]>
Commit | Line | Data |
---|---|---|
5ba3f43e A |
1 | /* |
2 | * Copyright (c) 2007 Apple Inc. All rights reserved. | |
3 | */ | |
4 | /* | |
5 | * CDDL HEADER START | |
6 | * | |
7 | * The contents of this file are subject to the terms of the | |
8 | * Common Development and Distribution License, Version 1.0 only | |
9 | * (the "License"). You may not use this file except in compliance | |
10 | * with the License. | |
11 | * | |
12 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
13 | * or http://www.opensolaris.org/os/licensing. | |
14 | * See the License for the specific language governing permissions | |
15 | * and limitations under the License. | |
16 | * | |
17 | * When distributing Covered Code, include this CDDL HEADER in each | |
18 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
19 | * If applicable, add the following below this CDDL HEADER, with the | |
20 | * fields enclosed by brackets "[]" replaced with your own identifying | |
21 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
22 | * | |
23 | * CDDL HEADER END | |
24 | */ | |
25 | /* | |
26 | * Copyright 2005 Sun Microsystems, Inc. All rights reserved. | |
27 | * Use is subject to license terms. | |
28 | */ | |
29 | ||
30 | /* | |
31 | * #pragma ident "@(#)fasttrap_isa.c 1.19 05/09/14 SMI" | |
32 | */ | |
33 | ||
34 | #ifdef KERNEL | |
35 | #ifndef _KERNEL | |
36 | #define _KERNEL /* Solaris vs. Darwin */ | |
37 | #endif | |
38 | #endif | |
5ba3f43e A |
39 | #include <sys/fasttrap_isa.h> |
40 | #include <sys/fasttrap_impl.h> | |
41 | #include <sys/dtrace.h> | |
42 | #include <sys/dtrace_impl.h> | |
43 | #include <kern/task.h> | |
44 | #include <vm/pmap.h> | |
45 | #include <vm/vm_map.h> | |
46 | #include <mach/mach_vm.h> | |
47 | #include <arm/proc_reg.h> | |
48 | #include <arm/thread.h> | |
49 | #include <arm/caches_internal.h> | |
50 | ||
51 | #include <sys/dtrace_ptss.h> | |
52 | #include <kern/debug.h> | |
53 | ||
54 | #include <pexpert/pexpert.h> | |
55 | ||
d9a64523 A |
56 | #if __has_include(<ptrauth.h>) |
57 | #include <ptrauth.h> | |
58 | #endif | |
59 | ||
60 | ||
5ba3f43e A |
61 | extern dtrace_id_t dtrace_probeid_error; |
62 | ||
63 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ | |
64 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ | |
65 | ||
66 | extern int dtrace_decode_arm64(uint32_t instr); | |
67 | extern int dtrace_decode_arm(uint32_t instr); | |
68 | extern int dtrace_decode_thumb(uint32_t instr); | |
69 | ||
70 | /* | |
71 | * Lossless User-Land Tracing on ARM | |
72 | * --------------------------------- | |
73 | * | |
74 | * The details here will be fleshed out as more of this is implemented. The | |
75 | * basic design will be the same way as tracing works in x86. | |
76 | * | |
77 | * Some ARM specific issues: | |
78 | * | |
79 | * We need to patch differently for ARM instructions and Thumb instructions. | |
80 | * When we hit a probe, we check to see if the mode we're currently in is the | |
81 | * same as the mode we're patching for. If not, we remove the tracepoint and | |
82 | * abort. This ARM/Thumb information is pulled in from the arch specific | |
83 | * information in the fasttrap probe. | |
84 | * | |
85 | * On ARM, any instruction that uses registers can also use the pc as a | |
86 | * register. This presents problems during emulation because we have copied | |
87 | * the instruction and thus the pc can be different. Currently we've emulated | |
88 | * any instructions that use the pc if they can be used in a return probe. | |
89 | * Eventually we will want to support all instructions that use the pc, but | |
90 | * to do so requires disassembling the instruction and reconstituting it by | |
91 | * substituting a different register. | |
92 | * | |
93 | */ | |
94 | ||
95 | #define THUMB_INSTR(x) (*(uint16_t*) &(x)) | |
96 | ||
97 | #define SIGNEXTEND(x,v) ((((int) (x)) << (32-(v))) >> (32-(v))) | |
98 | #define ALIGNADDR(x,v) (((x) >> (v)) << (v)) | |
99 | #define GETITSTATE(x) ((((x) >> 8) & 0xFC) | (((x) >> 25) & 0x3)) | |
100 | #define ISLASTINIT(x) (((x) & 0xF) == 8) | |
101 | ||
102 | #define SET16(x,w) *((uint16_t*) (x)) = (w) | |
103 | #define SET32(x,w) *((uint32_t*) (x)) = (w) | |
104 | ||
105 | #define IS_ARM32_NOP(x) ((x) == 0xE1A00000) | |
106 | /* Marker for is-enabled probes */ | |
107 | #define IS_ARM32_IS_ENABLED(x) ((x) == 0xE0200000) | |
108 | ||
109 | #define IS_ARM64_NOP(x) ((x) == 0xD503201F) | |
110 | /* Marker for is-enabled probes */ | |
111 | #define IS_ARM64_IS_ENABLED(x) ((x) == 0xD2800000) | |
112 | ||
113 | #define IS_THUMB32_NOP(x) ((x) == 0x46C0) | |
114 | /* Marker for is-enabled probes */ | |
115 | #define IS_THUMB32_IS_ENABLED(x) ((x) == 0x4040) | |
116 | ||
117 | #define ARM_LDM_UF (1 << 23) | |
118 | #define ARM_LDM_PF (1 << 24) | |
119 | #define ARM_LDM_WF (1 << 21) | |
120 | ||
121 | #define ARM_LDR_UF (1 << 23) | |
122 | #define ARM_LDR_BF (1 << 22) | |
123 | ||
5ba3f43e A |
124 | static int fasttrap_tracepoint_init32 (proc_t *, fasttrap_tracepoint_t *, user_addr_t, fasttrap_probe_type_t); |
125 | static int fasttrap_tracepoint_init64 (proc_t *, fasttrap_tracepoint_t *, user_addr_t, fasttrap_probe_type_t); | |
126 | ||
127 | int | |
128 | fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, | |
129 | user_addr_t pc, fasttrap_probe_type_t type) | |
130 | { | |
d9a64523 | 131 | if (proc_is64bit_data(p)) { |
5ba3f43e A |
132 | return fasttrap_tracepoint_init64(p, tp, pc, type); |
133 | } else { | |
134 | return fasttrap_tracepoint_init32(p, tp, pc, type); | |
135 | } | |
136 | } | |
137 | ||
138 | static int | |
139 | fasttrap_tracepoint_init32(proc_t *p, fasttrap_tracepoint_t *tp, | |
140 | user_addr_t pc, fasttrap_probe_type_t type) | |
141 | { | |
142 | #pragma unused(type) | |
143 | uint32_t instr; | |
144 | ||
145 | /* | |
146 | * Read the instruction at the given address out of the process's | |
147 | * address space. We don't have to worry about a debugger | |
148 | * changing this instruction before we overwrite it with our trap | |
149 | * instruction since P_PR_LOCK is set. Since instructions can span | |
150 | * pages, we potentially read the instruction in two parts. If the | |
151 | * second part fails, we just zero out that part of the instruction. | |
152 | */ | |
153 | /* | |
154 | * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey... | |
155 | */ | |
156 | ||
157 | if (uread(p, &instr, 4, pc) != 0) | |
158 | return (-1); | |
159 | ||
160 | /* We want &instr to always point to the saved instruction, so just copy the | |
161 | * whole thing When cast to a pointer to a uint16_t, that will give us a | |
162 | * pointer to the first two bytes, which is the thumb instruction. | |
163 | */ | |
164 | tp->ftt_instr = instr; | |
165 | ||
166 | if (tp->ftt_fntype != FASTTRAP_FN_DONE_INIT) { | |
167 | switch(tp->ftt_fntype) { | |
168 | case FASTTRAP_FN_UNKNOWN: | |
169 | /* Can't instrument without any information. We can add some heuristics later if necessary. */ | |
170 | return (-1); | |
171 | ||
172 | case FASTTRAP_FN_USDT: | |
173 | if (IS_ARM32_NOP(instr) || IS_ARM32_IS_ENABLED(instr)) { | |
174 | tp->ftt_thumb = 0; | |
175 | } else if (IS_THUMB32_NOP(THUMB_INSTR(instr)) || IS_THUMB32_IS_ENABLED(THUMB_INSTR(instr))) { | |
176 | tp->ftt_thumb = 1; | |
177 | } else { | |
178 | /* Shouldn't reach here - this means we don't recognize | |
179 | * the instruction at one of the USDT probe locations | |
180 | */ | |
181 | return (-1); | |
182 | } | |
183 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
184 | break; | |
185 | ||
186 | case FASTTRAP_FN_ARM: | |
187 | tp->ftt_thumb = 0; | |
188 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
189 | break; | |
190 | ||
191 | case FASTTRAP_FN_THUMB: | |
192 | tp->ftt_thumb = 1; | |
193 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
194 | break; | |
195 | ||
196 | default: | |
197 | return (-1); | |
198 | } | |
199 | } | |
200 | ||
201 | if (tp->ftt_thumb) { | |
202 | tp->ftt_type = dtrace_decode_thumb(instr); | |
203 | } else { | |
204 | tp->ftt_type = dtrace_decode_arm(instr); | |
205 | } | |
206 | ||
207 | if (tp->ftt_type == FASTTRAP_T_INV) { | |
208 | /* This is an instruction we either don't recognize or can't instrument */ | |
209 | printf("dtrace: fasttrap init32: Unrecognized instruction: %08x at %08llx\n", | |
210 | (tp->ftt_thumb && dtrace_instr_size(tp->ftt_instr,tp->ftt_thumb) == 2) ? tp->ftt_instr1 : instr, pc); | |
211 | return (-1); | |
212 | } | |
213 | ||
214 | return (0); | |
215 | } | |
216 | ||
217 | ||
218 | static int | |
219 | fasttrap_tracepoint_init64(proc_t *p, fasttrap_tracepoint_t *tp, | |
220 | user_addr_t pc, fasttrap_probe_type_t type) | |
221 | { | |
222 | #pragma unused(type) | |
223 | uint32_t instr = 0; | |
224 | ||
225 | /* | |
226 | * Read the instruction at the given address out of the process's | |
227 | * address space. We don't have to worry about a debugger | |
228 | * changing this instruction before we overwrite it with our trap | |
229 | * instruction since P_PR_LOCK is set. Since instructions can span | |
230 | * pages, we potentially read the instruction in two parts. If the | |
