]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * File: ppc/cpu.c | |
24 | * | |
25 | * cpu specific routines | |
26 | */ | |
27 | ||
28 | #include <kern/machine.h> | |
29 | #include <kern/misc_protos.h> | |
30 | #include <kern/thread.h> | |
31 | #include <kern/processor.h> | |
32 | #include <mach/machine.h> | |
33 | #include <mach/processor_info.h> | |
34 | #include <mach/mach_types.h> | |
35 | #include <ppc/proc_reg.h> | |
36 | #include <ppc/misc_protos.h> | |
37 | #include <ppc/machine_routines.h> | |
38 | #include <ppc/machine_cpu.h> | |
39 | #include <ppc/exception.h> | |
9bccf70c | 40 | #include <ppc/asm.h> |
1c79356b | 41 | #include <pexpert/pexpert.h> |
9bccf70c | 42 | #include <kern/cpu_data.h> |
1c79356b A |
43 | |
44 | /* TODO: BOGUS TO BE REMOVED */ | |
45 | int real_ncpus = 1; | |
46 | ||
47 | int wncpu = NCPUS; | |
48 | resethandler_t resethandler_target; | |
49 | ||
50 | #define MMCR0_SUPPORT_MASK 0xf83f1fff | |
51 | #define MMCR1_SUPPORT_MASK 0xffc00000 | |
52 | #define MMCR2_SUPPORT_MASK 0x80000000 | |
53 | ||
54 | extern int debugger_pending[NCPUS]; | |
55 | extern int debugger_is_slave[NCPUS]; | |
56 | extern int debugger_holdoff[NCPUS]; | |
57 | extern int debugger_sync; | |
58 | ||
59 | struct SIGtimebase { | |
60 | boolean_t avail; | |
61 | boolean_t ready; | |
62 | boolean_t done; | |
0b4e3aa0 | 63 | uint64_t abstime; |
1c79356b A |
64 | }; |
65 | ||
9bccf70c A |
66 | struct per_proc_info *pper_proc_info = per_proc_info; |
67 | ||
1c79356b A |
68 | extern struct SIGtimebase syncClkSpot; |
69 | ||
70 | void cpu_sync_timebase(void); | |
71 | ||
72 | kern_return_t | |
73 | cpu_control( | |
74 | int slot_num, | |
75 | processor_info_t info, | |
76 | unsigned int count) | |
77 | { | |
78 | cpu_type_t cpu_type; | |
79 | cpu_subtype_t cpu_subtype; | |
80 | processor_pm_regs_t perf_regs; | |
81 | processor_control_cmd_t cmd; | |
82 | boolean_t oldlevel; | |
83 | ||
84 | cpu_type = machine_slot[slot_num].cpu_type; | |
85 | cpu_subtype = machine_slot[slot_num].cpu_subtype; | |
86 | cmd = (processor_control_cmd_t) info; | |
87 | ||
88 | if (count < PROCESSOR_CONTROL_CMD_COUNT) | |
89 | return(KERN_FAILURE); | |
90 | ||
91 | if ( cpu_type != cmd->cmd_cpu_type || | |
92 | cpu_subtype != cmd->cmd_cpu_subtype) | |
93 | return(KERN_FAILURE); | |
94 | ||
95 | switch (cmd->cmd_op) | |
96 | { | |
97 | case PROCESSOR_PM_CLR_PMC: /* Clear Performance Monitor Counters */ | |
98 | switch (cpu_subtype) | |
99 | { | |
100 | case CPU_SUBTYPE_POWERPC_604: | |
101 | { | |
102 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
103 | mtpmc1(0x0); | |
104 | mtpmc2(0x0); | |
105 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
106 | return(KERN_SUCCESS); | |
107 | } | |
108 | case CPU_SUBTYPE_POWERPC_604e: | |
109 | case CPU_SUBTYPE_POWERPC_750: | |
110 | case CPU_SUBTYPE_POWERPC_7400: | |
111 | case CPU_SUBTYPE_POWERPC_7450: | |
112 | { | |
113 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
114 | mtpmc1(0x0); | |
115 | mtpmc2(0x0); | |
116 | mtpmc3(0x0); | |
117 | mtpmc4(0x0); | |
118 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
119 | return(KERN_SUCCESS); | |
120 | } | |
121 | default: | |
122 | return(KERN_FAILURE); | |
123 | } /* cpu_subtype */ | |
124 | case PROCESSOR_PM_SET_REGS: /* Set Performance Monitor Registors */ | |
125 | switch (cpu_subtype) | |
126 | { | |
127 | case CPU_SUBTYPE_POWERPC_604: | |
128 | if (count < (PROCESSOR_CONTROL_CMD_COUNT | |
129 | + PROCESSOR_PM_REGS_COUNT_POWERPC_604)) | |
130 | return(KERN_FAILURE); | |
131 | else | |
132 | { | |
133 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
134 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
135 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
136 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
137 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
