]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_FREE_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: sched_prim.c | |
54 | * Author: Avadis Tevanian, Jr. | |
55 | * Date: 1986 | |
56 | * | |
57 | * Scheduling primitives | |
58 | * | |
59 | */ | |
60 | ||
61 | #include <debug.h> | |
62 | #include <cpus.h> | |
63 | #include <mach_kdb.h> | |
64 | #include <simple_clock.h> | |
65 | #include <power_save.h> | |
66 | #include <task_swapper.h> | |
67 | ||
68 | #include <ddb/db_output.h> | |
69 | #include <mach/machine.h> | |
70 | #include <machine/machine_routines.h> | |
71 | #include <machine/sched_param.h> | |
72 | #include <kern/ast.h> | |
73 | #include <kern/clock.h> | |
74 | #include <kern/counters.h> | |
75 | #include <kern/cpu_number.h> | |
76 | #include <kern/cpu_data.h> | |
77 | #include <kern/etap_macros.h> | |
78 | #include <kern/lock.h> | |
79 | #include <kern/macro_help.h> | |
80 | #include <kern/machine.h> | |
81 | #include <kern/misc_protos.h> | |
82 | #include <kern/processor.h> | |
83 | #include <kern/queue.h> | |
84 | #include <kern/sched.h> | |
85 | #include <kern/sched_prim.h> | |
86 | #include <kern/syscall_subr.h> | |
87 | #include <kern/task.h> | |
88 | #include <kern/thread.h> | |
89 | #include <kern/thread_swap.h> | |
90 | #include <vm/pmap.h> | |
91 | #include <vm/vm_kern.h> | |
92 | #include <vm/vm_map.h> | |
93 | #include <mach/policy.h> | |
94 | #include <mach/sync_policy.h> | |
1c79356b A |
95 | #include <kern/mk_sp.h> /*** ??? fix so this can be removed ***/ |
96 | #include <sys/kdebug.h> | |
97 | ||
98 | #if TASK_SWAPPER | |
99 | #include <kern/task_swap.h> | |
100 | extern int task_swap_on; | |
101 | #endif /* TASK_SWAPPER */ | |
102 | ||
103 | extern int hz; | |
104 | ||
0b4e3aa0 | 105 | #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */ |
1c79356b A |
106 | int default_preemption_rate = DEFAULT_PREEMPTION_RATE; |
107 | ||
0b4e3aa0 A |
108 | #define MAX_UNSAFE_QUANTA 800 |
109 | int max_unsafe_quanta = MAX_UNSAFE_QUANTA; | |
110 | ||
111 | #define MAX_POLL_QUANTA 2 | |
112 | int max_poll_quanta = MAX_POLL_QUANTA; | |
113 | ||
114 | #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */ | |
115 | int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT; | |
116 | ||
0b4e3aa0 | 117 | uint32_t std_quantum_us; |
1c79356b A |
118 | |
119 | unsigned sched_tick; | |
120 | ||
121 | #if SIMPLE_CLOCK | |
122 | int sched_usec; | |
123 | #endif /* SIMPLE_CLOCK */ | |
124 | ||
125 | /* Forwards */ | |
1c79356b A |
126 | void wait_queues_init(void); |
127 | ||
1c79356b A |
128 | thread_t choose_pset_thread( |
129 | processor_t myprocessor, | |
130 | processor_set_t pset); | |
131 | ||
132 | thread_t choose_thread( | |
133 | processor_t myprocessor); | |
134 | ||
9bccf70c | 135 | boolean_t run_queue_enqueue( |
1c79356b A |
136 | run_queue_t runq, |
137 | thread_t thread, | |
138 | boolean_t tail); | |
139 | ||
1c79356b A |
140 | void do_thread_scan(void); |
141 | ||
1c79356b A |
142 | #if DEBUG |
143 | void dump_run_queues( | |
144 | run_queue_t rq); | |
145 | void dump_run_queue_struct( | |
146 | run_queue_t rq); | |
147 | void dump_processor( | |
148 | processor_t p); | |
149 | void dump_processor_set( | |
150 | processor_set_t ps); | |
151 | ||
152 | void checkrq( | |
153 | run_queue_t rq, | |
154 | char *msg); | |
155 | ||
156 | void thread_check( | |
157 | thread_t thread, | |
158 | run_queue_t runq); | |
1c79356b | 159 | |
0b4e3aa0 | 160 | static |
1c79356b A |
161 | boolean_t thread_runnable( |
162 | thread_t thread); | |
163 | ||
0b4e3aa0 A |
164 | #endif /*DEBUG*/ |
165 | ||
166 | ||
1c79356b A |
167 | /* |
168 | * State machine | |
169 | * | |
170 | * states are combinations of: | |
171 | * R running | |
172 | * W waiting (or on wait queue) | |
173 | * N non-interruptible | |
174 | * O swapped out | |
175 | * I being swapped in | |
176 | * | |
177 | * init action | |
178 | * assert_wait thread_block clear_wait swapout swapin | |
179 | * | |
180 | * R RW, RWN R; setrun - - | |
181 | * RN RWN RN; setrun - - | |
182 | * | |
183 | * RW W R - | |
184 | * RWN WN RN - | |
185 | * | |
186 | * W R; setrun WO | |
187 | * WN RN; setrun - | |
188 | * | |
189 | * RO - - R | |
190 | * | |
191 | */ | |
192 | ||
193 | /* | |
194 | * Waiting protocols and implementation: | |
195 | * | |
196 | * Each thread may be waiting for exactly one event; this event | |
197 | * is set using assert_wait(). That thread may be awakened either | |
198 | * by performing a thread_wakeup_prim() on its event, | |
199 | * or by directly waking that thread up with clear_wait(). | |
200 | * | |
201 | * The implementation of wait events uses a hash table. Each | |
202 | * bucket is queue of threads having the same hash function | |
203 | * value; the chain for the queue (linked list) is the run queue | |
204 | * field. [It is not possible to be waiting and runnable at the | |
205 | * same time.] | |
206 | * | |
207 | * Locks on both the thread and on the hash buckets govern the | |
208 | * wait event field and the queue chain field. Because wakeup | |
209 | * operations only have the event as an argument, the event hash | |
210 | * bucket must be locked before any thread. | |
211 | * | |
212 | * Scheduling operations may also occur at interrupt level; therefore, | |
213 | * interrupts below splsched() must be prevented when holding | |
214 | * thread or hash bucket locks. | |
215 | * | |
216 | * The wait event hash table declarations are as follows: | |
217 | */ | |
218 | ||
219 | #define NUMQUEUES 59 | |
220 | ||
221 | struct wait_queue wait_queues[NUMQUEUES]; | |
222 | ||
223 | #define wait_hash(event) \ | |
224 | ((((int)(event) < 0)? ~(int)(event): (int)(event)) % NUMQUEUES) | |
225 | ||
226 | void | |
227 | sched_init(void) | |
228 | { | |
229 | /* | |
0b4e3aa0 A |
230 | * Calculate the timeslicing quantum |
231 | * in us. | |
1c79356b A |
232 | */ |
233 | if (default_preemption_rate < 1) | |
234 | default_preemption_rate = DEFAULT_PREEMPTION_RATE; | |
0b4e3aa0 | 235 | std_quantum_us = (1000 * 1000) / default_preemption_rate; |
1c79356b | 236 | |
0b4e3aa0 | 237 | printf("standard timeslicing quantum is %d us\n", std_quantum_us); |
1c79356b A |
238 | |
239 | wait_queues_init(); | |
240 | pset_sys_bootstrap(); /* initialize processor mgmt. */ | |
241 | processor_action(); | |
242 | sched_tick = 0; | |
243 | #if SIMPLE_CLOCK | |
244 | sched_usec = 0; | |
245 | #endif /* SIMPLE_CLOCK */ | |
246 | ast_init(); | |
1c79356b A |
247 | } |
248 | ||
249 | void | |
250 | wait_queues_init(void) | |
251 | { | |
252 | register int i; | |
253 | ||
254 | for (i = 0; i < NUMQUEUES; i++) { | |
255 | wait_queue_init(&wait_queues[i], SYNC_POLICY_FIFO); | |
256 | } | |
257 | } | |
258 | ||
259 | /* | |
0b4e3aa0 | 260 | * Thread wait timer expiration. |
1c79356b A |
261 | */ |
262 | void | |
263 | thread_timer_expire( | |
264 | timer_call_param_t p0, | |
265 | timer_call_param_t p1) | |
266 | { | |
267 | thread_t thread = p0; | |
268 | spl_t s; | |
269 | ||
270 | s = splsched(); | |
271 | wake_lock(thread); | |
0b4e3aa0 A |
272 | if (--thread->wait_timer_active == 1) { |
273 | if (thread->wait_timer_is_set) { | |
274 | thread->wait_timer_is_set = FALSE; | |
275 | thread_lock(thread); | |
276 | if (thread->active) | |
277 | clear_wait_internal(thread, THREAD_TIMED_OUT); | |
278 | thread_unlock(thread); | |
279 | } | |
1c79356b A |
280 | } |
281 | else | |
0b4e3aa0 | 282 | if (thread->wait_timer_active == 0) |
1c79356b A |
283 | thread_wakeup_one(&thread->wait_timer_active); |
284 | wake_unlock(thread); | |
285 | splx(s); | |
286 | } | |
287 | ||
288 | /* | |
289 | * thread_set_timer: | |
290 | * | |
291 | * Set a timer for the current thread, if the thread | |
292 | * is ready to wait. Must be called between assert_wait() | |
293 | * and thread_block(). | |
294 | */ | |
295 | void | |
296 | thread_set_timer( | |
0b4e3aa0 A |
297 | uint32_t interval, |
298 | uint32_t scale_factor) | |
1c79356b A |
299 | { |
300 | thread_t thread = current_thread(); | |
0b4e3aa0 | 301 | uint64_t deadline; |
1c79356b A |
302 | spl_t s; |
303 | ||
304 | s = splsched(); | |
305 | wake_lock(thread); | |
306 | thread_lock(thread); | |
307 | if ((thread->state & TH_WAIT) != 0) { | |
308 | clock_interval_to_deadline(interval, scale_factor, &deadline); | |
309 | timer_call_enter(&thread->wait_timer, deadline); | |
310 | assert(!thread->wait_timer_is_set); | |
311 | thread->wait_timer_active++; | |
312 | thread->wait_timer_is_set = TRUE; | |
313 | } | |
314 | thread_unlock(thread); | |
315 | wake_unlock(thread); | |
316 | splx(s); | |
317 | } | |
318 | ||
319 | void | |
320 | thread_set_timer_deadline( | |
0b4e3aa0 | 321 | uint64_t deadline) |
1c79356b A |
322 | { |
323 | thread_t thread = current_thread(); | |
324 | spl_t s; | |
325 | ||
326 | s = splsched(); | |
327 | wake_lock(thread); | |
