
547 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
548 | (void) hfs_end_transaction(hfsmp); | |
b4c24cb9 | 549 | |
2d21ac55 A |
550 | /* |
551 | * If we didn't grow the file enough try a partial write. | |
552 | * POSIX expects this behavior. | |
553 | */ | |
554 | if ((retval == ENOSPC) && (filebytes > offset)) { | |
555 | retval = 0; | |
556 | partialwrite = 1; | |
557 | uio_setresid(uio, (uio_resid(uio) - bytesToAdd)); | |
558 | resid -= bytesToAdd; | |
559 | writelimit = filebytes; | |
560 | } | |
91447636 | 561 | sizeok: |
55e303ae | 562 | if (retval == E_NONE) { |
0b4e3aa0 A |
563 | off_t filesize; |
564 | off_t zero_off; | |
565 | off_t tail_off; | |
566 | off_t inval_start; | |
567 | off_t inval_end; | |
91447636 | 568 | off_t io_start; |
0b4e3aa0 | 569 | int lflag; |
0b4e3aa0 | 570 | |
9bccf70c | 571 | if (writelimit > fp->ff_size) |
0b4e3aa0 A |
572 | filesize = writelimit; |
573 | else | |
9bccf70c | 574 | filesize = fp->ff_size; |
1c79356b | 575 | |
2d21ac55 | 576 | lflag = ioflag & ~(IO_TAILZEROFILL | IO_HEADZEROFILL | IO_NOZEROVALID | IO_NOZERODIRTY); |
1c79356b | 577 | |
91447636 A |
578 | if (offset <= fp->ff_size) { |
579 | zero_off = offset & ~PAGE_MASK_64; | |
0b4e3aa0 A |
580 | |
581 | /* Check to see whether the area between the zero_offset and the start | |
582 | of the transfer to see whether is invalid and should be zero-filled | |
583 | as part of the transfer: | |
584 | */ | |
91447636 A |
585 | if (offset > zero_off) { |
586 | if (rl_scan(&fp->ff_invalidranges, zero_off, offset - 1, &invalid_range) != RL_NOOVERLAP) | |
55e303ae A |
587 | lflag |= IO_HEADZEROFILL; |
588 | } | |
0b4e3aa0 | 589 | } else { |
9bccf70c | 590 | off_t eof_page_base = fp->ff_size & ~PAGE_MASK_64; |
0b4e3aa0 | 591 | |
9bccf70c | 592 | /* The bytes between fp->ff_size and uio->uio_offset must never be |
0b4e3aa0 A |
593 | read without being zeroed. The current last block is filled with zeroes |
594 | if it holds valid data but in all cases merely do a little bookkeeping | |
595 | to track the area from the end of the current last page to the start of | |
596 | the area actually written. For the same reason only the bytes up to the | |
597 | start of the page where this write will start is invalidated; any remainder | |
598 | before uio->uio_offset is explicitly zeroed as part of the cluster_write. | |
599 | ||
600 | Note that inval_start, the start of the page after the current EOF, | |
601 | may be past the start of the write, in which case the zeroing | |
602 | will be handled by the cluser_write of the actual data. | |
603 | */ | |
9bccf70c | 604 | inval_start = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; |
91447636 | 605 | inval_end = offset & ~PAGE_MASK_64; |
9bccf70c | 606 | zero_off = fp->ff_size; |
0b4e3aa0 | 607 | |
9bccf70c A |
608 | if ((fp->ff_size & PAGE_MASK_64) && |
609 | (rl_scan(&fp->ff_invalidranges, | |
0b4e3aa0 | 610 | eof_page_base, |
9bccf70c | 611 | fp->ff_size - 1, |
0b4e3aa0 A |
612 | &invalid_range) != RL_NOOVERLAP)) { |
613 | /* The page containing the EOF is not valid, so the | |
614 | entire page must be made inaccessible now. If the write | |
615 | starts on a page beyond the page containing the eof | |
616 | (inval_end > eof_page_base), add the | |
617 | whole page to the range to be invalidated. Otherwise | |
618 | (i.e. if the write starts on the same page), zero-fill | |
619 | the entire page explicitly now: | |
620 | */ | |
621 | if (inval_end > eof_page_base) { | |
622 | inval_start = eof_page_base; | |
623 | } else { | |
624 | zero_off = eof_page_base; | |
625 | }; | |
626 | }; | |
627 | ||
628 | if (inval_start < inval_end) { | |
91447636 | 629 | struct timeval tv; |
0b4e3aa0 A |
630 | /* There's some range of data that's going to be marked invalid */ |
631 | ||
632 | if (zero_off < inval_start) { | |
633 | /* The pages between inval_start and inval_end are going to be invalidated, | |
634 | and the actual write will start on a page past inval_end. Now's the last | |
635 | chance to zero-fill the page containing the EOF: | |
636 | */ | |
91447636 A |
637 | hfs_unlock(cp); |
638 | cnode_locked = 0; | |
639 | retval = cluster_write(vp, (uio_t) 0, | |
9bccf70c | 640 | fp->ff_size, inval_start, |
91447636 | 641 | zero_off, (off_t)0, |
9bccf70c | 642 | lflag | IO_HEADZEROFILL | IO_NOZERODIRTY); |
39236c6e | 643 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
91447636 | 644 | cnode_locked = 1; |
0b4e3aa0 | 645 | if (retval) goto ioerr_exit; |
91447636 | 646 | offset = uio_offset(uio); |
0b4e3aa0 A |
647 | }; |
648 | ||
649 | /* Mark the remaining area of the newly allocated space as invalid: */ | |
9bccf70c | 650 | rl_add(inval_start, inval_end - 1 , &fp->ff_invalidranges); |
91447636 A |
651 | microuptime(&tv); |
652 | cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; | |
9bccf70c | 653 | zero_off = fp->ff_size = inval_end; |
0b4e3aa0 A |
654 | }; |
655 | ||
91447636 | 656 | if (offset > zero_off) lflag |= IO_HEADZEROFILL; |
0b4e3aa0 | 657 | }; |
1c79356b | 658 | |
0b4e3aa0 A |
659 | /* Check to see whether the area between the end of the write and the end of |
660 | the page it falls in is invalid and should be zero-filled as part of the transfer: | |
661 | */ | |
662 | tail_off = (writelimit + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; | |
663 | if (tail_off > filesize) tail_off = filesize; | |
664 | if (tail_off > writelimit) { | |
9bccf70c | 665 | if (rl_scan(&fp->ff_invalidranges, writelimit, tail_off - 1, &invalid_range) != RL_NOOVERLAP) { |
0b4e3aa0 A |
666 | lflag |= IO_TAILZEROFILL; |
667 | }; | |
668 | }; | |
669 | ||
670 | /* | |
671 | * if the write starts beyond the current EOF (possibly advanced in the | |
672 | * zeroing of the last block, above), then we'll zero fill from the current EOF | |
673 | * to where the write begins: | |
674 | * | |
675 | * NOTE: If (and ONLY if) the portion of the file about to be written is | |
676 | * before the current EOF it might be marked as invalid now and must be | |
677 | * made readable (removed from the invalid ranges) before cluster_write | |
678 | * tries to write it: | |
679 | */ | |
91447636 | 680 | io_start = (lflag & IO_HEADZEROFILL) ? zero_off : offset; |
9bccf70c | 681 | if (io_start < fp->ff_size) { |
91447636 A |
682 | off_t io_end; |
683 | ||
684 | io_end = (lflag & IO_TAILZEROFILL) ? tail_off : writelimit; | |
9bccf70c | 685 | rl_remove(io_start, io_end - 1, &fp->ff_invalidranges); |
0b4e3aa0 | 686 | }; |
91447636 A |
687 | |
688 | hfs_unlock(cp); | |
689 | cnode_locked = 0; | |
593a1d5f A |
690 | |
691 | /* | |
692 | * We need to tell UBC the fork's new size BEFORE calling | |
693 | * cluster_write, in case any of the new pages need to be | |
694 | * paged out before cluster_write completes (which does happen | |
695 | * in embedded systems due to extreme memory pressure). | |
696 | * Similarly, we need to tell hfs_vnop_pageout what the new EOF | |
697 | * will be, so that it can pass that on to cluster_pageout, and | |
698 | * allow those pageouts. | |
699 | * | |
700 | * We don't update ff_size yet since we don't want pageins to | |
701 | * be able to see uninitialized data between the old and new | |
702 | * EOF, until cluster_write has completed and initialized that | |
703 | * part of the file. | |
704 | * | |
705 | * The vnode pager relies on the file size last given to UBC via | |
706 | * ubc_setsize. hfs_vnop_pageout relies on fp->ff_new_size or | |
707 | * ff_size (whichever is larger). NOTE: ff_new_size is always | |
708 | * zero, unless we are extending the file via write. | |
709 | */ | |
710 | if (filesize > fp->ff_size) { | |
711 | fp->ff_new_size = filesize; | |
712 | ubc_setsize(vp, filesize); | |
713 | } | |
9bccf70c | 714 | retval = cluster_write(vp, uio, fp->ff_size, filesize, zero_off, |
316670eb | 715 | tail_off, lflag | IO_NOZERODIRTY | io_return_on_throttle); |
2d21ac55 | 716 | if (retval) { |
593a1d5f | 717 | fp->ff_new_size = 0; /* no longer extending; use ff_size */ |
316670eb A |
718 | |
719 | if (retval == EAGAIN) { | |
720 | /* | |
721 | * EAGAIN indicates that we still have I/O to do, but | |
722 | * that we now need to be throttled | |
723 | */ | |
724 | if (resid != uio_resid(uio)) { | |
725 | /* | |
726 | * did manage to do some I/O before returning EAGAIN | |
727 | */ | |
728 | resid = uio_resid(uio); | |
729 | offset = uio_offset(uio); | |
730 | ||
731 | cp->c_touch_chgtime = TRUE; | |
732 | cp->c_touch_modtime = TRUE; | |
fe8ab488 | 733 | hfs_incr_gencount(cp); |
316670eb A |
734 | } |
735 | if (filesize > fp->ff_size) { | |
736 | /* | |
737 | * we called ubc_setsize before the call to | |
738 | * cluster_write... since we only partially | |
739 | * completed the I/O, we need to | |
740 | * re-adjust our idea of the filesize based | |
741 | * on our interim EOF | |
742 | */ | |
743 | ubc_setsize(vp, offset); | |
744 | ||
745 | fp->ff_size = offset; | |
746 | } | |
747 | goto exit; | |
748 | } | |
593a1d5f A |
749 | if (filesize > origFileSize) { |
750 | ubc_setsize(vp, origFileSize); | |
751 | } | |
2d21ac55 A |
752 | goto ioerr_exit; |
753 | } | |
593a1d5f A |
754 | |
755 | if (filesize > origFileSize) { | |
756 | fp->ff_size = filesize; | |
757 | ||
91447636 | 758 | /* Files that are changing size are not hot file candidates. */ |
593a1d5f | 759 | if (hfsmp->hfc_stage == HFC_RECORDING) { |
91447636 | 760 | fp->ff_bytesread = 0; |
593a1d5f | 761 | } |
91447636 | 762 | } |
fe8ab488 | 763 | fp->ff_new_size = 0; /* ff_size now has the correct size */ |
9bccf70c | 764 | } |
2d21ac55 A |
765 | if (partialwrite) { |
766 | uio_setresid(uio, (uio_resid(uio) + bytesToAdd)); | |
767 | resid += bytesToAdd; | |
768 | } | |
8f6c56a5 | 769 | |
2d21ac55 | 770 | // XXXdbg - see radar 4871353 for more info |
8f6c56a5 A |
771 | { |
772 | if (flush_cache_on_write && ((ioflag & IO_NOCACHE) || vnode_isnocache(vp))) { | |
773 | VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL); | |
774 | } | |
775 | } | |
55e303ae | 776 | |
0b4e3aa0 | 777 | ioerr_exit: |
fe8ab488 A |
778 | if (resid > uio_resid(uio)) { |
779 | if (!cnode_locked) { | |
780 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); | |
781 | cnode_locked = 1; | |
782 | } | |
783 | ||
784 | cp->c_touch_chgtime = TRUE; | |
785 | cp->c_touch_modtime = TRUE; | |
786 | hfs_incr_gencount(cp); | |
787 | ||
788 | /* | |
789 | * If we successfully wrote any data, and we are not the superuser | |
790 | * we clear the setuid and setgid bits as a precaution against | |
791 | * tampering. | |
792 | */ | |
793 | if (cp->c_mode & (S_ISUID | S_ISGID)) { | |
794 | cred = vfs_context_ucred(ap->a_context); | |
795 | if (cred && suser(cred, NULL)) { | |
796 | cp->c_mode &= ~(S_ISUID | S_ISGID); | |
91447636 | 797 | } |
91447636 A |
798 | } |
799 | } | |
9bccf70c A |
800 | if (retval) { |
801 | if (ioflag & IO_UNIT) { | |
91447636 | 802 | (void)hfs_truncate(vp, origFileSize, ioflag & IO_SYNC, |
fe8ab488 | 803 | 0, ap->a_context); |
91447636 A |
804 | uio_setoffset(uio, (uio_offset(uio) - (resid - uio_resid(uio)))); |
805 | uio_setresid(uio, resid); | |
806 | filebytes = (off_t)fp->ff_blocks * (off_t)hfsmp->blockSize; | |
807 | } | |
fe8ab488 | 808 | } else if ((ioflag & IO_SYNC) && (resid > uio_resid(uio))) |
91447636 | 809 | retval = hfs_update(vp, TRUE); |
fe8ab488 | 810 | |
91447636 A |
811 | /* Updating vcbWrCnt doesn't need to be atomic. */ |
812 | hfsmp->vcbWrCnt++; | |
1c79356b | 813 | |
fe8ab488 | 814 | KERNEL_DEBUG(HFSDBG_WRITE | DBG_FUNC_END, |
91447636 A |
815 | (int)uio_offset(uio), uio_resid(uio), (int)fp->ff_size, (int)filebytes, 0); |
816 | exit: | |
817 | if (cnode_locked) | |
818 | hfs_unlock(cp); | |
6d2010ae A |
819 | |
820 | if (took_truncate_lock) { | |
39236c6e | 821 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
6d2010ae | 822 | } |
316670eb A |
823 | if (retval == EAGAIN) { |
824 | throttle_lowpri_io(1); | |
fe8ab488 | 825 | throttled_count++; |
316670eb A |
826 | |
827 | retval = 0; | |
828 | goto again; | |
829 | } | |
fe8ab488 A |
830 | if (throttled_count) { |
831 | throttle_info_reset_window((uthread_t)get_bsdthread_info(current_thread())); | |
832 | } | |
9bccf70c | 833 | return (retval); |
1c79356b A |
834 | } |
835 | ||
91447636 | 836 | /* support for the "bulk-access" fcntl */ |
1c79356b | 837 | |
91447636 | 838 | #define CACHE_LEVELS 16 |
2d21ac55 | 839 | #define NUM_CACHE_ENTRIES (64*16) |
91447636 A |
840 | #define PARENT_IDS_FLAG 0x100 |
841 | ||
91447636 A |
842 | struct access_cache { |
843 | int numcached; | |
844 | int cachehits; /* these two for statistics gathering */ | |
845 | int lookups; | |
846 | unsigned int *acache; | |
2d21ac55 | 847 | unsigned char *haveaccess; |
55e303ae A |
848 | }; |
849 | ||
91447636 A |
850 | struct access_t { |
851 | uid_t uid; /* IN: effective user id */ | |
852 | short flags; /* IN: access requested (i.e. R_OK) */ | |
853 | short num_groups; /* IN: number of groups user belongs to */ | |
854 | int num_files; /* IN: number of files to process */ | |
855 | int *file_ids; /* IN: array of file ids */ | |
856 | gid_t *groups; /* IN: array of groups */ | |
857 | short *access; /* OUT: access info for each file (0 for 'has access') */ | |
b0d623f7 A |
858 | } __attribute__((unavailable)); // this structure is for reference purposes only |
859 | ||
860 | struct user32_access_t { | |
861 | uid_t uid; /* IN: effective user id */ | |
862 | short flags; /* IN: access requested (i.e. R_OK) */ | |
863 | short num_groups; /* IN: number of groups user belongs to */ | |
864 | int num_files; /* IN: number of files to process */ | |
865 | user32_addr_t file_ids; /* IN: array of file ids */ | |
866 | user32_addr_t groups; /* IN: array of groups */ | |
867 | user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */ | |
91447636 | 868 | }; |
55e303ae | 869 | |
b0d623f7 | 870 | struct user64_access_t { |
91447636 A |
871 | uid_t uid; /* IN: effective user id */ |
872 | short flags; /* IN: access requested (i.e. R_OK) */ | |
873 | short num_groups; /* IN: number of groups user belongs to */ | |
2d21ac55 | 874 | int num_files; /* IN: number of files to process */ |
b0d623f7 A |
875 | user64_addr_t file_ids; /* IN: array of file ids */ |
876 | user64_addr_t groups; /* IN: array of groups */ | |
877 | user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */ | |
91447636 | 878 | }; |
55e303ae | 879 | |
2d21ac55 A |
880 | |
881 | // these are the "extended" versions of the above structures | |
882 | // note that it is crucial that they be different sized than | |
883 | // the regular version | |
884 | struct ext_access_t { | |
885 | uint32_t flags; /* IN: access requested (i.e. R_OK) */ | |
886 | uint32_t num_files; /* IN: number of files to process */ | |
887 | uint32_t map_size; /* IN: size of the bit map */ | |
888 | uint32_t *file_ids; /* IN: Array of file ids */ | |
889 | char *bitmap; /* OUT: hash-bitmap of interesting directory ids */ | |
890 | short *access; /* OUT: access info for each file (0 for 'has access') */ | |
891 | uint32_t num_parents; /* future use */ | |
892 | cnid_t *parents; /* future use */ | |
b0d623f7 A |
893 | } __attribute__((unavailable)); // this structure is for reference purposes only |
894 | ||
895 | struct user32_ext_access_t { | |
896 | uint32_t flags; /* IN: access requested (i.e. R_OK) */ | |
897 | uint32_t num_files; /* IN: number of files to process */ | |
898 | uint32_t map_size; /* IN: size of the bit map */ | |
899 | user32_addr_t file_ids; /* IN: Array of file ids */ | |
900 | user32_addr_t bitmap; /* OUT: hash-bitmap of interesting directory ids */ | |
901 | user32_addr_t access; /* OUT: access info for each file (0 for 'has access') */ | |
902 | uint32_t num_parents; /* future use */ | |
903 | user32_addr_t parents; /* future use */ | |
2d21ac55 A |
904 | }; |
905 | ||
b0d623f7 | 906 | struct user64_ext_access_t { |
2d21ac55 A |
907 | uint32_t flags; /* IN: access requested (i.e. R_OK) */ |
908 | uint32_t num_files; /* IN: number of files to process */ | |
909 | uint32_t map_size; /* IN: size of the bit map */ | |
b0d623f7 A |
910 | user64_addr_t file_ids; /* IN: array of file ids */ |
911 | user64_addr_t bitmap; /* IN: array of groups */ | |
912 | user64_addr_t access; /* OUT: access info for each file (0 for 'has access') */ | |
2d21ac55 | 913 | uint32_t num_parents;/* future use */ |
b0d623f7 | 914 | user64_addr_t parents;/* future use */ |
2d21ac55 A |
915 | }; |
916 | ||
917 | ||
91447636 A |
918 | /* |
919 | * Perform a binary search for the given parent_id. Return value is | |
2d21ac55 A |
920 | * the index if there is a match. If no_match_indexp is non-NULL it |
921 | * will be assigned with the index to insert the item (even if it was | |
922 | * not found). | |
91447636 | 923 | */ |
2d21ac55 | 924 | static int cache_binSearch(cnid_t *array, unsigned int hi, cnid_t parent_id, int *no_match_indexp) |
91447636 | 925 | { |
2d21ac55 A |
926 | int index=-1; |
927 | unsigned int lo=0; | |
91447636 | 928 | |
2d21ac55 A |
929 | do { |
930 | unsigned int mid = ((hi - lo)/2) + lo; | |
931 | unsigned int this_id = array[mid]; | |
932 | ||
933 | if (parent_id == this_id) { | |
934 | hi = mid; | |
935 | break; | |
91447636 | 936 | } |
2d21ac55 A |
937 | |
938 | if (parent_id < this_id) { | |
939 | hi = mid; | |
940 | continue; | |
91447636 | 941 | } |
2d21ac55 A |
942 | |
943 | if (parent_id > this_id) { | |
944 | lo = mid + 1; | |
945 | continue; | |
946 | } | |
947 | } while(lo < hi); | |
948 | ||
949 | /* check if lo and hi converged on the match */ | |
950 | if (parent_id == array[hi]) { | |
951 | index = hi; | |
952 | } | |
91447636 | 953 | |
2d21ac55 A |
954 | if (no_match_indexp) { |
955 | *no_match_indexp = hi; | |
956 | } | |
957 | ||
958 | return index; | |
959 | } | |
960 | ||
961 | ||
962 | static int | |
963 | lookup_bucket(struct access_cache *cache, int *indexp, cnid_t parent_id) | |
964 | { | |
965 | unsigned int hi; | |
966 | int matches = 0; | |
967 | int index, no_match_index; | |
91447636 | 968 | |
2d21ac55 A |
969 | if (cache->numcached == 0) { |
970 | *indexp = 0; | |
971 | return 0; // table is empty, so insert at index=0 and report no match | |
972 | } | |
91447636 | 973 | |
2d21ac55 | 974 | if (cache->numcached > NUM_CACHE_ENTRIES) { |
2d21ac55 A |
975 | cache->numcached = NUM_CACHE_ENTRIES; |
976 | } | |
91447636 | 977 | |
2d21ac55 | 978 | hi = cache->numcached - 1; |
91447636 | 979 | |
2d21ac55 A |
980 | index = cache_binSearch(cache->acache, hi, parent_id, &no_match_index); |
981 | ||
982 | /* if no existing entry found, find index for new one */ | |
983 | if (index == -1) { | |
984 | index = no_match_index; | |
985 | matches = 0; | |
986 | } else { | |
987 | matches = 1; | |
988 | } | |
989 | ||
990 | *indexp = index; | |
991 | return matches; | |
91447636 A |
992 | } |
993 | ||
994 | /* | |
995 | * Add a node to the access_cache at the given index (or do a lookup first | |
996 | * to find the index if -1 is passed in). We currently do a replace rather | |
997 | * than an insert if the cache is full. | |
998 | */ | |
999 | static void | |
1000 | add_node(struct access_cache *cache, int index, cnid_t nodeID, int access) | |
1001 | { | |
2d21ac55 A |
1002 | int lookup_index = -1; |
1003 | ||
1004 | /* need to do a lookup first if -1 passed for index */ | |
1005 | if (index == -1) { | |
1006 | if (lookup_bucket(cache, &lookup_index, nodeID)) { | |
1007 | if (cache->haveaccess[lookup_index] != access && cache->haveaccess[lookup_index] == ESRCH) { | |
1008 | // only update an entry if the previous access was ESRCH (i.e. a scope checking error) | |
1009 | cache->haveaccess[lookup_index] = access; | |
1010 | } | |
1011 | ||
1012 | /* mission accomplished */ | |
1013 | return; | |
1014 | } else { | |
1015 | index = lookup_index; | |
1016 | } | |
1017 | ||
1018 | } | |
1019 | ||
1020 | /* if the cache is full, do a replace rather than an insert */ | |
1021 | if (cache->numcached >= NUM_CACHE_ENTRIES) { | |
2d21ac55 A |
1022 | cache->numcached = NUM_CACHE_ENTRIES-1; |
1023 | ||
1024 | if (index > cache->numcached) { | |
2d21ac55 A |
1025 | index = cache->numcached; |
1026 | } | |
1027 | } | |
1028 | ||
1029 | if (index < cache->numcached && index < NUM_CACHE_ENTRIES && nodeID > cache->acache[index]) { | |
1030 | index++; | |
1031 | } | |
1032 | ||
1033 | if (index >= 0 && index < cache->numcached) { | |
1034 | /* only do bcopy if we're inserting */ | |
1035 | bcopy( cache->acache+index, cache->acache+(index+1), (cache->numcached - index)*sizeof(int) ); | |
1036 | bcopy( cache->haveaccess+index, cache->haveaccess+(index+1), (cache->numcached - index)*sizeof(unsigned char) ); | |
1037 | } | |
1038 | ||
1039 | cache->acache[index] = nodeID; | |
1040 | cache->haveaccess[index] = access; | |
1041 | cache->numcached++; | |
91447636 A |
1042 | } |
1043 | ||
1044 | ||
1045 | struct cinfo { | |
2d21ac55 A |
1046 | uid_t uid; |
1047 | gid_t gid; | |
1048 | mode_t mode; | |
1049 | cnid_t parentcnid; | |
1050 | u_int16_t recflags; | |
91447636 A |
1051 | }; |
1052 | ||
1053 | static int | |
fe8ab488 | 1054 | snoop_callback(const cnode_t *cp, void *arg) |
91447636 | 1055 | { |
fe8ab488 | 1056 | struct cinfo *cip = arg; |
91447636 | 1057 | |
fe8ab488 A |
1058 | cip->uid = cp->c_uid; |
1059 | cip->gid = cp->c_gid; | |
1060 | cip->mode = cp->c_mode; | |
1061 | cip->parentcnid = cp->c_parentcnid; | |
1062 | cip->recflags = cp->c_attr.ca_recflags; | |
91447636 | 1063 | |
2d21ac55 | 1064 | return (0); |
91447636 A |
1065 | } |
1066 | ||
1067 | /* | |
1068 | * Lookup the cnid's attr info (uid, gid, and mode) as well as its parent id. If the item | |
1069 | * isn't incore, then go to the catalog. | |
1070 | */ | |
1071 | static int | |
b0d623f7 | 1072 | do_attr_lookup(struct hfsmount *hfsmp, struct access_cache *cache, cnid_t cnid, |
2d21ac55 | 1073 | struct cnode *skip_cp, CatalogKey *keyp, struct cat_attr *cnattrp) |
91447636 | 1074 | { |
2d21ac55 A |
1075 | int error = 0; |
1076 | ||
1077 | /* if this id matches the one the fsctl was called with, skip the lookup */ | |
1078 | if (cnid == skip_cp->c_cnid) { | |
fe8ab488 A |
1079 | cnattrp->ca_uid = skip_cp->c_uid; |
1080 | cnattrp->ca_gid = skip_cp->c_gid; | |
1081 | cnattrp->ca_mode = skip_cp->c_mode; | |
1082 | cnattrp->ca_recflags = skip_cp->c_attr.ca_recflags; | |
1083 | keyp->hfsPlus.parentID = skip_cp->c_parentcnid; | |
2d21ac55 | 1084 | } else { |
fe8ab488 A |
1085 | struct cinfo c_info; |
1086 | ||
1087 | /* otherwise, check the cnode hash incase the file/dir is incore */ | |
1088 | error = hfs_chash_snoop(hfsmp, cnid, 0, snoop_callback, &c_info); | |
1089 | ||
1090 | if (error == EACCES) { | |
1091 | // File is deleted | |
1092 | return ENOENT; | |
1093 | } else if (!error) { | |
1094 | cnattrp->ca_uid = c_info.uid; | |
1095 | cnattrp->ca_gid = c_info.gid; | |
1096 | cnattrp->ca_mode = c_info.mode; | |
1097 | cnattrp->ca_recflags = c_info.recflags; | |
1098 | keyp->hfsPlus.parentID = c_info.parentcnid; | |
1099 | } else { | |
1100 | int lockflags; | |
1101 | ||
1102 | if (throttle_io_will_be_throttled(-1, HFSTOVFS(hfsmp))) | |
1103 | throttle_lowpri_io(1); | |
316670eb | 1104 | |
fe8ab488 | 1105 | lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK); |
316670eb | 1106 | |
fe8ab488 A |
1107 | /* lookup this cnid in the catalog */ |
1108 | error = cat_getkeyplusattr(hfsmp, cnid, keyp, cnattrp); | |
91447636 | 1109 | |
fe8ab488 | 1110 | hfs_systemfile_unlock(hfsmp, lockflags); |
91447636 | 1111 | |
fe8ab488 A |
1112 | cache->lookups++; |
1113 | } | |
2d21ac55 | 1114 | } |
91447636 | 1115 | |
2d21ac55 | 1116 | return (error); |
91447636 | 1117 | } |
55e303ae | 1118 | |
2d21ac55 | 1119 | |
1c79356b | 1120 | /* |
91447636 A |
