]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Computer, Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
0a7de745 | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
0a7de745 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
0a7de745 | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
0a7de745 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
0a7de745 | 31 | /* |
1c79356b A |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
0a7de745 | 35 | * |
1c79356b A |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
0a7de745 | 41 | * |
1c79356b A |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
0a7de745 | 45 | * |
1c79356b | 46 | * Carnegie Mellon requests users of this software to return to |
0a7de745 | 47 | * |
1c79356b A |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
0a7de745 | 52 | * |
1c79356b A |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
1c79356b A |
59 | * Author: Avadis Tevanian, Jr. |
60 | * Date: 1986 | |
61 | * | |
91447636 | 62 | * Compute various averages. |
1c79356b A |
63 | */ |
64 | ||
91447636 | 65 | #include <mach/mach_types.h> |
1c79356b | 66 | |
1c79356b A |
67 | #include <kern/sched.h> |
68 | #include <kern/assert.h> | |
69 | #include <kern/processor.h> | |
70 | #include <kern/thread.h> | |
39236c6e A |
71 | #if CONFIG_TELEMETRY |
72 | #include <kern/telemetry.h> | |
73 | #endif | |
490019cf A |
74 | |
75 | #include <sys/kdebug.h> | |
76 | ||
0a7de745 A |
77 | uint32_t avenrun[3] = {0, 0, 0}; |
78 | uint32_t mach_factor[3] = {0, 0, 0}; | |
1c79356b | 79 | |
0a7de745 | 80 | uint32_t sched_load_average, sched_mach_factor; |
39037602 | 81 | |
3e170ce0 | 82 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
1c79356b A |
83 | /* |
84 | * Values are scaled by LOAD_SCALE, defined in processor_info.h | |
85 | */ | |
0a7de745 A |
86 | #define base(n) ((n) << SCHED_TICK_SHIFT) |
87 | #define frac(n) (((base(n) - 1) * LOAD_SCALE) / base(n)) | |
0b4e3aa0 | 88 | |
0a7de745 A |
89 | static uint32_t fract[3] = { |
90 | frac(5), /* 5 second average */ | |
91 | frac(30), /* 30 second average */ | |
92 | frac(60), /* 1 minute average */ | |
1c79356b | 93 | }; |
9bccf70c | 94 | |
0b4e3aa0 A |
95 | #undef base |
96 | #undef frac | |
1c79356b | 97 | |
3e170ce0 | 98 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
6d2010ae | 99 | |
0a7de745 | 100 | static unsigned int sched_nrun; |
91447636 | 101 | |
0a7de745 A |
102 | typedef void (*sched_avg_comp_t)( |
103 | void *param); | |
91447636 | 104 | |
91447636 | 105 | static struct sched_average { |
0a7de745 A |
106 | sched_avg_comp_t comp; |
107 | void *param; | |
108 | int period; /* in seconds */ | |
109 | uint64_t deadline; | |
91447636 | 110 | } sched_average[] = { |
6d2010ae A |
111 | { compute_averunnable, &sched_nrun, 5, 0 }, |
112 | { compute_stack_target, NULL, 5, 1 }, | |
316670eb | 113 | { compute_pageout_gc_throttle, NULL, 1, 0 }, |
6d2010ae | 114 | { compute_pmap_gc_throttle, NULL, 60, 0 }, |
39236c6e A |
115 | #if CONFIG_TELEMETRY |
116 | { compute_telemetry, NULL, 1, 0 }, | |
117 | #endif | |
91447636 A |
118 | { NULL, NULL, 0, 0 } |
119 | }; | |