328 | thread_lock(thread); | |
329 | if ((thread->state & TH_WAIT) != 0) { | |
330 | timer_call_enter(&thread->wait_timer, deadline); | |
331 | assert(!thread->wait_timer_is_set); | |
332 | thread->wait_timer_active++; | |
333 | thread->wait_timer_is_set = TRUE; | |
334 | } | |
335 | thread_unlock(thread); | |
336 | wake_unlock(thread); | |
337 | splx(s); | |
338 | } | |
339 | ||
340 | void | |
341 | thread_cancel_timer(void) | |
342 | { | |
343 | thread_t thread = current_thread(); | |
344 | spl_t s; | |
345 | ||
346 | s = splsched(); | |
347 | wake_lock(thread); | |
348 | if (thread->wait_timer_is_set) { | |
349 | if (timer_call_cancel(&thread->wait_timer)) | |
350 | thread->wait_timer_active--; | |
351 | thread->wait_timer_is_set = FALSE; | |
352 | } | |
353 | wake_unlock(thread); | |
354 | splx(s); | |
355 | } | |
356 | ||
1c79356b A |
357 | /* |
358 | * Set up thread timeout element when thread is created. | |
359 | */ | |
360 | void | |
361 | thread_timer_setup( | |
362 | thread_t thread) | |
363 | { | |
0b4e3aa0 A |
364 | extern void thread_depress_expire( |
365 | timer_call_param_t p0, | |
366 | timer_call_param_t p1); | |
367 | ||
1c79356b A |
368 | timer_call_setup(&thread->wait_timer, thread_timer_expire, thread); |
369 | thread->wait_timer_is_set = FALSE; | |
370 | thread->wait_timer_active = 1; | |
1c79356b | 371 | |
0b4e3aa0 A |
372 | timer_call_setup(&thread->depress_timer, thread_depress_expire, thread); |
373 | thread->depress_timer_active = 1; | |
374 | ||
375 | thread->ref_count++; | |
1c79356b A |
376 | } |
377 | ||
378 | void | |
379 | thread_timer_terminate(void) | |
380 | { | |
381 | thread_t thread = current_thread(); | |
9bccf70c | 382 | wait_result_t res; |
1c79356b A |
383 | spl_t s; |
384 | ||
385 | s = splsched(); | |
386 | wake_lock(thread); | |
387 | if (thread->wait_timer_is_set) { | |
388 | if (timer_call_cancel(&thread->wait_timer)) | |
389 | thread->wait_timer_active--; | |
390 | thread->wait_timer_is_set = FALSE; | |
391 | } | |
392 | ||
393 | thread->wait_timer_active--; | |
394 | ||
395 | while (thread->wait_timer_active > 0) { | |
9bccf70c A |
396 | res = assert_wait((event_t)&thread->wait_timer_active, THREAD_UNINT); |
397 | assert(res == THREAD_WAITING); | |
1c79356b A |
398 | wake_unlock(thread); |
399 | splx(s); | |
400 | ||
9bccf70c A |
401 | res = thread_block(THREAD_CONTINUE_NULL); |
402 | assert(res == THREAD_AWAKENED); | |
1c79356b A |
403 | |
404 | s = splsched(); | |
405 | wake_lock(thread); | |
406 | } | |
407 | ||
0b4e3aa0 A |
408 | thread->depress_timer_active--; |
409 | ||
410 | while (thread->depress_timer_active > 0) { | |
9bccf70c A |
411 | res = assert_wait((event_t)&thread->depress_timer_active, THREAD_UNINT); |
412 | assert(res == THREAD_WAITING); | |
0b4e3aa0 A |
413 | wake_unlock(thread); |
414 | splx(s); | |
415 | ||
9bccf70c A |
416 | res = thread_block(THREAD_CONTINUE_NULL); |
417 | assert(res == THREAD_AWAKENED); | |
0b4e3aa0 A |
418 | |
419 | s = splsched(); | |
420 | wake_lock(thread); | |
421 | } | |
422 | ||
1c79356b A |
423 | wake_unlock(thread); |
424 | splx(s); | |
425 | ||
426 | thread_deallocate(thread); | |
427 | } | |
428 | ||
429 | /* | |
430 | * Routine: thread_go_locked | |
431 | * Purpose: | |
432 | * Start a thread running. | |
433 | * Conditions: | |
434 | * thread lock held, IPC locks may be held. | |
435 | * thread must have been pulled from wait queue under same lock hold. | |
9bccf70c A |
436 | * Returns: |
437 | * KERN_SUCCESS - Thread was set running | |
438 | * KERN_NOT_WAITING - Thread was not waiting | |
1c79356b | 439 | */ |
9bccf70c | 440 | kern_return_t |
1c79356b A |
441 | thread_go_locked( |
442 | thread_t thread, | |
9bccf70c | 443 | wait_result_t result) |
1c79356b | 444 | { |
1c79356b | 445 | assert(thread->at_safe_point == FALSE); |
9bccf70c | 446 | assert(thread->wait_event == NO_EVENT64); |
1c79356b A |
447 | assert(thread->wait_queue == WAIT_QUEUE_NULL); |
448 | ||
9bccf70c | 449 | if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) { |
1c79356b A |
450 | thread->state &= ~(TH_WAIT|TH_UNINT); |
451 | if (!(thread->state & TH_RUN)) { | |
452 | thread->state |= TH_RUN; | |
0b4e3aa0 | 453 | |
9bccf70c A |
454 | if (thread->active_callout) |
455 | call_thread_unblock(); | |
456 | ||
457 | if (!(thread->state & TH_IDLE)) { | |
458 | _mk_sp_thread_unblock(thread); | |
459 | hw_atomic_add(&thread->processor_set->run_count, 1); | |
460 | } | |
1c79356b | 461 | } |
0b4e3aa0 | 462 | |
1c79356b | 463 | thread->wait_result = result; |
9bccf70c | 464 | return KERN_SUCCESS; |
1c79356b | 465 | } |
9bccf70c | 466 | return KERN_NOT_WAITING; |
1c79356b A |
467 | } |
468 | ||
9bccf70c A |
469 | /* |
470 | * Routine: thread_mark_wait_locked | |
471 | * Purpose: | |
472 | * Mark a thread as waiting. If, given the circumstances, | |
473 | * it doesn't want to wait (i.e. already aborted), then | |
474 | * indicate that in the return value. | |
475 | * Conditions: | |
476 | * at splsched() and thread is locked. | |
477 | */ | |
478 | __private_extern__ | |
479 | wait_result_t | |
1c79356b | 480 | thread_mark_wait_locked( |
9bccf70c A |
481 | thread_t thread, |
482 | wait_interrupt_t interruptible) | |
1c79356b | 483 | { |
9bccf70c A |
484 | wait_result_t wait_result; |
485 | boolean_t at_safe_point; | |
1c79356b A |
486 | |
487 | assert(thread == current_thread()); | |
488 | ||
9bccf70c A |
489 | /* |
490 | * The thread may have certain types of interrupts/aborts masked | |
491 | * off. Even if the wait location says these types of interrupts | |
492 | * are OK, we have to honor mask settings (outer-scoped code may | |
493 | * not be able to handle aborts at the moment). | |
494 | */ | |
495 | if (interruptible > thread->interrupt_level) | |
496 | interruptible = thread->interrupt_level; | |
497 | ||
498 | at_safe_point = (interruptible == THREAD_ABORTSAFE); | |
499 | ||
500 | if ((interruptible == THREAD_UNINT) || | |
501 | !(thread->state & TH_ABORT) || | |
502 | (!at_safe_point && (thread->state & TH_ABORT_SAFELY))) { | |
503 | thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT); | |
504 | thread->at_safe_point = at_safe_point; | |
505 | thread->sleep_stamp = sched_tick; | |
506 | return (thread->wait_result = THREAD_WAITING); | |
507 | } else if (thread->state & TH_ABORT_SAFELY) { | |
508 | thread->state &= ~(TH_ABORT|TH_ABORT_SAFELY); | |
509 | } | |
510 | return (thread->wait_result = THREAD_INTERRUPTED); | |
1c79356b A |
511 | } |
512 | ||
9bccf70c A |
513 | /* |
514 | * Routine: thread_interrupt_level | |
515 | * Purpose: | |
516 | * Set the maximum interruptible state for the | |
517 | * current thread. The effective value of any | |
518 | * interruptible flag passed into assert_wait | |
519 | * will never exceed this. | |
520 | * | |
521 | * Useful for code that must not be interrupted, | |
522 | * but which calls code that doesn't know that. | |
523 | * Returns: | |
524 | * The old interrupt level for the thread. | |
525 | */ | |
526 | __private_extern__ | |
527 | wait_interrupt_t | |
528 | thread_interrupt_level( | |
529 | wait_interrupt_t new_level) | |
530 | { | |
531 | thread_t thread = current_thread(); | |
532 | wait_interrupt_t result = thread->interrupt_level; | |
1c79356b | 533 | |
9bccf70c A |
534 | thread->interrupt_level = new_level; |
535 | return result; | |
536 | } | |
1c79356b A |
537 | |
538 | /* | |
539 | * Routine: assert_wait_timeout | |
540 | * Purpose: | |
541 | * Assert that the thread intends to block, | |
542 | * waiting for a timeout (no user known event). | |
543 | */ | |
544 | unsigned int assert_wait_timeout_event; | |
545 | ||
9bccf70c | 546 | wait_result_t |
1c79356b | 547 | assert_wait_timeout( |
9bccf70c A |
548 | mach_msg_timeout_t msecs, |
549 | wait_interrupt_t interruptible) | |
1c79356b | 550 | { |
9bccf70c | 551 | wait_result_t res; |
1c79356b | 552 | |
9bccf70c A |
553 | res = assert_wait((event_t)&assert_wait_timeout_event, interruptible); |
554 | if (res == THREAD_WAITING) | |
555 | thread_set_timer(msecs, 1000*NSEC_PER_USEC); | |
556 | return res; | |
1c79356b A |
557 | } |
558 | ||
559 | /* | |
560 | * Check to see if an assert wait is possible, without actually doing one. | |
561 | * This is used by debug code in locks and elsewhere to verify that it is | |
562 | * always OK to block when trying to take a blocking lock (since waiting | |
563 | * for the actual assert_wait to catch the case may make it hard to detect | |
564 | * this case. | |
565 | */ | |
566 | boolean_t | |
567 | assert_wait_possible(void) | |
568 | { | |
569 | ||
570 | thread_t thread; | |
571 | extern unsigned int debug_mode; | |
572 | ||
573 | #if DEBUG | |
574 | if(debug_mode) return TRUE; /* Always succeed in debug mode */ | |
575 | #endif | |
576 | ||
577 | thread = current_thread(); | |
578 | ||
579 | return (thread == NULL || wait_queue_assert_possible(thread)); | |
