]>
Commit | Line | Data |
---|---|---|
91447636 A |
1 | /* |
2 | * Copyright (c) 2004 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Kernel Authorization framework: Management of process/thread credentials and identity information. | |
25 | */ | |
26 | ||
27 | ||
28 | #include <sys/param.h> /* XXX trim includes */ | |
29 | #include <sys/acct.h> | |
30 | #include <sys/systm.h> | |
31 | #include <sys/ucred.h> | |
32 | #include <sys/proc_internal.h> | |
33 | #include <sys/user.h> | |
34 | #include <sys/timeb.h> | |
35 | #include <sys/times.h> | |
36 | #include <sys/malloc.h> | |
37 | #include <sys/kauth.h> | |
38 | #include <sys/kernel.h> | |
39 | ||
40 | #include <bsm/audit_kernel.h> | |
41 | ||
42 | #include <sys/mount.h> | |
43 | #include <sys/sysproto.h> | |
44 | #include <mach/message.h> | |
45 | #include <mach/host_security.h> | |
46 | ||
47 | #include <libkern/OSAtomic.h> | |
48 | ||
49 | #include <kern/task.h> | |
50 | #include <kern/lock.h> | |
51 | #ifdef MACH_ASSERT | |
52 | # undef MACH_ASSERT | |
53 | #endif | |
54 | #define MACH_ASSERT 1 /* XXX so bogus */ | |
55 | #include <kern/assert.h> | |
56 | ||
57 | #define CRED_DIAGNOSTIC 1 | |
58 | ||
59 | # define NULLCRED_CHECK(_c) do {if (((_c) == NOCRED) || ((_c) == FSCRED)) panic("bad credential %p", _c);} while(0) | |
60 | ||
61 | /* | |
62 | * Interface to external identity resolver. | |
63 | * | |
64 | * The architecture of the interface is simple; the external resolver calls in to | |
65 | * get work, then calls back with completed work. It also calls us to let us know | |
66 | * that it's (re)started, so that we can resubmit work if it times out. | |
67 | */ | |
68 | ||
69 | static lck_mtx_t *kauth_resolver_mtx; | |
70 | #define KAUTH_RESOLVER_LOCK() lck_mtx_lock(kauth_resolver_mtx); | |
71 | #define KAUTH_RESOLVER_UNLOCK() lck_mtx_unlock(kauth_resolver_mtx); | |
72 | ||
73 | static volatile pid_t kauth_resolver_identity; | |
74 | static int kauth_resolver_registered; | |
75 | static uint32_t kauth_resolver_sequence; | |
76 | ||
77 | struct kauth_resolver_work { | |
78 | TAILQ_ENTRY(kauth_resolver_work) kr_link; | |
79 | struct kauth_identity_extlookup kr_work; | |
80 | uint32_t kr_seqno; | |
81 | int kr_refs; | |
82 | int kr_flags; | |
83 | #define KAUTH_REQUEST_UNSUBMITTED (1<<0) | |
84 | #define KAUTH_REQUEST_SUBMITTED (1<<1) | |
85 | #define KAUTH_REQUEST_DONE (1<<2) | |
86 | int kr_result; | |
87 | }; | |
88 | ||
89 | TAILQ_HEAD(kauth_resolver_unsubmitted_head, kauth_resolver_work) kauth_resolver_unsubmitted; | |
90 | TAILQ_HEAD(kauth_resolver_submitted_head, kauth_resolver_work) kauth_resolver_submitted; | |
91 | TAILQ_HEAD(kauth_resolver_done_head, kauth_resolver_work) kauth_resolver_done; | |
92 | ||
93 | static int kauth_resolver_submit(struct kauth_identity_extlookup *lkp); | |
94 | static int kauth_resolver_complete(user_addr_t message); | |
95 | static int kauth_resolver_getwork(user_addr_t message); | |
96 | ||
97 | #define KAUTH_CRED_PRIMES_COUNT 7 | |
98 | static const int kauth_cred_primes[KAUTH_CRED_PRIMES_COUNT] = {97, 241, 397, 743, 1499, 3989, 7499}; | |
99 | static int kauth_cred_primes_index = 0; | |
100 | static int kauth_cred_table_size = 0; | |
101 | ||
102 | TAILQ_HEAD(kauth_cred_entry_head, ucred); | |
103 | static struct kauth_cred_entry_head * kauth_cred_table_anchor = NULL; | |
104 | ||
105 | #define KAUTH_CRED_HASH_DEBUG 0 | |
106 | ||
107 | static int kauth_cred_add(kauth_cred_t new_cred); | |
108 | static void kauth_cred_remove(kauth_cred_t cred); | |
109 | static inline u_long kauth_cred_hash(const uint8_t *datap, int data_len, u_long start_key); | |
110 | static u_long kauth_cred_get_hashkey(kauth_cred_t cred); | |
111 | static kauth_cred_t kauth_cred_update(kauth_cred_t old_cred, kauth_cred_t new_cred, boolean_t retain_auditinfo); | |
112 | ||
113 | #if KAUTH_CRED_HASH_DEBUG | |
114 | static int kauth_cred_count = 0; | |
115 | static void kauth_cred_hash_print(void); | |
116 | static void kauth_cred_print(kauth_cred_t cred); | |
117 | #endif | |
118 | ||
119 | void | |
120 | kauth_resolver_init(void) | |
121 | { | |
122 | TAILQ_INIT(&kauth_resolver_unsubmitted); | |
123 | TAILQ_INIT(&kauth_resolver_submitted); | |
124 | TAILQ_INIT(&kauth_resolver_done); | |
125 | kauth_resolver_sequence = 31337; | |
126 | kauth_resolver_mtx = lck_mtx_alloc_init(kauth_lck_grp, 0/*LCK_ATTR_NULL*/); | |
127 | } | |
128 | ||
129 | /* | |
130 | * Allocate a work queue entry, submit the work and wait for completion. | |
131 | * | |
132 | * XXX do we want an 'interruptible' flag vs. always being interruptible? | |
133 | */ | |
134 | static int | |
135 | kauth_resolver_submit(struct kauth_identity_extlookup *lkp) | |
136 | { | |
137 | struct kauth_resolver_work *workp, *killp; | |
138 | struct timespec ts; | |
139 | int error, shouldfree; | |
140 | ||
141 | /* no point actually blocking if the resolver isn't up yet */ | |
142 | if (kauth_resolver_identity == 0) { | |
143 | /* | |
144 | * We've already waited an initial 30 seconds with no result. | |
145 | * Sleep on a stack address so no one wakes us before timeout; | |
146 | * we sleep a half a second in case we are a high priority | |
147 | * process, so that memberd doesn't starve while we are in a | |
148 | * tight loop between user and kernel, eating all the CPU. | |
149 | */ | |
150 | error = tsleep(&ts, PZERO | PCATCH, "kr_submit", hz/2); | |
151 | if (kauth_resolver_identity == 0) { | |
152 | /* | |
153 | * if things haven't changed while we were asleep, | |
154 | * tell the caller we couldn't get an authoritative | |
155 | * answer. | |
156 | */ | |
157 | return(EWOULDBLOCK); | |
158 | } | |
159 | } | |
160 | ||
161 | MALLOC(workp, struct kauth_resolver_work *, sizeof(*workp), M_KAUTH, M_WAITOK); | |
162 | if (workp == NULL) | |
163 | return(ENOMEM); | |
164 | ||
165 | workp->kr_work = *lkp; | |
166 | workp->kr_refs = 1; | |
167 | workp->kr_flags = KAUTH_REQUEST_UNSUBMITTED; | |
168 | workp->kr_result = 0; | |
169 | ||
170 | /* | |
171 | * We insert the request onto the unsubmitted queue, the call in from the | |
172 | * resolver will it to the submitted thread when appropriate. | |
173 | */ | |
174 | KAUTH_RESOLVER_LOCK(); | |
175 | workp->kr_seqno = workp->kr_work.el_seqno = kauth_resolver_sequence++; | |
176 | workp->kr_work.el_result = KAUTH_EXTLOOKUP_INPROG; | |
177 | ||
178 | /* XXX as an optimisation, we could check the queue for identical items and coalesce */ | |
179 | TAILQ_INSERT_TAIL(&kauth_resolver_unsubmitted, workp, kr_link); | |
180 | ||
181 | wakeup_one((caddr_t)&kauth_resolver_unsubmitted); | |
182 | for (;;) { | |
183 | /* we could compute a better timeout here */ | |
184 | ts.tv_sec = 30; | |
185 | ts.tv_nsec = 0; | |
186 | error = msleep(workp, kauth_resolver_mtx, PCATCH, "kr_submit", &ts); | |
187 | /* request has been completed? */ | |
188 | if ((error == 0) && (workp->kr_flags & KAUTH_REQUEST_DONE)) | |
189 | break; | |
190 | /* woken because the resolver has died? */ | |
191 | if (kauth_resolver_identity == 0) { | |
192 | error = EIO; | |
193 | break; | |
194 | } | |
195 | /* an error? */ | |
196 | if (error != 0) | |
197 | break; | |
198 | } | |
199 | /* if the request was processed, copy the result */ | |
200 | if (error == 0) | |
201 | *lkp = workp->kr_work; | |
202 | ||
203 | /* | |
204 | * If the request timed out and was never collected, the resolver is dead and | |
205 | * probably not coming back anytime soon. In this case we revert to no-resolver | |
206 | * behaviour, and punt all the other sleeping requests to clear the backlog. | |
207 | */ | |
208 | if ((error == EWOULDBLOCK) && (workp->kr_flags & KAUTH_REQUEST_UNSUBMITTED)) { | |
209 | KAUTH_DEBUG("RESOLVER - request timed out without being collected for processing, resolver dead"); | |
210 | kauth_resolver_identity = 0; | |
211 | /* kill all the other requestes that are waiting as well */ | |
212 | TAILQ_FOREACH(killp, &kauth_resolver_submitted, kr_link) | |
213 | wakeup(killp); | |
214 | TAILQ_FOREACH(killp, &kauth_resolver_unsubmitted, kr_link) | |
215 | wakeup(killp); | |
216 | } | |
217 | ||
218 | /* drop our reference on the work item, and note whether we should free it or not */ | |
219 | if (--workp->kr_refs <= 0) { | |
220 | /* work out which list we have to remove it from */ | |
221 | if (workp->kr_flags & KAUTH_REQUEST_DONE) { | |
222 | TAILQ_REMOVE(&kauth_resolver_done, workp, kr_link); | |
223 | } else if (workp->kr_flags & KAUTH_REQUEST_SUBMITTED) { | |
224 | TAILQ_REMOVE(&kauth_resolver_submitted, workp, kr_link); | |
225 | } else if (workp->kr_flags & KAUTH_REQUEST_UNSUBMITTED) { | |
226 | TAILQ_REMOVE(&kauth_resolver_unsubmitted, workp, kr_link); | |
227 | } else { | |
228 | KAUTH_DEBUG("RESOLVER - completed request has no valid queue"); | |
229 | } | |
230 | shouldfree = 1; | |
231 | } else { | |
232 | /* someone else still has a reference on this request */ | |
233 | shouldfree = 0; | |
234 | } | |
235 | /* collect request result */ | |
236 | if (error == 0) | |
237 | error = workp->kr_result; | |
238 | KAUTH_RESOLVER_UNLOCK(); | |
239 | /* | |
240 | * If we dropped the last reference, free the request. | |
241 | */ | |
242 | if (shouldfree) | |
243 | FREE(workp, M_KAUTH); | |
244 | ||
245 | KAUTH_DEBUG("RESOLVER - returning %d", error); | |
246 | return(error); | |
247 | } | |
248 | ||
249 | /* | |
250 | * System call interface for the external identity resolver. | |
251 | */ | |
252 | int | |
253 | identitysvc(__unused struct proc *p, struct identitysvc_args *uap, __unused register_t *retval) | |
254 | { | |
255 | int opcode = uap->opcode; | |
256 | user_addr_t message = uap->message; | |
257 | struct kauth_resolver_work *workp; | |
258 | int error; | |
259 | pid_t new_id; | |
260 | ||
261 | /* | |
262 | * New server registering itself. | |
263 | */ | |
264 | if (opcode == KAUTH_EXTLOOKUP_REGISTER) { | |
265 | new_id = current_proc()->p_pid; | |
266 | if ((error = kauth_authorize_generic(kauth_cred_get(), KAUTH_GENERIC_ISSUSER)) != 0) { | |
267 | KAUTH_DEBUG("RESOLVER - pid %d refused permission to become identity resolver", new_id); | |
