]> git.saurik.com Git - apple/xnu.git/blame - bsd/sys/dtrace.h
xnu-1504.3.12.tar.gz
[apple/xnu.git] / bsd / sys / dtrace.h
CommitLineData
2d21ac55
A
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
b0d623f7 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
2d21ac55
A
24 * Use is subject to license terms.
25 */
26
27#ifndef _SYS_DTRACE_H
28#define _SYS_DTRACE_H
29
b0d623f7 30/* #pragma ident "@(#)dtrace.h 1.37 07/06/05 SMI" */
2d21ac55
A
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36/*
37 * DTrace Dynamic Tracing Software: Kernel Interfaces
38 *
39 * Note: The contents of this file are private to the implementation of the
40 * Solaris system and DTrace subsystem and are subject to change at any time
41 * without notice. Applications and drivers using these interfaces will fail
42 * to run on future releases. These interfaces should not be used for any
43 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
44 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
45 */
46
47#ifndef _ASM
48
49#if !defined(__APPLE__)
50#include <sys/types.h>
51#include <sys/modctl.h>
52#include <sys/processor.h>
53#include <sys/systm.h>
54#include <sys/ctf_api.h>
55#include <sys/cyclic.h>
56#include <sys/int_limits.h>
57#else /* is Apple Mac OS X */
58
b0d623f7
A
59#if defined(__LP64__)
60#if !defined(_LP64)
61#define _LP64 /* Solaris vs. Darwin */
62#endif
63#else
64#if !defined(_ILP32)
65#define _ILP32 /* Solaris vs. Darwin */
66#endif
67#endif
68
2d21ac55
A
69#ifdef KERNEL
70#ifndef _KERNEL
71#define _KERNEL /* Solaris vs. Darwin */
72#endif
73#endif
74
75#if defined(__BIG_ENDIAN__)
76#if !defined(_BIG_ENDIAN)
77#define _BIG_ENDIAN /* Solaris vs. Darwin */
78#endif
79#elif defined(__LITTLE_ENDIAN__)
80#if !defined(_LITTLE_ENDIAN)
81#define _LITTLE_ENDIAN /* Solaris vs. Darwin */
82#endif
83#else
84#error Unknown endian-ness
85#endif
86
87#include <sys/types.h>
88#include <stdint.h>
89
90#ifndef NULL
91#define NULL ((void *)0) /* quiets many warnings */
92#endif
93
94#define SEC 1
95#define MILLISEC 1000
96#define MICROSEC 1000000
97#define NANOSEC 1000000000
98
99#define S_ROUND(x, a) ((x) + (((a) ? (a) : 1) - 1) & ~(((a) ? (a) : 1) - 1))
100#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
101
102#define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
b0d623f7
A
103#define CTF_MODEL_LP64 2 /* object data model is LP64 */
104#ifdef __LP64__
105#define CTF_MODEL_NATIVE CTF_MODEL_LP64
106#else
2d21ac55 107#define CTF_MODEL_NATIVE CTF_MODEL_ILP32
b0d623f7 108#endif
2d21ac55
A
109
110typedef uint8_t uchar_t;
111typedef uint16_t ushort_t;
112typedef uint32_t uint_t;
b0d623f7 113typedef unsigned long ulong_t;
2d21ac55
A
114typedef uint64_t u_longlong_t;
115typedef int64_t longlong_t;
116typedef int64_t off64_t;
117typedef int processorid_t;
118typedef int64_t hrtime_t;
119
120typedef enum { B_FALSE = 0, B_TRUE = 1 } _dtrace_boolean;
121
122struct modctl; /* In lieu of Solaris <sys/modctl.h> */
123/* NOTHING */ /* In lieu of Solaris <sys/processor.h> */
124#include <sys/ioctl.h> /* In lieu of Solaris <sys/systm.h> */
125#ifdef KERNEL
126/* NOTHING */ /* In lieu of Solaris <sys/ctf_api.h> */
127#else
128/* In lieu of Solaris <sys/ctf_api.h> */
129typedef struct ctf_file ctf_file_t;
130typedef long ctf_id_t;
131#endif
132/* NOTHING */ /* In lieu of Solaris <sys/cyclic.h> */
133/* NOTHING */ /* In lieu of Solaris <sys/int_limits.h> */
134
135typedef uint32_t zoneid_t;
136
137#include <sys/dtrace_glue.h>
138
139#include <stdarg.h>
140typedef va_list __va_list;
141
b0d623f7
A
142/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
143#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
2d21ac55
A
144#endif /* __APPLE__ */
145
146/*
147 * DTrace Universal Constants and Typedefs
148 */
149#define DTRACE_CPUALL -1 /* all CPUs */
150#define DTRACE_IDNONE 0 /* invalid probe identifier */
151#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
152#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
153#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
154#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
155#define DTRACE_PROVNONE 0 /* invalid provider identifier */
156#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
157#define DTRACE_ARGNONE -1 /* invalid argument index */
158
159#define DTRACE_PROVNAMELEN 64
160#define DTRACE_MODNAMELEN 64
161#define DTRACE_FUNCNAMELEN 128
162#define DTRACE_NAMELEN 64
163#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
164 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
165#define DTRACE_ARGTYPELEN 128
166
167typedef uint32_t dtrace_id_t; /* probe identifier */
168typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
169typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
170typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
171typedef uint16_t dtrace_actkind_t; /* action kind */
172typedef int64_t dtrace_optval_t; /* option value */
173typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
174
175typedef enum dtrace_probespec {
176 DTRACE_PROBESPEC_NONE = -1,
177 DTRACE_PROBESPEC_PROVIDER = 0,
178 DTRACE_PROBESPEC_MOD,
179 DTRACE_PROBESPEC_FUNC,
180 DTRACE_PROBESPEC_NAME
181} dtrace_probespec_t;
182
183/*
184 * DTrace Intermediate Format (DIF)
185 *
186 * The following definitions describe the DTrace Intermediate Format (DIF), a
187 * a RISC-like instruction set and program encoding used to represent
188 * predicates and actions that can be bound to DTrace probes. The constants
189 * below defining the number of available registers are suggested minimums; the
190 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
191 * registers provided by the current DTrace implementation.
192 */
193#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
194#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
195#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
196#define DIF_DIR_NREGS 8 /* number of DIF integer registers */
197#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
198
199#define DIF_OP_OR 1 /* or r1, r2, rd */
200#define DIF_OP_XOR 2 /* xor r1, r2, rd */
201#define DIF_OP_AND 3 /* and r1, r2, rd */
202#define DIF_OP_SLL 4 /* sll r1, r2, rd */
203#define DIF_OP_SRL 5 /* srl r1, r2, rd */
204#define DIF_OP_SUB 6 /* sub r1, r2, rd */
205#define DIF_OP_ADD 7 /* add r1, r2, rd */
206#define DIF_OP_MUL 8 /* mul r1, r2, rd */
207#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
208#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
209#define DIF_OP_SREM 11 /* srem r1, r2, rd */
210#define DIF_OP_UREM 12 /* urem r1, r2, rd */
211#define DIF_OP_NOT 13 /* not r1, rd */
212#define DIF_OP_MOV 14 /* mov r1, rd */
213#define DIF_OP_CMP 15 /* cmp r1, r2 */
214#define DIF_OP_TST 16 /* tst r1 */
215#define DIF_OP_BA 17 /* ba label */
216#define DIF_OP_BE 18 /* be label */
217#define DIF_OP_BNE 19 /* bne label */
218#define DIF_OP_BG 20 /* bg label */
219#define DIF_OP_BGU 21 /* bgu label */
220#define DIF_OP_BGE 22 /* bge label */
221#define DIF_OP_BGEU 23 /* bgeu label */
222#define DIF_OP_BL 24 /* bl label */
223#define DIF_OP_BLU 25 /* blu label */
224#define DIF_OP_BLE 26 /* ble label */
225#define DIF_OP_BLEU 27 /* bleu label */
226#define DIF_OP_LDSB 28 /* ldsb [r1], rd */
227#define DIF_OP_LDSH 29 /* ldsh [r1], rd */
228#define DIF_OP_LDSW 30 /* ldsw [r1], rd */
229#define DIF_OP_LDUB 31 /* ldub [r1], rd */
230#define DIF_OP_LDUH 32 /* lduh [r1], rd */
231#define DIF_OP_LDUW 33 /* lduw [r1], rd */
232#define DIF_OP_LDX 34 /* ldx [r1], rd */
233#define DIF_OP_RET 35 /* ret rd */
234#define DIF_OP_NOP 36 /* nop */
235#define DIF_OP_SETX 37 /* setx intindex, rd */
236#define DIF_OP_SETS 38 /* sets strindex, rd */
237#define DIF_OP_SCMP 39 /* scmp r1, r2 */
238#define DIF_OP_LDGA 40 /* ldga var, ri, rd */
239#define DIF_OP_LDGS 41 /* ldgs var, rd */
240#define DIF_OP_STGS 42 /* stgs var, rs */
241#define DIF_OP_LDTA 43 /* ldta var, ri, rd */
242#define DIF_OP_LDTS 44 /* ldts var, rd */
243#define DIF_OP_STTS 45 /* stts var, rs */
244#define DIF_OP_SRA 46 /* sra r1, r2, rd */
245#define DIF_OP_CALL 47 /* call subr, rd */
246#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
247#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
248#define DIF_OP_POPTS 50 /* popts */
249#define DIF_OP_FLUSHTS 51 /* flushts */
250#define DIF_OP_LDGAA 52 /* ldgaa var, rd */
251#define DIF_OP_LDTAA 53 /* ldtaa var, rd */
252#define DIF_OP_STGAA 54 /* stgaa var, rs */
253#define DIF_OP_STTAA 55 /* sttaa var, rs */
254#define DIF_OP_LDLS 56 /* ldls var, rd */
255#define DIF_OP_STLS 57 /* stls var, rs */
256#define DIF_OP_ALLOCS 58 /* allocs r1, rd */
257#define DIF_OP_COPYS 59 /* copys r1, r2, rd */
258#define DIF_OP_STB 60 /* stb r1, [rd] */
259#define DIF_OP_STH 61 /* sth r1, [rd] */
260#define DIF_OP_STW 62 /* stw r1, [rd] */
261#define DIF_OP_STX 63 /* stx r1, [rd] */
262#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
263#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
264#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
265#define DIF_OP_ULDUB 67 /* uldub [r1], rd */
266#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
267#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
268#define DIF_OP_ULDX 70 /* uldx [r1], rd */
269#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
270#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
271#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
272#define DIF_OP_RLDUB 74 /* rldub [r1], rd */
273#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
274#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
275#define DIF_OP_RLDX 77 /* rldx [r1], rd */
276#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
277#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
278
279#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
280#define DIF_STROFF_MAX 0xffff /* highest string table offset */
281#define DIF_REGISTER_MAX 0xff /* highest register number */
282#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
283#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
284
285#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
286#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
287#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
288
289#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
290#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
291#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
292
293#define DIF_VAR_ARGS 0x0000 /* arguments array */
294#define DIF_VAR_REGS 0x0001 /* registers array */
295#define DIF_VAR_UREGS 0x0002 /* user registers array */
296#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
297#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
298#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
299#define DIF_VAR_IPL 0x0103 /* interrupt priority level */
300#define DIF_VAR_EPID 0x0104 /* enabled probe ID */
301#define DIF_VAR_ID 0x0105 /* probe ID */
302#define DIF_VAR_ARG0 0x0106 /* first argument */
303#define DIF_VAR_ARG1 0x0107 /* second argument */
304#define DIF_VAR_ARG2 0x0108 /* third argument */
305#define DIF_VAR_ARG3 0x0109 /* fourth argument */
306#define DIF_VAR_ARG4 0x010a /* fifth argument */
307#define DIF_VAR_ARG5 0x010b /* sixth argument */
308#define DIF_VAR_ARG6 0x010c /* seventh argument */
309#define DIF_VAR_ARG7 0x010d /* eighth argument */
310#define DIF_VAR_ARG8 0x010e /* ninth argument */
311#define DIF_VAR_ARG9 0x010f /* tenth argument */
312#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
313#define DIF_VAR_CALLER 0x0111 /* caller */
314#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
315#define DIF_VAR_PROBEMOD 0x0113 /* probe module */
316#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
317#define DIF_VAR_PROBENAME 0x0115 /* probe name */
318#define DIF_VAR_PID 0x0116 /* process ID */
319#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
320#define DIF_VAR_EXECNAME 0x0118 /* name of executable */
321#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
322#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
323#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
324#define DIF_VAR_UCALLER 0x011c /* user-level caller */
325#define DIF_VAR_PPID 0x011d /* parent process ID */
326#define DIF_VAR_UID 0x011e /* process user ID */
327#define DIF_VAR_GID 0x011f /* process group ID */
328#define DIF_VAR_ERRNO 0x0120 /* thread errno */
b0d623f7
A
329#if defined(__APPLE__)
330#define DIF_VAR_PTHREAD_SELF 0x0200 /* Apple specific PTHREAD_SELF (Not currently supported!) */
331#define DIF_VAR_DISPATCHQADDR 0x0201 /* Apple specific dispatch queue addr */