580 | } | |
581 | ||
582 | /* | |
583 | * assert_wait: | |
584 | * | |
585 | * Assert that the current thread is about to go to | |
586 | * sleep until the specified event occurs. | |
587 | */ | |
9bccf70c | 588 | wait_result_t |
1c79356b A |
589 | assert_wait( |
590 | event_t event, | |
9bccf70c | 591 | wait_interrupt_t interruptible) |
1c79356b A |
592 | { |
593 | register wait_queue_t wq; | |
594 | register int index; | |
595 | ||
596 | assert(event != NO_EVENT); | |
597 | assert(assert_wait_possible()); | |
598 | ||
599 | index = wait_hash(event); | |
600 | wq = &wait_queues[index]; | |
9bccf70c A |
601 | return wait_queue_assert_wait(wq, event, interruptible); |
602 | } | |
603 | ||
604 | ||
605 | /* | |
606 | * thread_sleep_fast_usimple_lock: | |
607 | * | |
608 | * Cause the current thread to wait until the specified event | |
609 | * occurs. The specified simple_lock is unlocked before releasing | |
610 | * the cpu and re-acquired as part of waking up. | |
611 | * | |
612 | * This is the simple lock sleep interface for components that use a | |
613 | * faster version of simple_lock() than is provided by usimple_lock(). | |
614 | */ | |
615 | __private_extern__ wait_result_t | |
616 | thread_sleep_fast_usimple_lock( | |
617 | event_t event, | |
618 | simple_lock_t lock, | |
619 | wait_interrupt_t interruptible) | |
620 | { | |
621 | wait_result_t res; | |
622 | ||
623 | res = assert_wait(event, interruptible); | |
624 | if (res == THREAD_WAITING) { | |
625 | simple_unlock(lock); | |
626 | res = thread_block(THREAD_CONTINUE_NULL); | |
627 | simple_lock(lock); | |
628 | } | |
629 | return res; | |
1c79356b A |
630 | } |
631 | ||
9bccf70c A |
632 | |
633 | /* | |
634 | * thread_sleep_usimple_lock: | |
635 | * | |
636 | * Cause the current thread to wait until the specified event | |
637 | * occurs. The specified usimple_lock is unlocked before releasing | |
638 | * the cpu and re-acquired as part of waking up. | |
639 | * | |
640 | * This is the simple lock sleep interface for components where | |
641 | * simple_lock() is defined in terms of usimple_lock(). | |
642 | */ | |
643 | wait_result_t | |
644 | thread_sleep_usimple_lock( | |
645 | event_t event, | |
646 | usimple_lock_t lock, | |
647 | wait_interrupt_t interruptible) | |
648 | { | |
649 | wait_result_t res; | |
650 | ||
651 | res = assert_wait(event, interruptible); | |
652 | if (res == THREAD_WAITING) { | |
653 | usimple_unlock(lock); | |
654 | res = thread_block(THREAD_CONTINUE_NULL); | |
655 | usimple_lock(lock); | |
656 | } | |
657 | return res; | |
658 | } | |
659 | ||
660 | /* | |
661 | * thread_sleep_mutex: | |
662 | * | |
663 | * Cause the current thread to wait until the specified event | |
664 | * occurs. The specified mutex is unlocked before releasing | |
665 | * the cpu. The mutex will be re-acquired before returning. | |
666 | * | |
667 | * JMM - Add hint to make sure mutex is available before rousting | |
668 | */ | |
669 | wait_result_t | |
670 | thread_sleep_mutex( | |
671 | event_t event, | |
672 | mutex_t *mutex, | |
673 | wait_interrupt_t interruptible) | |
674 | { | |
675 | wait_result_t res; | |
676 | ||
677 | res = assert_wait(event, interruptible); | |
678 | if (res == THREAD_WAITING) { | |
679 | mutex_unlock(mutex); | |
680 | res = thread_block(THREAD_CONTINUE_NULL); | |
681 | mutex_lock(mutex); | |
682 | } | |
683 | return res; | |
684 | } | |
1c79356b | 685 | |
9bccf70c A |
686 | /* |
687 | * thread_sleep_mutex_deadline: | |
688 | * | |
689 | * Cause the current thread to wait until the specified event | |
690 | * (or deadline) occurs. The specified mutex is unlocked before | |
691 | * releasing the cpu. The mutex will be re-acquired before returning. | |
692 | * | |
693 | * JMM - Add hint to make sure mutex is available before rousting | |
694 | */ | |
695 | wait_result_t | |
696 | thread_sleep_mutex_deadline( | |
697 | event_t event, | |
698 | mutex_t *mutex, | |
699 | uint64_t deadline, | |
700 | wait_interrupt_t interruptible) | |
701 | { | |
702 | wait_result_t res; | |
703 | ||
704 | res = assert_wait(event, interruptible); | |
705 | if (res == THREAD_WAITING) { | |
706 | mutex_unlock(mutex); | |
707 | thread_set_timer_deadline(deadline); | |
708 | res = thread_block(THREAD_CONTINUE_NULL); | |
709 | if (res != THREAD_TIMED_OUT) | |
710 | thread_cancel_timer(); | |
711 | mutex_lock(mutex); | |
712 | } | |
713 | return res; | |
714 | } | |
715 | ||
716 | /* | |
717 | * thread_sleep_lock_write: | |
718 | * | |
719 | * Cause the current thread to wait until the specified event | |
720 | * occurs. The specified (write) lock is unlocked before releasing | |
721 | * the cpu. The (write) lock will be re-acquired before returning. | |
722 | * | |
723 | * JMM - Add hint to make sure mutex is available before rousting | |
724 | */ | |
725 | wait_result_t | |
726 | thread_sleep_lock_write( | |
727 | event_t event, | |
728 | lock_t *lock, | |
729 | wait_interrupt_t interruptible) | |
730 | { | |
731 | wait_result_t res; | |
732 | ||
733 | res = assert_wait(event, interruptible); | |
734 | if (res == THREAD_WAITING) { | |
735 | lock_write_done(lock); | |
736 | res = thread_block(THREAD_CONTINUE_NULL); | |
737 | lock_write(lock); | |
738 | } | |
739 | return res; | |
740 | } | |
741 | ||
742 | ||
743 | /* | |
744 | * thread_sleep_funnel: | |
745 | * | |
746 | * Cause the current thread to wait until the specified event | |
747 | * occurs. If the thread is funnelled, the funnel will be released | |
748 | * before giving up the cpu. The funnel will be re-acquired before returning. | |
749 | * | |
750 | * JMM - Right now the funnel is dropped and re-acquired inside | |
751 | * thread_block(). At some point, this may give thread_block() a hint. | |
752 | */ | |
753 | wait_result_t | |
754 | thread_sleep_funnel( | |
755 | event_t event, | |
756 | wait_interrupt_t interruptible) | |
757 | { | |
758 | wait_result_t res; | |
759 | ||
760 | res = assert_wait(event, interruptible); | |
761 | if (res == THREAD_WAITING) { | |
762 | res = thread_block(THREAD_CONTINUE_NULL); | |
763 | } | |
764 | return res; | |
765 | } | |
766 | ||
1c79356b A |
767 | /* |
768 | * thread_[un]stop(thread) | |
769 | * Once a thread has blocked interruptibly (via assert_wait) prevent | |
770 | * it from running until thread_unstop. | |
771 | * | |
772 | * If someone else has already stopped the thread, wait for the | |
773 | * stop to be cleared, and then stop it again. | |
774 | * | |
775 | * Return FALSE if interrupted. | |
776 | * | |
777 | * NOTE: thread_hold/thread_suspend should be called on the activation | |
778 | * before calling thread_stop. TH_SUSP is only recognized when | |
779 | * a thread blocks and only prevents clear_wait/thread_wakeup | |
780 | * from restarting an interruptible wait. The wake_active flag is | |
781 | * used to indicate that someone is waiting on the thread. | |
782 | */ | |
783 | boolean_t | |
784 | thread_stop( | |
9bccf70c | 785 | thread_t thread) |
1c79356b | 786 | { |
9bccf70c | 787 | spl_t s = splsched(); |
1c79356b | 788 | |
1c79356b A |
789 | wake_lock(thread); |
790 | ||
791 | while (thread->state & TH_SUSP) { | |
9bccf70c | 792 | wait_result_t result; |
e7c99d92 | 793 | |
1c79356b | 794 | thread->wake_active = TRUE; |
9bccf70c | 795 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
1c79356b A |
796 | wake_unlock(thread); |
797 | splx(s); | |
798 | ||
9bccf70c A |
799 | if (result == THREAD_WAITING) |
800 | result = thread_block(THREAD_CONTINUE_NULL); | |
801 | ||
802 | if (result != THREAD_AWAKENED) | |
1c79356b A |
803 | return (FALSE); |
804 | ||
805 | s = splsched(); | |
806 | wake_lock(thread); | |
807 | } | |
9bccf70c | 808 | |
1c79356b A |
809 | thread_lock(thread); |
810 | thread->state |= TH_SUSP; | |
1c79356b | 811 | |
9bccf70c A |
812 | while (thread->state & TH_RUN) { |
813 | wait_result_t result; | |
814 | processor_t processor = thread->last_processor; | |
815 | ||
816 | if ( processor != PROCESSOR_NULL && | |
817 | processor->state == PROCESSOR_RUNNING && | |
818 | processor->cpu_data->active_thread == thread ) | |
819 | cause_ast_check(processor); | |
820 | thread_unlock(thread); | |
821 | ||
822 | thread->wake_active = TRUE; | |
823 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); | |
824 | wake_unlock(thread); | |
825 | splx(s); | |
826 | ||
827 | if (result == THREAD_WAITING) | |
828 | result = thread_block(THREAD_CONTINUE_NULL); | |
829 | ||
830 | if (result != THREAD_AWAKENED) { | |
831 | thread_unstop(thread); | |
832 | return (FALSE); | |
833 | } | |
834 | ||
835 | s = splsched(); | |
836 | wake_lock(thread); | |
837 | thread_lock(thread); | |
838 | } | |
839 | ||
840 | thread_unlock(thread); | |
1c79356b A |
841 | wake_unlock(thread); |
842 | splx(s); | |
843 | ||
844 | return (TRUE); | |
845 | } | |
846 | ||
847 | /* | |