138 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
139 | return(KERN_SUCCESS); | |
140 | } | |
141 | case CPU_SUBTYPE_POWERPC_604e: | |
142 | case CPU_SUBTYPE_POWERPC_750: | |
143 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
144 | PROCESSOR_PM_REGS_COUNT_POWERPC_750)) | |
145 | return(KERN_FAILURE); | |
146 | else | |
147 | { | |
148 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
149 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
150 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
151 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
152 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
153 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
154 | mtpmc3(PERFMON_PMC3(perf_regs)); | |
155 | mtpmc4(PERFMON_PMC4(perf_regs)); | |
156 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
157 | return(KERN_SUCCESS); | |
158 | } | |
159 | case CPU_SUBTYPE_POWERPC_7400: | |
160 | case CPU_SUBTYPE_POWERPC_7450: | |
161 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
162 | PROCESSOR_PM_REGS_COUNT_POWERPC_7400)) | |
163 | return(KERN_FAILURE); | |
164 | else | |
165 | { | |
166 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
167 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
168 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
169 | mtpmc1(PERFMON_PMC1(perf_regs)); | |
170 | mtpmc2(PERFMON_PMC2(perf_regs)); | |
171 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
172 | mtpmc3(PERFMON_PMC3(perf_regs)); | |
173 | mtpmc4(PERFMON_PMC4(perf_regs)); | |
174 | mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK); | |
175 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
176 | return(KERN_SUCCESS); | |
177 | } | |
178 | default: | |
179 | return(KERN_FAILURE); | |
180 | } /* switch cpu_subtype */ | |
181 | case PROCESSOR_PM_SET_MMCR: | |
182 | switch (cpu_subtype) | |
183 | { | |
184 | case CPU_SUBTYPE_POWERPC_604: | |
185 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
186 | PROCESSOR_PM_REGS_COUNT_POWERPC_604)) | |
187 | return(KERN_FAILURE); | |
188 | else | |
189 | { | |
190 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
191 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
192 | return(KERN_SUCCESS); | |
193 | } | |
194 | case CPU_SUBTYPE_POWERPC_604e: | |
195 | case CPU_SUBTYPE_POWERPC_750: | |
196 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
197 | PROCESSOR_PM_REGS_COUNT_POWERPC_750)) | |
198 | return(KERN_FAILURE); | |
199 | else | |
200 | { | |
201 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
202 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
203 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
204 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
205 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
206 | return(KERN_SUCCESS); | |
207 | } | |
208 | case CPU_SUBTYPE_POWERPC_7400: | |
209 | case CPU_SUBTYPE_POWERPC_7450: | |
210 | if (count < (PROCESSOR_CONTROL_CMD_COUNT + | |
211 | PROCESSOR_PM_REGS_COUNT_POWERPC_7400)) | |
212 | return(KERN_FAILURE); | |
213 | else | |
214 | { | |
215 | perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs; | |
216 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
217 | mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK); | |
218 | mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK); | |
219 | mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK); | |
220 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
221 | return(KERN_SUCCESS); | |
222 | } | |
223 | default: | |
224 | return(KERN_FAILURE); | |
225 | } /* cpu_subtype */ | |
226 | default: | |
227 | return(KERN_FAILURE); | |
228 | } /* switch cmd_op */ | |
229 | } | |
230 | ||
231 | kern_return_t | |
232 | cpu_info_count( | |
233 | processor_flavor_t flavor, | |
234 | unsigned int *count) | |
235 | { | |