332#endif /* __APPLE __ */
2d21ac55
A
333
334#define DIF_SUBR_RAND 0
335#define DIF_SUBR_MUTEX_OWNED 1
336#define DIF_SUBR_MUTEX_OWNER 2
337#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
338#define DIF_SUBR_MUTEX_TYPE_SPIN 4
339#define DIF_SUBR_RW_READ_HELD 5
340#define DIF_SUBR_RW_WRITE_HELD 6
341#define DIF_SUBR_RW_ISWRITER 7
342#define DIF_SUBR_COPYIN 8
343#define DIF_SUBR_COPYINSTR 9
344#define DIF_SUBR_SPECULATION 10
345#define DIF_SUBR_PROGENYOF 11
346#define DIF_SUBR_STRLEN 12
347#define DIF_SUBR_COPYOUT 13
348#define DIF_SUBR_COPYOUTSTR 14
349#define DIF_SUBR_ALLOCA 15
350#define DIF_SUBR_BCOPY 16
351#define DIF_SUBR_COPYINTO 17
352#define DIF_SUBR_MSGDSIZE 18
353#define DIF_SUBR_MSGSIZE 19
354#define DIF_SUBR_GETMAJOR 20
355#define DIF_SUBR_GETMINOR 21
356#define DIF_SUBR_DDI_PATHNAME 22
357#define DIF_SUBR_STRJOIN 23
358#define DIF_SUBR_LLTOSTR 24
359#define DIF_SUBR_BASENAME 25
360#define DIF_SUBR_DIRNAME 26
361#define DIF_SUBR_CLEANPATH 27
362#define DIF_SUBR_STRCHR 28
363#define DIF_SUBR_STRRCHR 29
364#define DIF_SUBR_STRSTR 30
365#define DIF_SUBR_STRTOK 31
366#define DIF_SUBR_SUBSTR 32
367#define DIF_SUBR_INDEX 33
368#define DIF_SUBR_RINDEX 34
b0d623f7
A
369#define DIF_SUBR_HTONS 35
370#define DIF_SUBR_HTONL 36
371#define DIF_SUBR_HTONLL 37
372#define DIF_SUBR_NTOHS 38
373#define DIF_SUBR_NTOHL 39
374#define DIF_SUBR_NTOHLL 40
375#define DIF_SUBR_INET_NTOP 41
376#define DIF_SUBR_INET_NTOA 42
377#define DIF_SUBR_INET_NTOA6 43
378#if !defined(__APPLE__)
2d21ac55 379
b0d623f7
A
380#define DIF_SUBR_MAX 43 /* max subroutine value */
381#else
382#define DIF_SUBR_COREPROFILE 44
383
384#define DIF_SUBR_MAX 44 /* max subroutine value */
385#endif /* __APPLE__ */
2d21ac55
A
386
387typedef uint32_t dif_instr_t;
388
389#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
390#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
391#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
392#define DIF_INSTR_RD(i) ((i) & 0xff)
393#define DIF_INSTR_RS(i) ((i) & 0xff)
394#define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
395#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
396#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
397#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
398#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
399#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
400#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
401
402#define DIF_INSTR_FMT(op, r1, r2, d) \
403 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
404
405#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
406#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
407#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
408#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
409#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
410#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
411#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
412#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
413#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
414#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
415#define DIF_INSTR_NOP (DIF_OP_NOP << 24)
416#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
417#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
418#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
419#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
420#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
421#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
422#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
423#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
424#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
425#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
426
427#define DIF_REG_R0 0 /* %r0 is always set to zero */
428
429/*
430 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
431 * of variables, function and associative array arguments, and the return type
432 * for each DIF object (shown below). It contains a description of the type,
433 * its size in bytes, and a module identifier.
434 */
435typedef struct dtrace_diftype {
436 uint8_t dtdt_kind; /* type kind (see below) */
437 uint8_t dtdt_ckind; /* type kind in CTF */
438 uint8_t dtdt_flags; /* type flags (see below) */
439 uint8_t dtdt_pad; /* reserved for future use */
440 uint32_t dtdt_size; /* type size in bytes (unless string) */
441} dtrace_diftype_t;
442
443#define DIF_TYPE_CTF 0 /* type is a CTF type */
444#define DIF_TYPE_STRING 1 /* type is a D string */
445
446#define DIF_TF_BYREF 0x1 /* type is passed by reference */
447
448/*
449 * A DTrace Intermediate Format variable record is used to describe each of the
450 * variables referenced by a given DIF object. It contains an integer variable
451 * identifier along with variable scope and properties, as shown below. The
452 * size of this structure must be sizeof (int) aligned.
453 */
454typedef struct dtrace_difv {
455 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
456 uint32_t dtdv_id; /* variable reference identifier */
457 uint8_t dtdv_kind; /* variable kind (see below) */
458 uint8_t dtdv_scope; /* variable scope (see below) */
459 uint16_t dtdv_flags; /* variable flags (see below) */
460 dtrace_diftype_t dtdv_type; /* variable type (see above) */
461} dtrace_difv_t;
462
463#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
464#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
465
466#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
467#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
468#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
469
470#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
471#define DIFV_F_MOD 0x2 /* variable is written by DIFO */
472
473/*
474 * DTrace Actions
475 *
476 * The upper byte determines the class of the action; the low bytes determines
477 * the specific action within that class. The classes of actions are as
478 * follows:
479 *
480 * [ no class ] <= May record process- or kernel-related data
481 * DTRACEACT_PROC <= Only records process-related data
482 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
483 * DTRACEACT_KERNEL <= Only records kernel-related data
484 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
485 * DTRACEACT_SPECULATIVE <= Speculation-related action
486 * DTRACEACT_AGGREGATION <= Aggregating action
487 */
488#define DTRACEACT_NONE 0 /* no action */
489#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
490#define DTRACEACT_EXIT 2 /* exit() action */
491#define DTRACEACT_PRINTF 3 /* printf() action */
492#define DTRACEACT_PRINTA 4 /* printa() action */
493#define DTRACEACT_LIBACT 5 /* library-controlled action */
494
b0d623f7
A
495#if defined(__APPLE__)
496#define DTRACEACT_APPLEBINARY 50 /* Apple DT perf. tool action */
497#endif /* __APPLE__ */
498
2d21ac55
A
499#define DTRACEACT_PROC 0x0100
500#define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
501#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
502#define DTRACEACT_USYM (DTRACEACT_PROC + 3)
503#define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
504#define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
505
506#define DTRACEACT_PROC_DESTRUCTIVE 0x0200
507#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
508#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
509#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
510#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
511
512#define DTRACEACT_PROC_CONTROL 0x0300
513
514#define DTRACEACT_KERNEL 0x0400
515#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
516#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
517#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
518
519#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
520#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
521#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
522#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
523
524#define DTRACEACT_SPECULATIVE 0x0600
525#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
526#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
527#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
528
529#define DTRACEACT_CLASS(x) ((x) & 0xff00)
530
531#define DTRACEACT_ISDESTRUCTIVE(x) \
532 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
533 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
534
535#define DTRACEACT_ISSPECULATIVE(x) \
536 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
537
538#define DTRACEACT_ISPRINTFLIKE(x) \
539 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
540 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
541
542/*
543 * DTrace Aggregating Actions
544 *
545 * These are functions f(x) for which the following is true:
546 *
547 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
548 *
549 * where x_n is a set of arbitrary data. Aggregating actions are in their own
550 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
551 * for easier processing of the aggregation argument and data payload for a few
552 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
553 */
554#define DTRACEACT_AGGREGATION 0x0700
555#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
556#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
557#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
558#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
559#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
560#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
561#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
562#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
563
564#define DTRACEACT_ISAGG(x) \
565 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
566
b0d623f7 567#if !defined(__APPLE__) /* Quiet compiler warning. */
2d21ac55
A
568#define DTRACE_QUANTIZE_NBUCKETS \
569 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
570
571#define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
b0d623f7
A
572#else
573#define DTRACE_QUANTIZE_NBUCKETS \
574 (int)(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
575
576#define DTRACE_QUANTIZE_ZEROBUCKET (int64_t)((sizeof (uint64_t) * NBBY) - 1)
577#endif /* __APPLE __*/
2d21ac55
A
578
579#define DTRACE_QUANTIZE_BUCKETVAL(buck) \
580 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
581 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
582 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
583 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
584
585#define DTRACE_LQUANTIZE_STEPSHIFT 48
586#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
587#define DTRACE_LQUANTIZE_LEVELSHIFT 32
588#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
589#define DTRACE_LQUANTIZE_BASESHIFT 0
590#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
591
592#define DTRACE_LQUANTIZE_STEP(x) \
593 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
594 DTRACE_LQUANTIZE_STEPSHIFT)
595
596#define DTRACE_LQUANTIZE_LEVELS(x) \
597 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
598 DTRACE_LQUANTIZE_LEVELSHIFT)
599
600#define DTRACE_LQUANTIZE_BASE(x) \
601 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
602 DTRACE_LQUANTIZE_BASESHIFT)
603
604#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
605#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
606#define DTRACE_USTACK_ARG(x, y) \
607 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
608
b0d623f7
A
609#if !defined(__APPLE__)
610
2d21ac55
A
611#ifndef _LP64
612#ifndef _LITTLE_ENDIAN
613#define DTRACE_PTR(type, name) uint32_t name##pad; type *name
614#else
615#define DTRACE_PTR(type, name) type *name; uint32_t name##pad
616#endif
617#else
618#define DTRACE_PTR(type, name) type *name
619#endif
620
b0d623f7
A
621#else
622
623#ifndef _LP64
624#define DTRACE_PTR(type, name) user_addr_t name
625#else
626#define DTRACE_PTR(type, name) type *name
627#endif
628
629#endif /* __APPLE__ */
630
2d21ac55
A
631/*
632 * DTrace Object Format (DOF)
633 *
634 * DTrace programs can be persistently encoded in the DOF format so that they
635 * may be embedded in other programs (for example, in an ELF file) or in the
636 * dtrace driver configuration file for use in anonymous tracing. The DOF
637 * format is versioned and extensible so that it can be revised and so that
638 * internal data structures can be modified or extended compatibly. All DOF
639 * structures use fixed-size types, so the 32-bit and 64-bit representations
640 * are identical and consumers can use either data model transparently.