268 | return(error); | |
269 | } | |
270 | KAUTH_RESOLVER_LOCK(); | |
271 | if (kauth_resolver_identity != new_id) { | |
272 | KAUTH_DEBUG("RESOLVER - new resolver %d taking over from old %d", new_id, kauth_resolver_identity); | |
273 | /* | |
274 | * We have a new server, so assume that all the old requests have been lost. | |
275 | */ | |
276 | while ((workp = TAILQ_LAST(&kauth_resolver_submitted, kauth_resolver_submitted_head)) != NULL) { | |
277 | TAILQ_REMOVE(&kauth_resolver_submitted, workp, kr_link); | |
278 | workp->kr_flags &= ~KAUTH_REQUEST_SUBMITTED; | |
279 | workp->kr_flags |= KAUTH_REQUEST_UNSUBMITTED; | |
280 | TAILQ_INSERT_HEAD(&kauth_resolver_unsubmitted, workp, kr_link); | |
281 | } | |
282 | kauth_resolver_identity = new_id; | |
283 | kauth_resolver_registered = 1; | |
284 | wakeup(&kauth_resolver_unsubmitted); | |
285 | } | |
286 | KAUTH_RESOLVER_UNLOCK(); | |
287 | return(0); | |
288 | } | |
289 | ||
290 | /* | |
291 | * Beyond this point, we must be the resolver process. | |
292 | */ | |
293 | if (current_proc()->p_pid != kauth_resolver_identity) { | |
294 | KAUTH_DEBUG("RESOLVER - call from bogus resolver %d\n", current_proc()->p_pid); | |
295 | return(EPERM); | |
296 | } | |
297 | ||
298 | /* | |
299 | * Got a result returning? | |
300 | */ | |
301 | if (opcode & KAUTH_EXTLOOKUP_RESULT) { | |
302 | if ((error = kauth_resolver_complete(message)) != 0) | |
303 | return(error); | |
304 | } | |
305 | ||
306 | /* | |
307 | * Caller wants to take more work? | |
308 | */ | |
309 | if (opcode & KAUTH_EXTLOOKUP_WORKER) { | |
310 | if ((error = kauth_resolver_getwork(message)) != 0) | |
311 | return(error); | |
312 | } | |
313 | ||
314 | return(0); | |
315 | } | |
316 | ||
317 | /* | |
318 | * Get work for a caller. | |
319 | */ | |
320 | static int | |
321 | kauth_resolver_getwork(user_addr_t message) | |
322 | { | |
323 | struct kauth_resolver_work *workp; | |
324 | int error; | |
325 | ||
326 | KAUTH_RESOLVER_LOCK(); | |
327 | error = 0; | |
328 | while ((workp = TAILQ_FIRST(&kauth_resolver_unsubmitted)) == NULL) { | |
329 | error = msleep(&kauth_resolver_unsubmitted, kauth_resolver_mtx, PCATCH, "GRGetWork", 0); | |
330 | if (error != 0) | |
331 | break; | |
332 | } | |
333 | if (workp != NULL) { | |
334 | if ((error = copyout(&workp->kr_work, message, sizeof(workp->kr_work))) != 0) { | |
335 | KAUTH_DEBUG("RESOLVER - error submitting work to resolve"); | |
336 | goto out; | |
337 | } | |
338 | TAILQ_REMOVE(&kauth_resolver_unsubmitted, workp, kr_link); | |
339 | workp->kr_flags &= ~KAUTH_REQUEST_UNSUBMITTED; | |
340 | workp->kr_flags |= KAUTH_REQUEST_SUBMITTED; | |
341 | TAILQ_INSERT_TAIL(&kauth_resolver_submitted, workp, kr_link); | |
342 | } | |
343 | ||
344 | out: | |
345 | KAUTH_RESOLVER_UNLOCK(); | |
346 | return(error); | |
347 | } | |
348 | ||
349 | /* | |
350 | * Return a result from userspace. | |
351 | */ | |
352 | static int | |
353 | kauth_resolver_complete(user_addr_t message) | |
354 | { | |
355 | struct kauth_identity_extlookup extl; | |
356 | struct kauth_resolver_work *workp; | |
357 | int error, result; | |
358 | ||
359 | if ((error = copyin(message, &extl, sizeof(extl))) != 0) { | |
360 | KAUTH_DEBUG("RESOLVER - error getting completed work\n"); | |
361 | return(error); | |
362 | } | |
363 | ||
364 | KAUTH_RESOLVER_LOCK(); | |
365 | ||
366 | error = 0; | |
367 | result = 0; | |
368 | switch (extl.el_result) { | |
369 | case KAUTH_EXTLOOKUP_INPROG: | |
370 | { | |
371 | static int once = 0; | |
372 | ||
373 | /* XXX this should go away once memberd is updated */ | |
374 | if (!once) { | |
375 | printf("kauth_resolver: memberd is not setting valid result codes (assuming always successful)\n"); | |
376 | once = 1; | |
377 | } | |
378 | } | |
379 | /* FALLTHROUGH */ | |
380 | case KAUTH_EXTLOOKUP_SUCCESS: | |
381 | break; | |
382 | ||
383 | case KAUTH_EXTLOOKUP_FATAL: | |
384 | /* fatal error means the resolver is dead */ | |
385 | KAUTH_DEBUG("RESOLVER - resolver %d died, waiting for a new one", kauth_resolver_identity); | |
386 | kauth_resolver_identity = 0; | |
387 | /* XXX should we terminate all outstanding requests? */ | |
388 | error = EIO; | |
389 | break; | |
390 | case KAUTH_EXTLOOKUP_BADRQ: | |
391 | KAUTH_DEBUG("RESOLVER - resolver reported invalid request %d", extl.el_seqno); | |
392 | result = EINVAL; | |
393 | break; | |
394 | case KAUTH_EXTLOOKUP_FAILURE: | |
395 | KAUTH_DEBUG("RESOLVER - resolver reported transient failure for request %d", extl.el_seqno); | |
396 | result = EIO; | |
397 | break; | |
398 | default: | |
399 | KAUTH_DEBUG("RESOLVER - resolver returned unexpected status %d", extl.el_result); | |
400 | result = EIO; | |
401 | break; | |
402 | } | |
403 | ||
404 | /* | |
405 | * In the case of a fatal error, we assume that the resolver will restart | |
406 | * quickly and re-collect all of the outstanding requests. Thus, we don't | |
407 | * complete the request which returned the fatal error status. | |
408 | */ | |
409 | if (extl.el_result != KAUTH_EXTLOOKUP_FATAL) { | |
410 | /* scan our list for this request */ | |
411 | TAILQ_FOREACH(workp, &kauth_resolver_submitted, kr_link) { | |
412 | /* found it? */ | |
413 | if (workp->kr_seqno == extl.el_seqno) { | |
414 | /* copy result */ | |
415 | workp->kr_work = extl; | |
416 | /* move onto completed list and wake up requester(s) */ | |
417 | TAILQ_REMOVE(&kauth_resolver_submitted, workp, kr_link); | |
418 | workp->kr_flags &= ~KAUTH_REQUEST_SUBMITTED; | |
419 | workp->kr_flags |= KAUTH_REQUEST_DONE; | |
420 | workp->kr_result = result; | |
421 | TAILQ_INSERT_TAIL(&kauth_resolver_done, workp, kr_link); | |
422 | wakeup(workp); | |
423 | break; | |
424 | } | |
425 | } | |
426 | } | |
427 | /* | |
428 | * Note that it's OK for us not to find anything; if the request has | |
429 | * timed out the work record will be gone. | |
430 | */ | |
431 | KAUTH_RESOLVER_UNLOCK(); | |
432 | ||
433 | return(error); | |
434 | } | |
435 | ||
436 | ||
437 | /* | |
438 | * Identity cache. | |
439 | */ | |
440 | ||
441 | struct kauth_identity { | |
442 | TAILQ_ENTRY(kauth_identity) ki_link; | |
443 | int ki_valid; | |
444 | #define KI_VALID_UID (1<<0) /* UID and GID are mutually exclusive */ | |
445 | #define KI_VALID_GID (1<<1) | |
446 | #define KI_VALID_GUID (1<<2) | |
447 | #define KI_VALID_NTSID (1<<3) | |
448 | uid_t ki_uid; | |
449 | gid_t ki_gid; | |
450 | guid_t ki_guid; | |
451 | ntsid_t ki_ntsid; | |
452 | /* | |
453 | * Expiry times are the earliest time at which we will disregard the cached state and go to | |
454 | * userland. Before then if the valid bit is set, we will return the cached value. If it's | |
455 | * not set, we will not go to userland to resolve, just assume that there is no answer | |
456 | * available. | |
457 | */ | |
458 | time_t ki_guid_expiry; | |
459 | time_t ki_ntsid_expiry; | |
460 | }; | |
461 | ||
462 | static TAILQ_HEAD(kauth_identity_head, kauth_identity) kauth_identities; | |
463 | #define KAUTH_IDENTITY_CACHEMAX 100 /* XXX sizing? */ | |
464 | static int kauth_identity_count; | |
465 | ||
466 | static lck_mtx_t *kauth_identity_mtx; | |
467 | #define KAUTH_IDENTITY_LOCK() lck_mtx_lock(kauth_identity_mtx); | |
468 | #define KAUTH_IDENTITY_UNLOCK() lck_mtx_unlock(kauth_identity_mtx); | |
469 | ||
470 | ||
471 | static struct kauth_identity *kauth_identity_alloc(uid_t uid, gid_t gid, guid_t *guidp, time_t guid_expiry, | |
472 | ntsid_t *ntsidp, time_t ntsid_expiry); | |
473 | static void kauth_identity_register(struct kauth_identity *kip); | |
474 | static void kauth_identity_updatecache(struct kauth_identity_extlookup *elp, struct kauth_identity *kip); | |
475 | static void kauth_identity_lru(struct kauth_identity *kip); | |
476 | static int kauth_identity_guid_expired(struct kauth_identity *kip); | |
477 | static int kauth_identity_ntsid_expired(struct kauth_identity *kip); | |
478 | static int kauth_identity_find_uid(uid_t uid, struct kauth_identity *kir); | |
479 | static int kauth_identity_find_gid(gid_t gid, struct kauth_identity *kir); | |
480 | static int kauth_identity_find_guid(guid_t *guidp, struct kauth_identity *kir); | |
481 | static int kauth_identity_find_ntsid(ntsid_t *ntsid, struct kauth_identity *kir); | |
482 | ||
483 | void | |
484 | kauth_identity_init(void) | |
485 | { | |
486 | TAILQ_INIT(&kauth_identities); | |
487 | kauth_identity_mtx = lck_mtx_alloc_init(kauth_lck_grp, 0/*LCK_ATTR_NULL*/); | |
488 | } | |
489 | ||
490 | static int | |
491 | kauth_identity_resolve(__unused struct kauth_identity_extlookup *el) | |
492 | { | |
493 | return(kauth_resolver_submit(el)); | |
494 | } | |
495 | ||
496 | static struct kauth_identity * | |
497 | kauth_identity_alloc(uid_t uid, gid_t gid, guid_t *guidp, time_t guid_expiry, ntsid_t *ntsidp, time_t ntsid_expiry) | |
498 | { | |
499 | struct kauth_identity *kip; | |
500 | ||
501 | /* get and fill in a new identity */ | |
502 | MALLOC(kip, struct kauth_identity *, sizeof(*kip), M_KAUTH, M_WAITOK | M_ZERO); | |
503 | if (kip != NULL) { | |
504 | if (gid != KAUTH_GID_NONE) { | |
505 | kip->ki_gid = gid; | |
506 | kip->ki_valid = KI_VALID_GID; | |
507 | } | |
508 | if (uid != KAUTH_UID_NONE) { | |
509 | if (kip->ki_valid & KI_VALID_GID) | |
510 | panic("can't allocate kauth identity with both uid and gid"); | |
511 | kip->ki_uid = uid; | |
512 | kip->ki_valid = KI_VALID_UID; | |
513 | } | |
514 | if (guidp != NULL) { | |
515 | kip->ki_guid = *guidp; | |
516 | kip->ki_valid |= KI_VALID_GUID; | |
517 | } | |
518 | kip->ki_guid_expiry = guid_expiry; | |
519 | if (ntsidp != NULL) { | |
520 | kip->ki_ntsid = *ntsidp; | |
521 | kip->ki_valid |= KI_VALID_NTSID; | |
522 | } | |
523 | kip->ki_ntsid_expiry = ntsid_expiry; | |
524 | } | |
525 | return(kip); | |
526 | } | |
527 | ||
528 | /* | |
529 | * Register an association between identity tokens. | |
530 | */ | |
531 | static void | |
532 | kauth_identity_register(struct kauth_identity *kip) | |
533 | { | |
534 | struct kauth_identity *ip; | |
535 | ||
536 | /* | |
537 | * We search the cache for the UID listed in the incoming association. If we | |