1121 | * Compute whether we have access to the given directory (nodeID) and all its parents. Cache |
1122 | * up to CACHE_LEVELS as we progress towards the root. | |
1123 | */ | |
1124 | static int | |
1125 | do_access_check(struct hfsmount *hfsmp, int *err, struct access_cache *cache, HFSCatalogNodeID nodeID, | |
b0d623f7 | 1126 | struct cnode *skip_cp, struct proc *theProcPtr, kauth_cred_t myp_ucred, |
2d21ac55 A |
1127 | struct vfs_context *my_context, |
1128 | char *bitmap, | |
1129 | uint32_t map_size, | |
1130 | cnid_t* parents, | |
1131 | uint32_t num_parents) | |
91447636 | 1132 | { |
2d21ac55 A |
1133 | int myErr = 0; |
1134 | int myResult; | |
1135 | HFSCatalogNodeID thisNodeID; | |
1136 | unsigned int myPerms; | |
1137 | struct cat_attr cnattr; | |
1138 | int cache_index = -1, scope_index = -1, scope_idx_start = -1; | |
1139 | CatalogKey catkey; | |
1140 | ||
1141 | int i = 0, ids_to_cache = 0; | |
1142 | int parent_ids[CACHE_LEVELS]; | |
1143 | ||
1144 | thisNodeID = nodeID; | |
1145 | while (thisNodeID >= kRootDirID) { | |
1146 | myResult = 0; /* default to "no access" */ | |
91447636 | 1147 | |
2d21ac55 A |
1148 | /* check the cache before resorting to hitting the catalog */ |
1149 | ||
1150 | /* ASSUMPTION: access info of cached entries is "final"... i.e. no need | |
1151 | * to look any further after hitting cached dir */ | |
1152 | ||
1153 | if (lookup_bucket(cache, &cache_index, thisNodeID)) { | |
1154 | cache->cachehits++; | |
1155 | myErr = cache->haveaccess[cache_index]; | |
1156 | if (scope_index != -1) { | |
1157 | if (myErr == ESRCH) { | |
1158 | myErr = 0; | |
1159 | } | |
1160 | } else { | |
1161 | scope_index = 0; // so we'll just use the cache result | |
1162 | scope_idx_start = ids_to_cache; | |
1163 | } | |
1164 | myResult = (myErr == 0) ? 1 : 0; | |
1165 | goto ExitThisRoutine; | |
1166 | } | |
1167 | ||
1168 | ||
1169 | if (parents) { | |
1170 | int tmp; | |
1171 | tmp = cache_binSearch(parents, num_parents-1, thisNodeID, NULL); | |
1172 | if (scope_index == -1) | |
1173 | scope_index = tmp; | |
1174 | if (tmp != -1 && scope_idx_start == -1 && ids_to_cache < CACHE_LEVELS) { | |
1175 | scope_idx_start = ids_to_cache; | |
1176 | } | |
1177 | } | |
1178 | ||
1179 | /* remember which parents we want to cache */ | |
1180 | if (ids_to_cache < CACHE_LEVELS) { | |
1181 | parent_ids[ids_to_cache] = thisNodeID; | |
1182 | ids_to_cache++; | |
1183 | } | |
1184 | // Inefficient (using modulo) and we might want to use a hash function, not rely on the node id to be "nice"... | |
1185 | if (bitmap && map_size) { | |
1186 | bitmap[(thisNodeID/8)%(map_size)]|=(1<<(thisNodeID&7)); | |
1187 | } | |
1188 | ||
1189 | ||
1190 | /* do the lookup (checks the cnode hash, then the catalog) */ | |
b0d623f7 | 1191 | myErr = do_attr_lookup(hfsmp, cache, thisNodeID, skip_cp, &catkey, &cnattr); |
2d21ac55 A |
1192 | if (myErr) { |
1193 | goto ExitThisRoutine; /* no access */ | |
1194 | } | |
1195 | ||
1196 | /* Root always gets access. */ | |
1197 | if (suser(myp_ucred, NULL) == 0) { | |
1198 | thisNodeID = catkey.hfsPlus.parentID; | |
1199 | myResult = 1; | |
1200 | continue; | |
1201 | } | |
1202 | ||
1203 | // if the thing has acl's, do the full permission check | |
1204 | if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) { | |
1205 | struct vnode *vp; | |
1206 | ||
1207 | /* get the vnode for this cnid */ | |
6d2010ae | 1208 | myErr = hfs_vget(hfsmp, thisNodeID, &vp, 0, 0); |
2d21ac55 A |
1209 | if ( myErr ) { |
1210 | myResult = 0; | |
1211 | goto ExitThisRoutine; | |
1212 | } | |
1213 | ||
1214 | thisNodeID = VTOC(vp)->c_parentcnid; | |
1215 | ||
1216 | hfs_unlock(VTOC(vp)); | |
1217 | ||
1218 | if (vnode_vtype(vp) == VDIR) { | |
1219 | myErr = vnode_authorize(vp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), my_context); | |
1220 | } else { | |
1221 | myErr = vnode_authorize(vp, NULL, KAUTH_VNODE_READ_DATA, my_context); | |
1222 | } | |
1223 | ||
1224 | vnode_put(vp); | |
1225 | if (myErr) { | |
1226 | myResult = 0; | |
1227 | goto ExitThisRoutine; | |
1228 | } | |
1229 | } else { | |
1230 | unsigned int flags; | |
6d2010ae A |
1231 | int mode = cnattr.ca_mode & S_IFMT; |
1232 | myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, cnattr.ca_mode, hfsmp->hfs_mp,myp_ucred, theProcPtr); | |
2d21ac55 | 1233 | |
6d2010ae A |
1234 | if (mode == S_IFDIR) { |
1235 | flags = R_OK | X_OK; | |
1236 | } else { | |
1237 | flags = R_OK; | |
1238 | } | |
1239 | if ( (myPerms & flags) != flags) { | |
1240 | myResult = 0; | |
1241 | myErr = EACCES; | |
1242 | goto ExitThisRoutine; /* no access */ | |
1243 | } | |
2d21ac55 A |
1244 | |
1245 | /* up the hierarchy we go */ | |
1246 | thisNodeID = catkey.hfsPlus.parentID; | |
1247 | } | |
1248 | } | |
1249 | ||
1250 | /* if here, we have access to this node */ | |
1251 | myResult = 1; | |
1252 | ||
1253 | ExitThisRoutine: | |
1254 | if (parents && myErr == 0 && scope_index == -1) { | |
1255 | myErr = ESRCH; | |
1256 | } | |
1257 | ||
1258 | if (myErr) { | |
1259 | myResult = 0; | |
1260 | } | |
1261 | *err = myErr; | |
1262 | ||
1263 | /* cache the parent directory(ies) */ | |
1264 | for (i = 0; i < ids_to_cache; i++) { | |
1265 | if (myErr == 0 && parents && (scope_idx_start == -1 || i > scope_idx_start)) { | |
1266 | add_node(cache, -1, parent_ids[i], ESRCH); | |
1267 | } else { | |
1268 | add_node(cache, -1, parent_ids[i], myErr); | |
1269 | } | |
1270 | } | |
1271 | ||
1272 | return (myResult); | |
91447636 | 1273 | } |
1c79356b | 1274 | |
2d21ac55 A |
1275 | static int |
1276 | do_bulk_access_check(struct hfsmount *hfsmp, struct vnode *vp, | |
1277 | struct vnop_ioctl_args *ap, int arg_size, vfs_context_t context) | |
1278 | { | |
1279 | boolean_t is64bit; | |
1280 | ||
1281 | /* | |
316670eb | 1282 | * NOTE: on entry, the vnode has an io_ref. In case this vnode |
2d21ac55 A |
1283 | * happens to be in our list of file_ids, we'll note it |
1284 | * avoid calling hfs_chashget_nowait() on that id as that | |
1285 | * will cause a "locking against myself" panic. | |
1286 | */ | |
1287 | Boolean check_leaf = true; | |
1288 | ||
b0d623f7 A |
1289 | struct user64_ext_access_t *user_access_structp; |
1290 | struct user64_ext_access_t tmp_user_access; | |
2d21ac55 A |
1291 | struct access_cache cache; |
1292 | ||
b0d623f7 | 1293 | int error = 0, prev_parent_check_ok=1; |
2d21ac55 A |
1294 | unsigned int i; |
1295 | ||
2d21ac55 A |
1296 | short flags; |
1297 | unsigned int num_files = 0; | |
1298 | int map_size = 0; | |
1299 | int num_parents = 0; | |
1300 | int *file_ids=NULL; | |
1301 | short *access=NULL; | |
1302 | char *bitmap=NULL; | |
1303 | cnid_t *parents=NULL; | |
1304 | int leaf_index; | |
1305 | ||
1306 | cnid_t cnid; | |
1307 | cnid_t prevParent_cnid = 0; | |
1308 | unsigned int myPerms; | |
1309 | short myaccess = 0; | |
1310 | struct cat_attr cnattr; | |
1311 | CatalogKey catkey; | |
1312 | struct cnode *skip_cp = VTOC(vp); | |
1313 | kauth_cred_t cred = vfs_context_ucred(context); | |
1314 | proc_t p = vfs_context_proc(context); | |
1315 | ||
1316 | is64bit = proc_is64bit(p); | |
1317 | ||
1318 | /* initialize the local cache and buffers */ | |
1319 | cache.numcached = 0; | |
1320 | cache.cachehits = 0; | |
1321 | cache.lookups = 0; | |
1322 | cache.acache = NULL; | |
1323 | cache.haveaccess = NULL; | |
1324 | ||
1325 | /* struct copyin done during dispatch... need to copy file_id array separately */ | |
1326 | if (ap->a_data == NULL) { | |
1327 | error = EINVAL; | |
1328 | goto err_exit_bulk_access; | |
1329 | } | |
1330 | ||
1331 | if (is64bit) { | |
b0d623f7 | 1332 | if (arg_size != sizeof(struct user64_ext_access_t)) { |
2d21ac55 A |
1333 | error = EINVAL; |
1334 | goto err_exit_bulk_access; | |
1335 | } | |
1336 | ||
b0d623f7 | 1337 | user_access_structp = (struct user64_ext_access_t *)ap->a_data; |
2d21ac55 | 1338 | |
b0d623f7 A |
1339 | } else if (arg_size == sizeof(struct user32_access_t)) { |
1340 | struct user32_access_t *accessp = (struct user32_access_t *)ap->a_data; | |
2d21ac55 A |
1341 | |
1342 | // convert an old style bulk-access struct to the new style | |
1343 | tmp_user_access.flags = accessp->flags; | |
1344 | tmp_user_access.num_files = accessp->num_files; | |
1345 | tmp_user_access.map_size = 0; | |
1346 | tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids); | |
cf7d32b8 | 1347 | tmp_user_access.bitmap = USER_ADDR_NULL; |
2d21ac55 A |
1348 | tmp_user_access.access = CAST_USER_ADDR_T(accessp->access); |
1349 | tmp_user_access.num_parents = 0; | |
1350 | user_access_structp = &tmp_user_access; | |
1351 | ||
b0d623f7 A |
1352 | } else if (arg_size == sizeof(struct user32_ext_access_t)) { |
1353 | struct user32_ext_access_t *accessp = (struct user32_ext_access_t *)ap->a_data; | |
2d21ac55 A |
1354 | |
1355 | // up-cast from a 32-bit version of the struct | |
1356 | tmp_user_access.flags = accessp->flags; | |
1357 | tmp_user_access.num_files = accessp->num_files; | |
1358 | tmp_user_access.map_size = accessp->map_size; | |
1359 | tmp_user_access.num_parents = accessp->num_parents; | |
1360 | ||
1361 | tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids); | |
1362 | tmp_user_access.bitmap = CAST_USER_ADDR_T(accessp->bitmap); | |
1363 | tmp_user_access.access = CAST_USER_ADDR_T(accessp->access); | |
1364 | tmp_user_access.parents = CAST_USER_ADDR_T(accessp->parents); | |
1365 | ||
1366 | user_access_structp = &tmp_user_access; | |
1367 | } else { | |
1368 | error = EINVAL; | |
1369 | goto err_exit_bulk_access; | |
1370 | } | |
1371 | ||
1372 | map_size = user_access_structp->map_size; | |
1373 | ||
1374 | num_files = user_access_structp->num_files; | |
1375 | ||
1376 | num_parents= user_access_structp->num_parents; | |
1377 | ||
1378 | if (num_files < 1) { | |
1379 | goto err_exit_bulk_access; | |
1380 | } | |
1381 | if (num_files > 1024) { | |
1382 | error = EINVAL; | |
1383 | goto err_exit_bulk_access; | |
1384 | } | |
1385 | ||
1386 | if (num_parents > 1024) { | |
1387 | error = EINVAL; | |
1388 | goto err_exit_bulk_access; | |
1389 | } | |
1390 | ||
1391 | file_ids = (int *) kalloc(sizeof(int) * num_files); | |
1392 | access = (short *) kalloc(sizeof(short) * num_files); | |
1393 | if (map_size) { | |
1394 | bitmap = (char *) kalloc(sizeof(char) * map_size); | |
1395 | } | |
1396 | ||
1397 | if (num_parents) { | |
1398 | parents = (cnid_t *) kalloc(sizeof(cnid_t) * num_parents); | |
1399 | } | |
1400 | ||
1401 | cache.acache = (unsigned int *) kalloc(sizeof(int) * NUM_CACHE_ENTRIES); | |
1402 | cache.haveaccess = (unsigned char *) kalloc(sizeof(unsigned char) * NUM_CACHE_ENTRIES); | |
1403 | ||
1404 | if (file_ids == NULL || access == NULL || (map_size != 0 && bitmap == NULL) || cache.acache == NULL || cache.haveaccess == NULL) { | |
1405 | if (file_ids) { | |
1406 | kfree(file_ids, sizeof(int) * num_files); | |
1407 | } | |
1408 | if (bitmap) { | |
1409 | kfree(bitmap, sizeof(char) * map_size); | |
1410 | } | |
1411 | if (access) { | |
1412 | kfree(access, sizeof(short) * num_files); | |
1413 | } | |
1414 | if (cache.acache) { | |
1415 | kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES); | |
1416 | } | |
1417 | if (cache.haveaccess) { | |
1418 | kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES); | |
1419 | } | |
1420 | if (parents) { | |
1421 | kfree(parents, sizeof(cnid_t) * num_parents); | |
1422 | } | |
1423 | return ENOMEM; | |
1424 | } | |
1425 | ||
1426 | // make sure the bitmap is zero'ed out... | |
1427 | if (bitmap) { | |
1428 | bzero(bitmap, (sizeof(char) * map_size)); | |
1429 | } | |
1430 | ||
1431 | if ((error = copyin(user_access_structp->file_ids, (caddr_t)file_ids, | |
1432 | num_files * sizeof(int)))) { | |
1433 | goto err_exit_bulk_access; | |
1434 | } | |
1435 | ||
1436 | if (num_parents) { | |
1437 | if ((error = copyin(user_access_structp->parents, (caddr_t)parents, | |
1438 | num_parents * sizeof(cnid_t)))) { | |
1439 | goto err_exit_bulk_access; | |
1440 | } | |
1441 | } | |
1442 | ||
1443 | flags = user_access_structp->flags; | |
1444 | if ((flags & (F_OK | R_OK | W_OK | X_OK)) == 0) { | |
1445 | flags = R_OK; | |
1446 | } | |
1447 | ||
1448 | /* check if we've been passed leaf node ids or parent ids */ | |
1449 | if (flags & PARENT_IDS_FLAG) { | |
1450 | check_leaf = false; | |
1451 | } | |
1452 | ||
1453 | /* Check access to each file_id passed in */ | |
1454 | for (i = 0; i < num_files; i++) { | |
1455 | leaf_index=-1; | |
1456 | cnid = (cnid_t) file_ids[i]; | |
1457 | ||
1458 | /* root always has access */ | |
1459 | if ((!parents) && (!suser(cred, NULL))) { | |
1460 | access[i] = 0; | |
1461 | continue; | |
1462 | } | |
1463 | ||
1464 | if (check_leaf) { | |
1465 | /* do the lookup (checks the cnode hash, then the catalog) */ | |
b0d623f7 | 1466 | error = do_attr_lookup(hfsmp, &cache, cnid, skip_cp, &catkey, &cnattr); |
2d21ac55 A |
1467 | if (error) { |
1468 | access[i] = (short) error; | |
1469 | continue; | |
1470 | } | |
1471 | ||
1472 | if (parents) { | |
1473 | // Check if the leaf matches one of the parent scopes | |
1474 | leaf_index = cache_binSearch(parents, num_parents-1, cnid, NULL); | |
b0d623f7 A |
1475 | if (leaf_index >= 0 && parents[leaf_index] == cnid) |
1476 | prev_parent_check_ok = 0; | |
1477 | else if (leaf_index >= 0) | |
1478 | prev_parent_check_ok = 1; | |
2d21ac55 A |
1479 | } |
1480 | ||
1481 | // if the thing has acl's, do the full permission check | |
1482 | if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) { | |
1483 | struct vnode *cvp; | |
1484 | int myErr = 0; | |
1485 | /* get the vnode for this cnid */ | |
6d2010ae | 1486 | myErr = hfs_vget(hfsmp, cnid, &cvp, 0, 0); |
2d21ac55 A |
1487 | if ( myErr ) { |
1488 | access[i] = myErr; | |
1489 | continue; | |
1490 | } | |
1491 | ||
1492 | hfs_unlock(VTOC(cvp)); | |
1493 | ||
1494 | if (vnode_vtype(cvp) == VDIR) { | |
1495 | myErr = vnode_authorize(cvp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), context); | |
1496 | } else { | |
1497 | myErr = vnode_authorize(cvp, NULL, KAUTH_VNODE_READ_DATA, context); | |
1498 | } | |
1499 | ||
1500 | vnode_put(cvp); | |
1501 | if (myErr) { | |
1502 | access[i] = myErr; | |
1503 | continue; | |
1504 | } | |
1505 | } else { | |
1506 | /* before calling CheckAccess(), check the target file for read access */ | |
1507 | myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, | |
1508 | cnattr.ca_mode, hfsmp->hfs_mp, cred, p); | |
1509 | ||
1510 | /* fail fast if no access */ | |
1511 | if ((myPerms & flags) == 0) { | |
1512 | access[i] = EACCES; | |
1513 | continue; | |
1514 | } | |
1515 | } | |
1516 | } else { | |
1517 | /* we were passed an array of parent ids */ | |
1518 | catkey.hfsPlus.parentID = cnid; | |
1519 | } | |
1520 | ||
1521 | /* if the last guy had the same parent and had access, we're done */ | |
b0d623f7 | 1522 | if (i > 0 && catkey.hfsPlus.parentID == prevParent_cnid && access[i-1] == 0 && prev_parent_check_ok) { |
2d21ac55 A |
1523 | cache.cachehits++; |
1524 | access[i] = 0; | |
1525 | continue; | |
1526 | } | |
316670eb | 1527 | |
2d21ac55 | 1528 | myaccess = do_access_check(hfsmp, &error, &cache, catkey.hfsPlus.parentID, |
b0d623f7 | 1529 | skip_cp, p, cred, context,bitmap, map_size, parents, num_parents); |
2d21ac55 A |
1530 | |
1531 | if (myaccess || (error == ESRCH && leaf_index != -1)) { | |
1532 | access[i] = 0; // have access.. no errors to report | |
1533 | } else { | |
1534 | access[i] = (error != 0 ? (short) error : EACCES); | |
1535 | } | |
1536 | ||
1537 | prevParent_cnid = catkey.hfsPlus.parentID; | |
1538 | } | |
1539 | ||
1540 | /* copyout the access array */ | |
1541 | if ((error = copyout((caddr_t)access, user_access_structp->access, | |
1542 | num_files * sizeof (short)))) { | |
1543 | goto err_exit_bulk_access; | |
1544 | } | |
1545 | if (map_size && bitmap) { | |
1546 | if ((error = copyout((caddr_t)bitmap, user_access_structp->bitmap, | |
1547 | map_size * sizeof (char)))) { | |
1548 | goto err_exit_bulk_access; | |
1549 | } | |
1550 | } | |
1551 | ||
1552 | ||
1553 | err_exit_bulk_access: | |
1554 | ||
2d21ac55 A |
1555 | if (file_ids) |
1556 | kfree(file_ids, sizeof(int) * num_files); | |
1557 | if (parents) | |
1558 | kfree(parents, sizeof(cnid_t) * num_parents); | |
1559 | if (bitmap) | |
1560 | kfree(bitmap, sizeof(char) * map_size); | |
1561 | if (access) | |
1562 | kfree(access, sizeof(short) * num_files); | |
1563 | if (cache.acache) | |
1564 | kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES); | |
1565 | if (cache.haveaccess) | |
1566 | kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES); | |
1567 | ||
1568 | return (error); | |
1569 | } | |
1570 | ||
1571 | ||
1572 | /* end "bulk-access" support */ | |
1c79356b | 1573 | |
1c79356b | 1574 | |
91447636 A |
1575 | /* |
1576 | * Control filesystem operating characteristics. | |
1577 | */ | |
1c79356b | 1578 | int |
91447636 A |
1579 | hfs_vnop_ioctl( struct vnop_ioctl_args /* { |
1580 | vnode_t a_vp; | |
04b8595b | 1581 | long a_command; |
9bccf70c A |
1582 | caddr_t a_data; |
1583 | int a_fflag; | |
91447636 A |
1584 | vfs_context_t a_context; |
1585 | } */ *ap) | |
1c79356b | 1586 | { |
91447636 A |
1587 | struct vnode * vp = ap->a_vp; |
1588 | struct hfsmount *hfsmp = VTOHFS(vp); | |
1589 | vfs_context_t context = ap->a_context; | |
1590 | kauth_cred_t cred = vfs_context_ucred(context); | |
1591 | proc_t p = vfs_context_proc(context); | |
1592 | struct vfsstatfs *vfsp; | |
1593 | boolean_t is64bit; | |
b0d623f7 A |
1594 | off_t jnl_start, jnl_size; |
1595 | struct hfs_journal_info *jip; | |
1596 | #if HFS_COMPRESSION | |
1597 | int compressed = 0; | |
1598 | off_t uncompressed_size = -1; | |
1599 | int decmpfs_error = 0; | |
1600 | ||
1601 | if (ap->a_command == F_RDADVISE) { | |
1602 | /* we need to inspect the decmpfs state of the file as early as possible */ | |
1603 | compressed = hfs_file_is_compressed(VTOC(vp), 0); | |
1604 | if (compressed) { | |
1605 | if (VNODE_IS_RSRC(vp)) { | |
1606 | /* if this is the resource fork, treat it as if it were empty */ | |
1607 | uncompressed_size = 0; | |
1608 | } else { | |
1609 | decmpfs_error = hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0); | |
1610 | if (decmpfs_error != 0) { | |
1611 | /* failed to get the uncompressed size, we'll check for this later */ | |
1612 | uncompressed_size = -1; | |
1613 | } | |
1614 | } | |
1615 | } | |
1616 | } | |
1617 | #endif /* HFS_COMPRESSION */ | |
91447636 A |
1618 | |
1619 | is64bit = proc_is64bit(p); | |
1620 | ||
6d2010ae A |
1621 | #if CONFIG_PROTECT |
1622 | { | |
1623 | int error = 0; | |
316670eb | 1624 | if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) { |
6d2010ae A |
1625 | return error; |
1626 | } | |
1627 | } | |
1628 | #endif /* CONFIG_PROTECT */ | |
1629 | ||
9bccf70c | 1630 | switch (ap->a_command) { |
55e303ae | 1631 | |
2d21ac55 A |
1632 | case HFS_GETPATH: |
1633 | { | |
1634 | struct vnode *file_vp; | |
1635 | cnid_t cnid; | |
1636 | int outlen; | |
1637 | char *bufptr; | |
1638 | int error; | |
39236c6e | 1639 | int flags = 0; |
2d21ac55 A |
1640 | |
1641 | /* Caller must be owner of file system. */ | |
1642 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1643 | if (suser(cred, NULL) && | |
1644 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1645 | return (EACCES); | |
1646 | } | |
1647 | /* Target vnode must be file system's root. */ | |
1648 | if (!vnode_isvroot(vp)) { | |
1649 | return (EINVAL); | |
1650 | } | |
1651 | bufptr = (char *)ap->a_data; | |
1652 | cnid = strtoul(bufptr, NULL, 10); | |
39236c6e A |
1653 | if (ap->a_fflag & HFS_GETPATH_VOLUME_RELATIVE) { |
1654 | flags |= BUILDPATH_VOLUME_RELATIVE; | |
1655 | } | |
2d21ac55 | 1656 | |
b0d623f7 A |
1657 | /* We need to call hfs_vfs_vget to leverage the code that will |
1658 | * fix the origin list for us if needed, as opposed to calling | |
1659 | * hfs_vget, since we will need the parent for build_path call. | |
935ed37a | 1660 | */ |
b0d623f7 | 1661 | |
935ed37a | 1662 | if ((error = hfs_vfs_vget(HFSTOVFS(hfsmp), cnid, &file_vp, context))) { |
2d21ac55 A |
1663 | return (error); |
1664 | } | |
39236c6e | 1665 | error = build_path(file_vp, bufptr, sizeof(pathname_t), &outlen, flags, context); |
2d21ac55 A |
1666 | vnode_put(file_vp); |
1667 | ||
1668 | return (error); | |
1669 | } | |
1670 | ||
22ba694c A |
1671 | case HFS_TRANSFER_DOCUMENT_ID: |
1672 | { | |
1673 | struct cnode *cp = NULL; | |
1674 | int error; | |
1675 | u_int32_t to_fd = *(u_int32_t *)ap->a_data; | |
1676 | struct fileproc *to_fp; | |
1677 | struct vnode *to_vp; | |
1678 | struct cnode *to_cp; | |
1679 | ||
1680 | cp = VTOC(vp); | |
1681 | ||
1682 | if ((error = fp_getfvp(p, to_fd, &to_fp, &to_vp)) != 0) { | |
1683 | //printf("could not get the vnode for fd %d (err %d)\n", to_fd, error); | |
1684 | return error; | |
1685 | } | |
1686 | if ( (error = vnode_getwithref(to_vp)) ) { | |
1687 | file_drop(to_fd); | |
1688 | return error; | |
1689 | } | |
1690 | ||
1691 | if (VTOHFS(to_vp) != hfsmp) { | |
1692 | error = EXDEV; | |
1693 | goto transfer_cleanup; | |
1694 | } | |
1695 | ||
1696 | int need_unlock = 1; | |
1697 | to_cp = VTOC(to_vp); | |
1698 | error = hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK); | |
1699 | if (error != 0) { | |
1700 | //printf("could not lock the pair of cnodes (error %d)\n", error); | |
1701 | goto transfer_cleanup; | |
1702 | } | |
1703 | ||
1704 | if (!(cp->c_bsdflags & UF_TRACKED)) { | |
1705 | error = EINVAL; | |
1706 | } else if (to_cp->c_bsdflags & UF_TRACKED) { | |
1707 | // | |
1708 | // if the destination is already tracked, return an error | |
1709 | // as otherwise it's a silent deletion of the target's | |
1710 | // document-id | |
1711 | // | |
1712 | error = EEXIST; | |
1713 | } else if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode) || S_ISLNK(cp->c_attr.ca_mode)) { | |
1714 | // | |
1715 | // we can use the FndrExtendedFileInfo because the doc-id is the first | |
1716 | // thing in both it and the ExtendedDirInfo struct which is fixed in | |
1717 | // format and can not change layout | |
1718 | // | |
1719 | struct FndrExtendedFileInfo *f_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)cp->c_finderinfo + 16); | |
1720 | struct FndrExtendedFileInfo *to_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)to_cp->c_finderinfo + 16); | |
1721 | ||
1722 | if (f_extinfo->document_id == 0) { | |
1723 | uint32_t new_id; | |
1724 | ||
1725 | hfs_unlockpair(cp, to_cp); // have to unlock to be able to get a new-id | |
1726 | ||
1727 | if ((error = hfs_generate_document_id(hfsmp, &new_id)) == 0) { | |
1728 | // | |
1729 | // re-lock the pair now that we have the document-id | |
1730 | // | |
1731 | hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK); | |
1732 | f_extinfo->document_id = new_id; | |
1733 | } else { | |
1734 | goto transfer_cleanup; | |
1735 | } | |
1736 | } | |
1737 | ||
1738 | to_extinfo->document_id = f_extinfo->document_id; | |
1739 | f_extinfo->document_id = 0; | |
1740 | //printf("TRANSFERRING: doc-id %d from ino %d to ino %d\n", to_extinfo->document_id, cp->c_fileid, to_cp->c_fileid); | |
1741 | ||
1742 | // make sure the destination is also UF_TRACKED | |
1743 | to_cp->c_bsdflags |= UF_TRACKED; | |
1744 | cp->c_bsdflags &= ~UF_TRACKED; | |
1745 | ||
1746 | // mark the cnodes dirty | |
1747 | cp->c_flag |= C_MODIFIED | C_FORCEUPDATE; | |
1748 | to_cp->c_flag |= C_MODIFIED | C_FORCEUPDATE; | |
1749 | ||
1750 | int lockflags; | |
1751 | if ((error = hfs_start_transaction(hfsmp)) == 0) { | |
1752 | ||
1753 | lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK); | |
1754 | ||
1755 | (void) cat_update(hfsmp, &cp->c_desc, &cp->c_attr, NULL, NULL); | |