120 | ||
0a7de745 | 121 | typedef struct sched_average *sched_average_t; |
91447636 | 122 | |
d9a64523 A |
123 | /* |
124 | * Scheduler load calculation algorithm | |
125 | * | |
0a7de745 A |
126 | * The scheduler load values provide an estimate of the number of runnable |
127 | * timeshare threads in the system at various priority bands. The load | |
128 | * ultimately affects the priority shifts applied to all threads in a band | |
129 | * causing them to timeshare with other threads in the system. The load is | |
d9a64523 A |
130 | * maintained in buckets, with each bucket corresponding to a priority band. |
131 | * | |
0a7de745 A |
132 | * Each runnable thread on the system contributes its load to its priority |
133 | * band and to the bands above it. The contribution of a thread to the bands | |
134 | * above it is not strictly 1:1 and is weighted based on the priority band | |
135 | * of the thread. The rules of thread load contribution to each of its higher | |
d9a64523 A |
136 | * bands are as follows: |
137 | * | |
138 | * - DF threads: Upto (2 * NCPUs) threads | |
139 | * - UT threads: Upto NCPUs threads | |
140 | * - BG threads: Upto 1 thread | |
141 | * | |
0a7de745 | 142 | * To calculate the load values, the various run buckets are sampled (every |
d9a64523 | 143 | * sched_load_compute_interval_abs) and the weighted contributions of the the |
0a7de745 A |
144 | * lower bucket threads are added. The resultant value is plugged into an |
145 | * exponentially weighted moving average formula: | |
146 | * new-load = alpha * old-load + (1 - alpha) * run-bucket-sample-count | |
147 | * (where, alpha < 1) | |
148 | * The calculations for the scheduler load are done using fixpoint math with | |
149 | * a scale factor of 16 to avoid expensive divides and floating point | |
150 | * operations. The final load values are a smooth curve representative of | |
d9a64523 A |
151 | * the actual number of runnable threads in a priority band. |
152 | */ | |
153 | ||
154 | /* Maintains the current (scaled for fixpoint) load in various buckets */ | |
155 | uint32_t sched_load[TH_BUCKET_MAX]; | |
39037602 | 156 | |
0a7de745 A |
157 | /* |
158 | * Alpha factor for the EWMA alogrithm. The current values are chosen as | |
159 | * 6:10 ("old load":"new samples") to make sure the scheduler reacts fast | |
160 | * enough to changing system load but does not see too many spikes from bursty | |
161 | * activity. The current values ensure that the scheduler would converge | |
162 | * to the latest load in 2-3 sched_load_compute_interval_abs intervals | |
d9a64523 | 163 | * (which amounts to ~30-45ms with current values). |
39236c6e | 164 | */ |
d9a64523 A |
165 | #define SCHED_LOAD_EWMA_ALPHA_OLD 6 |
166 | #define SCHED_LOAD_EWMA_ALPHA_NEW 10 | |
167 | #define SCHED_LOAD_EWMA_ALPHA_SHIFT 4 | |
168 | static_assert((SCHED_LOAD_EWMA_ALPHA_OLD + SCHED_LOAD_EWMA_ALPHA_NEW) == (1ul << SCHED_LOAD_EWMA_ALPHA_SHIFT)); | |
169 | ||
170 | /* For fixpoint EWMA, roundup the load to make it converge */ | |
0a7de745 | 171 | #define SCHED_LOAD_EWMA_ROUNDUP(load) (((load) & (1ul << (SCHED_LOAD_EWMA_ALPHA_SHIFT - 1))) != 0) |