538 | * already have an entry, the new information is merged. | |
539 | */ | |
540 | ip = NULL; | |
541 | KAUTH_IDENTITY_LOCK(); | |
542 | if (kip->ki_valid & KI_VALID_UID) { | |
543 | if (kip->ki_valid & KI_VALID_GID) | |
544 | panic("kauth_identity: can't insert record with both UID and GID as key"); | |
545 | TAILQ_FOREACH(ip, &kauth_identities, ki_link) | |
546 | if ((ip->ki_valid & KI_VALID_UID) && (ip->ki_uid == kip->ki_uid)) | |
547 | break; | |
548 | } else if (kip->ki_valid & KI_VALID_GID) { | |
549 | TAILQ_FOREACH(ip, &kauth_identities, ki_link) | |
550 | if ((ip->ki_valid & KI_VALID_GID) && (ip->ki_gid == kip->ki_gid)) | |
551 | break; | |
552 | } else { | |
553 | panic("kauth_identity: can't insert record without UID or GID as key"); | |
554 | } | |
555 | ||
556 | if (ip != NULL) { | |
557 | /* we already have an entry, merge/overwrite */ | |
558 | if (kip->ki_valid & KI_VALID_GUID) { | |
559 | ip->ki_guid = kip->ki_guid; | |
560 | ip->ki_valid |= KI_VALID_GUID; | |
561 | } | |
562 | ip->ki_guid_expiry = kip->ki_guid_expiry; | |
563 | if (kip->ki_valid & KI_VALID_NTSID) { | |
564 | ip->ki_ntsid = kip->ki_ntsid; | |
565 | ip->ki_valid |= KI_VALID_NTSID; | |
566 | } | |
567 | ip->ki_ntsid_expiry = kip->ki_ntsid_expiry; | |
568 | /* and discard the incoming identity */ | |
569 | FREE(kip, M_KAUTH); | |
570 | ip = NULL; | |
571 | } else { | |
572 | /* don't have any information on this identity, so just add it */ | |
573 | TAILQ_INSERT_HEAD(&kauth_identities, kip, ki_link); | |
574 | if (++kauth_identity_count > KAUTH_IDENTITY_CACHEMAX) { | |
575 | ip = TAILQ_LAST(&kauth_identities, kauth_identity_head); | |
576 | TAILQ_REMOVE(&kauth_identities, ip, ki_link); | |
577 | kauth_identity_count--; | |
578 | } | |
579 | } | |
580 | KAUTH_IDENTITY_UNLOCK(); | |
581 | /* have to drop lock before freeing expired entry */ | |
582 | if (ip != NULL) | |
583 | FREE(ip, M_KAUTH); | |
584 | } | |
585 | ||
586 | /* | |
587 | * Given a lookup result, add any associations that we don't | |
588 | * currently have. | |
589 | */ | |
590 | static void | |
591 | kauth_identity_updatecache(struct kauth_identity_extlookup *elp, struct kauth_identity *rkip) | |
592 | { | |
593 | struct timeval tv; | |
594 | struct kauth_identity *kip; | |
595 | ||
596 | microuptime(&tv); | |
597 | ||
598 | /* user identity? */ | |
599 | if (elp->el_flags & KAUTH_EXTLOOKUP_VALID_UID) { | |
600 | KAUTH_IDENTITY_LOCK(); | |
601 | TAILQ_FOREACH(kip, &kauth_identities, ki_link) { | |
602 | /* matching record */ | |
603 | if ((kip->ki_valid & KI_VALID_UID) && (kip->ki_uid == elp->el_uid)) { | |
604 | if (elp->el_flags & KAUTH_EXTLOOKUP_VALID_UGUID) { | |
605 | kip->ki_guid = elp->el_uguid; | |
606 | kip->ki_valid |= KI_VALID_GUID; | |
607 | } | |
608 | kip->ki_guid_expiry = tv.tv_sec + elp->el_uguid_valid; | |
609 | if (elp->el_flags & KAUTH_EXTLOOKUP_VALID_USID) { | |
610 | kip->ki_ntsid = elp->el_usid; | |
611 | kip->ki_valid |= KI_VALID_NTSID; | |
612 | } | |
613 | kip->ki_ntsid_expiry = tv.tv_sec + elp->el_usid_valid; | |
614 | kauth_identity_lru(kip); | |
615 | if (rkip != NULL) | |
616 | *rkip = *kip; | |
617 | KAUTH_DEBUG("CACHE - refreshed %d is " K_UUID_FMT, kip->ki_uid, K_UUID_ARG(kip->ki_guid)); | |
618 | break; | |
619 | } | |
620 | } | |
621 | KAUTH_IDENTITY_UNLOCK(); | |
622 | /* not found in cache, add new record */ | |
623 | if (kip == NULL) { | |
624 | kip = kauth_identity_alloc(elp->el_uid, KAUTH_GID_NONE, | |
625 | (elp->el_flags & KAUTH_EXTLOOKUP_VALID_UGUID) ? &elp->el_uguid : NULL, | |
626 | tv.tv_sec + elp->el_uguid_valid, | |
627 | (elp->el_flags & KAUTH_EXTLOOKUP_VALID_USID) ? &elp->el_usid : NULL, | |
628 | tv.tv_sec + elp->el_usid_valid); | |
629 | if (kip != NULL) { | |
630 | if (rkip != NULL) | |
631 | *rkip = *kip; | |
632 | KAUTH_DEBUG("CACHE - learned %d is " K_UUID_FMT, kip->ki_uid, K_UUID_ARG(kip->ki_guid)); | |
633 | kauth_identity_register(kip); | |
634 | } | |
635 | } | |
636 | } | |
637 | ||
638 | /* group identity? */ | |
639 | if (elp->el_flags & KAUTH_EXTLOOKUP_VALID_GID) { | |
640 | KAUTH_IDENTITY_LOCK(); | |
641 | TAILQ_FOREACH(kip, &kauth_identities, ki_link) { | |
642 | /* matching record */ | |
643 | if ((kip->ki_valid & KI_VALID_GID) && (kip->ki_gid == elp->el_gid)) { | |
644 | if (elp->el_flags & KAUTH_EXTLOOKUP_VALID_GGUID) { | |
645 | kip->ki_guid = elp->el_gguid; | |
646 | kip->ki_valid |= KI_VALID_GUID; | |
647 | } | |
648 | kip->ki_guid_expiry = tv.tv_sec + elp->el_gguid_valid; | |
649 | if (elp->el_flags & KAUTH_EXTLOOKUP_VALID_GSID) { | |
650 | kip->ki_ntsid = elp->el_gsid; | |
651 | kip->ki_valid |= KI_VALID_NTSID; | |
652 | } | |
653 | kip->ki_ntsid_expiry = tv.tv_sec + elp->el_gsid_valid; | |
654 | kauth_identity_lru(kip); | |
655 | if (rkip != NULL) | |
656 | *rkip = *kip; | |
657 | KAUTH_DEBUG("CACHE - refreshed %d is " K_UUID_FMT, kip->ki_uid, K_UUID_ARG(kip->ki_guid)); | |
658 | break; | |
659 | } | |
660 | } | |
661 | KAUTH_IDENTITY_UNLOCK(); | |
662 | /* not found in cache, add new record */ | |
663 | if (kip == NULL) { | |
664 | kip = kauth_identity_alloc(KAUTH_UID_NONE, elp->el_gid, | |
665 | (elp->el_flags & KAUTH_EXTLOOKUP_VALID_GGUID) ? &elp->el_gguid : NULL, | |
666 | tv.tv_sec + elp->el_gguid_valid, | |
667 | (elp->el_flags & KAUTH_EXTLOOKUP_VALID_GSID) ? &elp->el_gsid : NULL, | |
668 | tv.tv_sec + elp->el_gsid_valid); | |
669 | if (kip != NULL) { | |
670 | if (rkip != NULL) | |
671 | *rkip = *kip; | |
672 | KAUTH_DEBUG("CACHE - learned %d is " K_UUID_FMT, kip->ki_uid, K_UUID_ARG(kip->ki_guid)); | |
673 | kauth_identity_register(kip); | |
674 | } | |
675 | } | |
676 | } | |
677 | ||
678 | } | |
679 | ||
680 | /* | |
681 | * Promote the entry to the head of the LRU, assumes the cache is locked. | |
682 | * | |
683 | * This is called even if the entry has expired; typically an expired entry | |
684 | * that's been looked up is about to be revalidated, and having it closer to | |
685 | * the head of the LRU means finding it quickly again when the revalidation | |
686 | * comes through. | |
687 | */ | |
688 | static void | |
689 | kauth_identity_lru(struct kauth_identity *kip) | |
690 | { | |
691 | if (kip != TAILQ_FIRST(&kauth_identities)) { | |
692 | TAILQ_REMOVE(&kauth_identities, kip, ki_link); | |
693 | TAILQ_INSERT_HEAD(&kauth_identities, kip, ki_link); | |
694 | } | |
695 | } | |
696 | ||
697 | /* | |
698 | * Handly lazy expiration of translations. | |
699 | */ | |
700 | static int | |
701 | kauth_identity_guid_expired(struct kauth_identity *kip) | |
702 | { | |
703 | struct timeval tv; | |
704 | ||
705 | microuptime(&tv); | |
706 | KAUTH_DEBUG("CACHE - GUID expires @ %d now %d", kip->ki_guid_expiry, tv.tv_sec); | |
707 | return((kip->ki_guid_expiry <= tv.tv_sec) ? 1 : 0); | |
708 | } | |
709 | ||
710 | static int | |
711 | kauth_identity_ntsid_expired(struct kauth_identity *kip) | |
712 | { | |
713 | struct timeval tv; | |
714 | ||
715 | microuptime(&tv); | |
716 | KAUTH_DEBUG("CACHE - NTSID expires @ %d now %d", kip->ki_ntsid_expiry, tv.tv_sec); | |
717 | return((kip->ki_ntsid_expiry <= tv.tv_sec) ? 1 : 0); | |
718 | } | |
719 | ||
720 | /* | |
721 | * Search for an entry by UID. Returns a copy of the entry, ENOENT if no valid | |
722 | * association exists for the UID. | |
723 | */ | |
724 | static int | |
725 | kauth_identity_find_uid(uid_t uid, struct kauth_identity *kir) | |
726 | { | |
727 | struct kauth_identity *kip; | |
728 | ||
729 | KAUTH_IDENTITY_LOCK(); | |
730 | TAILQ_FOREACH(kip, &kauth_identities, ki_link) { | |
731 | if ((kip->ki_valid & KI_VALID_UID) && (uid == kip->ki_uid)) { | |
732 | kauth_identity_lru(kip); | |
733 | *kir = *kip; | |
734 | break; | |
735 | } | |
736 | } | |
737 | KAUTH_IDENTITY_UNLOCK(); | |
738 | return((kip == NULL) ? ENOENT : 0); | |
739 | } | |
740 | ||
741 | ||
742 | /* | |
743 | * Search for an entry by GID. Returns a copy of the entry, ENOENT if no valid | |
744 | * association exists for the GID. | |
745 | */ | |
746 | static int | |
747 | kauth_identity_find_gid(uid_t gid, struct kauth_identity *kir) | |
748 | { | |
749 | struct kauth_identity *kip; | |
750 | ||
751 | KAUTH_IDENTITY_LOCK(); | |
752 | TAILQ_FOREACH(kip, &kauth_identities, ki_link) { | |
753 | if ((kip->ki_valid & KI_VALID_GID) && (gid == kip->ki_gid)) { | |
754 | kauth_identity_lru(kip); | |
755 | *kir = *kip; | |
756 | break; | |
757 | } | |
758 | } | |
759 | KAUTH_IDENTITY_UNLOCK(); | |
760 | return((kip == NULL) ? ENOENT : 0); | |
761 | } | |
762 | ||
763 | ||
764 | /* | |
765 | * Search for an entry by GUID. Returns a copy of the entry, ENOENT if no valid | |
766 | * association exists for the GUID. Note that the association may be expired, | |
767 | * in which case the caller may elect to call out to userland to revalidate. | |
768 | */ | |
769 | static int | |
770 | kauth_identity_find_guid(guid_t *guidp, struct kauth_identity *kir) | |
771 | { | |
772 | struct kauth_identity *kip; | |
773 | ||
774 | KAUTH_IDENTITY_LOCK(); | |
775 | TAILQ_FOREACH(kip, &kauth_identities, ki_link) { | |
776 | if ((kip->ki_valid & KI_VALID_GUID) && (kauth_guid_equal(guidp, &kip->ki_guid))) { | |
777 | kauth_identity_lru(kip); | |
778 | *kir = *kip; | |
779 | break; | |
780 | } | |
781 | } | |
782 | KAUTH_IDENTITY_UNLOCK(); | |
783 | return((kip == NULL) ? ENOENT : 0); | |
784 | } | |
785 | ||
786 | /* | |
787 | * Search for an entry by NT Security ID. Returns a copy of the entry, ENOENT if no valid | |
788 | * association exists for the SID. Note that the association may be expired, | |
789 | * in which case the caller may elect to call out to userland to revalidate. | |
790 | */ | |
791 | static int | |
792 | kauth_identity_find_ntsid(ntsid_t *ntsid, struct kauth_identity *kir) | |
793 | { | |
794 | struct kauth_identity *kip; | |
795 | ||
796 | KAUTH_IDENTITY_LOCK(); | |
797 | TAILQ_FOREACH(kip, &kauth_identities, ki_link) { | |
798 | if ((kip->ki_valid & KI_VALID_NTSID) && (kauth_ntsid_equal(ntsid, &kip->ki_ntsid))) { | |
799 | kauth_identity_lru(kip); | |
800 | *kir = *kip; | |
801 | break; | |
802 | } | |
803 | } | |
804 | KAUTH_IDENTITY_UNLOCK(); | |