1756 | (void) cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr, NULL, NULL); | |
1757 | ||
1758 | hfs_systemfile_unlock (hfsmp, lockflags); | |
1759 | (void) hfs_end_transaction(hfsmp); | |
1760 | } | |
1761 | ||
1762 | #if CONFIG_FSE | |
1763 | add_fsevent(FSE_DOCID_CHANGED, context, | |
1764 | FSE_ARG_DEV, hfsmp->hfs_raw_dev, | |
1765 | FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode # | |
1766 | FSE_ARG_INO, (ino64_t)to_cp->c_fileid, // dst inode # | |
1767 | FSE_ARG_INT32, to_extinfo->document_id, | |
1768 | FSE_ARG_DONE); | |
1769 | ||
1770 | hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents | |
1771 | need_unlock = 0; | |
1772 | ||
1773 | if (need_fsevent(FSE_STAT_CHANGED, vp)) { | |
1774 | add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, vp, FSE_ARG_DONE); | |
1775 | } | |
1776 | if (need_fsevent(FSE_STAT_CHANGED, to_vp)) { | |
1777 | add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, to_vp, FSE_ARG_DONE); | |
1778 | } | |
1779 | #else | |
1780 | hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents | |
1781 | need_unlock = 0; | |
1782 | #endif | |
1783 | } | |
1784 | ||
1785 | if (need_unlock) { | |
1786 | hfs_unlockpair(cp, to_cp); | |
1787 | } | |
1788 | ||
1789 | transfer_cleanup: | |
1790 | vnode_put(to_vp); | |
1791 | file_drop(to_fd); | |
1792 | ||
1793 | return error; | |
1794 | } | |
1795 | ||
fe8ab488 A |
1796 | |
1797 | ||
2d21ac55 A |
1798 | case HFS_PREV_LINK: |
1799 | case HFS_NEXT_LINK: | |
1800 | { | |
1801 | cnid_t linkfileid; | |
1802 | cnid_t nextlinkid; | |
1803 | cnid_t prevlinkid; | |
1804 | int error; | |
1805 | ||
1806 | /* Caller must be owner of file system. */ | |
1807 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1808 | if (suser(cred, NULL) && | |
1809 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1810 | return (EACCES); | |
1811 | } | |
1812 | /* Target vnode must be file system's root. */ | |
1813 | if (!vnode_isvroot(vp)) { | |
1814 | return (EINVAL); | |
1815 | } | |
1816 | linkfileid = *(cnid_t *)ap->a_data; | |
1817 | if (linkfileid < kHFSFirstUserCatalogNodeID) { | |
1818 | return (EINVAL); | |
1819 | } | |
6d2010ae | 1820 | if ((error = hfs_lookup_siblinglinks(hfsmp, linkfileid, &prevlinkid, &nextlinkid))) { |
2d21ac55 A |
1821 | return (error); |
1822 | } | |
1823 | if (ap->a_command == HFS_NEXT_LINK) { | |
1824 | *(cnid_t *)ap->a_data = nextlinkid; | |
1825 | } else { | |
1826 | *(cnid_t *)ap->a_data = prevlinkid; | |
1827 | } | |
1828 | return (0); | |
1829 | } | |
1830 | ||
0c530ab8 A |
1831 | case HFS_RESIZE_PROGRESS: { |
1832 | ||
1833 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1834 | if (suser(cred, NULL) && | |
1835 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1836 | return (EACCES); /* must be owner of file system */ | |
1837 | } | |
1838 | if (!vnode_isvroot(vp)) { | |
1839 | return (EINVAL); | |
1840 | } | |
b0d623f7 A |
1841 | /* file system must not be mounted read-only */ |
1842 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1843 | return (EROFS); | |
1844 | } | |
1845 | ||
0c530ab8 A |
1846 | return hfs_resize_progress(hfsmp, (u_int32_t *)ap->a_data); |
1847 | } | |
2d21ac55 | 1848 | |
91447636 A |
1849 | case HFS_RESIZE_VOLUME: { |
1850 | u_int64_t newsize; | |
1851 | u_int64_t cursize; | |
1852 | ||
1853 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1854 | if (suser(cred, NULL) && | |
1855 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1856 | return (EACCES); /* must be owner of file system */ | |
1857 | } | |
1858 | if (!vnode_isvroot(vp)) { | |
1859 | return (EINVAL); | |
1860 | } | |
b0d623f7 A |
1861 | |
1862 | /* filesystem must not be mounted read only */ | |
1863 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1864 | return (EROFS); | |
1865 | } | |
91447636 A |
1866 | newsize = *(u_int64_t *)ap->a_data; |
1867 | cursize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize; | |
1868 | ||
1869 | if (newsize > cursize) { | |
1870 | return hfs_extendfs(hfsmp, *(u_int64_t *)ap->a_data, context); | |
1871 | } else if (newsize < cursize) { | |
1872 | return hfs_truncatefs(hfsmp, *(u_int64_t *)ap->a_data, context); | |
1873 | } else { | |
1874 | return (0); | |
1875 | } | |
1876 | } | |
1877 | case HFS_CHANGE_NEXT_ALLOCATION: { | |
2d21ac55 | 1878 | int error = 0; /* Assume success */ |
91447636 A |
1879 | u_int32_t location; |
1880 | ||
1881 | if (vnode_vfsisrdonly(vp)) { | |
1882 | return (EROFS); | |
1883 | } | |
1884 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
1885 | if (suser(cred, NULL) && | |
1886 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
1887 | return (EACCES); /* must be owner of file system */ | |
1888 | } | |
1889 | if (!vnode_isvroot(vp)) { | |
1890 | return (EINVAL); | |
1891 | } | |
39236c6e | 1892 | hfs_lock_mount(hfsmp); |
91447636 | 1893 | location = *(u_int32_t *)ap->a_data; |
2d21ac55 A |
1894 | if ((location >= hfsmp->allocLimit) && |
1895 | (location != HFS_NO_UPDATE_NEXT_ALLOCATION)) { | |
1896 | error = EINVAL; | |
1897 | goto fail_change_next_allocation; | |
91447636 A |
1898 | } |
1899 | /* Return previous value. */ | |
1900 | *(u_int32_t *)ap->a_data = hfsmp->nextAllocation; | |
2d21ac55 A |
1901 | if (location == HFS_NO_UPDATE_NEXT_ALLOCATION) { |
1902 | /* On magic value for location, set nextAllocation to next block | |
1903 | * after metadata zone and set flag in mount structure to indicate | |
1904 | * that nextAllocation should not be updated again. | |
1905 | */ | |
b0d623f7 A |
1906 | if (hfsmp->hfs_metazone_end != 0) { |
1907 | HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1); | |
1908 | } | |
2d21ac55 A |
1909 | hfsmp->hfs_flags |= HFS_SKIP_UPDATE_NEXT_ALLOCATION; |
1910 | } else { | |
1911 | hfsmp->hfs_flags &= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION; | |
1912 | HFS_UPDATE_NEXT_ALLOCATION(hfsmp, location); | |
1913 | } | |
1914 | MarkVCBDirty(hfsmp); | |
1915 | fail_change_next_allocation: | |
39236c6e | 1916 | hfs_unlock_mount(hfsmp); |
2d21ac55 | 1917 | return (error); |
91447636 A |
1918 | } |
1919 | ||
6d2010ae | 1920 | #if HFS_SPARSE_DEV |
55e303ae | 1921 | case HFS_SETBACKINGSTOREINFO: { |
55e303ae A |
1922 | struct vnode * bsfs_rootvp; |
1923 | struct vnode * di_vp; | |
55e303ae A |
1924 | struct hfs_backingstoreinfo *bsdata; |
1925 | int error = 0; | |
1926 | ||
b0d623f7 A |
1927 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { |
1928 | return (EROFS); | |
1929 | } | |
55e303ae A |
1930 | if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { |
1931 | return (EALREADY); | |
1932 | } | |
91447636 A |
1933 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); |
1934 | if (suser(cred, NULL) && | |
1935 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
55e303ae A |
1936 | return (EACCES); /* must be owner of file system */ |
1937 | } | |
1938 | bsdata = (struct hfs_backingstoreinfo *)ap->a_data; | |
1939 | if (bsdata == NULL) { | |
1940 | return (EINVAL); | |
1941 | } | |
91447636 | 1942 | if ((error = file_vnode(bsdata->backingfd, &di_vp))) { |
55e303ae A |
1943 | return (error); |
1944 | } | |
91447636 A |
1945 | if ((error = vnode_getwithref(di_vp))) { |
1946 | file_drop(bsdata->backingfd); | |
1947 | return(error); | |
55e303ae | 1948 | } |
91447636 A |
1949 | |
1950 | if (vnode_mount(vp) == vnode_mount(di_vp)) { | |
1951 | (void)vnode_put(di_vp); | |
1952 | file_drop(bsdata->backingfd); | |
55e303ae A |
1953 | return (EINVAL); |
1954 | } | |
1955 | ||
1956 | /* | |
1957 | * Obtain the backing fs root vnode and keep a reference | |
1958 | * on it. This reference will be dropped in hfs_unmount. | |
1959 | */ | |
91447636 | 1960 | error = VFS_ROOT(vnode_mount(di_vp), &bsfs_rootvp, NULL); /* XXX use context! */ |
55e303ae | 1961 | if (error) { |
91447636 A |
1962 | (void)vnode_put(di_vp); |
1963 | file_drop(bsdata->backingfd); | |
55e303ae A |
1964 | return (error); |
1965 | } | |
91447636 A |
1966 | vnode_ref(bsfs_rootvp); |
1967 | vnode_put(bsfs_rootvp); | |
55e303ae | 1968 | |
fe8ab488 | 1969 | hfs_lock_mount(hfsmp); |
55e303ae A |
1970 | hfsmp->hfs_backingfs_rootvp = bsfs_rootvp; |
1971 | hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE; | |
fe8ab488 A |
1972 | hfsmp->hfs_sparsebandblks = bsdata->bandsize / hfsmp->blockSize * 4; |
1973 | hfs_unlock_mount(hfsmp); | |
55e303ae | 1974 | |
39236c6e | 1975 | /* We check the MNTK_VIRTUALDEV bit instead of marking the dependent process */ |
2d21ac55 | 1976 | |
b0d623f7 A |
1977 | /* |
1978 | * If the sparse image is on a sparse image file (as opposed to a sparse | |
1979 | * bundle), then we may need to limit the free space to the maximum size | |
1980 | * of a file on that volume. So we query (using pathconf), and if we get | |
1981 | * a meaningful result, we cache the number of blocks for later use in | |
1982 | * hfs_freeblks(). | |
1983 | */ | |
1984 | hfsmp->hfs_backingfs_maxblocks = 0; | |
1985 | if (vnode_vtype(di_vp) == VREG) { | |
1986 | int terr; | |
1987 | int hostbits; | |
1988 | terr = vn_pathconf(di_vp, _PC_FILESIZEBITS, &hostbits, context); | |
1989 | if (terr == 0 && hostbits != 0 && hostbits < 64) { | |
1990 | u_int64_t hostfilesizemax = ((u_int64_t)1) << hostbits; | |
1991 | ||
1992 | hfsmp->hfs_backingfs_maxblocks = hostfilesizemax / hfsmp->blockSize; | |
1993 | } | |
1994 | } | |
1995 | ||
fe8ab488 A |
1996 | /* The free extent cache is managed differently for sparse devices. |
1997 | * There is a window between which the volume is mounted and the | |
1998 | * device is marked as sparse, so the free extent cache for this | |
1999 | * volume is currently initialized as normal volume (sorted by block | |
2000 | * count). Reset the cache so that it will be rebuilt again | |
2001 | * for sparse device (sorted by start block). | |
2002 | */ | |
2003 | ResetVCBFreeExtCache(hfsmp); | |
2004 | ||
91447636 A |
2005 | (void)vnode_put(di_vp); |
2006 | file_drop(bsdata->backingfd); | |
55e303ae A |
2007 | return (0); |
2008 | } | |
2009 | case HFS_CLRBACKINGSTOREINFO: { | |
55e303ae A |
2010 | struct vnode * tmpvp; |
2011 | ||
91447636 A |
2012 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); |
2013 | if (suser(cred, NULL) && | |
2014 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
55e303ae A |
2015 | return (EACCES); /* must be owner of file system */ |
2016 | } | |
b0d623f7 A |
2017 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { |
2018 | return (EROFS); | |
2019 | } | |
2020 | ||
55e303ae A |
2021 | if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) && |
2022 | hfsmp->hfs_backingfs_rootvp) { | |
2023 | ||
fe8ab488 | 2024 | hfs_lock_mount(hfsmp); |
55e303ae A |
2025 | hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE; |
2026 | tmpvp = hfsmp->hfs_backingfs_rootvp; | |
2027 | hfsmp->hfs_backingfs_rootvp = NULLVP; | |
2028 | hfsmp->hfs_sparsebandblks = 0; | |
fe8ab488 A |
2029 | hfs_unlock_mount(hfsmp); |
2030 | ||
91447636 | 2031 | vnode_rele(tmpvp); |
55e303ae A |
2032 | } |
2033 | return (0); | |
2034 | } | |
2035 | #endif /* HFS_SPARSE_DEV */ | |
2036 | ||
316670eb A |
2037 | /* Change the next CNID stored in the VH */ |
2038 | case HFS_CHANGE_NEXTCNID: { | |
2039 | int error = 0; /* Assume success */ | |
2040 | u_int32_t fileid; | |
2041 | int wraparound = 0; | |
2042 | int lockflags = 0; | |
2043 | ||
2044 | if (vnode_vfsisrdonly(vp)) { | |
2045 | return (EROFS); | |
2046 | } | |
2047 | vfsp = vfs_statfs(HFSTOVFS(hfsmp)); | |
2048 | if (suser(cred, NULL) && | |
2049 | kauth_cred_getuid(cred) != vfsp->f_owner) { | |
2050 | return (EACCES); /* must be owner of file system */ | |
2051 | } | |
2052 | ||
2053 | fileid = *(u_int32_t *)ap->a_data; | |
2054 | ||
2055 | /* Must have catalog lock excl. to advance the CNID pointer */ | |
2056 | lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG , HFS_EXCLUSIVE_LOCK); | |
2057 | ||
39236c6e A |
2058 | hfs_lock_mount(hfsmp); |
2059 | ||
316670eb A |
2060 | /* If it is less than the current next CNID, force the wraparound bit to be set */ |
2061 | if (fileid < hfsmp->vcbNxtCNID) { | |
2062 | wraparound=1; | |
2063 | } | |
2064 | ||
2065 | /* Return previous value. */ | |
2066 | *(u_int32_t *)ap->a_data = hfsmp->vcbNxtCNID; | |
2067 | ||
2068 | hfsmp->vcbNxtCNID = fileid; | |
2069 | ||
2070 | if (wraparound) { | |
2071 | hfsmp->vcbAtrb |= kHFSCatalogNodeIDsReusedMask; | |
2072 | } | |
2073 | ||
2074 | MarkVCBDirty(hfsmp); | |
39236c6e | 2075 | hfs_unlock_mount(hfsmp); |
316670eb A |
2076 | hfs_systemfile_unlock (hfsmp, lockflags); |
2077 | ||
2078 | return (error); | |
2079 | } | |
2080 | ||
91447636 A |
2081 | case F_FREEZE_FS: { |
2082 | struct mount *mp; | |
91447636 | 2083 | |
91447636 A |
2084 | mp = vnode_mount(vp); |
2085 | hfsmp = VFSTOHFS(mp); | |
2086 | ||
2087 | if (!(hfsmp->jnl)) | |
2088 | return (ENOTSUP); | |
3a60a9f5 | 2089 | |
b0d623f7 A |
2090 | vfsp = vfs_statfs(mp); |
2091 | ||
2092 | if (kauth_cred_getuid(cred) != vfsp->f_owner && | |
2093 | !kauth_cred_issuser(cred)) | |
2094 | return (EACCES); | |
2095 | ||
fe8ab488 | 2096 | return hfs_freeze(hfsmp); |
91447636 A |
2097 | } |
2098 | ||
2099 | case F_THAW_FS: { | |
b0d623f7 A |
2100 | vfsp = vfs_statfs(vnode_mount(vp)); |
2101 | if (kauth_cred_getuid(cred) != vfsp->f_owner && | |
2102 | !kauth_cred_issuser(cred)) | |
91447636 A |
2103 | return (EACCES); |
2104 | ||
fe8ab488 | 2105 | return hfs_thaw(hfsmp, current_proc()); |
91447636 A |
2106 | } |
2107 | ||
2d21ac55 A |
2108 | case HFS_BULKACCESS_FSCTL: { |
2109 | int size; | |
2110 | ||
2111 | if (hfsmp->hfs_flags & HFS_STANDARD) { | |
2112 | return EINVAL; | |
2113 | } | |
91447636 | 2114 | |
2d21ac55 | 2115 | if (is64bit) { |
b0d623f7 | 2116 | size = sizeof(struct user64_access_t); |
2d21ac55 | 2117 | } else { |
b0d623f7 | 2118 | size = sizeof(struct user32_access_t); |
2d21ac55 A |
2119 | } |
2120 | ||
2121 | return do_bulk_access_check(hfsmp, vp, ap, size, context); | |
2122 | } | |
91447636 | 2123 | |
2d21ac55 A |
2124 | case HFS_EXT_BULKACCESS_FSCTL: { |
2125 | int size; | |
2126 | ||
2127 | if (hfsmp->hfs_flags & HFS_STANDARD) { | |
2128 | return EINVAL; | |
2129 | } | |
91447636 | 2130 | |
2d21ac55 | 2131 | if (is64bit) { |
b0d623f7 | 2132 | size = sizeof(struct user64_ext_access_t); |
2d21ac55 | 2133 | } else { |
b0d623f7 | 2134 | size = sizeof(struct user32_ext_access_t); |
2d21ac55 A |
2135 | } |
2136 | ||
2137 | return do_bulk_access_check(hfsmp, vp, ap, size, context); | |
2138 | } | |
91447636 | 2139 | |
2d21ac55 A |
2140 | case HFS_SET_XATTREXTENTS_STATE: { |
2141 | int state; | |
2142 | ||
2143 | if (ap->a_data == NULL) { | |
2144 | return (EINVAL); | |
2145 | } | |
2146 | ||
2147 | state = *(int *)ap->a_data; | |
b0d623f7 A |
2148 | |
2149 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2150 | return (EROFS); | |
2151 | } | |
2d21ac55 A |
2152 | |
2153 | /* Super-user can enable or disable extent-based extended | |
2154 | * attribute support on a volume | |
6d2010ae A |
2155 | * Note: Starting Mac OS X 10.7, extent-based extended attributes |
2156 | * are enabled by default, so any change will be transient only | |
2157 | * till the volume is remounted. | |
2d21ac55 | 2158 | */ |
39236c6e | 2159 | if (!kauth_cred_issuser(kauth_cred_get())) { |
2d21ac55 A |
2160 | return (EPERM); |
2161 | } | |
2162 | if (state == 0 || state == 1) | |
2163 | return hfs_set_volxattr(hfsmp, HFS_SET_XATTREXTENTS_STATE, state); | |
91447636 A |
2164 | else |
2165 | return (EINVAL); | |
2166 | } | |
2167 | ||
316670eb A |
2168 | case F_SETSTATICCONTENT: { |
2169 | int error; | |
2170 | int enable_static = 0; | |
2171 | struct cnode *cp = NULL; | |
2172 | /* | |
2173 | * lock the cnode, decorate the cnode flag, and bail out. | |
2174 | * VFS should have already authenticated the caller for us. | |
2175 | */ | |
2176 | ||
2177 | if (ap->a_data) { | |
2178 | /* | |
2179 | * Note that even though ap->a_data is of type caddr_t, | |
2180 | * the fcntl layer at the syscall handler will pass in NULL | |
2181 | * or 1 depending on what the argument supplied to the fcntl | |
2182 | * was. So it is in fact correct to check the ap->a_data | |
2183 | * argument for zero or non-zero value when deciding whether or not | |
2184 | * to enable the static bit in the cnode. | |
2185 | */ | |
2186 | enable_static = 1; | |
2187 | } | |
2188 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2189 | return EROFS; | |
2190 | } | |
2191 | cp = VTOC(vp); | |
2192 | ||
39236c6e | 2193 | error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
316670eb A |
2194 | if (error == 0) { |
2195 | if (enable_static) { | |
2196 | cp->c_flag |= C_SSD_STATIC; | |
2197 | } | |
2198 | else { | |
2199 | cp->c_flag &= ~C_SSD_STATIC; | |
2200 | } | |
2201 | hfs_unlock (cp); | |
2202 | } | |
2203 | return error; | |
2204 | } | |
2205 | ||
39236c6e A |
2206 | case F_SET_GREEDY_MODE: { |
2207 | int error; | |
2208 | int enable_greedy_mode = 0; | |
2209 | struct cnode *cp = NULL; | |
2210 | /* | |
2211 | * lock the cnode, decorate the cnode flag, and bail out. | |
2212 | * VFS should have already authenticated the caller for us. | |
2213 | */ | |
2214 | ||
2215 | if (ap->a_data) { | |
2216 | /* | |
2217 | * Note that even though ap->a_data is of type caddr_t, | |
2218 | * the fcntl layer at the syscall handler will pass in NULL | |
2219 | * or 1 depending on what the argument supplied to the fcntl | |
2220 | * was. So it is in fact correct to check the ap->a_data | |
2221 | * argument for zero or non-zero value when deciding whether or not | |
2222 | * to enable the greedy mode bit in the cnode. | |
2223 | */ | |
2224 | enable_greedy_mode = 1; | |
2225 | } | |
2226 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2227 | return EROFS; | |
2228 | } | |
2229 | cp = VTOC(vp); | |
2230 | ||
2231 | error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); | |
2232 | if (error == 0) { | |
2233 | if (enable_greedy_mode) { | |
2234 | cp->c_flag |= C_SSD_GREEDY_MODE; | |
2235 | } | |
2236 | else { | |
2237 | cp->c_flag &= ~C_SSD_GREEDY_MODE; | |
2238 | } | |
2239 | hfs_unlock (cp); | |
2240 | } | |
2241 | return error; | |
2242 | } | |
2243 | ||
fe8ab488 A |
2244 | case F_SETIOTYPE: { |
2245 | int error; | |
2246 | uint32_t iotypeflag = 0; | |
2247 | ||
2248 | struct cnode *cp = NULL; | |
2249 | /* | |
2250 | * lock the cnode, decorate the cnode flag, and bail out. | |
2251 | * VFS should have already authenticated the caller for us. | |
2252 | */ | |
2253 | ||
2254 | if (ap->a_data == NULL) { | |
2255 | return EINVAL; | |
2256 | } | |
2257 | ||
2258 | /* | |
2259 | * Note that even though ap->a_data is of type caddr_t, we | |
2260 | * can only use 32 bits of flag values. | |
2261 | */ | |
2262 | iotypeflag = (uint32_t) ap->a_data; | |
2263 | switch (iotypeflag) { | |
2264 | case F_IOTYPE_ISOCHRONOUS: | |
2265 | break; | |
2266 | default: | |
2267 | return EINVAL; | |
2268 | } | |
2269 | ||
2270 | ||
2271 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2272 | return EROFS; | |
2273 | } | |
2274 | cp = VTOC(vp); | |
2275 | ||
2276 | error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); | |
2277 | if (error == 0) { | |
2278 | switch (iotypeflag) { | |
2279 | case F_IOTYPE_ISOCHRONOUS: | |
2280 | cp->c_flag |= C_IO_ISOCHRONOUS; | |
2281 | break; | |
2282 | default: | |
2283 | break; | |
2284 | } | |
2285 | hfs_unlock (cp); | |
2286 | } | |
2287 | return error; | |
2288 | } | |
2289 | ||
39236c6e A |
2290 | case F_MAKECOMPRESSED: { |
2291 | int error = 0; | |
2292 | uint32_t gen_counter; | |
2293 | struct cnode *cp = NULL; | |
2294 | int reset_decmp = 0; | |
2295 | ||
2296 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2297 | return EROFS; | |
2298 | } | |
2299 | ||
2300 | /* | |
2301 | * acquire & lock the cnode. | |
2302 | * VFS should have already authenticated the caller for us. | |
2303 | */ | |
2304 | ||
2305 | if (ap->a_data) { | |
2306 | /* | |
2307 | * Cast the pointer into a uint32_t so we can extract the | |
2308 | * supplied generation counter. | |
2309 | */ | |
2310 | gen_counter = *((uint32_t*)ap->a_data); | |
2311 | } | |
2312 | else { | |
2313 | return EINVAL; | |
2314 | } | |
2315 | ||
2316 | #if HFS_COMPRESSION | |
2317 | cp = VTOC(vp); | |
2318 | /* Grab truncate lock first; we may truncate the file */ | |
2319 | hfs_lock_truncate (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); | |
2320 | ||
2321 | error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); | |
2322 | if (error) { | |
2323 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); | |
2324 | return error; | |
2325 | } | |
fe8ab488 | 2326 | |
39236c6e A |
2327 | /* Are there any other usecounts/FDs? */ |
2328 | if (vnode_isinuse(vp, 1)) { | |
2329 | hfs_unlock(cp); | |
2330 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); | |
2331 | return EBUSY; | |
2332 | } | |
2333 | ||
39236c6e A |
2334 | /* now we have the cnode locked down; Validate arguments */ |
2335 | if (cp->c_attr.ca_flags & (UF_IMMUTABLE | UF_COMPRESSED)) { | |
2336 | /* EINVAL if you are trying to manipulate an IMMUTABLE file */ | |
2337 | hfs_unlock(cp); | |
2338 | hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT); | |
2339 | return EINVAL; | |
2340 | } | |
2341 | ||
2342 | if ((hfs_get_gencount (cp)) == gen_counter) { | |
2343 | /* | |
2344 | * OK, the gen_counter matched. Go for it: | |
2345 | * Toggle state bits, truncate file, and suppress mtime update | |
2346 | */ | |
2347 | reset_decmp = 1; | |
2348 | cp->c_bsdflags |= UF_COMPRESSED; | |
fe8ab488 A |
2349 | |
2350 | error = hfs_truncate(vp, 0, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES, | |
2351 | ap->a_context); | |
39236c6e A |
2352 | } |
2353 | else { | |
2354 | error = ESTALE; | |
2355 | } | |
2356 | ||
2357 | /* Unlock cnode before executing decmpfs ; they may need to get an EA */ | |
2358 | hfs_unlock(cp); | |
2359 | ||
2360 | /* | |
2361 | * Reset the decmp state while still holding the truncate lock. We need to | |
2362 | * serialize here against a listxattr on this node which may occur at any | |
2363 | * time. | |
2364 | * | |
2365 | * Even if '0/skiplock' is passed in 2nd argument to hfs_file_is_compressed, | |
2366 | * that will still potentially require getting the com.apple.decmpfs EA. If the | |
2367 | * EA is required, then we can't hold the cnode lock, because the getxattr call is | |
2368 | * generic(through VFS), and can't pass along any info telling it that we're already | |
2369 | * holding it (the lock). If we don't serialize, then we risk listxattr stopping | |
2370 | * and trying to fill in the hfs_file_is_compressed info during the callback | |
2371 | * operation, which will result in deadlock against the b-tree node. | |
2372 | * | |
2373 | * So, to serialize against listxattr (which will grab buf_t meta references on | |
2374 | * the b-tree blocks), we hold the truncate lock as we're manipulating the | |
2375 | * decmpfs payload. | |
2376 | */ | |
2377 | if ((reset_decmp) && (error == 0)) { | |
2378 | decmpfs_cnode *dp = VTOCMP (vp); | |
2379 | if (dp != NULL) { | |
2380 | decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0); | |
2381 | } | |
2382 | ||
2383 | /* Initialize the decmpfs node as needed */ | |
2384 | (void) hfs_file_is_compressed (cp, 0); /* ok to take lock */ | |
2385 | } | |
2386 | ||
2387 | hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT); | |
2388 | ||
2389 | #endif | |
2390 | return error; | |
2391 | } | |
2392 | ||
316670eb A |
2393 | case F_SETBACKINGSTORE: { |
2394 | ||
2395 | int error = 0; | |
2396 | ||
2397 | /* | |
2398 | * See comment in F_SETSTATICCONTENT re: using | |
2399 | * a null check for a_data | |
2400 | */ | |
2401 | if (ap->a_data) { | |
2402 | error = hfs_set_backingstore (vp, 1); | |