d9a64523 A |
172 | |
173 | /* Macro to convert scaled sched load to a real load value */ | |
0a7de745 | 174 | #define SCHED_LOAD_EWMA_UNSCALE(load) (((load) >> SCHED_LOAD_EWMA_ALPHA_SHIFT) + SCHED_LOAD_EWMA_ROUNDUP(load)) |
39236c6e | 175 | |
d9a64523 | 176 | /* |
cb323159 A |
177 | * Routine to capture the latest runnable counts and update sched_load (only used for non-clutch schedulers) |
178 | */ | |
1c79356b | 179 | void |
d9a64523 | 180 | compute_sched_load(void) |
1c79356b | 181 | { |
2d21ac55 | 182 | /* |
39037602 A |
183 | * Retrieve a snapshot of the current run counts. |
184 | * | |
185 | * Why not a bcopy()? Because we need atomic word-sized reads of sched_run_buckets, | |
186 | * not byte-by-byte copy. | |
2d21ac55 | 187 | */ |
39037602 | 188 | uint32_t ncpus = processor_avail_count; |
d9a64523 | 189 | uint32_t load_now[TH_BUCKET_MAX]; |
2d21ac55 | 190 | |
cb323159 A |
191 | load_now[TH_BUCKET_RUN] = os_atomic_load(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
192 | load_now[TH_BUCKET_FIXPRI] = os_atomic_load(&sched_run_buckets[TH_BUCKET_FIXPRI], relaxed); | |
193 | load_now[TH_BUCKET_SHARE_FG] = os_atomic_load(&sched_run_buckets[TH_BUCKET_SHARE_FG], relaxed); | |
194 | load_now[TH_BUCKET_SHARE_DF] = os_atomic_load(&sched_run_buckets[TH_BUCKET_SHARE_DF], relaxed); | |
195 | load_now[TH_BUCKET_SHARE_UT] = os_atomic_load(&sched_run_buckets[TH_BUCKET_SHARE_UT], relaxed); | |
196 | load_now[TH_BUCKET_SHARE_BG] = os_atomic_load(&sched_run_buckets[TH_BUCKET_SHARE_BG], relaxed); | |
2d21ac55 | 197 | |
39037602 A |
198 | assert(load_now[TH_BUCKET_RUN] >= 0); |
199 | assert(load_now[TH_BUCKET_FIXPRI] >= 0); | |
200 | ||
d9a64523 A |
201 | uint32_t nthreads = load_now[TH_BUCKET_RUN]; |
202 | uint32_t nfixpri = load_now[TH_BUCKET_FIXPRI]; | |
39037602 A |
203 | |
204 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, | |
0a7de745 A |
205 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_LOAD) | DBG_FUNC_NONE, |
206 | load_now[TH_BUCKET_FIXPRI], (load_now[TH_BUCKET_SHARE_FG] + load_now[TH_BUCKET_SHARE_DF]), | |
207 | load_now[TH_BUCKET_SHARE_BG], load_now[TH_BUCKET_SHARE_UT], 0); | |
2d21ac55 | 208 | |
2d21ac55 | 209 | /* |
39236c6e A |
210 | * Compute the timeshare priority conversion factor based on loading. |
211 | * Because our counters may be incremented and accessed | |
212 | * concurrently with respect to each other, we may have | |
d9a64523 | 213 | * windows where the invariant (nthreads - nfixpri) == (fg + df + bg + ut) |
39236c6e | 214 | * is broken, so truncate values in these cases. |
2d21ac55 | 215 | */ |
39037602 | 216 | uint32_t timeshare_threads = (nthreads - nfixpri); |
0a7de745 A |
217 | for (uint32_t i = TH_BUCKET_SHARE_FG; i <= TH_BUCKET_SHARE_BG; i++) { |
218 | if (load_now[i] > timeshare_threads) { | |
39037602 | 219 | load_now[i] = timeshare_threads; |
0a7de745 | 220 | } |
39037602 | 221 | } |
39236c6e | 222 | |
0a7de745 A |
223 | /* |
224 | * Default threads contribute up to (NCPUS * 2) of load to FG threads | |
d9a64523 A |
225 | */ |
226 | if (load_now[TH_BUCKET_SHARE_DF] <= (ncpus * 2)) { | |