848 | * Clear TH_SUSP and if the thread has been stopped and is now runnable, | |
849 | * put it back on the run queue. | |
850 | */ | |
851 | void | |
852 | thread_unstop( | |
9bccf70c | 853 | thread_t thread) |
1c79356b | 854 | { |
9bccf70c | 855 | spl_t s = splsched(); |
1c79356b | 856 | |
1c79356b A |
857 | wake_lock(thread); |
858 | thread_lock(thread); | |
859 | ||
9bccf70c | 860 | if ((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) == TH_SUSP) { |
0b4e3aa0 A |
861 | thread->state &= ~TH_SUSP; |
862 | thread->state |= TH_RUN; | |
863 | ||
9bccf70c | 864 | assert(!(thread->state & TH_IDLE)); |
0b4e3aa0 | 865 | _mk_sp_thread_unblock(thread); |
9bccf70c | 866 | hw_atomic_add(&thread->processor_set->run_count, 1); |
1c79356b A |
867 | } |
868 | else | |
869 | if (thread->state & TH_SUSP) { | |
870 | thread->state &= ~TH_SUSP; | |
871 | ||
872 | if (thread->wake_active) { | |
873 | thread->wake_active = FALSE; | |
874 | thread_unlock(thread); | |
875 | wake_unlock(thread); | |
876 | splx(s); | |
1c79356b | 877 | |
9bccf70c | 878 | thread_wakeup(&thread->wake_active); |
1c79356b A |
879 | return; |
880 | } | |
881 | } | |
882 | ||
883 | thread_unlock(thread); | |
884 | wake_unlock(thread); | |
885 | splx(s); | |
886 | } | |
887 | ||
888 | /* | |
889 | * Wait for the thread's RUN bit to clear | |
890 | */ | |
891 | boolean_t | |
892 | thread_wait( | |
9bccf70c | 893 | thread_t thread) |
1c79356b | 894 | { |
9bccf70c | 895 | spl_t s = splsched(); |
1c79356b | 896 | |
1c79356b | 897 | wake_lock(thread); |
9bccf70c | 898 | thread_lock(thread); |
1c79356b | 899 | |
9bccf70c A |
900 | while (thread->state & TH_RUN) { |
901 | wait_result_t result; | |
902 | processor_t processor = thread->last_processor; | |
e7c99d92 | 903 | |
9bccf70c A |
904 | if ( processor != PROCESSOR_NULL && |
905 | processor->state == PROCESSOR_RUNNING && | |
906 | processor->cpu_data->active_thread == thread ) | |
907 | cause_ast_check(processor); | |
908 | thread_unlock(thread); | |
1c79356b A |
909 | |
910 | thread->wake_active = TRUE; | |
9bccf70c | 911 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
1c79356b A |
912 | wake_unlock(thread); |
913 | splx(s); | |
914 | ||
9bccf70c A |
915 | if (result == THREAD_WAITING) |
916 | result = thread_block(THREAD_CONTINUE_NULL); | |
917 | ||
918 | if (result != THREAD_AWAKENED) | |
919 | return (FALSE); | |
1c79356b A |
920 | |
921 | s = splsched(); | |
922 | wake_lock(thread); | |
9bccf70c | 923 | thread_lock(thread); |
1c79356b | 924 | } |
0b4e3aa0 | 925 | |
9bccf70c | 926 | thread_unlock(thread); |
1c79356b A |
927 | wake_unlock(thread); |
928 | splx(s); | |
0b4e3aa0 A |
929 | |
930 | return (TRUE); | |
1c79356b A |
931 | } |
932 | ||
1c79356b A |
933 | /* |
934 | * Routine: clear_wait_internal | |
935 | * | |
936 | * Clear the wait condition for the specified thread. | |
937 | * Start the thread executing if that is appropriate. | |
938 | * Arguments: | |
939 | * thread thread to awaken | |
940 | * result Wakeup result the thread should see | |
941 | * Conditions: | |
942 | * At splsched | |
943 | * the thread is locked. | |
9bccf70c A |
944 | * Returns: |
945 | * KERN_SUCCESS thread was rousted out a wait | |
946 | * KERN_FAILURE thread was waiting but could not be rousted | |
947 | * KERN_NOT_WAITING thread was not waiting | |
1c79356b | 948 | */ |
9bccf70c | 949 | __private_extern__ kern_return_t |
1c79356b | 950 | clear_wait_internal( |
9bccf70c A |
951 | thread_t thread, |
952 | wait_result_t result) | |
1c79356b | 953 | { |
9bccf70c A |
954 | wait_queue_t wq = thread->wait_queue; |
955 | kern_return_t ret; | |
956 | int loop_count; | |
957 | ||
958 | loop_count = 0; | |
959 | do { | |
960 | if ((result == THREAD_INTERRUPTED) && (thread->state & TH_UNINT)) | |
961 | return KERN_FAILURE; | |
962 | ||
963 | if (wq != WAIT_QUEUE_NULL) { | |
964 | if (wait_queue_lock_try(wq)) { | |
965 | wait_queue_pull_thread_locked(wq, thread, TRUE); | |
966 | /* wait queue unlocked, thread still locked */ | |
967 | } else { | |
968 | thread_unlock(thread); | |
969 | delay(1); | |
970 | thread_lock(thread); | |
971 | ||
972 | if (wq != thread->wait_queue) { | |
973 | return KERN_NOT_WAITING; /* we know it moved */ | |
974 | } | |
975 | continue; | |
976 | } | |
1c79356b | 977 | } |
9bccf70c A |
978 | ret = thread_go_locked(thread, result); |
979 | return ret; | |
980 | } while (++loop_count < LockTimeOut); | |
981 | panic("clear_wait_internal: deadlock: thread=0x%x, wq=0x%x, cpu=%d\n", | |
982 | thread, wq, cpu_number()); | |
983 | return KERN_FAILURE; | |
1c79356b A |
984 | } |
985 | ||
986 | ||
987 | /* | |
988 | * clear_wait: | |
989 | * | |
990 | * Clear the wait condition for the specified thread. Start the thread | |
991 | * executing if that is appropriate. | |
992 | * | |
993 | * parameters: | |
994 | * thread thread to awaken | |
995 | * result Wakeup result the thread should see | |
996 | */ | |
9bccf70c | 997 | kern_return_t |
1c79356b | 998 | clear_wait( |
9bccf70c A |
999 | thread_t thread, |
1000 | wait_result_t result) | |
1c79356b | 1001 | { |
9bccf70c | 1002 | kern_return_t ret; |
1c79356b A |
1003 | spl_t s; |
1004 | ||
1005 | s = splsched(); | |
1006 | thread_lock(thread); | |
9bccf70c | 1007 | ret = clear_wait_internal(thread, result); |
1c79356b A |
1008 | thread_unlock(thread); |
1009 | splx(s); | |
9bccf70c | 1010 | return ret; |
1c79356b A |
1011 | } |
1012 | ||
1013 | ||
1014 | /* | |
1015 | * thread_wakeup_prim: | |
1016 | * | |
1017 | * Common routine for thread_wakeup, thread_wakeup_with_result, | |
1018 | * and thread_wakeup_one. | |
1019 | * | |
1020 | */ | |
9bccf70c | 1021 | kern_return_t |
1c79356b A |
1022 | thread_wakeup_prim( |
1023 | event_t event, | |
1024 | boolean_t one_thread, | |
9bccf70c | 1025 | wait_result_t result) |
1c79356b A |
1026 | { |
1027 | register wait_queue_t wq; | |
1028 | register int index; | |
1029 | ||
1030 | index = wait_hash(event); | |
1031 | wq = &wait_queues[index]; | |
1032 | if (one_thread) | |
9bccf70c | 1033 | return (wait_queue_wakeup_one(wq, event, result)); |
1c79356b | 1034 | else |
9bccf70c | 1035 | return (wait_queue_wakeup_all(wq, event, result)); |
1c79356b A |
1036 | } |
1037 | ||
1038 | /* | |
1039 | * thread_bind: | |
1040 | * | |
1041 | * Force a thread to execute on the specified processor. | |
1042 | * If the thread is currently executing, it may wait until its | |
1043 | * time slice is up before switching onto the specified processor. | |
1044 | * | |
1045 | * A processor of PROCESSOR_NULL causes the thread to be unbound. | |
1046 | * xxx - DO NOT export this to users. | |
1047 | */ | |
1048 | void | |
1049 | thread_bind( | |
1050 | register thread_t thread, | |
1051 | processor_t processor) | |
1052 | { | |
1053 | spl_t s; | |
1054 | ||
1055 | s = splsched(); | |
1056 | thread_lock(thread); | |
1057 | thread_bind_locked(thread, processor); | |
1058 | thread_unlock(thread); | |
1059 | splx(s); | |
1060 | } | |
1061 | ||
1062 | /* | |
1063 | * Select a thread for this processor (the current processor) to run. | |
1064 | * May select the current thread, which must already be locked. | |
1065 | */ | |
1066 | thread_t | |
1067 | thread_select( | |
1068 | register processor_t myprocessor) | |
1069 | { | |
1070 | register thread_t thread; | |
1071 | processor_set_t pset; | |
1072 | register run_queue_t runq = &myprocessor->runq; | |
1073 | boolean_t other_runnable; | |
1c79356b A |
1074 | |
1075 | /* | |
1076 | * Check for other non-idle runnable threads. | |
1077 | */ | |
1c79356b | 1078 | pset = myprocessor->processor_set; |
9bccf70c | 1079 | thread = myprocessor->cpu_data->active_thread; |
0b4e3aa0 A |
1080 | |
1081 | /* Update the thread's priority */ | |
1082 | if (thread->sched_stamp != sched_tick) | |
1083 | update_priority(thread); | |
1c79356b | 1084 | |
9bccf70c A |
1085 | myprocessor->current_pri = thread->sched_pri; |
1086 | ||
1c79356b A |
1087 | simple_lock(&runq->lock); |
1088 | simple_lock(&pset->runq.lock); | |
1089 | ||
1090 | other_runnable = runq->count > 0 || pset->runq.count > 0; | |
1091 | ||
1092 | if ( thread->state == TH_RUN && | |
1093 | (!other_runnable || | |
1094 | (runq->highq < thread->sched_pri && | |
1095 | pset->runq.highq < thread->sched_pri)) && | |
1096 | thread->processor_set == pset && | |
1097 | (thread->bound_processor == PROCESSOR_NULL || | |
1098 | thread->bound_processor == myprocessor) ) { | |
1099 | ||
1100 | /* I am the highest priority runnable (non-idle) thread */ | |
1101 | simple_unlock(&pset->runq.lock); | |
1102 | simple_unlock(&runq->lock); | |
1103 | ||
0b4e3aa0 A |
1104 | myprocessor->slice_quanta = |
1105 | (thread->sched_mode & TH_MODE_TIMESHARE)? pset->set_quanta: 1; | |
1c79356b A |
1106 | } |
1107 | else | |
9bccf70c | 1108 | if (other_runnable) |
1c79356b | 1109 | thread = choose_thread(myprocessor); |
1c79356b A |