236 | cpu_subtype_t cpu_subtype; | |
237 | ||
238 | /* | |
239 | * For now, we just assume that all CPUs are of the same type | |
240 | */ | |
241 | cpu_subtype = machine_slot[0].cpu_subtype; | |
242 | switch (flavor) { | |
243 | case PROCESSOR_PM_REGS_INFO: | |
244 | switch (cpu_subtype) { | |
245 | case CPU_SUBTYPE_POWERPC_604: | |
246 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_604; | |
247 | return(KERN_SUCCESS); | |
248 | ||
249 | case CPU_SUBTYPE_POWERPC_604e: | |
250 | case CPU_SUBTYPE_POWERPC_750: | |
251 | ||
252 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750; | |
253 | return(KERN_SUCCESS); | |
254 | ||
255 | case CPU_SUBTYPE_POWERPC_7400: | |
256 | case CPU_SUBTYPE_POWERPC_7450: | |
257 | ||
258 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400; | |
259 | return(KERN_SUCCESS); | |
260 | ||
261 | default: | |
262 | *count = 0; | |
263 | return(KERN_INVALID_ARGUMENT); | |
264 | } /* switch cpu_subtype */ | |
265 | ||
266 | case PROCESSOR_TEMPERATURE: | |
267 | *count = PROCESSOR_TEMPERATURE_COUNT; | |
268 | return (KERN_SUCCESS); | |
269 | ||
270 | default: | |
271 | *count = 0; | |
272 | return(KERN_INVALID_ARGUMENT); | |
273 | ||
274 | } | |
275 | } | |
276 | ||
277 | kern_return_t | |
278 | cpu_info( | |
279 | processor_flavor_t flavor, | |
280 | int slot_num, | |
281 | processor_info_t info, | |
282 | unsigned int *count) | |
283 | { | |
284 | cpu_subtype_t cpu_subtype; | |
285 | processor_pm_regs_t perf_regs; | |
286 | boolean_t oldlevel; | |
287 | unsigned int temp[2]; | |
288 | ||
289 | cpu_subtype = machine_slot[slot_num].cpu_subtype; | |
290 | ||
291 | switch (flavor) { | |
292 | case PROCESSOR_PM_REGS_INFO: | |
293 | ||
294 | perf_regs = (processor_pm_regs_t) info; | |
295 | ||
296 | switch (cpu_subtype) { | |
297 | case CPU_SUBTYPE_POWERPC_604: | |
298 | ||
299 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_604) | |
300 | return(KERN_FAILURE); | |
301 | ||
302 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
303 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
304 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
305 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
306 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
307 | ||
308 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_604; | |
309 | return(KERN_SUCCESS); | |
310 | ||
311 | case CPU_SUBTYPE_POWERPC_604e: | |
312 | case CPU_SUBTYPE_POWERPC_750: | |
313 | ||
314 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_750) | |
315 | return(KERN_FAILURE); | |
316 | ||
317 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
318 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
319 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
320 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
321 | PERFMON_MMCR1(perf_regs) = mfmmcr1(); | |
322 | PERFMON_PMC3(perf_regs) = mfpmc3(); | |
323 | PERFMON_PMC4(perf_regs) = mfpmc4(); | |
324 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
325 | ||
326 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750; | |
327 | return(KERN_SUCCESS); | |
328 | ||
329 | case CPU_SUBTYPE_POWERPC_7400: | |
330 | case CPU_SUBTYPE_POWERPC_7450: | |
331 | ||
332 | if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_7400) | |
333 | return(KERN_FAILURE); | |
334 | ||
335 | oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */ | |
336 | PERFMON_MMCR0(perf_regs) = mfmmcr0(); | |
337 | PERFMON_PMC1(perf_regs) = mfpmc1(); | |
338 | PERFMON_PMC2(perf_regs) = mfpmc2(); | |
339 | PERFMON_MMCR1(perf_regs) = mfmmcr1(); | |
340 | PERFMON_PMC3(perf_regs) = mfpmc3(); | |
341 | PERFMON_PMC4(perf_regs) = mfpmc4(); | |
342 | PERFMON_MMCR2(perf_regs) = mfmmcr2(); | |
343 | ml_set_interrupts_enabled(oldlevel); /* enable interrupts */ | |
344 | ||
345 | *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400; | |