227 | load_now[TH_BUCKET_SHARE_FG] += load_now[TH_BUCKET_SHARE_DF]; | |
228 | } else { | |
229 | load_now[TH_BUCKET_SHARE_FG] += (ncpus * 2); | |
230 | } | |
0a7de745 | 231 | |
39037602 | 232 | /* |
d9a64523 | 233 | * Utility threads contribute up to NCPUS of load to FG & DF threads |
39037602 A |
234 | */ |
235 | if (load_now[TH_BUCKET_SHARE_UT] <= ncpus) { | |
236 | load_now[TH_BUCKET_SHARE_FG] += load_now[TH_BUCKET_SHARE_UT]; | |
d9a64523 | 237 | load_now[TH_BUCKET_SHARE_DF] += load_now[TH_BUCKET_SHARE_UT]; |
39037602 A |
238 | } else { |
239 | load_now[TH_BUCKET_SHARE_FG] += ncpus; | |
d9a64523 | 240 | load_now[TH_BUCKET_SHARE_DF] += ncpus; |
39037602 | 241 | } |
91447636 | 242 | |
39037602 | 243 | /* |
d9a64523 | 244 | * BG threads contribute up to 1 thread worth of load to FG, DF and UT threads |
39037602 A |
245 | */ |
246 | if (load_now[TH_BUCKET_SHARE_BG] > 0) { | |
247 | load_now[TH_BUCKET_SHARE_FG] += 1; | |
d9a64523 | 248 | load_now[TH_BUCKET_SHARE_DF] += 1; |
39037602 | 249 | load_now[TH_BUCKET_SHARE_UT] += 1; |
1c79356b A |
250 | } |
251 | ||
39037602 A |
252 | /* |
253 | * The conversion factor consists of two components: | |
254 | * a fixed value based on the absolute time unit (sched_fixed_shift), | |
255 | * and a dynamic portion based on load (sched_load_shifts). | |
256 | * | |
257 | * Zero load results in a out of range shift count. | |
258 | */ | |
39236c6e | 259 | |
0a7de745 | 260 | for (uint32_t i = TH_BUCKET_SHARE_FG; i <= TH_BUCKET_SHARE_BG; i++) { |
39037602 | 261 | uint32_t bucket_load = 0; |
39236c6e | 262 | |
39037602 | 263 | if (load_now[i] > ncpus) { |
d9a64523 | 264 | /* Normalize the load to number of CPUs */ |
0a7de745 | 265 | if (ncpus > 1) { |
39037602 | 266 | bucket_load = load_now[i] / ncpus; |
0a7de745 | 267 | } else { |
39037602 | 268 | bucket_load = load_now[i]; |
0a7de745 | 269 | } |
39236c6e | 270 | |
0a7de745 | 271 | if (bucket_load > MAX_LOAD) { |
39037602 | 272 | bucket_load = MAX_LOAD; |
0a7de745 | 273 | } |
39037602 | 274 | } |
d9a64523 A |
275 | /* Plug the load values into the EWMA algorithm to calculate (scaled for fixpoint) sched_load */ |
276 | sched_load[i] = (sched_load[i] * SCHED_LOAD_EWMA_ALPHA_OLD) + ((bucket_load << SCHED_LOAD_EWMA_ALPHA_SHIFT) * SCHED_LOAD_EWMA_ALPHA_NEW); | |
277 | sched_load[i] = sched_load[i] >> SCHED_LOAD_EWMA_ALPHA_SHIFT; | |
278 | } | |
39236c6e | 279 | |
d9a64523 | 280 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
0a7de745 A |
281 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_LOAD_EFFECTIVE) | DBG_FUNC_NONE, |
282 | SCHED_LOAD_EWMA_UNSCALE(sched_load[TH_BUCKET_SHARE_FG]), SCHED_LOAD_EWMA_UNSCALE(sched_load[TH_BUCKET_SHARE_DF]), | |
283 | SCHED_LOAD_EWMA_UNSCALE(sched_load[TH_BUCKET_SHARE_UT]), SCHED_LOAD_EWMA_UNSCALE(sched_load[TH_BUCKET_SHARE_BG]), 0); | |
d9a64523 A |
284 | } |
285 | ||
286 | void | |
287 | compute_averages(uint64_t stdelta) | |
288 | { | |
cb323159 | 289 | uint32_t nthreads = os_atomic_load(&sched_run_buckets[TH_BUCKET_RUN], relaxed) - 1; |
d9a64523 | 290 | uint32_t ncpus = processor_avail_count; |
0a7de745 | 291 | |