231 | * second part fails, we just zero out that part of the instruction. | |
232 | */ | |
233 | /* | |
234 | * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey... | |
235 | */ | |
236 | ||
237 | if (uread(p, &instr, 4, pc) != 0) | |
238 | return (-1); | |
239 | ||
240 | tp->ftt_instr = instr; | |
241 | tp->ftt_thumb = 0; /* Always zero on 64bit */ | |
242 | ||
243 | if (tp->ftt_fntype != FASTTRAP_FN_DONE_INIT) { | |
244 | switch(tp->ftt_fntype) { | |
245 | case FASTTRAP_FN_UNKNOWN: | |
d9a64523 A |
246 | case FASTTRAP_FN_ARM64: |
247 | case FASTTRAP_FN_ARM64_32: | |
5ba3f43e A |
248 | /* |
249 | * On arm64 there is no distinction between | |
250 | * arm vs. thumb mode instruction types. | |
251 | */ | |
252 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
253 | break; | |
254 | ||
255 | case FASTTRAP_FN_USDT: | |
256 | if (IS_ARM64_NOP(instr) || IS_ARM64_IS_ENABLED(instr)) { | |
257 | tp->ftt_fntype = FASTTRAP_FN_DONE_INIT; | |
258 | } else { | |
259 | /* | |
260 | * Shouldn't reach here - this means we don't | |
261 | * recognize the instruction at one of the | |
262 | * USDT probe locations | |
263 | */ | |
264 | return (-1); | |
265 | } | |
266 | ||
267 | break; | |
268 | ||
269 | case FASTTRAP_FN_ARM: | |
270 | case FASTTRAP_FN_THUMB: | |
271 | default: | |
272 | /* | |
273 | * If we get an arm or thumb mode type | |
274 | * then we are clearly in the wrong path. | |
275 | */ | |
276 | return (-1); | |
277 | } | |
278 | } | |
279 | ||
280 | tp->ftt_type = dtrace_decode_arm64(instr); | |
281 | ||
282 | if (tp->ftt_type == FASTTRAP_T_ARM64_EXCLUSIVE_MEM) { | |
283 | kprintf("Detected attempt to place DTrace probe on exclusive memory instruction (pc = 0x%llx); refusing to trace (or exclusive operation could never succeed).\n", pc); | |
284 | tp->ftt_type = FASTTRAP_T_INV; | |
285 | return (-1); | |
286 | } | |
287 | ||
288 | if (tp->ftt_type == FASTTRAP_T_INV) { | |
289 | /* This is an instruction we either don't recognize or can't instrument */ | |
290 | printf("dtrace: fasttrap init64: Unrecognized instruction: %08x at %08llx\n", instr, pc); | |
291 | return (-1); | |
292 | } | |
293 | ||
294 | return (0); | |
295 | } | |
296 | ||
5ba3f43e A |
297 | int |
298 | fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) | |
299 | { | |
300 | /* The thumb patch is a 2 byte instruction regardless of the size of the original instruction */ | |
301 | uint32_t instr; | |
302 | int size; | |
303 | ||
d9a64523 | 304 | if (proc_is64bit_data(p)) { |
5ba3f43e A |
305 | size = 4; |
306 | instr = FASTTRAP_ARM64_INSTR; | |
307 | } | |
308 | else { | |
309 | size = tp->ftt_thumb ? 2 : 4; | |
310 | if (tp->ftt_thumb) { | |
311 | *((uint16_t*) &instr) = FASTTRAP_THUMB32_INSTR; | |
312 | } else { | |
313 | instr = FASTTRAP_ARM32_INSTR; | |
314 | } | |
315 | } | |
316 | ||
d9a64523 | 317 | if (uwrite(p, &instr, size, tp->ftt_pc) != 0) |
5ba3f43e A |
318 | return (-1); |
319 | ||
320 | tp->ftt_installed = 1; | |
321 | ||
322 | return (0); | |
323 | } | |
324 | ||
325 | int | |
326 | fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) | |
327 | { | |
328 | /* The thumb patch is a 2 byte instruction regardless of the size of the original instruction */ | |
329 | uint32_t instr; | |
330 | int size; | |
331 | ||
d9a64523 | 332 | if (proc_is64bit_data(p)) { |
5ba3f43e A |
333 | /* |
334 | * Distinguish between read or write failures and a changed | |
335 | * instruction. | |
336 | */ | |
337 | size = 4; | |
338 | if (uread(p, &instr, size, tp->ftt_pc) != 0) | |
339 | goto end; | |
340 | ||
341 | if (instr != FASTTRAP_ARM64_INSTR) | |
342 | goto end; | |
343 | } else { | |
344 | /* | |
345 | * Distinguish between read or write failures and a changed | |
346 | * instruction. | |
347 | */ | |
348 | size = tp->ftt_thumb ? 2 : 4; | |
349 | if (uread(p, &instr, size, tp->ftt_pc) != 0) | |
350 | goto end; | |
351 | ||
352 | if (tp->ftt_thumb) { | |
353 | if (*((uint16_t*) &instr) != FASTTRAP_THUMB32_INSTR) | |
354 | goto end; | |
355 | } else { | |
356 | if (instr != FASTTRAP_ARM32_INSTR) | |
357 | goto end; | |
358 | } | |
359 | } | |
360 | ||
d9a64523 | 361 | if (uwrite(p, &tp->ftt_instr, size, tp->ftt_pc) != 0) |
5ba3f43e A |
362 | return (-1); |
363 | ||
364 | end: | |
365 | tp->ftt_installed = 0; | |
366 | ||
367 | return (0); | |
368 | } | |
369 | ||
370 | static void | |
371 | fasttrap_return_common(proc_t *p, arm_saved_state_t *regs, user_addr_t pc, user_addr_t new_pc) | |
372 | { | |
373 | pid_t pid = p->p_pid; | |
374 | fasttrap_tracepoint_t *tp; | |
375 | fasttrap_bucket_t *bucket; | |
376 | fasttrap_id_t *id; | |
377 | lck_mtx_t *pid_mtx; | |
378 | int retire_tp = 1; | |
379 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
380 | lck_mtx_lock(pid_mtx); | |
381 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; | |
382 | ||
383 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
384 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
385 | tp->ftt_proc->ftpc_acount != 0) | |
386 | break; | |
387 | } | |
388 | ||
389 | /* | |
390 | * Don't sweat it if we can't find the tracepoint again; unlike | |
391 | * when we're in fasttrap_pid_probe(), finding the tracepoint here | |
392 | * is not essential to the correct execution of the process. | |
393 | */ | |
394 | if (tp == NULL) { | |
395 | lck_mtx_unlock(pid_mtx); | |
396 | return; | |
397 | } | |
398 | ||
399 | for (id = tp->ftt_retids; id != NULL; id = id->fti_next) { | |
400 | fasttrap_probe_t *probe = id->fti_probe; | |
401 | /* | |
402 | * If there's a branch that could act as a return site, we | |
403 | * need to trace it, and check here if the program counter is | |
404 | * external to the function. | |
405 | */ | |
406 | if (is_saved_state32(regs)) | |
407 | { | |
408 | if (tp->ftt_type != FASTTRAP_T_LDM_PC && | |
409 | tp->ftt_type != FASTTRAP_T_POP_PC && | |
410 | new_pc - probe->ftp_faddr < probe->ftp_fsize) | |
411 | continue; | |
412 | } | |
413 | else { | |
414 | /* ARM64_TODO - check for FASTTRAP_T_RET */ | |
d9a64523 | 415 | if ((tp->ftt_type != FASTTRAP_T_ARM64_RET || tp->ftt_type != FASTTRAP_T_ARM64_RETAB) && |
5ba3f43e A |
416 | new_pc - probe->ftp_faddr < probe->ftp_fsize) |
417 | continue; | |
418 | } | |
419 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { | |
420 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); | |
421 | if (already_triggered) { | |
422 | continue; | |
423 | } | |
424 | } | |
425 | /* | |
426 | * If we have at least one probe associated that | |
427 | * is not a oneshot probe, don't remove the | |
428 | * tracepoint | |
429 | */ | |
430 | else { | |
431 | retire_tp = 0; | |
432 | } | |
433 | ||
434 | #ifndef CONFIG_EMBEDDED | |
435 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { | |
436 | dtrace_probe(dtrace_probeid_error, 0 /* state */, id->fti_probe->ftp_id, | |
437 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
438 | #else | |
439 | if (FALSE) { | |
440 | #endif | |
441 | } else { | |
442 | if (is_saved_state32(regs)) { | |
443 | dtrace_probe(probe->ftp_id, | |
444 | pc - id->fti_probe->ftp_faddr, | |
445 | saved_state32(regs)->r[0], 0, 0, 0); | |
446 | } else { | |
447 | dtrace_probe(probe->ftp_id, | |
448 | pc - id->fti_probe->ftp_faddr, | |
449 | saved_state64(regs)->x[0], 0, 0, 0); | |
450 | } | |
451 | } | |
452 | } | |
453 | if (retire_tp) { | |
454 | fasttrap_tracepoint_retire(p, tp); | |
455 | } | |
456 | ||
457 | lck_mtx_unlock(pid_mtx); | |
458 | } | |
459 | ||
460 | static void | |
461 | fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr, arm_saved_state_t *regs) | |
462 | { | |
463 | /* TODO: This function isn't implemented yet. In debug mode, panic the system to | |
464 | * find out why we're hitting this point. In other modes, kill the process. | |
465 | */ | |
466 | #if DEBUG | |
467 | #pragma unused(p,t,addr,arm_saved_state) | |
468 | panic("fasttrap: sigsegv not yet implemented"); | |
469 | #else | |
470 | #pragma unused(p,t,addr) | |
471 | /* Kill the process */ | |
472 | set_saved_state_pc(regs, 0); | |
473 | #endif | |
474 | ||
475 | #if 0 | |
476 | proc_lock(p); | |
477 | ||
478 | /* Set fault address and mark signal */ | |
479 | t->uu_code = addr; | |
480 | t->uu_siglist |= sigmask(SIGSEGV); | |
481 | ||
482 | /* | |
483 | * XXX These two line may be redundant; if not, then we need | |
484 | * XXX to potentially set the data address in the machine | |
485 | * XXX specific thread state structure to indicate the address. | |
486 | */ | |
487 | t->uu_exception = KERN_INVALID_ADDRESS; /* SIGSEGV */ | |
488 | t->uu_subcode = 0; /* XXX pad */ | |
489 | ||
490 | proc_unlock(p); | |
491 | ||
492 | /* raise signal */ | |
493 | signal_setast(t->uu_context.vc_thread); | |
494 | #endif | |
495 | } | |
496 | ||
497 | static void | |
498 | fasttrap_usdt_args32(fasttrap_probe_t *probe, arm_saved_state32_t *regs32, int argc, | |
499 | uint64_t *argv) | |
500 | { | |
501 | int i, x, cap = MIN(argc, probe->ftp_nargs); | |
502 | ||
503 | for (i = 0; i < cap; i++) { | |
504 | x = probe->ftp_argmap[i]; | |
505 | ||
506 | /* Up to 4 args are passed in registers on arm */ | |
507 | if (x < 4) { | |