1110 | else { |
1111 | simple_unlock(&pset->runq.lock); | |
1112 | simple_unlock(&runq->lock); | |
1113 | ||
1114 | /* | |
1115 | * Nothing is runnable, so set this processor idle if it | |
1116 | * was running. If it was in an assignment or shutdown, | |
1117 | * leave it alone. Return its idle thread. | |
1118 | */ | |
9bccf70c | 1119 | simple_lock(&pset->sched_lock); |
1c79356b | 1120 | if (myprocessor->state == PROCESSOR_RUNNING) { |
9bccf70c | 1121 | remqueue(&pset->active_queue, (queue_entry_t)myprocessor); |
1c79356b | 1122 | myprocessor->state = PROCESSOR_IDLE; |
9bccf70c | 1123 | |
1c79356b | 1124 | if (myprocessor == master_processor) |
9bccf70c | 1125 | enqueue_tail(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b | 1126 | else |
9bccf70c | 1127 | enqueue_head(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b A |
1128 | |
1129 | pset->idle_count++; | |
1130 | } | |
9bccf70c | 1131 | simple_unlock(&pset->sched_lock); |
1c79356b A |
1132 | |
1133 | thread = myprocessor->idle_thread; | |
1134 | } | |
1135 | ||
1136 | return (thread); | |
1137 | } | |
1138 | ||
1139 | ||
1140 | /* | |
1141 | * Stop running the current thread and start running the new thread. | |
1142 | * If continuation is non-zero, and the current thread is blocked, | |
1143 | * then it will resume by executing continuation on a new stack. | |
1144 | * Returns TRUE if the hand-off succeeds. | |
9bccf70c | 1145 | * |
1c79356b A |
1146 | * Assumes splsched. |
1147 | */ | |
1148 | ||
1c79356b A |
1149 | static thread_t |
1150 | __current_thread(void) | |
1151 | { | |
1152 | return (current_thread()); | |
1153 | } | |
1154 | ||
1155 | boolean_t | |
1156 | thread_invoke( | |
1157 | register thread_t old_thread, | |
1158 | register thread_t new_thread, | |
1159 | int reason, | |
9bccf70c | 1160 | thread_continue_t old_cont) |
1c79356b | 1161 | { |
9bccf70c A |
1162 | thread_continue_t new_cont; |
1163 | processor_t processor; | |
1c79356b | 1164 | |
9bccf70c | 1165 | if (get_preemption_level() != 0) |
0b4e3aa0 | 1166 | panic("thread_invoke: preemption_level %d\n", |
9bccf70c | 1167 | get_preemption_level()); |
0b4e3aa0 | 1168 | |
1c79356b | 1169 | /* |
9bccf70c | 1170 | * Mark thread interruptible. |
1c79356b A |
1171 | */ |
1172 | thread_lock(new_thread); | |
1173 | new_thread->state &= ~TH_UNINT; | |
1174 | ||
1c79356b A |
1175 | assert(thread_runnable(new_thread)); |
1176 | ||
9bccf70c | 1177 | assert(old_thread->continuation == NULL); |
1c79356b | 1178 | |
9bccf70c A |
1179 | /* |
1180 | * Allow time constraint threads to hang onto | |
1181 | * a stack. | |
1182 | */ | |
0b4e3aa0 A |
1183 | if ( (old_thread->sched_mode & TH_MODE_REALTIME) && |
1184 | !old_thread->stack_privilege ) { | |
1185 | old_thread->stack_privilege = old_thread->kernel_stack; | |
1c79356b A |
1186 | } |
1187 | ||
9bccf70c A |
1188 | if (old_cont != NULL) { |
1189 | if (new_thread->state & TH_STACK_HANDOFF) { | |
1190 | /* | |
1191 | * If the old thread is using a privileged stack, | |
1192 | * check to see whether we can exchange it with | |
1193 | * that of the new thread. | |
1194 | */ | |
1195 | if ( old_thread->kernel_stack == old_thread->stack_privilege && | |
1196 | !new_thread->stack_privilege) | |
1197 | goto need_stack; | |
1c79356b | 1198 | |
9bccf70c A |
1199 | new_thread->state &= ~TH_STACK_HANDOFF; |
1200 | new_cont = new_thread->continuation; | |
1201 | new_thread->continuation = NULL; | |
1c79356b | 1202 | |
9bccf70c A |
1203 | /* |
1204 | * Set up ast context of new thread and switch | |
1205 | * to its timer. | |
1206 | */ | |
1207 | processor = current_processor(); | |
1208 | new_thread->last_processor = processor; | |
1209 | processor->current_pri = new_thread->sched_pri; | |
1210 | ast_context(new_thread->top_act, processor->slot_num); | |
1211 | timer_switch(&new_thread->system_timer); | |
1212 | thread_unlock(new_thread); | |
0b4e3aa0 | 1213 | |
9bccf70c | 1214 | current_task()->csw++; |
1c79356b | 1215 | |
9bccf70c A |
1216 | old_thread->reason = reason; |
1217 | old_thread->continuation = old_cont; | |
0b4e3aa0 | 1218 | |
9bccf70c | 1219 | _mk_sp_thread_done(old_thread, new_thread, processor); |
1c79356b | 1220 | |
9bccf70c A |
1221 | stack_handoff(old_thread, new_thread); |
1222 | ||
1223 | _mk_sp_thread_begin(new_thread, processor); | |
1c79356b | 1224 | |
1c79356b A |
1225 | wake_lock(old_thread); |
1226 | thread_lock(old_thread); | |
1c79356b | 1227 | |
9bccf70c A |
1228 | /* |
1229 | * Inline thread_dispatch but | |
1230 | * don't free stack. | |
1231 | */ | |
1232 | ||
1233 | switch (old_thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_IDLE)) { | |
1234 | ||
1235 | case TH_RUN | TH_UNINT: | |
1236 | case TH_RUN: | |
1237 | /* | |
1238 | * Still running, put back | |
1239 | * onto a run queue. | |
1240 | */ | |
1241 | old_thread->state |= TH_STACK_HANDOFF; | |
1242 | _mk_sp_thread_dispatch(old_thread); | |
1243 | ||
1244 | thread_unlock(old_thread); | |
1245 | wake_unlock(old_thread); | |
1246 | break; | |
1c79356b | 1247 | |
9bccf70c A |
1248 | case TH_RUN | TH_WAIT | TH_UNINT: |
1249 | case TH_RUN | TH_WAIT: | |
1250 | { | |
1251 | boolean_t reap, wake, callblock; | |
1c79356b | 1252 | |
9bccf70c A |
1253 | /* |
1254 | * Waiting. | |
1255 | */ | |
1256 | old_thread->sleep_stamp = sched_tick; | |
1257 | old_thread->state |= TH_STACK_HANDOFF; | |
1258 | old_thread->state &= ~TH_RUN; | |
1259 | hw_atomic_sub(&old_thread->processor_set->run_count, 1); | |
1260 | callblock = old_thread->active_callout; | |
1261 | wake = old_thread->wake_active; | |
1262 | old_thread->wake_active = FALSE; | |
1263 | reap = (old_thread->state & TH_TERMINATE)? TRUE: FALSE; | |
1264 | ||
1265 | thread_unlock(old_thread); | |
1266 | wake_unlock(old_thread); | |
1267 | ||
1268 | if (callblock) | |
1269 | call_thread_block(); | |
1270 | ||
1271 | if (wake) | |
1272 | thread_wakeup((event_t)&old_thread->wake_active); | |
1273 | ||
1274 | if (reap) | |
1275 | thread_reaper_enqueue(old_thread); | |
1276 | break; | |
1277 | } | |
1c79356b | 1278 | |
9bccf70c A |
1279 | case TH_RUN | TH_IDLE: |
1280 | /* | |
1281 | * The idle threads don't go | |
1282 | * onto a run queue. | |
1283 | */ | |
1284 | old_thread->state |= TH_STACK_HANDOFF; | |
1285 | thread_unlock(old_thread); | |
1286 | wake_unlock(old_thread); | |
1287 | break; | |
1c79356b | 1288 | |
9bccf70c A |
1289 | default: |
1290 | panic("thread_invoke: state 0x%x\n", old_thread->state); | |
1291 | } | |
1c79356b | 1292 | |
9bccf70c | 1293 | counter_always(c_thread_invoke_hits++); |
1c79356b | 1294 | |
9bccf70c A |
1295 | if (new_thread->funnel_state & TH_FN_REFUNNEL) { |
1296 | kern_return_t wait_result = new_thread->wait_result; | |
1c79356b | 1297 | |
9bccf70c A |
1298 | new_thread->funnel_state = 0; |
1299 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, | |
1300 | new_thread->funnel_lock, 2, 0, 0, 0); | |
1301 | funnel_lock(new_thread->funnel_lock); | |
1302 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, | |
1303 | new_thread->funnel_lock, 2, 0, 0, 0); | |
1304 | new_thread->funnel_state = TH_FN_OWNED; | |
1305 | new_thread->wait_result = wait_result; | |
1306 | } | |
1307 | (void) spllo(); | |
1c79356b | 1308 | |
9bccf70c A |
1309 | assert(new_cont); |
1310 | call_continuation(new_cont); | |
1311 | /*NOTREACHED*/ | |
1312 | return (TRUE); | |
1c79356b | 1313 | } |
9bccf70c A |
1314 | else |
1315 | if (new_thread->state & TH_STACK_ALLOC) { | |
1316 | /* | |
1317 | * Waiting for a stack | |
1318 | */ | |
1c79356b | 1319 | counter_always(c_thread_invoke_misses++); |
9bccf70c A |
1320 | thread_unlock(new_thread); |
1321 | return (FALSE); | |
1322 | } | |
1323 | else | |
1324 | if (new_thread == old_thread) { | |
1325 | /* same thread but with continuation */ | |
1326 | counter(++c_thread_invoke_same); | |
1327 | thread_unlock(new_thread); | |
1328 | ||
1329 | if (new_thread->funnel_state & TH_FN_REFUNNEL) { | |
1330 | kern_return_t wait_result = new_thread->wait_result; | |
1331 | ||
1332 | new_thread->funnel_state = 0; | |
1333 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, | |
1334 | new_thread->funnel_lock, 3, 0, 0, 0); | |
1335 | funnel_lock(new_thread->funnel_lock); | |
1336 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, | |
1337 | new_thread->funnel_lock, 3, 0, 0, 0); | |
1338 | new_thread->funnel_state = TH_FN_OWNED; | |
1339 | new_thread->wait_result = wait_result; | |
1340 | } | |
1341 | (void) spllo(); | |
1342 | call_continuation(old_cont); | |
1343 | /*NOTREACHED*/ | |
1344 | } | |
1c79356b | 1345 | } |
9bccf70c A |
1346 | else { |
1347 | /* | |
1348 | * Check that the new thread has a stack | |
1349 | */ | |
1350 | if (new_thread->state & TH_STACK_HANDOFF) { | |
1351 | need_stack: | |
1352 | if (!stack_alloc_try(new_thread, thread_continue)) { | |
1353 | counter_always(c_thread_invoke_misses++); | |
