]> git.saurik.com Git - apple/xnu.git/blame - bsd/vfs/vfs_unicode.c
xnu-7195.81.3.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_unicode.c
CommitLineData
f427ee49
A
1/*
2 * Copyright (C) 2016-2020 Apple, Inc. All rights reserved.
3 * Some portions covered by other copyrights, listed below.
4 *---
5 * Copyright (C) 2016 and later: Unicode, Inc. and others.
6 * License & terms of use: http://www.unicode.org/copyright.html
7 *---
8 * Copyright (C) 1999-2015, International Business Machines
9 * Corporation and others. All Rights Reserved.
10 *
11 * add APPLE_OSREFERENCE_LICENSE_HEADER stuff...
12 */
13
14#include <libkern/libkern.h>
15#include <sys/errno.h>
16#include <sys/unicode.h>
17#include "vfs_unicode_data.h"
18#define STATIC_UNLESS_TEST static
19
20enum {
21 /* Maximum number of UTF8 bytes from one Unicode code point (one UTF32 code unit) */
22 kMaxUTF8BytesPerChar = 4
23};
24
25/* local prototypes used by exported functions (and themselves exported for testing) */
26STATIC_UNLESS_TEST
27int32_t utf8ToU32Code(int32_t u32char, const char** srcPtr, const char* srcLimit);
28STATIC_UNLESS_TEST
29int32_t normalizeOptCaseFoldU32Char(int32_t u32char, bool case_sens,
30 int32_t u32NormFoldBuf[kNFCSingleCharDecompMax],
31 uint8_t combClass[kNFCSingleCharDecompMax]);
32/* local prototypes used by exported functions (not exported for separate testing) */
33static int nextBaseAndAnyMarks(const char** strP, const char *strLimit, bool case_sens,
34 int32_t* unorm, uint8_t* unormcc, int32_t* unormlenP, int32_t* unormstartP,
35 int32_t* buf, uint8_t* bufcc, int32_t* buflenP,
36 bool* needReorderP, bool* startP);
37void doReorder(int32_t* buf, uint8_t* bufcc, int32_t buflen);
38int32_t u32CharToUTF8Bytes(uint32_t u32char, uint8_t utf8Bytes[kMaxUTF8BytesPerChar]);
39
40/*
41 * utf8_normalizeOptCaseFoldGetUVersion
42 *
43 * version[0] = Unicode major version; for Unicode 6.3.0 this would be 6
44 * version[1] = Unicode minor version; for Unicode 6.3.0 this would be 3
45 * version[2] = Unicode patch version; for Unicode 6.3.0 this would be 0
46 * version[3] = Code revision level; for any given Unicode version, this value starts
47 * at 0 and is incremented for each significant revision to the
48 * normalizeOptCaseFold functions.
49 */
50void
51utf8_normalizeOptCaseFoldGetUVersion(unsigned char version[4])
52{
53 version[0] = 13;
54 version[1] = 0;
55 version[2] = 0;
56 version[3] = 0;
57 return;
58}
59
60/*
61 * utf8_normalizeOptCaseFoldAndHash
62 *
63 * str: The input UTF-8 string (need not be 0 terminated)
64 * str_len: The byte length of the input string (excluding any 0 terminator)
65 * case_sens: False for case-insensitive behavior; generates canonical caseless form.
66 * True for case-sensitive behavior; generates standard NFD.
67 * hash_func: A pointer to a hashing function to compute the hash of the
68 * normalized/case-folded result. buf contains buf_len bytes
69 * of data to be added to the hash using the caller-supplied
70 * context (ctx).
71 * hash_ctx: The context for the hash function.
72 *
73 * Returns: 0 on success, or
74 * EILSEQ: The input string contains illegal ASCII-range characters
75 * (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
76 * contains codepoints that are non-characters or unassigned in
77 * the version of Unicode currently supported (Unicode 9.0).
78 */
79
80int
81utf8_normalizeOptCaseFoldAndHash(const char *str,
82 size_t str_len,
83 bool case_sens,
84 void (*hash_func)(void *buf, size_t buf_len, void *ctx),
85 void *hash_ctx)
86{
87 const char *strLimit = str + str_len;
88
89 /* Data for the next pending single-char norm from input;
90 * This will always begin with a base char (combining class 0)
91 * or the first character in the string, which may no be a base */
92 int32_t unorm[kNFCSingleCharDecompMax];
93 uint8_t unormcc[kNFCSingleCharDecompMax];
94 int32_t unormlen = 0;
95 int32_t unormstart = 0;
96
97 bool start = true;
98
99 /* main loop:
100 * Each input character may be normalized to a sequence of one or more characters,
101 * some of which may have non-zero combining class. Any sequence of characters
102 * with non-zero combining class resulting from one or more input characters needs
103 * to be accumulated in the main buffer so we can reorder as necessary before
104 * calling the hash function.
105 *
106 * At the beginning of the main loop: The normalization buffer and main buffer are
107 * both empty.
108 *
109 * Each time through the main loop we do the following:
110 * 1. If there are characters available in the normalization result buffer (from the
111 * result of normalizing a previous input character), copy the first character and
112 * any following characters that have non-zero combining class to the main buffer.
113 * 2. If there is nothing left in the normalization buffer, then loop processing
114 * input characters as follows:
115 * a) Get the next input character from UTF8, get its normalized and case-folded
116 * result in the normalization buffer.
117 * b) If the first character in the normalization buffer has combining class 0,
118 * break; we will handle this normalization buffer next time through the main
119 * loop.
120 * c) Else copy the current normalization buffer (which has only combining marks)
121 * to the main buffer, and continue with the loop processing input characters.
122 * 3. At this point the first character in the main buffer may or may not have
123 * combining class 0, but any subsequent characters (up to the the limit for
124 * stream safe text) will be combining characters with nonzero combining class.
125 * Reorder the combining marks if necessary into canonical order.
126 * 4. Call the hash function for each character in the main buffer.
127 *
128 */
129 do {
130 /* Data for the buffers being built up from input */
131 int32_t buf[kNCFStreamSafeBufMax];
132 uint8_t bufcc[kNCFStreamSafeBufMax];
133 int32_t buflen = 0;
134 bool needReorder = false;
135 int err;
136
137 err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
138 buf, bufcc, &buflen, &needReorder, &start);
139 if (err != 0) {
140 return err;
141 }
142
143 if (buflen > 0) {
144 /* Now buffer should have all of the combining marks up to the next base char.