805 | return((kip == NULL) ? ENOENT : 0); | |
806 | } | |
807 | ||
808 | /* | |
809 | * GUID handling. | |
810 | */ | |
811 | guid_t kauth_null_guid; | |
812 | ||
813 | int | |
814 | kauth_guid_equal(guid_t *guid1, guid_t *guid2) | |
815 | { | |
816 | return(!bcmp(guid1, guid2, sizeof(*guid1))); | |
817 | } | |
818 | ||
819 | /* | |
820 | * Look for well-known GUIDs. | |
821 | */ | |
822 | int | |
823 | kauth_wellknown_guid(guid_t *guid) | |
824 | { | |
825 | static char fingerprint[] = {0xab, 0xcd, 0xef, 0xab, 0xcd, 0xef, 0xab, 0xcd, 0xef, 0xab, 0xcd, 0xef}; | |
826 | int code; | |
827 | /* | |
828 | * All WKGs begin with the same 12 bytes. | |
829 | */ | |
830 | if (!bcmp((void *)guid, fingerprint, 12)) { | |
831 | /* | |
832 | * The final 4 bytes are our code. | |
833 | */ | |
834 | code = *(u_int32_t *)&guid->g_guid[12]; | |
835 | switch(code) { | |
836 | case 0x0000000c: | |
837 | return(KAUTH_WKG_EVERYBODY); | |
838 | case 0xfffffffe: | |
839 | return(KAUTH_WKG_NOBODY); | |
840 | case 0x0000000a: | |
841 | return(KAUTH_WKG_OWNER); | |
842 | case 0x00000010: | |
843 | return(KAUTH_WKG_GROUP); | |
844 | } | |
845 | } | |
846 | return(KAUTH_WKG_NOT); | |
847 | } | |
848 | ||
849 | ||
850 | /* | |
851 | * NT Security Identifier handling. | |
852 | */ | |
853 | int | |
854 | kauth_ntsid_equal(ntsid_t *sid1, ntsid_t *sid2) | |
855 | { | |
856 | /* check sizes for equality, also sanity-check size while we're at it */ | |
857 | if ((KAUTH_NTSID_SIZE(sid1) == KAUTH_NTSID_SIZE(sid2)) && | |
858 | (KAUTH_NTSID_SIZE(sid1) <= sizeof(*sid1)) && | |
859 | !bcmp(sid1, sid2, KAUTH_NTSID_SIZE(sid1))) | |
860 | return(1); | |
861 | return(0); | |
862 | } | |
863 | ||
864 | /* | |
865 | * Identity KPI | |
866 | * | |
867 | * We support four tokens representing identity: | |
868 | * - Credential reference | |
869 | * - UID | |
870 | * - GUID | |
871 | * - NT security identifier | |
872 | * | |
873 | * Of these, the UID is the ubiquitous identifier; cross-referencing should | |
874 | * be done using it. | |
875 | */ | |
876 | ||
877 | static int kauth_cred_cache_lookup(int from, int to, void *src, void *dst); | |
878 | ||
879 | /* | |
880 | * Fetch UID from credential. | |
881 | */ | |
882 | uid_t | |
883 | kauth_cred_getuid(kauth_cred_t cred) | |
884 | { | |
885 | NULLCRED_CHECK(cred); | |
886 | return(cred->cr_uid); | |
887 | } | |
888 | ||
889 | /* | |
890 | * Fetch GID from credential. | |
891 | */ | |
892 | uid_t | |
893 | kauth_cred_getgid(kauth_cred_t cred) | |
894 | { | |
895 | NULLCRED_CHECK(cred); | |
896 | return(cred->cr_gid); | |
897 | } | |
898 | ||
899 | /* | |
900 | * Fetch UID from GUID. | |
901 | */ | |
902 | int | |
903 | kauth_cred_guid2uid(guid_t *guidp, uid_t *uidp) | |
904 | { | |
905 | return(kauth_cred_cache_lookup(KI_VALID_GUID, KI_VALID_UID, guidp, uidp)); | |
906 | } | |
907 | ||
908 | /* | |
909 | * Fetch GID from GUID. | |
910 | */ | |
911 | int | |
912 | kauth_cred_guid2gid(guid_t *guidp, gid_t *gidp) | |
913 | { | |
914 | return(kauth_cred_cache_lookup(KI_VALID_GUID, KI_VALID_GID, guidp, gidp)); | |
915 | } | |
916 | ||
917 | /* | |
918 | * Fetch UID from NT SID. | |
919 | */ | |
920 | int | |
921 | kauth_cred_ntsid2uid(ntsid_t *sidp, uid_t *uidp) | |
922 | { | |
923 | return(kauth_cred_cache_lookup(KI_VALID_NTSID, KI_VALID_UID, sidp, uidp)); | |
924 | } | |
925 | ||
926 | /* | |
927 | * Fetch GID from NT SID. | |
928 | */ | |
929 | int | |
930 | kauth_cred_ntsid2gid(ntsid_t *sidp, gid_t *gidp) | |
931 | { | |
932 | return(kauth_cred_cache_lookup(KI_VALID_NTSID, KI_VALID_GID, sidp, gidp)); | |
933 | } | |
934 | ||
935 | /* | |
936 | * Fetch GUID from NT SID. | |
937 | */ | |
938 | int | |
939 | kauth_cred_ntsid2guid(ntsid_t *sidp, guid_t *guidp) | |
940 | { | |
941 | return(kauth_cred_cache_lookup(KI_VALID_NTSID, KI_VALID_GUID, sidp, guidp)); | |
942 | } | |
943 | ||
944 | /* | |
945 | * Fetch GUID from UID. | |
946 | */ | |
947 | int | |
948 | kauth_cred_uid2guid(uid_t uid, guid_t *guidp) | |
949 | { | |
950 | return(kauth_cred_cache_lookup(KI_VALID_UID, KI_VALID_GUID, &uid, guidp)); | |
951 | } | |
952 | ||
953 | /* | |
954 | * Fetch user GUID from credential. | |
955 | */ | |
956 | int | |
957 | kauth_cred_getguid(kauth_cred_t cred, guid_t *guidp) | |
958 | { | |
959 | NULLCRED_CHECK(cred); | |
960 | return(kauth_cred_uid2guid(kauth_cred_getuid(cred), guidp)); | |
961 | } | |
962 | ||
963 | /* | |
964 | * Fetch GUID from GID. | |
965 | */ | |
966 | int | |
967 | kauth_cred_gid2guid(gid_t gid, guid_t *guidp) | |
968 | { | |
969 | return(kauth_cred_cache_lookup(KI_VALID_GID, KI_VALID_GUID, &gid, guidp)); | |
970 | } | |
971 | ||
972 | /* | |
973 | * Fetch NT SID from UID. | |
974 | */ | |
975 | int | |
976 | kauth_cred_uid2ntsid(uid_t uid, ntsid_t *sidp) | |
977 | { | |
978 | return(kauth_cred_cache_lookup(KI_VALID_UID, KI_VALID_NTSID, &uid, sidp)); | |
979 | } | |
980 | ||
981 | /* | |
982 | * Fetch NT SID from credential. | |
983 | */ | |
984 | int | |
985 | kauth_cred_getntsid(kauth_cred_t cred, ntsid_t *sidp) | |
986 | { | |
987 | NULLCRED_CHECK(cred); | |
988 | return(kauth_cred_uid2ntsid(kauth_cred_getuid(cred), sidp)); | |
989 | } | |
990 | ||
991 | /* | |
992 | * Fetch NT SID from GID. | |
993 | */ | |
994 | int | |
995 | kauth_cred_gid2ntsid(gid_t gid, ntsid_t *sidp) | |
996 | { | |
997 | return(kauth_cred_cache_lookup(KI_VALID_GID, KI_VALID_NTSID, &gid, sidp)); | |
998 | } | |
999 | ||
1000 | /* | |
1001 | * Fetch NT SID from GUID. | |
1002 | */ | |
1003 | int | |
1004 | kauth_cred_guid2ntsid(guid_t *guidp, ntsid_t *sidp) | |
1005 | { | |
1006 | return(kauth_cred_cache_lookup(KI_VALID_GUID, KI_VALID_NTSID, guidp, sidp)); | |
1007 | } | |
1008 | ||
1009 | ||
1010 | ||
1011 | /* | |
1012 | * Lookup a translation in the cache. | |
1013 | */ | |
1014 | static int | |
1015 | kauth_cred_cache_lookup(int from, int to, void *src, void *dst) | |
1016 | { | |
1017 | struct kauth_identity ki; | |
1018 | struct kauth_identity_extlookup el; | |
1019 | int error; | |
1020 | int (* expired)(struct kauth_identity *kip); | |
1021 | ||
1022 | KAUTH_DEBUG("CACHE - translate %d to %d", from, to); | |
1023 | ||
1024 | /* | |
1025 | * Look for an existing cache entry for this association. | |
1026 | * If the entry has not expired, return the cached information. | |
1027 | */ | |
1028 | ki.ki_valid = 0; | |
1029 | switch(from) { | |
1030 | case KI_VALID_UID: | |
1031 | error = kauth_identity_find_uid(*(uid_t *)src, &ki); | |
1032 | break; | |
1033 | case KI_VALID_GID: | |
1034 | error = kauth_identity_find_gid(*(gid_t *)src, &ki); | |
1035 | break; | |
1036 | case KI_VALID_GUID: | |
1037 | error = kauth_identity_find_guid((guid_t *)src, &ki); | |
1038 | break; | |
1039 | case KI_VALID_NTSID: | |
1040 | error = kauth_identity_find_ntsid((ntsid_t *)src, &ki); | |
1041 | break; | |
1042 | default: | |
1043 | return(EINVAL); | |
1044 | } | |
1045 | /* lookup failure or error */ | |
1046 | if (error != 0) { | |
1047 | /* any other error is fatal */ | |
1048 | if (error != ENOENT) { | |
1049 | KAUTH_DEBUG("CACHE - cache search error %d", error); | |
1050 | return(error); | |
1051 | } | |
1052 | } else { | |
1053 | /* do we have a translation? */ | |
1054 | if (ki.ki_valid & to) { | |
1055 | /* found a valid cached entry, check expiry */ | |
1056 | switch(to) { | |
1057 | case KI_VALID_GUID: | |
1058 | expired = kauth_identity_guid_expired; | |
1059 | break; | |
1060 | case KI_VALID_NTSID: | |
1061 | expired = kauth_identity_ntsid_expired; | |
1062 | break; | |
1063 | default: | |
1064 | switch(from) { | |
1065 | case KI_VALID_GUID: | |
1066 | expired = kauth_identity_guid_expired; | |
1067 | break; | |
1068 | case KI_VALID_NTSID: | |
1069 | expired = kauth_identity_ntsid_expired; | |
1070 | break; | |
1071 | default: | |
1072 | expired = NULL; | |
1073 | } | |
1074 | } | |
1075 | KAUTH_DEBUG("CACHE - found matching entry with valid %d", ki.ki_valid); | |
1076 | /* | |
1077 | * If no expiry function, or not expired, we have found | |
1078 | * a hit. | |
1079 | */ | |
1080 | if (!expired) { | |
1081 | KAUTH_DEBUG("CACHE - no expiry function"); | |
1082 | goto found; | |
1083 | } | |
1084 | if (!expired(&ki)) { | |
1085 | KAUTH_DEBUG("CACHE - entry valid, unexpired"); | |
1086 | goto found; | |
1087 | } | |
1088 | /* | |
1089 | * We leave ki_valid set here; it contains a translation but the TTL has | |
1090 | * expired. If we can't get a result from the resolver, we will | |
1091 | * use it as a better-than nothing alternative. | |
1092 | */ | |
1093 | KAUTH_DEBUG("CACHE - expired entry found"); | |
1094 | } | |
1095 | } | |
1096 | ||
1097 | /* | |
1098 | * Call the resolver. We ask for as much data as we can get. | |
1099 | */ | |
1100 | switch(from) { | |
1101 | case KI_VALID_UID: | |
1102 | el.el_flags = KAUTH_EXTLOOKUP_VALID_UID; | |
1103 | el.el_uid = *(uid_t *)src; | |
1104 | break; | |
1105 | case KI_VALID_GID: | |
1106 | el.el_flags = KAUTH_EXTLOOKUP_VALID_GID; | |
1107 | el.el_gid = *(gid_t *)src; | |
1108 | break; | |
1109 | case KI_VALID_GUID: | |
1110 | el.el_flags = KAUTH_EXTLOOKUP_VALID_UGUID | KAUTH_EXTLOOKUP_VALID_GGUID; | |
1111 | el.el_uguid = *(guid_t *)src; | |
1112 | el.el_gguid = *(guid_t *)src; | |
1113 | break; | |
1114 | case KI_VALID_NTSID: | |
1115 | el.el_flags = KAUTH_EXTLOOKUP_VALID_USID | KAUTH_EXTLOOKUP_VALID_GSID; | |
1116 | el.el_usid = *(ntsid_t *)src; | |
1117 | el.el_gsid = *(ntsid_t *)src; | |
1118 | break; | |
1119 | default: | |
1120 | return(EINVAL); | |
1121 | } | |
1122 | /* | |
1123 | * Here we ask for everything all at once, to avoid having to work | |
1124 | * out what we really want now, or might want soon. | |
1125 | * | |
1126 | * Asking for SID translations when we don't know we need them right | |
1127 | * now is going to cause excess work to be done if we're connected | |
1128 | * to a network that thinks it can translate them. This list needs | |
1129 | * to get smaller/smarter. | |
1130 | */ | |
1131 | el.el_flags |= KAUTH_EXTLOOKUP_WANT_UID | KAUTH_EXTLOOKUP_WANT_GID | | |
1132 | KAUTH_EXTLOOKUP_WANT_UGUID | KAUTH_EXTLOOKUP_WANT_GGUID | | |