1354 | thread_swapin(new_thread); | |
1355 | return (FALSE); | |
1356 | } | |
1c79356b | 1357 | |
9bccf70c A |
1358 | new_thread->state &= ~TH_STACK_HANDOFF; |
1359 | } | |
1360 | else | |
1361 | if (new_thread->state & TH_STACK_ALLOC) { | |
1362 | /* | |
1363 | * Waiting for a stack | |
1364 | */ | |
1365 | counter_always(c_thread_invoke_misses++); | |
1366 | thread_unlock(new_thread); | |
1367 | return (FALSE); | |
1368 | } | |
1369 | else | |
1370 | if (old_thread == new_thread) { | |
1371 | counter(++c_thread_invoke_same); | |
1372 | thread_unlock(new_thread); | |
1373 | return (TRUE); | |
1374 | } | |
1375 | } | |
1c79356b A |
1376 | |
1377 | /* | |
9bccf70c | 1378 | * Set up ast context of new thread and switch to its timer. |
1c79356b | 1379 | */ |
9bccf70c A |
1380 | processor = current_processor(); |
1381 | new_thread->last_processor = processor; | |
1382 | processor->current_pri = new_thread->sched_pri; | |
1383 | ast_context(new_thread->top_act, processor->slot_num); | |
1c79356b A |
1384 | timer_switch(&new_thread->system_timer); |
1385 | assert(thread_runnable(new_thread)); | |
1c79356b A |
1386 | thread_unlock(new_thread); |
1387 | ||
1388 | counter_always(c_thread_invoke_csw++); | |
1389 | current_task()->csw++; | |
1390 | ||
1c79356b | 1391 | assert(old_thread->runq == RUN_QUEUE_NULL); |
9bccf70c A |
1392 | old_thread->reason = reason; |
1393 | old_thread->continuation = old_cont; | |
1c79356b | 1394 | |
9bccf70c | 1395 | _mk_sp_thread_done(old_thread, new_thread, processor); |
1c79356b A |
1396 | |
1397 | /* | |
1398 | * switch_context is machine-dependent. It does the | |
1399 | * machine-dependent components of a context-switch, like | |
1400 | * changing address spaces. It updates active_threads. | |
1401 | */ | |
9bccf70c | 1402 | old_thread = switch_context(old_thread, old_cont, new_thread); |
1c79356b A |
1403 | |
1404 | /* Now on new thread's stack. Set a local variable to refer to it. */ | |
1405 | new_thread = __current_thread(); | |
1406 | assert(old_thread != new_thread); | |
1407 | ||
1c79356b | 1408 | assert(thread_runnable(new_thread)); |
9bccf70c | 1409 | _mk_sp_thread_begin(new_thread, new_thread->last_processor); |
1c79356b A |
1410 | |
1411 | /* | |
1412 | * We're back. Now old_thread is the thread that resumed | |
1413 | * us, and we have to dispatch it. | |
1414 | */ | |
1c79356b | 1415 | thread_dispatch(old_thread); |
9bccf70c A |
1416 | |
1417 | if (old_cont) { | |
1418 | if (new_thread->funnel_state & TH_FN_REFUNNEL) { | |
1419 | kern_return_t wait_result = new_thread->wait_result; | |
1420 | ||
1421 | new_thread->funnel_state = 0; | |
1422 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, | |
1423 | new_thread->funnel_lock, 3, 0, 0, 0); | |
1424 | funnel_lock(new_thread->funnel_lock); | |
1425 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, | |
1426 | new_thread->funnel_lock, 3, 0, 0, 0); | |
1427 | new_thread->funnel_state = TH_FN_OWNED; | |
1428 | new_thread->wait_result = wait_result; | |
1429 | } | |
1430 | (void) spllo(); | |
1431 | call_continuation(old_cont); | |
1432 | /*NOTREACHED*/ | |
1c79356b A |
1433 | } |
1434 | ||
9bccf70c | 1435 | return (TRUE); |
1c79356b A |
1436 | } |
1437 | ||
1438 | /* | |
1439 | * thread_continue: | |
1440 | * | |
9bccf70c | 1441 | * Called when a thread gets a new stack, at splsched(); |
1c79356b A |
1442 | */ |
1443 | void | |
1444 | thread_continue( | |
0b4e3aa0 | 1445 | register thread_t old_thread) |
1c79356b | 1446 | { |
9bccf70c A |
1447 | register thread_t self = current_thread(); |
1448 | register thread_continue_t continuation; | |
1449 | ||
1450 | continuation = self->continuation; | |
1451 | self->continuation = NULL; | |
1452 | ||
1453 | _mk_sp_thread_begin(self, self->last_processor); | |
1c79356b A |
1454 | |
1455 | /* | |
1456 | * We must dispatch the old thread and then | |
1457 | * call the current thread's continuation. | |
1458 | * There might not be an old thread, if we are | |
1459 | * the first thread to run on this processor. | |
1460 | */ | |
0b4e3aa0 | 1461 | if (old_thread != THREAD_NULL) |
1c79356b | 1462 | thread_dispatch(old_thread); |
1c79356b A |
1463 | |
1464 | if (self->funnel_state & TH_FN_REFUNNEL) { | |
9bccf70c | 1465 | kern_return_t wait_result = self->wait_result; |
0b4e3aa0 A |
1466 | |
1467 | self->funnel_state = 0; | |
0b4e3aa0 A |
1468 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, self->funnel_lock, 4, 0, 0, 0); |
1469 | funnel_lock(self->funnel_lock); | |
1470 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, self->funnel_lock, 4, 0, 0, 0); | |
0b4e3aa0 | 1471 | self->funnel_state = TH_FN_OWNED; |
9bccf70c | 1472 | self->wait_result = wait_result; |
1c79356b | 1473 | } |
9bccf70c | 1474 | (void)spllo(); |
1c79356b | 1475 | assert(continuation); |
9bccf70c | 1476 | call_continuation(continuation); |
1c79356b A |
1477 | /*NOTREACHED*/ |
1478 | } | |
1479 | ||
1480 | #if MACH_LDEBUG || MACH_KDB | |
1481 | ||
1482 | #define THREAD_LOG_SIZE 300 | |
1483 | ||
1484 | struct t64 { | |
1485 | unsigned long h; | |
1486 | unsigned long l; | |
1487 | }; | |
1488 | ||
1489 | struct { | |
1490 | struct t64 stamp; | |
1491 | thread_t thread; | |
1492 | long info1; | |
1493 | long info2; | |
1494 | long info3; | |
1495 | char * action; | |
1496 | } thread_log[THREAD_LOG_SIZE]; | |
1497 | ||
1498 | int thread_log_index; | |
1499 | ||
1500 | void check_thread_time(long n); | |
1501 | ||
1502 | ||
1503 | int check_thread_time_crash; | |
1504 | ||
1505 | #if 0 | |
1506 | void | |
1507 | check_thread_time(long us) | |
1508 | { | |
1509 | struct t64 temp; | |
1510 | ||
1511 | if (!check_thread_time_crash) | |
1512 | return; | |
1513 | ||
1514 | temp = thread_log[0].stamp; | |
1515 | cyctm05_diff (&thread_log[1].stamp, &thread_log[0].stamp, &temp); | |
1516 | ||
1517 | if (temp.l >= us && thread_log[1].info != 0x49) /* HACK!!! */ | |
1518 | panic ("check_thread_time"); | |
1519 | } | |
1520 | #endif | |
1521 | ||
1522 | void | |
1523 | log_thread_action(char * action, long info1, long info2, long info3) | |
1524 | { | |
1525 | int i; | |
1526 | spl_t x; | |
1527 | static unsigned int tstamp; | |
1528 | ||
1529 | x = splhigh(); | |
1530 | ||
1531 | for (i = THREAD_LOG_SIZE-1; i > 0; i--) { | |
1532 | thread_log[i] = thread_log[i-1]; | |
1533 | } | |
1534 | ||
1535 | thread_log[0].stamp.h = 0; | |
1536 | thread_log[0].stamp.l = tstamp++; | |
1537 | thread_log[0].thread = current_thread(); | |
1538 | thread_log[0].info1 = info1; | |
1539 | thread_log[0].info2 = info2; | |
1540 | thread_log[0].info3 = info3; | |
1541 | thread_log[0].action = action; | |
1542 | /* strcpy (&thread_log[0].action[0], action);*/ | |
1543 | ||
1544 | splx(x); | |
1545 | } | |
1546 | #endif /* MACH_LDEBUG || MACH_KDB */ | |
1547 | ||
1548 | #if MACH_KDB | |
1549 | #include <ddb/db_output.h> | |
1550 | void db_show_thread_log(void); | |
1551 | ||
1552 | void | |
1553 | db_show_thread_log(void) | |
1554 | { | |
1555 | int i; | |
1556 | ||
1557 | db_printf ("%s %s %s %s %s %s\n", " Thread ", " Info1 ", " Info2 ", | |
1558 | " Info3 ", " Timestamp ", "Action"); | |
1559 | ||
1560 | for (i = 0; i < THREAD_LOG_SIZE; i++) { | |
1561 | db_printf ("%08x %08x %08x %08x %08x/%08x %s\n", | |
1562 | thread_log[i].thread, | |
1563 | thread_log[i].info1, | |
1564 | thread_log[i].info2, | |
1565 | thread_log[i].info3, | |
1566 | thread_log[i].stamp.h, | |
1567 | thread_log[i].stamp.l, | |
1568 | thread_log[i].action); | |
1569 | } | |
1570 | } | |
1571 | #endif /* MACH_KDB */ | |
1572 | ||
1573 | /* | |
1574 | * thread_block_reason: | |
1575 | * | |
0b4e3aa0 A |
1576 | * Block the current thread if a wait has been asserted, |
1577 | * otherwise unconditionally yield the remainder of the | |
1578 | * current quantum unless reason contains AST_BLOCK. | |
1579 | * | |
1c79356b A |
1580 | * If a continuation is specified, then thread_block will |
1581 | * attempt to discard the thread's kernel stack. When the | |
1582 | * thread resumes, it will execute the continuation function | |
1583 | * on a new kernel stack. | |
1584 | */ | |
1585 | counter(mach_counter_t c_thread_block_calls = 0;) | |
1586 | ||
1587 | int | |
1588 | thread_block_reason( | |
9bccf70c A |
1589 | thread_continue_t continuation, |
1590 | ast_t reason) | |
1c79356b A |
1591 | { |
1592 | register thread_t thread = current_thread(); | |
1593 | register processor_t myprocessor; | |
1594 | register thread_t new_thread; | |
1595 | spl_t s; | |
1596 | ||
1597 | counter(++c_thread_block_calls); | |
1598 | ||
1599 | check_simple_locks(); | |
1600 | ||
1601 | machine_clock_assist(); | |
1602 | ||
1603 | s = splsched(); | |
1604 | ||
1605 | if ((thread->funnel_state & TH_FN_OWNED) && !(reason & AST_PREEMPT)) { | |
9bccf70c A |
1606 | thread->funnel_state = TH_FN_REFUNNEL; |
1607 | KERNEL_DEBUG( | |