508 | argv[i] = regs32->r[x]; | |
509 | } else { | |
510 | uint32_t arg; | |
511 | fasttrap_fuword32_noerr(regs32->sp + (x - 4) * sizeof(uint32_t), &arg); | |
512 | ||
513 | argv[i] = arg; | |
514 | } | |
515 | } | |
516 | ||
517 | for (; i < argc; i++) { | |
518 | argv[i] = 0; | |
519 | } | |
520 | } | |
521 | ||
522 | static void | |
523 | fasttrap_usdt_args64(fasttrap_probe_t *probe, arm_saved_state64_t *regs64, int argc, | |
524 | uint64_t *argv) | |
525 | { | |
526 | int i, x, cap = MIN(argc, probe->ftp_nargs); | |
527 | ||
528 | for (i = 0; i < cap; i++) { | |
529 | x = probe->ftp_argmap[i]; | |
530 | ||
531 | /* Up to 8 args are passed in registers on arm64 */ | |
532 | if (x < 8) { | |
533 | argv[i] = regs64->x[x]; | |
534 | } else { | |
535 | fasttrap_fuword64_noerr(regs64->sp + (x - 8) * sizeof(uint64_t), &argv[i]); | |
536 | } | |
537 | } | |
538 | ||
539 | for (; i < argc; i++) { | |
540 | argv[i] = 0; | |
541 | } | |
542 | } | |
543 | ||
544 | static int condition_true(int cond, int cpsr) | |
545 | { | |
546 | int taken = 0; | |
547 | int zf = (cpsr & PSR_ZF) ? 1 : 0, | |
548 | nf = (cpsr & PSR_NF) ? 1 : 0, | |
549 | cf = (cpsr & PSR_CF) ? 1 : 0, | |
550 | vf = (cpsr & PSR_VF) ? 1 : 0; | |
551 | ||
552 | switch(cond) { | |
553 | case 0: taken = zf; break; | |
554 | case 1: taken = !zf; break; | |
555 | case 2: taken = cf; break; | |
556 | case 3: taken = !cf; break; | |
557 | case 4: taken = nf; break; | |
558 | case 5: taken = !nf; break; | |
559 | case 6: taken = vf; break; | |
560 | case 7: taken = !vf; break; | |
561 | case 8: taken = (cf && !zf); break; | |
562 | case 9: taken = (!cf || zf); break; | |
563 | case 10: taken = (nf == vf); break; | |
564 | case 11: taken = (nf != vf); break; | |
565 | case 12: taken = (!zf && (nf == vf)); break; | |
566 | case 13: taken = (zf || (nf != vf)); break; | |
567 | case 14: taken = 1; break; | |
568 | case 15: taken = 1; break; /* always "true" for ARM, unpredictable for THUMB. */ | |
569 | } | |
570 | ||
571 | return taken; | |
572 | } | |
573 | ||
574 | static void set_thumb_flag(arm_saved_state32_t *regs32, user_addr_t pc) | |
575 | { | |
576 | if (pc & 1) { | |
577 | regs32->cpsr |= PSR_TF; | |
578 | } else { | |
579 | regs32->cpsr &= ~PSR_TF; | |
580 | } | |
581 | } | |
582 | ||
583 | static int | |
584 | fasttrap_pid_probe_thumb_state_valid(arm_saved_state32_t *state32, fasttrap_tracepoint_t *tp) | |
585 | { | |
586 | uint32_t cpsr = state32->cpsr; | |
587 | uint32_t itstate = GETITSTATE(cpsr); | |
588 | ||
589 | /* If in IT block, make sure it's the last statement in the block */ | |
590 | if ((itstate != 0) && !ISLASTINIT(itstate)) { | |
591 | printf("dtrace: fasttrap: Tried to trace instruction %08x at %08x but not at end of IT block\n", | |
592 | (tp->ftt_thumb && dtrace_instr_size(tp->ftt_instr,tp->ftt_thumb) == 2) ? tp->ftt_instr1 : tp->ftt_instr, state32->pc); | |
593 | return 0; | |
594 | } | |
595 | ||
596 | if (!(cpsr & PSR_TF)) { | |
597 | return 0; | |
598 | } | |
599 | ||
600 | return 1; | |
601 | } | |
602 | ||
603 | static int | |
604 | fasttrap_get_condition_code(arm_saved_state32_t *regs32, fasttrap_tracepoint_t *tp) | |
605 | { | |
606 | /* Default to always execute */ | |
607 | int condition_code = 0xE; | |
608 | if (tp->ftt_thumb) { | |
609 | uint32_t itstate = GETITSTATE(regs32->cpsr); | |
610 | if (itstate != 0) { | |
611 | /* In IT block, make sure it's the last statement in the block */ | |
612 | assert(ISLASTINIT(itstate)); | |
613 | condition_code = itstate >> 4; | |
614 | } | |
615 | } else { | |
616 | condition_code = ARM_CONDCODE(tp->ftt_instr); | |
617 | } | |
618 | ||
619 | return condition_code; | |
620 | } | |
621 | ||
622 | static void | |
623 | fasttrap_pid_probe_handle_patched_instr32(arm_saved_state_t *state, fasttrap_tracepoint_t *tp, uthread_t uthread, | |
624 | proc_t *p, uint_t is_enabled, int *was_simulated) | |
625 | { | |
626 | arm_saved_state32_t *regs32 = saved_state32(state); | |
627 | uint32_t new_pc = 0; | |
628 | uint32_t pc = regs32->pc; | |
629 | int instr_size; | |
630 | int condition_code; | |
631 | ||
632 | *was_simulated = 1; | |
633 | ||
634 | /* | |
635 | * If there's an is-enabled probe connected to this tracepoint it | |
636 | * means that there was a 'eor r0,r0,r0' | |
637 | * instruction that was placed there by DTrace when the binary was | |
638 | * linked. As this probe is, in fact, enabled, we need to stuff 1 | |
639 | * into R0. Accordingly, we can bypass all the instruction | |
640 | * emulation logic since we know the inevitable result. It's possible | |
641 | * that a user could construct a scenario where the 'is-enabled' | |
642 | * probe was on some other instruction, but that would be a rather | |
643 | * exotic way to shoot oneself in the foot. | |
644 | */ | |
645 | ||
646 | if (is_enabled) { | |
647 | regs32->r[0] = 1; | |
648 | new_pc = regs32->pc + (tp->ftt_thumb ? 2 : 4); | |
649 | goto done; | |
650 | } | |
651 | ||
652 | /* For USDT probes, bypass all the emulation logic for the nop instruction */ | |
653 | if ((tp->ftt_thumb && IS_THUMB32_NOP(THUMB_INSTR(tp->ftt_instr))) || | |
654 | (!tp->ftt_thumb && IS_ARM32_NOP(tp->ftt_instr))) { | |
655 | new_pc = regs32->pc + (tp->ftt_thumb ? 2 : 4); | |
656 | goto done; | |
657 | } | |
658 | ||
659 | condition_code = fasttrap_get_condition_code(regs32, tp); | |
660 | instr_size = dtrace_instr_size(tp->ftt_instr,tp->ftt_thumb); | |
661 | ||
662 | switch (tp->ftt_type) { | |
663 | case FASTTRAP_T_MOV_PC_REG: | |
664 | case FASTTRAP_T_CPY_PC: | |
665 | { | |
666 | if (!condition_true(condition_code, regs32->cpsr)) { | |
667 | new_pc = pc + instr_size; | |
668 | break; | |
669 | } | |
670 | ||
671 | int rm; | |
672 | if (tp->ftt_thumb) { | |
673 | rm = THUMB16_HRM(tp->ftt_instr1); | |
674 | } else { | |
675 | rm = tp->ftt_instr & 0xF; | |
676 | } | |
677 | new_pc = regs32->r[rm]; | |
678 | ||
679 | /* This instruction does not change the Thumb state */ | |
680 | ||
681 | break; | |
682 | } | |
683 | ||
684 | case FASTTRAP_T_STM_LR: | |
685 | case FASTTRAP_T_PUSH_LR: | |
686 | { | |
687 | /* | |
688 | * This is a very common case, so we want to emulate this instruction if | |
689 | * possible. However, on a push, it is possible that we might reach the end | |
690 | * of a page and have to allocate a new page. Most of the time this will not | |
691 | * happen, and we know that the push instruction can store at most 16 words, | |
692 | * so check to see if we are far from the boundary, and if so, emulate. This | |
693 | * can be made more aggressive by checking the actual number of words being | |
694 | * pushed, but we won't do that for now. | |
695 | * | |
696 | * Some of the same issues that apply to POP_PC probably apply here also. | |
697 | */ | |
698 | ||
699 | int reglist; | |
700 | int ret; | |
701 | uint32_t base; | |
702 | ||
703 | if (!condition_true(condition_code, regs32->cpsr)) { | |
704 | new_pc = pc + instr_size; | |
705 | break; | |
706 | } | |
707 | ||
708 | base = regs32->sp; | |
709 | if (((base-16*4) >> PAGE_SHIFT) != (base >> PAGE_SHIFT)) { | |
710 | /* Crosses the page boundary, go to emulation */ | |
711 | goto instr_emulate; | |
712 | } | |
713 | ||
714 | if (tp->ftt_thumb) { | |
715 | if (instr_size == 4) { | |
716 | /* We know we have to push lr, never push sp or pc */ | |
717 | reglist = tp->ftt_instr2 & 0x1FFF; | |
718 | } else { | |
719 | reglist = tp->ftt_instr1 & 0xFF; | |
720 | } | |
721 | } else { | |
722 | /* We know we have to push lr, never push sp or pc */ | |
723 | reglist = tp->ftt_instr & 0x1FFF; | |
724 | } | |
725 | ||
726 | /* Push the link register */ | |
727 | base -= 4; | |
728 | ret = fasttrap_suword32(base, regs32->lr); | |
729 | if (ret == -1) { | |
730 | fasttrap_sigsegv(p, uthread, (user_addr_t) base, state); | |
731 | new_pc = regs32->pc; | |
732 | break; | |
733 | } | |
734 | ||
735 | /* Start pushing from $r12 */ | |
736 | int regmask = 1 << 12; | |
737 | int regnum = 12; | |
738 | ||
739 | while (regmask) { | |
740 | if (reglist & regmask) { | |
741 | base -= 4; | |
742 | ret = fasttrap_suword32(base, regs32->r[regnum]); | |
743 | if (ret == -1) { | |
744 | fasttrap_sigsegv(p, uthread, (user_addr_t) base, state); | |
745 | new_pc = regs32->pc; | |
746 | break; | |
747 | } | |
748 | } | |
749 | regmask >>= 1; | |
750 | regnum--; | |
751 | } | |
752 | ||
753 | regs32->sp = base; | |
754 | ||
755 | new_pc = pc + instr_size; | |
756 | ||
757 | break; | |
758 | } | |
759 | ||
760 | ||
761 | case FASTTRAP_T_LDM_PC: | |
762 | case FASTTRAP_T_POP_PC: | |
763 | { | |
764 | /* TODO Two issues that will eventually need to be resolved: | |
765 | * | |
766 | * 1. Understand what the hardware does if we have to segfault (data abort) in | |
767 | * the middle of a load multiple. We currently don't have a working segfault | |
768 | * handler anyway, and with no swapfile we should never segfault on this load. | |
769 | * If we do, we'll just kill the process by setting the pc to 0. | |
770 | * | |
771 | * 2. The emulation is no longer atomic. We currently only emulate pop for | |
772 | * function epilogues, and so we should never have a race here because one | |