346 | return(KERN_SUCCESS); | |
347 | ||
348 | default: | |
349 | return(KERN_FAILURE); | |
350 | } /* switch cpu_subtype */ | |
351 | ||
352 | case PROCESSOR_TEMPERATURE: /* Get the temperature of a processor */ | |
353 | ||
354 | disable_preemption(); /* Don't move me now */ | |
355 | ||
356 | if(slot_num == cpu_number()) { /* Is this for the local CPU? */ | |
357 | *info = ml_read_temp(); /* Get the temperature */ | |
358 | } | |
359 | else { /* For another CPU */ | |
360 | temp[0] = -1; /* Set sync flag */ | |
361 | eieio(); | |
362 | sync(); | |
363 | temp[1] = -1; /* Set invalid temperature */ | |
364 | (void)cpu_signal(slot_num, SIGPcpureq, CPRQtemp ,(unsigned int)&temp); /* Ask him to take his temperature */ | |
365 | (void)hw_cpu_sync(temp, LockTimeOut); /* Wait for the other processor to get its temperature */ | |
366 | *info = temp[1]; /* Pass it back */ | |
367 | } | |
368 | ||
369 | enable_preemption(); /* Ok to move now */ | |
370 | return(KERN_SUCCESS); | |
371 | ||
372 | default: | |
373 | return(KERN_INVALID_ARGUMENT); | |
374 | ||
375 | } /* flavor */ | |
376 | } | |
377 | ||
378 | void | |
379 | cpu_init( | |
380 | void) | |
381 | { | |
382 | int cpu; | |
383 | ||
384 | cpu = cpu_number(); | |
385 | ||
386 | machine_slot[cpu].running = TRUE; | |
387 | machine_slot[cpu].cpu_type = CPU_TYPE_POWERPC; | |
388 | machine_slot[cpu].cpu_subtype = (cpu_subtype_t)per_proc_info[cpu].pf.rptdProc; | |
389 | ||
390 | } | |
391 | ||
392 | void | |
393 | cpu_machine_init( | |
394 | void) | |
395 | { | |
0b4e3aa0 A |
396 | struct per_proc_info *tproc_info; |
397 | volatile struct per_proc_info *mproc_info; | |
1c79356b A |
398 | int cpu; |
399 | ||
400 | /* TODO: realese mutex lock reset_handler_lock */ | |
401 | ||
402 | cpu = cpu_number(); | |
0b4e3aa0 A |
403 | tproc_info = &per_proc_info[cpu]; |
404 | mproc_info = &per_proc_info[master_cpu]; | |
405 | PE_cpu_machine_init(tproc_info->cpu_id, !(tproc_info->cpu_flags & BootDone)); | |
406 | if (cpu != master_cpu) { | |
407 | while (!((mproc_info->cpu_flags) & SignalReady)) | |
408 | continue; | |
1c79356b | 409 | cpu_sync_timebase(); |
0b4e3aa0 | 410 | } |
1c79356b | 411 | ml_init_interrupt(); |
0b4e3aa0 | 412 | tproc_info->cpu_flags |= BootDone|SignalReady; |
1c79356b A |
413 | } |
414 | ||
415 | kern_return_t | |
416 | cpu_register( | |
417 | int *target_cpu | |
418 | ) | |
419 | { | |
420 | int cpu; | |
421 | ||
422 | /* | |
423 | * TODO: | |
424 | * - Run cpu_register() in exclusion mode | |
425 | */ | |
426 | ||
427 | *target_cpu = -1; | |
428 | for(cpu=0; cpu < wncpu; cpu++) { | |
429 | if(!machine_slot[cpu].is_cpu) { | |
430 | machine_slot[cpu].is_cpu = TRUE; | |
431 | *target_cpu = cpu; | |
432 | break; | |
433 | } | |
434 | } | |
435 | if (*target_cpu != -1) { | |
436 | real_ncpus++; | |
437 | return KERN_SUCCESS; | |
438 | } else | |
439 | return KERN_FAILURE; | |
440 | } | |
441 | ||
442 | kern_return_t | |
443 | cpu_start( | |
444 | int cpu) | |
445 | { | |
446 | struct per_proc_info *proc_info; | |
447 | kern_return_t ret; | |
448 | ||
449 | extern void (*exception_handlers[])(void); | |
450 | extern vm_offset_t intstack; | |
451 | extern vm_offset_t debstack; | |
452 | ||
453 | proc_info = &per_proc_info[cpu]; | |
454 | ||
455 | if (cpu == cpu_number()) { | |
456 | PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone)); | |
457 | ml_init_interrupt(); | |
0b4e3aa0 | 458 | proc_info->cpu_flags |= BootDone|SignalReady; |
1c79356b A |
459 | |
460 | return KERN_SUCCESS; | |
461 | } else { | |
462 | extern void _start_cpu(void); | |
463 | ||
464 | proc_info->cpu_number = cpu; | |
465 | proc_info->cpu_flags &= BootDone; | |
9bccf70c | 466 | proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE; |
1c79356b A |
467 | proc_info->intstack_top_ss = proc_info->istackptr; |
468 | #if MACH_KDP || MACH_KDB | |