2403 | } | |
2404 | else { | |
2405 | error = hfs_set_backingstore (vp, 0); | |
2406 | } | |
2407 | ||
2408 | return error; | |
2409 | } | |
2410 | ||
2411 | case F_GETPATH_MTMINFO: { | |
2412 | int error = 0; | |
2413 | ||
2414 | int *data = (int*) ap->a_data; | |
2415 | ||
2416 | /* Ask if this is a backingstore vnode */ | |
2417 | error = hfs_is_backingstore (vp, data); | |
2418 | ||
2419 | return error; | |
2420 | } | |
2421 | ||
91447636 | 2422 | case F_FULLFSYNC: { |
55e303ae | 2423 | int error; |
b0d623f7 A |
2424 | |
2425 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2426 | return (EROFS); | |
2427 | } | |
39236c6e | 2428 | error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
91447636 | 2429 | if (error == 0) { |
2d21ac55 | 2430 | error = hfs_fsync(vp, MNT_WAIT, TRUE, p); |
91447636 A |
2431 | hfs_unlock(VTOC(vp)); |
2432 | } | |
55e303ae A |
2433 | |
2434 | return error; | |
2435 | } | |
91447636 A |
2436 | |
2437 | case F_CHKCLEAN: { | |
9bccf70c | 2438 | register struct cnode *cp; |
55e303ae A |
2439 | int error; |
2440 | ||
91447636 | 2441 | if (!vnode_isreg(vp)) |
55e303ae A |
2442 | return EINVAL; |
2443 | ||
39236c6e | 2444 | error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
91447636 A |
2445 | if (error == 0) { |
2446 | cp = VTOC(vp); | |
2447 | /* | |
2448 | * used by regression test to determine if | |
2449 | * all the dirty pages (via write) have been cleaned | |
2450 | * after a call to 'fsysnc'. | |
2451 | */ | |
2452 | error = is_file_clean(vp, VTOF(vp)->ff_size); | |
2453 | hfs_unlock(cp); | |
2454 | } | |
55e303ae A |
2455 | return (error); |
2456 | } | |
2457 | ||
91447636 | 2458 | case F_RDADVISE: { |
9bccf70c A |
2459 | register struct radvisory *ra; |
2460 | struct filefork *fp; | |
9bccf70c A |
2461 | int error; |
2462 | ||
91447636 | 2463 | if (!vnode_isreg(vp)) |
9bccf70c A |
2464 | return EINVAL; |
2465 | ||
9bccf70c | 2466 | ra = (struct radvisory *)(ap->a_data); |
9bccf70c A |
2467 | fp = VTOF(vp); |
2468 | ||
91447636 | 2469 | /* Protect against a size change. */ |
39236c6e | 2470 | hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
91447636 | 2471 | |
b0d623f7 A |
2472 | #if HFS_COMPRESSION |
2473 | if (compressed && (uncompressed_size == -1)) { | |
2474 | /* fetching the uncompressed size failed above, so return the error */ | |
2475 | error = decmpfs_error; | |
2476 | } else if ((compressed && (ra->ra_offset >= uncompressed_size)) || | |
2477 | (!compressed && (ra->ra_offset >= fp->ff_size))) { | |
2478 | error = EFBIG; | |
2479 | } | |
2480 | #else /* HFS_COMPRESSION */ | |
9bccf70c | 2481 | if (ra->ra_offset >= fp->ff_size) { |
91447636 | 2482 | error = EFBIG; |
b0d623f7 A |
2483 | } |
2484 | #endif /* HFS_COMPRESSION */ | |
2485 | else { | |
91447636 | 2486 | error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count); |
9bccf70c | 2487 | } |
1c79356b | 2488 | |
39236c6e | 2489 | hfs_unlock_truncate(VTOC(vp), HFS_LOCK_DEFAULT); |
9bccf70c | 2490 | return (error); |
1c79356b | 2491 | } |
1c79356b | 2492 | |
91447636 A |
2493 | case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */ |
2494 | { | |
2495 | if (is64bit) { | |
2496 | *(user_time_t *)(ap->a_data) = (user_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate)); | |
2497 | } | |
2498 | else { | |
b0d623f7 | 2499 | *(user32_time_t *)(ap->a_data) = (user32_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate)); |
91447636 A |
2500 | } |
2501 | return 0; | |
2502 | } | |
2503 | ||
b0d623f7 A |
2504 | case SPOTLIGHT_FSCTL_GET_MOUNT_TIME: |
2505 | *(uint32_t *)ap->a_data = hfsmp->hfs_mount_time; | |
2506 | break; | |
2507 | ||
2508 | case SPOTLIGHT_FSCTL_GET_LAST_MTIME: | |
2509 | *(uint32_t *)ap->a_data = hfsmp->hfs_last_mounted_mtime; | |
2510 | break; | |
2511 | ||
316670eb A |
2512 | case HFS_FSCTL_GET_VERY_LOW_DISK: |
2513 | *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_dangerlimit; | |
2514 | break; | |
2515 | ||
b0d623f7 A |
2516 | case HFS_FSCTL_SET_VERY_LOW_DISK: |
2517 | if (*(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_warninglimit) { | |
2518 | return EINVAL; | |
e2fac8b1 | 2519 | } |
91447636 | 2520 | |
b0d623f7 A |
2521 | hfsmp->hfs_freespace_notify_dangerlimit = *(uint32_t *)ap->a_data; |
2522 | break; | |
2523 | ||
316670eb A |
2524 | case HFS_FSCTL_GET_LOW_DISK: |
2525 | *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_warninglimit; | |
2526 | break; | |
2527 | ||
b0d623f7 A |
2528 | case HFS_FSCTL_SET_LOW_DISK: |
2529 | if ( *(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_desiredlevel | |
2530 | || *(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_dangerlimit) { | |
2531 | ||
2532 | return EINVAL; | |
e2fac8b1 | 2533 | } |
b0d623f7 A |
2534 | |
2535 | hfsmp->hfs_freespace_notify_warninglimit = *(uint32_t *)ap->a_data; | |
2536 | break; | |
2537 | ||
316670eb A |
2538 | case HFS_FSCTL_GET_DESIRED_DISK: |
2539 | *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_desiredlevel; | |
2540 | break; | |
2541 | ||
b0d623f7 A |
2542 | case HFS_FSCTL_SET_DESIRED_DISK: |
2543 | if (*(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_warninglimit) { | |
2544 | return EINVAL; | |
2545 | } | |
2546 | ||
2547 | hfsmp->hfs_freespace_notify_desiredlevel = *(uint32_t *)ap->a_data; | |
2548 | break; | |
2549 | ||
2550 | case HFS_VOLUME_STATUS: | |
2551 | *(uint32_t *)ap->a_data = hfsmp->hfs_notification_conditions; | |
2552 | break; | |
91447636 A |
2553 | |
2554 | case HFS_SET_BOOT_INFO: | |
2555 | if (!vnode_isvroot(vp)) | |
2556 | return(EINVAL); | |
2557 | if (!kauth_cred_issuser(cred) && (kauth_cred_getuid(cred) != vfs_statfs(HFSTOVFS(hfsmp))->f_owner)) | |
2558 | return(EACCES); /* must be superuser or owner of filesystem */ | |
b0d623f7 A |
2559 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { |
2560 | return (EROFS); | |
2561 | } | |
39236c6e | 2562 | hfs_lock_mount (hfsmp); |
91447636 | 2563 | bcopy(ap->a_data, &hfsmp->vcbFndrInfo, sizeof(hfsmp->vcbFndrInfo)); |
39236c6e | 2564 | hfs_unlock_mount (hfsmp); |
91447636 A |
2565 | (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0); |
2566 | break; | |
2567 | ||
2568 | case HFS_GET_BOOT_INFO: | |
2569 | if (!vnode_isvroot(vp)) | |
2570 | return(EINVAL); | |
39236c6e | 2571 | hfs_lock_mount (hfsmp); |
91447636 | 2572 | bcopy(&hfsmp->vcbFndrInfo, ap->a_data, sizeof(hfsmp->vcbFndrInfo)); |
39236c6e | 2573 | hfs_unlock_mount(hfsmp); |
91447636 A |
2574 | break; |
2575 | ||
2d21ac55 A |
2576 | case HFS_MARK_BOOT_CORRUPT: |
2577 | /* Mark the boot volume corrupt by setting | |
2578 | * kHFSVolumeInconsistentBit in the volume header. This will | |
2579 | * force fsck_hfs on next mount. | |
2580 | */ | |
39236c6e | 2581 | if (!kauth_cred_issuser(kauth_cred_get())) { |
2d21ac55 A |
2582 | return EACCES; |
2583 | } | |
b0d623f7 | 2584 | |
2d21ac55 A |
2585 | /* Allowed only on the root vnode of the boot volume */ |
2586 | if (!(vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) || | |
2587 | !vnode_isvroot(vp)) { | |
2588 | return EINVAL; | |
2589 | } | |
b0d623f7 A |
2590 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { |
2591 | return (EROFS); | |
2592 | } | |
2d21ac55 | 2593 | printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n"); |
fe8ab488 | 2594 | hfs_mark_inconsistent(hfsmp, HFS_FSCK_FORCED); |
2d21ac55 A |
2595 | break; |
2596 | ||
b0d623f7 A |
2597 | case HFS_FSCTL_GET_JOURNAL_INFO: |
2598 | jip = (struct hfs_journal_info*)ap->a_data; | |
2599 | ||
2600 | if (vp == NULLVP) | |
2601 | return EINVAL; | |
2602 | ||
2603 | if (hfsmp->jnl == NULL) { | |
2604 | jnl_start = 0; | |
2605 | jnl_size = 0; | |
2606 | } else { | |
2607 | jnl_start = (off_t)(hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset; | |
2608 | jnl_size = (off_t)hfsmp->jnl_size; | |
2609 | } | |
2610 | ||
2611 | jip->jstart = jnl_start; | |
2612 | jip->jsize = jnl_size; | |
2613 | break; | |
2614 | ||
2615 | case HFS_SET_ALWAYS_ZEROFILL: { | |
2616 | struct cnode *cp = VTOC(vp); | |
2617 | ||
2618 | if (*(int *)ap->a_data) { | |
2619 | cp->c_flag |= C_ALWAYS_ZEROFILL; | |
2620 | } else { | |
2621 | cp->c_flag &= ~C_ALWAYS_ZEROFILL; | |
2622 | } | |
2623 | break; | |
2624 | } | |
2625 | ||
6d2010ae A |
2626 | case HFS_DISABLE_METAZONE: { |
2627 | /* Only root can disable metadata zone */ | |
39236c6e | 2628 | if (!kauth_cred_issuser(kauth_cred_get())) { |
6d2010ae A |
2629 | return EACCES; |
2630 | } | |
2631 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
2632 | return (EROFS); | |
2633 | } | |
2634 | ||
2635 | /* Disable metadata zone now */ | |
2636 | (void) hfs_metadatazone_init(hfsmp, true); | |
2637 | printf ("hfs: Disabling metadata zone on %s\n", hfsmp->vcbVN); | |
2638 | break; | |
2639 | } | |
fe8ab488 A |
2640 | |
2641 | ||
2642 | case HFS_FSINFO_METADATA_BLOCKS: { | |
2643 | int error; | |
2644 | struct hfsinfo_metadata *hinfo; | |
2645 | ||
2646 | hinfo = (struct hfsinfo_metadata *)ap->a_data; | |
2647 | ||
2648 | /* Get information about number of metadata blocks */ | |
2649 | error = hfs_getinfo_metadata_blocks(hfsmp, hinfo); | |
2650 | if (error) { | |
2651 | return error; | |
2652 | } | |
2653 | ||
2654 | break; | |
2655 | } | |
2656 | ||
04b8595b A |
2657 | case HFS_GET_FSINFO: { |
2658 | hfs_fsinfo *fsinfo = (hfs_fsinfo *)ap->a_data; | |
2659 | ||
2660 | /* Only root is allowed to get fsinfo */ | |
2661 | if (!kauth_cred_issuser(kauth_cred_get())) { | |
2662 | return EACCES; | |
2663 | } | |
2664 | ||
2665 | /* | |
2666 | * Make sure that the caller's version number matches with | |
2667 | * the kernel's version number. This will make sure that | |
2668 | * if the structures being read/written into are changed | |
2669 | * by the kernel, the caller will not read incorrect data. | |
2670 | * | |
2671 | * The first three fields --- request_type, version and | |
2672 | * flags are same for all the hfs_fsinfo structures, so | |
2673 | * we can access the version number by assuming any | |
2674 | * structure for now. | |
2675 | */ | |
2676 | if (fsinfo->header.version != HFS_FSINFO_VERSION) { | |
2677 | return ENOTSUP; | |
2678 | } | |
2679 | ||
2680 | /* Make sure that the current file system is not marked inconsistent */ | |
2681 | if (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) { | |
2682 | return EIO; | |
2683 | } | |
2684 | ||
2685 | return hfs_get_fsinfo(hfsmp, ap->a_data); | |
2686 | } | |
2687 | ||
fe8ab488 A |
2688 | case HFS_CS_FREESPACE_TRIM: { |
2689 | int error = 0; | |
2690 | int lockflags = 0; | |
2691 | ||
2692 | /* Only root allowed */ | |
2693 | if (!kauth_cred_issuser(kauth_cred_get())) { | |
2694 | return EACCES; | |
2695 | } | |
2696 | ||
2697 | /* | |
2698 | * This core functionality is similar to hfs_scan_blocks(). | |
2699 | * The main difference is that hfs_scan_blocks() is called | |
2700 | * as part of mount where we are assured that the journal is | |
2701 | * empty to start with. This fcntl() can be called on a | |
2702 | * mounted volume, therefore it has to flush the content of | |
2703 | * the journal as well as ensure the state of summary table. | |
2704 | * | |
2705 | * This fcntl scans over the entire allocation bitmap, | |
2706 | * creates list of all the free blocks, and issues TRIM | |
2707 | * down to the underlying device. This can take long time | |
2708 | * as it can generate up to 512MB of read I/O. | |
2709 | */ | |
2710 | ||
2711 | if ((hfsmp->hfs_flags & HFS_SUMMARY_TABLE) == 0) { | |
2712 | error = hfs_init_summary(hfsmp); | |
2713 | if (error) { | |
2714 | printf("hfs: fsctl() could not initialize summary table for %s\n", hfsmp->vcbVN); | |
2715 | return error; | |
2716 | } | |
2717 | } | |
2718 | ||
2719 | /* | |
2720 | * The journal maintains list of recently deallocated blocks to | |
2721 | * issue DKIOCUNMAPs when the corresponding journal transaction is | |
2722 | * flushed to the disk. To avoid any race conditions, we only | |
2723 | * want one active trim list and only one thread issuing DKIOCUNMAPs. | |
2724 | * Therefore we make sure that the journal trim list is sync'ed, | |
2725 | * empty, and not modifiable for the duration of our scan. | |
2726 | * | |
2727 | * Take the journal lock before flushing the journal to the disk. | |
2728 | * We will keep on holding the journal lock till we don't get the | |
2729 | * bitmap lock to make sure that no new journal transactions can | |
2730 | * start. This will make sure that the journal trim list is not | |
2731 | * modified after the journal flush and before getting bitmap lock. | |
2732 | * We can release the journal lock after we acquire the bitmap | |
2733 | * lock as it will prevent any further block deallocations. | |
2734 | */ | |
2735 | hfs_journal_lock(hfsmp); | |
2736 | ||
2737 | /* Flush the journal and wait for all I/Os to finish up */ | |
2738 | error = hfs_journal_flush(hfsmp, TRUE); | |
2739 | if (error) { | |
2740 | hfs_journal_unlock(hfsmp); | |
2741 | return error; | |
2742 | } | |
2743 | ||
2744 | /* Take bitmap lock to ensure it is not being modified */ | |
2745 | lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK); | |
2746 | ||
2747 | /* Release the journal lock */ | |
2748 | hfs_journal_unlock(hfsmp); | |
2749 | ||
2750 | /* | |
2751 | * ScanUnmapBlocks reads the bitmap in large block size | |
2752 | * (up to 1MB) unlike the runtime which reads the bitmap | |
2753 | * in the 4K block size. This can cause buf_t collisions | |
2754 | * and potential data corruption. To avoid this, we | |
2755 | * invalidate all the existing buffers associated with | |
2756 | * the bitmap vnode before scanning it. | |
2757 | * | |
2758 | * Note: ScanUnmapBlock() cleans up all the buffers | |
2759 | * after itself, so there won't be any large buffers left | |
2760 | * for us to clean up after it returns. | |
2761 | */ | |
2762 | error = buf_invalidateblks(hfsmp->hfs_allocation_vp, 0, 0, 0); | |
2763 | if (error) { | |
2764 | hfs_systemfile_unlock(hfsmp, lockflags); | |
2765 | return error; | |
2766 | } | |
2767 | ||
2768 | /* Traverse bitmap and issue DKIOCUNMAPs */ | |
2769 | error = ScanUnmapBlocks(hfsmp); | |
2770 | hfs_systemfile_unlock(hfsmp, lockflags); | |
2771 | if (error) { | |
2772 | return error; | |
2773 | } | |
2774 | ||
2775 | break; | |
2776 | } | |
2777 | ||
91447636 A |
2778 | default: |
2779 | return (ENOTTY); | |
2780 | } | |
1c79356b | 2781 | |
0b4e3aa0 | 2782 | return 0; |
1c79356b A |
2783 | } |
2784 | ||
91447636 A |
2785 | /* |
2786 | * select | |
2787 | */ | |
1c79356b | 2788 | int |
91447636 A |
2789 | hfs_vnop_select(__unused struct vnop_select_args *ap) |
2790 | /* | |
2791 | struct vnop_select_args { | |
2792 | vnode_t a_vp; | |
9bccf70c A |
2793 | int a_which; |
2794 | int a_fflags; | |
9bccf70c | 2795 | void *a_wql; |
91447636 A |
2796 | vfs_context_t a_context; |
2797 | }; | |
2798 | */ | |
1c79356b | 2799 | { |
9bccf70c A |
2800 | /* |
2801 | * We should really check to see if I/O is possible. | |
2802 | */ | |
2803 | return (1); | |
1c79356b A |
2804 | } |
2805 | ||
1c79356b A |
2806 | /* |
2807 | * Converts a logical block number to a physical block, and optionally returns | |
2808 | * the amount of remaining blocks in a run. The logical block is based on hfsNode.logBlockSize. | |
2809 | * The physical block number is based on the device block size, currently its 512. | |
2810 | * The block run is returned in logical blocks, and is the REMAINING amount of blocks | |
2811 | */ | |
1c79356b | 2812 | int |
2d21ac55 | 2813 | hfs_bmap(struct vnode *vp, daddr_t bn, struct vnode **vpp, daddr64_t *bnp, unsigned int *runp) |
1c79356b | 2814 | { |
9bccf70c A |
2815 | struct filefork *fp = VTOF(vp); |
2816 | struct hfsmount *hfsmp = VTOHFS(vp); | |
91447636 | 2817 | int retval = E_NONE; |
2d21ac55 | 2818 | u_int32_t logBlockSize; |
91447636 A |
2819 | size_t bytesContAvail = 0; |
2820 | off_t blockposition; | |
2821 | int lockExtBtree; | |
2822 | int lockflags = 0; | |
1c79356b | 2823 | |
9bccf70c A |
2824 | /* |
2825 | * Check for underlying vnode requests and ensure that logical | |
2826 | * to physical mapping is requested. | |
2827 | */ | |
91447636 | 2828 | if (vpp != NULL) |
2d21ac55 | 2829 | *vpp = hfsmp->hfs_devvp; |
91447636 | 2830 | if (bnp == NULL) |
9bccf70c A |
2831 | return (0); |
2832 | ||
9bccf70c | 2833 | logBlockSize = GetLogicalBlockSize(vp); |
2d21ac55 | 2834 | blockposition = (off_t)bn * logBlockSize; |
9bccf70c A |
2835 | |
2836 | lockExtBtree = overflow_extents(fp); | |
91447636 A |
2837 | |
2838 | if (lockExtBtree) | |
2d21ac55 | 2839 | lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_EXCLUSIVE_LOCK); |
1c79356b | 2840 | |
9bccf70c | 2841 | retval = MacToVFSError( |
0b4e3aa0 | 2842 | MapFileBlockC (HFSTOVCB(hfsmp), |
9bccf70c | 2843 | (FCB*)fp, |
0b4e3aa0 A |
2844 | MAXPHYSIO, |
2845 | blockposition, | |
91447636 | 2846 | bnp, |
0b4e3aa0 | 2847 | &bytesContAvail)); |
1c79356b | 2848 | |
91447636 A |
2849 | if (lockExtBtree) |
2850 | hfs_systemfile_unlock(hfsmp, lockflags); | |
1c79356b | 2851 | |
91447636 A |
2852 | if (retval == E_NONE) { |
2853 | /* Figure out how many read ahead blocks there are */ | |
2854 | if (runp != NULL) { | |
2855 | if (can_cluster(logBlockSize)) { | |
2856 | /* Make sure this result never goes negative: */ | |
2857 | *runp = (bytesContAvail < logBlockSize) ? 0 : (bytesContAvail / logBlockSize) - 1; | |
2858 | } else { | |
2859 | *runp = 0; | |
2860 | } | |
2861 | } | |
2862 | } | |
2863 | return (retval); | |
2864 | } | |
1c79356b | 2865 | |
91447636 A |
2866 | /* |
2867 | * Convert logical block number to file offset. | |
2868 | */ | |
1c79356b | 2869 | int |
91447636 A |
2870 | hfs_vnop_blktooff(struct vnop_blktooff_args *ap) |
2871 | /* | |
2872 | struct vnop_blktooff_args { | |
2873 | vnode_t a_vp; | |
2874 | daddr64_t a_lblkno; | |
9bccf70c | 2875 | off_t *a_offset; |
91447636 A |
2876 | }; |
2877 | */ | |
1c79356b A |
2878 | { |
2879 | if (ap->a_vp == NULL) | |
2880 | return (EINVAL); | |
91447636 | 2881 | *ap->a_offset = (off_t)ap->a_lblkno * (off_t)GetLogicalBlockSize(ap->a_vp); |
1c79356b A |
2882 | |
2883 | return(0); | |
2884 | } | |
2885 | ||
91447636 A |
2886 | /* |
2887 | * Convert file offset to logical block number. | |
2888 | */ | |
1c79356b | 2889 | int |
91447636 A |
2890 | hfs_vnop_offtoblk(struct vnop_offtoblk_args *ap) |
2891 | /* | |
2892 | struct vnop_offtoblk_args { | |
2893 | vnode_t a_vp; | |
9bccf70c | 2894 | off_t a_offset; |
91447636 A |
2895 | daddr64_t *a_lblkno; |
2896 | }; | |
2897 | */ | |
1c79356b | 2898 | { |
1c79356b A |
2899 | if (ap->a_vp == NULL) |
2900 | return (EINVAL); | |
91447636 | 2901 | *ap->a_lblkno = (daddr64_t)(ap->a_offset / (off_t)GetLogicalBlockSize(ap->a_vp)); |
1c79356b A |
2902 | |
2903 | return(0); | |
2904 | } | |
2905 | ||
91447636 A |
2906 | /* |
2907 | * Map file offset to physical block number. | |
2908 | * | |
2d21ac55 A |
2909 | * If this function is called for write operation, and if the file |
2910 | * had virtual blocks allocated (delayed allocation), real blocks | |
2911 | * are allocated by calling ExtendFileC(). | |
2912 | * | |
2913 | * If this function is called for read operation, and if the file | |
2914 | * had virtual blocks allocated (delayed allocation), no change | |
2915 | * to the size of file is done, and if required, rangelist is | |
2916 | * searched for mapping. | |
2917 | * | |
91447636 A |
2918 | * System file cnodes are expected to be locked (shared or exclusive). |
2919 | */ | |
1c79356b | 2920 | int |
91447636 A |
2921 | hfs_vnop_blockmap(struct vnop_blockmap_args *ap) |
2922 | /* | |
2923 | struct vnop_blockmap_args { | |
2924 | vnode_t a_vp; | |
9bccf70c A |
2925 | off_t a_foffset; |
2926 | size_t a_size; | |
91447636 | 2927 | daddr64_t *a_bpn; |
9bccf70c A |
2928 | size_t *a_run; |
2929 | void *a_poff; | |
91447636 A |
2930 | int a_flags; |
2931 | vfs_context_t a_context; | |
2932 | }; | |
2933 | */ | |
1c79356b | 2934 | { |
91447636 A |
2935 | struct vnode *vp = ap->a_vp; |
2936 | struct cnode *cp; | |
2937 | struct filefork *fp; | |
2938 | struct hfsmount *hfsmp; | |
2939 | size_t bytesContAvail = 0; | |
2940 | int retval = E_NONE; | |
2941 | int syslocks = 0; | |
2942 | int lockflags = 0; | |
2943 | struct rl_entry *invalid_range; | |
2944 | enum rl_overlaptype overlaptype; | |
2945 | int started_tr = 0; | |
2946 | int tooklock = 0; | |
1c79356b | 2947 | |
b0d623f7 A |
2948 | #if HFS_COMPRESSION |
2949 | if (VNODE_IS_RSRC(vp)) { | |
2950 | /* allow blockmaps to the resource fork */ | |
2951 | } else { | |
2952 | if ( hfs_file_is_compressed(VTOC(vp), 1) ) { /* 1 == don't take the cnode lock */ | |
2953 | int state = decmpfs_cnode_get_vnode_state(VTOCMP(vp)); | |
2954 | switch(state) { | |
2955 | case FILE_IS_COMPRESSED: | |
2956 | return ENOTSUP; | |
2957 | case FILE_IS_CONVERTING: | |
2958 | /* if FILE_IS_CONVERTING, we allow blockmap */ | |
2959 | break; | |
2960 | default: | |
2961 | printf("invalid state %d for compressed file\n", state); | |
2962 | /* fall through */ | |
2963 | } | |
2964 | } | |
2965 | } | |
2966 | #endif /* HFS_COMPRESSION */ | |
2967 | ||
3a60a9f5 A |
2968 | /* Do not allow blockmap operation on a directory */ |
2969 | if (vnode_isdir(vp)) { | |
2970 | return (ENOTSUP); | |
2971 | } | |
2972 | ||
9bccf70c A |
2973 | /* |
2974 | * Check for underlying vnode requests and ensure that logical | |
2975 | * to physical mapping is requested. | |
2976 | */ | |
2977 | if (ap->a_bpn == NULL) | |
2978 | return (0); | |
2979 | ||
2d21ac55 | 2980 | if ( !vnode_issystem(vp) && !vnode_islnk(vp) && !vnode_isswap(vp)) { |
91447636 | 2981 | if (VTOC(vp)->c_lockowner != current_thread()) { |
39236c6e | 2982 | hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
91447636 | 2983 | tooklock = 1; |
91447636 A |
2984 | } |
2985 | } | |
2986 | hfsmp = VTOHFS(vp); | |
2987 | cp = VTOC(vp); | |
2988 | fp = VTOF(vp); | |
55e303ae | 2989 | |
91447636 | 2990 | retry: |
2d21ac55 A |
2991 | /* Check virtual blocks only when performing write operation */ |
2992 | if ((ap->a_flags & VNODE_WRITE) && (fp->ff_unallocblocks != 0)) { | |
91447636 A |
2993 | if (hfs_start_transaction(hfsmp) != 0) { |
2994 | retval = EINVAL; | |
2995 | goto exit; | |
2996 | } else { | |
2997 | started_tr = 1; | |
b4c24cb9 | 2998 | } |
91447636 A |
2999 | syslocks = SFL_EXTENTS | SFL_BITMAP; |
3000 | ||
b4c24cb9 | 3001 | } else if (overflow_extents(fp)) { |
91447636 | 3002 | syslocks = SFL_EXTENTS; |
9bccf70c | 3003 | } |
91447636 A |
3004 | |
3005 | if (syslocks) | |
3006 | lockflags = hfs_systemfile_lock(hfsmp, syslocks, HFS_EXCLUSIVE_LOCK); | |
1c79356b | 3007 | |
9bccf70c A |
3008 | /* |
3009 | * Check for any delayed allocations. | |
3010 | */ | |
2d21ac55 A |
3011 | if ((ap->a_flags & VNODE_WRITE) && (fp->ff_unallocblocks != 0)) { |
3012 | int64_t actbytes; | |
91447636 | 3013 | u_int32_t loanedBlocks; |
1c79356b | 3014 | |
55e303ae | 3015 | // |
d12e1678 A |
3016 | // Make sure we have a transaction. It's possible |
3017 | // that we came in and fp->ff_unallocblocks was zero | |
3018 | // but during the time we blocked acquiring the extents | |
3019 | // btree, ff_unallocblocks became non-zero and so we | |
3020 | // will need to start a transaction. | |
3021 | // | |
91447636 A |
3022 | if (started_tr == 0) { |
3023 | if (syslocks) { | |
3024 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3025 | syslocks = 0; | |
3026 | } | |
3027 | goto retry; | |
d12e1678 A |
3028 | } |
3029 | ||
9bccf70c | 3030 | /* |
91447636 A |
3031 | * Note: ExtendFileC will Release any blocks on loan and |
3032 | * aquire real blocks. So we ask to extend by zero bytes | |
3033 | * since ExtendFileC will account for the virtual blocks. | |
9bccf70c | 3034 | */ |