145 * Normally it will also start with the last base char encountered (unless the
146 * UTF8 string began with a combining mark). */
147 /* Now reorder combining marks if necessary. */
148 if (needReorder) {
149 doReorder(buf, bufcc, buflen);
150 }
151 /* Now write to hash func */
152 hash_func(buf, buflen * sizeof(buf[0]), hash_ctx);
153 }
154 /* OK so far, top of loop clears buffers to start refilling again */
155 } while (str < strLimit || unormlen > 0);
156 return 0;
157}
158
159/*
160 * utf8_normalizeOptCaseFoldAndCompare
161 *
162 * strA: A UTF-8 string to be compared (need not be 0 terminated)
163 * strA_len: The byte length of strA (excluding any 0 terminator)
164 * strB: The second UTF-8 string to be compared (need not be 0 terminated)
165 * strB_len: The byte length of strB (excluding any 0 terminator)
166 * case_sens: False for case-insensitive behavior; compares canonical caseless forms.
167 * True for case-sensitive behavior; compares standard NFD forms.
168 * are_equal: On success, set to true if the strings are equal, or set to false
169 * if they are not.
170 *
171 * Returns: 0 on success, or
172 * EILSEQ: One or both of the input strings contains illegal ASCII-range
173 * characters (0x00 or '/'), or is not well-formed stream-safe UTF-8,
174 * or contains codepoints that are non-characters or unassigned in
175 * the version of Unicode currently supported (Unicode 9.0).
176 * Note: The comparison may terminate early when a difference is
177 * detected, and may return 0 and set *are_equal=false even
178 * if one or both strings are invalid.
179 */
180enum { kNFCSingleCharDecompMaxPlusPushback = kNFCSingleCharDecompMax + 4 }; /* room for 03B9 pushback(s) */
181
182int
183utf8_normalizeOptCaseFoldAndCompare(const char *strA,
184 size_t strA_len,
185 const char *strB,
186 size_t strB_len,
187 bool case_sens,
188 bool *are_equal)
189{
190 const char *strALimit = strA + strA_len;
191 const char *strBLimit = strB + strB_len;
192
193 /* Data for the next pending single-char norms from each input;
194 * These will always begin with a base char (combining class 0)
195 * or the first character in the string, which may not be a base */
196 int32_t unormA[kNFCSingleCharDecompMaxPlusPushback], unormB[kNFCSingleCharDecompMaxPlusPushback];
197 uint8_t unormAcc[kNFCSingleCharDecompMaxPlusPushback], unormBcc[kNFCSingleCharDecompMaxPlusPushback];
198 int32_t unormAlen = 0, unormBlen = 0;
199 int32_t unormAstart = 0, unormBstart = 0;
200
201 bool startA = true, startB = true;
202
203 /* main loop:
204 * The main loop here is similar to the main loop in utf8_normalizeOptCaseFoldAndHash,
205 * described above. The differences are:
206 * - We keep a normalization buffer and main buffer for each string.
207 * - In the main loop, we do steps 1-3 for each string.
208 * - In step 4, instead of calling the hash function, we compare the two main
209 * buffers; if they are unequal, we return a non-equal result.
210 * - After the end of the main loop, if we still have data for one string but
211 * not the other, return a non-equal result, else return an equal result.
212 */
213 do {
214 /* Data for the buffers being built up from each input */
215 int32_t bufA[kNCFStreamSafeBufMax], bufB[kNCFStreamSafeBufMax];
216 uint8_t bufAcc[kNCFStreamSafeBufMax], bufBcc[kNCFStreamSafeBufMax];
217 int32_t bufAlen = 0, bufBlen = 0;
218 bool needReorderA = false, needReorderB = false;
219 int err;
220
221 err = nextBaseAndAnyMarks(&strA, strALimit, case_sens, unormA, unormAcc, &unormAlen, &unormAstart,
222 bufA, bufAcc, &bufAlen, &needReorderA, &startA);
223 if (err != 0) {
224 return err;
225 }
226 err = nextBaseAndAnyMarks(&strB, strBLimit, case_sens, unormB, unormBcc, &unormBlen, &unormBstart,
227 bufB, bufBcc, &bufBlen, &needReorderB, &startB);
228 if (err != 0) {
229 return err;
230 }
231
232 if (bufAlen > 0 || bufBlen > 0) {
233 /* Now each buffer should have all of the combining marks up to the next base char.
234 * Normally it will also start with the last base char encountered (unless the
235 * UTF8 string began with a combining mark). */
236 /* Now reorder combining marks if necessary. */
237 if (needReorderA) {
238 doReorder(bufA, bufAcc, bufAlen);
239 }
240 if (needReorderB) {
241 doReorder(bufB, bufBcc, bufBlen);
242 }
243 /* handle 03B9 pushback */
244 int32_t idx;
245 if (!case_sens) {
246 if (bufAlen > 1 && bufA[bufAlen - 1] == 0x03B9 && unormAstart == 0) {
247 int32_t tailCount = 0;
248 while (tailCount < kNFCSingleCharDecompMaxPlusPushback - unormAlen && bufAlen > 1 && bufA[bufAlen - 1] == 0x03B9) {
249 tailCount++;
250 bufAlen--;
251 }
252 for (idx = unormAlen; idx > 0; idx--) {
253 unormA[idx - 1 + tailCount] = unormA[idx - 1];
254 unormAcc[idx - 1 + tailCount] = unormAcc[idx - 1];
255 }
256 for (idx = 0; idx < tailCount; idx++) {
257 unormA[idx] = 0x03B9;
258 unormAcc[idx] = 0;
259 }
260 unormAlen += tailCount;
261 }
262 if (bufBlen > 1 && bufB[bufBlen - 1] == 0x03B9 && unormBstart == 0) {
263 int32_t tailCount = 0;
264 while (tailCount < kNFCSingleCharDecompMaxPlusPushback - unormBlen && bufBlen > 1 && bufB[bufBlen - 1] == 0x03B9) {
265 tailCount++;
266 bufBlen--;
267 }
268 for (idx = unormBlen; idx > 0; idx--) {
269 unormB[idx - 1 + tailCount] = unormB[idx - 1];
270 unormBcc[idx - 1 + tailCount] = unormBcc[idx - 1];
271 }
272 for (idx = 0; idx < tailCount; idx++) {
273 unormB[idx] = 0x03B9;
274 unormBcc[idx] = 0;
275 }
276 unormBlen += tailCount;
277 }
278 }
279 /* Now compare the buffers. */
280 if (bufAlen != bufBlen || memcmp(bufA, bufB, bufAlen * sizeof(bufA[0])) != 0) {
281 *are_equal = false;
282 return 0;
283 }
284 }
285 /* OK so far, top of loop clears buffers to start refilling again */
286 } while ((strA < strALimit || unormAlen > 0) && (strB < strBLimit || unormBlen > 0));
287
288 *are_equal = (strA == strALimit && unormAlen == 0 && strB == strBLimit && unormBlen == 0);
289 return 0;
290}
291
292/*
293 * utf8_normalizeOptCaseFold
294 *
295 * str: The input UTF-8 string (need not be 0 terminated)
296 * str_len: The byte length of the input string (excluding any 0 terminator)
297 * case_sens: False for case-insensitive behavior; generates canonical caseless form.