773 | * thread should never be trying to manipulate another thread's stack frames. | |
774 | * That is almost certainly a bug in the program. | |
775 | * | |
776 | * This will need to be fixed if we ever: | |
777 | * a. Ship dtrace externally, as this could be a potential attack vector | |
778 | * b. Support instruction level tracing, as we might then pop/ldm non epilogues. | |
779 | * | |
780 | */ | |
781 | ||
782 | /* Assume ldmia! sp/pop ... pc */ | |
783 | ||
784 | int regnum = 0, reglist; | |
785 | int ret; | |
786 | uint32_t base; | |
787 | ||
788 | if (!condition_true(condition_code, regs32->cpsr)) { | |
789 | new_pc = pc + instr_size; | |
790 | break; | |
791 | } | |
792 | ||
793 | if (tp->ftt_thumb) { | |
794 | if (instr_size == 4) { | |
795 | /* We know we have to load the pc, don't do it twice */ | |
796 | reglist = tp->ftt_instr2 & 0x7FFF; | |
797 | } else { | |
798 | reglist = tp->ftt_instr1 & 0xFF; | |
799 | } | |
800 | } else { | |
801 | /* We know we have to load the pc, don't do it twice */ | |
802 | reglist = tp->ftt_instr & 0x7FFF; | |
803 | } | |
804 | ||
805 | base = regs32->sp; | |
806 | while (reglist) { | |
807 | if (reglist & 1) { | |
808 | ret = fasttrap_fuword32((user_addr_t)base, ®s32->r[regnum]); | |
809 | if (ret == -1) { | |
810 | fasttrap_sigsegv(p, uthread, (user_addr_t) base, state); | |
811 | new_pc = regs32->pc; | |
812 | break; | |
813 | } | |
814 | base += 4; | |
815 | } | |
816 | reglist >>= 1; | |
817 | regnum++; | |
818 | } | |
819 | ||
820 | ret = fasttrap_fuword32((user_addr_t)base, &new_pc); | |
821 | if (ret == -1) { | |
822 | fasttrap_sigsegv(p, uthread, (user_addr_t) base, state); | |
823 | new_pc = regs32->pc; | |
824 | break; | |
825 | } | |
826 | base += 4; | |
827 | ||
828 | regs32->sp = base; | |
829 | ||
830 | set_thumb_flag(regs32, new_pc); | |
831 | ||
832 | break; | |
833 | } | |
834 | ||
835 | case FASTTRAP_T_CB_N_Z: | |
836 | { | |
837 | /* Thumb mode instruction, and not permitted in IT block, so skip the condition code check */ | |
838 | int rn = tp->ftt_instr1 & 0x7; | |
839 | int offset = (((tp->ftt_instr1 & 0x00F8) >> 2) | ((tp->ftt_instr1 & 0x0200) >> 3)) + 4; | |
840 | int nonzero = tp->ftt_instr1 & 0x0800; | |
841 | if (!nonzero != !(regs32->r[rn] == 0)) { | |
842 | new_pc = pc + offset; | |
843 | } else { | |
844 | new_pc = pc + instr_size; | |
845 | } | |
846 | break; | |
847 | } | |
848 | ||
849 | case FASTTRAP_T_B_COND: | |
850 | { | |
851 | /* Use the condition code in the instruction and ignore the ITSTATE */ | |
852 | ||
853 | int code, offset; | |
854 | if (tp->ftt_thumb) { | |
855 | if (instr_size == 4) { | |
856 | code = (tp->ftt_instr1 >> 6) & 0xF; | |
857 | if (code == 14 || code == 15) { | |
858 | panic("fasttrap: Emulation of invalid branch"); | |
859 | } | |
860 | int S = (tp->ftt_instr1 >> 10) & 1, | |
861 | J1 = (tp->ftt_instr2 >> 13) & 1, | |
862 | J2 = (tp->ftt_instr2 >> 11) & 1; | |
863 | offset = 4 + SIGNEXTEND( | |
864 | (S << 20) | (J2 << 19) | (J1 << 18) | | |
865 | ((tp->ftt_instr1 & 0x003F) << 12) | | |
866 | ((tp->ftt_instr2 & 0x07FF) << 1), | |
867 | 21); | |
868 | } else { | |
869 | code = (tp->ftt_instr1 >> 8) & 0xF; | |
870 | if (code == 14 || code == 15) { | |
871 | panic("fasttrap: Emulation of invalid branch"); | |
872 | } | |
873 | offset = 4 + (SIGNEXTEND(tp->ftt_instr1 & 0xFF, 8) << 1); | |
874 | } | |
875 | } else { | |
876 | code = ARM_CONDCODE(tp->ftt_instr); | |
877 | if (code == 15) { | |
878 | panic("fasttrap: Emulation of invalid branch"); | |
879 | } | |
880 | offset = 8 + (SIGNEXTEND(tp->ftt_instr & 0x00FFFFFF, 24) << 2); | |
881 | } | |
882 | ||
883 | if (condition_true(code, regs32->cpsr)) { | |
884 | new_pc = pc + offset; | |
885 | } else { | |
886 | new_pc = pc + instr_size; | |
887 | } | |
888 | ||
889 | break; | |
890 | } | |
891 | ||
892 | case FASTTRAP_T_B_UNCOND: | |
893 | { | |
894 | int offset; | |
895 | ||
896 | /* Unconditional branches can only be taken from Thumb mode */ | |
897 | /* (This is different from an ARM branch with condition code "always") */ | |
898 | ASSERT(tp->ftt_thumb == 1); | |
899 | ||
900 | if (!condition_true(condition_code, regs32->cpsr)) { | |
901 | new_pc = pc + instr_size; | |
902 | break; | |
903 | } | |
904 | ||
905 | if (instr_size == 4) { | |
906 | int S = (tp->ftt_instr1 >> 10) & 1, | |
907 | J1 = (tp->ftt_instr2 >> 13) & 1, | |
908 | J2 = (tp->ftt_instr2 >> 11) & 1; | |
909 | int I1 = (J1 != S) ? 0 : 1, I2 = (J2 != S) ? 0 : 1; | |
910 | offset = 4 + SIGNEXTEND( | |
911 | (S << 24) | (I1 << 23) | (I2 << 22) | | |
912 | ((tp->ftt_instr1 & 0x03FF) << 12) | | |
913 | ((tp->ftt_instr2 & 0x07FF) << 1), | |
914 | 25); | |
915 | } else { | |
916 | uint32_t instr1 = tp->ftt_instr1; | |
917 | offset = 4 + (SIGNEXTEND(instr1 & 0x7FF, 11) << 1); | |
918 | } | |
919 | ||
920 | new_pc = pc + offset; | |
921 | ||
922 | break; | |
923 | } | |
924 | ||
925 | case FASTTRAP_T_BX_REG: | |
926 | { | |
927 | int reg; | |
928 | ||
929 | if (!condition_true(condition_code, regs32->cpsr)) { | |
930 | new_pc = pc + instr_size; | |
931 | break; | |
932 | } | |
933 | ||
934 | if (tp->ftt_thumb) { | |
935 | reg = THUMB16_HRM(tp->ftt_instr1); | |
936 | } else { | |
937 | reg = ARM_RM(tp->ftt_instr); | |
938 | } | |
939 | new_pc = regs32->r[reg]; | |
940 | set_thumb_flag(regs32, new_pc); | |
941 | ||
942 | break; | |
943 | } | |
944 | ||
945 | case FASTTRAP_T_LDR_PC_IMMED: | |
946 | case FASTTRAP_T_VLDR_PC_IMMED: | |
947 | /* Handle these instructions by replacing the PC in the instruction with another | |
948 | * register. They are common, so we'd like to support them, and this way we do so | |
949 | * without any risk of having to simulate a segfault. | |
950 | */ | |
951 | ||
952 | /* Fall through */ | |
953 | ||
954 | instr_emulate: | |
955 | case FASTTRAP_T_COMMON: | |
956 | { | |
957 | user_addr_t addr; | |
958 | uint8_t scratch[32]; | |
959 | uint_t i = 0; | |
960 | fasttrap_instr_t emul_instr; | |
961 | emul_instr.instr32 = tp->ftt_instr; | |
962 | int emul_instr_size; | |
963 | ||
964 | /* | |
965 | * Unfortunately sometimes when we emulate the instruction and have to replace the | |
966 | * PC, there is no longer a thumb mode equivalent. We end up having to run the | |
967 | * modified instruction in ARM mode. We use this variable to keep track of which | |
968 | * mode we should emulate in. We still use the original variable to determine | |
969 | * what mode to return to. | |
970 | */ | |
971 | uint8_t emul_thumb = tp->ftt_thumb; | |
972 | int save_reg = -1; | |
973 | uint32_t save_val = 0; | |
974 | ||
975 | /* | |
976 | * Dealing with condition codes and emulation: | |
977 | * We can't just uniformly do a condition code check here because not all instructions | |
978 | * have condition codes. We currently do not support an instruction by instruction trace, | |
979 | * so we can assume that either: 1. We are executing a Thumb instruction, in which case | |
980 | * we either are not in an IT block and should execute always, or we are last in an IT | |
981 | * block. Either way, the traced instruction will run correctly, and we won't have any | |
982 | * problems when we return to the original code, because we will no longer be in the IT | |
983 | * block. 2. We are executing an ARM instruction, in which case we are ok as long as | |
984 | * we don't attempt to change the condition code. | |
985 | */ | |
986 | if (tp->ftt_type == FASTTRAP_T_LDR_PC_IMMED) { | |
987 | /* We know we always have a free register (the one we plan to write the | |
988 | * result value to!). So we'll replace the pc with that one. | |
989 | */ | |
990 | int new_reg; | |
991 | if (tp->ftt_thumb) { | |
992 | /* Check to see if thumb or thumb2 */ | |
993 | if (instr_size == 2) { | |
994 | /* | |
995 | * Sadness. We need to emulate this instruction in ARM mode | |
996 | * because it has an 8 bit immediate offset. Instead of having | |
997 | * to deal with condition codes in the ARM instruction, we'll | |
998 | * just check the condition and abort if the condition is false. | |
999 | */ | |
1000 | if (!condition_true(condition_code, regs32->cpsr)) { | |
1001 | new_pc = pc + instr_size; | |
1002 | break; | |
1003 | } | |
1004 | ||
1005 | new_reg = (tp->ftt_instr1 >> 8) & 0x7; | |
1006 | regs32->r[new_reg] = ALIGNADDR(regs32->pc + 4, 2); | |
1007 | emul_thumb = 0; | |
1008 | emul_instr.instr32 = 0xE5900000 | (new_reg << 16) | (new_reg << 12) | ((tp->ftt_instr1 & 0xFF) << 2); | |
1009 | } else { | |
1010 | /* Thumb2. Just replace the register. */ | |
1011 | new_reg = (tp->ftt_instr2 >> 12) & 0xF; | |
1012 | regs32->r[new_reg] = ALIGNADDR(regs32->pc + 4, 2); | |
1013 | emul_instr.instr16.instr1 &= ~0x000F; | |
1014 | emul_instr.instr16.instr1 |= new_reg; | |
1015 | } | |
1016 | } else { | |
1017 | /* ARM. Just replace the register. */ | |
1018 | new_reg = (tp->ftt_instr >> 12) & 0xF; | |
1019 | regs32->r[new_reg] = ALIGNADDR(regs32->pc + 8,2); | |
1020 | emul_instr.instr32 &= ~0x000F0000; | |
1021 | emul_instr.instr32 |= new_reg << 16; | |
1022 | } | |
1023 | } else if (tp->ftt_type == FASTTRAP_T_VLDR_PC_IMMED) { | |