9bccf70c | 3035 | |
91447636 A |
3036 | loanedBlocks = fp->ff_unallocblocks; |
3037 | retval = ExtendFileC(hfsmp, (FCB*)fp, 0, 0, | |
3038 | kEFAllMask | kEFNoClumpMask, &actbytes); | |
3039 | ||
3040 | if (retval) { | |
3041 | fp->ff_unallocblocks = loanedBlocks; | |
3042 | cp->c_blocks += loanedBlocks; | |
3043 | fp->ff_blocks += loanedBlocks; | |
3044 | ||
39236c6e | 3045 | hfs_lock_mount (hfsmp); |
91447636 | 3046 | hfsmp->loanedBlocks += loanedBlocks; |
39236c6e | 3047 | hfs_unlock_mount (hfsmp); |
1c79356b | 3048 | |
91447636 A |
3049 | hfs_systemfile_unlock(hfsmp, lockflags); |
3050 | cp->c_flag |= C_MODIFIED; | |
b4c24cb9 | 3051 | if (started_tr) { |
91447636 A |
3052 | (void) hfs_update(vp, TRUE); |
3053 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
55e303ae | 3054 | |
91447636 | 3055 | hfs_end_transaction(hfsmp); |
2d21ac55 | 3056 | started_tr = 0; |
b4c24cb9 | 3057 | } |
91447636 | 3058 | goto exit; |
b4c24cb9 | 3059 | } |
9bccf70c A |
3060 | } |
3061 | ||
91447636 A |
3062 | retval = MapFileBlockC(hfsmp, (FCB *)fp, ap->a_size, ap->a_foffset, |
3063 | ap->a_bpn, &bytesContAvail); | |
3064 | if (syslocks) { | |
3065 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3066 | syslocks = 0; | |
3067 | } | |
1c79356b | 3068 | |
b4c24cb9 | 3069 | if (started_tr) { |
91447636 A |
3070 | (void) hfs_update(vp, TRUE); |
3071 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
3072 | hfs_end_transaction(hfsmp); | |
b4c24cb9 | 3073 | started_tr = 0; |
91447636 A |
3074 | } |
3075 | if (retval) { | |
2d21ac55 A |
3076 | /* On write, always return error because virtual blocks, if any, |
3077 | * should have been allocated in ExtendFileC(). We do not | |
3078 | * allocate virtual blocks on read, therefore return error | |
3079 | * only if no virtual blocks are allocated. Otherwise we search | |
3080 | * rangelist for zero-fills | |
3081 | */ | |
3082 | if ((MacToVFSError(retval) != ERANGE) || | |
3083 | (ap->a_flags & VNODE_WRITE) || | |
3084 | ((ap->a_flags & VNODE_READ) && (fp->ff_unallocblocks == 0))) { | |
3085 | goto exit; | |
3086 | } | |
3087 | ||
3088 | /* Validate if the start offset is within logical file size */ | |
316670eb | 3089 | if (ap->a_foffset >= fp->ff_size) { |
39236c6e | 3090 | goto exit; |
2d21ac55 A |
3091 | } |
3092 | ||
316670eb A |
3093 | /* |
3094 | * At this point, we have encountered a failure during | |
3095 | * MapFileBlockC that resulted in ERANGE, and we are not servicing | |
3096 | * a write, and there are borrowed blocks. | |
3097 | * | |
3098 | * However, the cluster layer will not call blockmap for | |
3099 | * blocks that are borrowed and in-cache. We have to assume that | |
3100 | * because we observed ERANGE being emitted from MapFileBlockC, this | |
3101 | * extent range is not valid on-disk. So we treat this as a | |
3102 | * mapping that needs to be zero-filled prior to reading. | |
3103 | * | |
3104 | * Note that under certain circumstances (such as non-contiguous | |
3105 | * userland VM mappings in the calling process), cluster_io | |
3106 | * may be forced to split a large I/O driven by hfs_vnop_write | |
3107 | * into multiple sub-I/Os that necessitate a RMW cycle. If this is | |
3108 | * the case here, then we have already removed the invalid range list | |
3109 | * mapping prior to getting to this blockmap call, so we should not | |
3110 | * search the invalid rangelist for this byte range. | |
2d21ac55 | 3111 | */ |
316670eb A |
3112 | |
3113 | bytesContAvail = fp->ff_size - ap->a_foffset; | |
3114 | /* | |
3115 | * Clip the contiguous available bytes to, at most, the allowable | |
3116 | * maximum or the amount requested. | |
3117 | */ | |
3118 | ||
3119 | if (bytesContAvail > ap->a_size) { | |
3120 | bytesContAvail = ap->a_size; | |
2d21ac55 | 3121 | } |
316670eb A |
3122 | |
3123 | *ap->a_bpn = (daddr64_t) -1; | |
3124 | retval = 0; | |
3125 | ||
91447636 A |
3126 | goto exit; |
3127 | } | |
1c79356b | 3128 | |
2d21ac55 A |
3129 | /* MapFileC() found a valid extent in the filefork. Search the |
3130 | * mapping information further for invalid file ranges | |
3131 | */ | |
91447636 A |
3132 | overlaptype = rl_scan(&fp->ff_invalidranges, ap->a_foffset, |
3133 | ap->a_foffset + (off_t)bytesContAvail - 1, | |
3134 | &invalid_range); | |
3135 | if (overlaptype != RL_NOOVERLAP) { | |
3136 | switch(overlaptype) { | |
3137 | case RL_MATCHINGOVERLAP: | |
3138 | case RL_OVERLAPCONTAINSRANGE: | |
3139 | case RL_OVERLAPSTARTSBEFORE: | |
2d21ac55 | 3140 | /* There's no valid block for this byte offset */ |
91447636 A |
3141 | *ap->a_bpn = (daddr64_t)-1; |
3142 | /* There's no point limiting the amount to be returned | |
3143 | * if the invalid range that was hit extends all the way | |
3144 | * to the EOF (i.e. there's no valid bytes between the | |
3145 | * end of this range and the file's EOF): | |
3146 | */ | |
3147 | if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) && | |
b0d623f7 | 3148 | ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) { |
91447636 A |
3149 | bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; |
3150 | } | |
3151 | break; | |
9bccf70c | 3152 | |
91447636 A |
3153 | case RL_OVERLAPISCONTAINED: |
3154 | case RL_OVERLAPENDSAFTER: | |
3155 | /* The range of interest hits an invalid block before the end: */ | |
3156 | if (invalid_range->rl_start == ap->a_foffset) { | |
3157 | /* There's actually no valid information to be had starting here: */ | |
3158 | *ap->a_bpn = (daddr64_t)-1; | |
3159 | if (((off_t)fp->ff_size > (invalid_range->rl_end + 1)) && | |
b0d623f7 | 3160 | ((size_t)(invalid_range->rl_end + 1 - ap->a_foffset) < bytesContAvail)) { |
91447636 A |
3161 | bytesContAvail = invalid_range->rl_end + 1 - ap->a_foffset; |
3162 | } | |
3163 | } else { | |
3164 | bytesContAvail = invalid_range->rl_start - ap->a_foffset; | |
3165 | } | |
9bccf70c | 3166 | break; |
1c79356b | 3167 | |
91447636 | 3168 | case RL_NOOVERLAP: |
9bccf70c | 3169 | break; |
91447636 A |
3170 | } /* end switch */ |
3171 | if (bytesContAvail > ap->a_size) | |
3172 | bytesContAvail = ap->a_size; | |
2d21ac55 A |
3173 | } |
3174 | ||
3175 | exit: | |
3176 | if (retval == 0) { | |
3177 | if (ap->a_run) | |
3178 | *ap->a_run = bytesContAvail; | |
3179 | ||
3180 | if (ap->a_poff) | |
3181 | *(int *)ap->a_poff = 0; | |
9bccf70c | 3182 | } |
91447636 | 3183 | |
91447636 A |
3184 | if (tooklock) |
3185 | hfs_unlock(cp); | |
3186 | ||
3187 | return (MacToVFSError(retval)); | |
1c79356b A |
3188 | } |
3189 | ||
3190 | /* | |
91447636 A |
3191 | * prepare and issue the I/O |
3192 | * buf_strategy knows how to deal | |
3193 | * with requests that require | |
3194 | * fragmented I/Os | |
3195 | */ | |
1c79356b | 3196 | int |
91447636 | 3197 | hfs_vnop_strategy(struct vnop_strategy_args *ap) |
1c79356b | 3198 | { |
91447636 A |
3199 | buf_t bp = ap->a_bp; |
3200 | vnode_t vp = buf_vnode(bp); | |
6d2010ae A |
3201 | int error = 0; |
3202 | ||
316670eb A |
3203 | /* Mark buffer as containing static data if cnode flag set */ |
3204 | if (VTOC(vp)->c_flag & C_SSD_STATIC) { | |
3205 | buf_markstatic(bp); | |
3206 | } | |
3207 | ||
39236c6e A |
3208 | /* Mark buffer as containing static data if cnode flag set */ |
3209 | if (VTOC(vp)->c_flag & C_SSD_GREEDY_MODE) { | |
fe8ab488 A |
3210 | bufattr_markgreedymode(&bp->b_attr); |
3211 | } | |
3212 | ||
3213 | /* mark buffer as containing burst mode data if cnode flag set */ | |
3214 | if (VTOC(vp)->c_flag & C_IO_ISOCHRONOUS) { | |
3215 | bufattr_markisochronous(&bp->b_attr); | |
39236c6e A |
3216 | } |
3217 | ||
6d2010ae A |
3218 | #if CONFIG_PROTECT |
3219 | cnode_t *cp = NULL; | |
3220 | ||
fe8ab488 A |
3221 | if ((!bufattr_rawencrypted(&bp->b_attr)) && |
3222 | ((cp = cp_get_protected_cnode(vp)) != NULL)) { | |
316670eb A |
3223 | /* |
3224 | * We rely upon the truncate lock to protect the | |
3225 | * CP cache key from getting tossed prior to our IO finishing here. | |
3226 | * Nearly all cluster io calls to manipulate file payload from HFS | |
3227 | * take the truncate lock before calling into the cluster | |
3228 | * layer to ensure the file size does not change, or that they | |
3229 | * have exclusive right to change the EOF of the file. | |
3230 | * That same guarantee protects us here since the code that | |
3231 | * deals with CP lock events must now take the truncate lock | |
3232 | * before doing anything. | |
3233 | * | |
3234 | * There is 1 exception here: | |
3235 | * 1) One exception should be the VM swapfile IO, because HFS will | |
3236 | * funnel the VNOP_PAGEOUT directly into a cluster_pageout call for the | |
3237 | * swapfile code only without holding the truncate lock. This is because | |
3238 | * individual swapfiles are maintained at fixed-length sizes by the VM code. | |
3239 | * In non-swapfile IO we use PAGEOUT_V2 semantics which allow us to | |
3240 | * create our own UPL and thus take the truncate lock before calling | |
3241 | * into the cluster layer. In that case, however, we are not concerned | |
3242 | * with the CP blob being wiped out in the middle of the IO | |
3243 | * because there isn't anything to toss; the VM swapfile key stays | |
3244 | * in-core as long as the file is open. | |
fe8ab488 A |
3245 | */ |
3246 | ||
3247 | ||
3248 | /* | |
3249 | * Last chance: If this data protected I/O does not have unwrapped keys | |
3250 | * present, then try to get them. We already know that it should, by this point. | |
3251 | */ | |
3252 | if (cp->c_cpentry->cp_flags & (CP_KEY_FLUSHED | CP_NEEDS_KEYS)) { | |
3253 | int io_op = ( (buf_flags(bp) & B_READ) ? CP_READ_ACCESS : CP_WRITE_ACCESS); | |
3254 | if ((error = cp_handle_vnop(vp, io_op, 0)) != 0) { | |
3255 | /* | |
3256 | * We have to be careful here. By this point in the I/O path, VM or the cluster | |
3257 | * engine has prepared a buf_t with the proper file offsets and all the rest, | |
3258 | * so simply erroring out will result in us leaking this particular buf_t. | |
3259 | * We need to properly decorate the buf_t just as buf_strategy would so as | |
3260 | * to make it appear that the I/O errored out with the particular error code. | |
3261 | */ | |
3262 | buf_seterror (bp, error); | |
3263 | buf_biodone(bp); | |
3264 | return error; | |
3265 | } | |
3266 | } | |
3267 | ||
3268 | /* | |
3269 | *NB: | |
316670eb A |
3270 | * For filesystem resize, we may not have access to the underlying |
3271 | * file's cache key for whatever reason (device may be locked). However, | |
3272 | * we do not need it since we are going to use the temporary HFS-wide resize key | |
3273 | * which is generated once we start relocating file content. If this file's I/O | |
3274 | * should be done using the resize key, it will have been supplied already, so | |
3275 | * do not attach the file's cp blob to the buffer. | |
6d2010ae | 3276 | */ |
316670eb A |
3277 | if ((cp->c_cpentry->cp_flags & CP_RELOCATION_INFLIGHT) == 0) { |
3278 | buf_setcpaddr(bp, cp->c_cpentry); | |
3279 | } | |
6d2010ae A |
3280 | } |
3281 | #endif /* CONFIG_PROTECT */ | |
3282 | ||
3283 | error = buf_strategy(VTOHFS(vp)->hfs_devvp, ap); | |
6d2010ae A |
3284 | |
3285 | return error; | |
1c79356b A |
3286 | } |
3287 | ||
b0d623f7 A |
3288 | static int |
3289 | hfs_minorupdate(struct vnode *vp) { | |
3290 | struct cnode *cp = VTOC(vp); | |
3291 | cp->c_flag &= ~C_MODIFIED; | |
3292 | cp->c_touch_acctime = 0; | |
3293 | cp->c_touch_chgtime = 0; | |
3294 | cp->c_touch_modtime = 0; | |
3295 | ||
3296 | return 0; | |
3297 | } | |
1c79356b | 3298 | |
6d2010ae | 3299 | int |
39236c6e | 3300 | do_hfs_truncate(struct vnode *vp, off_t length, int flags, int truncateflags, vfs_context_t context) |
1c79356b | 3301 | { |
9bccf70c A |
3302 | register struct cnode *cp = VTOC(vp); |
3303 | struct filefork *fp = VTOF(vp); | |
91447636 | 3304 | kauth_cred_t cred = vfs_context_ucred(context); |
9bccf70c A |
3305 | int retval; |
3306 | off_t bytesToAdd; | |
3307 | off_t actualBytesAdded; | |
3308 | off_t filebytes; | |
b0d623f7 | 3309 | u_int32_t fileblocks; |
9bccf70c | 3310 | int blksize; |
b4c24cb9 | 3311 | struct hfsmount *hfsmp; |
91447636 | 3312 | int lockflags; |
39236c6e A |
3313 | int skipupdate = (truncateflags & HFS_TRUNCATE_SKIPUPDATE); |
3314 | int suppress_times = (truncateflags & HFS_TRUNCATE_SKIPTIMES); | |
fe8ab488 | 3315 | |
9bccf70c A |
3316 | blksize = VTOVCB(vp)->blockSize; |
3317 | fileblocks = fp->ff_blocks; | |
3318 | filebytes = (off_t)fileblocks * (off_t)blksize; | |
3319 | ||
fe8ab488 | 3320 | KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_START, |
9bccf70c A |
3321 | (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); |
3322 | ||
3323 | if (length < 0) | |
3324 | return (EINVAL); | |
1c79356b | 3325 | |
8f6c56a5 A |
3326 | /* This should only happen with a corrupt filesystem */ |
3327 | if ((off_t)fp->ff_size < 0) | |
3328 | return (EINVAL); | |
3329 | ||
9bccf70c A |
3330 | if ((!ISHFSPLUS(VTOVCB(vp))) && (length > (off_t)MAXHFSFILESIZE)) |
3331 | return (EFBIG); | |
1c79356b | 3332 | |
b4c24cb9 | 3333 | hfsmp = VTOHFS(vp); |
1c79356b | 3334 | |
9bccf70c | 3335 | retval = E_NONE; |
1c79356b | 3336 | |
55e303ae A |
3337 | /* Files that are changing size are not hot file candidates. */ |
3338 | if (hfsmp->hfc_stage == HFC_RECORDING) { | |
3339 | fp->ff_bytesread = 0; | |
3340 | } | |
3341 | ||
9bccf70c A |
3342 | /* |
3343 | * We cannot just check if fp->ff_size == length (as an optimization) | |
3344 | * since there may be extra physical blocks that also need truncation. | |
3345 | */ | |
3346 | #if QUOTA | |
91447636 | 3347 | if ((retval = hfs_getinoquota(cp))) |
9bccf70c A |
3348 | return(retval); |
3349 | #endif /* QUOTA */ | |
1c79356b | 3350 | |
9bccf70c A |
3351 | /* |
3352 | * Lengthen the size of the file. We must ensure that the | |
3353 | * last byte of the file is allocated. Since the smallest | |
3354 | * value of ff_size is 0, length will be at least 1. | |
3355 | */ | |
91447636 | 3356 | if (length > (off_t)fp->ff_size) { |
9bccf70c | 3357 | #if QUOTA |
b4c24cb9 | 3358 | retval = hfs_chkdq(cp, (int64_t)(roundup(length - filebytes, blksize)), |
91447636 | 3359 | cred, 0); |
9bccf70c A |
3360 | if (retval) |
3361 | goto Err_Exit; | |
3362 | #endif /* QUOTA */ | |
3363 | /* | |
3364 | * If we don't have enough physical space then | |
3365 | * we need to extend the physical size. | |
3366 | */ | |
3367 | if (length > filebytes) { | |
3368 | int eflags; | |
b0d623f7 | 3369 | u_int32_t blockHint = 0; |
1c79356b | 3370 | |
9bccf70c A |
3371 | /* All or nothing and don't round up to clumpsize. */ |
3372 | eflags = kEFAllMask | kEFNoClumpMask; | |
1c79356b | 3373 | |
fe8ab488 | 3374 | if (cred && (suser(cred, NULL) != 0)) { |
9bccf70c | 3375 | eflags |= kEFReserveMask; /* keep a reserve */ |
fe8ab488 | 3376 | } |
1c79356b | 3377 | |
55e303ae A |
3378 | /* |
3379 | * Allocate Journal and Quota files in metadata zone. | |
3380 | */ | |
3381 | if (filebytes == 0 && | |
3382 | hfsmp->hfs_flags & HFS_METADATA_ZONE && | |
3383 | hfs_virtualmetafile(cp)) { | |
3384 | eflags |= kEFMetadataMask; | |
3385 | blockHint = hfsmp->hfs_metazone_start; | |
3386 | } | |
91447636 A |
3387 | if (hfs_start_transaction(hfsmp) != 0) { |
3388 | retval = EINVAL; | |
3389 | goto Err_Exit; | |
b4c24cb9 A |
3390 | } |
3391 | ||
91447636 A |
3392 | /* Protect extents b-tree and allocation bitmap */ |
3393 | lockflags = SFL_BITMAP; | |
3394 | if (overflow_extents(fp)) | |
3395 | lockflags |= SFL_EXTENTS; | |
3396 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
1c79356b | 3397 | |
fe8ab488 A |
3398 | /* |
3399 | * Keep growing the file as long as the current EOF is | |
3400 | * less than the desired value. | |
3401 | */ | |
9bccf70c A |
3402 | while ((length > filebytes) && (retval == E_NONE)) { |
3403 | bytesToAdd = length - filebytes; | |
3404 | retval = MacToVFSError(ExtendFileC(VTOVCB(vp), | |
3405 | (FCB*)fp, | |
1c79356b | 3406 | bytesToAdd, |
55e303ae | 3407 | blockHint, |
9bccf70c | 3408 | eflags, |
1c79356b A |
3409 | &actualBytesAdded)); |
3410 | ||
9bccf70c A |
3411 | filebytes = (off_t)fp->ff_blocks * (off_t)blksize; |
3412 | if (actualBytesAdded == 0 && retval == E_NONE) { | |
3413 | if (length > filebytes) | |
3414 | length = filebytes; | |
3415 | break; | |
3416 | } | |
3417 | } /* endwhile */ | |
b4c24cb9 | 3418 | |
91447636 | 3419 | hfs_systemfile_unlock(hfsmp, lockflags); |
b4c24cb9 | 3420 | |
b4c24cb9 | 3421 | if (hfsmp->jnl) { |
b0d623f7 A |
3422 | if (skipupdate) { |
3423 | (void) hfs_minorupdate(vp); | |
3424 | } | |
39236c6e | 3425 | else { |
b0d623f7 A |
3426 | (void) hfs_update(vp, TRUE); |
3427 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
3428 | } | |
91447636 | 3429 | } |
55e303ae | 3430 | |
91447636 | 3431 | hfs_end_transaction(hfsmp); |
b4c24cb9 | 3432 | |
9bccf70c A |
3433 | if (retval) |
3434 | goto Err_Exit; | |
3435 | ||
fe8ab488 | 3436 | KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_NONE, |
9bccf70c | 3437 | (int)length, (int)fp->ff_size, (int)filebytes, 0, 0); |
1c79356b | 3438 | } |
1c79356b | 3439 | |
fe8ab488 A |
3440 | if (ISSET(flags, IO_NOZEROFILL)) { |
3441 | // An optimisation for the hibernation file | |
3442 | if (vnode_isswap(vp)) | |
3443 | rl_remove_all(&fp->ff_invalidranges); | |
3444 | } else { | |
2d21ac55 | 3445 | if (UBCINFOEXISTS(vp) && (vnode_issystem(vp) == 0) && retval == E_NONE) { |
9bccf70c | 3446 | struct rl_entry *invalid_range; |
9bccf70c | 3447 | off_t zero_limit; |
0b4e3aa0 | 3448 | |
9bccf70c A |
3449 | zero_limit = (fp->ff_size + (PAGE_SIZE_64 - 1)) & ~PAGE_MASK_64; |
3450 | if (length < zero_limit) zero_limit = length; | |
3451 | ||
91447636 A |
3452 | if (length > (off_t)fp->ff_size) { |
3453 | struct timeval tv; | |
3454 | ||
9bccf70c A |
3455 | /* Extending the file: time to fill out the current last page w. zeroes? */ |
3456 | if ((fp->ff_size & PAGE_MASK_64) && | |
3457 | (rl_scan(&fp->ff_invalidranges, fp->ff_size & ~PAGE_MASK_64, | |
3458 | fp->ff_size - 1, &invalid_range) == RL_NOOVERLAP)) { | |
0b4e3aa0 A |
3459 | |
3460 | /* There's some valid data at the start of the (current) last page | |
3461 | of the file, so zero out the remainder of that page to ensure the | |
3462 | entire page contains valid data. Since there is no invalid range | |
3463 | possible past the (current) eof, there's no need to remove anything | |
91447636 A |
3464 | from the invalid range list before calling cluster_write(): */ |
3465 | hfs_unlock(cp); | |
9bccf70c | 3466 | retval = cluster_write(vp, (struct uio *) 0, fp->ff_size, zero_limit, |
91447636 A |
3467 | fp->ff_size, (off_t)0, |
3468 | (flags & IO_SYNC) | IO_HEADZEROFILL | IO_NOZERODIRTY); | |
39236c6e | 3469 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
0b4e3aa0 A |
3470 | if (retval) goto Err_Exit; |
3471 | ||
3472 | /* Merely invalidate the remaining area, if necessary: */ | |
9bccf70c | 3473 | if (length > zero_limit) { |
91447636 | 3474 | microuptime(&tv); |
9bccf70c | 3475 | rl_add(zero_limit, length - 1, &fp->ff_invalidranges); |
91447636 | 3476 | cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; |
9bccf70c A |
3477 | } |
3478 | } else { | |
0b4e3aa0 A |
3479 | /* The page containing the (current) eof is invalid: just add the |
3480 | remainder of the page to the invalid list, along with the area | |
3481 | being newly allocated: | |
3482 | */ | |
91447636 | 3483 | microuptime(&tv); |
9bccf70c | 3484 | rl_add(fp->ff_size, length - 1, &fp->ff_invalidranges); |
91447636 | 3485 | cp->c_zftimeout = tv.tv_sec + ZFTIMELIMIT; |
9bccf70c A |
3486 | }; |
3487 | } | |
3488 | } else { | |
3489 | panic("hfs_truncate: invoked on non-UBC object?!"); | |
3490 | }; | |
3491 | } | |
39236c6e A |
3492 | if (suppress_times == 0) { |
3493 | cp->c_touch_modtime = TRUE; | |
3494 | } | |
9bccf70c | 3495 | fp->ff_size = length; |
0b4e3aa0 | 3496 | |
9bccf70c | 3497 | } else { /* Shorten the size of the file */ |
0b4e3aa0 | 3498 | |
fe8ab488 A |
3499 | // An optimisation for the hibernation file |
3500 | if (ISSET(flags, IO_NOZEROFILL) && vnode_isswap(vp)) { | |
3501 | rl_remove_all(&fp->ff_invalidranges); | |
3502 | } else if ((off_t)fp->ff_size > length) { | |
9bccf70c A |
3503 | /* Any space previously marked as invalid is now irrelevant: */ |
3504 | rl_remove(length, fp->ff_size - 1, &fp->ff_invalidranges); | |
3505 | } | |
1c79356b | 3506 | |
9bccf70c A |
3507 | /* |
3508 | * Account for any unmapped blocks. Note that the new | |
3509 | * file length can still end up with unmapped blocks. | |
3510 | */ | |
3511 | if (fp->ff_unallocblocks > 0) { | |
3512 | u_int32_t finalblks; | |
91447636 | 3513 | u_int32_t loanedBlocks; |
1c79356b | 3514 | |
39236c6e | 3515 | hfs_lock_mount(hfsmp); |
91447636 A |
3516 | loanedBlocks = fp->ff_unallocblocks; |
3517 | cp->c_blocks -= loanedBlocks; | |
3518 | fp->ff_blocks -= loanedBlocks; | |
3519 | fp->ff_unallocblocks = 0; | |
1c79356b | 3520 | |
91447636 | 3521 | hfsmp->loanedBlocks -= loanedBlocks; |
9bccf70c A |
3522 | |
3523 | finalblks = (length + blksize - 1) / blksize; | |
3524 | if (finalblks > fp->ff_blocks) { | |
3525 | /* calculate required unmapped blocks */ | |
91447636 A |
3526 | loanedBlocks = finalblks - fp->ff_blocks; |
3527 | hfsmp->loanedBlocks += loanedBlocks; | |
3528 | ||
3529 | fp->ff_unallocblocks = loanedBlocks; | |
3530 | cp->c_blocks += loanedBlocks; | |
3531 | fp->ff_blocks += loanedBlocks; | |
9bccf70c | 3532 | } |
39236c6e | 3533 | hfs_unlock_mount (hfsmp); |
9bccf70c | 3534 | } |
1c79356b | 3535 | |
9bccf70c | 3536 | #if QUOTA |
fe8ab488 | 3537 | off_t savedbytes = ((off_t)fp->ff_blocks * (off_t)blksize); |
9bccf70c | 3538 | #endif /* QUOTA */ |
fe8ab488 A |
3539 | if (hfs_start_transaction(hfsmp) != 0) { |
3540 | retval = EINVAL; | |
3541 | goto Err_Exit; | |
3542 | } | |
91447636 | 3543 | |
fe8ab488 A |
3544 | if (fp->ff_unallocblocks == 0) { |
3545 | /* Protect extents b-tree and allocation bitmap */ | |
3546 | lockflags = SFL_BITMAP; | |
3547 | if (overflow_extents(fp)) | |
3548 | lockflags |= SFL_EXTENTS; | |
3549 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
b4c24cb9 | 3550 | |
fe8ab488 A |
3551 | retval = MacToVFSError(TruncateFileC(VTOVCB(vp), (FCB*)fp, length, 0, |
3552 | FORK_IS_RSRC (fp), FTOC(fp)->c_fileid, false)); | |
1c79356b | 3553 | |
fe8ab488 A |
3554 | hfs_systemfile_unlock(hfsmp, lockflags); |
3555 | } | |
3556 | if (hfsmp->jnl) { | |
3557 | if (retval == 0) { | |
3558 | fp->ff_size = length; | |
91447636 | 3559 | } |
fe8ab488 A |
3560 | if (skipupdate) { |
3561 | (void) hfs_minorupdate(vp); | |
b4c24cb9 | 3562 | } |
fe8ab488 A |
3563 | else { |
3564 | (void) hfs_update(vp, TRUE); | |
3565 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
3566 | } | |
3567 | } | |
3568 | hfs_end_transaction(hfsmp); | |
b4c24cb9 | 3569 | |
fe8ab488 A |
3570 | filebytes = (off_t)fp->ff_blocks * (off_t)blksize; |
3571 | if (retval) | |
3572 | goto Err_Exit; | |
9bccf70c | 3573 | #if QUOTA |
fe8ab488 A |
3574 | /* These are bytesreleased */ |
3575 | (void) hfs_chkdq(cp, (int64_t)-(savedbytes - filebytes), NOCRED, 0); | |
9bccf70c | 3576 | #endif /* QUOTA */ |
fe8ab488 | 3577 | |
39236c6e A |
3578 | /* |
3579 | * Only set update flag if the logical length changes & we aren't | |
3580 | * suppressing modtime updates. | |
3581 | */ | |
3582 | if (((off_t)fp->ff_size != length) && (suppress_times == 0)) { | |
91447636 | 3583 | cp->c_touch_modtime = TRUE; |
39236c6e | 3584 | } |
9bccf70c | 3585 | fp->ff_size = length; |
1c79356b | 3586 | } |
b0d623f7 A |
3587 | if (cp->c_mode & (S_ISUID | S_ISGID)) { |
3588 | if (!vfs_context_issuser(context)) { | |
3589 | cp->c_mode &= ~(S_ISUID | S_ISGID); | |
3590 | skipupdate = 0; | |
3591 | } | |
3592 | } | |
3593 | if (skipupdate) { | |