298 * True for case-sensitive behavior; generates standard NFD.
299 * ustr: A pointer to a buffer for the resulting UTF-32 string.
300 * ustr_size: The capacity of ustr, in UTF-32 units.
301 * ustr_len: Pointer to a value that will be filled in with the actual length
302 * in UTF-32 units of the string copied to ustr.
303 *
304 * Returns: 0 on success, or
305 * EILSEQ: The input string contains illegal ASCII-range characters
306 * (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
307 * contains codepoints that are non-characters or unassigned in
308 * the version of Unicode currently supported.
309 * ENOMEM: ustr_size is insufficient for the resulting string. In this
310 * case the value returned in *ustr_len is invalid.
311 */
312int
313utf8_normalizeOptCaseFold(const char *str,
314 size_t str_len,
315 bool case_sens,
316 int32_t *ustr,
317 int32_t ustr_size,
318 int32_t *ustr_len)
319{
320 const char *strLimit = str + str_len;
321 int32_t *ustrCur = ustr;
322 const int32_t *ustrLimit = ustr + ustr_size;
323
324 /* Data for the next pending single-char norm from input;
325 * This will always begin with a base char (combining class 0) */
326 int32_t unorm[kNFCSingleCharDecompMax];
327 uint8_t unormcc[kNFCSingleCharDecompMax];
328 int32_t unormlen = 0;
329 int32_t unormstart = 0;
330
331 bool start = true;
332
333 *ustr_len = 0;
334 do {
335 /* Data for the buffers being built up from input */
336 int32_t buf[kNCFStreamSafeBufMax];
337 uint8_t bufcc[kNCFStreamSafeBufMax];
338 int32_t buflen = 0;
339 bool needReorder = false;
340 int err;
341
342 err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
343 buf, bufcc, &buflen, &needReorder, &start);
344 if (err != 0) {
345 return err;
346 }
347
348 if (buflen > 0) {
349 if (needReorder) {
350 doReorder(buf, bufcc, buflen);
351 }
352 /* Now copy to output buffer */
353 int32_t idx;
354 if (ustrCur + buflen > ustrLimit) {
355 return ENOMEM;
356 }
357 for (idx = 0; idx < buflen; idx++) {
358 *ustrCur++ = buf[idx];
359 }
360 }
361 /* OK so far, top of loop clears buffers to start refilling again */
362 } while (str < strLimit || unormlen > 0);
363 *ustr_len = (uint32_t)(ustrCur - ustr); // XXXpjr: the explicit (uint32_t) cast wasn't present in the original code drop
364 return 0;
365}
366
367/*
368 * utf8_normalizeOptCaseFoldToUTF8
369 * (This is similar to normalizeOptCaseFold except that this has a different output
370 * buffer type, and adds conversion to UTF8 while copying to output buffer)
371 *
372 * str: The input UTF-8 string (need not be 0 terminated)
373 * str_len: The byte length of the input string (excluding any 0 terminator)
374 * case_sens: False for case-insensitive behavior; generates canonical caseless form.
375 * True for case-sensitive behavior; generates standard NFD.
376 * ustr: A pointer to a buffer for the resulting UTF-8 string.
377 * ustr_size: The capacity of ustr, in bytes.
378 * ustr_len: Pointer to a value that will be filled in with the actual length
379 * in bytes of the string copied to ustr.
380 *
381 * Returns: 0 on success, or
382 * EILSEQ: The input string contains illegal ASCII-range characters
383 * (0x00 or '/'), or is not well-formed stream-safe UTF-8, or
384 * contains codepoints that are non-characters or unassigned in
385 * the version of Unicode currently supported.
386 * ENOMEM: ustr_size is insufficient for the resulting string. In this
387 * case the value returned in *ustr_len is invalid.
388 */
389int
390utf8_normalizeOptCaseFoldToUTF8(const char *str,
391 size_t str_len,
392 bool case_sens,
393 char *ustr,
394 size_t ustr_size,
395 size_t *ustr_len)
396{
397 const char *strLimit = str + str_len;
398 char *ustrCur = ustr;
399 const char *ustrLimit = ustr + ustr_size;
400
401 /* Data for the next pending single-char norm from input;
402 * This will always begin with a base char (combining class 0) */
403 int32_t unorm[kNFCSingleCharDecompMax];
404 uint8_t unormcc[kNFCSingleCharDecompMax];
405 int32_t unormlen = 0;
406 int32_t unormstart = 0;
407
408 bool start = true;
409
410 *ustr_len = 0;
411 do {
412 /* Data for the buffers being built up from input */
413 int32_t buf[kNCFStreamSafeBufMax];
414 uint8_t bufcc[kNCFStreamSafeBufMax];
415 int32_t buflen = 0;
416 bool needReorder = false;
417 int err;
418
419 err = nextBaseAndAnyMarks(&str, strLimit, case_sens, unorm, unormcc, &unormlen, &unormstart,
420 buf, bufcc, &buflen, &needReorder, &start);
421 if (err != 0) {
422 return err;
423 }
424
425 if (buflen > 0) {
426 uint8_t utf8Bytes[kMaxUTF8BytesPerChar];
427 int32_t *bufPtr = buf;
428 if (needReorder) {
429 doReorder(buf, bufcc, buflen);
430 }
431 /* Now copy to output buffer */
432 while (buflen-- > 0) {
433 int32_t idx, utf8Len = u32CharToUTF8Bytes((uint32_t)*bufPtr++, utf8Bytes);
434 if (ustrCur + utf8Len > ustrLimit) {
435 return ENOMEM;
436 }
437 for (idx = 0; idx < utf8Len; idx++) {
438 *ustrCur++ = (char)utf8Bytes[idx];
439 }
440 }
441 }
442 /* OK so far, top of loop clears buffers to start refilling again */
443 } while (str < strLimit || unormlen > 0);
444 *ustr_len = ustrCur - ustr;
445 return 0;
446}
447
448/*
449 * utf8_normalizeOptCaseFoldAndMatchSubstring
450 *
451 * strA: A UTF-8 string (need not be 0 terminated) in which to search for the
452 * substring specified by ustrB.