9bccf70c | 469 | proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE; |
1c79356b A |
470 | proc_info->debstack_top_ss = proc_info->debstackptr; |
471 | #endif /* MACH_KDP || MACH_KDB */ | |
0b4e3aa0 | 472 | proc_info->interrupts_enabled = 0; |
1c79356b | 473 | proc_info->active_kloaded = (unsigned int)&active_kloaded[cpu]; |
1c79356b A |
474 | proc_info->active_stacks = (unsigned int)&active_stacks[cpu]; |
475 | proc_info->need_ast = (unsigned int)&need_ast[cpu]; | |
9bccf70c A |
476 | proc_info->FPU_owner = 0; |
477 | proc_info->VMX_owner = 0; | |
478 | ||
1c79356b A |
479 | |
480 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
481 | ||
482 | /* TODO: get mutex lock reset_handler_lock */ | |
483 | ||
484 | resethandler_target.type = RESET_HANDLER_START; | |
485 | resethandler_target.call_paddr = kvtophys((vm_offset_t)_start_cpu); | |
486 | resethandler_target.arg__paddr = kvtophys((vm_offset_t)proc_info); | |
487 | ||
488 | ml_phys_write((vm_offset_t)&ResetHandler + 0, | |
489 | resethandler_target.type); | |
490 | ml_phys_write((vm_offset_t)&ResetHandler + 4, | |
491 | resethandler_target.call_paddr); | |
492 | ml_phys_write((vm_offset_t)&ResetHandler + 8, | |
493 | resethandler_target.arg__paddr); | |
494 | ||
495 | } | |
496 | /* | |
497 | * Note: we pass the current time to the other processor here. He will load it | |
498 | * as early as possible so that there is a chance that it is close to accurate. | |
499 | * After the machine is up a while, we will officially resync the clocks so | |
500 | * that all processors are the same. This is just to get close. | |
501 | */ | |
502 | ||
9bccf70c | 503 | ml_get_timebase((unsigned long long *)&proc_info->ruptStamp); /* Pass our current time to the other guy */ |
1c79356b A |
504 | |
505 | __asm__ volatile("sync"); /* Commit to storage */ | |
506 | __asm__ volatile("isync"); /* Wait a second */ | |
507 | ret = PE_cpu_start(proc_info->cpu_id, | |
508 | proc_info->start_paddr, (vm_offset_t)proc_info); | |
509 | ||
510 | if (ret != KERN_SUCCESS && | |
511 | proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { | |
512 | ||
513 | /* TODO: realese mutex lock reset_handler_lock */ | |
514 | } | |
515 | return(ret); | |
516 | } | |
517 | } | |
518 | ||
519 | /* | |
520 | * Here is where we implement the receiver of the signaling protocol. | |
521 | * We wait for the signal status area to be passed to us. Then we snarf | |
522 | * up the status, the sender, and the 3 potential parms. Next we release | |
523 | * the lock and signal the other guy. | |
524 | */ | |
525 | ||
526 | void | |
527 | cpu_signal_handler( | |
528 | void) | |
529 | { | |
530 | ||
531 | unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype; | |
532 | unsigned int *parmAddr; | |
533 | struct per_proc_info *pproc; /* Area for my per_proc address */ | |
534 | int cpu; | |
535 | struct SIGtimebase *timebaseAddr; | |
536 | natural_t tbu, tbu2, tbl; | |
537 | ||
538 | cpu = cpu_number(); /* Get the CPU number */ | |
539 | pproc = &per_proc_info[cpu]; /* Point to our block */ | |
540 | ||
541 | /* | |
542 | * Since we've been signaled, wait just under 1ms for the signal lock to pass | |
543 | */ | |
9bccf70c A |
544 | if(!hw_lock_mbits(&pproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), (MPsigpBusy | MPsigpPass), |
545 | (MPsigpBusy | MPsigpPass | MPsigpAck), (gPEClockFrequencyInfo.bus_clock_rate_hz >> 7))) { | |
1c79356b A |
546 | panic("cpu_signal_handler: Lock pass timed out\n"); |
547 | } | |
548 | ||
549 | holdStat = pproc->MPsigpStat; /* Snarf stat word */ | |
550 | holdParm0 = pproc->MPsigpParm0; /* Snarf parameter */ | |
551 | holdParm1 = pproc->MPsigpParm1; /* Snarf parameter */ | |
552 | holdParm2 = pproc->MPsigpParm2; /* Snarf parameter */ | |
553 | ||
554 | __asm__ volatile("isync"); /* Make sure we don't unlock until memory is in */ | |