1024 | /* This instruction only uses one register, and if we're here, we know | |
1025 | * it must be the pc. So we'll just replace it with R0. | |
1026 | */ | |
1027 | save_reg = 0; | |
1028 | save_val = regs32->r[0]; | |
1029 | regs32->r[save_reg] = ALIGNADDR(regs32->pc + (tp->ftt_thumb ? 4 : 8), 2); | |
1030 | if (tp->ftt_thumb) { | |
1031 | emul_instr.instr16.instr1 &= ~0x000F; | |
1032 | } else { | |
1033 | emul_instr.instr32 &= ~0x000F0000; | |
1034 | } | |
1035 | } | |
1036 | ||
1037 | emul_instr_size = dtrace_instr_size(emul_instr.instr32, emul_thumb); | |
1038 | ||
1039 | /* | |
1040 | * At this point: | |
1041 | * tp->ftt_thumb = thumb mode of original instruction | |
1042 | * emul_thumb = thumb mode for emulation | |
1043 | * emul_instr = instruction we are using to emulate original instruction | |
1044 | * emul_instr_size = size of emulating instruction | |
1045 | */ | |
1046 | ||
1047 | addr = uthread->t_dtrace_scratch->addr; | |
1048 | ||
1049 | if (addr == 0LL) { | |
1050 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc | |
1051 | new_pc = pc; | |
1052 | break; | |
1053 | } | |
1054 | ||
1055 | uthread->t_dtrace_scrpc = addr; | |
1056 | if (emul_thumb) { | |
1057 | /* | |
1058 | * No way to do an unconditional branch in Thumb mode, shove the address | |
1059 | * onto the user stack and go to the next location with a pop. This can | |
1060 | * segfault if this push happens to cross a stack page, but that's ok, since | |
1061 | * we are running in userland, and the kernel knows how to handle userland | |
1062 | * stack expansions correctly. | |
1063 | * | |
1064 | * Layout of scratch space for Thumb mode: | |
1065 | * Emulated instruction | |
1066 | * ldr save_reg, [pc, #16] (if necessary, restore any register we clobbered) | |
1067 | * push { r0, r1 } | |
1068 | * ldr r0, [pc, #4] | |
1069 | * str r0, [sp, #4] | |
1070 | * pop { r0, pc } | |
1071 | * Location we should return to in original program | |
1072 | * Saved value of clobbered register (if necessary) | |
1073 | */ | |
1074 | ||
1075 | bcopy(&emul_instr, &scratch[i], emul_instr_size); i += emul_instr_size; | |
1076 | ||
1077 | if (save_reg != -1) { | |
1078 | uint16_t restore_inst = 0x4803; | |
1079 | restore_inst |= (save_reg & 0x7) << 8; | |
1080 | SET16(scratch+i, restore_inst); i += 2; // ldr reg, [pc , #16] | |
1081 | } | |
1082 | ||
1083 | SET16(scratch+i, 0xB403); i += 2; // push { r0, r1 } | |
1084 | SET16(scratch+i, 0x4801); i += 2; // ldr r0, [pc, #4] | |
1085 | SET16(scratch+i, 0x9001); i += 2; // str r0, [sp, #4] | |
1086 | SET16(scratch+i, 0xBD01); i += 2; // pop { r0, pc } | |
1087 | ||
1088 | if (i % 4) { | |
1089 | SET16(scratch+i, 0); i += 2; // padding - saved 32 bit words must be aligned | |
1090 | } | |
1091 | SET32(scratch+i, pc + instr_size + (tp->ftt_thumb ? 1 : 0)); i += 4; // Return address | |
1092 | if (save_reg != -1) { | |
1093 | SET32(scratch+i, save_val); i += 4; // saved value of clobbered register | |
1094 | } | |
1095 | ||
1096 | uthread->t_dtrace_astpc = addr + i; | |
1097 | bcopy(&emul_instr, &scratch[i], emul_instr_size); i += emul_instr_size; | |
1098 | SET16(scratch+i, FASTTRAP_THUMB32_RET_INSTR); i += 2; | |
1099 | } else { | |
1100 | /* | |
1101 | * Layout of scratch space for ARM mode: | |
1102 | * Emulated instruction | |
1103 | * ldr save_reg, [pc, #12] (if necessary, restore any register we clobbered) | |
1104 | * ldr pc, [pc, #4] | |
1105 | * Location we should return to in original program | |
1106 | * Saved value of clobbered register (if necessary) | |
1107 | */ | |
1108 | ||
1109 | bcopy(&emul_instr, &scratch[i], emul_instr_size); i += emul_instr_size; | |
1110 | ||
1111 | if (save_reg != -1) { | |
1112 | uint32_t restore_inst = 0xE59F0004; | |
1113 | restore_inst |= save_reg << 12; | |
1114 | SET32(scratch+i, restore_inst); i += 4; // ldr reg, [pc, #12] | |
1115 | } | |
1116 | SET32(scratch+i, 0xE51FF004); i += 4; // ldr pc, [pc, #4] | |
1117 | ||
1118 | SET32(scratch+i, pc + instr_size + (tp->ftt_thumb ? 1 : 0)); i += 4; // Return address | |
1119 | if (save_reg != -1) { | |
1120 | SET32(scratch+i, save_val); i += 4; // Saved value of clobbered register | |
1121 | } | |
1122 | ||
1123 | uthread->t_dtrace_astpc = addr + i; | |
1124 | bcopy(&emul_instr, &scratch[i], emul_instr_size); i += emul_instr_size; | |
1125 | SET32(scratch+i, FASTTRAP_ARM32_RET_INSTR); i += 4; | |
1126 | } | |
1127 | ||
d9a64523 | 1128 | if (uwrite(p, scratch, i, uthread->t_dtrace_scratch->write_addr) != KERN_SUCCESS) { |
5ba3f43e A |
1129 | fasttrap_sigtrap(p, uthread, pc); |
1130 | new_pc = pc; | |
1131 | break; | |
1132 | } | |
1133 | ||
1134 | if (tp->ftt_retids != NULL) { | |
1135 | uthread->t_dtrace_step = 1; | |
1136 | uthread->t_dtrace_ret = 1; | |
1137 | new_pc = uthread->t_dtrace_astpc + (emul_thumb ? 1 : 0); | |
1138 | } else { | |
1139 | new_pc = uthread->t_dtrace_scrpc + (emul_thumb ? 1 : 0); | |
1140 | } | |
1141 | ||
1142 | uthread->t_dtrace_pc = pc; | |
1143 | uthread->t_dtrace_npc = pc + instr_size; | |
1144 | uthread->t_dtrace_on = 1; | |
1145 | *was_simulated = 0; | |
1146 | set_thumb_flag(regs32, new_pc); | |
1147 | break; | |
1148 | } | |
1149 | ||
1150 | default: | |
1151 | panic("fasttrap: mishandled an instruction"); | |
1152 | } | |
1153 | done: | |
1154 | set_saved_state_pc(state, new_pc); | |
1155 | return; | |
1156 | } | |
1157 | ||
1158 | /* | |
1159 | * Copy out an instruction for execution in userland. | |
1160 | * Trap back to kernel to handle return to original flow of execution, because | |
1161 | * direct branches don't have sufficient range (+/- 128MB) and we | |
1162 | * cannot clobber a GPR. Note that we have to specially handle PC-rel loads/stores | |
1163 | * as well, which have range +/- 1MB (convert to an indirect load). Instruction buffer | |
1164 | * layout: | |
1165 | * | |
1166 | * [ Thunked instruction sequence ] | |
1167 | * [ Trap for return to original code and return probe handling ] | |
1168 | * | |
1169 | * This *does* make it impossible for an ldxr/stxr pair to succeed if we trace on or between | |
1170 | * them... may need to get fancy at some point. | |
1171 | */ | |
1172 | static void | |
1173 | fasttrap_pid_probe_thunk_instr64(arm_saved_state_t *state, fasttrap_tracepoint_t *tp, proc_t *p, uthread_t uthread, | |
1174 | const uint32_t *instructions, uint32_t num_instrs, user_addr_t *pc_out) | |
1175 | { | |
1176 | uint32_t local_scratch[8]; | |
1177 | user_addr_t pc = get_saved_state_pc(state); | |
1178 | user_addr_t user_scratch_area; | |
1179 | ||
1180 | assert(num_instrs < 8); | |
1181 | ||
1182 | bcopy(instructions, local_scratch, num_instrs * sizeof(uint32_t)); | |
1183 | local_scratch[num_instrs] = FASTTRAP_ARM64_RET_INSTR; | |
1184 | ||
1185 | uthread->t_dtrace_astpc = uthread->t_dtrace_scrpc = uthread->t_dtrace_scratch->addr; | |
1186 | user_scratch_area = uthread->t_dtrace_scratch->write_addr; | |
1187 | ||
1188 | if (user_scratch_area == (user_addr_t)0) { | |
1189 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc | |
1190 | *pc_out = pc; | |
1191 | return; | |
1192 | } | |
1193 | ||
d9a64523 | 1194 | if (uwrite(p, local_scratch, (num_instrs + 1) * sizeof(uint32_t), user_scratch_area) != KERN_SUCCESS) { |
5ba3f43e A |
1195 | fasttrap_sigtrap(p, uthread, pc); |
1196 | *pc_out = pc; | |
1197 | return; | |
1198 | } | |
1199 | ||
1200 | /* We're stepping (come back to kernel to adjust PC for return to regular code). */ | |
1201 | uthread->t_dtrace_step = 1; | |
1202 | ||
1203 | /* We may or may not be about to run a return probe (but we wouldn't thunk ret lr)*/ | |
1204 | uthread->t_dtrace_ret = (tp->ftt_retids != NULL); | |
1205 | assert(tp->ftt_type != FASTTRAP_T_ARM64_RET); | |
d9a64523 | 1206 | assert(tp->ftt_type != FASTTRAP_T_ARM64_RETAB); |
5ba3f43e A |
1207 | |
1208 | /* Set address of instruction we've patched */ | |
1209 | uthread->t_dtrace_pc = pc; | |
1210 | ||
1211 | /* Any branch would be emulated, next instruction should be one ahead */ | |
1212 | uthread->t_dtrace_npc = pc + 4; | |
1213 | ||
1214 | /* We are certainly handling a probe */ | |
1215 | uthread->t_dtrace_on = 1; | |
1216 | ||
1217 | /* Let's jump to the scratch area */ | |
1218 | *pc_out = uthread->t_dtrace_scratch->addr; | |
1219 | } | |
1220 | ||
1221 | /* | |
1222 | * Sign-extend bit "sign_bit_index" out to bit 64. | |
1223 | */ | |
1224 | static int64_t | |
1225 | sign_extend(int64_t input, uint32_t sign_bit_index) | |
1226 | { | |
1227 | assert(sign_bit_index < 63); | |
1228 | if (input & (1ULL << sign_bit_index)) { | |
1229 | /* All 1's & ~[1's from 0 to sign bit] */ | |
1230 | input |= ((~0ULL) & ~((1ULL << (sign_bit_index + 1)) - 1ULL)); | |
1231 | } | |
1232 | ||
1233 | return input; | |
1234 | } | |
1235 | ||
1236 | /* | |
1237 | * Handle xzr vs. sp, fp, lr, etc. Will *not* read the SP. | |
1238 | */ | |
1239 | static uint64_t | |
1240 | get_saved_state64_regno(arm_saved_state64_t *regs64, uint32_t regno, int use_xzr) | |
1241 | { | |
1242 | /* Set PC to register value */ | |
1243 | switch (regno) { | |
1244 | case 29: | |
1245 | return regs64->fp; | |
1246 | case 30: | |