1133 | KAUTH_EXTLOOKUP_WANT_USID | KAUTH_EXTLOOKUP_WANT_GSID; | |
1134 | KAUTH_DEBUG("CACHE - calling resolver for %x", el.el_flags); | |
1135 | error = kauth_identity_resolve(&el); | |
1136 | KAUTH_DEBUG("CACHE - resolver returned %d", error); | |
1137 | /* was the lookup successful? */ | |
1138 | if (error == 0) { | |
1139 | /* | |
1140 | * Save the results from the lookup - may have other information even if we didn't | |
1141 | * get a guid. | |
1142 | */ | |
1143 | kauth_identity_updatecache(&el, &ki); | |
1144 | } | |
1145 | /* | |
1146 | * Check to see if we have a valid result. | |
1147 | */ | |
1148 | if (!error && !(ki.ki_valid & to)) | |
1149 | error = ENOENT; | |
1150 | if (error) | |
1151 | return(error); | |
1152 | found: | |
1153 | switch(to) { | |
1154 | case KI_VALID_UID: | |
1155 | *(uid_t *)dst = ki.ki_uid; | |
1156 | break; | |
1157 | case KI_VALID_GID: | |
1158 | *(gid_t *)dst = ki.ki_gid; | |
1159 | break; | |
1160 | case KI_VALID_GUID: | |
1161 | *(guid_t *)dst = ki.ki_guid; | |
1162 | break; | |
1163 | case KI_VALID_NTSID: | |
1164 | *(ntsid_t *)dst = ki.ki_ntsid; | |
1165 | break; | |
1166 | default: | |
1167 | return(EINVAL); | |
1168 | } | |
1169 | KAUTH_DEBUG("CACHE - returned successfully"); | |
1170 | return(0); | |
1171 | } | |
1172 | ||
1173 | ||
1174 | /* | |
1175 | * Group membership cache. | |
1176 | * | |
1177 | * XXX the linked-list implementation here needs to be optimized. | |
1178 | */ | |
1179 | ||
1180 | struct kauth_group_membership { | |
1181 | TAILQ_ENTRY(kauth_group_membership) gm_link; | |
1182 | uid_t gm_uid; /* the identity whose membership we're recording */ | |
1183 | gid_t gm_gid; /* group of which they are a member */ | |
1184 | time_t gm_expiry; /* TTL for the membership */ | |
1185 | int gm_flags; | |
1186 | #define KAUTH_GROUP_ISMEMBER (1<<0) | |
1187 | }; | |
1188 | ||
1189 | TAILQ_HEAD(kauth_groups_head, kauth_group_membership) kauth_groups; | |
1190 | #define KAUTH_GROUPS_CACHEMAX 100 /* XXX sizing? */ | |
1191 | static int kauth_groups_count; | |
1192 | ||
1193 | static lck_mtx_t *kauth_groups_mtx; | |
1194 | #define KAUTH_GROUPS_LOCK() lck_mtx_lock(kauth_groups_mtx); | |
1195 | #define KAUTH_GROUPS_UNLOCK() lck_mtx_unlock(kauth_groups_mtx); | |
1196 | ||
1197 | static int kauth_groups_expired(struct kauth_group_membership *gm); | |
1198 | static void kauth_groups_lru(struct kauth_group_membership *gm); | |
1199 | static void kauth_groups_updatecache(struct kauth_identity_extlookup *el); | |
1200 | ||
1201 | void | |
1202 | kauth_groups_init(void) | |
1203 | { | |
1204 | TAILQ_INIT(&kauth_groups); | |
1205 | kauth_groups_mtx = lck_mtx_alloc_init(kauth_lck_grp, 0/*LCK_ATTR_NULL*/); | |
1206 | } | |
1207 | ||
1208 | static int | |
1209 | kauth_groups_expired(struct kauth_group_membership *gm) | |
1210 | { | |
1211 | struct timeval tv; | |
1212 | ||
1213 | microuptime(&tv); | |
1214 | return((gm->gm_expiry <= tv.tv_sec) ? 1 : 0); | |
1215 | } | |
1216 | ||
1217 | static void | |
1218 | kauth_groups_lru(struct kauth_group_membership *gm) | |
1219 | { | |
1220 | if (gm != TAILQ_FIRST(&kauth_groups)) { | |
1221 | TAILQ_REMOVE(&kauth_groups, gm, gm_link); | |
1222 | TAILQ_INSERT_HEAD(&kauth_groups, gm, gm_link); | |
1223 | } | |
1224 | } | |
1225 | ||
1226 | static void | |
1227 | kauth_groups_updatecache(struct kauth_identity_extlookup *el) | |
1228 | { | |
1229 | struct kauth_group_membership *gm; | |
1230 | struct timeval tv; | |
1231 | ||
1232 | /* need a valid response if we are to cache anything */ | |
1233 | if ((el->el_flags & | |
1234 | (KAUTH_EXTLOOKUP_VALID_UID | KAUTH_EXTLOOKUP_VALID_GID | KAUTH_EXTLOOKUP_VALID_MEMBERSHIP)) != | |
1235 | (KAUTH_EXTLOOKUP_VALID_UID | KAUTH_EXTLOOKUP_VALID_GID | KAUTH_EXTLOOKUP_VALID_MEMBERSHIP)) | |
1236 | return; | |
1237 | ||
1238 | microuptime(&tv); | |
1239 | ||
1240 | /* search for an existing record for this association before inserting */ | |
1241 | KAUTH_GROUPS_LOCK(); | |
1242 | TAILQ_FOREACH(gm, &kauth_groups, gm_link) { | |
1243 | if ((el->el_uid == gm->gm_uid) && | |
1244 | (el->el_gid == gm->gm_gid)) { | |
1245 | if (el->el_flags & KAUTH_EXTLOOKUP_ISMEMBER) { | |
1246 | gm->gm_flags |= KAUTH_GROUP_ISMEMBER; | |
1247 | } else { | |
1248 | gm->gm_flags &= ~KAUTH_GROUP_ISMEMBER; | |
1249 | } | |
1250 | gm->gm_expiry = el->el_member_valid + tv.tv_sec; | |
1251 | kauth_groups_lru(gm); | |
1252 | break; | |
1253 | } | |
1254 | } | |
1255 | KAUTH_GROUPS_UNLOCK(); | |
1256 | ||
1257 | /* if we found an entry to update, stop here */ | |
1258 | if (gm != NULL) | |
1259 | return; | |
1260 | ||
1261 | /* allocate a new record */ | |
1262 | MALLOC(gm, struct kauth_group_membership *, sizeof(*gm), M_KAUTH, M_WAITOK); | |
1263 | if (gm != NULL) { | |
1264 | gm->gm_uid = el->el_uid; | |
1265 | gm->gm_gid = el->el_gid; | |
1266 | if (el->el_flags & KAUTH_EXTLOOKUP_ISMEMBER) { | |
1267 | gm->gm_flags |= KAUTH_GROUP_ISMEMBER; | |
1268 | } else { | |
1269 | gm->gm_flags &= ~KAUTH_GROUP_ISMEMBER; | |
1270 | } | |
1271 | gm->gm_expiry = el->el_member_valid + tv.tv_sec; | |
1272 | } | |
1273 | ||
1274 | /* | |
1275 | * Insert the new entry. Note that it's possible to race ourselves here | |
1276 | * and end up with duplicate entries in the list. Wasteful, but harmless | |
1277 | * since the first into the list will never be looked up, and thus will | |
1278 | * eventually just fall off the end. | |
1279 | */ | |
1280 | KAUTH_GROUPS_LOCK(); | |
1281 | TAILQ_INSERT_HEAD(&kauth_groups, gm, gm_link); | |
1282 | if (kauth_groups_count++ > KAUTH_GROUPS_CACHEMAX) { | |
1283 | gm = TAILQ_LAST(&kauth_groups, kauth_groups_head); | |
1284 | TAILQ_REMOVE(&kauth_groups, gm, gm_link); | |
1285 | kauth_groups_count--; | |
1286 | } else { | |
1287 | gm = NULL; | |
1288 | } | |
1289 | KAUTH_GROUPS_UNLOCK(); | |
1290 | ||
1291 | /* free expired cache entry */ | |
1292 | if (gm != NULL) | |
1293 | FREE(gm, M_KAUTH); | |
1294 | } | |
1295 | ||
1296 | /* | |
1297 | * Group membership KPI | |
1298 | */ | |
1299 | /* | |
1300 | * This function guarantees not to modify resultp when returning an error. | |
1301 | */ | |
1302 | int | |
1303 | kauth_cred_ismember_gid(kauth_cred_t cred, gid_t gid, int *resultp) | |
1304 | { | |
1305 | struct kauth_group_membership *gm; | |
1306 | struct kauth_identity_extlookup el; | |
1307 | int i, error; | |
1308 | ||
1309 | /* | |
1310 | * Check the per-credential list of override groups. | |
1311 | * | |
1312 | * We can conditionalise this on cred->cr_gmuid == KAUTH_UID_NONE since | |
1313 | * the cache should be used for that case. | |
1314 | */ | |
1315 | for (i = 0; i < cred->cr_ngroups; i++) { | |
1316 | if (gid == cred->cr_groups[i]) { | |
1317 | *resultp = 1; | |
1318 | return(0); | |
1319 | } | |
1320 | } | |
1321 | ||
1322 | /* | |
1323 | * If we don't have a UID for group membership checks, the in-cred list | |
1324 | * was authoritative and we can stop here. | |
1325 | */ | |
1326 | if (cred->cr_gmuid == KAUTH_UID_NONE) { | |
1327 | *resultp = 0; | |
1328 | return(0); | |
1329 | } | |
1330 | ||
1331 | ||
1332 | /* | |
1333 | * If the resolver hasn't checked in yet, we are early in the boot phase and | |
1334 | * the local group list is complete and authoritative. | |
1335 | */ | |
1336 | if (!kauth_resolver_registered) { | |
1337 | *resultp = 0; | |
1338 | return(0); | |
1339 | } | |
1340 | ||
1341 | /* TODO: */ | |
1342 | /* XXX check supplementary groups */ | |
1343 | /* XXX check whiteout groups */ | |
1344 | /* XXX nesting of supplementary/whiteout groups? */ | |
1345 | ||
1346 | /* | |
1347 | * Check the group cache. | |
1348 | */ | |
1349 | KAUTH_GROUPS_LOCK(); | |
1350 | TAILQ_FOREACH(gm, &kauth_groups, gm_link) { | |
1351 | if ((gm->gm_uid == cred->cr_gmuid) && (gm->gm_gid == gid) && !kauth_groups_expired(gm)) { | |
1352 | kauth_groups_lru(gm); | |
1353 | break; | |
1354 | } | |
1355 | } | |
1356 | ||
1357 | /* did we find a membership entry? */ | |
1358 | if (gm != NULL) | |
1359 | *resultp = (gm->gm_flags & KAUTH_GROUP_ISMEMBER) ? 1 : 0; | |
1360 | KAUTH_GROUPS_UNLOCK(); | |
1361 | ||
1362 | /* if we did, we can return now */ | |
1363 | if (gm != NULL) | |
1364 | return(0); | |
1365 | ||
1366 | /* nothing in the cache, need to go to userland */ | |
1367 | el.el_flags = KAUTH_EXTLOOKUP_VALID_UID | KAUTH_EXTLOOKUP_VALID_GID | KAUTH_EXTLOOKUP_WANT_MEMBERSHIP; | |
1368 | el.el_uid = cred->cr_gmuid; | |
1369 | el.el_gid = gid; | |
1370 | error = kauth_identity_resolve(&el); | |
1371 | if (error != 0) | |
1372 | return(error); | |
1373 | /* save the results from the lookup */ | |
1374 | kauth_groups_updatecache(&el); | |
1375 | ||
1376 | /* if we successfully ascertained membership, report */ | |
1377 | if (el.el_flags & KAUTH_EXTLOOKUP_VALID_MEMBERSHIP) { | |
1378 | *resultp = (el.el_flags & KAUTH_EXTLOOKUP_ISMEMBER) ? 1 : 0; | |
1379 | return(0); | |
1380 | } | |
1381 | ||
1382 | return(ENOENT); | |
1383 | } | |
1384 | ||
1385 | /* | |
1386 | * Determine whether the supplied credential is a member of the | |
1387 | * group nominated by GUID. | |
1388 | */ | |
1389 | int | |
1390 | kauth_cred_ismember_guid(kauth_cred_t cred, guid_t *guidp, int *resultp) | |
1391 | { | |
1392 | gid_t gid; | |
1393 | int error, wkg; | |
1394 | ||
1395 | error = 0; | |
1396 | wkg = kauth_wellknown_guid(guidp); | |
1397 | switch(wkg) { | |
1398 | case KAUTH_WKG_NOBODY: | |
1399 | *resultp = 0; | |
1400 | break; | |
1401 | case KAUTH_WKG_EVERYBODY: | |
1402 | *resultp = 1; | |
1403 | break; | |
1404 | default: | |
1405 | /* translate guid to gid */ | |
1406 | if ((error = kauth_cred_guid2gid(guidp, &gid)) != 0) { | |
1407 | /* | |
1408 | * If we have no guid -> gid translation, it's not a group and | |
1409 | * thus the cred can't be a member. | |
1410 | */ | |
1411 | if (error == ENOENT) { | |
1412 | *resultp = 0; | |
1413 | error = 0; | |
1414 | } | |
1415 | } else { | |
1416 | error = kauth_cred_ismember_gid(cred, gid, resultp); | |
1417 | } | |
1418 | } | |
1419 | return(error); | |
1420 | } | |
1421 | ||
1422 | /* | |
1423 | * Fast replacement for issuser() | |
1424 | */ | |
1425 | int | |