641 *
642 * The file layout is structured as follows:
643 *
644 * +---------------+-------------------+----- ... ----+---- ... ------+
645 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
646 * | (file header) | (section headers) | section data | section data |
647 * +---------------+-------------------+----- ... ----+---- ... ------+
648 * |<------------ dof_hdr.dofh_loadsz --------------->| |
649 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
650 *
651 * The file header stores meta-data including a magic number, data model for
652 * the instrumentation, data encoding, and properties of the DIF code within.
653 * The header describes its own size and the size of the section headers. By
654 * convention, an array of section headers follows the file header, and then
655 * the data for all loadable sections and unloadable sections. This permits
656 * consumer code to easily download the headers and all loadable data into the
657 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
658 *
659 * The section headers describe the size, offset, alignment, and section type
660 * for each section. Sections are described using a set of #defines that tell
661 * the consumer what kind of data is expected. Sections can contain links to
662 * other sections by storing a dof_secidx_t, an index into the section header
663 * array, inside of the section data structures. The section header includes
664 * an entry size so that sections with data arrays can grow their structures.
665 *
666 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
667 * are represented themselves as a collection of related DOF sections. This
668 * permits us to change the set of sections associated with a DIFO over time,
669 * and also permits us to encode DIFOs that contain different sets of sections.
670 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
671 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
672 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
673 *
674 * This loose coupling of the file structure (header and sections) to the
675 * structure of the DTrace program itself (ECB descriptions, action
676 * descriptions, and DIFOs) permits activities such as relocation processing
677 * to occur in a single pass without having to understand D program structure.
678 *
679 * Finally, strings are always stored in ELF-style string tables along with a
680 * string table section index and string table offset. Therefore strings in
681 * DOF are always arbitrary-length and not bound to the current implementation.
682 */
683
684#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
685
686typedef struct dof_hdr {
687 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
688 uint32_t dofh_flags; /* file attribute flags (if any) */
689 uint32_t dofh_hdrsize; /* size of file header in bytes */
690 uint32_t dofh_secsize; /* size of section header in bytes */
691 uint32_t dofh_secnum; /* number of section headers */
692 uint64_t dofh_secoff; /* file offset of section headers */
693 uint64_t dofh_loadsz; /* file size of loadable portion */
694 uint64_t dofh_filesz; /* file size of entire DOF file */
695 uint64_t dofh_pad; /* reserved for future use */
696} dof_hdr_t;
697
698#define DOF_ID_MAG0 0 /* first byte of magic number */
699#define DOF_ID_MAG1 1 /* second byte of magic number */
700#define DOF_ID_MAG2 2 /* third byte of magic number */
701#define DOF_ID_MAG3 3 /* fourth byte of magic number */
702#define DOF_ID_MODEL 4 /* DOF data model (see below) */
703#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
704#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
705#define DOF_ID_DIFVERS 7 /* DIF instruction set version */
706#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
707#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
708#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
709
710#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
711#define DOF_MAG_MAG1 'D'
712#define DOF_MAG_MAG2 'O'
713#define DOF_MAG_MAG3 'F'
714
715#define DOF_MAG_STRING "\177DOF"
716#define DOF_MAG_STRLEN 4
717
718#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
719#define DOF_MODEL_ILP32 1
720#define DOF_MODEL_LP64 2
721
722#ifdef _LP64
723#define DOF_MODEL_NATIVE DOF_MODEL_LP64
724#else
725#define DOF_MODEL_NATIVE DOF_MODEL_ILP32
726#endif
727
728#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
729#define DOF_ENCODE_LSB 1
730#define DOF_ENCODE_MSB 2
731
732#ifdef _BIG_ENDIAN
733#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
734#else
735#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
736#endif
737
738#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
739#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
b0d623f7
A
740#if !defined(__APPLE__)
741#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
742#else
2d21ac55
A
743#define DOF_VERSION_3 3 /* DOF version 3: Minimum version for Leopard */
744#define DOF_VERSION DOF_VERSION_3 /* Latest DOF version */
b0d623f7 745#endif /* __APPLE__ */
2d21ac55
A
746
747#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
748
749typedef uint32_t dof_secidx_t; /* section header table index type */
750typedef uint32_t dof_stridx_t; /* string table index type */
751
752#define DOF_SECIDX_NONE (-1U) /* null value for section indices */
753#define DOF_STRIDX_NONE (-1U) /* null value for string indices */
754
755typedef struct dof_sec {
756 uint32_t dofs_type; /* section type (see below) */
757 uint32_t dofs_align; /* section data memory alignment */
758 uint32_t dofs_flags; /* section flags (if any) */
759 uint32_t dofs_entsize; /* size of section entry (if table) */
760 uint64_t dofs_offset; /* offset of section data within file */
761 uint64_t dofs_size; /* size of section data in bytes */
762} dof_sec_t;
763
764#define DOF_SECT_NONE 0 /* null section */
765#define DOF_SECT_COMMENTS 1 /* compiler comments */
766#define DOF_SECT_SOURCE 2 /* D program source code */
767#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
768#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
769#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
770#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
771#define DOF_SECT_DIF 7 /* uint32_t array of byte code */
772#define DOF_SECT_STRTAB 8 /* string table */
773#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
774#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
775#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
776#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
777#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
778#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
779#define DOF_SECT_PROVIDER 15 /* dof_provider_t */
780#define DOF_SECT_PROBES 16 /* dof_probe_t array */
781#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
782#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
783#define DOF_SECT_INTTAB 19 /* uint64_t array */
784#define DOF_SECT_UTSNAME 20 /* struct utsname */
785#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
786#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
787#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
788#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
789#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
790#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
791
792#define DOF_SECF_LOAD 1 /* section should be loaded */
793
794typedef struct dof_ecbdesc {
795 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
796 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
797 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
798 uint32_t dofe_pad; /* reserved for future use */
799 uint64_t dofe_uarg; /* user-supplied library argument */
800} dof_ecbdesc_t;
801
802typedef struct dof_probedesc {
803 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
804 dof_stridx_t dofp_provider; /* provider string */
805 dof_stridx_t dofp_mod; /* module string */
806 dof_stridx_t dofp_func; /* function string */
807 dof_stridx_t dofp_name; /* name string */
808 uint32_t dofp_id; /* probe identifier (or zero) */
809} dof_probedesc_t;
810
811typedef struct dof_actdesc {
812 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
813 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
814 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
815 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
816 uint64_t dofa_arg; /* kind-specific argument */
817 uint64_t dofa_uarg; /* user-supplied argument */
818} dof_actdesc_t;
819
820typedef struct dof_difohdr {
821 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
822 dof_secidx_t dofd_links[1]; /* variable length array of indices */
823} dof_difohdr_t;
824
825typedef struct dof_relohdr {
826 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
827 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
828 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
829} dof_relohdr_t;
830
831typedef struct dof_relodesc {
832 dof_stridx_t dofr_name; /* string name of relocation symbol */
833 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
834 uint64_t dofr_offset; /* byte offset for relocation */
835 uint64_t dofr_data; /* additional type-specific data */
836} dof_relodesc_t;
837
838#define DOF_RELO_NONE 0 /* empty relocation entry */
839#define DOF_RELO_SETX 1 /* relocate setx value */
840
841typedef struct dof_optdesc {
842 uint32_t dofo_option; /* option identifier */
843 dof_secidx_t dofo_strtab; /* string table, if string option */
844 uint64_t dofo_value; /* option value or string index */
845} dof_optdesc_t;
846
847typedef uint32_t dof_attr_t; /* encoded stability attributes */
848
849#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
850#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
851#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
852#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
853
854typedef struct dof_provider {
855 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
856 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
857 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
858 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
859 dof_stridx_t dofpv_name; /* provider name string */
860 dof_attr_t dofpv_provattr; /* provider attributes */
861 dof_attr_t dofpv_modattr; /* module attributes */
862 dof_attr_t dofpv_funcattr; /* function attributes */
863 dof_attr_t dofpv_nameattr; /* name attributes */
864 dof_attr_t dofpv_argsattr; /* args attributes */
865 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
866} dof_provider_t;
867
868typedef struct dof_probe {
869 uint64_t dofpr_addr; /* probe base address or offset */
870 dof_stridx_t dofpr_func; /* probe function string */
871 dof_stridx_t dofpr_name; /* probe name string */
872 dof_stridx_t dofpr_nargv; /* native argument type strings */
873 dof_stridx_t dofpr_xargv; /* translated argument type strings */
874 uint32_t dofpr_argidx; /* index of first argument mapping */
875 uint32_t dofpr_offidx; /* index of first offset entry */
876 uint8_t dofpr_nargc; /* native argument count */
877 uint8_t dofpr_xargc; /* translated argument count */
878 uint16_t dofpr_noffs; /* number of offset entries for probe */
879 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
880 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
881 uint16_t dofpr_pad1; /* reserved for future use */
882 uint32_t dofpr_pad2; /* reserved for future use */
883} dof_probe_t;
884
885typedef struct dof_xlator {
886 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
887 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
888 dof_stridx_t dofxl_argv; /* input parameter type strings */
889 uint32_t dofxl_argc; /* input parameter list length */
890 dof_stridx_t dofxl_type; /* output type string name */
891 dof_attr_t dofxl_attr; /* output stability attributes */
892} dof_xlator_t;
893
894typedef struct dof_xlmember {
895 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
896 dof_stridx_t dofxm_name; /* member name */
897 dtrace_diftype_t dofxm_type; /* member type */
898} dof_xlmember_t;
899
900typedef struct dof_xlref {
901 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
902 uint32_t dofxr_member; /* index of referenced dof_xlmember */
903 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
904} dof_xlref_t;
905
906/*
907 * DTrace Intermediate Format Object (DIFO)
908 *
909 * A DIFO is used to store the compiled DIF for a D expression, its return
910 * type, and its string and variable tables. The string table is a single
911 * buffer of character data into which sets instructions and variable
912 * references can reference strings using a byte offset. The variable table
913 * is an array of dtrace_difv_t structures that describe the name and type of
914 * each variable and the id used in the DIF code. This structure is described
915 * above in the DIF section of this header file. The DIFO is used at both
916 * user-level (in the library) and in the kernel, but the structure is never
917 * passed between the two: the DOF structures form the only interface. As a
918 * result, the definition can change depending on the presence of _KERNEL.