453 * strA_len: The byte length of strA (excluding any 0 terminator)
454 * ustrB: A normalized UTF-32 substring (need not be 0 terminated) to be searched
455 * for in the UTF-32 string resulting from converting strA to the normalized
456 * UTF-32 form specified by the case_sens parameter; ustrB must already be
457 * in that form.
458 * ustrB_len: The length of ustrB in UTF-32 units (excluding any 0 terminator).
459 * case_sens: False for case-insensitive matching; compares canonical caseless forms.
460 * True for case-sensitive matching; compares standard NFD forms.
461 * buf: Pointer to caller-supplied working memory for storing the portion of
462 * strA which has been converted to normalized UTF-32.
463 * buf_size: The size of buf.
464 * has_match: On success, set to true if strA (when converter to UTF-32 and normalized
465 * per case_sens) contains ustrB, set to false otherwise.
466 *
467 * Returns: 0 on success, or
468 * EILSEQ: strA contains illegal ASCII-range characters (0x00 or '/'), or is
469 * not well-formed stream-safe UTF-8, or contains codepoints that are
470 * non-characters or unassigned in the version of Unicode currently
471 * supported.
472 * Note: The search may terminate early when a match is detected, and
473 * may return 0 and set *has_match=true even if strA is invalid.
474 * ENOMEM: buf_size is insufficient.
475 */
476int
477utf8_normalizeOptCaseFoldAndMatchSubstring(const char *strA,
478 size_t strA_len,
479 const int32_t *ustrB,
480 int32_t ustrB_len,
481 bool case_sens,
482 void *buf,
483 size_t buf_size,
484 bool *has_match)
485{
486 /*
487 * ustrA represents the current position in the UTF-32 normalized version of strA
488 * at which we want to test for a match; ustrANormEnd is the position beyond that
489 * which is just after the end of what has already been converted from strA to
490 * UTF-32 normalized form.
491 * Each time through the main loop:
492 * - The first task is to make sure we have enough of strA converted to UTF32
493 * normalized form to test for match with ustrB at the current match position.
494 * If we don't, then convert more of strA to UTF-32 normalized form until we
495 * have enough to compare with ustrB. To do this, run a loop which is like the
496 * main loop in utf8_normalizeOptCaseFoldAndHash except that in step 4, instead of
497 * calling the hash function, we copy the normalized buffer to ustrANormEnd,
498 * advancing the latter. We keep doing this until we have enough additional
499 * converted to match with ustrB.
500 * - Then we test for match of ustrB at the current ustrA position. If there is
501 * a match we return; otherwise, if there is more strA to convert we advance
502 * ustrA and repeat the main loop, otherwise we return without a match.
503 */
504 if (ustrB_len == 0) { /* always matches */
505 *has_match = true;
506 return 0;
507 }
508 *has_match = false; /* initialize return value */
509 if (ustrB_len > 2 * strA_len) {
510 /* If ustrB is clearly too long to find in strA, don't bother normalizing strA.
511 * A UTF-8 character of 1 byte (ASCII) will normalize to 1 UTF-32 unit.
512 * A UTF-8 character of 2-4 bytes will normalize to a maximum of 4 UTF-32 units.
513 * The maximum expansion from unnormalized UTF-8 byte length to normalized
514 * UTF-32 unit length is thus 2. */
515 return 0;
516 }
517
518 const char *strALimit = strA + strA_len;
519 int32_t *ustrA = (int32_t *)buf;
520 const int32_t *ustrALimit = ustrA + (buf_size / sizeof(int32_t));
521 int32_t *ustrANormEnd = ustrA; /* how far we have already normalized in ustrA */
522
523 /* Data for the next pending single-char norms from each input;
524 * These will always begin with a base char (combining class 0)
525 * or the first character in the string, which may not be a base */
526 int32_t unormA[kNFCSingleCharDecompMax];
527 uint8_t unormAcc[kNFCSingleCharDecompMax];
528 int32_t unormAlen = 0;
529 int32_t unormAstart = 0;
530
531 bool startA = true;
532
533 while (true) {
534 /* convert enough more of strA to normalized UTF-32 in ustrA to check for match */
535 if (ustrANormEnd - ustrA < ustrB_len) {
536 do {
537 /* Data for the buffers being built up from each input */
538 int32_t bufA[kNCFStreamSafeBufMax];
539 uint8_t bufAcc[kNCFStreamSafeBufMax];
540 int32_t bufAlen = 0;
541 bool needReorderA = false;
542 int err;
543
544 err = nextBaseAndAnyMarks(&strA, strALimit, case_sens, unormA, unormAcc, &unormAlen, &unormAstart,
545 bufA, bufAcc, &bufAlen, &needReorderA, &startA);
546 if (err != 0) {
547 return err;
548 }
549
550 if (bufAlen > 0) {
551 /* Now each buffer should have all of the combining marks up to the next base char.
552 * Normally it will also start with the last base char encountered (unless the
553 * UTF8 string began with a combining mark). */
554 /* Now reorder combining marks if necessary. Should be rare, and sequences should
555 * usually be short when does occur => simple bubblesort should be sufficient. */
556 if (needReorderA) {
557 doReorder(bufA, bufAcc, bufAlen);
558 }
559 /* Now copy to working buffer */
560 int32_t idx;
561 if (ustrANormEnd + bufAlen > ustrALimit) {
562 return ENOMEM;
563 }
564 for (idx = 0; idx < bufAlen; idx++) {
565 *ustrANormEnd++ = bufA[idx];
566 }
567 }
568 /* OK so far, top of loop clears buffers to start refilling again */
569 } while ((ustrANormEnd - ustrA < ustrB_len) && (strA < strALimit || unormAlen > 0));
570 }
571
572 if (ustrANormEnd - ustrA < ustrB_len) {
573 return 0; /* not enough of strA left for match */
574 }
575 /* check for match, return if so */
576 if (memcmp(ustrA, ustrB, ustrB_len * sizeof(ustrB[0])) == 0) {
577 *has_match = true;
578 return 0;
579 }
580 ustrA++; /* advance match position */
581 }
582}
583
584/* nextBaseAndAnyMarks:
585 * Guts of code to get next bufferful of base character (or first char in string)
586 * and all trailing combining marks.