1426 | kauth_cred_issuser(kauth_cred_t cred) | |
1427 | { | |
1428 | return(cred->cr_uid == 0); | |
1429 | } | |
1430 | ||
1431 | /* | |
1432 | * Credential KPI | |
1433 | */ | |
1434 | ||
1435 | /* lock protecting credential hash table */ | |
1436 | static lck_mtx_t *kauth_cred_hash_mtx; | |
1437 | #define KAUTH_CRED_HASH_LOCK() lck_mtx_lock(kauth_cred_hash_mtx); | |
1438 | #define KAUTH_CRED_HASH_UNLOCK() lck_mtx_unlock(kauth_cred_hash_mtx); | |
1439 | ||
1440 | void | |
1441 | kauth_cred_init(void) | |
1442 | { | |
1443 | int i; | |
1444 | ||
1445 | kauth_cred_hash_mtx = lck_mtx_alloc_init(kauth_lck_grp, 0/*LCK_ATTR_NULL*/); | |
1446 | kauth_cred_table_size = kauth_cred_primes[kauth_cred_primes_index]; | |
1447 | ||
1448 | /*allocate credential hash table */ | |
1449 | MALLOC(kauth_cred_table_anchor, struct kauth_cred_entry_head *, | |
1450 | (sizeof(struct kauth_cred_entry_head) * kauth_cred_table_size), | |
1451 | M_KAUTH, M_WAITOK | M_ZERO); | |
1452 | for (i = 0; i < kauth_cred_table_size; i++) { | |
1453 | TAILQ_INIT(&kauth_cred_table_anchor[i]); | |
1454 | } | |
1455 | } | |
1456 | ||
1457 | /* | |
1458 | * Return the current thread's effective UID. | |
1459 | */ | |
1460 | uid_t | |
1461 | kauth_getuid(void) | |
1462 | { | |
1463 | return(kauth_cred_get()->cr_uid); | |
1464 | } | |
1465 | ||
1466 | /* | |
1467 | * Return the current thread's real UID. | |
1468 | */ | |
1469 | uid_t | |
1470 | kauth_getruid(void) | |
1471 | { | |
1472 | return(kauth_cred_get()->cr_ruid); | |
1473 | } | |
1474 | ||
1475 | /* | |
1476 | * Return the current thread's effective GID. | |
1477 | */ | |
1478 | gid_t | |
1479 | kauth_getgid(void) | |
1480 | { | |
1481 | return(kauth_cred_get()->cr_groups[0]); | |
1482 | } | |
1483 | ||
1484 | /* | |
1485 | * Return the current thread's real GID. | |
1486 | */ | |
1487 | gid_t | |
1488 | kauth_getrgid(void) | |
1489 | { | |
1490 | return(kauth_cred_get()->cr_rgid); | |
1491 | } | |
1492 | ||
1493 | /* | |
1494 | * Returns a pointer to the current thread's credential, does not take a | |
1495 | * reference (so the caller must not do anything that would let the thread's | |
1496 | * credential change while using the returned value). | |
1497 | */ | |
1498 | kauth_cred_t | |
1499 | kauth_cred_get(void) | |
1500 | { | |
1501 | struct proc *p; | |
1502 | struct uthread *uthread; | |
1503 | ||
1504 | uthread = get_bsdthread_info(current_thread()); | |
1505 | /* sanity */ | |
1506 | if (uthread == NULL) | |
1507 | panic("thread wants credential but has no BSD thread info"); | |
1508 | /* | |
1509 | * We can lazy-bind credentials to threads, as long as their processes have them. | |
1510 | * If we later inline this function, the code in this block should probably be | |
1511 | * called out in a function. | |
1512 | */ | |
1513 | if (uthread->uu_ucred == NOCRED) { | |
1514 | if ((p = (proc_t) get_bsdtask_info(get_threadtask(current_thread()))) == NULL) | |
1515 | panic("thread wants credential but has no BSD process"); | |
1516 | proc_lock(p); | |
1517 | kauth_cred_ref(uthread->uu_ucred = p->p_ucred); | |
1518 | proc_unlock(p); | |
1519 | } | |
1520 | return(uthread->uu_ucred); | |
1521 | } | |
1522 | ||
1523 | /* | |
1524 | * Returns a pointer to the current thread's credential, takes a reference. | |
1525 | */ | |
1526 | kauth_cred_t | |
1527 | kauth_cred_get_with_ref(void) | |
1528 | { | |
1529 | struct proc *procp; | |
1530 | struct uthread *uthread; | |
1531 | ||
1532 | uthread = get_bsdthread_info(current_thread()); | |
1533 | /* sanity checks */ | |
1534 | if (uthread == NULL) | |
1535 | panic("%s - thread wants credential but has no BSD thread info", __FUNCTION__); | |
1536 | if ((procp = (proc_t) get_bsdtask_info(get_threadtask(current_thread()))) == NULL) | |
1537 | panic("%s - thread wants credential but has no BSD process", __FUNCTION__); | |
1538 | ||
1539 | /* | |
1540 | * We can lazy-bind credentials to threads, as long as their processes have them. | |
1541 | * If we later inline this function, the code in this block should probably be | |
1542 | * called out in a function. | |
1543 | */ | |
1544 | proc_lock(procp); | |
1545 | if (uthread->uu_ucred == NOCRED) { | |
1546 | /* take reference for new cred in thread */ | |
1547 | kauth_cred_ref(uthread->uu_ucred = proc_ucred(procp)); | |
1548 | } | |
1549 | /* take a reference for our caller */ | |
1550 | kauth_cred_ref(uthread->uu_ucred); | |
1551 | proc_unlock(procp); | |
1552 | return(uthread->uu_ucred); | |
1553 | } | |
1554 | ||
1555 | /* | |
1556 | * Returns a pointer to the given process's credential, takes a reference. | |
1557 | */ | |
1558 | kauth_cred_t | |
1559 | kauth_cred_proc_ref(proc_t procp) | |
1560 | { | |
1561 | kauth_cred_t cred; | |
1562 | ||
1563 | proc_lock(procp); | |
1564 | cred = proc_ucred(procp); | |
1565 | kauth_cred_ref(cred); | |
1566 | proc_unlock(procp); | |
1567 | return(cred); | |
1568 | } | |
1569 | ||
1570 | /* | |
1571 | * Allocates a new credential. | |
1572 | */ | |
1573 | kauth_cred_t | |
1574 | kauth_cred_alloc(void) | |
1575 | { | |
1576 | kauth_cred_t newcred; | |
1577 | ||
1578 | MALLOC(newcred, kauth_cred_t, sizeof(*newcred), M_KAUTH, M_WAITOK | M_ZERO); | |
1579 | if (newcred != 0) { | |
1580 | newcred->cr_ref = 1; | |
1581 | /* must do this, or cred has same group membership as uid 0 */ | |
1582 | newcred->cr_gmuid = KAUTH_UID_NONE; | |
1583 | #if CRED_DIAGNOSTIC | |
1584 | } else { | |
1585 | panic("kauth_cred_alloc: couldn't allocate credential"); | |
1586 | #endif | |
1587 | } | |
1588 | ||
1589 | #if KAUTH_CRED_HASH_DEBUG | |
1590 | kauth_cred_count++; | |
1591 | #endif | |
1592 | ||
1593 | return(newcred); | |
1594 | } | |
1595 | ||
1596 | /* | |
1597 | * Looks to see if we already have a known credential and if found bumps the | |
1598 | * reference count and returns it. If there are no credentials that match | |
1599 | * the given credential then we allocate a new credential. | |
1600 | * | |
1601 | * Note that the gmuid is hard-defaulted to the UID specified. Since we maintain | |
1602 | * this field, we can't expect callers to know how it needs to be set. Callers | |
1603 | * should be prepared for this field to be overwritten. | |
1604 | */ | |
1605 | kauth_cred_t | |
1606 | kauth_cred_create(kauth_cred_t cred) | |
1607 | { | |
1608 | kauth_cred_t found_cred, new_cred = NULL; | |
1609 | ||
1610 | cred->cr_gmuid = cred->cr_uid; | |
1611 | ||
1612 | for (;;) { | |
1613 | KAUTH_CRED_HASH_LOCK(); | |
1614 | found_cred = kauth_cred_find(cred); | |
1615 | if (found_cred != NULL) { | |
1616 | /* found an existing credential so we'll bump reference count and return */ | |
1617 | kauth_cred_ref(found_cred); | |
1618 | KAUTH_CRED_HASH_UNLOCK(); | |
1619 | return(found_cred); | |
1620 | } | |
1621 | KAUTH_CRED_HASH_UNLOCK(); | |
1622 | ||
1623 | /* no existing credential found. create one and add it to our hash table */ | |
1624 | new_cred = kauth_cred_alloc(); | |
1625 | if (new_cred != NULL) { | |
1626 | int err; | |
1627 | new_cred->cr_uid = cred->cr_uid; | |
1628 | new_cred->cr_ruid = cred->cr_ruid; | |
1629 | new_cred->cr_svuid = cred->cr_svuid; | |
1630 | new_cred->cr_rgid = cred->cr_rgid; | |
1631 | new_cred->cr_svgid = cred->cr_svgid; | |
1632 | new_cred->cr_gmuid = cred->cr_gmuid; | |
1633 | new_cred->cr_ngroups = cred->cr_ngroups; | |
1634 | bcopy(&cred->cr_groups[0], &new_cred->cr_groups[0], sizeof(new_cred->cr_groups)); | |
1635 | KAUTH_CRED_HASH_LOCK(); | |
1636 | err = kauth_cred_add(new_cred); | |
1637 | KAUTH_CRED_HASH_UNLOCK(); | |
1638 | ||
1639 | /* retry if kauth_cred_add returns non zero value */ | |
1640 | if (err == 0) | |
1641 | break; | |
1642 | FREE(new_cred, M_KAUTH); | |
1643 | new_cred = NULL; | |
1644 | } | |
1645 | } | |
1646 | ||
1647 | return(new_cred); | |
1648 | } | |
1649 | ||
1650 | /* | |
1651 | * Update the given credential using the uid argument. The given uid is used | |
1652 | * set the effective user ID, real user ID, and saved user ID. We only | |
1653 | * allocate a new credential when the given uid actually results in changes to | |
1654 | * the existing credential. | |
1655 | */ | |
1656 | kauth_cred_t | |
1657 | kauth_cred_setuid(kauth_cred_t cred, uid_t uid) | |
1658 | { | |
1659 | struct ucred temp_cred; | |
1660 | ||
1661 | NULLCRED_CHECK(cred); | |
1662 | ||
1663 | /* don't need to do anything if the effective, real and saved user IDs are | |
1664 | * already the same as the user ID passed in | |
1665 | */ | |
1666 | if (cred->cr_uid == uid && cred->cr_ruid == uid && cred->cr_svuid == uid) { | |
1667 | /* no change needed */ | |
1668 | return(cred); | |
1669 | } | |
1670 | ||
1671 | /* look up in cred hash table to see if we have a matching credential | |
1672 | * with new values. | |
1673 | */ | |
1674 | bcopy(cred, &temp_cred, sizeof(temp_cred)); | |
1675 | temp_cred.cr_uid = uid; | |
1676 | temp_cred.cr_ruid = uid; | |
1677 | temp_cred.cr_svuid = uid; | |
1678 | temp_cred.cr_gmuid = uid; | |
1679 | ||
1680 | return(kauth_cred_update(cred, &temp_cred, TRUE)); | |
1681 | } | |
1682 | ||
1683 | /* | |
1684 | * Update the given credential using the euid argument. The given uid is used | |
1685 | * set the effective user ID. We only allocate a new credential when the given | |
1686 | * uid actually results in changes to the existing credential. | |
1687 | */ | |
1688 | kauth_cred_t | |
1689 | kauth_cred_seteuid(kauth_cred_t cred, uid_t euid) | |
1690 | { | |
1691 | struct ucred temp_cred; | |
1692 | ||
1693 | NULLCRED_CHECK(cred); | |
1694 | ||
1695 | /* don't need to do anything if the given effective user ID is already the | |
1696 | * same as the effective user ID in the credential. | |
1697 | */ | |
1698 | if (cred->cr_uid == euid) { | |
1699 | /* no change needed */ | |
1700 | return(cred); | |
1701 | } | |
1702 | ||
1703 | /* look up in cred hash table to see if we have a matching credential | |
1704 | * with new values. | |
1705 | */ | |
1706 | bcopy(cred, &temp_cred, sizeof(temp_cred)); | |
1707 | temp_cred.cr_uid = euid; | |
1708 | ||
1709 | return(kauth_cred_update(cred, &temp_cred, TRUE)); | |