919 */
920typedef struct dtrace_difo {
921 dif_instr_t *dtdo_buf; /* instruction buffer */
922 uint64_t *dtdo_inttab; /* integer table (optional) */
923 char *dtdo_strtab; /* string table (optional) */
924 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
925 uint_t dtdo_len; /* length of instruction buffer */
926 uint_t dtdo_intlen; /* length of integer table */
927 uint_t dtdo_strlen; /* length of string table */
928 uint_t dtdo_varlen; /* length of variable table */
929 dtrace_diftype_t dtdo_rtype; /* return type */
930 uint_t dtdo_refcnt; /* owner reference count */
931 uint_t dtdo_destructive; /* invokes destructive subroutines */
932#ifndef _KERNEL
933 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
934 dof_relodesc_t *dtdo_ureltab; /* user relocations */
935 struct dt_node **dtdo_xlmtab; /* translator references */
936 uint_t dtdo_krelen; /* length of krelo table */
937 uint_t dtdo_urelen; /* length of urelo table */
938 uint_t dtdo_xlmlen; /* length of translator table */
939#endif
940} dtrace_difo_t;
941
942/*
943 * DTrace Enabling Description Structures
944 *
945 * When DTrace is tracking the description of a DTrace enabling entity (probe,
946 * predicate, action, ECB, record, etc.), it does so in a description
947 * structure. These structures all end in "desc", and are used at both
948 * user-level and in the kernel -- but (with the exception of
949 * dtrace_probedesc_t) they are never passed between them. Typically,
950 * user-level will use the description structures when assembling an enabling.
951 * It will then distill those description structures into a DOF object (see
952 * above), and send it into the kernel. The kernel will again use the
953 * description structures to create a description of the enabling as it reads
954 * the DOF. When the description is complete, the enabling will be actually
955 * created -- turning it into the structures that represent the enabling
956 * instead of merely describing it. Not surprisingly, the description
957 * structures bear a strong resemblance to the DOF structures that act as their
958 * conduit.
959 */
960struct dtrace_predicate;
961
962typedef struct dtrace_probedesc {
963 dtrace_id_t dtpd_id; /* probe identifier */
964 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
965 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
966 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
967 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
968} dtrace_probedesc_t;
969
970typedef struct dtrace_repldesc {
971 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
972 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
973} dtrace_repldesc_t;
974
975typedef struct dtrace_preddesc {
976 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
977 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
978} dtrace_preddesc_t;
979
980typedef struct dtrace_actdesc {
981 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
982 struct dtrace_actdesc *dtad_next; /* next action */
983 dtrace_actkind_t dtad_kind; /* kind of action */
984 uint32_t dtad_ntuple; /* number in tuple */
985 uint64_t dtad_arg; /* action argument */
986 uint64_t dtad_uarg; /* user argument */
987 int dtad_refcnt; /* reference count */
988} dtrace_actdesc_t;
989
990typedef struct dtrace_ecbdesc {
991 dtrace_actdesc_t *dted_action; /* action description(s) */
992 dtrace_preddesc_t dted_pred; /* predicate description */
993 dtrace_probedesc_t dted_probe; /* probe description */
994 uint64_t dted_uarg; /* library argument */
995 int dted_refcnt; /* reference count */
996} dtrace_ecbdesc_t;
997
998/*
999 * DTrace Metadata Description Structures
1000 *
1001 * DTrace separates the trace data stream from the metadata stream. The only
1002 * metadata tokens placed in the data stream are enabled probe identifiers
1003 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order
1004 * to determine the structure of the data, DTrace consumers pass the token to
1005 * the kernel, and receive in return a corresponding description of the enabled
1006 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
1007 * dtrace_aggdesc structure). Both of these structures are expressed in terms
1008 * of record descriptions (via the dtrace_recdesc structure) that describe the
1009 * exact structure of the data. Some record descriptions may also contain a
1010 * format identifier; this additional bit of metadata can be retrieved from the
1011 * kernel, for which a format description is returned via the dtrace_fmtdesc
1012 * structure. Note that all four of these structures must be bitness-neutral
1013 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
1014 */
1015typedef struct dtrace_recdesc {
1016 dtrace_actkind_t dtrd_action; /* kind of action */
1017 uint32_t dtrd_size; /* size of record */
1018 uint32_t dtrd_offset; /* offset in ECB's data */
1019 uint16_t dtrd_alignment; /* required alignment */
1020 uint16_t dtrd_format; /* format, if any */
1021 uint64_t dtrd_arg; /* action argument */
1022 uint64_t dtrd_uarg; /* user argument */
1023} dtrace_recdesc_t;
1024
1025typedef struct dtrace_eprobedesc {
1026 dtrace_epid_t dtepd_epid; /* enabled probe ID */
1027 dtrace_id_t dtepd_probeid; /* probe ID */
1028 uint64_t dtepd_uarg; /* library argument */
1029 uint32_t dtepd_size; /* total size */
1030 int dtepd_nrecs; /* number of records */
1031 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
1032} dtrace_eprobedesc_t;
1033
1034typedef struct dtrace_aggdesc {
1035 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
1036 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
1037 int dtagd_flags; /* not filled in by kernel */
1038 dtrace_aggid_t dtagd_id; /* aggregation ID */
1039 dtrace_epid_t dtagd_epid; /* enabled probe ID */
1040 uint32_t dtagd_size; /* size in bytes */
1041 int dtagd_nrecs; /* number of records */
1042 uint32_t dtagd_pad; /* explicit padding */
1043 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
1044} dtrace_aggdesc_t;
1045
1046typedef struct dtrace_fmtdesc {
1047 DTRACE_PTR(char, dtfd_string); /* format string */
1048 int dtfd_length; /* length of format string */
1049 uint16_t dtfd_format; /* format identifier */
1050} dtrace_fmtdesc_t;
1051
1052#define DTRACE_SIZEOF_EPROBEDESC(desc) \
1053 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
1054 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1055
1056#define DTRACE_SIZEOF_AGGDESC(desc) \
1057 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
1058 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1059
1060/*
1061 * DTrace Option Interface
1062 *
1063 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1064 * in a DOF image. The dof_optdesc structure contains an option identifier and
1065 * an option value. The valid option identifiers are found below; the mapping
1066 * between option identifiers and option identifying strings is maintained at
1067 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
1068 * following are potentially valid option values: all positive integers, zero
1069 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
1070 * predefined tokens as their values; these are defined with
1071 * DTRACEOPT_{option}_{token}.
1072 */
1073#define DTRACEOPT_BUFSIZE 0 /* buffer size */
1074#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1075#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1076#define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1077#define DTRACEOPT_SPECSIZE 4 /* speculation size */
1078#define DTRACEOPT_NSPEC 5 /* number of speculations */
1079#define DTRACEOPT_STRSIZE 6 /* string size */
1080#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1081#define DTRACEOPT_CPU 8 /* CPU to trace */
1082#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1083#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1084#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1085#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1086#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1087#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1088#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1089#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1090#define DTRACEOPT_STATUSRATE 17 /* status rate */
1091#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1092#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1093#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1094#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1095#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1096#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1097#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1098#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1099#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
b0d623f7
A
1100#if !defined(__APPLE__)
1101#define DTRACEOPT_MAX 27 /* number of options */
1102#else
2d21ac55
A
1103#define DTRACEOPT_STACKSYMBOLS 27 /* clear to prevent stack symbolication */
1104#define DTRACEOPT_MAX 28 /* number of options */
b0d623f7 1105#endif /* __APPLE__ */
2d21ac55
A
1106
1107#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1108
1109#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1110#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1111#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1112
1113#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1114#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1115
1116/*
1117 * DTrace Buffer Interface
1118 *
1119 * In order to get a snapshot of the principal or aggregation buffer,
1120 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1121 * structure. This describes which CPU user-level is interested in, and
1122 * where user-level wishes the kernel to snapshot the buffer to (the
1123 * dtbd_data field). The kernel uses the same structure to pass back some
1124 * information regarding the buffer: the size of data actually copied out, the
1125 * number of drops, the number of errors, and the offset of the oldest record.
1126 * If the buffer policy is a "switch" policy, taking a snapshot of the
1127 * principal buffer has the additional effect of switching the active and
1128 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1129 * the additional effect of switching the active and inactive buffers.
1130 */
1131typedef struct dtrace_bufdesc {
1132 uint64_t dtbd_size; /* size of buffer */
1133 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1134 uint32_t dtbd_errors; /* number of errors */
1135 uint64_t dtbd_drops; /* number of drops */
1136 DTRACE_PTR(char, dtbd_data); /* data */
1137 uint64_t dtbd_oldest; /* offset of oldest record */
1138} dtrace_bufdesc_t;
1139
1140/*
1141 * DTrace Status
1142 *
1143 * The status of DTrace is relayed via the dtrace_status structure. This
1144 * structure contains members to count drops other than the capacity drops
1145 * available via the buffer interface (see above). This consists of dynamic
1146 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1147 * speculative drops (including capacity speculative drops, drops due to busy
1148 * speculative buffers and drops due to unavailable speculative buffers).
1149 * Additionally, the status structure contains a field to indicate the number
1150 * of "fill"-policy buffers have been filled and a boolean field to indicate
1151 * that exit() has been called. If the dtst_exiting field is non-zero, no
1152 * further data will be generated until tracing is stopped (at which time any
1153 * enablings of the END action will be processed); if user-level sees that
1154 * this field is non-zero, tracing should be stopped as soon as possible.
1155 */
1156typedef struct dtrace_status {
1157 uint64_t dtst_dyndrops; /* dynamic drops */
1158 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1159 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1160 uint64_t dtst_specdrops; /* speculative drops */
1161 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1162 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1163 uint64_t dtst_errors; /* total errors */
1164 uint64_t dtst_filled; /* number of filled bufs */
1165 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1166 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1167 char dtst_killed; /* non-zero if killed */
1168 char dtst_exiting; /* non-zero if exit() called */
1169 char dtst_pad[6]; /* pad out to 64-bit align */
1170} dtrace_status_t;
1171
1172/*
1173 * DTrace Configuration
1174 *
1175 * User-level may need to understand some elements of the kernel DTrace
1176 * configuration in order to generate correct DIF. This information is
1177 * conveyed via the dtrace_conf structure.
1178 */
1179typedef struct dtrace_conf {
1180 uint_t dtc_difversion; /* supported DIF version */
1181 uint_t dtc_difintregs; /* # of DIF integer registers */
1182 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1183 uint_t dtc_ctfmodel; /* CTF data model */
1184 uint_t dtc_pad[8]; /* reserved for future use */
1185} dtrace_conf_t;
1186
1187/*
1188 * DTrace Faults
1189 *
1190 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1191 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1192 * postprocessing at user-level. Probe processing faults induce an ERROR
1193 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1194 * the error condition using thse symbolic labels.
1195 */
1196#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1197#define DTRACEFLT_BADADDR 1 /* Bad address */
1198#define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1199#define DTRACEFLT_ILLOP 3 /* Illegal operation */
1200#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1201#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1202#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1203#define DTRACEFLT_UPRIV 7 /* Illegal user access */
1204#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
b0d623f7 1205#define DTRACEFLT_BADSTACK 9 /* Bad stack */
2d21ac55
A
1206
1207#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1208
1209/*
1210 * DTrace Argument Types
1211 *
1212 * Because it would waste both space and time, argument types do not reside
1213 * with the probe. In order to determine argument types for args[X]
1214 * variables, the D compiler queries for argument types on a probe-by-probe
1215 * basis. (This optimizes for the common case that arguments are either not
1216 * used or used in an untyped fashion.) Typed arguments are specified with a
1217 * string of the type name in the dtragd_native member of the argument
1218 * description structure. Typed arguments may be further translated to types
1219 * of greater stability; the provider indicates such a translated argument by
1220 * filling in the dtargd_xlate member with the string of the translated type.
1221 * Finally, the provider may indicate which argument value a given argument
1222 * maps to by setting the dtargd_mapping member -- allowing a single argument
1223 * to map to multiple args[X] variables.