1247 | return regs64->lr; | |
1248 | case 31: | |
1249 | /* xzr */ | |
1250 | if (use_xzr) { | |
1251 | return 0; | |
1252 | } else { | |
1253 | return regs64->sp; | |
1254 | } | |
1255 | default: | |
1256 | return regs64->x[regno]; | |
1257 | } | |
1258 | } | |
1259 | ||
1260 | static void | |
1261 | set_saved_state64_regno(arm_saved_state64_t *regs64, uint32_t regno, int use_xzr, register_t value) | |
1262 | { | |
1263 | /* Set PC to register value */ | |
1264 | switch (regno) { | |
1265 | case 29: | |
1266 | regs64->fp = value; | |
1267 | break; | |
1268 | case 30: | |
1269 | regs64->lr = value; | |
1270 | break; | |
1271 | case 31: | |
1272 | if (!use_xzr) { | |
1273 | regs64->sp = value; | |
1274 | } | |
1275 | break; | |
1276 | default: | |
1277 | regs64->x[regno] = value; | |
1278 | break; | |
1279 | } | |
1280 | } | |
1281 | ||
1282 | /* | |
1283 | * Common operation: extract sign-extended PC offset from instruction | |
1284 | * Left-shifts result by two bits. | |
1285 | */ | |
1286 | static uint64_t | |
1287 | extract_address_literal_sign_extended(uint32_t instr, uint32_t base, uint32_t numbits) | |
1288 | { | |
1289 | uint64_t offset; | |
1290 | ||
1291 | offset = (instr >> base) & ((1 << numbits) - 1); | |
1292 | offset = sign_extend(offset, numbits - 1); | |
1293 | offset = offset << 2; | |
1294 | ||
1295 | return offset; | |
1296 | } | |
1297 | ||
1298 | static void | |
1299 | do_cbz_cnbz(arm_saved_state64_t *regs64, uint32_t regwidth, uint32_t instr, int is_cbz, user_addr_t *pc_out) | |
1300 | { | |
1301 | uint32_t regno; | |
1302 | uint64_t regval; | |
1303 | uint64_t offset; | |
1304 | ||
1305 | /* Extract register */ | |
1306 | regno = (instr & 0x1f); | |
1307 | assert(regno <= 31); | |
1308 | regval = get_saved_state64_regno(regs64, regno, 1); | |
1309 | ||
1310 | /* Control for size */ | |
1311 | if (regwidth == 32) { | |
1312 | regval &= 0xFFFFFFFFULL; | |
1313 | } | |
1314 | ||
1315 | /* Extract offset */ | |
1316 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
1317 | ||
1318 | /* Do test */ | |
1319 | if ((is_cbz && regval == 0) || ((!is_cbz) && regval != 0)) { | |
1320 | /* Set PC from label */ | |
1321 | *pc_out = regs64->pc + offset; | |
1322 | } else { | |
1323 | /* Advance PC */ | |
1324 | *pc_out = regs64->pc + 4; | |
1325 | } | |
1326 | } | |
1327 | ||
1328 | static void | |
1329 | do_tbz_tbnz(arm_saved_state64_t *regs64, uint32_t instr, int is_tbz, user_addr_t *pc_out) | |
1330 | { | |
1331 | uint64_t offset, regval; | |
1332 | uint32_t bit_index, b5, b40, regno, bit_set; | |
1333 | ||
1334 | /* Compute offset */ | |
1335 | offset = extract_address_literal_sign_extended(instr, 5, 14); | |
1336 | ||
1337 | /* Extract bit index */ | |
1338 | b5 = (instr >> 31); | |
1339 | b40 = ((instr >> 19) & 0x1f); | |
1340 | bit_index = (b5 << 5) | b40; | |
1341 | assert(bit_index <= 63); | |
1342 | ||
1343 | /* Extract register */ | |
1344 | regno = (instr & 0x1f); | |
1345 | assert(regno <= 31); | |
1346 | regval = get_saved_state64_regno(regs64, regno, 1); | |
1347 | ||
1348 | /* Test bit */ | |
1349 | bit_set = ((regval & (1 << bit_index)) != 0); | |
1350 | ||
1351 | if ((is_tbz && (!bit_set)) || ((!is_tbz) && bit_set)) { | |
1352 | /* Branch: unsigned addition so overflow defined */ | |
1353 | *pc_out = regs64->pc + offset; | |
1354 | } else { | |
1355 | /* Advance PC */ | |
1356 | *pc_out = regs64->pc + 4; | |
1357 | } | |
1358 | } | |
1359 | ||
1360 | ||
1361 | static void | |
1362 | fasttrap_pid_probe_handle_patched_instr64(arm_saved_state_t *state, fasttrap_tracepoint_t *tp __unused, uthread_t uthread, | |
1363 | proc_t *p, uint_t is_enabled, int *was_simulated) | |
1364 | { | |
1365 | int res1, res2; | |
1366 | arm_saved_state64_t *regs64 = saved_state64(state); | |
1367 | uint32_t instr = tp->ftt_instr; | |
1368 | user_addr_t new_pc = 0; | |
1369 | ||
1370 | /* Neon state should be threaded throw, but hack it until we have better arm/arm64 integration */ | |
1371 | arm_neon_saved_state64_t *ns64 = &(get_user_neon_regs(uthread->uu_thread)->ns_64); | |
1372 | ||
1373 | /* is-enabled probe: set x0 to 1 and step forwards */ | |
1374 | if (is_enabled) { | |
1375 | regs64->x[0] = 1; | |
1376 | set_saved_state_pc(state, regs64->pc + 4); | |
1377 | return; | |
1378 | } | |
1379 | ||
1380 | /* For USDT probes, bypass all the emulation logic for the nop instruction */ | |
1381 | if (IS_ARM64_NOP(tp->ftt_instr)) { | |
1382 | set_saved_state_pc(state, regs64->pc + 4); | |
1383 | return; | |
1384 | } | |
1385 | ||
1386 | ||
1387 | /* Only one of many cases in the switch doesn't simulate */ | |
1388 | switch(tp->ftt_type) { | |
1389 | /* | |
1390 | * Function entry: emulate for speed. | |
1391 | * stp fp, lr, [sp, #-16]! | |
1392 | */ | |
1393 | case FASTTRAP_T_ARM64_STANDARD_FUNCTION_ENTRY: | |
1394 | { | |
1395 | /* Store values to stack */ | |
1396 | res1 = fasttrap_suword64(regs64->sp - 16, regs64->fp); | |
1397 | res2 = fasttrap_suword64(regs64->sp - 8, regs64->lr); | |
1398 | if (res1 != 0 || res2 != 0) { | |
1399 | fasttrap_sigsegv(p, uthread, regs64->sp - (res1 ? 16 : 8), state); | |
1400 | new_pc = regs64->pc; /* Bit of a hack */ | |
1401 | break; | |
1402 | } | |
1403 | ||
1404 | /* Move stack pointer */ | |
1405 | regs64->sp -= 16; | |
1406 | ||
1407 | /* Move PC forward */ | |
1408 | new_pc = regs64->pc + 4; | |
1409 | *was_simulated = 1; | |
1410 | break; | |
1411 | } | |
1412 | ||
1413 | /* | |
1414 | * PC-relative loads/stores: emulate for correctness. | |
1415 | * All loads are 32bits or greater (no need to handle byte or halfword accesses). | |
1416 | * LDR Wt, addr | |
1417 | * LDR Xt, addr | |
1418 | * LDRSW Xt, addr | |
1419 | * | |
1420 | * LDR St, addr | |
1421 | * LDR Dt, addr | |
1422 | * LDR Qt, addr | |
1423 | * PRFM label -> becomes a NOP | |
1424 | */ | |
1425 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
1426 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
1427 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
1428 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
1429 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
1430 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
1431 | { | |
1432 | uint64_t offset; | |
1433 | uint32_t valsize, regno; | |
1434 | user_addr_t address; | |
1435 | union { | |
1436 | uint32_t val32; | |
1437 | uint64_t val64; | |
1438 | uint128_t val128; | |
1439 | } value; | |
1440 | ||
1441 | /* Extract 19-bit offset, add to pc */ | |
1442 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
1443 | address = regs64->pc + offset; | |
1444 | ||
1445 | /* Extract destination register */ | |
1446 | regno = (instr & 0x1f); | |
1447 | assert(regno <= 31); | |
1448 | ||
1449 | /* Read value of desired size from memory */ | |
1450 | switch (tp->ftt_type) { | |
1451 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
1452 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
1453 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
1454 | valsize = 4; | |
1455 | break; | |
1456 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
1457 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
1458 | valsize = 8; | |
1459 | break; | |
1460 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
1461 | valsize = 16; | |
1462 | break; | |
1463 | default: | |
1464 | panic("Should never get here!"); | |
1465 | valsize = -1; | |
1466 | break; | |
1467 | } | |
1468 | ||
1469 | if (copyin(address, &value, valsize) != 0) { | |
1470 | fasttrap_sigsegv(p, uthread, address, state); | |
1471 | new_pc = regs64->pc; /* Bit of a hack, we know about update in fasttrap_sigsegv() */ | |
1472 | break; | |
1473 | } | |
1474 | ||
1475 | /* Stash in correct register slot */ | |
1476 | switch (tp->ftt_type) { | |
1477 | case FASTTRAP_T_ARM64_LDR_W_PC_REL: | |
1478 | set_saved_state64_regno(regs64, regno, 1, value.val32); | |
1479 | break; | |
1480 | case FASTTRAP_T_ARM64_LDRSW_PC_REL: | |
1481 | set_saved_state64_regno(regs64, regno, 1, sign_extend(value.val32, 31)); | |
1482 | break; | |
1483 | case FASTTRAP_T_ARM64_LDR_X_PC_REL: | |
1484 | set_saved_state64_regno(regs64, regno, 1, value.val64); | |
1485 | break; | |
1486 | case FASTTRAP_T_ARM64_LDR_S_PC_REL: | |
1487 | ns64->v.s[regno][0] = value.val32; | |
1488 | break; | |
1489 | case FASTTRAP_T_ARM64_LDR_D_PC_REL: | |
1490 | ns64->v.d[regno][0] = value.val64; | |
1491 | break; | |
1492 | case FASTTRAP_T_ARM64_LDR_Q_PC_REL: | |
1493 | ns64->v.q[regno] = value.val128; | |
1494 | break; | |
1495 | default: | |
1496 | panic("Should never get here!"); | |
1497 | } | |
1498 | ||
1499 | ||
1500 | /* Move PC forward */ | |
1501 | new_pc = regs64->pc + 4; | |
1502 | *was_simulated = 1; | |
1503 | break; | |
1504 | ||
1505 | } | |
1506 | ||
1507 | case FASTTRAP_T_ARM64_PRFM: | |
1508 | { | |
1509 | /* Becomes a NOP (architecturally permitted). Just move PC forward */ | |
1510 | new_pc = regs64->pc + 4; | |
1511 | *was_simulated = 1; | |
1512 | break; | |
1513 | } | |
1514 | ||
1515 | /* | |
1516 | * End explicit memory accesses. | |
1517 | */ | |
1518 | ||
1519 | /* | |
1520 | * Branches: parse condition codes if needed, emulate for correctness and | |