587 * This is called each time through the main loop of functions above, and does the
588 * following:
589 * 1. If there are characters available in the normalization result buffer (from the
590 * result of normalizing a previous input character), copy the first character and
591 * any following characters that have non-zero combining class to the main buffer.
592 * 2. If there is nothing left in the normalization buffer, then loop processing
593 * input characters as follows:
594 * a) Get the next input character from UTF8, get its normalized and case-folded
595 * result in the normalization buffer.
596 * b) If the first character in the normalization buffer has combining class 0,
597 * break; we will handle this normalization buffer next time through the main
598 * loop.
599 * c) Else copy the current normalization buffer (which has only combining marks)
600 * to the main buffer, and continue with the loop processing input characters.
601 */
602
603static int
604nextBaseAndAnyMarks(const char** strP, const char *strLimit, bool case_sens,
605 int32_t* unorm, uint8_t* unormcc, int32_t* unormlenP, int32_t* unormstartP,
606 int32_t* buf, uint8_t* bufcc, int32_t* buflenP,
607 bool* needReorderP, bool* startP)
608{
609 /* update buffers for str */
610 if (*unormlenP > 0 && *unormstartP < *unormlenP) {
611 /* unorm begins with a base char; buflen should be 0 */
612 *needReorderP = false;
613 for (*buflenP = 0; true;) {
614 if (*buflenP > 0 && unormcc[*unormstartP] > 0 && unormcc[*unormstartP] < bufcc[(*buflenP) - 1]) {
615 *needReorderP = true;
616 }
617 buf[*buflenP] = unorm[*unormstartP];
618 bufcc[(*buflenP)++] = unormcc[(*unormstartP)++];
619 if (*unormstartP >= *unormlenP || unormcc[*unormstartP] == 0) {
620 break;
621 }
622 }
623 }
624 if (*unormstartP >= *unormlenP) {
625 *unormstartP = *unormlenP = 0;
626 while (*strP < strLimit) {
627 int32_t idx;
628 uint32_t bytevalue = (uint8_t)*(*strP)++;
629 /* '/' is not produced by NFD decomposition from another character so we can
630 * check for it before normalization */
631 if (bytevalue == 0 || bytevalue == 0x2F /*'/'*/) {
632 return EILSEQ;
633 }
634 if (bytevalue < 0x80) {
635 unorm[0] = (!case_sens && bytevalue >= 'A' && bytevalue <= 'Z')? bytevalue += 0x20: bytevalue;
636 *unormlenP = 1;
637 unormcc[0] = 0;
638 *startP = false;
639 break;
640 } else {
641 int32_t u32char = utf8ToU32Code(bytevalue, strP, strLimit);
642 if (u32char <= 0) {
643 return EILSEQ;
644 }
645 *unormlenP = normalizeOptCaseFoldU32Char(u32char, case_sens, unorm, unormcc);
646 if (*unormlenP <= 0) {
647 return EILSEQ;
648 }
649 if (unormcc[0] == 0 || *startP) {
650 *startP = false;
651 break;
652 }
653 }
654 /* the latest char decomposes to just combining sequence, add to buffer being built */
655 if (*buflenP + *unormlenP > kNCFStreamSafeBufMax) {
656 return EILSEQ;
657 }
658 for (idx = 0; idx < *unormlenP; idx++, (*buflenP)++) {
659 if (*buflenP > 0 && unormcc[idx] > 0 && unormcc[idx] < bufcc[(*buflenP) - 1]) {
660 *needReorderP = true;
661 }
662 buf[*buflenP] = unorm[idx];
663 bufcc[*buflenP] = unormcc[idx];
664 }
665 *unormlenP = 0;
666 }
667 }
668 return 0;
669}
670
671/* local prototypes used only by internal functions */
672static void swapBufCharCCWithPrevious(int32_t jdx, int32_t buf[], uint8_t bufcc[]);
673static int32_t adjustCase(bool case_sens, int32_t uSeqLen,
674 int32_t u32NormFoldBuf[kNFCSingleCharDecompMax]);
675static uint8_t getCombClassU32Char(int32_t u32char);
676static int32_t decomposeHangul(int32_t u32char, int32_t u32NormFoldBuf[kNFCSingleCharDecompMax]);
677
678/* Reorder combining marks if necessary. Should be rare, and sequences should
679 * usually be short when does occur => simple bubblesort should be sufficient. */
680void
681doReorder(int32_t* buf, uint8_t* bufcc, int32_t buflen)
682{
683 int32_t idx, jdx;
684 for (idx = 0; idx < buflen - 1; idx++) {
685 for (jdx = buflen - 1; jdx > idx; jdx--) {
686 if (bufcc[jdx] < bufcc[jdx - 1]) {
687 swapBufCharCCWithPrevious(jdx, buf, bufcc);
688 }
689 }
690 }
691}
692/* swap function for bubblesort */
693static void
694swapBufCharCCWithPrevious(int32_t jdx, int32_t buf[], uint8_t bufcc[])
695{
696 int32_t bufchar = buf[jdx];
697 uint8_t bufccval = bufcc[jdx];
698 buf[jdx] = buf[jdx - 1];
699 bufcc[jdx] = bufcc[jdx - 1];
700 buf[jdx - 1] = bufchar;
701 bufcc[jdx - 1] = bufccval;
702}
703
704/*
705 * u32CharToUTF8Bytes, map a valid Unicode character (UTF32 code point) to 1..4 UTF8 bytes,
706 * and returns the number of UTF8 bytes.
707 *
708 * adapted from ICU macro U8_APPEND_UNSAFE (utf8.h).