555 | ||
9bccf70c | 556 | pproc->MPsigpStat = holdStat & ~(MPsigpMsgp | MPsigpAck | MPsigpFunc); /* Release lock */ |
1c79356b A |
557 | |
558 | switch ((holdStat & MPsigpFunc) >> 8) { /* Decode function code */ | |
559 | ||
560 | case MPsigpIdle: /* Was function cancelled? */ | |
561 | return; /* Yup... */ | |
562 | ||
563 | case MPsigpSigp: /* Signal Processor message? */ | |
564 | ||
565 | switch (holdParm0) { /* Decode SIGP message order */ | |
566 | ||
567 | case SIGPast: /* Should we do an AST? */ | |
568 | pproc->numSIGPast++; /* Count this one */ | |
569 | #if 0 | |
570 | kprintf("cpu_signal_handler: AST check on cpu %x\n", cpu_number()); | |
571 | #endif | |
9bccf70c | 572 | ast_check(cpu_to_processor(cpu)); |
1c79356b A |
573 | return; /* All done... */ |
574 | ||
575 | case SIGPcpureq: /* CPU specific function? */ | |
576 | ||
577 | pproc->numSIGPcpureq++; /* Count this one */ | |
578 | switch (holdParm1) { /* Select specific function */ | |
579 | ||
580 | case CPRQtemp: /* Get the temperature */ | |
581 | parmAddr = (unsigned int *)holdParm2; /* Get the destination address */ | |
582 | parmAddr[1] = ml_read_temp(); /* Get the core temperature */ | |
583 | eieio(); /* Force order */ | |
584 | sync(); /* Force to memory */ | |
585 | parmAddr[0] = 0; /* Show we're done */ | |
586 | return; | |
587 | ||
588 | case CPRQtimebase: | |
589 | ||
590 | timebaseAddr = (struct SIGtimebase *)holdParm2; | |
591 | ||
592 | if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL) | |
593 | pproc->time_base_enable(pproc->cpu_id, FALSE); | |
594 | ||
0b4e3aa0 | 595 | timebaseAddr->abstime = 0; /* Touch to force into cache */ |
1c79356b A |
596 | sync(); |
597 | ||
598 | do { | |
599 | asm volatile(" mftbu %0" : "=r" (tbu)); | |
600 | asm volatile(" mftb %0" : "=r" (tbl)); | |
601 | asm volatile(" mftbu %0" : "=r" (tbu2)); | |
602 | } while (tbu != tbu2); | |
603 | ||
0b4e3aa0 | 604 | timebaseAddr->abstime = ((uint64_t)tbu << 32) | tbl; |
1c79356b A |
605 | sync(); /* Force order */ |
606 | ||
607 | timebaseAddr->avail = TRUE; | |
608 | ||
609 | while (*(volatile int *)&(syncClkSpot.ready) == FALSE); | |
610 | ||
611 | if(pproc->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL) | |
612 | pproc->time_base_enable(pproc->cpu_id, TRUE); | |
613 | ||
614 | timebaseAddr->done = TRUE; | |
615 | ||
616 | return; | |
617 | ||
618 | default: | |
619 | panic("cpu_signal_handler: unknown CPU request - %08X\n", holdParm1); | |
620 | return; | |
621 | } | |
622 | ||
623 | ||
624 | case SIGPdebug: /* Enter the debugger? */ | |
625 | ||
626 | pproc->numSIGPdebug++; /* Count this one */ | |
627 | debugger_is_slave[cpu]++; /* Bump up the count to show we're here */ | |
628 | hw_atomic_sub(&debugger_sync, 1); /* Show we've received the 'rupt */ | |
629 | __asm__ volatile("tw 4,r3,r3"); /* Enter the debugger */ | |
630 | return; /* All done now... */ | |
631 | ||
632 | case SIGPwake: /* Wake up CPU */ | |
633 | pproc->numSIGPwake++; /* Count this one */ | |
634 | return; /* No need to do anything, the interrupt does it all... */ | |
635 | ||
636 | default: | |
637 | panic("cpu_signal_handler: unknown SIGP message order - %08X\n", holdParm0); | |
638 | return; | |
639 | ||
640 | } | |
641 | ||
642 | default: | |
643 | panic("cpu_signal_handler: unknown SIGP function - %08X\n", (holdStat & MPsigpFunc) >> 8); | |
644 | return; | |
645 | ||
646 | } | |
647 | panic("cpu_signal_handler: we should never get here\n"); | |
648 | } | |
649 | ||
650 | /* | |
651 | * Here is where we send a message to another processor. So far we only have two: | |
652 | * SIGPast and SIGPdebug. SIGPast is used to preempt and kick off threads (this is | |
653 | * currently disabled). SIGPdebug is used to enter the debugger. | |
654 | * | |
655 | * We set up the SIGP function to indicate that this is a simple message and set the | |