1710 | } | |
1711 | ||
1712 | /* | |
1713 | * Update the given credential using the gid argument. The given gid is used | |
1714 | * set the effective group ID, real group ID, and saved group ID. We only | |
1715 | * allocate a new credential when the given gid actually results in changes to | |
1716 | * the existing credential. | |
1717 | */ | |
1718 | kauth_cred_t | |
1719 | kauth_cred_setgid(kauth_cred_t cred, gid_t gid) | |
1720 | { | |
1721 | struct ucred temp_cred; | |
1722 | ||
1723 | NULLCRED_CHECK(cred); | |
1724 | ||
1725 | /* don't need to do anything if the given group ID is already the | |
1726 | * same as the group ID in the credential. | |
1727 | */ | |
1728 | if (cred->cr_groups[0] == gid && cred->cr_rgid == gid && cred->cr_svgid == gid) { | |
1729 | /* no change needed */ | |
1730 | return(cred); | |
1731 | } | |
1732 | ||
1733 | /* look up in cred hash table to see if we have a matching credential | |
1734 | * with new values. | |
1735 | */ | |
1736 | bcopy(cred, &temp_cred, sizeof(temp_cred)); | |
1737 | temp_cred.cr_groups[0] = gid; | |
1738 | temp_cred.cr_rgid = gid; | |
1739 | temp_cred.cr_svgid = gid; | |
1740 | ||
1741 | return(kauth_cred_update(cred, &temp_cred, TRUE)); | |
1742 | } | |
1743 | ||
1744 | /* | |
1745 | * Update the given credential using the egid argument. The given gid is used | |
1746 | * set the effective user ID. We only allocate a new credential when the given | |
1747 | * gid actually results in changes to the existing credential. | |
1748 | */ | |
1749 | kauth_cred_t | |
1750 | kauth_cred_setegid(kauth_cred_t cred, gid_t egid) | |
1751 | { | |
1752 | struct ucred temp_cred; | |
1753 | ||
1754 | NULLCRED_CHECK(cred); | |
1755 | ||
1756 | /* don't need to do anything if the given group ID is already the | |
1757 | * same as the group Id in the credential. | |
1758 | */ | |
1759 | if (cred->cr_groups[0] == egid) { | |
1760 | /* no change needed */ | |
1761 | return(cred); | |
1762 | } | |
1763 | ||
1764 | /* look up in cred hash table to see if we have a matching credential | |
1765 | * with new values. | |
1766 | */ | |
1767 | bcopy(cred, &temp_cred, sizeof(temp_cred)); | |
1768 | temp_cred.cr_groups[0] = egid; | |
1769 | ||
1770 | return(kauth_cred_update(cred, &temp_cred, TRUE)); | |
1771 | } | |
1772 | ||
1773 | /* | |
1774 | * Update the given credential with the given groups. We only allocate a new | |
1775 | * credential when the given gid actually results in changes to the existing | |
1776 | * credential. | |
1777 | * The gmuid argument supplies a new uid (or KAUTH_UID_NONE to opt out) | |
1778 | * which will be used for group membership checking. | |
1779 | */ | |
1780 | kauth_cred_t | |
1781 | kauth_cred_setgroups(kauth_cred_t cred, gid_t *groups, int groupcount, uid_t gmuid) | |
1782 | { | |
1783 | int i; | |
1784 | struct ucred temp_cred; | |
1785 | ||
1786 | NULLCRED_CHECK(cred); | |
1787 | ||
1788 | /* don't need to do anything if the given list of groups does not change. | |
1789 | */ | |
1790 | if ((cred->cr_gmuid == gmuid) && (cred->cr_ngroups == groupcount)) { | |
1791 | for (i = 0; i < groupcount; i++) { | |
1792 | if (cred->cr_groups[i] != groups[i]) | |
1793 | break; | |
1794 | } | |
1795 | if (i == groupcount) { | |
1796 | /* no change needed */ | |
1797 | return(cred); | |
1798 | } | |
1799 | } | |
1800 | ||
1801 | /* look up in cred hash table to see if we have a matching credential | |
1802 | * with new values. | |
1803 | */ | |
1804 | bcopy(cred, &temp_cred, sizeof(temp_cred)); | |
1805 | temp_cred.cr_ngroups = groupcount; | |
1806 | bcopy(groups, temp_cred.cr_groups, sizeof(temp_cred.cr_groups)); | |
1807 | temp_cred.cr_gmuid = gmuid; | |
1808 | ||
1809 | return(kauth_cred_update(cred, &temp_cred, TRUE)); | |
1810 | } | |
1811 | ||
1812 | /* | |
1813 | * Update the given credential using the uid and gid arguments. The given uid | |
1814 | * is used set the effective user ID, real user ID, and saved user ID. | |
1815 | * The given gid is used set the effective group ID, real group ID, and saved | |
1816 | * group ID. | |
1817 | * We only allocate a new credential when the given uid and gid actually results | |
1818 | * in changes to the existing credential. | |
1819 | */ | |
1820 | kauth_cred_t | |
1821 | kauth_cred_setuidgid(kauth_cred_t cred, uid_t uid, gid_t gid) | |
1822 | { | |
1823 | struct ucred temp_cred; | |
1824 | ||
1825 | NULLCRED_CHECK(cred); | |
1826 | ||
1827 | /* don't need to do anything if the effective, real and saved user IDs are | |
1828 | * already the same as the user ID passed in | |
1829 | */ | |
1830 | if (cred->cr_uid == uid && cred->cr_ruid == uid && cred->cr_svuid == uid && | |
1831 | cred->cr_groups[0] == gid && cred->cr_rgid == gid && cred->cr_svgid == gid) { | |
1832 | /* no change needed */ | |
1833 | return(cred); | |
1834 | } | |
1835 | ||
1836 | /* look up in cred hash table to see if we have a matching credential | |
1837 | * with new values. | |
1838 | */ | |
1839 | bzero(&temp_cred, sizeof(temp_cred)); | |
1840 | temp_cred.cr_uid = uid; | |
1841 | temp_cred.cr_ruid = uid; | |
1842 | temp_cred.cr_svuid = uid; | |
1843 | temp_cred.cr_gmuid = uid; | |
1844 | temp_cred.cr_ngroups = 1; | |
1845 | temp_cred.cr_groups[0] = gid; | |
1846 | temp_cred.cr_rgid = gid; | |
1847 | temp_cred.cr_svgid = gid; | |
1848 | ||
1849 | return(kauth_cred_update(cred, &temp_cred, TRUE)); | |
1850 | } | |
1851 | ||
1852 | /* | |
1853 | * Update the given credential using the uid and gid arguments. The given uid | |
1854 | * is used to set the saved user ID. The given gid is used to set the | |
1855 | * saved group ID. | |
1856 | * We only allocate a new credential when the given uid and gid actually results | |
1857 | * in changes to the existing credential. | |
1858 | */ | |
1859 | kauth_cred_t | |
1860 | kauth_cred_setsvuidgid(kauth_cred_t cred, uid_t uid, gid_t gid) | |
1861 | { | |
1862 | struct ucred temp_cred; | |
1863 | ||
1864 | NULLCRED_CHECK(cred); | |
1865 | ||
1866 | /* don't need to do anything if the effective, real and saved user IDs are | |
1867 | * already the same as the user ID passed in | |
1868 | */ | |
1869 | if (cred->cr_svuid == uid && cred->cr_svgid == gid) { | |
1870 | /* no change needed */ | |
1871 | return(cred); | |
1872 | } | |
1873 | ||
1874 | /* look up in cred hash table to see if we have a matching credential | |
1875 | * with new values. | |
1876 | */ | |
1877 | bcopy(cred, &temp_cred, sizeof(temp_cred)); | |
1878 | temp_cred.cr_svuid = uid; | |
1879 | temp_cred.cr_svgid = gid; | |
1880 | ||
1881 | return(kauth_cred_update(cred, &temp_cred, TRUE)); | |
1882 | } | |
1883 | ||
1884 | /* | |
1885 | * Update the given credential using the given auditinfo_t. | |
1886 | * We only allocate a new credential when the given auditinfo_t actually results | |
1887 | * in changes to the existing credential. | |
1888 | */ | |
1889 | kauth_cred_t | |
1890 | kauth_cred_setauditinfo(kauth_cred_t cred, auditinfo_t *auditinfo_p) | |
1891 | { | |
1892 | struct ucred temp_cred; | |
1893 | ||
1894 | NULLCRED_CHECK(cred); | |
1895 | ||
1896 | /* don't need to do anything if the audit info is already the same as the | |
1897 | * audit info in the credential passed in | |
1898 | */ | |
1899 | if (bcmp(&cred->cr_au, auditinfo_p, sizeof(cred->cr_au)) == 0) { | |
1900 | /* no change needed */ | |
1901 | return(cred); | |
1902 | } | |
1903 | ||
1904 | /* look up in cred hash table to see if we have a matching credential | |
1905 | * with new values. | |
1906 | */ | |
1907 | bcopy(cred, &temp_cred, sizeof(temp_cred)); | |
1908 | bcopy(auditinfo_p, &temp_cred.cr_au, sizeof(temp_cred.cr_au)); | |
1909 | ||
1910 | return(kauth_cred_update(cred, &temp_cred, FALSE)); | |
1911 | } | |
1912 | ||
1913 | /* | |
1914 | * Add a reference to the passed credential. | |
1915 | */ | |
1916 | void | |
1917 | kauth_cred_ref(kauth_cred_t cred) | |
1918 | { | |
1919 | int old_value; | |
1920 | ||
1921 | NULLCRED_CHECK(cred); | |
1922 | ||
1923 | old_value = OSAddAtomic(1, &cred->cr_ref); | |
1924 | ||
1925 | if (old_value < 1) | |
1926 | panic("kauth_cred_ref: trying to take a reference on a cred with no references"); | |
1927 | ||
1928 | return; | |
1929 | } | |
1930 | ||
1931 | /* | |
1932 | * Drop a reference from the passed credential, potentially destroying it. | |
1933 | */ | |
1934 | void | |
1935 | kauth_cred_rele(kauth_cred_t cred) | |
1936 | { | |
1937 | int old_value; | |
1938 | ||
1939 | NULLCRED_CHECK(cred); | |
1940 | ||
1941 | KAUTH_CRED_HASH_LOCK(); | |
1942 | old_value = OSAddAtomic(-1, &cred->cr_ref); | |
1943 | ||
1944 | #if DIAGNOSTIC | |
1945 | if (old_value == 0) | |
1946 | panic("kauth_cred_rele: dropping a reference on a cred with no references"); | |
1947 | #endif | |
1948 | ||
1949 | if (old_value < 3) { | |
1950 | /* the last reference is our credential hash table */ | |
1951 | kauth_cred_remove(cred); | |
1952 | } | |
1953 | KAUTH_CRED_HASH_UNLOCK(); | |
1954 | } | |
1955 | ||
1956 | /* | |
1957 | * Duplicate a credential. | |
1958 | * NOTE - caller should call kauth_cred_add after any credential changes are made. | |
1959 | */ | |
1960 | kauth_cred_t | |
1961 | kauth_cred_dup(kauth_cred_t cred) | |
1962 | { | |
1963 | kauth_cred_t newcred; | |
1964 | ||
1965 | #if CRED_DIAGNOSTIC | |
1966 | if (cred == NOCRED || cred == FSCRED) | |
1967 | panic("kauth_cred_dup: bad credential"); | |
1968 | #endif | |
1969 | newcred = kauth_cred_alloc(); | |
1970 | if (newcred != NULL) { | |
1971 | bcopy(cred, newcred, sizeof(*newcred)); | |
1972 | newcred->cr_ref = 1; | |
1973 | } | |
1974 | return(newcred); | |
1975 | } | |
1976 | ||
1977 | /* | |
1978 | * Returns a credential based on the passed credential but which | |
1979 | * reflects the real rather than effective UID and GID. | |
1980 | * NOTE - we do NOT decrement cred reference count on passed in credential | |
1981 | */ | |
1982 | kauth_cred_t | |
1983 | kauth_cred_copy_real(kauth_cred_t cred) | |
1984 | { | |
1985 | kauth_cred_t newcred = NULL, found_cred; | |
1986 | struct ucred temp_cred; | |
1987 | ||