d9a64523 | 292 | /* Update the global pri_shifts based on the latest values */ |
0a7de745 | 293 | for (uint32_t i = TH_BUCKET_SHARE_FG; i <= TH_BUCKET_SHARE_BG; i++) { |
d9a64523 | 294 | uint32_t bucket_load = SCHED_LOAD_EWMA_UNSCALE(sched_load[i]); |
f427ee49 A |
295 | uint32_t shift = sched_fixed_shift - sched_load_shifts[bucket_load]; |
296 | ||
297 | if (shift > SCHED_PRI_SHIFT_MAX) { | |
298 | sched_pri_shifts[i] = INT8_MAX; | |
299 | } else { | |
300 | sched_pri_shifts[i] = shift; | |
301 | } | |
39037602 | 302 | } |
490019cf | 303 | |
6d2010ae | 304 | /* |
39037602 | 305 | * Sample total running threads for the load average calculation. |
6d2010ae A |
306 | */ |
307 | sched_nrun = nthreads; | |
6d2010ae | 308 | |
2d21ac55 | 309 | /* |
39037602 A |
310 | * Load average and mach factor calculations for |
311 | * those which ask about these things. | |
2d21ac55 | 312 | */ |
39037602 A |
313 | uint32_t average_now = nthreads * LOAD_SCALE; |
314 | uint32_t factor_now; | |
315 | ||
0a7de745 | 316 | if (nthreads > ncpus) { |
39037602 | 317 | factor_now = (ncpus * LOAD_SCALE) / (nthreads + 1); |
0a7de745 | 318 | } else { |
39037602 | 319 | factor_now = (ncpus - nthreads) * LOAD_SCALE; |
0a7de745 | 320 | } |
2d21ac55 | 321 | |
1c79356b | 322 | /* |
39037602 A |
323 | * For those statistics that formerly relied on being recomputed |
324 | * on timer ticks, advance by the approximate number of corresponding | |
325 | * elapsed intervals, thus compensating for potential idle intervals. | |
1c79356b | 326 | */ |
39037602 A |
327 | for (uint32_t index = 0; index < stdelta; index++) { |
328 | sched_mach_factor = ((sched_mach_factor << 2) + factor_now) / 5; | |
329 | sched_load_average = ((sched_load_average << 2) + average_now) / 5; | |
330 | } | |
39236c6e | 331 | |
39037602 A |
332 | /* |
333 | * Compute old-style Mach load averages. | |
334 | */ | |
335 | for (uint32_t index = 0; index < stdelta; index++) { | |
336 | for (uint32_t i = 0; i < 3; i++) { | |
1c79356b | 337 | mach_factor[i] = ((mach_factor[i] * fract[i]) + |
0a7de745 | 338 | (factor_now * (LOAD_SCALE - fract[i]))) / LOAD_SCALE; |
1c79356b A |
339 | |
340 | avenrun[i] = ((avenrun[i] * fract[i]) + | |
0a7de745 | 341 | (average_now * (LOAD_SCALE - fract[i]))) / LOAD_SCALE; |
1c79356b A |
342 | } |
343 | } | |
9bccf70c A |
344 | |
345 | /* | |
39037602 | 346 | * Compute averages in other components. |
9bccf70c | 347 | */ |
39037602 A |
348 | uint64_t abstime = mach_absolute_time(); |
349 | ||
350 | for (sched_average_t avg = sched_average; avg->comp != NULL; ++avg) { | |
6d2010ae | 351 | if (abstime >= avg->deadline) { |
39236c6e A |
352 | uint64_t period_abs = (avg->period * sched_one_second_interval); |
353 | uint64_t ninvokes = 1; | |
354 | ||
355 | ninvokes += (abstime - avg->deadline) / period_abs; | |
356 | ninvokes = MIN(ninvokes, SCHED_TICK_MAX_DELTA); | |
357 | ||
39037602 | 358 | for (uint32_t index = 0; index < ninvokes; index++) { |
39236c6e A |
359 | (*avg->comp)(avg->param); |
360 | } | |
361 | avg->deadline = abstime + period_abs; | |
91447636 | 362 | } |
9bccf70c | 363 | } |
1c79356b | 364 | } |