1608 | 0x603242c | DBG_FUNC_NONE, thread->funnel_lock, 2, 0, 0, 0); | |
1609 | funnel_unlock(thread->funnel_lock); | |
1c79356b A |
1610 | } |
1611 | ||
1612 | myprocessor = current_processor(); | |
1613 | ||
9bccf70c A |
1614 | /* If we're explicitly yielding, force a subsequent quantum */ |
1615 | if (reason & AST_YIELD) | |
0b4e3aa0 A |
1616 | myprocessor->slice_quanta = 0; |
1617 | ||
9bccf70c A |
1618 | /* We're handling all scheduling AST's */ |
1619 | ast_off(AST_SCHEDULING); | |
1c79356b | 1620 | |
9bccf70c | 1621 | thread_lock(thread); |
1c79356b | 1622 | new_thread = thread_select(myprocessor); |
9bccf70c | 1623 | assert(new_thread && thread_runnable(new_thread)); |
1c79356b A |
1624 | thread_unlock(thread); |
1625 | while (!thread_invoke(thread, new_thread, reason, continuation)) { | |
1626 | thread_lock(thread); | |
1627 | new_thread = thread_select(myprocessor); | |
9bccf70c | 1628 | assert(new_thread && thread_runnable(new_thread)); |
1c79356b A |
1629 | thread_unlock(thread); |
1630 | } | |
1631 | ||
1632 | if (thread->funnel_state & TH_FN_REFUNNEL) { | |
9bccf70c | 1633 | kern_return_t wait_result = thread->wait_result; |
1c79356b | 1634 | |
1c79356b | 1635 | thread->funnel_state = 0; |
9bccf70c A |
1636 | KERNEL_DEBUG( |
1637 | 0x6032428 | DBG_FUNC_NONE, thread->funnel_lock, 5, 0, 0, 0); | |
1c79356b | 1638 | funnel_lock(thread->funnel_lock); |
9bccf70c A |
1639 | KERNEL_DEBUG( |
1640 | 0x6032430 | DBG_FUNC_NONE, thread->funnel_lock, 5, 0, 0, 0); | |
1c79356b | 1641 | thread->funnel_state = TH_FN_OWNED; |
9bccf70c | 1642 | thread->wait_result = wait_result; |
1c79356b A |
1643 | } |
1644 | ||
1645 | splx(s); | |
1646 | ||
9bccf70c | 1647 | return (thread->wait_result); |
1c79356b A |
1648 | } |
1649 | ||
1650 | /* | |
1651 | * thread_block: | |
1652 | * | |
9bccf70c | 1653 | * Block the current thread if a wait has been asserted. |
1c79356b A |
1654 | */ |
1655 | int | |
1656 | thread_block( | |
9bccf70c | 1657 | thread_continue_t continuation) |
1c79356b | 1658 | { |
0b4e3aa0 | 1659 | return thread_block_reason(continuation, AST_NONE); |
1c79356b A |
1660 | } |
1661 | ||
1662 | /* | |
1663 | * thread_run: | |
1664 | * | |
9bccf70c A |
1665 | * Switch directly from the current (old) thread to the |
1666 | * specified thread, handing off our quantum if possible. | |
1667 | * | |
1668 | * New thread must be runnable, and not on a run queue. | |
1c79356b A |
1669 | * |
1670 | * Assumption: | |
1671 | * at splsched. | |
1672 | */ | |
1673 | int | |
1674 | thread_run( | |
9bccf70c A |
1675 | thread_t old_thread, |
1676 | thread_continue_t continuation, | |
1677 | thread_t new_thread) | |
1c79356b | 1678 | { |
9bccf70c A |
1679 | ast_t handoff = AST_HANDOFF; |
1680 | ||
1681 | assert(old_thread == current_thread()); | |
1682 | ||
1683 | machine_clock_assist(); | |
1684 | ||
1685 | if (old_thread->funnel_state & TH_FN_OWNED) { | |
1686 | old_thread->funnel_state = TH_FN_REFUNNEL; | |
1687 | KERNEL_DEBUG( | |
1688 | 0x603242c | DBG_FUNC_NONE, old_thread->funnel_lock, 3, 0, 0, 0); | |
1689 | funnel_unlock(old_thread->funnel_lock); | |
1690 | } | |
1691 | ||
1692 | while (!thread_invoke(old_thread, new_thread, handoff, continuation)) { | |
1693 | register processor_t myprocessor = current_processor(); | |
1694 | ||
1c79356b A |
1695 | thread_lock(old_thread); |
1696 | new_thread = thread_select(myprocessor); | |
1697 | thread_unlock(old_thread); | |
9bccf70c A |
1698 | handoff = AST_NONE; |
1699 | } | |
1700 | ||
1701 | /* if we fell thru */ | |
1702 | if (old_thread->funnel_state & TH_FN_REFUNNEL) { | |
1703 | kern_return_t wait_result = old_thread->wait_result; | |
1704 | ||
1705 | old_thread->funnel_state = 0; | |
1706 | KERNEL_DEBUG( | |
1707 | 0x6032428 | DBG_FUNC_NONE, old_thread->funnel_lock, 6, 0, 0, 0); | |
1708 | funnel_lock(old_thread->funnel_lock); | |
1709 | KERNEL_DEBUG( | |
1710 | 0x6032430 | DBG_FUNC_NONE, old_thread->funnel_lock, 6, 0, 0, 0); | |
1711 | old_thread->funnel_state = TH_FN_OWNED; | |
1712 | old_thread->wait_result = wait_result; | |
1c79356b | 1713 | } |
9bccf70c A |
1714 | |
1715 | return (old_thread->wait_result); | |
1c79356b A |
1716 | } |
1717 | ||
1718 | /* | |
1719 | * Dispatches a running thread that is not on a runq. | |
1720 | * Called at splsched. | |
1721 | */ | |
1722 | void | |
1723 | thread_dispatch( | |
1724 | register thread_t thread) | |
1725 | { | |
9bccf70c A |
1726 | wake_lock(thread); |
1727 | thread_lock(thread); | |
1728 | ||
1c79356b A |
1729 | /* |
1730 | * If we are discarding the thread's stack, we must do it | |
1731 | * before the thread has a chance to run. | |
1732 | */ | |
1c79356b | 1733 | #ifndef i386 |
9bccf70c A |
1734 | if (thread->continuation != NULL) { |
1735 | assert((thread->state & TH_STACK_STATE) == 0); | |
1736 | thread->state |= TH_STACK_HANDOFF; | |
1737 | stack_free(thread); | |
1738 | } | |
1c79356b A |
1739 | #endif |
1740 | ||
1741 | switch (thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_IDLE)) { | |
1742 | ||
1743 | case TH_RUN | TH_UNINT: | |
1744 | case TH_RUN: | |
1745 | /* | |
1746 | * No reason to stop. Put back on a run queue. | |
1747 | */ | |
0b4e3aa0 | 1748 | _mk_sp_thread_dispatch(thread); |
1c79356b A |
1749 | break; |
1750 | ||
1751 | case TH_RUN | TH_WAIT | TH_UNINT: | |
1752 | case TH_RUN | TH_WAIT: | |
9bccf70c A |
1753 | { |
1754 | boolean_t reap, wake, callblock; | |
1c79356b A |
1755 | |
1756 | /* | |
1757 | * Waiting | |
1758 | */ | |
9bccf70c | 1759 | thread->sleep_stamp = sched_tick; |
1c79356b | 1760 | thread->state &= ~TH_RUN; |
9bccf70c A |
1761 | hw_atomic_sub(&thread->processor_set->run_count, 1); |
1762 | callblock = thread->active_callout; | |
1763 | wake = thread->wake_active; | |
1764 | thread->wake_active = FALSE; | |
1765 | reap = (thread->state & TH_TERMINATE)? TRUE: FALSE; | |
1c79356b | 1766 | |
9bccf70c A |
1767 | thread_unlock(thread); |
1768 | wake_unlock(thread); | |
1769 | ||
1770 | if (callblock) | |
1771 | call_thread_block(); | |
1772 | ||
1773 | if (wake) | |
1c79356b | 1774 | thread_wakeup((event_t)&thread->wake_active); |
9bccf70c A |
1775 | |
1776 | if (reap) | |
1777 | thread_reaper_enqueue(thread); | |
1778 | ||
1779 | return; | |
1780 | } | |
1c79356b A |
1781 | |
1782 | case TH_RUN | TH_IDLE: | |
1783 | /* | |
9bccf70c A |
1784 | * The idle threads don't go |
1785 | * onto a run queue. | |
1c79356b A |
1786 | */ |
1787 | break; | |
1788 | ||
1789 | default: | |
9bccf70c | 1790 | panic("thread_dispatch: bad thread state 0x%x\n", thread->state); |
1c79356b | 1791 | } |
9bccf70c | 1792 | |
1c79356b A |
1793 | thread_unlock(thread); |
1794 | wake_unlock(thread); | |
1795 | } | |
1796 | ||
1797 | /* | |
1798 | * Enqueue thread on run queue. Thread must be locked, | |
9bccf70c A |
1799 | * and not already be on a run queue. Returns TRUE iff |
1800 | * the particular queue level was empty beforehand. | |
1c79356b | 1801 | */ |
9bccf70c | 1802 | boolean_t |
1c79356b A |
1803 | run_queue_enqueue( |
1804 | register run_queue_t rq, | |
1805 | register thread_t thread, | |
1806 | boolean_t tail) | |
1807 | { | |
9bccf70c A |
1808 | register int whichq = thread->sched_pri; |
1809 | register queue_t queue = &rq->queues[whichq]; | |
1810 | boolean_t result = FALSE; | |
1c79356b | 1811 | |
1c79356b A |
1812 | assert(whichq >= MINPRI && whichq <= MAXPRI); |
1813 | ||
9bccf70c | 1814 | simple_lock(&rq->lock); |
1c79356b | 1815 | assert(thread->runq == RUN_QUEUE_NULL); |
9bccf70c A |
1816 | if (queue_empty(queue)) { |
1817 | enqueue_tail(queue, (queue_entry_t)thread); | |
1818 | ||
1819 | setbit(MAXPRI - whichq, rq->bitmap); | |
1820 | if (whichq > rq->highq) | |
1821 | rq->highq = whichq; | |
1822 | result = TRUE; | |
1823 | } | |
1824 | else | |
1c79356b | 1825 | if (tail) |
9bccf70c | 1826 | enqueue_tail(queue, (queue_entry_t)thread); |
1c79356b | 1827 | else |
9bccf70c | 1828 | enqueue_head(queue, (queue_entry_t)thread); |
1c79356b | 1829 | |
1c79356b | 1830 | thread->runq = rq; |
9bccf70c A |
1831 | if (thread->sched_mode & TH_MODE_PREEMPT) |
1832 | rq->urgency++; | |
1833 | rq->count++; | |
1c79356b A |
1834 | #if DEBUG |
1835 | thread_check(thread, rq); | |
1836 | #endif /* DEBUG */ | |
1837 | simple_unlock(&rq->lock); | |
1838 | ||
9bccf70c | 1839 | return (result); |
1c79356b A |
1840 | } |
1841 | ||
9bccf70c A |
1842 | struct { |
1843 | uint32_t pset_idle_last, | |
1844 | pset_idle_any, | |
1845 | pset_self, | |
1846 | pset_last, | |
1847 | pset_other, | |
1848 | bound_idle, | |
1849 | bound_self, | |
1850 | bound_other; | |
1851 | } dispatch_counts; | |
1852 | ||
1c79356b A |
1853 | /* |
1854 | * thread_setrun: | |
1855 | * | |
9bccf70c A |
1856 | * Dispatch thread for execution, directly onto an idle |
1857 | * processor if possible. Else put on appropriate run | |
1858 | * queue. (local if bound, else processor set) | |
1859 | * | |