1224 */
1225typedef struct dtrace_argdesc {
1226 dtrace_id_t dtargd_id; /* probe identifier */
1227 int dtargd_ndx; /* arg number (-1 iff none) */
1228 int dtargd_mapping; /* value mapping */
1229 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1230 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1231} dtrace_argdesc_t;
1232
1233/*
1234 * DTrace Stability Attributes
1235 *
1236 * Each DTrace provider advertises the name and data stability of each of its
1237 * probe description components, as well as its architectural dependencies.
1238 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1239 * order to compute the properties of an input program and report them.
1240 */
1241typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1242typedef uint8_t dtrace_class_t; /* architectural dependency class */
1243
1244#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1245#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1246#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1247#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1248#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1249#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1250#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1251#define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1252#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1253
1254#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1255#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1256#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1257#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1258#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1259#define DTRACE_CLASS_COMMON 5 /* common to all systems */
1260#define DTRACE_CLASS_MAX 5 /* maximum valid class */
1261
1262#define DTRACE_PRIV_NONE 0x0000
1263#define DTRACE_PRIV_KERNEL 0x0001
1264#define DTRACE_PRIV_USER 0x0002
1265#define DTRACE_PRIV_PROC 0x0004
1266#define DTRACE_PRIV_OWNER 0x0008
1267#define DTRACE_PRIV_ZONEOWNER 0x0010
1268
1269#define DTRACE_PRIV_ALL \
1270 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1271 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1272
1273typedef struct dtrace_ppriv {
1274 uint32_t dtpp_flags; /* privilege flags */
1275 uid_t dtpp_uid; /* user ID */
1276 zoneid_t dtpp_zoneid; /* zone ID */
1277} dtrace_ppriv_t;
1278
1279typedef struct dtrace_attribute {
1280 dtrace_stability_t dtat_name; /* entity name stability */
1281 dtrace_stability_t dtat_data; /* entity data stability */
1282 dtrace_class_t dtat_class; /* entity data dependency */
1283} dtrace_attribute_t;
1284
1285typedef struct dtrace_pattr {
1286 dtrace_attribute_t dtpa_provider; /* provider attributes */
1287 dtrace_attribute_t dtpa_mod; /* module attributes */
1288 dtrace_attribute_t dtpa_func; /* function attributes */
1289 dtrace_attribute_t dtpa_name; /* name attributes */
1290 dtrace_attribute_t dtpa_args; /* args[] attributes */
1291} dtrace_pattr_t;
1292
1293typedef struct dtrace_providerdesc {
1294 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1295 dtrace_pattr_t dtvd_attr; /* stability attributes */
1296 dtrace_ppriv_t dtvd_priv; /* privileges required */
1297} dtrace_providerdesc_t;
1298
1299/*
1300 * DTrace Pseudodevice Interface
1301 *
1302 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1303 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1304 * DTrace.
1305 */
1306#if !defined(__APPLE__)
1307#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1308#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1309#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1310#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1311#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1312#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1313#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1314#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1315#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1316#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1317#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1318#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1319#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1320#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1321#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1322#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1323#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1324#else
1325/* coding this as IOC_VOID allows this driver to handle its own copyin/copuout */
1326#define DTRACEIOC _IO('d',0)
1327#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1328#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1329#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1330#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1331#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1332#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1333#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1334#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1335#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1336#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1337#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1338#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1339#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1340#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1341#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1342#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1343#endif /* __APPLE__ */
1344
1345/*
1346 * DTrace Helpers
1347 *
1348 * In general, DTrace establishes probes in processes and takes actions on
1349 * processes without knowing their specific user-level structures. Instead of
1350 * existing in the framework, process-specific knowledge is contained by the
1351 * enabling D program -- which can apply process-specific knowledge by making
1352 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1353 * operate on user-level data. However, there may exist some specific probes
1354 * of particular semantic relevance that the application developer may wish to
1355 * explicitly export. For example, an application may wish to export a probe
1356 * at the point that it begins and ends certain well-defined transactions. In
1357 * addition to providing probes, programs may wish to offer assistance for
1358 * certain actions. For example, in highly dynamic environments (e.g., Java),
1359 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1360 * names (the translation from instruction addresses to corresponding symbol
1361 * names may only be possible in situ); these environments may wish to define
1362 * a series of actions to be applied in situ to obtain a meaningful stack
1363 * trace.
1364 *
1365 * These two mechanisms -- user-level statically defined tracing and assisting
1366 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1367 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1368 * providers, probes and their arguments. If a helper wishes to provide
1369 * action assistance, probe descriptions and corresponding DIF actions may be
1370 * specified in the helper DOF. For such helper actions, however, the probe
1371 * description describes the specific helper: all DTrace helpers have the
1372 * provider name "dtrace" and the module name "helper", and the name of the
1373 * helper is contained in the function name (for example, the ustack() helper
1374 * is named "ustack"). Any helper-specific name may be contained in the name
1375 * (for example, if a helper were to have a constructor, it might be named
1376 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1377 * action that they are helping is taken. Helper actions may only return DIF
1378 * expressions, and may only call the following subroutines:
1379 *
1380 * alloca() <= Allocates memory out of the consumer's scratch space
1381 * bcopy() <= Copies memory to scratch space
1382 * copyin() <= Copies memory from user-level into consumer's scratch
1383 * copyinto() <= Copies memory into a specific location in scratch
1384 * copyinstr() <= Copies a string into a specific location in scratch
1385 *
1386 * Helper actions may only access the following built-in variables:
1387 *
1388 * curthread <= Current kthread_t pointer
1389 * tid <= Current thread identifier
1390 * pid <= Current process identifier
1391 * ppid <= Parent process identifier
1392 * uid <= Current user ID
1393 * gid <= Current group ID
1394 * execname <= Current executable name
1395 * zonename <= Current zone name
1396 *
1397 * Helper actions may not manipulate or allocate dynamic variables, but they
1398 * may have clause-local and statically-allocated global variables. The
1399 * helper action variable state is specific to the helper action -- variables
1400 * used by the helper action may not be accessed outside of the helper
1401 * action, and the helper action may not access variables that like outside
1402 * of it. Helper actions may not load from kernel memory at-large; they are
1403 * restricting to loading current user state (via copyin() and variants) and
1404 * scratch space. As with probe enablings, helper actions are executed in
1405 * program order. The result of the helper action is the result of the last
1406 * executing helper expression.
1407 *
1408 * Helpers -- composed of either providers/probes or probes/actions (or both)
1409 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1410 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1411 * encapsulates the name and base address of the user-level library or
1412 * executable publishing the helpers and probes as well as the DOF that
1413 * contains the definitions of those helpers and probes.
1414 *
1415 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1416 * helpers and should no longer be used. No other ioctls are valid on the
1417 * helper minor node.
1418 */
1419#if !defined(__APPLE__)
1420#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1421#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1422#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1423#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1424#else
1425#define DTRACEHIOC_REMOVE _IO('h', 2) /* remove helper */
1426#define DTRACEHIOC_ADDDOF _IOW('h', 4, user_addr_t) /* add helper DOF */
1427#endif /* __APPLE__ */
1428
1429typedef struct dof_helper {
1430 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1431 uint64_t dofhp_addr; /* base address of object */
1432 uint64_t dofhp_dof; /* address of helper DOF */
1433} dof_helper_t;
1434
1435#if defined(__APPLE__)
1436/*
1437 * This structure is used to register one or more dof_helper_t(s).
1438 * For counts greater than one, malloc the structure as if the
1439 * dofiod_helpers field was "count" sized. The kernel will copyin
1440 * data of size:
1441 *
1442 * sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t))
1443 */
1444typedef struct dof_ioctl_data {
1445 /*
1446 * This field must be 64 bits to keep the alignment the same
1447 * when 64 bit user procs are sending data to 32 bit xnu
1448 */
1449 uint64_t dofiod_count;
1450 dof_helper_t dofiod_helpers[1];
1451} dof_ioctl_data_t;
1452
1453#define DOF_IOCTL_DATA_T_SIZE(count) (sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t)))
1454
1455#endif
1456
1457#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
b0d623f7
A
1458#if !defined(__APPLE__)
1459#define DTRACEMNR_HELPER "helper" /* node for helpers */
1460#else
2d21ac55 1461#define DTRACEMNR_HELPER "dtracehelper" /* node for helpers */
b0d623f7 1462#endif /* __APPLE__ */
2d21ac55
A
1463#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1464#define DTRACEMNRN_HELPER 1 /* minor for helpers */
1465#define DTRACEMNRN_CLONE 2 /* first clone minor */
1466
1467#ifdef _KERNEL
1468
1469/*
1470 * DTrace Provider API
1471 *
1472 * The following functions are implemented by the DTrace framework and are
1473 * used to implement separate in-kernel DTrace providers. Common functions
1474 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1475 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1476 *
1477 * The provider API has two halves: the API that the providers consume from
1478 * DTrace, and the API that providers make available to DTrace.
1479 *
1480 * 1 Framework-to-Provider API
1481 *
1482 * 1.1 Overview
1483 *
1484 * The Framework-to-Provider API is represented by the dtrace_pops structure
1485 * that the provider passes to the framework when registering itself. This
1486 * structure consists of the following members:
1487 *
1488 * dtps_provide() <-- Provide all probes, all modules
1489 * dtps_provide_module() <-- Provide all probes in specified module
1490 * dtps_enable() <-- Enable specified probe
1491 * dtps_disable() <-- Disable specified probe
1492 * dtps_suspend() <-- Suspend specified probe
1493 * dtps_resume() <-- Resume specified probe
1494 * dtps_getargdesc() <-- Get the argument description for args[X]
1495 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1496 * dtps_usermode() <-- Find out if the probe was fired in user mode
1497 * dtps_destroy() <-- Destroy all state associated with this probe
1498 *
1499 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1500 *
1501 * 1.2.1 Overview
1502 *
1503 * Called to indicate that the provider should provide all probes. If the
1504 * specified description is non-NULL, dtps_provide() is being called because
1505 * no probe matched a specified probe -- if the provider has the ability to
1506 * create custom probes, it may wish to create a probe that matches the
1507 * specified description.
1508 *
1509 * 1.2.2 Arguments and notes
1510 *
1511 * The first argument is the cookie as passed to dtrace_register(). The
1512 * second argument is a pointer to a probe description that the provider may
1513 * wish to consider when creating custom probes. The provider is expected to
1514 * call back into the DTrace framework via dtrace_probe_create() to create
1515 * any necessary probes. dtps_provide() may be called even if the provider
1516 * has made available all probes; the provider should check the return value
1517 * of dtrace_probe_create() to handle this case. Note that the provider need
1518 * not implement both dtps_provide() and dtps_provide_module(); see
1519 * "Arguments and Notes" for dtrace_register(), below.
1520 *
1521 * 1.2.3 Return value
1522 *
1523 * None.
1524 *
1525 * 1.2.4 Caller's context
1526 *
1527 * dtps_provide() is typically called from open() or ioctl() context, but may
1528 * be called from other contexts as well. The DTrace framework is locked in
1529 * such a way that providers may not register or unregister. This means that
1530 * the provider may not call any DTrace API that affects its registration with
1531 * the framework, including dtrace_register(), dtrace_unregister(),
1532 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1533 * that the provider may (and indeed, is expected to) call probe-related
1534 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1535 * and dtrace_probe_arg().
1536 *
1537 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1538 *
1539 * 1.3.1 Overview
1540 *
1541 * Called to indicate that the provider should provide all probes in the
1542 * specified module.
1543 *
1544 * 1.3.2 Arguments and notes
1545 *
1546 * The first argument is the cookie as passed to dtrace_register(). The
1547 * second argument is a pointer to a modctl structure that indicates the
1548 * module for which probes should be created.