709 */
710int32_t
711u32CharToUTF8Bytes(uint32_t u32char, uint8_t utf8Bytes[kMaxUTF8BytesPerChar])
712{
713 int32_t idx = 0;
714 if (u32char <= 0x7F) {
715 utf8Bytes[idx++] = (uint8_t)u32char;
716 } else {
717 if (u32char <= 0x7FF) {
718 utf8Bytes[idx++] = (uint8_t)((u32char >> 6) | 0xC0);
719 } else {
720 if (u32char <= 0xFFFF) {
721 utf8Bytes[idx++] = (uint8_t)((u32char >> 12) | 0xE0);
722 } else {
723 utf8Bytes[idx++] = (uint8_t)((u32char >> 18) | 0xF0);
724 utf8Bytes[idx++] = (uint8_t)(((u32char >> 12) & 0x3F) | 0x80);
725 }
726 utf8Bytes[idx++] = (uint8_t)(((u32char >> 6) & 0x3F) | 0x80);
727 }
728 utf8Bytes[idx++] = (uint8_t)((u32char & 0x3F) | 0x80);
729 }
730 return idx;
731}
732
733/* two macros adapted from ICU's utf8.h */
734#define U8_COUNT_TRAIL_BYTES_LOC(leadByte) \
735((uint8_t)(leadByte)<0XF0 ? \
736((uint8_t)(leadByte)>=0XC0)+((uint8_t)(leadByte)>=0XE0) : \
737(uint8_t)(leadByte)<0XFE ? 3+((uint8_t)(leadByte)>=0XF8)+((uint8_t)(leadByte)>=0XFC) : 0)
738
739#define U8_MASK_LEAD_BYTE_LOC(leadByte, countTrailBytes) ((leadByte)&=(1<<(6-(countTrailBytes)))-1)
740
741/* array adapted from ICU's utf_impl.c */
742static const int32_t utf8_minLegal[4] = { 0, 0X80, 0x800, 0x10000 };
743
744/*
745 * utf8ToU32Code, map a non-ASCII byte value plus a buffer of trail bytes to a UTF32 code point
746 *
747 * adapted from ICU macro U8_NEXT (utf8.h) and function utf8_nextCharSafeBody (utf_impl.c);
748 * verified to produce the same results (adusted for the difference in API signature).
749 *
750 * assumes at entry that:
751 * 1. a non-ASCII byte value (>= 0x80) that purports to be the beginning of a UTF8 character
752 * has been read, and its value is in u32char
753 * 2. *srcPtr points to the input buffer just after that non-ASCII byte, i.e. it purportedly
754 * points to the trail bytes for that UTF8 char.
755 * 3. srcLimit points to end of the input buffer (just after the last byte in the buffer)
756 *
757 * For a valid and complete UTF8 character, the function returns its value and advances
758 * *srcPtr to the first byte after the UTF8 char. Otherwise, the function returns -1
759 * (and the value in *srcPtr is undefined).
760 * Note that while it does not map to surrogate values (generates an error for malformed
761 * UTF-8 that would map to values in 0xD800..0xD8FF), it does output noncharacter values
762 * whose low 16 bits are 0xFFFE or 0xFFFF without generating an error.
763 *
764 * equivalences used in adapted ICU code:
765 * UChar = uint16_t
766 * UChar32 = int32_t
767 *
768 * This has been validated against ICU behavior.
769 */
770STATIC_UNLESS_TEST
771int32_t
772utf8ToU32Code(int32_t u32char, const char** srcPtr, const char* srcLimit)
773{
774 const char* src = *srcPtr;
775 uint8_t pt1, pt2;
776 if (0xE0 < u32char && u32char <= 0xEC && src + 1 < srcLimit && (pt1 = (uint8_t)(src[0] - 0x80)) <= 0x3F && (pt2 = (uint8_t)(src[1] - 0x80)) <= 0x3F) {
777 /* handle U+1000..U+CFFF */
778 /* no need for (u32char&0xF) because the upper bits are truncated after <<12 in the cast to (uint16_t) */
779 u32char = (uint16_t)((u32char << 12) | (pt1 << 6) | pt2);
780 src += 2;
781 } else if (u32char < 0xE0 && u32char >= 0xC2 && src < srcLimit && (pt1 = (uint8_t)(src[0] - 0x80)) <= 0x3F) {
782 /* handle U+0080..U+07FF */
783 u32char = ((u32char & 0x1F) << 6) | pt1;
784 src++;
785 } else {
786 /* "complicated" and error cases, adapted from ICU's utf8_nextCharSafeBody() */
787 uint8_t count = U8_COUNT_TRAIL_BYTES_LOC(u32char);
788 if (src + count <= srcLimit) {
789 uint8_t trail;
790
791 U8_MASK_LEAD_BYTE_LOC(u32char, count);
792 switch (count) {
793 /* branches 3, 2 fall through to the next one */
794 case 0: /* count==0 for illegally leading trail bytes and the illegal bytes 0XFE and 0XFF */
795 case 5:
796 case 4: /* count>=4 is always illegal: no more than 3 trail bytes in Unicode's UTF-8 */
797 break;
798 case 3:
799 trail = *src++ - 0X80;
800 u32char = (u32char << 6) | trail;
801 /* u32char>=0x110 would result in code point>0x10FFFF, outside Unicode */
802 if (u32char >= 0x110 || trail > 0X3F) {
803 break;
804 }
805 case 2:
806 trail = *src++ - 0X80;
807 u32char = (u32char << 6) | trail;
808 /*
809 * test for a surrogate D800..DFFF:
810 * before the last (u32char<<6), a surrogate is u32char=360..37F
811 */
812 if (((u32char & 0xFFE0) == 0x360) || trail > 0X3F) {
813 break;
814 }
815 case 1:
816 trail = *src++ - 0X80;
817 u32char = (u32char << 6) | trail;
818 if (trail > 0X3F) {
819 break;
820 }
821 /* correct sequence - all trail bytes have (b7..b6)==(10) */
822 if (u32char >= utf8_minLegal[count]) {
823 *srcPtr = src;
824 return u32char;
825 }
826 /* no default branch to optimize switch() - all values are covered */
827 }
828 }
829 u32char = -1;
830 }
831 *srcPtr = src;
832 return u32char;
833}
834
835/*
836 * normalizeCaseFoldU32Code, map a single UTF32 code point to its normalized result
837 * and the combining classes for each resulting char, or indicate it is invalid.
838 *
839 * The normalized and case-folded result might be up to 4 UTF32 characters (current
840 * max, could change in the future).
841 *
842 * u32char - input UTF32 code point
843 * case_sens - false for case insensiive => casefold, true for case sensitive => NFD only
844 * u32NormFoldBuf - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
845 * to receive the normalize result.
846 * combClass - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
847 * to receive the combining classes for the characters in u32NormFoldBuf. If
848 * the first entry has non-zero combining class, the remaining entries do too.
849 *
850 * returns -1 if input code point is invalid, 0 if the buffer length kNFCSingleCharDecompMax
851 * is insufficient (though it is assumed to be at least 3), else the length of the
852 * normalized and case-folded result (currently in the range 1..4).
853 *
854 * This has been validated against ICU behavior.