656 | * order code (MPsigpParm0) to SIGPast or SIGPdebug). After finding the per_processor | |
657 | * block for the target, we lock the message block. Then we set the parameter(s). | |
658 | * Next we change the lock (also called "busy") to "passing" and finally signal | |
659 | * the other processor. Note that we only wait about 1ms to get the message lock. | |
660 | * If we time out, we return failure to our caller. It is their responsibility to | |
661 | * recover. | |
662 | */ | |
663 | ||
664 | kern_return_t | |
665 | cpu_signal( | |
666 | int target, | |
667 | int signal, | |
668 | unsigned int p1, | |
669 | unsigned int p2) | |
670 | { | |
671 | ||
672 | unsigned int holdStat, holdParm0, holdParm1, holdParm2, mtype; | |
673 | struct per_proc_info *tpproc, *mpproc; /* Area for per_proc addresses */ | |
674 | int cpu; | |
9bccf70c | 675 | int busybitset =0; |
1c79356b A |
676 | |
677 | #if DEBUG | |
678 | if(target > NCPUS) panic("cpu_signal: invalid target CPU - %08X\n", target); | |
679 | #endif | |
680 | ||
681 | cpu = cpu_number(); /* Get our CPU number */ | |
682 | if(target == cpu) return KERN_FAILURE; /* Don't play with ourselves */ | |
683 | if(!machine_slot[target].running) return KERN_FAILURE; /* These guys are too young */ | |
684 | ||
685 | mpproc = &per_proc_info[cpu]; /* Point to our block */ | |
686 | tpproc = &per_proc_info[target]; /* Point to the target's block */ | |
0b4e3aa0 A |
687 | |
688 | if (!(tpproc->cpu_flags & SignalReady)) return KERN_FAILURE; | |
9bccf70c | 689 | |
7b1edb79 A |
690 | if((tpproc->MPsigpStat & MPsigpMsgp) == MPsigpMsgp) { /* Is there an unreceived message already pending? */ |
691 | ||
9bccf70c A |
692 | if(signal == SIGPwake) { /* SIGPwake can merge into all others... */ |
693 | mpproc->numSIGPmwake++; /* Account for merged wakes */ | |
694 | return KERN_SUCCESS; | |
695 | } | |
7b1edb79 A |
696 | |
697 | if((signal == SIGPast) && (tpproc->MPsigpParm0 == SIGPast)) { /* We can merge ASTs */ | |
9bccf70c | 698 | mpproc->numSIGPmast++; /* Account for merged ASTs */ |
7b1edb79 A |
699 | return KERN_SUCCESS; /* Don't bother to send this one... */ |
700 | } | |
9bccf70c A |
701 | |
702 | if (tpproc->MPsigpParm0 == SIGPwake) { | |
703 | if (hw_lock_mbits(&tpproc->MPsigpStat, (MPsigpMsgp | MPsigpAck), | |
704 | (MPsigpBusy | MPsigpPass ), MPsigpBusy, 0)) { | |
705 | busybitset = 1; | |
706 | mpproc->numSIGPmwake++; | |
707 | } | |
708 | } | |
7b1edb79 A |
709 | } |
710 | ||
9bccf70c A |
711 | if((busybitset == 0) && |
712 | (!hw_lock_mbits(&tpproc->MPsigpStat, MPsigpMsgp, 0, MPsigpBusy, | |
713 | (gPEClockFrequencyInfo.bus_clock_rate_hz >> 13)))) { /* Try to lock the message block with a .5ms timeout */ | |
714 | mpproc->numSIGPtimo++; /* Account for timeouts */ | |
1c79356b A |
715 | return KERN_FAILURE; /* Timed out, take your ball and go home... */ |
716 | } | |
717 | ||
718 | holdStat = MPsigpBusy | MPsigpPass | (MPsigpSigp << 8) | cpu; /* Set up the signal status word */ | |
719 | tpproc->MPsigpParm0 = signal; /* Set message order */ | |
720 | tpproc->MPsigpParm1 = p1; /* Set additional parm */ | |
721 | tpproc->MPsigpParm2 = p2; /* Set additional parm */ | |
722 | ||
723 | __asm__ volatile("sync"); /* Make sure it's all there */ | |
724 | ||
725 | tpproc->MPsigpStat = holdStat; /* Set status and pass the lock */ | |
726 | __asm__ volatile("eieio"); /* I'm a paraniod freak */ | |
727 | ||
9bccf70c A |
728 | if (busybitset == 0) |
729 | PE_cpu_signal(mpproc->cpu_id, tpproc->cpu_id); /* Kick the other processor */ | |
1c79356b A |
730 | |
731 | return KERN_SUCCESS; /* All is goodness and rainbows... */ | |
732 | } | |
733 | ||
734 | void | |
735 | cpu_doshutdown( | |
736 | void) | |
737 | { | |
738 | processor_doshutdown(current_processor()); | |
739 | } | |
740 | ||
741 | void | |