1549 *
1550 * 1.3.3 Return value
1551 *
1552 * None.
1553 *
1554 * 1.3.4 Caller's context
1555 *
1556 * dtps_provide_module() may be called from open() or ioctl() context, but
1557 * may also be called from a module loading context. mod_lock is held, and
1558 * the DTrace framework is locked in such a way that providers may not
1559 * register or unregister. This means that the provider may not call any
1560 * DTrace API that affects its registration with the framework, including
1561 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1562 * dtrace_condense(). However, the context is such that the provider may (and
1563 * indeed, is expected to) call probe-related DTrace routines, including
1564 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1565 * that the provider need not implement both dtps_provide() and
1566 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1567 * below.
1568 *
1569 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1570 *
1571 * 1.4.1 Overview
1572 *
1573 * Called to enable the specified probe.
1574 *
1575 * 1.4.2 Arguments and notes
1576 *
1577 * The first argument is the cookie as passed to dtrace_register(). The
1578 * second argument is the identifier of the probe to be enabled. The third
1579 * argument is the probe argument as passed to dtrace_probe_create().
1580 * dtps_enable() will be called when a probe transitions from not being
1581 * enabled at all to having one or more ECB. The number of ECBs associated
1582 * with the probe may change without subsequent calls into the provider.
1583 * When the number of ECBs drops to zero, the provider will be explicitly
1584 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1585 * be called for a probe identifier that hasn't been explicitly enabled via
1586 * dtps_enable().
1587 *
1588 * 1.4.3 Return value
1589 *
1590 * None.
1591 *
1592 * 1.4.4 Caller's context
1593 *
1594 * The DTrace framework is locked in such a way that it may not be called
1595 * back into at all. cpu_lock is held. mod_lock is not held and may not
1596 * be acquired.
1597 *
1598 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1599 *
1600 * 1.5.1 Overview
1601 *
1602 * Called to disable the specified probe.
1603 *
1604 * 1.5.2 Arguments and notes
1605 *
1606 * The first argument is the cookie as passed to dtrace_register(). The
1607 * second argument is the identifier of the probe to be disabled. The third
1608 * argument is the probe argument as passed to dtrace_probe_create().
1609 * dtps_disable() will be called when a probe transitions from being enabled
1610 * to having zero ECBs. dtrace_probe() should never be called for a probe
1611 * identifier that has been explicitly enabled via dtps_disable().
1612 *
1613 * 1.5.3 Return value
1614 *
1615 * None.
1616 *
1617 * 1.5.4 Caller's context
1618 *
1619 * The DTrace framework is locked in such a way that it may not be called
1620 * back into at all. cpu_lock is held. mod_lock is not held and may not
1621 * be acquired.
1622 *
1623 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1624 *
1625 * 1.6.1 Overview
1626 *
1627 * Called to suspend the specified enabled probe. This entry point is for
1628 * providers that may need to suspend some or all of their probes when CPUs
1629 * are being powered on or when the boot monitor is being entered for a
1630 * prolonged period of time.
1631 *
1632 * 1.6.2 Arguments and notes
1633 *
1634 * The first argument is the cookie as passed to dtrace_register(). The
1635 * second argument is the identifier of the probe to be suspended. The
1636 * third argument is the probe argument as passed to dtrace_probe_create().
1637 * dtps_suspend will only be called on an enabled probe. Providers that
1638 * provide a dtps_suspend entry point will want to take roughly the action
1639 * that it takes for dtps_disable.
1640 *
1641 * 1.6.3 Return value
1642 *
1643 * None.
1644 *
1645 * 1.6.4 Caller's context
1646 *
1647 * Interrupts are disabled. The DTrace framework is in a state such that the
1648 * specified probe cannot be disabled or destroyed for the duration of
1649 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1650 * little latitude; the provider is expected to do no more than a store to
1651 * memory.
1652 *
1653 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1654 *
1655 * 1.7.1 Overview
1656 *
1657 * Called to resume the specified enabled probe. This entry point is for
1658 * providers that may need to resume some or all of their probes after the
1659 * completion of an event that induced a call to dtps_suspend().
1660 *
1661 * 1.7.2 Arguments and notes
1662 *
1663 * The first argument is the cookie as passed to dtrace_register(). The
1664 * second argument is the identifier of the probe to be resumed. The
1665 * third argument is the probe argument as passed to dtrace_probe_create().
1666 * dtps_resume will only be called on an enabled probe. Providers that
1667 * provide a dtps_resume entry point will want to take roughly the action
1668 * that it takes for dtps_enable.
1669 *
1670 * 1.7.3 Return value
1671 *
1672 * None.
1673 *
1674 * 1.7.4 Caller's context
1675 *
1676 * Interrupts are disabled. The DTrace framework is in a state such that the
1677 * specified probe cannot be disabled or destroyed for the duration of
1678 * dtps_resume(). As interrupts are disabled, the provider is afforded
1679 * little latitude; the provider is expected to do no more than a store to
1680 * memory.
1681 *
1682 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1683 * dtrace_argdesc_t *desc)
1684 *
1685 * 1.8.1 Overview
1686 *
1687 * Called to retrieve the argument description for an args[X] variable.
1688 *
1689 * 1.8.2 Arguments and notes
1690 *
1691 * The first argument is the cookie as passed to dtrace_register(). The
1692 * second argument is the identifier of the current probe. The third
1693 * argument is the probe argument as passed to dtrace_probe_create(). The
1694 * fourth argument is a pointer to the argument description. This
1695 * description is both an input and output parameter: it contains the
1696 * index of the desired argument in the dtargd_ndx field, and expects
1697 * the other fields to be filled in upon return. If there is no argument
1698 * corresponding to the specified index, the dtargd_ndx field should be set
1699 * to DTRACE_ARGNONE.
1700 *
1701 * 1.8.3 Return value
1702 *
1703 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1704 * members of the dtrace_argdesc_t structure are all output values.
1705 *
1706 * 1.8.4 Caller's context
1707 *
1708 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1709 * the DTrace framework is locked in such a way that providers may not
1710 * register or unregister. This means that the provider may not call any
1711 * DTrace API that affects its registration with the framework, including
1712 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1713 * dtrace_condense().
1714 *
1715 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1716 * int argno, int aframes)
1717 *
1718 * 1.9.1 Overview
1719 *
1720 * Called to retrieve a value for an argX or args[X] variable.
1721 *
1722 * 1.9.2 Arguments and notes
1723 *
1724 * The first argument is the cookie as passed to dtrace_register(). The
1725 * second argument is the identifier of the current probe. The third
1726 * argument is the probe argument as passed to dtrace_probe_create(). The
1727 * fourth argument is the number of the argument (the X in the example in
1728 * 1.9.1). The fifth argument is the number of stack frames that were used
1729 * to get from the actual place in the code that fired the probe to
1730 * dtrace_probe() itself, the so-called artificial frames. This argument may
1731 * be used to descend an appropriate number of frames to find the correct
1732 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1733 * function is used.
1734 *
1735 * 1.9.3 Return value
1736 *
1737 * The value of the argument.
1738 *
1739 * 1.9.4 Caller's context
1740 *
1741 * This is called from within dtrace_probe() meaning that interrupts
1742 * are disabled. No locks should be taken within this entry point.
1743 *
1744 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1745 *
1746 * 1.10.1 Overview
1747 *
1748 * Called to determine if the probe was fired in a user context.
1749 *
1750 * 1.10.2 Arguments and notes
1751 *
1752 * The first argument is the cookie as passed to dtrace_register(). The
1753 * second argument is the identifier of the current probe. The third
1754 * argument is the probe argument as passed to dtrace_probe_create(). This
1755 * entry point must not be left NULL for providers whose probes allow for
1756 * mixed mode tracing, that is to say those probes that can fire during
1757 * kernel- _or_ user-mode execution
1758 *
1759 * 1.10.3 Return value
1760 *
1761 * A boolean value.
1762 *
1763 * 1.10.4 Caller's context
1764 *
1765 * This is called from within dtrace_probe() meaning that interrupts
1766 * are disabled. No locks should be taken within this entry point.
1767 *
1768 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1769 *
1770 * 1.11.1 Overview
1771 *
1772 * Called to destroy the specified probe.
1773 *
1774 * 1.11.2 Arguments and notes
1775 *
1776 * The first argument is the cookie as passed to dtrace_register(). The
1777 * second argument is the identifier of the probe to be destroyed. The third
1778 * argument is the probe argument as passed to dtrace_probe_create(). The
1779 * provider should free all state associated with the probe. The framework
1780 * guarantees that dtps_destroy() is only called for probes that have either
1781 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1782 * Once dtps_disable() has been called for a probe, no further call will be
1783 * made specifying the probe.
1784 *
1785 * 1.11.3 Return value
1786 *
1787 * None.
1788 *
1789 * 1.11.4 Caller's context
1790 *
1791 * The DTrace framework is locked in such a way that it may not be called
1792 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1793 * acquired.
1794 *
1795 *
1796 * 2 Provider-to-Framework API
1797 *
1798 * 2.1 Overview
1799 *
1800 * The Provider-to-Framework API provides the mechanism for the provider to
1801 * register itself with the DTrace framework, to create probes, to lookup
1802 * probes and (most importantly) to fire probes. The Provider-to-Framework
1803 * consists of:
1804 *
1805 * dtrace_register() <-- Register a provider with the DTrace framework
1806 * dtrace_unregister() <-- Remove a provider's DTrace registration
1807 * dtrace_invalidate() <-- Invalidate the specified provider
1808 * dtrace_condense() <-- Remove a provider's unenabled probes
1809 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1810 * dtrace_probe_create() <-- Create a DTrace probe
1811 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1812 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1813 * dtrace_probe() <-- Fire the specified probe
1814 *
1815 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1816 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1817 * dtrace_provider_id_t *idp)
1818 *
1819 * 2.2.1 Overview
1820 *
1821 * dtrace_register() registers the calling provider with the DTrace
1822 * framework. It should generally be called by DTrace providers in their
1823 * attach(9E) entry point.
1824 *
1825 * 2.2.2 Arguments and Notes
1826 *
1827 * The first argument is the name of the provider. The second argument is a
1828 * pointer to the stability attributes for the provider. The third argument
1829 * is the privilege flags for the provider, and must be some combination of:
1830 *
1831 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1832 *
1833 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1834 * enable probes from this provider
1835 *
1836 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1837 * enable probes from this provider
1838 *
1839 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1840 * may enable probes from this provider
1841 *
1842 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1843 * the privilege requirements above. These probes
1844 * require either (a) a user ID matching the user
1845 * ID of the cred passed in the fourth argument
1846 * or (b) the PRIV_PROC_OWNER privilege.
1847 *
1848 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1849 * the privilege requirements above. These probes
1850 * require either (a) a zone ID matching the zone
1851 * ID of the cred passed in the fourth argument
1852 * or (b) the PRIV_PROC_ZONE privilege.
1853 *
1854 * Note that these flags designate the _visibility_ of the probes, not
1855 * the conditions under which they may or may not fire.
1856 *
1857 * The fourth argument is the credential that is associated with the
1858 * provider. This argument should be NULL if the privilege flags don't
1859 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1860 * framework stashes the uid and zoneid represented by this credential
1861 * for use at probe-time, in implicit predicates. These limit visibility
1862 * of the probes to users and/or zones which have sufficient privilege to
1863 * access them.