1521 | * in the case of the indirect branches, convenience | |
1522 | * B.cond | |
1523 | * CBNZ Wn, label | |
1524 | * CBNZ Xn, label | |
1525 | * CBZ Wn, label | |
1526 | * CBZ Xn, label | |
1527 | * TBNZ, Xn|Wn, #uimm16, label | |
1528 | * TBZ, Xn|Wn, #uimm16, label | |
1529 | * | |
1530 | * B label | |
1531 | * BL label | |
1532 | * | |
1533 | * BLR Xm | |
1534 | * BR Xm | |
1535 | * RET Xm | |
1536 | */ | |
1537 | case FASTTRAP_T_ARM64_B_COND: | |
1538 | { | |
1539 | int cond; | |
1540 | ||
1541 | /* Extract condition code */ | |
1542 | cond = (instr & 0xf); | |
1543 | ||
1544 | /* Determine if it passes */ | |
1545 | if (condition_true(cond, regs64->cpsr)) { | |
1546 | uint64_t offset; | |
1547 | ||
1548 | /* Extract 19-bit target offset, add to PC */ | |
1549 | offset = extract_address_literal_sign_extended(instr, 5, 19); | |
1550 | new_pc = regs64->pc + offset; | |
1551 | } else { | |
1552 | /* Move forwards */ | |
1553 | new_pc = regs64->pc + 4; | |
1554 | } | |
1555 | ||
1556 | *was_simulated = 1; | |
1557 | break; | |
1558 | } | |
1559 | ||
1560 | case FASTTRAP_T_ARM64_CBNZ_W: | |
1561 | { | |
1562 | do_cbz_cnbz(regs64, 32, instr, 0, &new_pc); | |
1563 | *was_simulated = 1; | |
1564 | break; | |
1565 | } | |
1566 | case FASTTRAP_T_ARM64_CBNZ_X: | |
1567 | { | |
1568 | do_cbz_cnbz(regs64, 64, instr, 0, &new_pc); | |
1569 | *was_simulated = 1; | |
1570 | break; | |
1571 | } | |
1572 | case FASTTRAP_T_ARM64_CBZ_W: | |
1573 | { | |
1574 | do_cbz_cnbz(regs64, 32, instr, 1, &new_pc); | |
1575 | *was_simulated = 1; | |
1576 | break; | |
1577 | } | |
1578 | case FASTTRAP_T_ARM64_CBZ_X: | |
1579 | { | |
1580 | do_cbz_cnbz(regs64, 64, instr, 1, &new_pc); | |
1581 | *was_simulated = 1; | |
1582 | break; | |
1583 | } | |
1584 | ||
1585 | case FASTTRAP_T_ARM64_TBNZ: | |
1586 | { | |
1587 | do_tbz_tbnz(regs64, instr, 0, &new_pc); | |
1588 | *was_simulated = 1; | |
1589 | break; | |
1590 | } | |
1591 | case FASTTRAP_T_ARM64_TBZ: | |
1592 | { | |
1593 | do_tbz_tbnz(regs64, instr, 1, &new_pc); | |
1594 | *was_simulated = 1; | |
1595 | break; | |
1596 | } | |
1597 | case FASTTRAP_T_ARM64_B: | |
1598 | case FASTTRAP_T_ARM64_BL: | |
1599 | { | |
1600 | uint64_t offset; | |
1601 | ||
1602 | /* Extract offset from instruction */ | |
1603 | offset = extract_address_literal_sign_extended(instr, 0, 26); | |
1604 | ||
1605 | /* Update LR if appropriate */ | |
1606 | if (tp->ftt_type == FASTTRAP_T_ARM64_BL) { | |
1607 | regs64->lr = regs64->pc + 4; | |
1608 | } | |
1609 | ||
1610 | /* Compute PC (unsigned addition for defined overflow) */ | |
1611 | new_pc = regs64->pc + offset; | |
1612 | *was_simulated = 1; | |
1613 | break; | |
1614 | } | |
1615 | ||
1616 | case FASTTRAP_T_ARM64_BLR: | |
1617 | case FASTTRAP_T_ARM64_BR: | |
1618 | { | |
1619 | uint32_t regno; | |
1620 | ||
1621 | /* Extract register from instruction */ | |
1622 | regno = ((instr >> 5) & 0x1f); | |
1623 | assert(regno <= 31); | |
1624 | ||
1625 | /* Update LR if appropriate */ | |
1626 | if (tp->ftt_type == FASTTRAP_T_ARM64_BLR) { | |
1627 | regs64->lr = regs64->pc + 4; | |
1628 | } | |
1629 | ||
1630 | /* Update PC in saved state */ | |
1631 | new_pc = get_saved_state64_regno(regs64, regno, 1); | |
1632 | *was_simulated = 1; | |
1633 | break; | |
1634 | } | |
1635 | ||
1636 | case FASTTRAP_T_ARM64_RET: | |
1637 | { | |
1638 | /* Extract register */ | |
1639 | unsigned regno = ((instr >> 5) & 0x1f); | |
1640 | assert(regno <= 31); | |
1641 | ||
1642 | /* Set PC to register value (xzr, not sp) */ | |
1643 | new_pc = get_saved_state64_regno(regs64, regno, 1); | |
d9a64523 | 1644 | |
5ba3f43e A |
1645 | *was_simulated = 1; |
1646 | break; | |
1647 | } | |
d9a64523 A |
1648 | case FASTTRAP_T_ARM64_RETAB: |
1649 | { | |
1650 | /* Set PC to register value (xzr, not sp) */ | |
1651 | new_pc = get_saved_state64_regno(regs64, 30, 1); | |
1652 | #if __has_feature(ptrauth_calls) | |
1653 | new_pc = (user_addr_t) ptrauth_strip((void *)new_pc, ptrauth_key_return_address); | |
1654 | #endif | |
5ba3f43e | 1655 | |
d9a64523 A |
1656 | *was_simulated = 1; |
1657 | break; | |
1658 | ||
1659 | } | |
5ba3f43e A |
1660 | /* |
1661 | * End branches. | |
1662 | */ | |
1663 | ||
1664 | /* | |
1665 | * Address calculations: emulate for correctness. | |
1666 | * | |
1667 | * ADRP Xd, label | |
1668 | * ADR Xd, label | |
1669 | */ | |
1670 | case FASTTRAP_T_ARM64_ADRP: | |
1671 | case FASTTRAP_T_ARM64_ADR: | |
1672 | { | |
1673 | uint64_t immhi, immlo, offset, result; | |
1674 | uint32_t regno; | |
1675 | ||
1676 | /* Extract destination register */ | |
1677 | regno = (instr & 0x1f); | |
1678 | assert(regno <= 31); | |
1679 | ||
1680 | /* Extract offset */ | |
1681 | immhi = ((instr & 0x00ffffe0) >> 5); /* bits [23,5]: 19 bits */ | |
1682 | immlo = ((instr & 0x60000000) >> 29); /* bits [30,29]: 2 bits */ | |
1683 | ||
1684 | /* Add to PC. Use unsigned addition so that overflow wraps (rather than being undefined). */ | |
1685 | if (tp->ftt_type == FASTTRAP_T_ARM64_ADRP) { | |
1686 | offset = (immhi << 14) | (immlo << 12); /* Concatenate bits into [32,12]*/ | |
1687 | offset = sign_extend(offset, 32); /* Sign extend from bit 32 */ | |
1688 | result = (regs64->pc & ~0xfffULL) + offset; /* And add to page of current pc */ | |
1689 | } else { | |
1690 | assert(tp->ftt_type == FASTTRAP_T_ARM64_ADR); | |
1691 | offset = (immhi << 2) | immlo; /* Concatenate bits into [20,0] */ | |
1692 | offset = sign_extend(offset, 20); /* Sign-extend */ | |
1693 | result = regs64->pc + offset; /* And add to page of current pc */ | |
1694 | } | |
1695 | ||
1696 | /* xzr, not sp */ | |
1697 | set_saved_state64_regno(regs64, regno, 1, result); | |
1698 | ||
1699 | /* Move PC forward */ | |
1700 | new_pc = regs64->pc + 4; | |
1701 | *was_simulated = 1; | |
1702 | break; | |
1703 | } | |
1704 | ||
1705 | /* | |
1706 | * End address calculations. | |
1707 | */ | |
1708 | ||
1709 | /* | |
1710 | * Everything else: thunk to userland | |
1711 | */ | |
1712 | case FASTTRAP_T_COMMON: | |
1713 | { | |
1714 | fasttrap_pid_probe_thunk_instr64(state, tp, p, uthread, &tp->ftt_instr, 1, &new_pc); | |
1715 | *was_simulated = 0; | |
1716 | break; | |
1717 | } | |
1718 | default: | |
1719 | { | |
1720 | panic("An instruction DTrace doesn't expect: %d\n", tp->ftt_type); | |
1721 | break; | |
1722 | } | |
1723 | } | |
1724 | ||
1725 | set_saved_state_pc(state, new_pc); | |
1726 | return; | |
1727 | } | |
1728 | ||
1729 | int | |
1730 | fasttrap_pid_probe(arm_saved_state_t *state) | |
1731 | { | |
1732 | proc_t *p = current_proc(); | |
1733 | fasttrap_bucket_t *bucket; | |
1734 | lck_mtx_t *pid_mtx; | |
1735 | fasttrap_tracepoint_t *tp, tp_local; | |
1736 | pid_t pid; | |
1737 | dtrace_icookie_t cookie; | |
1738 | uint_t is_enabled = 0; | |
1739 | int was_simulated, retire_tp = 1; | |
1740 | int is_64_bit = is_saved_state64(state); | |
1741 | ||
1742 | uint64_t pc = get_saved_state_pc(state); | |
1743 | ||
1744 | assert(is_64_bit || (pc <= UINT32_MAX)); | |
1745 | ||
1746 | uthread_t uthread = (uthread_t) get_bsdthread_info(current_thread()); | |
1747 | ||
1748 | /* | |
1749 | * It's possible that a user (in a veritable orgy of bad planning) | |
1750 | * could redirect this thread's flow of control before it reached the | |
1751 | * return probe fasttrap. In this case we need to kill the process | |
1752 | * since it's in a unrecoverable state. | |
1753 | */ | |
1754 | if (uthread->t_dtrace_step) { | |
1755 | ASSERT(uthread->t_dtrace_on); | |
1756 | fasttrap_sigtrap(p, uthread, (user_addr_t)pc); | |
1757 | return (0); | |
1758 | } | |
1759 | ||
1760 | /* | |
1761 | * Clear all user tracing flags. | |
1762 | */ | |
1763 | uthread->t_dtrace_ft = 0; | |
1764 | uthread->t_dtrace_pc = 0; | |
1765 | uthread->t_dtrace_npc = 0; | |
1766 | uthread->t_dtrace_scrpc = 0; | |
1767 | uthread->t_dtrace_astpc = 0; | |
1768 | uthread->t_dtrace_reg = 0; | |
1769 | ||
1770 | /* | |
1771 | * Treat a child created by a call to vfork(2) as if it were its | |
1772 | * parent. We know that there's only one thread of control in such a | |
1773 | * process: this one. | |
1774 | */ | |
1775 | if (p->p_lflag & P_LINVFORK) { | |
1776 | proc_list_lock(); | |
1777 | while (p->p_lflag & P_LINVFORK) | |
1778 | p = p->p_pptr; | |
1779 | proc_list_unlock(); | |
1780 | } | |
1781 | ||
1782 | pid = p->p_pid; | |
1783 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
1784 | lck_mtx_lock(pid_mtx); | |
1785 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid,pc)]; | |
1786 | ||
1787 | /* | |
1788 | * Lookup the tracepoint that the process just hit. | |
1789 | */ | |
1790 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
1791 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
1792 | tp->ftt_proc->ftpc_acount != 0) | |
1793 | break; | |
1794 | } | |
1795 | ||
1796 | /* | |
1797 | * If we couldn't find a matching tracepoint, either a tracepoint has | |
1798 | * been inserted without using the pid<pid> ioctl interface (see | |
1799 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. | |
1800 | */ | |
1801 | if (tp == NULL) { | |
1802 | lck_mtx_unlock(pid_mtx); | |