855 *
856 * This function is highly dependent on the structure of the data trie; for details on
857 * that structure, see comments in normalizeCaseFoldData.h
858 */
859STATIC_UNLESS_TEST
860int32_t
861normalizeOptCaseFoldU32Char(int32_t u32char, bool case_sens,
862 int32_t u32NormFoldBuf[kNFCSingleCharDecompMax],
863 uint8_t combClass[kNFCSingleCharDecompMax])
864{
865 combClass[0] = 0;
866 /* return hi-range PUA as self, except non-characters */
867 if (u32char >= kU32HiPUAStart) {
868 if ((u32char & 0xFFFE) == 0xFFFE) {
869 return -1;
870 }
871 u32NormFoldBuf[0] = u32char;
872 return 1;
873 }
874 /* for trie lookup, shift the range 0xE0000-0xE01FF down to be just after the range */
875 /* 0 - 0x313FF; everything in between in currently invalid. */
876 int32_t u32charLookup = u32char;
877 if (u32charLookup >= kU32LowRangeLimit) {
878 u32charLookup -= (kU32HiRangeStart - kU32LowRangeLimit);
879 if (u32charLookup < kU32LowRangeLimit || u32charLookup >= (kU32LowRangeLimit + kU32HiRangeLen)) {
880 return -1; /* in the large range of currently-unassigned code points */
881 }
882 }
883 /* Now we have u32charLookup either in 0..0x313FF representing u32char itself,
884 * or in 0x31400..0x315FF representing u32char 0xE0000..0xE01FF; look it up in
885 * the trie that identifies unassigneds in this range, or maps others to
886 * decomps or combining class or just self. */
887 uint16_t trieValue;
888 /* TrieHi */
889 trieValue = nfTrieHi[u32charLookup >> kNFTrieHiShift];
890 if (trieValue == kInvalidCodeFlag) {
891 return -1;
892 }
893 if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) { /* return self; */
894 u32NormFoldBuf[0] = u32char;
895 combClass[0] = trieValue & kFlagValueMask;
896 return 1;
897 }
898 if (trieValue == kHangulMask) {
899 combClass[1] = combClass[2] = 0;
900 return decomposeHangul(u32char, u32NormFoldBuf);
901 }
902 /* TrieMid */
903 trieValue = nfTrieMid[trieValue & kNextIndexValueMask][(u32charLookup >> kNFTrieMidShift) & kNFTrieMidMask];
904 if (trieValue == kInvalidCodeFlag) {
905 return -1;
906 }
907 if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
908 u32NormFoldBuf[0] = u32char;
909 combClass[0] = trieValue & kFlagValueMask;
910 return adjustCase(case_sens, 1, u32NormFoldBuf);
911 }
912 if ((trieValue & kFlagTestMask) == kInvMaskFlag) {
913 uint16_t invalidMask = nfU16InvMasks[trieValue & kFlagValueMask];
914 uint16_t testBit = (uint16_t)(1 << (u32charLookup & kNFTrieLoMask));
915 if (testBit & invalidMask) {
916 /* invalid */
917 return -1;
918 } else {
919 /* treat like trieValue == 0 above */
920 u32NormFoldBuf[0] = u32char;
921 return adjustCase(case_sens, 1, u32NormFoldBuf);;
922 }
923 }
924 if (trieValue == kHangulMask) {
925 combClass[1] = combClass[2] = 0;
926 return decomposeHangul(u32char, u32NormFoldBuf);
927 }
928 /* TrieLo */
929 trieValue = nfTrieLo[trieValue & kNextIndexValueMask][u32charLookup & kNFTrieLoMask];
930 if (trieValue == kInvalidCodeFlag) {
931 return -1;
932 }
933 if (trieValue == kHangulMask) {
934 combClass[1] = combClass[2] = 0;
935 return decomposeHangul(u32char, u32NormFoldBuf);
936 }
937 if (trieValue < kToU16Seq2Mask || trieValue > kSpecialsEnd) {
938 if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
939 u32NormFoldBuf[0] = u32char;
940 combClass[0] = trieValue & kFlagValueMask;
941 } else {
942 u32NormFoldBuf[0] = trieValue;
943 }
944 return adjustCase(case_sens, 1, u32NormFoldBuf);;
945 }
946 const uint16_t* u16SeqPtr = NULL;
947 const int32_t* u32SeqPtr = NULL;
948 int32_t uSeqLen = 0;
949 switch (trieValue & kSpecialsMask) {
950 case kToU16Seq2Mask:
951 if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
952 /* don't use the mapping, it is only for case folding */
953 u32NormFoldBuf[0] = u32char;
954 /* already have combClass[0] = 0 */
955 return 1;
956 }
957 u16SeqPtr = nfU16Seq2[trieValue & kToSeqIndexMask];
958 uSeqLen = 2;
959 break;
960 case kToU16Seq3Mask:
961 if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
962 /* don't use the mapping, it is only for case folding */
963 u32NormFoldBuf[0] = u32char;
964 /* already have combClass[0] = 0 */
965 return 1;
966 }
967 u16SeqPtr = nfU16Seq3[trieValue & kToSeqIndexMask];
968 uSeqLen = 3;
969 break;
970 case kToU16SeqMiscMask:
971 u16SeqPtr = &nfU16SeqMisc[trieValue & kToSeqMiscIndexMask];
972 uSeqLen = *u16SeqPtr & kToSeqMiscLenMask;
973 combClass[0] = (uint8_t)(*u16SeqPtr++ >> kToSeqMiscCCShift);
974 break;
975 case kToU32CharMask:
976 if (case_sens && (trieValue & kToSeqCaseFoldMask)) {
977 /* don't use the mapping, it is only for case folding */
978 u32NormFoldBuf[0] = u32char;
979 /* already have combClass[0] = 0 */
980 return 1;
981 }
982 u32SeqPtr = &nfU32Char[trieValue & kToSeqIndexMask];
983 uSeqLen = 1;
984 break;
985 case kToU32SeqMiscMask:
986 u32SeqPtr = &nfU32SeqMisc[trieValue & kToSeqMiscIndexMask];
987 uSeqLen = *u32SeqPtr & kToSeqMiscLenMask;
988 combClass[0] = (uint8_t)(*u32SeqPtr++ >> kToSeqMiscCCShift);
989 break;
990 default:
991 return -1;
992 }
993 if (kNFCSingleCharDecompMax < uSeqLen) {
994 return 0;
995 }
996 int32_t idx;
997 for (idx = 0; idx < uSeqLen; idx++) {
998 u32NormFoldBuf[idx] = (u16SeqPtr)? *u16SeqPtr++: *u32SeqPtr++;
999 if (idx > 0) {
1000 combClass[idx] = getCombClassU32Char(u32NormFoldBuf[idx]);
1001 }
1002 }
1003 return adjustCase(case_sens, uSeqLen, u32NormFoldBuf);
1004}
1005
1006/*
1007 * adjustCase, final adjustments to normalizeOptCaseFoldU32Char for case folding
1008 *
1009 * case_sens - false for case insensiive => casefold, true for case sensitive => NFD only
1010 * uSeqLen - length of the sequence specified in the u32NormFoldBuf
1011 * u32NormFoldBuf - buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
1012 * with normalized result.