3594 | retval = hfs_minorupdate(vp); | |
3595 | } | |
3596 | else { | |
3597 | cp->c_touch_chgtime = TRUE; /* status changed */ | |
39236c6e A |
3598 | if (suppress_times == 0) { |
3599 | cp->c_touch_modtime = TRUE; /* file data was modified */ | |
3600 | ||
3601 | /* | |
3602 | * If we are not suppressing the modtime update, then | |
3603 | * update the gen count as well. | |
3604 | */ | |
3605 | if (S_ISREG(cp->c_attr.ca_mode) || S_ISLNK (cp->c_attr.ca_mode)) { | |
3606 | hfs_incr_gencount(cp); | |
3607 | } | |
3608 | } | |
3609 | ||
b0d623f7 A |
3610 | retval = hfs_update(vp, MNT_WAIT); |
3611 | } | |
9bccf70c | 3612 | if (retval) { |
fe8ab488 | 3613 | KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_NONE, |
1c79356b | 3614 | -1, -1, -1, retval, 0); |
9bccf70c | 3615 | } |
1c79356b | 3616 | |
9bccf70c | 3617 | Err_Exit: |
1c79356b | 3618 | |
fe8ab488 | 3619 | KERNEL_DEBUG(HFSDBG_TRUNCATE | DBG_FUNC_END, |
9bccf70c | 3620 | (int)length, (int)fp->ff_size, (int)filebytes, retval, 0); |
1c79356b | 3621 | |
9bccf70c | 3622 | return (retval); |
1c79356b A |
3623 | } |
3624 | ||
6d2010ae A |
3625 | /* |
3626 | * Preparation which must be done prior to deleting the catalog record | |
3627 | * of a file or directory. In order to make the on-disk as safe as possible, | |
3628 | * we remove the catalog entry before releasing the bitmap blocks and the | |
3629 | * overflow extent records. However, some work must be done prior to deleting | |
3630 | * the catalog record. | |
3631 | * | |
3632 | * When calling this function, the cnode must exist both in memory and on-disk. | |
3633 | * If there are both resource fork and data fork vnodes, this function should | |
3634 | * be called on both. | |
3635 | */ | |
3636 | ||
3637 | int | |
3638 | hfs_prepare_release_storage (struct hfsmount *hfsmp, struct vnode *vp) { | |
3639 | ||
3640 | struct filefork *fp = VTOF(vp); | |
3641 | struct cnode *cp = VTOC(vp); | |
316670eb | 3642 | #if QUOTA |
6d2010ae | 3643 | int retval = 0; |
316670eb | 3644 | #endif /* QUOTA */ |
6d2010ae A |
3645 | |
3646 | /* Cannot truncate an HFS directory! */ | |
3647 | if (vnode_isdir(vp)) { | |
3648 | return (EISDIR); | |
3649 | } | |
3650 | ||
3651 | /* | |
3652 | * See the comment below in hfs_truncate for why we need to call | |
3653 | * setsize here. Essentially we want to avoid pending IO if we | |
3654 | * already know that the blocks are going to be released here. | |
3655 | * This function is only called when totally removing all storage for a file, so | |
3656 | * we can take a shortcut and immediately setsize (0); | |
3657 | */ | |
3658 | ubc_setsize(vp, 0); | |
3659 | ||
3660 | /* This should only happen with a corrupt filesystem */ | |
3661 | if ((off_t)fp->ff_size < 0) | |
3662 | return (EINVAL); | |
3663 | ||
3664 | /* | |
3665 | * We cannot just check if fp->ff_size == length (as an optimization) | |
3666 | * since there may be extra physical blocks that also need truncation. | |
3667 | */ | |
3668 | #if QUOTA | |
3669 | if ((retval = hfs_getinoquota(cp))) { | |
3670 | return(retval); | |
3671 | } | |
3672 | #endif /* QUOTA */ | |
3673 | ||
3674 | /* Wipe out any invalid ranges which have yet to be backed by disk */ | |
3675 | rl_remove(0, fp->ff_size - 1, &fp->ff_invalidranges); | |
3676 | ||
3677 | /* | |
3678 | * Account for any unmapped blocks. Since we're deleting the | |
3679 | * entire file, we don't have to worry about just shrinking | |
3680 | * to a smaller number of borrowed blocks. | |
3681 | */ | |
3682 | if (fp->ff_unallocblocks > 0) { | |
3683 | u_int32_t loanedBlocks; | |
3684 | ||
39236c6e | 3685 | hfs_lock_mount (hfsmp); |
6d2010ae A |
3686 | loanedBlocks = fp->ff_unallocblocks; |
3687 | cp->c_blocks -= loanedBlocks; | |
3688 | fp->ff_blocks -= loanedBlocks; | |
3689 | fp->ff_unallocblocks = 0; | |
3690 | ||
3691 | hfsmp->loanedBlocks -= loanedBlocks; | |
3692 | ||
39236c6e | 3693 | hfs_unlock_mount (hfsmp); |
6d2010ae A |
3694 | } |
3695 | ||
3696 | return 0; | |
3697 | } | |
3698 | ||
3699 | ||
3700 | /* | |
3701 | * Special wrapper around calling TruncateFileC. This function is useable | |
3702 | * even when the catalog record does not exist any longer, making it ideal | |
3703 | * for use when deleting a file. The simplification here is that we know | |
3704 | * that we are releasing all blocks. | |
3705 | * | |
316670eb A |
3706 | * Note that this function may be called when there is no vnode backing |
3707 | * the file fork in question. We may call this from hfs_vnop_inactive | |
3708 | * to clear out resource fork data (and may not want to clear out the data | |
3709 | * fork yet). As a result, we pointer-check both sets of inputs before | |
3710 | * doing anything with them. | |
3711 | * | |
6d2010ae A |
3712 | * The caller is responsible for saving off a copy of the filefork(s) |
3713 | * embedded within the cnode prior to calling this function. The pointers | |
3714 | * supplied as arguments must be valid even if the cnode is no longer valid. | |
3715 | */ | |
3716 | ||
3717 | int | |
3718 | hfs_release_storage (struct hfsmount *hfsmp, struct filefork *datafork, | |
3719 | struct filefork *rsrcfork, u_int32_t fileid) { | |
3720 | ||
3721 | off_t filebytes; | |
3722 | u_int32_t fileblocks; | |
3723 | int blksize = 0; | |
3724 | int error = 0; | |
3725 | int lockflags; | |
3726 | ||
3727 | blksize = hfsmp->blockSize; | |
3728 | ||
3729 | /* Data Fork */ | |
fe8ab488 A |
3730 | if (datafork) { |
3731 | datafork->ff_size = 0; | |
3732 | ||
6d2010ae A |
3733 | fileblocks = datafork->ff_blocks; |
3734 | filebytes = (off_t)fileblocks * (off_t)blksize; | |
3735 | ||
3736 | /* We killed invalid ranges and loaned blocks before we removed the catalog entry */ | |
3737 | ||
3738 | while (filebytes > 0) { | |
fe8ab488 | 3739 | if (filebytes > HFS_BIGFILE_SIZE) { |
6d2010ae A |
3740 | filebytes -= HFS_BIGFILE_SIZE; |
3741 | } else { | |
3742 | filebytes = 0; | |
3743 | } | |
3744 | ||
3745 | /* Start a transaction, and wipe out as many blocks as we can in this iteration */ | |
3746 | if (hfs_start_transaction(hfsmp) != 0) { | |
3747 | error = EINVAL; | |
3748 | break; | |
3749 | } | |
3750 | ||
3751 | if (datafork->ff_unallocblocks == 0) { | |
3752 | /* Protect extents b-tree and allocation bitmap */ | |
3753 | lockflags = SFL_BITMAP; | |
3754 | if (overflow_extents(datafork)) | |
3755 | lockflags |= SFL_EXTENTS; | |
3756 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
3757 | ||
3758 | error = MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp), datafork, filebytes, 1, 0, fileid, false)); | |
3759 | ||
3760 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3761 | } | |
6d2010ae A |
3762 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); |
3763 | ||
3764 | /* Finish the transaction and start over if necessary */ | |
3765 | hfs_end_transaction(hfsmp); | |
3766 | ||
3767 | if (error) { | |
3768 | break; | |
3769 | } | |
3770 | } | |
3771 | } | |
3772 | ||
3773 | /* Resource fork */ | |
fe8ab488 A |
3774 | if (error == 0 && rsrcfork) { |
3775 | rsrcfork->ff_size = 0; | |
3776 | ||
6d2010ae A |
3777 | fileblocks = rsrcfork->ff_blocks; |
3778 | filebytes = (off_t)fileblocks * (off_t)blksize; | |
3779 | ||
3780 | /* We killed invalid ranges and loaned blocks before we removed the catalog entry */ | |
3781 | ||
3782 | while (filebytes > 0) { | |
fe8ab488 | 3783 | if (filebytes > HFS_BIGFILE_SIZE) { |
6d2010ae A |
3784 | filebytes -= HFS_BIGFILE_SIZE; |
3785 | } else { | |
3786 | filebytes = 0; | |
3787 | } | |
3788 | ||
3789 | /* Start a transaction, and wipe out as many blocks as we can in this iteration */ | |
3790 | if (hfs_start_transaction(hfsmp) != 0) { | |
3791 | error = EINVAL; | |
3792 | break; | |
3793 | } | |
3794 | ||
3795 | if (rsrcfork->ff_unallocblocks == 0) { | |
3796 | /* Protect extents b-tree and allocation bitmap */ | |
3797 | lockflags = SFL_BITMAP; | |
3798 | if (overflow_extents(rsrcfork)) | |
3799 | lockflags |= SFL_EXTENTS; | |
3800 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
3801 | ||
3802 | error = MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp), rsrcfork, filebytes, 1, 1, fileid, false)); | |
3803 | ||
3804 | hfs_systemfile_unlock(hfsmp, lockflags); | |
3805 | } | |
6d2010ae A |
3806 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); |
3807 | ||
3808 | /* Finish the transaction and start over if necessary */ | |
3809 | hfs_end_transaction(hfsmp); | |
3810 | ||
3811 | if (error) { | |
3812 | break; | |
3813 | } | |
3814 | } | |
3815 | } | |
3816 | ||
3817 | return error; | |
3818 | } | |
1c79356b | 3819 | |
fe8ab488 A |
3820 | errno_t hfs_ubc_setsize(vnode_t vp, off_t len, bool have_cnode_lock) |
3821 | { | |
3822 | errno_t error; | |
3823 | ||
3824 | /* | |
3825 | * Call ubc_setsize to give the VM subsystem a chance to do | |
3826 | * whatever it needs to with existing pages before we delete | |
3827 | * blocks. Note that symlinks don't use the UBC so we'll | |
3828 | * get back ENOENT in that case. | |
3829 | */ | |
3830 | if (have_cnode_lock) { | |
3831 | error = ubc_setsize_ex(vp, len, UBC_SETSIZE_NO_FS_REENTRY); | |
3832 | if (error == EAGAIN) { | |
3833 | cnode_t *cp = VTOC(vp); | |
3834 | ||
3835 | if (cp->c_truncatelockowner != current_thread()) { | |
3836 | #if DEVELOPMENT || DEBUG | |
3837 | panic("hfs: hfs_ubc_setsize called without exclusive truncate lock!"); | |
3838 | #else | |
3839 | printf("hfs: hfs_ubc_setsize called without exclusive truncate lock!\n"); | |
3840 | #endif | |
3841 | } | |
3842 | ||
3843 | hfs_unlock(cp); | |
3844 | error = ubc_setsize_ex(vp, len, 0); | |
3845 | hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK); | |
3846 | } | |
3847 | } else | |
3848 | error = ubc_setsize_ex(vp, len, 0); | |
3849 | ||
3850 | return error == ENOENT ? 0 : error; | |
3851 | } | |
91447636 | 3852 | |
55e303ae | 3853 | /* |
55e303ae A |
3854 | * Truncate a cnode to at most length size, freeing (or adding) the |
3855 | * disk blocks. | |
3856 | */ | |
91447636 | 3857 | int |
fe8ab488 A |
3858 | hfs_truncate(struct vnode *vp, off_t length, int flags, |
3859 | int truncateflags, vfs_context_t context) | |
55e303ae | 3860 | { |
fe8ab488 | 3861 | struct filefork *fp = VTOF(vp); |
55e303ae | 3862 | off_t filebytes; |
b0d623f7 | 3863 | u_int32_t fileblocks; |
fe8ab488 A |
3864 | int blksize; |
3865 | errno_t error = 0; | |
3a60a9f5 | 3866 | struct cnode *cp = VTOC(vp); |
55e303ae | 3867 | |
2d21ac55 A |
3868 | /* Cannot truncate an HFS directory! */ |
3869 | if (vnode_isdir(vp)) { | |
3870 | return (EISDIR); | |
3871 | } | |
3872 | /* A swap file cannot change size. */ | |
fe8ab488 | 3873 | if (vnode_isswap(vp) && length && !ISSET(flags, IO_NOAUTH)) { |
2d21ac55 A |
3874 | return (EPERM); |
3875 | } | |
55e303ae | 3876 | |
55e303ae A |
3877 | blksize = VTOVCB(vp)->blockSize; |
3878 | fileblocks = fp->ff_blocks; | |
3879 | filebytes = (off_t)fileblocks * (off_t)blksize; | |
3880 | ||
fe8ab488 A |
3881 | bool caller_has_cnode_lock = (cp->c_lockowner == current_thread()); |
3882 | ||
3883 | error = hfs_ubc_setsize(vp, length, caller_has_cnode_lock); | |
3884 | if (error) | |
3885 | return error; | |
3886 | ||
3887 | if (!caller_has_cnode_lock) { | |
3888 | error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); | |
3889 | if (error) | |
3890 | return error; | |
3891 | } | |
2d21ac55 | 3892 | |
55e303ae A |
3893 | // have to loop truncating or growing files that are |
3894 | // really big because otherwise transactions can get | |
3895 | // enormous and consume too many kernel resources. | |
91447636 A |
3896 | |
3897 | if (length < filebytes) { | |
3898 | while (filebytes > length) { | |
fe8ab488 | 3899 | if ((filebytes - length) > HFS_BIGFILE_SIZE) { |
91447636 A |
3900 | filebytes -= HFS_BIGFILE_SIZE; |
3901 | } else { | |
3902 | filebytes = length; | |
3903 | } | |
3a60a9f5 | 3904 | cp->c_flag |= C_FORCEUPDATE; |
39236c6e | 3905 | error = do_hfs_truncate(vp, filebytes, flags, truncateflags, context); |
91447636 A |
3906 | if (error) |
3907 | break; | |
3908 | } | |
3909 | } else if (length > filebytes) { | |
3910 | while (filebytes < length) { | |
fe8ab488 | 3911 | if ((length - filebytes) > HFS_BIGFILE_SIZE) { |
91447636 A |
3912 | filebytes += HFS_BIGFILE_SIZE; |
3913 | } else { | |
3914 | filebytes = length; | |
3915 | } | |
3a60a9f5 | 3916 | cp->c_flag |= C_FORCEUPDATE; |
39236c6e | 3917 | error = do_hfs_truncate(vp, filebytes, flags, truncateflags, context); |
91447636 A |
3918 | if (error) |
3919 | break; | |
55e303ae | 3920 | } |
91447636 | 3921 | } else /* Same logical size */ { |
55e303ae | 3922 | |
39236c6e | 3923 | error = do_hfs_truncate(vp, length, flags, truncateflags, context); |
91447636 A |
3924 | } |
3925 | /* Files that are changing size are not hot file candidates. */ | |
3926 | if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { | |
3927 | fp->ff_bytesread = 0; | |
55e303ae A |
3928 | } |
3929 | ||
fe8ab488 A |
3930 | if (!caller_has_cnode_lock) |
3931 | hfs_unlock(cp); | |
55e303ae | 3932 | |
fe8ab488 A |
3933 | // Make sure UBC's size matches up (in case we didn't completely succeed) |
3934 | errno_t err2 = hfs_ubc_setsize(vp, fp->ff_size, caller_has_cnode_lock); | |
3935 | if (!error) | |
3936 | error = err2; | |
3937 | ||
3938 | return error; | |
3939 | } | |
55e303ae | 3940 | |
1c79356b A |
3941 | |
3942 | /* | |
91447636 | 3943 | * Preallocate file storage space. |
1c79356b | 3944 | */ |
91447636 A |
3945 | int |
3946 | hfs_vnop_allocate(struct vnop_allocate_args /* { | |
3947 | vnode_t a_vp; | |
9bccf70c A |
3948 | off_t a_length; |
3949 | u_int32_t a_flags; | |
3950 | off_t *a_bytesallocated; | |
3951 | off_t a_offset; | |
91447636 A |
3952 | vfs_context_t a_context; |
3953 | } */ *ap) | |
1c79356b | 3954 | { |
9bccf70c | 3955 | struct vnode *vp = ap->a_vp; |
91447636 A |
3956 | struct cnode *cp; |
3957 | struct filefork *fp; | |
3958 | ExtendedVCB *vcb; | |
9bccf70c A |
3959 | off_t length = ap->a_length; |
3960 | off_t startingPEOF; | |
3961 | off_t moreBytesRequested; | |
3962 | off_t actualBytesAdded; | |
3963 | off_t filebytes; | |
b0d623f7 | 3964 | u_int32_t fileblocks; |
9bccf70c | 3965 | int retval, retval2; |
2d21ac55 A |
3966 | u_int32_t blockHint; |
3967 | u_int32_t extendFlags; /* For call to ExtendFileC */ | |
b4c24cb9 | 3968 | struct hfsmount *hfsmp; |
91447636 A |
3969 | kauth_cred_t cred = vfs_context_ucred(ap->a_context); |
3970 | int lockflags; | |
6d2010ae | 3971 | time_t orig_ctime; |
91447636 A |
3972 | |
3973 | *(ap->a_bytesallocated) = 0; | |
3974 | ||
3975 | if (!vnode_isreg(vp)) | |
3976 | return (EISDIR); | |
3977 | if (length < (off_t)0) | |
3978 | return (EINVAL); | |
2d21ac55 | 3979 | |
91447636 | 3980 | cp = VTOC(vp); |
2d21ac55 | 3981 | |
6d2010ae A |
3982 | orig_ctime = VTOC(vp)->c_ctime; |
3983 | ||
3984 | check_for_tracked_file(vp, orig_ctime, ap->a_length == 0 ? NAMESPACE_HANDLER_TRUNCATE_OP|NAMESPACE_HANDLER_DELETE_OP : NAMESPACE_HANDLER_TRUNCATE_OP, NULL); | |
3985 | ||
39236c6e | 3986 | hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
2d21ac55 | 3987 | |
39236c6e | 3988 | if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { |
2d21ac55 A |
3989 | goto Err_Exit; |
3990 | } | |
3991 | ||
91447636 | 3992 | fp = VTOF(vp); |
b4c24cb9 | 3993 | hfsmp = VTOHFS(vp); |
91447636 | 3994 | vcb = VTOVCB(vp); |
9bccf70c | 3995 | |
9bccf70c | 3996 | fileblocks = fp->ff_blocks; |
55e303ae | 3997 | filebytes = (off_t)fileblocks * (off_t)vcb->blockSize; |
9bccf70c | 3998 | |
91447636 A |
3999 | if ((ap->a_flags & ALLOCATEFROMVOL) && (length < filebytes)) { |
4000 | retval = EINVAL; | |
4001 | goto Err_Exit; | |
4002 | } | |
0b4e3aa0 | 4003 | |
9bccf70c | 4004 | /* Fill in the flags word for the call to Extend the file */ |
1c79356b | 4005 | |
55e303ae | 4006 | extendFlags = kEFNoClumpMask; |
9bccf70c | 4007 | if (ap->a_flags & ALLOCATECONTIG) |
1c79356b | 4008 | extendFlags |= kEFContigMask; |
9bccf70c | 4009 | if (ap->a_flags & ALLOCATEALL) |
1c79356b | 4010 | extendFlags |= kEFAllMask; |
91447636 | 4011 | if (cred && suser(cred, NULL) != 0) |
9bccf70c | 4012 | extendFlags |= kEFReserveMask; |
b0d623f7 A |
4013 | if (hfs_virtualmetafile(cp)) |
4014 | extendFlags |= kEFMetadataMask; | |
1c79356b | 4015 | |
9bccf70c A |
4016 | retval = E_NONE; |
4017 | blockHint = 0; | |
4018 | startingPEOF = filebytes; | |
1c79356b | 4019 | |
9bccf70c A |
4020 | if (ap->a_flags & ALLOCATEFROMPEOF) |
4021 | length += filebytes; | |
4022 | else if (ap->a_flags & ALLOCATEFROMVOL) | |
4023 | blockHint = ap->a_offset / VTOVCB(vp)->blockSize; | |
1c79356b | 4024 | |
9bccf70c A |
4025 | /* If no changes are necesary, then we're done */ |
4026 | if (filebytes == length) | |
4027 | goto Std_Exit; | |
1c79356b | 4028 | |
9bccf70c A |
4029 | /* |
4030 | * Lengthen the size of the file. We must ensure that the | |
4031 | * last byte of the file is allocated. Since the smallest | |
4032 | * value of filebytes is 0, length will be at least 1. | |
4033 | */ | |
4034 | if (length > filebytes) { | |
2d21ac55 A |
4035 | off_t total_bytes_added = 0, orig_request_size; |
4036 | ||
4037 | orig_request_size = moreBytesRequested = length - filebytes; | |
1c79356b | 4038 | |
9bccf70c | 4039 | #if QUOTA |
b4c24cb9 | 4040 | retval = hfs_chkdq(cp, |
55e303ae | 4041 | (int64_t)(roundup(moreBytesRequested, vcb->blockSize)), |
91447636 | 4042 | cred, 0); |
9bccf70c | 4043 | if (retval) |
91447636 | 4044 | goto Err_Exit; |
9bccf70c A |
4045 | |
4046 | #endif /* QUOTA */ | |
55e303ae A |
4047 | /* |
4048 | * Metadata zone checks. | |
4049 | */ | |
4050 | if (hfsmp->hfs_flags & HFS_METADATA_ZONE) { | |
4051 | /* | |
4052 | * Allocate Journal and Quota files in metadata zone. | |
4053 | */ | |
4054 | if (hfs_virtualmetafile(cp)) { | |
55e303ae A |
4055 | blockHint = hfsmp->hfs_metazone_start; |
4056 | } else if ((blockHint >= hfsmp->hfs_metazone_start) && | |
4057 | (blockHint <= hfsmp->hfs_metazone_end)) { | |
4058 | /* | |
4059 | * Move blockHint outside metadata zone. | |
4060 | */ | |
4061 | blockHint = hfsmp->hfs_metazone_end + 1; | |
4062 | } | |
4063 | } | |
4064 | ||
b4c24cb9 | 4065 | |
2d21ac55 A |
4066 | while ((length > filebytes) && (retval == E_NONE)) { |
4067 | off_t bytesRequested; | |
4068 | ||
4069 | if (hfs_start_transaction(hfsmp) != 0) { | |
4070 | retval = EINVAL; | |
4071 | goto Err_Exit; | |
4072 | } | |
4073 | ||
4074 | /* Protect extents b-tree and allocation bitmap */ | |
4075 | lockflags = SFL_BITMAP; | |
4076 | if (overflow_extents(fp)) | |
fe8ab488 | 4077 | lockflags |= SFL_EXTENTS; |
2d21ac55 A |
4078 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); |
4079 | ||
4080 | if (moreBytesRequested >= HFS_BIGFILE_SIZE) { | |
fe8ab488 | 4081 | bytesRequested = HFS_BIGFILE_SIZE; |
2d21ac55 | 4082 | } else { |
fe8ab488 | 4083 | bytesRequested = moreBytesRequested; |
2d21ac55 | 4084 | } |
1c79356b | 4085 | |
b0d623f7 A |
4086 | if (extendFlags & kEFContigMask) { |
4087 | // if we're on a sparse device, this will force it to do a | |
4088 | // full scan to find the space needed. | |
4089 | hfsmp->hfs_flags &= ~HFS_DID_CONTIG_SCAN; | |
4090 | } | |
4091 | ||
2d21ac55 | 4092 | retval = MacToVFSError(ExtendFileC(vcb, |
9bccf70c | 4093 | (FCB*)fp, |
2d21ac55 | 4094 | bytesRequested, |
9bccf70c A |
4095 | blockHint, |
4096 | extendFlags, | |
4097 | &actualBytesAdded)); | |
1c79356b | 4098 | |
2d21ac55 A |
4099 | if (retval == E_NONE) { |
4100 | *(ap->a_bytesallocated) += actualBytesAdded; | |
4101 | total_bytes_added += actualBytesAdded; | |
4102 | moreBytesRequested -= actualBytesAdded; | |
4103 | if (blockHint != 0) { | |
4104 | blockHint += actualBytesAdded / vcb->blockSize; | |
4105 | } | |
4106 | } | |
4107 | filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; | |
4108 | ||
4109 | hfs_systemfile_unlock(hfsmp, lockflags); | |
1c79356b | 4110 | |
2d21ac55 | 4111 | if (hfsmp->jnl) { |
91447636 A |
4112 | (void) hfs_update(vp, TRUE); |
4113 | (void) hfs_volupdate(hfsmp, VOL_UPDATE, 0); | |
2d21ac55 A |
4114 | } |
4115 | ||
4116 | hfs_end_transaction(hfsmp); | |
b4c24cb9 | 4117 | } |
91447636 | 4118 | |
b4c24cb9 | 4119 | |
1c79356b A |
4120 | /* |
4121 | * if we get an error and no changes were made then exit | |
91447636 | 4122 | * otherwise we must do the hfs_update to reflect the changes |
1c79356b | 4123 | */ |
9bccf70c A |
4124 | if (retval && (startingPEOF == filebytes)) |
4125 | goto Err_Exit; | |
1c79356b | 4126 | |
9bccf70c A |
4127 | /* |
4128 | * Adjust actualBytesAdded to be allocation block aligned, not | |
4129 | * clump size aligned. | |
4130 | * NOTE: So what we are reporting does not affect reality | |
4131 | * until the file is closed, when we truncate the file to allocation | |
4132 | * block size. | |
4133 | */ | |
2d21ac55 | 4134 | if (total_bytes_added != 0 && orig_request_size < total_bytes_added) |
0b4e3aa0 | 4135 | *(ap->a_bytesallocated) = |
2d21ac55 | 4136 | roundup(orig_request_size, (off_t)vcb->blockSize); |
1c79356b | 4137 | |
9bccf70c | 4138 | } else { /* Shorten the size of the file */ |
1c79356b | 4139 | |
fe8ab488 A |
4140 | /* |
4141 | * N.B. At present, this code is never called. If and when we | |
4142 | * do start using it, it looks like there might be slightly | |
4143 | * strange semantics with the file size: it's possible for the | |
4144 | * file size to *increase* e.g. if current file size is 5, | |
4145 | * length is 1024 and filebytes is 4096, the file size will | |
4146 | * end up being 1024 bytes. This isn't necessarily a problem | |
4147 | * but it's not consistent with the code above which doesn't | |
4148 | * change the file size. | |
4149 | */ | |
1c79356b | 4150 | |
fe8ab488 | 4151 | retval = hfs_truncate(vp, length, 0, 0, ap->a_context); |
55e303ae | 4152 | filebytes = (off_t)fp->ff_blocks * (off_t)vcb->blockSize; |
b4c24cb9 | 4153 | |
1c79356b A |
4154 | /* |
4155 | * if we get an error and no changes were made then exit | |
91447636 | 4156 | * otherwise we must do the hfs_update to reflect the changes |
1c79356b | 4157 | */ |
9bccf70c A |
4158 | if (retval && (startingPEOF == filebytes)) goto Err_Exit; |
4159 | #if QUOTA | |
4160 | /* These are bytesreleased */ | |
4161 | (void) hfs_chkdq(cp, (int64_t)-((startingPEOF - filebytes)), NOCRED,0); | |
4162 | #endif /* QUOTA */ | |
1c79356b | 4163 | |
9bccf70c A |
4164 | if (fp->ff_size > filebytes) { |
4165 | fp->ff_size = filebytes; | |
1c79356b | 4166 | |
fe8ab488 | 4167 | hfs_ubc_setsize(vp, fp->ff_size, true); |
9bccf70c A |
4168 | } |
4169 | } | |
1c79356b A |
4170 | |
4171 | Std_Exit: | |
91447636 A |
4172 | cp->c_touch_chgtime = TRUE; |
4173 | cp->c_touch_modtime = TRUE; | |
4174 | retval2 = hfs_update(vp, MNT_WAIT); | |
1c79356b | 4175 | |
9bccf70c A |
4176 | if (retval == 0) |
4177 | retval = retval2; | |
1c79356b | 4178 | Err_Exit: |
39236c6e | 4179 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
91447636 | 4180 | hfs_unlock(cp); |
9bccf70c | 4181 | return (retval); |
1c79356b A |
4182 | } |
4183 | ||
4184 | ||
9bccf70c | 4185 | /* |
91447636 | 4186 | * Pagein for HFS filesystem |
9bccf70c | 4187 | */ |
1c79356b | 4188 | int |
91447636 A |
4189 | hfs_vnop_pagein(struct vnop_pagein_args *ap) |
4190 | /* | |
4191 | struct vnop_pagein_args { | |
4192 | vnode_t a_vp, | |
1c79356b A |
4193 | upl_t a_pl, |
4194 | vm_offset_t a_pl_offset, | |
4195 | off_t a_f_offset, | |
4196 | size_t a_size, | |
1c79356b | 4197 | int a_flags |
91447636 A |
4198 | vfs_context_t a_context; |
4199 | }; | |
4200 | */ | |
1c79356b | 4201 | { |
6d2010ae A |
4202 | vnode_t vp; |
4203 | struct cnode *cp; | |
4204 | struct filefork *fp; | |
4205 | int error = 0; | |
4206 | upl_t upl; | |
4207 | upl_page_info_t *pl; | |