742 | cpu_sleep( | |
743 | void) | |
744 | { | |
745 | struct per_proc_info *proc_info; | |
746 | unsigned int cpu; | |
9bccf70c | 747 | facility_context *fowner; |
1c79356b A |
748 | extern void (*exception_handlers[])(void); |
749 | extern vm_offset_t intstack; | |
750 | extern vm_offset_t debstack; | |
751 | extern void _restart_cpu(void); | |
752 | ||
753 | cpu = cpu_number(); | |
754 | #if 0 | |
755 | kprintf("******* About to sleep cpu %d\n", cpu); | |
756 | #endif | |
757 | ||
758 | proc_info = &per_proc_info[cpu]; | |
759 | ||
9bccf70c A |
760 | fowner = proc_info->FPU_owner; /* Cache this */ |
761 | if(fowner) fpu_save(fowner); /* If anyone owns FPU, save it */ | |
762 | proc_info->FPU_owner = 0; /* Set no fpu owner now */ | |
765c9de3 | 763 | |
9bccf70c A |
764 | fowner = proc_info->VMX_owner; /* Cache this */ |
765 | if(fowner) vec_save(fowner); /* If anyone owns vectors, save it */ | |
766 | proc_info->VMX_owner = 0; /* Set no vector owner now */ | |
765c9de3 | 767 | |
1c79356b A |
768 | if (proc_info->cpu_number == 0) { |
769 | proc_info->cpu_flags &= BootDone; | |
9bccf70c | 770 | proc_info->istackptr = (vm_offset_t)&intstack + (INTSTACK_SIZE*(cpu+1)) - FM_SIZE; |
1c79356b A |
771 | proc_info->intstack_top_ss = proc_info->istackptr; |
772 | #if MACH_KDP || MACH_KDB | |
9bccf70c | 773 | proc_info->debstackptr = (vm_offset_t)&debstack + (KERNEL_STACK_SIZE*(cpu+1)) - FM_SIZE; |
1c79356b A |
774 | proc_info->debstack_top_ss = proc_info->debstackptr; |
775 | #endif /* MACH_KDP || MACH_KDB */ | |
0b4e3aa0 | 776 | proc_info->interrupts_enabled = 0; |
1c79356b | 777 | |
765c9de3 | 778 | if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) { |
1c79356b | 779 | extern void _start_cpu(void); |
765c9de3 | 780 | |
1c79356b A |
781 | resethandler_target.type = RESET_HANDLER_START; |
782 | resethandler_target.call_paddr = kvtophys((vm_offset_t)_start_cpu); | |
783 | resethandler_target.arg__paddr = kvtophys((vm_offset_t)proc_info); | |
765c9de3 | 784 | |
1c79356b | 785 | ml_phys_write((vm_offset_t)&ResetHandler + 0, |
765c9de3 | 786 | resethandler_target.type); |
1c79356b | 787 | ml_phys_write((vm_offset_t)&ResetHandler + 4, |
765c9de3 | 788 | resethandler_target.call_paddr); |
1c79356b | 789 | ml_phys_write((vm_offset_t)&ResetHandler + 8, |
765c9de3 | 790 | resethandler_target.arg__paddr); |
1c79356b A |
791 | |
792 | __asm__ volatile("sync"); | |
793 | __asm__ volatile("isync"); | |
765c9de3 | 794 | } |
1c79356b A |
795 | } |
796 | ||
797 | PE_cpu_machine_quiesce(proc_info->cpu_id); | |
798 | } | |
799 | ||
800 | void | |
801 | cpu_sync_timebase( | |
802 | void) | |
803 | { | |
804 | natural_t tbu, tbl; | |
805 | boolean_t intr; | |
806 | ||
807 | intr = ml_set_interrupts_enabled(FALSE); /* No interruptions in here */ | |
808 | ||
809 | /* Note that syncClkSpot is in a cache aligned area */ | |
810 | syncClkSpot.avail = FALSE; | |
811 | syncClkSpot.ready = FALSE; | |
812 | syncClkSpot.done = FALSE; | |
813 | ||
0b4e3aa0 A |
814 | while (cpu_signal(master_cpu, SIGPcpureq, CPRQtimebase, |
815 | (unsigned int)&syncClkSpot) != KERN_SUCCESS) | |
816 | continue; | |
1c79356b | 817 | |
0b4e3aa0 A |
818 | while (*(volatile int *)&(syncClkSpot.avail) == FALSE) |
819 | continue; | |
1c79356b | 820 | |
1c79356b A |
821 | isync(); |
822 | ||
823 | /* | |
824 | * We do the following to keep the compiler from generating extra stuff | |
825 | * in tb set part | |
826 | */ | |
0b4e3aa0 A |
827 | tbu = syncClkSpot.abstime >> 32; |
828 | tbl = (uint32_t)syncClkSpot.abstime; | |
1c79356b A |
829 | |
830 | mttb(0); | |
831 | mttbu(tbu); | |
832 | mttb(tbl); | |
833 | ||
834 | syncClkSpot.ready = TRUE; | |
835 | ||
0b4e3aa0 A |
836 | while (*(volatile int *)&(syncClkSpot.done) == FALSE) |
837 | continue; | |
1c79356b A |
838 | |
839 | (void)ml_set_interrupts_enabled(intr); | |
840 | } |