1013 *
1014 * returns uSeqLen if input code point is invalid, 0 if the buffer length kNFCSingleCharDecompMax
1015 * is insufficient (though it is assumed to be at least 3), else the length of the
1016 * normalized and case-folded result (currently in the range 1..4).
1017 *
1018 * This function is a reduced version of normalizeOptCaseFoldU32Char above.
1019 */
1020
1021static int32_t
1022adjustCase(bool case_sens, int32_t uSeqLen,
1023 int32_t u32NormFoldBuf[kNFCSingleCharDecompMax])
1024{
1025 if (!case_sens && uSeqLen > 0) {
1026 if (u32NormFoldBuf[0] < kSimpleCaseFoldLimit) {
1027 u32NormFoldBuf[0] = nfBasicCF[u32NormFoldBuf[0]];
1028 /* There is one case in which this maps to a character with different combining
1029 * class: U+0345 (cc 240) casefolds to U+03B9 (cc 0). However when this is the
1030 * first or only character in the sequence, we want to keep the original
1031 * combining class, so nothing special to do here.
1032 */
1033 }
1034 /* The following is the only case where we have a casefolding after the first
1035 * character in the sequence. Don't worry about combining class here. that gets
1036 * set later for characters after the first.
1037 */
1038 if (uSeqLen > 1 && u32NormFoldBuf[uSeqLen - 1] == 0x0345) {
1039 u32NormFoldBuf[uSeqLen - 1] = 0x03B9;
1040 }
1041 }
1042 return uSeqLen;
1043}
1044
1045/*
1046 * getCombClassU32Char, map a single character (in UTF32 form) to its combining class.
1047 *
1048 * u32char - input UTF32 code point. This is assumed to be a valid character that does
1049 * not have a decomposition.
1050 *
1051 * returns combining class of the character.
1052 *
1053 * This is only called for characters after the first is a decomposition expansion. In
1054 * this situation, if we encounter U+03B9 (combining class 0), it is only there as the
1055 * case-folding of U+0345 (combining class 240). In this case it is the combining class
1056 * for U+0345 that we want. In the non-casefold case we won't see U+03B9 here at all.
1057 *
1058 * This function is a reduced version of normalizeOptCaseFoldU32Char above.
1059 */
1060static uint8_t
1061getCombClassU32Char(int32_t u32char)
1062{
1063 if (u32char >= kU32HiPUAStart) {
1064 return 0;
1065 }
1066 if (u32char == 0x03B9) {
1067 return 240;
1068 }
1069 /* for trie lookup, shift the range 0xE0000-0xE01FF down to be just after the range */
1070 /* 0 - 0x313FF; everything in between in currently invalid. */
1071 int32_t u32charLookup = u32char;
1072 if (u32charLookup >= kU32LowRangeLimit) {
1073 u32charLookup -= (kU32HiRangeStart - kU32LowRangeLimit);
1074 }
1075 /* Now we have u32charLookup either in 0..0x313FF representing u32char itself,
1076 * or in 0x31400..0x315FF representing u32char 0xE0000..0xE01FF; look it up in
1077 * the trie that identifies unassigneds in this range, or maps others to
1078 * decomps or combining class or just self. */
1079 uint16_t trieValue;
1080 /* TrieHi */
1081 trieValue = nfTrieHi[u32charLookup >> kNFTrieHiShift];
1082 if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) {
1083 return trieValue & kFlagValueMask;
1084 }
1085 /* TrieMid */
1086 trieValue = nfTrieMid[trieValue & kNextIndexValueMask][(u32charLookup >> kNFTrieMidShift) & kNFTrieMidMask];
1087 if (trieValue == 0 || (trieValue & kFlagTestMask) == kCombClassFlag) { /* return self; */
1088 return trieValue & kFlagValueMask;
1089 }
1090 if ((trieValue & kFlagTestMask) == kInvMaskFlag) {
1091 return 0;
1092 }
1093 /* TrieLo */
1094 trieValue = nfTrieLo[trieValue & kNextIndexValueMask][u32charLookup & kNFTrieMidMask];
1095 return ((trieValue & kFlagTestMask) == kCombClassFlag)? (trieValue & kFlagValueMask): 0;
1096}
1097
1098/*
1099 * decomposeHangul, map a single UTF32 code point for a composed Hangul
1100 * in the range AC00-D7A3, using algorithmic decomp
1101 *
1102 * The normalized result will be 2 or 3 UTF32 characters.
1103 *
1104 * u32char - input UTF32 code point
1105 * u32NormFoldBuf - output buffer of length kNFCSingleCharDecompMax (assume to be at least 3)
1106 * to receive the normalize result.
1107 *
1108 * returns the length of the normalized result (2..3).
1109 *
1110 * Adapted from ICU Hangul:decompose in normalizer2impl.h
1111 *
1112 */
1113
1114enum {
1115 HANGUL_BASE=0xAC00,
1116 JAMO_L_BASE=0x1100, /* "lead" jamo */
1117 JAMO_V_BASE=0x1161, /* "vowel" jamo */
1118 JAMO_T_BASE=0x11A7, /* "trail" jamo */
1119 JAMO_L_COUNT=19,
1120 JAMO_V_COUNT=21,
1121 JAMO_T_COUNT=28,
1122};
1123
1124static int32_t
1125decomposeHangul(int32_t u32char, int32_t u32NormFoldBuf[kNFCSingleCharDecompMax])
1126{
1127 u32char -= HANGUL_BASE;
1128 int32_t tIndex = u32char % JAMO_T_COUNT;
1129 u32char /= JAMO_T_COUNT;
1130 u32NormFoldBuf[0] = (uint16_t)(JAMO_L_BASE + u32char / JAMO_V_COUNT);
1131 u32NormFoldBuf[1] = (uint16_t)(JAMO_V_BASE + u32char % JAMO_V_COUNT);
1132 if (tIndex == 0) {
1133 return 2;
1134 }
1135 u32NormFoldBuf[2] = (uint16_t)(JAMO_T_BASE + tIndex);
1136 return 3;
1137}