4208 | off_t f_offset; | |
fe8ab488 | 4209 | off_t page_needed_f_offset; |
6d2010ae A |
4210 | int offset; |
4211 | int isize; | |
fe8ab488 | 4212 | int upl_size; |
6d2010ae A |
4213 | int pg_index; |
4214 | boolean_t truncate_lock_held = FALSE; | |
4215 | boolean_t file_converted = FALSE; | |
4216 | kern_return_t kret; | |
4217 | ||
4218 | vp = ap->a_vp; | |
4219 | cp = VTOC(vp); | |
4220 | fp = VTOF(vp); | |
4221 | ||
4222 | #if CONFIG_PROTECT | |
316670eb | 4223 | if ((error = cp_handle_vnop(vp, CP_READ_ACCESS | CP_WRITE_ACCESS, 0)) != 0) { |
39236c6e A |
4224 | /* |
4225 | * If we errored here, then this means that one of two things occurred: | |
4226 | * 1. there was a problem with the decryption of the key. | |
4227 | * 2. the device is locked and we are not allowed to access this particular file. | |
4228 | * | |
4229 | * Either way, this means that we need to shut down this upl now. As long as | |
4230 | * the pl pointer is NULL (meaning that we're supposed to create the UPL ourselves) | |
4231 | * then we create a upl and immediately abort it. | |
4232 | */ | |
4233 | if (ap->a_pl == NULL) { | |
4234 | /* create the upl */ | |
4235 | ubc_create_upl (vp, ap->a_f_offset, ap->a_size, &upl, &pl, | |
4236 | UPL_UBC_PAGEIN | UPL_RET_ONLY_ABSENT); | |
4237 | /* mark the range as needed so it doesn't immediately get discarded upon abort */ | |
4238 | ubc_upl_range_needed (upl, ap->a_pl_offset / PAGE_SIZE, 1); | |
4239 | ||
4240 | /* Abort the range */ | |
4241 | ubc_upl_abort_range (upl, 0, ap->a_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
4242 | } | |
4243 | ||
4244 | ||
6d2010ae A |
4245 | return error; |
4246 | } | |
4247 | #endif /* CONFIG_PROTECT */ | |
4248 | ||
4249 | if (ap->a_pl != NULL) { | |
4250 | /* | |
4251 | * this can only happen for swap files now that | |
4252 | * we're asking for V2 paging behavior... | |
4253 | * so don't need to worry about decompression, or | |
4254 | * keeping track of blocks read or taking the truncate lock | |
4255 | */ | |
4256 | error = cluster_pagein(vp, ap->a_pl, ap->a_pl_offset, ap->a_f_offset, | |
4257 | ap->a_size, (off_t)fp->ff_size, ap->a_flags); | |
4258 | goto pagein_done; | |
4259 | } | |
4260 | ||
fe8ab488 A |
4261 | page_needed_f_offset = ap->a_f_offset + ap->a_pl_offset; |
4262 | ||
6d2010ae A |
4263 | retry_pagein: |
4264 | /* | |
4265 | * take truncate lock (shared/recursive) to guard against | |
4266 | * zero-fill thru fsync interfering, but only for v2 | |
4267 | * | |
4268 | * the HFS_RECURSE_TRUNCLOCK arg indicates that we want the | |
4269 | * lock shared and we are allowed to recurse 1 level if this thread already | |
4270 | * owns the lock exclusively... this can legally occur | |
4271 | * if we are doing a shrinking ftruncate against a file | |
4272 | * that is mapped private, and the pages being truncated | |
4273 | * do not currently exist in the cache... in that case | |
4274 | * we will have to page-in the missing pages in order | |
4275 | * to provide them to the private mapping... we must | |
4276 | * also call hfs_unlock_truncate with a postive been_recursed | |
4277 | * arg to indicate that if we have recursed, there is no need to drop | |
4278 | * the lock. Allowing this simple recursion is necessary | |
4279 | * in order to avoid a certain deadlock... since the ftruncate | |
4280 | * already holds the truncate lock exclusively, if we try | |
4281 | * to acquire it shared to protect the pagein path, we will | |
4282 | * hang this thread | |
4283 | * | |
4284 | * NOTE: The if () block below is a workaround in order to prevent a | |
4285 | * VM deadlock. See rdar://7853471. | |
4286 | * | |
4287 | * If we are in a forced unmount, then launchd will still have the | |
4288 | * dyld_shared_cache file mapped as it is trying to reboot. If we | |
4289 | * take the truncate lock here to service a page fault, then our | |
4290 | * thread could deadlock with the forced-unmount. The forced unmount | |
4291 | * thread will try to reclaim the dyld_shared_cache vnode, but since it's | |
4292 | * marked C_DELETED, it will call ubc_setsize(0). As a result, the unmount | |
4293 | * thread will think it needs to copy all of the data out of the file | |
4294 | * and into a VM copy object. If we hold the cnode lock here, then that | |
4295 | * VM operation will not be able to proceed, because we'll set a busy page | |
4296 | * before attempting to grab the lock. Note that this isn't as simple as "don't | |
4297 | * call ubc_setsize" because doing that would just shift the problem to the | |
4298 | * ubc_msync done before the vnode is reclaimed. | |
4299 | * | |
4300 | * So, if a forced unmount on this volume is in flight AND the cnode is | |
4301 | * marked C_DELETED, then just go ahead and do the page in without taking | |
4302 | * the lock (thus suspending pagein_v2 semantics temporarily). Since it's on a file | |
4303 | * that is not going to be available on the next mount, this seems like a | |
4304 | * OK solution from a correctness point of view, even though it is hacky. | |
4305 | */ | |
4306 | if (vfs_isforce(vp->v_mount)) { | |
4307 | if (cp->c_flag & C_DELETED) { | |
4308 | /* If we don't get it, then just go ahead and operate without the lock */ | |
39236c6e | 4309 | truncate_lock_held = hfs_try_trunclock(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); |
6d2010ae A |
4310 | } |
4311 | } | |
4312 | else { | |
39236c6e | 4313 | hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); |
6d2010ae A |
4314 | truncate_lock_held = TRUE; |
4315 | } | |
4316 | ||
4317 | kret = ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, UPL_UBC_PAGEIN | UPL_RET_ONLY_ABSENT); | |
4318 | ||
4319 | if ((kret != KERN_SUCCESS) || (upl == (upl_t) NULL)) { | |
4320 | error = EINVAL; | |
4321 | goto pagein_done; | |
4322 | } | |
316670eb A |
4323 | ubc_upl_range_needed(upl, ap->a_pl_offset / PAGE_SIZE, 1); |
4324 | ||
fe8ab488 | 4325 | upl_size = isize = ap->a_size; |
6d2010ae | 4326 | |
fe8ab488 | 4327 | /* |
6d2010ae A |
4328 | * Scan from the back to find the last page in the UPL, so that we |
4329 | * aren't looking at a UPL that may have already been freed by the | |
4330 | * preceding aborts/completions. | |
4331 | */ | |
4332 | for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) { | |
4333 | if (upl_page_present(pl, --pg_index)) | |
4334 | break; | |
4335 | if (pg_index == 0) { | |
4336 | /* | |
4337 | * no absent pages were found in the range specified | |
4338 | * just abort the UPL to get rid of it and then we're done | |
4339 | */ | |
4340 | ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY); | |
4341 | goto pagein_done; | |
4342 | } | |
4343 | } | |
4344 | /* | |
4345 | * initialize the offset variables before we touch the UPL. | |
4346 | * f_offset is the position into the file, in bytes | |
4347 | * offset is the position into the UPL, in bytes | |
4348 | * pg_index is the pg# of the UPL we're operating on | |
4349 | * isize is the offset into the UPL of the last page that is present. | |
4350 | */ | |
4351 | isize = ((pg_index + 1) * PAGE_SIZE); | |
4352 | pg_index = 0; | |
4353 | offset = 0; | |
4354 | f_offset = ap->a_f_offset; | |
4355 | ||
4356 | while (isize) { | |
4357 | int xsize; | |
4358 | int num_of_pages; | |
4359 | ||
4360 | if ( !upl_page_present(pl, pg_index)) { | |
4361 | /* | |
4362 | * we asked for RET_ONLY_ABSENT, so it's possible | |
4363 | * to get back empty slots in the UPL. | |
4364 | * just skip over them | |
4365 | */ | |
4366 | f_offset += PAGE_SIZE; | |
4367 | offset += PAGE_SIZE; | |
4368 | isize -= PAGE_SIZE; | |
4369 | pg_index++; | |
4370 | ||
4371 | continue; | |
4372 | } | |
4373 | /* | |
4374 | * We know that we have at least one absent page. | |
4375 | * Now checking to see how many in a row we have | |
4376 | */ | |
4377 | num_of_pages = 1; | |
4378 | xsize = isize - PAGE_SIZE; | |
4379 | ||
4380 | while (xsize) { | |
4381 | if ( !upl_page_present(pl, pg_index + num_of_pages)) | |
4382 | break; | |
4383 | num_of_pages++; | |
4384 | xsize -= PAGE_SIZE; | |
4385 | } | |
4386 | xsize = num_of_pages * PAGE_SIZE; | |
1c79356b | 4387 | |
b0d623f7 | 4388 | #if HFS_COMPRESSION |
6d2010ae A |
4389 | if (VNODE_IS_RSRC(vp)) { |
4390 | /* allow pageins of the resource fork */ | |
4391 | } else { | |
4392 | int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */ | |
4393 | ||
b0d623f7 | 4394 | if (compressed) { |
fe8ab488 | 4395 | |
6d2010ae A |
4396 | if (truncate_lock_held) { |
4397 | /* | |
4398 | * can't hold the truncate lock when calling into the decmpfs layer | |
4399 | * since it calls back into this layer... even though we're only | |
4400 | * holding the lock in shared mode, and the re-entrant path only | |
4401 | * takes the lock shared, we can deadlock if some other thread | |
4402 | * tries to grab the lock exclusively in between. | |
4403 | */ | |
39236c6e | 4404 | hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); |
6d2010ae A |
4405 | truncate_lock_held = FALSE; |
4406 | } | |
4407 | ap->a_pl = upl; | |
4408 | ap->a_pl_offset = offset; | |
4409 | ap->a_f_offset = f_offset; | |
4410 | ap->a_size = xsize; | |
4411 | ||
4412 | error = decmpfs_pagein_compressed(ap, &compressed, VTOCMP(vp)); | |
4413 | /* | |
4414 | * note that decpfs_pagein_compressed can change the state of | |
4415 | * 'compressed'... it will set it to 0 if the file is no longer | |
4416 | * compressed once the compression lock is successfully taken | |
4417 | * i.e. we would block on that lock while the file is being inflated | |
4418 | */ | |
4419 | if (compressed) { | |
4420 | if (error == 0) { | |
4421 | /* successful page-in, update the access time */ | |
4422 | VTOC(vp)->c_touch_acctime = TRUE; | |
b0d623f7 | 4423 | |
6d2010ae A |
4424 | /* compressed files are not hot file candidates */ |
4425 | if (VTOHFS(vp)->hfc_stage == HFC_RECORDING) { | |
4426 | fp->ff_bytesread = 0; | |
4427 | } | |
4428 | } else if (error == EAGAIN) { | |
4429 | /* | |
4430 | * EAGAIN indicates someone else already holds the compression lock... | |
4431 | * to avoid deadlocking, we'll abort this range of pages with an | |
4432 | * indication that the pagein needs to be redriven | |
4433 | */ | |
4434 | ubc_upl_abort_range(upl, (upl_offset_t) offset, xsize, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_RESTART); | |
fe8ab488 A |
4435 | } else if (error == ENOSPC) { |
4436 | ||
4437 | if (upl_size == PAGE_SIZE) | |
4438 | panic("decmpfs_pagein_compressed: couldn't ubc_upl_map a single page\n"); | |
4439 | ||
4440 | ubc_upl_abort_range(upl, (upl_offset_t) offset, isize, UPL_ABORT_FREE_ON_EMPTY); | |
4441 | ||
4442 | ap->a_size = PAGE_SIZE; | |
4443 | ap->a_pl = NULL; | |
4444 | ap->a_pl_offset = 0; | |
4445 | ap->a_f_offset = page_needed_f_offset; | |
4446 | ||
4447 | goto retry_pagein; | |
b0d623f7 | 4448 | } |
6d2010ae A |
4449 | goto pagein_next_range; |
4450 | } | |
4451 | else { | |
4452 | /* | |
4453 | * Set file_converted only if the file became decompressed while we were | |
4454 | * paging in. If it were still compressed, we would re-start the loop using the goto | |
4455 | * in the above block. This avoid us overloading truncate_lock_held as our retry_pagein | |
4456 | * condition below, since we could have avoided taking the truncate lock to prevent | |
4457 | * a deadlock in the force unmount case. | |
4458 | */ | |
4459 | file_converted = TRUE; | |
b0d623f7 | 4460 | } |
b0d623f7 | 4461 | } |
6d2010ae A |
4462 | if (file_converted == TRUE) { |
4463 | /* | |
4464 | * the file was converted back to a regular file after we first saw it as compressed | |
4465 | * we need to abort the upl, retake the truncate lock, recreate the UPL and start over | |
4466 | * reset a_size so that we consider what remains of the original request | |
4467 | * and null out a_upl and a_pl_offset. | |
4468 | * | |
4469 | * We should only be able to get into this block if the decmpfs_pagein_compressed | |
4470 | * successfully decompressed the range in question for this file. | |
4471 | */ | |
4472 | ubc_upl_abort_range(upl, (upl_offset_t) offset, isize, UPL_ABORT_FREE_ON_EMPTY); | |
4473 | ||
4474 | ap->a_size = isize; | |
4475 | ap->a_pl = NULL; | |
4476 | ap->a_pl_offset = 0; | |
4477 | ||
4478 | /* Reset file_converted back to false so that we don't infinite-loop. */ | |
4479 | file_converted = FALSE; | |
4480 | goto retry_pagein; | |
4481 | } | |
b0d623f7 | 4482 | } |
b0d623f7 | 4483 | #endif |
6d2010ae | 4484 | error = cluster_pagein(vp, upl, offset, f_offset, xsize, (off_t)fp->ff_size, ap->a_flags); |
b0d623f7 | 4485 | |
6d2010ae A |
4486 | /* |
4487 | * Keep track of blocks read. | |
4488 | */ | |
4489 | if ( !vnode_isswap(vp) && VTOHFS(vp)->hfc_stage == HFC_RECORDING && error == 0) { | |
4490 | int bytesread; | |
4491 | int took_cnode_lock = 0; | |
55e303ae | 4492 | |
6d2010ae A |
4493 | if (ap->a_f_offset == 0 && fp->ff_size < PAGE_SIZE) |
4494 | bytesread = fp->ff_size; | |
4495 | else | |
4496 | bytesread = xsize; | |
91447636 | 4497 | |
6d2010ae A |
4498 | /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */ |
4499 | if ((fp->ff_bytesread + bytesread) > 0x00000000ffffffff && cp->c_lockowner != current_thread()) { | |
39236c6e | 4500 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
6d2010ae A |
4501 | took_cnode_lock = 1; |
4502 | } | |
4503 | /* | |
4504 | * If this file hasn't been seen since the start of | |
4505 | * the current sampling period then start over. | |
4506 | */ | |
4507 | if (cp->c_atime < VTOHFS(vp)->hfc_timebase) { | |
4508 | struct timeval tv; | |
91447636 | 4509 | |
6d2010ae A |
4510 | fp->ff_bytesread = bytesread; |
4511 | microtime(&tv); | |
4512 | cp->c_atime = tv.tv_sec; | |
4513 | } else { | |
4514 | fp->ff_bytesread += bytesread; | |
4515 | } | |
4516 | cp->c_touch_acctime = TRUE; | |
4517 | if (took_cnode_lock) | |
4518 | hfs_unlock(cp); | |
91447636 | 4519 | } |
6d2010ae A |
4520 | pagein_next_range: |
4521 | f_offset += xsize; | |
4522 | offset += xsize; | |
4523 | isize -= xsize; | |
4524 | pg_index += num_of_pages; | |
55e303ae | 4525 | |
6d2010ae | 4526 | error = 0; |
55e303ae | 4527 | } |
6d2010ae A |
4528 | |
4529 | pagein_done: | |
4530 | if (truncate_lock_held == TRUE) { | |
4531 | /* Note 1 is passed to hfs_unlock_truncate in been_recursed argument */ | |
39236c6e | 4532 | hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); |
6d2010ae A |
4533 | } |
4534 | ||
9bccf70c | 4535 | return (error); |
1c79356b A |
4536 | } |
4537 | ||
4538 | /* | |
91447636 | 4539 | * Pageout for HFS filesystem. |
1c79356b A |
4540 | */ |
4541 | int | |
91447636 A |
4542 | hfs_vnop_pageout(struct vnop_pageout_args *ap) |
4543 | /* | |
4544 | struct vnop_pageout_args { | |
4545 | vnode_t a_vp, | |
1c79356b A |
4546 | upl_t a_pl, |
4547 | vm_offset_t a_pl_offset, | |
4548 | off_t a_f_offset, | |
4549 | size_t a_size, | |
1c79356b | 4550 | int a_flags |
91447636 A |
4551 | vfs_context_t a_context; |
4552 | }; | |
4553 | */ | |
1c79356b | 4554 | { |
91447636 A |
4555 | vnode_t vp = ap->a_vp; |
4556 | struct cnode *cp; | |
4557 | struct filefork *fp; | |
b0d623f7 | 4558 | int retval = 0; |
9bccf70c | 4559 | off_t filesize; |
b0d623f7 A |
4560 | upl_t upl; |
4561 | upl_page_info_t* pl; | |
4562 | vm_offset_t a_pl_offset; | |
4563 | int a_flags; | |
4564 | int is_pageoutv2 = 0; | |
b7266188 | 4565 | kern_return_t kret; |
1c79356b | 4566 | |
91447636 | 4567 | cp = VTOC(vp); |
91447636 | 4568 | fp = VTOF(vp); |
2d21ac55 | 4569 | |
593a1d5f A |
4570 | /* |
4571 | * Figure out where the file ends, for pageout purposes. If | |
4572 | * ff_new_size > ff_size, then we're in the middle of extending the | |
4573 | * file via a write, so it is safe (and necessary) that we be able | |
4574 | * to pageout up to that point. | |
4575 | */ | |
4576 | filesize = fp->ff_size; | |
4577 | if (fp->ff_new_size > filesize) | |
4578 | filesize = fp->ff_new_size; | |
b0d623f7 A |
4579 | |
4580 | a_flags = ap->a_flags; | |
4581 | a_pl_offset = ap->a_pl_offset; | |
4582 | ||
4583 | /* | |
4584 | * we can tell if we're getting the new or old behavior from the UPL | |
4585 | */ | |
4586 | if ((upl = ap->a_pl) == NULL) { | |
4587 | int request_flags; | |
4588 | ||
4589 | is_pageoutv2 = 1; | |
4590 | /* | |
4591 | * we're in control of any UPL we commit | |
4592 | * make sure someone hasn't accidentally passed in UPL_NOCOMMIT | |
4593 | */ | |
4594 | a_flags &= ~UPL_NOCOMMIT; | |
4595 | a_pl_offset = 0; | |
4596 | ||
4597 | /* | |
316670eb A |
4598 | * For V2 semantics, we want to take the cnode truncate lock |
4599 | * shared to guard against the file size changing via zero-filling. | |
4600 | * | |
4601 | * However, we have to be careful because we may be invoked | |
4602 | * via the ubc_msync path to write out dirty mmap'd pages | |
4603 | * in response to a lock event on a content-protected | |
4604 | * filesystem (e.g. to write out class A files). | |
4605 | * As a result, we want to take the truncate lock 'SHARED' with | |
4606 | * the mini-recursion locktype so that we don't deadlock/panic | |
4607 | * because we may be already holding the truncate lock exclusive to force any other | |
4608 | * IOs to have blocked behind us. | |
b0d623f7 | 4609 | */ |
39236c6e | 4610 | hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_SKIP_IF_EXCLUSIVE); |
b0d623f7 A |
4611 | |
4612 | if (a_flags & UPL_MSYNC) { | |
4613 | request_flags = UPL_UBC_MSYNC | UPL_RET_ONLY_DIRTY; | |
4614 | } | |
4615 | else { | |
4616 | request_flags = UPL_UBC_PAGEOUT | UPL_RET_ONLY_DIRTY; | |
4617 | } | |
6d2010ae | 4618 | |
b7266188 | 4619 | kret = ubc_create_upl(vp, ap->a_f_offset, ap->a_size, &upl, &pl, request_flags); |
b0d623f7 | 4620 | |
b7266188 | 4621 | if ((kret != KERN_SUCCESS) || (upl == (upl_t) NULL)) { |
b0d623f7 A |
4622 | retval = EINVAL; |
4623 | goto pageout_done; | |
4624 | } | |
4625 | } | |
4626 | /* | |
4627 | * from this point forward upl points at the UPL we're working with | |
4628 | * it was either passed in or we succesfully created it | |
4629 | */ | |
4630 | ||
4631 | /* | |
4632 | * Now that HFS is opting into VFC_VFSVNOP_PAGEOUTV2, we may need to operate on our own | |
4633 | * UPL instead of relying on the UPL passed into us. We go ahead and do that here, | |
4634 | * scanning for dirty ranges. We'll issue our own N cluster_pageout calls, for | |
4635 | * N dirty ranges in the UPL. Note that this is almost a direct copy of the | |
4636 | * logic in vnode_pageout except that we need to do it after grabbing the truncate | |
4637 | * lock in HFS so that we don't lock invert ourselves. | |
4638 | * | |
4639 | * Note that we can still get into this function on behalf of the default pager with | |
4640 | * non-V2 behavior (swapfiles). However in that case, we did not grab locks above | |
4641 | * since fsync and other writing threads will grab the locks, then mark the | |
4642 | * relevant pages as busy. But the pageout codepath marks the pages as busy, | |
4643 | * and THEN would attempt to grab the truncate lock, which would result in deadlock. So | |
4644 | * we do not try to grab anything for the pre-V2 case, which should only be accessed | |
4645 | * by the paging/VM system. | |
4646 | */ | |
4647 | ||
4648 | if (is_pageoutv2) { | |
4649 | off_t f_offset; | |
4650 | int offset; | |
4651 | int isize; | |
4652 | int pg_index; | |
4653 | int error; | |
4654 | int error_ret = 0; | |
4655 | ||
4656 | isize = ap->a_size; | |
4657 | f_offset = ap->a_f_offset; | |
4658 | ||
4659 | /* | |
4660 | * Scan from the back to find the last page in the UPL, so that we | |
4661 | * aren't looking at a UPL that may have already been freed by the | |
4662 | * preceding aborts/completions. | |
4663 | */ | |
4664 | for (pg_index = ((isize) / PAGE_SIZE); pg_index > 0;) { | |
4665 | if (upl_page_present(pl, --pg_index)) | |
4666 | break; | |
4667 | if (pg_index == 0) { | |
4668 | ubc_upl_abort_range(upl, 0, isize, UPL_ABORT_FREE_ON_EMPTY); | |
4669 | goto pageout_done; | |
2d21ac55 | 4670 | } |
2d21ac55 | 4671 | } |
b0d623f7 A |
4672 | |
4673 | /* | |
4674 | * initialize the offset variables before we touch the UPL. | |
4675 | * a_f_offset is the position into the file, in bytes | |
4676 | * offset is the position into the UPL, in bytes | |
4677 | * pg_index is the pg# of the UPL we're operating on. | |
4678 | * isize is the offset into the UPL of the last non-clean page. | |
4679 | */ | |
4680 | isize = ((pg_index + 1) * PAGE_SIZE); | |
4681 | ||
4682 | offset = 0; | |
4683 | pg_index = 0; | |
4684 | ||
4685 | while (isize) { | |
4686 | int xsize; | |
4687 | int num_of_pages; | |
4688 | ||
4689 | if ( !upl_page_present(pl, pg_index)) { | |
4690 | /* | |
4691 | * we asked for RET_ONLY_DIRTY, so it's possible | |
4692 | * to get back empty slots in the UPL. | |
4693 | * just skip over them | |
4694 | */ | |
4695 | f_offset += PAGE_SIZE; | |
4696 | offset += PAGE_SIZE; | |
4697 | isize -= PAGE_SIZE; | |
4698 | pg_index++; | |
4699 | ||
4700 | continue; | |
4701 | } | |
4702 | if ( !upl_dirty_page(pl, pg_index)) { | |
4703 | panic ("hfs_vnop_pageout: unforeseen clean page @ index %d for UPL %p\n", pg_index, upl); | |
4704 | } | |
4705 | ||
4706 | /* | |
4707 | * We know that we have at least one dirty page. | |
4708 | * Now checking to see how many in a row we have | |
4709 | */ | |
4710 | num_of_pages = 1; | |
4711 | xsize = isize - PAGE_SIZE; | |
4712 | ||
4713 | while (xsize) { | |
4714 | if ( !upl_dirty_page(pl, pg_index + num_of_pages)) | |
4715 | break; | |
4716 | num_of_pages++; | |
4717 | xsize -= PAGE_SIZE; | |
4718 | } | |
4719 | xsize = num_of_pages * PAGE_SIZE; | |
4720 | ||
4721 | if (!vnode_isswap(vp)) { | |
4722 | off_t end_of_range; | |
4723 | int tooklock; | |
4724 | ||
4725 | tooklock = 0; | |
4726 | ||
4727 | if (cp->c_lockowner != current_thread()) { | |
39236c6e | 4728 | if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { |
b0d623f7 A |
4729 | /* |
4730 | * we're in the v2 path, so we are the | |
4731 | * owner of the UPL... we may have already | |
4732 | * processed some of the UPL, so abort it | |
4733 | * from the current working offset to the | |
4734 | * end of the UPL | |
4735 | */ | |
4736 | ubc_upl_abort_range(upl, | |
4737 | offset, | |
4738 | ap->a_size - offset, | |
4739 | UPL_ABORT_FREE_ON_EMPTY); | |
4740 | goto pageout_done; | |
4741 | } | |
4742 | tooklock = 1; | |
4743 | } | |
4744 | end_of_range = f_offset + xsize - 1; | |
2d21ac55 | 4745 | |
b0d623f7 A |
4746 | if (end_of_range >= filesize) { |
4747 | end_of_range = (off_t)(filesize - 1); | |
4748 | } | |
4749 | if (f_offset < filesize) { | |
4750 | rl_remove(f_offset, end_of_range, &fp->ff_invalidranges); | |
4751 | cp->c_flag |= C_MODIFIED; /* leof is dirty */ | |
4752 | } | |
4753 | if (tooklock) { | |
4754 | hfs_unlock(cp); | |
4755 | } | |
4756 | } | |
4757 | if ((error = cluster_pageout(vp, upl, offset, f_offset, | |
4758 | xsize, filesize, a_flags))) { | |
4759 | if (error_ret == 0) | |
4760 | error_ret = error; | |
4761 | } | |
4762 | f_offset += xsize; | |
4763 | offset += xsize; | |
4764 | isize -= xsize; | |
4765 | pg_index += num_of_pages; | |
4766 | } | |
4767 | /* capture errnos bubbled out of cluster_pageout if they occurred */ | |
4768 | if (error_ret != 0) { | |
4769 | retval = error_ret; | |
4770 | } | |
4771 | } /* end block for v2 pageout behavior */ | |
4772 | else { | |
4773 | if (!vnode_isswap(vp)) { | |
4774 | off_t end_of_range; | |
4775 | int tooklock = 0; | |
4776 | ||
4777 | if (cp->c_lockowner != current_thread()) { | |
39236c6e | 4778 | if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) { |
b0d623f7 A |
4779 | if (!(a_flags & UPL_NOCOMMIT)) { |
4780 | ubc_upl_abort_range(upl, | |
4781 | a_pl_offset, | |