1988 | /* if the credential is already 'real', just take a reference */ | |
1989 | if ((cred->cr_ruid == cred->cr_uid) && | |
1990 | (cred->cr_rgid == cred->cr_gid)) { | |
1991 | kauth_cred_ref(cred); | |
1992 | return(cred); | |
1993 | } | |
1994 | ||
1995 | /* look up in cred hash table to see if we have a matching credential | |
1996 | * with new values. | |
1997 | */ | |
1998 | bcopy(cred, &temp_cred, sizeof(temp_cred)); | |
1999 | temp_cred.cr_uid = cred->cr_ruid; | |
2000 | temp_cred.cr_groups[0] = cred->cr_rgid; | |
2001 | /* if the cred is not opted out, make sure we are using the r/euid for group checks */ | |
2002 | if (temp_cred.cr_gmuid != KAUTH_UID_NONE) | |
2003 | temp_cred.cr_gmuid = cred->cr_ruid; | |
2004 | ||
2005 | for (;;) { | |
2006 | int err; | |
2007 | ||
2008 | KAUTH_CRED_HASH_LOCK(); | |
2009 | found_cred = kauth_cred_find(&temp_cred); | |
2010 | if (found_cred == cred) { | |
2011 | /* same cred so just bail */ | |
2012 | KAUTH_CRED_HASH_UNLOCK(); | |
2013 | return(cred); | |
2014 | } | |
2015 | if (found_cred != NULL) { | |
2016 | /* found a match so we bump reference count on new one and decrement | |
2017 | * reference count on the old one. | |
2018 | */ | |
2019 | kauth_cred_ref(found_cred); | |
2020 | KAUTH_CRED_HASH_UNLOCK(); | |
2021 | return(found_cred); | |
2022 | } | |
2023 | ||
2024 | /* must allocate a new credential, copy in old credential data and update | |
2025 | * with real user and group IDs. | |
2026 | */ | |
2027 | newcred = kauth_cred_dup(&temp_cred); | |
2028 | err = kauth_cred_add(newcred); | |
2029 | KAUTH_CRED_HASH_UNLOCK(); | |
2030 | ||
2031 | /* retry if kauth_cred_add returns non zero value */ | |
2032 | if (err == 0) | |
2033 | break; | |
2034 | FREE(newcred, M_KAUTH); | |
2035 | newcred = NULL; | |
2036 | } | |
2037 | ||
2038 | return(newcred); | |
2039 | } | |
2040 | ||
2041 | /* | |
2042 | * common code to update a credential. model_cred is a temporary, non reference | |
2043 | * counted credential used only for comparison and modeling purposes. old_cred | |
2044 | * is a live reference counted credential that we intend to update using model_cred | |
2045 | * as our model. | |
2046 | */ | |
2047 | static kauth_cred_t kauth_cred_update(kauth_cred_t old_cred, kauth_cred_t model_cred, boolean_t retain_auditinfo) | |
2048 | { | |
2049 | kauth_cred_t found_cred, new_cred = NULL; | |
2050 | ||
2051 | /* make sure we carry the auditinfo forward to the new credential unless | |
2052 | * we are actually updating the auditinfo. | |
2053 | */ | |
2054 | if (retain_auditinfo) | |
2055 | bcopy(&old_cred->cr_au, &model_cred->cr_au, sizeof(model_cred->cr_au)); | |
2056 | ||
2057 | for (;;) { | |
2058 | int err; | |
2059 | ||
2060 | KAUTH_CRED_HASH_LOCK(); | |
2061 | found_cred = kauth_cred_find(model_cred); | |
2062 | if (found_cred == old_cred) { | |
2063 | /* same cred so just bail */ | |
2064 | KAUTH_CRED_HASH_UNLOCK(); | |
2065 | return(old_cred); | |
2066 | } | |
2067 | if (found_cred != NULL) { | |
2068 | /* found a match so we bump reference count on new one and decrement | |
2069 | * reference count on the old one. | |
2070 | */ | |
2071 | kauth_cred_ref(found_cred); | |
2072 | KAUTH_CRED_HASH_UNLOCK(); | |
2073 | kauth_cred_rele(old_cred); | |
2074 | return(found_cred); | |
2075 | } | |
2076 | ||
2077 | /* must allocate a new credential using the model. also | |
2078 | * adds the new credential to the credential hash table. | |
2079 | */ | |
2080 | new_cred = kauth_cred_dup(model_cred); | |
2081 | err = kauth_cred_add(new_cred); | |
2082 | KAUTH_CRED_HASH_UNLOCK(); | |
2083 | ||
2084 | /* retry if kauth_cred_add returns non zero value */ | |
2085 | if (err == 0) | |
2086 | break; | |
2087 | FREE(new_cred, M_KAUTH); | |
2088 | new_cred = NULL; | |
2089 | } | |
2090 | ||
2091 | kauth_cred_rele(old_cred); | |
2092 | return(new_cred); | |
2093 | } | |
2094 | ||
2095 | /* | |
2096 | * Add the given credential to our credential hash table and take an additional | |
2097 | * reference to account for our use of the credential in the hash table. | |
2098 | * NOTE - expects caller to hold KAUTH_CRED_HASH_LOCK! | |
2099 | */ | |
2100 | static int kauth_cred_add(kauth_cred_t new_cred) | |
2101 | { | |
2102 | u_long hash_key; | |
2103 | ||
2104 | hash_key = kauth_cred_get_hashkey(new_cred); | |
2105 | hash_key %= kauth_cred_table_size; | |
2106 | ||
2107 | /* race fix - there is a window where another matching credential | |
2108 | * could have been inserted between the time this one was created and we | |
2109 | * got the hash lock. If we find a match return an error and have the | |
2110 | * the caller retry. | |
2111 | */ | |
2112 | if (kauth_cred_find(new_cred) != NULL) { | |
2113 | return(-1); | |
2114 | } | |
2115 | ||
2116 | /* take a reference for our use in credential hash table */ | |
2117 | kauth_cred_ref(new_cred); | |
2118 | ||
2119 | /* insert the credential into the hash table */ | |
2120 | TAILQ_INSERT_HEAD(&kauth_cred_table_anchor[hash_key], new_cred, cr_link); | |
2121 | ||
2122 | return(0); | |
2123 | } | |
2124 | ||
2125 | /* | |
2126 | * Remove the given credential from our credential hash table. | |
2127 | * NOTE - expects caller to hold KAUTH_CRED_HASH_LOCK! | |
2128 | */ | |
2129 | static void kauth_cred_remove(kauth_cred_t cred) | |
2130 | { | |
2131 | u_long hash_key; | |
2132 | kauth_cred_t found_cred; | |
2133 | ||
2134 | hash_key = kauth_cred_get_hashkey(cred); | |
2135 | hash_key %= kauth_cred_table_size; | |
2136 | ||
2137 | /* avoid race */ | |
2138 | if (cred->cr_ref < 1) | |
2139 | panic("cred reference underflow"); | |
2140 | if (cred->cr_ref > 1) | |
2141 | return; /* someone else got a ref */ | |
2142 | ||
2143 | /* find cred in the credential hash table */ | |
2144 | TAILQ_FOREACH(found_cred, &kauth_cred_table_anchor[hash_key], cr_link) { | |
2145 | if (found_cred == cred) { | |
2146 | /* found a match, remove it from the hash table */ | |
2147 | TAILQ_REMOVE(&kauth_cred_table_anchor[hash_key], found_cred, cr_link); | |
2148 | FREE(cred, M_KAUTH); | |
2149 | #if KAUTH_CRED_HASH_DEBUG | |
2150 | kauth_cred_count--; | |
2151 | #endif | |
2152 | return; | |
2153 | } | |
2154 | } | |
2155 | ||
2156 | /* did not find a match. this should not happen! */ | |
2157 | printf("%s - %d - %s - did not find a match \n", __FILE__, __LINE__, __FUNCTION__); | |
2158 | return; | |
2159 | } | |
2160 | ||
2161 | /* | |
2162 | * Using the given credential data, look for a match in our credential hash | |
2163 | * table. | |
2164 | * NOTE - expects caller to hold KAUTH_CRED_HASH_LOCK! | |
2165 | */ | |
2166 | kauth_cred_t kauth_cred_find(kauth_cred_t cred) | |
2167 | { | |
2168 | u_long hash_key; | |
2169 | kauth_cred_t found_cred; | |
2170 | ||
2171 | #if KAUTH_CRED_HASH_DEBUG | |
2172 | static int test_count = 0; | |
2173 | ||
2174 | test_count++; | |
2175 | if ((test_count % 200) == 0) { | |
2176 | kauth_cred_hash_print(); | |
2177 | } | |
2178 | #endif | |
2179 | ||
2180 | hash_key = kauth_cred_get_hashkey(cred); | |
2181 | hash_key %= kauth_cred_table_size; | |
2182 | ||
2183 | /* find cred in the credential hash table */ | |
2184 | TAILQ_FOREACH(found_cred, &kauth_cred_table_anchor[hash_key], cr_link) { | |
2185 | if (bcmp(&found_cred->cr_uid, &cred->cr_uid, (sizeof(struct ucred) - offsetof(struct ucred, cr_uid))) == 0) { | |
2186 | /* found a match */ | |
2187 | return(found_cred); | |
2188 | } | |
2189 | } | |
2190 | /* no match found */ | |
2191 | return(NULL); | |
2192 | } | |
2193 | ||
2194 | /* | |
2195 | * Generates a hash key using data that makes up a credential. Based on ElfHash. | |
2196 | */ | |
2197 | static u_long kauth_cred_get_hashkey(kauth_cred_t cred) | |
2198 | { | |
2199 | u_long hash_key = 0; | |
2200 | ||
2201 | hash_key = kauth_cred_hash((uint8_t *)&cred->cr_uid, | |
2202 | (sizeof(struct ucred) - offsetof(struct ucred, cr_uid)), | |
2203 | hash_key); | |
2204 | return(hash_key); | |
2205 | } | |
2206 | ||
2207 | /* | |
2208 | * Generates a hash key using data that makes up a credential. Based on ElfHash. | |
2209 | */ | |
2210 | static inline u_long kauth_cred_hash(const uint8_t *datap, int data_len, u_long start_key) | |
2211 | { | |
2212 | u_long hash_key = start_key; | |
2213 | u_long temp; | |
2214 | ||
2215 | while (data_len > 0) { | |
2216 | hash_key = (hash_key << 4) + *datap++; | |
2217 | temp = hash_key & 0xF0000000; | |
2218 | if (temp) { | |
2219 | hash_key ^= temp >> 24; | |
2220 | } | |
2221 | hash_key &= ~temp; | |
2222 | data_len--; | |
2223 | } | |
2224 | return(hash_key); | |
2225 | } | |
2226 | ||
2227 | #if KAUTH_CRED_HASH_DEBUG | |
2228 | static void kauth_cred_hash_print(void) | |
2229 | { | |
2230 | int i, j; | |
2231 | kauth_cred_t found_cred; | |
2232 | ||
2233 | printf("\n\t kauth credential hash table statistics - current cred count %d \n", kauth_cred_count); | |
2234 | /* count slot hits, misses, collisions, and max depth */ | |
2235 | for (i = 0; i < kauth_cred_table_size; i++) { | |
2236 | printf("[%02d] ", i); | |
2237 | j = 0; | |
2238 | TAILQ_FOREACH(found_cred, &kauth_cred_table_anchor[i], cr_link) { | |
2239 | if (j > 0) { | |
2240 | printf("---- "); | |
2241 | } | |
2242 | j++; | |
2243 | kauth_cred_print(found_cred); | |
2244 | printf("\n"); | |
2245 | } | |
2246 | if (j == 0) { | |
2247 | printf("NOCRED \n"); | |
2248 | } | |
2249 | } | |
2250 | } | |
2251 | ||
2252 | ||
2253 | static void kauth_cred_print(kauth_cred_t cred) | |
2254 | { | |
2255 | int i; | |
2256 | ||
2257 | printf("0x%02X - refs %d uids %d %d %d ", cred, cred->cr_ref, cred->cr_uid, cred->cr_ruid, cred->cr_svuid); | |
2258 | printf("group count %d gids ", cred->cr_ngroups); | |
2259 | for (i = 0; i < NGROUPS; i++) { | |
2260 | printf("%d ", cred->cr_groups[i]); | |
2261 | } | |
2262 | printf("%d %d %d ", cred->cr_rgid, cred->cr_svgid, cred->cr_gmuid); | |
2263 | printf("auditinfo %d %d %d %d %d %d ", | |
2264 | cred->cr_au.ai_auid, cred->cr_au.ai_mask.am_success, cred->cr_au.ai_mask.am_failure, | |
2265 | cred->cr_au.ai_termid.port, cred->cr_au.ai_termid.machine, cred->cr_au.ai_asid); | |
2266 | ||
2267 | } | |
2268 | #endif |