1803 | return (-1); | |
1804 | } | |
1805 | ||
1806 | /* Validation of THUMB-related state */ | |
1807 | if (tp->ftt_thumb) { | |
1808 | if (!fasttrap_pid_probe_thumb_state_valid(saved_state32(state), tp)) { | |
1809 | fasttrap_tracepoint_remove(p, tp); | |
1810 | lck_mtx_unlock(pid_mtx); | |
1811 | return (-1); | |
1812 | } | |
1813 | } | |
1814 | ||
1815 | /* Execute the actual probe */ | |
1816 | if (tp->ftt_ids != NULL) { | |
1817 | fasttrap_id_t *id; | |
1818 | uint64_t arg4; | |
1819 | ||
1820 | if (is_saved_state64(state)) { | |
1821 | arg4 = get_saved_state_reg(state, 4); | |
1822 | } else { | |
1823 | uint32_t arg; | |
1824 | user_addr_t stack = (user_addr_t)get_saved_state_sp(state); | |
1825 | ||
1826 | fasttrap_fuword32_noerr(stack, &arg); | |
1827 | arg4 = arg; | |
1828 | } | |
1829 | ||
1830 | ||
1831 | /* First four parameters are passed in registers */ | |
1832 | ||
1833 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { | |
1834 | fasttrap_probe_t *probe = id->fti_probe; | |
1835 | ||
1836 | #ifndef CONFIG_EMBEDDED | |
1837 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { | |
1838 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, | |
1839 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
1840 | #else | |
1841 | if (FALSE) { | |
1842 | #endif | |
1843 | } else { | |
1844 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { | |
1845 | uint8_t already_triggered = atomic_or_8(&probe->ftp_triggered, 1); | |
1846 | if (already_triggered) { | |
1847 | continue; | |
1848 | } | |
1849 | } | |
1850 | /* | |
1851 | * If we have at least one probe associated that | |
1852 | * is not a oneshot probe, don't remove the | |
1853 | * tracepoint | |
1854 | */ | |
1855 | else { | |
1856 | retire_tp = 0; | |
1857 | } | |
1858 | if (id->fti_ptype == DTFTP_ENTRY) { | |
1859 | /* | |
1860 | * We note that this was an entry | |
1861 | * probe to help ustack() find the | |
1862 | * first caller. | |
1863 | */ | |
1864 | cookie = dtrace_interrupt_disable(); | |
1865 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); | |
1866 | dtrace_probe(probe->ftp_id, | |
1867 | get_saved_state_reg(state, 0), | |
1868 | get_saved_state_reg(state, 1), | |
1869 | get_saved_state_reg(state, 2), | |
1870 | get_saved_state_reg(state, 3), | |
1871 | arg4); | |
1872 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); | |
1873 | dtrace_interrupt_enable(cookie); | |
1874 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { | |
1875 | /* | |
1876 | * Note that in this case, we don't | |
1877 | * call dtrace_probe() since it's only | |
1878 | * an artificial probe meant to change | |
1879 | * the flow of control so that it | |
1880 | * encounters the true probe. | |
1881 | */ | |
1882 | is_enabled = 1; | |
1883 | } else if (probe->ftp_argmap == NULL) { | |
1884 | dtrace_probe(probe->ftp_id, | |
1885 | get_saved_state_reg(state, 0), | |
1886 | get_saved_state_reg(state, 1), | |
1887 | get_saved_state_reg(state, 2), | |
1888 | get_saved_state_reg(state, 3), | |
1889 | arg4); | |
1890 | ||
1891 | } else { | |
1892 | uint64_t t[5]; | |
1893 | ||
1894 | if (is_64_bit) { | |
1895 | fasttrap_usdt_args64(probe, saved_state64(state), 5, t); | |
1896 | } else { | |
1897 | fasttrap_usdt_args32(probe, saved_state32(state), 5, t); | |
1898 | } | |
1899 | dtrace_probe(probe->ftp_id, t[0], t[1], t[2], t[3], t[4]); | |
1900 | } | |
1901 | } | |
1902 | } | |
1903 | if (retire_tp) { | |
1904 | fasttrap_tracepoint_retire(p, tp); | |
1905 | } | |
1906 | } | |
1907 | /* | |
1908 | * We're about to do a bunch of work so we cache a local copy of | |
1909 | * the tracepoint to emulate the instruction, and then find the | |
1910 | * tracepoint again later if we need to light up any return probes. | |
1911 | */ | |
1912 | tp_local = *tp; | |
1913 | lck_mtx_unlock(pid_mtx); | |
1914 | tp = &tp_local; | |
1915 | ||
1916 | /* | |
1917 | * APPLE NOTE: | |
1918 | * | |
1919 | * Subroutines should update PC. | |
1920 | * We're setting this earlier than Solaris does, to get a "correct" | |
1921 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is | |
1922 | * reported at: d, b, a. The new way gives c, b, a, which is closer | |
1923 | * to correct, as the return instruction has already exectued. | |
1924 | */ | |
1925 | if (is_64_bit) { | |
1926 | fasttrap_pid_probe_handle_patched_instr64(state, tp, uthread, p, is_enabled, &was_simulated); | |
1927 | } else { | |
1928 | fasttrap_pid_probe_handle_patched_instr32(state, tp, uthread, p, is_enabled, &was_simulated); | |
1929 | } | |
1930 | ||
1931 | /* | |
1932 | * If there were no return probes when we first found the tracepoint, | |
1933 | * we should feel no obligation to honor any return probes that were | |
1934 | * subsequently enabled -- they'll just have to wait until the next | |
1935 | * time around. | |
1936 | */ | |
1937 | if (tp->ftt_retids != NULL) { | |
1938 | /* | |
1939 | * We need to wait until the results of the instruction are | |
1940 | * apparent before invoking any return probes. If this | |
1941 | * instruction was emulated we can just call | |
1942 | * fasttrap_return_common(); if it needs to be executed, we | |
1943 | * need to wait until the user thread returns to the kernel. | |
1944 | */ | |
1945 | /* | |
1946 | * It used to be that only common instructions were simulated. | |
1947 | * For performance reasons, we now simulate some instructions | |
1948 | * when safe and go back to userland otherwise. The was_simulated | |
1949 | * flag means we don't need to go back to userland. | |
1950 | */ | |
1951 | if (was_simulated) { | |
1952 | fasttrap_return_common(p, state, (user_addr_t)pc, (user_addr_t)get_saved_state_pc(state)); | |
1953 | } else { | |
1954 | ASSERT(uthread->t_dtrace_ret != 0); | |
1955 | ASSERT(uthread->t_dtrace_pc == pc); | |
1956 | ASSERT(uthread->t_dtrace_scrpc != 0); | |
1957 | ASSERT(((user_addr_t)get_saved_state_pc(state)) == uthread->t_dtrace_astpc); | |
1958 | } | |
1959 | } | |
1960 | ||
1961 | return (0); | |
1962 | } | |
1963 | ||
1964 | int | |
1965 | fasttrap_return_probe(arm_saved_state_t *regs) | |
1966 | { | |
1967 | proc_t *p = current_proc(); | |
1968 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); | |
1969 | user_addr_t pc = uthread->t_dtrace_pc; | |
1970 | user_addr_t npc = uthread->t_dtrace_npc; | |
1971 | ||
1972 | uthread->t_dtrace_pc = 0; | |
1973 | uthread->t_dtrace_npc = 0; | |
1974 | uthread->t_dtrace_scrpc = 0; | |
1975 | uthread->t_dtrace_astpc = 0; | |
1976 | ||
1977 | /* | |
1978 | * Treat a child created by a call to vfork(2) as if it were its | |
1979 | * parent. We know that there's only one thread of control in such a | |
1980 | * process: this one. | |
1981 | */ | |
1982 | if (p->p_lflag & P_LINVFORK) { | |
1983 | proc_list_lock(); | |
1984 | while (p->p_lflag & P_LINVFORK) | |
1985 | p = p->p_pptr; | |
1986 | proc_list_unlock(); | |
1987 | } | |
1988 | ||
1989 | /* | |
1990 | * We set rp->r_pc to the address of the traced instruction so | |
1991 | * that it appears to dtrace_probe() that we're on the original | |
1992 | * instruction, and so that the user can't easily detect our | |
1993 | * complex web of lies. dtrace_return_probe() (our caller) | |
1994 | * will correctly set %pc after we return. | |
1995 | */ | |
1996 | set_saved_state_pc(regs, pc); | |
1997 | ||
1998 | fasttrap_return_common(p, regs, pc, npc); | |
1999 | ||
2000 | return (0); | |
2001 | } | |
2002 | ||
2003 | uint64_t | |
2004 | fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno, | |
2005 | int aframes) | |
2006 | { | |
2007 | #pragma unused(arg, id, parg, aframes) | |
2008 | arm_saved_state_t* regs = find_user_regs(current_thread()); | |
2009 | ||
2010 | if (is_saved_state32(regs)) { | |
2011 | /* First four arguments are in registers */ | |
2012 | if (argno < 4) | |
2013 | return saved_state32(regs)->r[argno]; | |
2014 | ||
2015 | /* Look on the stack for the rest */ | |
2016 | uint32_t value; | |
2017 | uint32_t* sp = (uint32_t*)(uintptr_t) saved_state32(regs)->sp; | |
2018 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
2019 | value = dtrace_fuword32((user_addr_t) (sp+argno-4)); | |
2020 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); | |
2021 | ||
2022 | return value; | |
2023 | } | |
2024 | else { | |
2025 | /* First eight arguments are in registers */ | |
2026 | if (argno < 8) | |
2027 | return saved_state64(regs)->x[argno]; | |
2028 | ||
2029 | /* Look on the stack for the rest */ | |
2030 | uint64_t value; | |
2031 | uint64_t* sp = (uint64_t*) saved_state64(regs)->sp; | |
2032 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
2033 | value = dtrace_fuword64((user_addr_t) (sp+argno-8)); | |
2034 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); | |
2035 | ||
2036 | return value; | |
2037 | } | |
2038 | ||
2039 | } | |
2040 | ||
2041 | uint64_t | |
2042 | fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes) | |
2043 | { | |
2044 | #pragma unused(arg, id, parg, argno, aframes) | |
2045 | #if 0 | |
2046 | return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 0, argno)); | |
2047 | #endif | |
2048 | ||
2049 | return 0; | |
2050 | } | |
2051 |