1864 *
1865 * The fifth argument is a DTrace provider operations vector, which provides
1866 * the implementation for the Framework-to-Provider API. (See Section 1,
1867 * above.) This must be non-NULL, and each member must be non-NULL. The
1868 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1869 * members (if the provider so desires, _one_ of these members may be left
1870 * NULL -- denoting that the provider only implements the other) and (2)
1871 * the dtps_suspend() and dtps_resume() members, which must either both be
1872 * NULL or both be non-NULL.
1873 *
1874 * The sixth argument is a cookie to be specified as the first argument for
1875 * each function in the Framework-to-Provider API. This argument may have
1876 * any value.
1877 *
1878 * The final argument is a pointer to dtrace_provider_id_t. If
1879 * dtrace_register() successfully completes, the provider identifier will be
1880 * stored in the memory pointed to be this argument. This argument must be
1881 * non-NULL.
1882 *
1883 * 2.2.3 Return value
1884 *
1885 * On success, dtrace_register() returns 0 and stores the new provider's
1886 * identifier into the memory pointed to by the idp argument. On failure,
1887 * dtrace_register() returns an errno:
1888 *
1889 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1890 * This may because a parameter that must be non-NULL was NULL,
1891 * because the name was invalid (either empty or an illegal
1892 * provider name) or because the attributes were invalid.
1893 *
1894 * No other failure code is returned.
1895 *
1896 * 2.2.4 Caller's context
1897 *
1898 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1899 * hold no locks across dtrace_register() that may also be acquired by
1900 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1901 *
1902 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1903 *
1904 * 2.3.1 Overview
1905 *
1906 * Unregisters the specified provider from the DTrace framework. It should
1907 * generally be called by DTrace providers in their detach(9E) entry point.
1908 *
1909 * 2.3.2 Arguments and Notes
1910 *
1911 * The only argument is the provider identifier, as returned from a
1912 * successful call to dtrace_register(). As a result of calling
1913 * dtrace_unregister(), the DTrace framework will call back into the provider
1914 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1915 * completes, however, the DTrace framework will no longer make calls through
1916 * the Framework-to-Provider API.
1917 *
1918 * 2.3.3 Return value
1919 *
1920 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1921 * returns an errno:
1922 *
1923 * EBUSY There are currently processes that have the DTrace pseudodevice
1924 * open, or there exists an anonymous enabling that hasn't yet
1925 * been claimed.
1926 *
1927 * No other failure code is returned.
1928 *
1929 * 2.3.4 Caller's context
1930 *
1931 * Because a call to dtrace_unregister() may induce calls through the
1932 * Framework-to-Provider API, the caller may not hold any lock across
1933 * dtrace_register() that is also acquired in any of the Framework-to-
1934 * Provider API functions. Additionally, mod_lock may not be held.
1935 *
1936 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1937 *
1938 * 2.4.1 Overview
1939 *
1940 * Invalidates the specified provider. All subsequent probe lookups for the
1941 * specified provider will fail, but its probes will not be removed.
1942 *
1943 * 2.4.2 Arguments and note
1944 *
1945 * The only argument is the provider identifier, as returned from a
1946 * successful call to dtrace_register(). In general, a provider's probes
1947 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1948 * an entire provider, regardless of whether or not probes are enabled or
1949 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1950 * probes from firing -- it will merely prevent any new enablings of the
1951 * provider's probes.
1952 *
1953 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1954 *
1955 * 2.5.1 Overview
1956 *
1957 * Removes all the unenabled probes for the given provider. This function is
1958 * not unlike dtrace_unregister(), except that it doesn't remove the
1959 * provider just as many of its associated probes as it can.
1960 *
1961 * 2.5.2 Arguments and Notes
1962 *
1963 * As with dtrace_unregister(), the sole argument is the provider identifier
1964 * as returned from a successful call to dtrace_register(). As a result of
1965 * calling dtrace_condense(), the DTrace framework will call back into the
1966 * given provider's dtps_destroy() entry point for each of the provider's
1967 * unenabled probes.
1968 *
1969 * 2.5.3 Return value
1970 *
1971 * Currently, dtrace_condense() always returns 0. However, consumers of this
1972 * function should check the return value as appropriate; its behavior may
1973 * change in the future.
1974 *
1975 * 2.5.4 Caller's context
1976 *
1977 * As with dtrace_unregister(), the caller may not hold any lock across
1978 * dtrace_condense() that is also acquired in the provider's entry points.
1979 * Also, mod_lock may not be held.
1980 *
1981 * 2.6 int dtrace_attached()
1982 *
1983 * 2.6.1 Overview
1984 *
1985 * Indicates whether or not DTrace has attached.
1986 *
1987 * 2.6.2 Arguments and Notes
1988 *
1989 * For most providers, DTrace makes initial contact beyond registration.
1990 * That is, once a provider has registered with DTrace, it waits to hear
1991 * from DTrace to create probes. However, some providers may wish to
1992 * proactively create probes without first being told by DTrace to do so.
1993 * If providers wish to do this, they must first call dtrace_attached() to
1994 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1995 * the provider must not make any other Provider-to-Framework API call.
1996 *
1997 * 2.6.3 Return value
1998 *
1999 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
2000 *
2001 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
2002 * const char *func, const char *name, int aframes, void *arg)
2003 *
2004 * 2.7.1 Overview
2005 *
2006 * Creates a probe with specified module name, function name, and name.
2007 *
2008 * 2.7.2 Arguments and Notes
2009 *
2010 * The first argument is the provider identifier, as returned from a
2011 * successful call to dtrace_register(). The second, third, and fourth
2012 * arguments are the module name, function name, and probe name,
2013 * respectively. Of these, module name and function name may both be NULL
2014 * (in which case the probe is considered to be unanchored), or they may both
2015 * be non-NULL. The name must be non-NULL, and must point to a non-empty
2016 * string.
2017 *
2018 * The fifth argument is the number of artificial stack frames that will be
2019 * found on the stack when dtrace_probe() is called for the new probe. These
2020 * artificial frames will be automatically be pruned should the stack() or
2021 * stackdepth() functions be called as part of one of the probe's ECBs. If
2022 * the parameter doesn't add an artificial frame, this parameter should be
2023 * zero.
2024 *
2025 * The final argument is a probe argument that will be passed back to the
2026 * provider when a probe-specific operation is called. (e.g., via
2027 * dtps_enable(), dtps_disable(), etc.)
2028 *
2029 * Note that it is up to the provider to be sure that the probe that it
2030 * creates does not already exist -- if the provider is unsure of the probe's
2031 * existence, it should assure its absence with dtrace_probe_lookup() before
2032 * calling dtrace_probe_create().
2033 *
2034 * 2.7.3 Return value
2035 *
2036 * dtrace_probe_create() always succeeds, and always returns the identifier
2037 * of the newly-created probe.
2038 *
2039 * 2.7.4 Caller's context
2040 *
2041 * While dtrace_probe_create() is generally expected to be called from
2042 * dtps_provide() and/or dtps_provide_module(), it may be called from other
2043 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2044 *
2045 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2046 * const char *func, const char *name)
2047 *
2048 * 2.8.1 Overview
2049 *
2050 * Looks up a probe based on provdider and one or more of module name,
2051 * function name and probe name.
2052 *
2053 * 2.8.2 Arguments and Notes
2054 *
2055 * The first argument is the provider identifier, as returned from a
2056 * successful call to dtrace_register(). The second, third, and fourth
2057 * arguments are the module name, function name, and probe name,
2058 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
2059 * the identifier of the first probe that is provided by the specified
2060 * provider and matches all of the non-NULL matching criteria.
2061 * dtrace_probe_lookup() is generally used by a provider to be check the
2062 * existence of a probe before creating it with dtrace_probe_create().
2063 *
2064 * 2.8.3 Return value
2065 *
2066 * If the probe exists, returns its identifier. If the probe does not exist,
2067 * return DTRACE_IDNONE.
2068 *
2069 * 2.8.4 Caller's context
2070 *
2071 * While dtrace_probe_lookup() is generally expected to be called from
2072 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2073 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2074 *
2075 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2076 *
2077 * 2.9.1 Overview
2078 *
2079 * Returns the probe argument associated with the specified probe.
2080 *
2081 * 2.9.2 Arguments and Notes
2082 *
2083 * The first argument is the provider identifier, as returned from a
2084 * successful call to dtrace_register(). The second argument is a probe
2085 * identifier, as returned from dtrace_probe_lookup() or
2086 * dtrace_probe_create(). This is useful if a probe has multiple
2087 * provider-specific components to it: the provider can create the probe
2088 * once with provider-specific state, and then add to the state by looking
2089 * up the probe based on probe identifier.
2090 *
2091 * 2.9.3 Return value
2092 *
2093 * Returns the argument associated with the specified probe. If the
2094 * specified probe does not exist, or if the specified probe is not provided
2095 * by the specified provider, NULL is returned.
2096 *
2097 * 2.9.4 Caller's context
2098 *
2099 * While dtrace_probe_arg() is generally expected to be called from
2100 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2101 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2102 *
2103 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2104 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2105 *
2106 * 2.10.1 Overview
2107 *
2108 * The epicenter of DTrace: fires the specified probes with the specified
2109 * arguments.
2110 *
2111 * 2.10.2 Arguments and Notes
2112 *
2113 * The first argument is a probe identifier as returned by
2114 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2115 * arguments are the values to which the D variables "arg0" through "arg4"
2116 * will be mapped.
2117 *
2118 * dtrace_probe() should be called whenever the specified probe has fired --
2119 * however the provider defines it.
2120 *
2121 * 2.10.3 Return value
2122 *
2123 * None.
2124 *
2125 * 2.10.4 Caller's context
2126 *
2127 * dtrace_probe() may be called in virtually any context: kernel, user,
2128 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2129 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2130 * that must be afforded to DTrace is the ability to make calls within
2131 * itself (and to its in-kernel subroutines) and the ability to access
2132 * arbitrary (but mapped) memory. On some platforms, this constrains
2133 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2134 * from any context in which TL is greater than zero. dtrace_probe() may
2135 * also not be called from any routine which may be called by dtrace_probe()
2136 * -- which includes functions in the DTrace framework and some in-kernel
2137 * DTrace subroutines. All such functions "dtrace_"; providers that
2138 * instrument the kernel arbitrarily should be sure to not instrument these
2139 * routines.
2140 */
2141typedef struct dtrace_pops {
2142 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2143 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2144 void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2145 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2146 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2147 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2148 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2149 dtrace_argdesc_t *desc);
2150 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2151 int argno, int aframes);
2152 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2153 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2154} dtrace_pops_t;
2155
2156typedef uintptr_t dtrace_provider_id_t;
2157
2158extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2159 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2160extern int dtrace_unregister(dtrace_provider_id_t);
2161extern int dtrace_condense(dtrace_provider_id_t);
2162extern void dtrace_invalidate(dtrace_provider_id_t);
2163extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2164 const char *, const char *);
2165extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2166 const char *, const char *, int, void *);
2167extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2168#if !defined(__APPLE__)
2169extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2170 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2171#else
2172extern void dtrace_probe(dtrace_id_t, uint64_t arg0, uint64_t arg1,
2173 uint64_t arg2, uint64_t arg3, uint64_t arg4);
2174#endif /* __APPLE__ */
2175
2176/*
2177 * DTrace Meta Provider API
2178 *
2179 * The following functions are implemented by the DTrace framework and are
2180 * used to implement meta providers. Meta providers plug into the DTrace
2181 * framework and are used to instantiate new providers on the fly. At
2182 * present, there is only one type of meta provider and only one meta
2183 * provider may be registered with the DTrace framework at a time. The
2184 * sole meta provider type provides user-land static tracing facilities
2185 * by taking meta probe descriptions and adding a corresponding provider
2186 * into the DTrace framework.