4782 | ap->a_size, | |
4783 | UPL_ABORT_FREE_ON_EMPTY); | |
4784 | } | |
4785 | goto pageout_done; | |
4786 | } | |
4787 | tooklock = 1; | |
4788 | } | |
4789 | end_of_range = ap->a_f_offset + ap->a_size - 1; | |
2d21ac55 | 4790 | |
b0d623f7 A |
4791 | if (end_of_range >= filesize) { |
4792 | end_of_range = (off_t)(filesize - 1); | |
4793 | } | |
4794 | if (ap->a_f_offset < filesize) { | |
4795 | rl_remove(ap->a_f_offset, end_of_range, &fp->ff_invalidranges); | |
4796 | cp->c_flag |= C_MODIFIED; /* leof is dirty */ | |
4797 | } | |
1c79356b | 4798 | |
b0d623f7 A |
4799 | if (tooklock) { |
4800 | hfs_unlock(cp); | |
4801 | } | |
2d21ac55 | 4802 | } |
b0d623f7 A |
4803 | /* |
4804 | * just call cluster_pageout for old pre-v2 behavior | |
4805 | */ | |
4806 | retval = cluster_pageout(vp, upl, a_pl_offset, ap->a_f_offset, | |
4807 | ap->a_size, filesize, a_flags); | |
55e303ae | 4808 | } |
0b4e3aa0 | 4809 | |
1c79356b | 4810 | /* |
fe8ab488 A |
4811 | * If data was written, update the modification time of the file |
4812 | * but only if it's mapped writable; we will have touched the | |
4813 | * modifcation time for direct writes. | |
1c79356b | 4814 | */ |
fe8ab488 A |
4815 | if (retval == 0 && (ubc_is_mapped_writable(vp) |
4816 | || ISSET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING))) { | |
4817 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); | |
4818 | ||
4819 | // Check again with lock | |
4820 | bool mapped_writable = ubc_is_mapped_writable(vp); | |
4821 | if (mapped_writable | |
4822 | || ISSET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING)) { | |
4823 | cp->c_touch_modtime = TRUE; | |
4824 | cp->c_touch_chgtime = TRUE; | |
4825 | ||
4826 | /* | |
4827 | * We only need to increment the generation counter if | |
4828 | * it's currently mapped writable because we incremented | |
4829 | * the counter in hfs_vnop_mnomap. | |
4830 | */ | |
4831 | if (mapped_writable) | |
4832 | hfs_incr_gencount(VTOC(vp)); | |
4833 | ||
4834 | /* | |
4835 | * If setuid or setgid bits are set and this process is | |
4836 | * not the superuser then clear the setuid and setgid bits | |
4837 | * as a precaution against tampering. | |
4838 | */ | |
4839 | if ((cp->c_mode & (S_ISUID | S_ISGID)) && | |
4840 | (vfs_context_suser(ap->a_context) != 0)) { | |
4841 | cp->c_mode &= ~(S_ISUID | S_ISGID); | |
4842 | } | |
b0d623f7 | 4843 | } |
fe8ab488 A |
4844 | |
4845 | hfs_unlock(cp); | |
b0d623f7 A |
4846 | } |
4847 | ||
4848 | pageout_done: | |
4849 | if (is_pageoutv2) { | |
316670eb A |
4850 | /* |
4851 | * Release the truncate lock. Note that because | |
4852 | * we may have taken the lock recursively by | |
4853 | * being invoked via ubc_msync due to lockdown, | |
4854 | * we should release it recursively, too. | |
4855 | */ | |
39236c6e | 4856 | hfs_unlock_truncate(cp, HFS_LOCK_SKIP_IF_EXCLUSIVE); |
91447636 | 4857 | } |
1c79356b A |
4858 | return (retval); |
4859 | } | |
4860 | ||
4861 | /* | |
4862 | * Intercept B-Tree node writes to unswap them if necessary. | |
1c79356b A |
4863 | */ |
4864 | int | |
91447636 | 4865 | hfs_vnop_bwrite(struct vnop_bwrite_args *ap) |
1c79356b | 4866 | { |
9bccf70c | 4867 | int retval = 0; |
9bccf70c | 4868 | register struct buf *bp = ap->a_bp; |
91447636 | 4869 | register struct vnode *vp = buf_vnode(bp); |
9bccf70c A |
4870 | BlockDescriptor block; |
4871 | ||
4872 | /* Trap B-Tree writes */ | |
4873 | if ((VTOC(vp)->c_fileid == kHFSExtentsFileID) || | |
91447636 | 4874 | (VTOC(vp)->c_fileid == kHFSCatalogFileID) || |
0c530ab8 A |
4875 | (VTOC(vp)->c_fileid == kHFSAttributesFileID) || |
4876 | (vp == VTOHFS(vp)->hfc_filevp)) { | |
9bccf70c | 4877 | |
3a60a9f5 A |
4878 | /* |
4879 | * Swap and validate the node if it is in native byte order. | |
4880 | * This is always be true on big endian, so we always validate | |
4881 | * before writing here. On little endian, the node typically has | |
2d21ac55 | 4882 | * been swapped and validated when it was written to the journal, |
3a60a9f5 A |
4883 | * so we won't do anything here. |
4884 | */ | |
2d21ac55 | 4885 | if (((u_int16_t *)((char *)buf_dataptr(bp) + buf_count(bp) - 2))[0] == 0x000e) { |
9bccf70c A |
4886 | /* Prepare the block pointer */ |
4887 | block.blockHeader = bp; | |
91447636 | 4888 | block.buffer = (char *)buf_dataptr(bp); |
3a60a9f5 | 4889 | block.blockNum = buf_lblkno(bp); |
9bccf70c | 4890 | /* not found in cache ==> came from disk */ |
91447636 A |
4891 | block.blockReadFromDisk = (buf_fromcache(bp) == 0); |
4892 | block.blockSize = buf_count(bp); | |
1c79356b | 4893 | |
9bccf70c | 4894 | /* Endian un-swap B-Tree node */ |
935ed37a | 4895 | retval = hfs_swap_BTNode (&block, vp, kSwapBTNodeHostToBig, false); |
3a60a9f5 A |
4896 | if (retval) |
4897 | panic("hfs_vnop_bwrite: about to write corrupt node!\n"); | |
9bccf70c | 4898 | } |
9bccf70c | 4899 | } |
3a60a9f5 | 4900 | |
9bccf70c | 4901 | /* This buffer shouldn't be locked anymore but if it is clear it */ |
91447636 A |
4902 | if ((buf_flags(bp) & B_LOCKED)) { |
4903 | // XXXdbg | |
4904 | if (VTOHFS(vp)->jnl) { | |
2d21ac55 | 4905 | panic("hfs: CLEARING the lock bit on bp %p\n", bp); |
91447636 A |
4906 | } |
4907 | buf_clearflags(bp, B_LOCKED); | |
9bccf70c A |
4908 | } |
4909 | retval = vn_bwrite (ap); | |
1c79356b | 4910 | |
9bccf70c | 4911 | return (retval); |
1c79356b | 4912 | } |
55e303ae A |
4913 | |
4914 | /* | |
4915 | * Relocate a file to a new location on disk | |
4916 | * cnode must be locked on entry | |
4917 | * | |
4918 | * Relocation occurs by cloning the file's data from its | |
4919 | * current set of blocks to a new set of blocks. During | |
4920 | * the relocation all of the blocks (old and new) are | |
4921 | * owned by the file. | |
4922 | * | |
4923 | * ----------------- | |
4924 | * |///////////////| | |
4925 | * ----------------- | |
4926 | * 0 N (file offset) | |
4927 | * | |
4928 | * ----------------- ----------------- | |
2d21ac55 | 4929 | * |///////////////| | | STEP 1 (acquire new blocks) |
55e303ae A |
4930 | * ----------------- ----------------- |
4931 | * 0 N N+1 2N | |
4932 | * | |
4933 | * ----------------- ----------------- | |
4934 | * |///////////////| |///////////////| STEP 2 (clone data) | |
4935 | * ----------------- ----------------- | |
4936 | * 0 N N+1 2N | |
4937 | * | |
4938 | * ----------------- | |
4939 | * |///////////////| STEP 3 (head truncate blocks) | |
4940 | * ----------------- | |
4941 | * 0 N | |
4942 | * | |
4943 | * During steps 2 and 3 page-outs to file offsets less | |
4944 | * than or equal to N are suspended. | |
4945 | * | |
2d21ac55 | 4946 | * During step 3 page-ins to the file get suspended. |
55e303ae | 4947 | */ |
55e303ae | 4948 | int |
91447636 A |
4949 | hfs_relocate(struct vnode *vp, u_int32_t blockHint, kauth_cred_t cred, |
4950 | struct proc *p) | |
55e303ae | 4951 | { |
91447636 | 4952 | struct cnode *cp; |
55e303ae A |
4953 | struct filefork *fp; |
4954 | struct hfsmount *hfsmp; | |
55e303ae A |
4955 | u_int32_t headblks; |
4956 | u_int32_t datablks; | |
4957 | u_int32_t blksize; | |
55e303ae A |
4958 | u_int32_t growsize; |
4959 | u_int32_t nextallocsave; | |
91447636 | 4960 | daddr64_t sector_a, sector_b; |
55e303ae | 4961 | int eflags; |
55e303ae | 4962 | off_t newbytes; |
91447636 A |
4963 | int retval; |
4964 | int lockflags = 0; | |
4965 | int took_trunc_lock = 0; | |
4966 | int started_tr = 0; | |
4967 | enum vtype vnodetype; | |
4968 | ||
4969 | vnodetype = vnode_vtype(vp); | |
bd504ef0 | 4970 | if (vnodetype != VREG) { |
39236c6e | 4971 | /* Not allowed to move symlinks. */ |
55e303ae A |
4972 | return (EPERM); |
4973 | } | |
4974 | ||
4975 | hfsmp = VTOHFS(vp); | |
4976 | if (hfsmp->hfs_flags & HFS_FRAGMENTED_FREESPACE) { | |
4977 | return (ENOSPC); | |
4978 | } | |
4979 | ||
91447636 | 4980 | cp = VTOC(vp); |
55e303ae A |
4981 | fp = VTOF(vp); |
4982 | if (fp->ff_unallocblocks) | |
4983 | return (EINVAL); | |
6d2010ae A |
4984 | |
4985 | #if CONFIG_PROTECT | |
4986 | /* | |
4987 | * <rdar://problem/9118426> | |
4988 | * Disable HFS file relocation on content-protected filesystems | |
4989 | */ | |
4990 | if (cp_fs_protected (hfsmp->hfs_mp)) { | |
4991 | return EINVAL; | |
4992 | } | |
4993 | #endif | |
6d2010ae A |
4994 | /* If it's an SSD, also disable HFS relocation */ |
4995 | if (hfsmp->hfs_flags & HFS_SSD) { | |
4996 | return EINVAL; | |
4997 | } | |
4998 | ||
316670eb | 4999 | |
91447636 | 5000 | blksize = hfsmp->blockSize; |
55e303ae | 5001 | if (blockHint == 0) |
91447636 | 5002 | blockHint = hfsmp->nextAllocation; |
55e303ae | 5003 | |
39236c6e | 5004 | if (fp->ff_size > 0x7fffffff) { |
55e303ae A |
5005 | return (EFBIG); |
5006 | } | |
5007 | ||
91447636 A |
5008 | // |
5009 | // We do not believe that this call to hfs_fsync() is | |
5010 | // necessary and it causes a journal transaction | |
5011 | // deadlock so we are removing it. | |
5012 | // | |
5013 | //if (vnodetype == VREG && !vnode_issystem(vp)) { | |
5014 | // retval = hfs_fsync(vp, MNT_WAIT, 0, p); | |
5015 | // if (retval) | |
5016 | // return (retval); | |
5017 | //} | |
5018 | ||
5019 | if (!vnode_issystem(vp) && (vnodetype != VLNK)) { | |
5020 | hfs_unlock(cp); | |
39236c6e | 5021 | hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
2d21ac55 | 5022 | /* Force lock since callers expects lock to be held. */ |
39236c6e A |
5023 | if ((retval = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS))) { |
5024 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); | |
91447636 A |
5025 | return (retval); |
5026 | } | |
2d21ac55 A |
5027 | /* No need to continue if file was removed. */ |
5028 | if (cp->c_flag & C_NOEXISTS) { | |
39236c6e | 5029 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
2d21ac55 A |
5030 | return (ENOENT); |
5031 | } | |
91447636 A |
5032 | took_trunc_lock = 1; |
5033 | } | |
55e303ae A |
5034 | headblks = fp->ff_blocks; |
5035 | datablks = howmany(fp->ff_size, blksize); | |
5036 | growsize = datablks * blksize; | |
55e303ae A |
5037 | eflags = kEFContigMask | kEFAllMask | kEFNoClumpMask; |
5038 | if (blockHint >= hfsmp->hfs_metazone_start && | |
5039 | blockHint <= hfsmp->hfs_metazone_end) | |
5040 | eflags |= kEFMetadataMask; | |
5041 | ||
91447636 A |
5042 | if (hfs_start_transaction(hfsmp) != 0) { |
5043 | if (took_trunc_lock) | |
39236c6e | 5044 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
91447636 | 5045 | return (EINVAL); |
55e303ae | 5046 | } |
91447636 A |
5047 | started_tr = 1; |
5048 | /* | |
5049 | * Protect the extents b-tree and the allocation bitmap | |
5050 | * during MapFileBlockC and ExtendFileC operations. | |
5051 | */ | |
5052 | lockflags = SFL_BITMAP; | |
5053 | if (overflow_extents(fp)) | |
5054 | lockflags |= SFL_EXTENTS; | |
5055 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
55e303ae | 5056 | |
91447636 | 5057 | retval = MapFileBlockC(hfsmp, (FCB *)fp, 1, growsize - 1, §or_a, NULL); |
55e303ae A |
5058 | if (retval) { |
5059 | retval = MacToVFSError(retval); | |
5060 | goto out; | |
5061 | } | |
5062 | ||
5063 | /* | |
2d21ac55 | 5064 | * STEP 1 - acquire new allocation blocks. |
55e303ae | 5065 | */ |
91447636 A |
5066 | nextallocsave = hfsmp->nextAllocation; |
5067 | retval = ExtendFileC(hfsmp, (FCB*)fp, growsize, blockHint, eflags, &newbytes); | |
5068 | if (eflags & kEFMetadataMask) { | |
39236c6e | 5069 | hfs_lock_mount(hfsmp); |
2d21ac55 A |
5070 | HFS_UPDATE_NEXT_ALLOCATION(hfsmp, nextallocsave); |
5071 | MarkVCBDirty(hfsmp); | |
39236c6e | 5072 | hfs_unlock_mount(hfsmp); |
91447636 | 5073 | } |
55e303ae A |
5074 | |
5075 | retval = MacToVFSError(retval); | |
5076 | if (retval == 0) { | |
91447636 | 5077 | cp->c_flag |= C_MODIFIED; |
55e303ae A |
5078 | if (newbytes < growsize) { |
5079 | retval = ENOSPC; | |
5080 | goto restore; | |
5081 | } else if (fp->ff_blocks < (headblks + datablks)) { | |
39236c6e | 5082 | printf("hfs_relocate: allocation failed id=%u, vol=%s\n", cp->c_cnid, hfsmp->vcbVN); |
55e303ae A |
5083 | retval = ENOSPC; |
5084 | goto restore; | |
5085 | } | |
5086 | ||
91447636 | 5087 | retval = MapFileBlockC(hfsmp, (FCB *)fp, 1, growsize, §or_b, NULL); |
55e303ae A |
5088 | if (retval) { |
5089 | retval = MacToVFSError(retval); | |
5090 | } else if ((sector_a + 1) == sector_b) { | |
5091 | retval = ENOSPC; | |
5092 | goto restore; | |
5093 | } else if ((eflags & kEFMetadataMask) && | |
593a1d5f | 5094 | ((((u_int64_t)sector_b * hfsmp->hfs_logical_block_size) / blksize) > |
55e303ae | 5095 | hfsmp->hfs_metazone_end)) { |
b0d623f7 | 5096 | #if 0 |
2d21ac55 A |
5097 | const char * filestr; |
5098 | char emptystr = '\0'; | |
5099 | ||
5100 | if (cp->c_desc.cd_nameptr != NULL) { | |
5101 | filestr = (const char *)&cp->c_desc.cd_nameptr[0]; | |
5102 | } else if (vnode_name(vp) != NULL) { | |
5103 | filestr = vnode_name(vp); | |
5104 | } else { | |
5105 | filestr = &emptystr; | |
5106 | } | |
b0d623f7 | 5107 | #endif |
55e303ae A |
5108 | retval = ENOSPC; |
5109 | goto restore; | |
5110 | } | |
5111 | } | |
91447636 A |
5112 | /* Done with system locks and journal for now. */ |
5113 | hfs_systemfile_unlock(hfsmp, lockflags); | |
5114 | lockflags = 0; | |
5115 | hfs_end_transaction(hfsmp); | |
5116 | started_tr = 0; | |
5117 | ||
55e303ae A |
5118 | if (retval) { |
5119 | /* | |
5120 | * Check to see if failure is due to excessive fragmentation. | |
5121 | */ | |
91447636 A |
5122 | if ((retval == ENOSPC) && |
5123 | (hfs_freeblks(hfsmp, 0) > (datablks * 2))) { | |
55e303ae A |
5124 | hfsmp->hfs_flags |= HFS_FRAGMENTED_FREESPACE; |
5125 | } | |
5126 | goto out; | |
5127 | } | |
55e303ae | 5128 | /* |
91447636 | 5129 | * STEP 2 - clone file data into the new allocation blocks. |
55e303ae A |
5130 | */ |
5131 | ||
91447636 | 5132 | if (vnodetype == VLNK) |
39236c6e | 5133 | retval = EPERM; |
91447636 | 5134 | else if (vnode_issystem(vp)) |
55e303ae A |
5135 | retval = hfs_clonesysfile(vp, headblks, datablks, blksize, cred, p); |
5136 | else | |
91447636 | 5137 | retval = hfs_clonefile(vp, headblks, datablks, blksize); |
ccc36f2f | 5138 | |
91447636 A |
5139 | /* Start transaction for step 3 or for a restore. */ |
5140 | if (hfs_start_transaction(hfsmp) != 0) { | |
5141 | retval = EINVAL; | |
5142 | goto out; | |
5143 | } | |
5144 | started_tr = 1; | |
55e303ae A |
5145 | if (retval) |
5146 | goto restore; | |
55e303ae A |
5147 | |
5148 | /* | |
91447636 | 5149 | * STEP 3 - switch to cloned data and remove old blocks. |
55e303ae | 5150 | */ |
91447636 A |
5151 | lockflags = SFL_BITMAP; |
5152 | if (overflow_extents(fp)) | |
5153 | lockflags |= SFL_EXTENTS; | |
5154 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
55e303ae | 5155 | |
91447636 | 5156 | retval = HeadTruncateFile(hfsmp, (FCB*)fp, headblks); |
55e303ae | 5157 | |
91447636 A |
5158 | hfs_systemfile_unlock(hfsmp, lockflags); |
5159 | lockflags = 0; | |
55e303ae A |
5160 | if (retval) |
5161 | goto restore; | |
55e303ae | 5162 | out: |
91447636 | 5163 | if (took_trunc_lock) |
39236c6e | 5164 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
55e303ae | 5165 | |
91447636 A |
5166 | if (lockflags) { |
5167 | hfs_systemfile_unlock(hfsmp, lockflags); | |
5168 | lockflags = 0; | |
ccc36f2f A |
5169 | } |
5170 | ||
0c530ab8 A |
5171 | /* Push cnode's new extent data to disk. */ |
5172 | if (retval == 0) { | |
5173 | (void) hfs_update(vp, MNT_WAIT); | |
5174 | } | |
55e303ae | 5175 | if (hfsmp->jnl) { |
91447636 | 5176 | if (cp->c_cnid < kHFSFirstUserCatalogNodeID) |
55e303ae A |
5177 | (void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH); |
5178 | else | |
5179 | (void) hfs_flushvolumeheader(hfsmp, MNT_NOWAIT, 0); | |
55e303ae | 5180 | } |
91447636 | 5181 | exit: |
91447636 A |
5182 | if (started_tr) |
5183 | hfs_end_transaction(hfsmp); | |
55e303ae A |
5184 | |
5185 | return (retval); | |
5186 | ||
5187 | restore: | |
2d21ac55 A |
5188 | if (fp->ff_blocks == headblks) { |
5189 | if (took_trunc_lock) | |
39236c6e | 5190 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
91447636 | 5191 | goto exit; |
2d21ac55 | 5192 | } |
55e303ae A |
5193 | /* |
5194 | * Give back any newly allocated space. | |
5195 | */ | |
91447636 A |
5196 | if (lockflags == 0) { |
5197 | lockflags = SFL_BITMAP; | |
5198 | if (overflow_extents(fp)) | |
5199 | lockflags |= SFL_EXTENTS; | |
5200 | lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK); | |
5201 | } | |
5202 | ||
6d2010ae A |
5203 | (void) TruncateFileC(hfsmp, (FCB*)fp, fp->ff_size, 0, FORK_IS_RSRC(fp), |
5204 | FTOC(fp)->c_fileid, false); | |
91447636 A |
5205 | |
5206 | hfs_systemfile_unlock(hfsmp, lockflags); | |
5207 | lockflags = 0; | |
5208 | ||
5209 | if (took_trunc_lock) | |
39236c6e | 5210 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
91447636 | 5211 | goto exit; |
55e303ae A |
5212 | } |
5213 | ||
5214 | ||
55e303ae A |
5215 | /* |
5216 | * Clone a file's data within the file. | |
5217 | * | |
5218 | */ | |
5219 | static int | |
91447636 | 5220 | hfs_clonefile(struct vnode *vp, int blkstart, int blkcnt, int blksize) |
55e303ae A |
5221 | { |
5222 | caddr_t bufp; | |
55e303ae A |
5223 | size_t bufsize; |
5224 | size_t copysize; | |
5225 | size_t iosize; | |
55e303ae | 5226 | size_t offset; |
b0d623f7 | 5227 | off_t writebase; |
91447636 A |
5228 | uio_t auio; |
5229 | int error = 0; | |
55e303ae | 5230 | |
55e303ae A |
5231 | writebase = blkstart * blksize; |
5232 | copysize = blkcnt * blksize; | |
0c530ab8 | 5233 | iosize = bufsize = MIN(copysize, 128 * 1024); |
55e303ae A |
5234 | offset = 0; |
5235 | ||
6d2010ae A |
5236 | hfs_unlock(VTOC(vp)); |
5237 | ||
5238 | #if CONFIG_PROTECT | |
316670eb | 5239 | if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) { |
39236c6e | 5240 | hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
6d2010ae A |
5241 | return (error); |
5242 | } | |
5243 | #endif /* CONFIG_PROTECT */ | |
5244 | ||
55e303ae | 5245 | if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) { |
39236c6e | 5246 | hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
55e303ae | 5247 | return (ENOMEM); |
6d2010ae | 5248 | } |
55e303ae | 5249 | |
b0d623f7 | 5250 | auio = uio_create(1, 0, UIO_SYSSPACE, UIO_READ); |
55e303ae A |
5251 | |
5252 | while (offset < copysize) { | |
5253 | iosize = MIN(copysize - offset, iosize); | |
5254 | ||
b0d623f7 | 5255 | uio_reset(auio, offset, UIO_SYSSPACE, UIO_READ); |
91447636 | 5256 | uio_addiov(auio, (uintptr_t)bufp, iosize); |
55e303ae | 5257 | |
2d21ac55 | 5258 | error = cluster_read(vp, auio, copysize, IO_NOCACHE); |
55e303ae A |
5259 | if (error) { |
5260 | printf("hfs_clonefile: cluster_read failed - %d\n", error); | |
5261 | break; | |
5262 | } | |
91447636 | 5263 | if (uio_resid(auio) != 0) { |
316670eb | 5264 | printf("hfs_clonefile: cluster_read: uio_resid = %lld\n", (int64_t)uio_resid(auio)); |
55e303ae A |
5265 | error = EIO; |
5266 | break; | |
5267 | } | |
5268 | ||
b0d623f7 | 5269 | uio_reset(auio, writebase + offset, UIO_SYSSPACE, UIO_WRITE); |
91447636 | 5270 | uio_addiov(auio, (uintptr_t)bufp, iosize); |
55e303ae | 5271 | |
b0d623f7 A |
5272 | error = cluster_write(vp, auio, writebase + offset, |
5273 | writebase + offset + iosize, | |
91447636 | 5274 | uio_offset(auio), 0, IO_NOCACHE | IO_SYNC); |
55e303ae A |
5275 | if (error) { |
5276 | printf("hfs_clonefile: cluster_write failed - %d\n", error); | |
5277 | break; | |
5278 | } | |
91447636 | 5279 | if (uio_resid(auio) != 0) { |
55e303ae A |
5280 | printf("hfs_clonefile: cluster_write failed - uio_resid not zero\n"); |
5281 | error = EIO; | |
5282 | break; | |
5283 | } | |
5284 | offset += iosize; | |
5285 | } | |
91447636 A |
5286 | uio_free(auio); |
5287 | ||
b0d623f7 A |
5288 | if ((blksize & PAGE_MASK)) { |
5289 | /* | |
5290 | * since the copy may not have started on a PAGE | |
5291 | * boundary (or may not have ended on one), we | |
5292 | * may have pages left in the cache since NOCACHE | |
5293 | * will let partially written pages linger... | |
5294 | * lets just flush the entire range to make sure | |
5295 | * we don't have any pages left that are beyond | |
5296 | * (or intersect) the real LEOF of this file | |
5297 | */ | |
5298 | ubc_msync(vp, writebase, writebase + offset, NULL, UBC_INVALIDATE | UBC_PUSHDIRTY); | |
5299 | } else { | |
5300 | /* | |
fe8ab488 | 5301 | * No need to call ubc_msync or hfs_invalbuf |
b0d623f7 A |
5302 | * since the file was copied using IO_NOCACHE and |
5303 | * the copy was done starting and ending on a page | |
5304 | * boundary in the file. | |
5305 | */ | |
5306 | } | |
55e303ae | 5307 | kmem_free(kernel_map, (vm_offset_t)bufp, bufsize); |
91447636 | 5308 | |
39236c6e | 5309 | hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
55e303ae A |
5310 | return (error); |
5311 | } | |
5312 | ||
5313 | /* | |
5314 | * Clone a system (metadata) file. | |
5315 | * | |
5316 | */ | |
5317 | static int | |
5318 | hfs_clonesysfile(struct vnode *vp, int blkstart, int blkcnt, int blksize, | |
91447636 | 5319 | kauth_cred_t cred, struct proc *p) |
55e303ae A |
5320 | { |
5321 | caddr_t bufp; | |
5322 | char * offset; | |
5323 | size_t bufsize; | |
5324 | size_t iosize; | |
5325 | struct buf *bp = NULL; | |
91447636 A |
5326 | daddr64_t blkno; |
5327 | daddr64_t blk; | |
5328 | daddr64_t start_blk; | |
5329 | daddr64_t last_blk; | |
55e303ae A |
5330 | int breadcnt; |
5331 | int i; | |
5332 | int error = 0; | |
5333 | ||
5334 | ||
5335 | iosize = GetLogicalBlockSize(vp); | |
5336 | bufsize = MIN(blkcnt * blksize, 1024 * 1024) & ~(iosize - 1); | |
5337 | breadcnt = bufsize / iosize; | |
5338 | ||
5339 | if (kmem_alloc(kernel_map, (vm_offset_t *)&bufp, bufsize)) { | |
5340 | return (ENOMEM); | |
5341 | } | |
91447636 A |
5342 | start_blk = ((daddr64_t)blkstart * blksize) / iosize; |
5343 | last_blk = ((daddr64_t)blkcnt * blksize) / iosize; | |
55e303ae A |
5344 | blkno = 0; |
5345 | ||
91447636 | 5346 | while (blkno < last_blk) { |
55e303ae A |
5347 | /* |
5348 | * Read up to a megabyte | |
5349 | */ | |
5350 | offset = bufp; | |
91447636 A |
5351 | for (i = 0, blk = blkno; (i < breadcnt) && (blk < last_blk); ++i, ++blk) { |
5352 | error = (int)buf_meta_bread(vp, blk, iosize, cred, &bp); | |
55e303ae A |
5353 | if (error) { |
5354 | printf("hfs_clonesysfile: meta_bread error %d\n", error); | |
5355 | goto out; | |
5356 | } | |
91447636 A |
5357 | if (buf_count(bp) != iosize) { |
5358 | printf("hfs_clonesysfile: b_bcount is only %d\n", buf_count(bp)); | |
55e303ae A |
5359 | goto out; |
5360 | } | |
91447636 A |
5361 | bcopy((char *)buf_dataptr(bp), offset, iosize); |
5362 | ||
5363 | buf_markinvalid(bp); | |
5364 | buf_brelse(bp); | |
55e303ae | 5365 | bp = NULL; |
91447636 | 5366 | |
55e303ae A |
5367 | offset += iosize; |
5368 | } | |
5369 | ||
5370 | /* | |
5371 | * Write up to a megabyte | |
5372 | */ | |
5373 | offset = bufp; | |
91447636 A |
5374 | for (i = 0; (i < breadcnt) && (blkno < last_blk); ++i, ++blkno) { |
5375 | bp = buf_getblk(vp, start_blk + blkno, iosize, 0, 0, BLK_META); | |
55e303ae | 5376 | if (bp == NULL) { |
91447636 | 5377 | printf("hfs_clonesysfile: getblk failed on blk %qd\n", start_blk + blkno); |
55e303ae A |
5378 | error = EIO; |
5379 | goto out; | |
5380 | } | |
91447636 A |
5381 | bcopy(offset, (char *)buf_dataptr(bp), iosize); |
5382 | error = (int)buf_bwrite(bp); | |
55e303ae A |
5383 | bp = NULL; |
5384 | if (error) | |
5385 | goto out; | |
5386 | offset += iosize; | |
5387 | } | |
5388 | } | |
5389 | out: | |
5390 | if (bp) { | |
91447636 | 5391 | buf_brelse(bp); |
55e303ae A |
5392 | } |
5393 | ||
5394 | kmem_free(kernel_map, (vm_offset_t)bufp, bufsize); | |
5395 | ||
91447636 | 5396 | error = hfs_fsync(vp, MNT_WAIT, 0, p); |
55e303ae A |
5397 | |
5398 | return (error); | |
5399 | } |