2187 *
2188 * 1 Framework-to-Provider
2189 *
2190 * 1.1 Overview
2191 *
2192 * The Framework-to-Provider API is represented by the dtrace_mops structure
2193 * that the meta provider passes to the framework when registering itself as
2194 * a meta provider. This structure consists of the following members:
2195 *
2196 * dtms_create_probe() <-- Add a new probe to a created provider
2197 * dtms_provide_pid() <-- Create a new provider for a given process
2198 * dtms_remove_pid() <-- Remove a previously created provider
2199 *
2200 * 1.2 void dtms_create_probe(void *arg, void *parg,
2201 * dtrace_helper_probedesc_t *probedesc);
2202 *
2203 * 1.2.1 Overview
2204 *
2205 * Called by the DTrace framework to create a new probe in a provider
2206 * created by this meta provider.
2207 *
2208 * 1.2.2 Arguments and notes
2209 *
2210 * The first argument is the cookie as passed to dtrace_meta_register().
2211 * The second argument is the provider cookie for the associated provider;
2212 * this is obtained from the return value of dtms_provide_pid(). The third
2213 * argument is the helper probe description.
2214 *
2215 * 1.2.3 Return value
2216 *
2217 * None
2218 *
2219 * 1.2.4 Caller's context
2220 *
2221 * dtms_create_probe() is called from either ioctl() or module load context.
2222 * The DTrace framework is locked in such a way that meta providers may not
2223 * register or unregister. This means that the meta provider cannot call
2224 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2225 * such that the provider may (and is expected to) call provider-related
2226 * DTrace provider APIs including dtrace_probe_create().
2227 *
2228 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2229 * pid_t pid)
2230 *
2231 * 1.3.1 Overview
2232 *
2233 * Called by the DTrace framework to instantiate a new provider given the
2234 * description of the provider and probes in the mprov argument. The
2235 * meta provider should call dtrace_register() to insert the new provider
2236 * into the DTrace framework.
2237 *
2238 * 1.3.2 Arguments and notes
2239 *
2240 * The first argument is the cookie as passed to dtrace_meta_register().
2241 * The second argument is a pointer to a structure describing the new
2242 * helper provider. The third argument is the process identifier for
2243 * process associated with this new provider. Note that the name of the
2244 * provider as passed to dtrace_register() should be the contatenation of
2245 * the dtmpb_provname member of the mprov argument and the processs
2246 * identifier as a string.
2247 *
2248 * 1.3.3 Return value
2249 *
2250 * The cookie for the provider that the meta provider creates. This is
2251 * the same value that it passed to dtrace_register().
2252 *
2253 * 1.3.4 Caller's context
2254 *
2255 * dtms_provide_pid() is called from either ioctl() or module load context.
2256 * The DTrace framework is locked in such a way that meta providers may not
2257 * register or unregister. This means that the meta provider cannot call
2258 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2259 * is such that the provider may -- and is expected to -- call
2260 * provider-related DTrace provider APIs including dtrace_register().
2261 *
2262 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2263 * pid_t pid)
2264 *
2265 * 1.4.1 Overview
2266 *
2267 * Called by the DTrace framework to remove a provider that had previously
2268 * been instantiated via the dtms_provide_pid() entry point. The meta
2269 * provider need not remove the provider immediately, but this entry
2270 * point indicates that the provider should be removed as soon as possible
2271 * using the dtrace_unregister() API.
2272 *
2273 * 1.4.2 Arguments and notes
2274 *
2275 * The first argument is the cookie as passed to dtrace_meta_register().
2276 * The second argument is a pointer to a structure describing the helper
2277 * provider. The third argument is the process identifier for process
2278 * associated with this new provider.
2279 *
2280 * 1.4.3 Return value
2281 *
2282 * None
2283 *
2284 * 1.4.4 Caller's context
2285 *
2286 * dtms_remove_pid() is called from either ioctl() or exit() context.
2287 * The DTrace framework is locked in such a way that meta providers may not
2288 * register or unregister. This means that the meta provider cannot call
2289 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2290 * is such that the provider may -- and is expected to -- call
2291 * provider-related DTrace provider APIs including dtrace_unregister().
2292 */
2293typedef struct dtrace_helper_probedesc {
2294 char *dthpb_mod; /* probe module */
2295 char *dthpb_func; /* probe function */
2296 char *dthpb_name; /* probe name */
2297 uint64_t dthpb_base; /* base address */
2298#if !defined(__APPLE__)
2299 uint32_t *dthpb_offs; /* offsets array */
2300 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2301#else
2302 int32_t *dthpb_offs; /* (signed) offsets array */
2303 int32_t *dthpb_enoffs; /* (signed) is-enabled offsets array */
2304#endif
2305 uint32_t dthpb_noffs; /* offsets count */
2306 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2307 uint8_t *dthpb_args; /* argument mapping array */
2308 uint8_t dthpb_xargc; /* translated argument count */
2309 uint8_t dthpb_nargc; /* native argument count */
2310 char *dthpb_xtypes; /* translated types strings */
2311 char *dthpb_ntypes; /* native types strings */
2312} dtrace_helper_probedesc_t;
2313
2314typedef struct dtrace_helper_provdesc {
2315 char *dthpv_provname; /* provider name */
2316 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2317} dtrace_helper_provdesc_t;
2318
2319typedef struct dtrace_mops {
2320 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2321 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2322 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2323} dtrace_mops_t;
2324
2325typedef uintptr_t dtrace_meta_provider_id_t;
2326
2327extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2328 dtrace_meta_provider_id_t *);
2329extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2330
2331/*
2332 * DTrace Kernel Hooks
2333 *
2334 * The following functions are implemented by the base kernel and form a set of
2335 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2336 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2337 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2338 */
2339
2340typedef enum dtrace_vtime_state {
2341 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2342 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2343 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2344 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2345} dtrace_vtime_state_t;
2346
2347extern dtrace_vtime_state_t dtrace_vtime_active;
2348extern void dtrace_vtime_switch(kthread_t *next);
2349extern void dtrace_vtime_enable_tnf(void);
2350extern void dtrace_vtime_disable_tnf(void);
2351extern void dtrace_vtime_enable(void);
2352extern void dtrace_vtime_disable(void);
2353
b0d623f7
A
2354#if !defined(__APPLE__)
2355struct regs;
2356
2357extern int (*dtrace_pid_probe_ptr)(struct regs *);
2358extern int (*dtrace_return_probe_ptr)(struct regs *);
2359#else
2d21ac55
A
2360#if defined (__ppc__) || defined (__ppc64__)
2361extern int (*dtrace_pid_probe_ptr)(ppc_saved_state_t *regs);
2362extern int (*dtrace_return_probe_ptr)(ppc_saved_state_t* regs);
2363#elif defined (__i386__) || defined(__x86_64__)
2364extern int (*dtrace_pid_probe_ptr)(x86_saved_state_t *regs);
2365extern int (*dtrace_return_probe_ptr)(x86_saved_state_t* regs);
2d21ac55
A
2366#else
2367#error architecture not supported
2368#endif
b0d623f7 2369#endif /* __APPLE__ */
2d21ac55
A
2370extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2371extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2372extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2373extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2374
2375typedef uintptr_t dtrace_icookie_t;
2376typedef void (*dtrace_xcall_t)(void *);
2377
2378extern dtrace_icookie_t dtrace_interrupt_disable(void);
2379extern void dtrace_interrupt_enable(dtrace_icookie_t);
2380
2381extern void dtrace_membar_producer(void);
2382extern void dtrace_membar_consumer(void);
2383
2384extern void (*dtrace_cpu_init)(processorid_t);
2385extern void (*dtrace_modload)(struct modctl *);
2386extern void (*dtrace_modunload)(struct modctl *);
2387extern void (*dtrace_helpers_cleanup)(proc_t*);
2388extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2389extern void (*dtrace_cpustart_init)(void);
2390extern void (*dtrace_cpustart_fini)(void);
2391
2392extern void (*dtrace_kreloc_init)(void);
2393extern void (*dtrace_kreloc_fini)(void);
2394
2395extern void (*dtrace_debugger_init)(void);
2396extern void (*dtrace_debugger_fini)(void);
2397extern dtrace_cacheid_t dtrace_predcache_id;
2398
2399extern hrtime_t dtrace_gethrtime(void);
2400extern void dtrace_sync(void);
2401extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2402extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2403extern void dtrace_vpanic(const char *, __va_list);
2404extern void dtrace_panic(const char *, ...);
2405
2406extern int dtrace_safe_defer_signal(void);
2407extern void dtrace_safe_synchronous_signal(void);
2408
b0d623f7
A
2409extern int dtrace_mach_aframes(void);
2410
2411#if !defined(__APPLE__)
2412#if defined(__i386) || defined(__amd64)
2d21ac55
A
2413extern int dtrace_instr_size(uchar_t *instr);
2414extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2415extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2416extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2417extern void dtrace_invop_callsite(void);
2418#endif
2419
2420#ifdef __sparc
2421extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2422extern void dtrace_getfsr(uint64_t *);
2423#endif
b0d623f7
A
2424#else
2425#if defined(__i386__) || defined(__x86_64__)
2426extern int dtrace_instr_size(uchar_t *instr);
2427extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2428extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2429extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2430extern void dtrace_invop_callsite(void);
2431#endif
2d21ac55 2432
b0d623f7 2433
2d21ac55
A
2434#if defined (__ppc__) || defined (__ppc64__)
2435extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2436extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2437#endif
2438#undef proc_t
2439#endif /* __APPLE__ */
2440
2441#define DTRACE_CPUFLAG_ISSET(flag) \
2442 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2443
2444#define DTRACE_CPUFLAG_SET(flag) \
2445 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2446
2447#define DTRACE_CPUFLAG_CLEAR(flag) \
2448 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2449
2450#endif /* _KERNEL */
2451
2452#endif /* _ASM */
2453
b0d623f7
A
2454#if !defined(__APPLE__)
2455#if defined(__i386) || defined(__amd64)
2456
2457#define DTRACE_INVOP_PUSHL_EBP 1
2458#define DTRACE_INVOP_POPL_EBP 2
2459#define DTRACE_INVOP_LEAVE 3
2460#define DTRACE_INVOP_NOP 4
2461#define DTRACE_INVOP_RET 5
2462
2463#endif
2464#else
2d21ac55
A
2465#if defined(__i386__) || defined(__x86_64__)
2466
2467#define DTRACE_INVOP_PUSHL_EBP 1
2468#define DTRACE_INVOP_POPL_EBP 2
2469#define DTRACE_INVOP_LEAVE 3
2470#define DTRACE_INVOP_NOP 4
2471#define DTRACE_INVOP_RET 5
2472
2473#endif
2474
2d21ac55
A
2475#if defined (__ppc__) || defined (__ppc64__)
2476#define DTRACE_INVOP_NOP 4
2477#define DTRACE_INVOP_RET 5
2478#define DTRACE_INVOP_BCTR 6
2479#define DTRACE_INVOP_TAILJUMP 7
2480#endif
c910b4d9
A
2481
2482
2d21ac55
A
2483#endif /* __APPLE__ */
2484
2485#ifdef __cplusplus
2486}
2487#endif
2488
2489#endif /* _SYS_DTRACE_H */