1860 | * Thread must be locked. | |
1861 | * | |
1862 | * The tail parameter indicates the proper placement of | |
1863 | * the thread on a run queue. | |
1c79356b A |
1864 | */ |
1865 | void | |
1866 | thread_setrun( | |
1867 | register thread_t new_thread, | |
1c79356b A |
1868 | boolean_t tail) |
1869 | { | |
1870 | register processor_t processor; | |
1c79356b | 1871 | register processor_set_t pset; |
9bccf70c A |
1872 | register thread_t thread; |
1873 | boolean_t try_preempt = FALSE; | |
1874 | ast_t preempt = AST_BLOCK; | |
1c79356b | 1875 | |
1c79356b A |
1876 | assert(thread_runnable(new_thread)); |
1877 | ||
1878 | /* | |
1879 | * Update priority if needed. | |
1880 | */ | |
1881 | if (new_thread->sched_stamp != sched_tick) | |
1882 | update_priority(new_thread); | |
1883 | ||
1c79356b | 1884 | /* |
9bccf70c | 1885 | * Check for urgent preemption. |
1c79356b | 1886 | */ |
9bccf70c A |
1887 | if (new_thread->sched_mode & TH_MODE_PREEMPT) |
1888 | preempt |= AST_URGENT; | |
1889 | ||
1890 | assert(new_thread->runq == RUN_QUEUE_NULL); | |
1891 | ||
1c79356b A |
1892 | if ((processor = new_thread->bound_processor) == PROCESSOR_NULL) { |
1893 | /* | |
9bccf70c A |
1894 | * First try to dispatch on |
1895 | * the last processor. | |
1c79356b A |
1896 | */ |
1897 | pset = new_thread->processor_set; | |
9bccf70c A |
1898 | processor = new_thread->last_processor; |
1899 | if ( pset->processor_count > 1 && | |
1900 | processor != PROCESSOR_NULL && | |
1901 | processor->state == PROCESSOR_IDLE ) { | |
1902 | simple_lock(&processor->lock); | |
1903 | simple_lock(&pset->sched_lock); | |
1904 | if ( processor->processor_set == pset && | |
1905 | processor->state == PROCESSOR_IDLE ) { | |
1906 | remqueue(&pset->idle_queue, (queue_entry_t)processor); | |
1c79356b A |
1907 | pset->idle_count--; |
1908 | processor->next_thread = new_thread; | |
1909 | processor->state = PROCESSOR_DISPATCHING; | |
9bccf70c A |
1910 | simple_unlock(&pset->sched_lock); |
1911 | simple_unlock(&processor->lock); | |
1912 | if (processor != current_processor()) | |
1c79356b | 1913 | machine_signal_idle(processor); |
9bccf70c | 1914 | dispatch_counts.pset_idle_last++; |
1c79356b A |
1915 | return; |
1916 | } | |
9bccf70c A |
1917 | simple_unlock(&processor->lock); |
1918 | } | |
1919 | else | |
1920 | simple_lock(&pset->sched_lock); | |
1921 | ||
1922 | /* | |
1923 | * Next pick any idle processor | |
1924 | * in the processor set. | |
1925 | */ | |
1926 | if (pset->idle_count > 0) { | |
1927 | processor = (processor_t)dequeue_head(&pset->idle_queue); | |
1928 | pset->idle_count--; | |
1929 | processor->next_thread = new_thread; | |
1930 | processor->state = PROCESSOR_DISPATCHING; | |
1931 | simple_unlock(&pset->sched_lock); | |
1932 | if (processor != current_processor()) | |
1933 | machine_signal_idle(processor); | |
1934 | dispatch_counts.pset_idle_any++; | |
1935 | return; | |
1936 | } | |
1c79356b | 1937 | |
0b4e3aa0 | 1938 | /* |
9bccf70c | 1939 | * Place thread on run queue. |
0b4e3aa0 | 1940 | */ |
9bccf70c A |
1941 | if (run_queue_enqueue(&pset->runq, new_thread, tail)) |
1942 | try_preempt = TRUE; | |
1943 | ||
1944 | /* | |
1945 | * Update the timesharing quanta. | |
1946 | */ | |
1947 | pset_quanta_update(pset); | |
0b4e3aa0 | 1948 | |
1c79356b | 1949 | /* |
9bccf70c | 1950 | * Preempt check. |
1c79356b | 1951 | */ |
1c79356b | 1952 | processor = current_processor(); |
9bccf70c A |
1953 | thread = processor->cpu_data->active_thread; |
1954 | if (try_preempt) { | |
1955 | /* | |
1956 | * First try the current processor | |
1957 | * if it is a member of the correct | |
1958 | * processor set. | |
1c79356b | 1959 | */ |
9bccf70c A |
1960 | if ( pset == processor->processor_set && |
1961 | csw_needed(thread, processor) ) { | |
1962 | simple_unlock(&pset->sched_lock); | |
1963 | ||
1964 | ast_on(preempt); | |
1965 | dispatch_counts.pset_self++; | |
1966 | return; | |
1967 | } | |
1968 | ||
1969 | /* | |
1970 | * If that failed and we have other | |
1971 | * processors available keep trying. | |
1972 | */ | |
1973 | if ( pset->processor_count > 1 || | |
1974 | pset != processor->processor_set ) { | |
1975 | queue_t active = &pset->active_queue; | |
1976 | processor_t myprocessor, lastprocessor; | |
1977 | queue_entry_t next; | |
1978 | ||
1979 | /* | |
1980 | * Next try the last processor | |
1981 | * dispatched on. | |
1982 | */ | |
1983 | myprocessor = processor; | |
1984 | processor = new_thread->last_processor; | |
1985 | if ( processor != myprocessor && | |
1986 | processor != PROCESSOR_NULL && | |
1987 | processor->processor_set == pset && | |
1988 | processor->state == PROCESSOR_RUNNING && | |
1989 | new_thread->sched_pri > processor->current_pri ) { | |
1990 | cause_ast_check(processor); | |
1991 | simple_unlock(&pset->sched_lock); | |
1992 | dispatch_counts.pset_last++; | |
1993 | return; | |
1994 | } | |
1995 | ||
1996 | /* | |
1997 | * Lastly, pick any other | |
1998 | * available processor. | |
1999 | */ | |
2000 | lastprocessor = processor; | |
2001 | processor = (processor_t)queue_first(active); | |
2002 | while (!queue_end(active, (queue_entry_t)processor)) { | |
2003 | next = queue_next((queue_entry_t)processor); | |
2004 | ||
2005 | if ( processor != myprocessor && | |
2006 | processor != lastprocessor && | |
2007 | new_thread->sched_pri > processor->current_pri ) { | |
2008 | if (!queue_end(active, next)) { | |
2009 | remqueue(active, (queue_entry_t)processor); | |
2010 | enqueue_tail(active, (queue_entry_t)processor); | |
2011 | } | |
2012 | cause_ast_check(processor); | |
2013 | simple_unlock(&pset->sched_lock); | |
2014 | dispatch_counts.pset_other++; | |
2015 | return; | |
2016 | } | |
2017 | ||
2018 | processor = (processor_t)next; | |
2019 | } | |
2020 | } | |
1c79356b | 2021 | } |
9bccf70c A |
2022 | |
2023 | simple_unlock(&pset->sched_lock); | |
1c79356b A |
2024 | } |
2025 | else { | |
2026 | /* | |
2027 | * Bound, can only run on bound processor. Have to lock | |
2028 | * processor here because it may not be the current one. | |
2029 | */ | |
9bccf70c | 2030 | if (processor->state == PROCESSOR_IDLE) { |
1c79356b A |
2031 | simple_lock(&processor->lock); |
2032 | pset = processor->processor_set; | |
9bccf70c | 2033 | simple_lock(&pset->sched_lock); |
1c79356b | 2034 | if (processor->state == PROCESSOR_IDLE) { |
9bccf70c | 2035 | remqueue(&pset->idle_queue, (queue_entry_t)processor); |
1c79356b A |
2036 | pset->idle_count--; |
2037 | processor->next_thread = new_thread; | |
2038 | processor->state = PROCESSOR_DISPATCHING; | |
9bccf70c | 2039 | simple_unlock(&pset->sched_lock); |
1c79356b | 2040 | simple_unlock(&processor->lock); |
9bccf70c | 2041 | if (processor != current_processor()) |
1c79356b | 2042 | machine_signal_idle(processor); |
9bccf70c | 2043 | dispatch_counts.bound_idle++; |
1c79356b A |
2044 | return; |
2045 | } | |
9bccf70c | 2046 | simple_unlock(&pset->sched_lock); |
1c79356b A |
2047 | simple_unlock(&processor->lock); |
2048 | } | |
2049 | ||
9bccf70c A |
2050 | if (run_queue_enqueue(&processor->runq, new_thread, tail)) |
2051 | try_preempt = TRUE; | |
2052 | ||
2053 | if (processor == current_processor()) { | |
2054 | if (try_preempt) { | |
2055 | thread = processor->cpu_data->active_thread; | |
2056 | if (csw_needed(thread, processor)) { | |
2057 | ast_on(preempt); | |
2058 | dispatch_counts.bound_self++; | |
2059 | } | |
2060 | } | |
2061 | } | |
1c79356b | 2062 | else { |
9bccf70c A |
2063 | if (try_preempt) { |
2064 | if ( processor->state == PROCESSOR_RUNNING && | |
2065 | new_thread->sched_pri > processor->current_pri ) { | |
2066 | cause_ast_check(processor); | |
2067 | dispatch_counts.bound_other++; | |
2068 | return; | |
2069 | } | |
2070 | } | |
2071 | ||
2072 | if (processor->state == PROCESSOR_IDLE) { | |
2073 | machine_signal_idle(processor); | |
2074 | dispatch_counts.bound_idle++; | |
2075 | } | |
2076 | } | |
2077 | } | |
2078 | } | |
2079 | ||
2080 | /* | |
2081 | * Called at splsched by a thread on itself. | |
2082 | */ | |
2083 | ast_t | |
2084 | csw_check( | |
2085 | thread_t thread, | |
2086 | processor_t processor) | |
2087 | { | |
2088 | int current_pri = thread->sched_pri; | |
2089 | ast_t result = AST_NONE; | |
2090 | run_queue_t runq; | |
2091 | ||
2092 | if (first_quantum(processor)) { | |
2093 | runq = &processor->processor_set->runq; | |
2094 | if (runq->highq > current_pri) { | |
2095 | if (runq->urgency > 0) | |
2096 | return (AST_BLOCK | AST_URGENT); | |
2097 | ||
2098 | result |= AST_BLOCK; | |
2099 | } | |
2100 | ||
2101 | runq = &processor->runq; | |
2102 | if (runq->highq > current_pri) { | |
2103 | if (runq->urgency > 0) | |
2104 | return (AST_BLOCK | AST_URGENT); | |
2105 | ||
2106 | result |= AST_BLOCK; | |
2107 | } | |
2108 | } | |
2109 | else { | |
2110 | runq = &processor->processor_set->runq; | |
2111 | if (runq->highq >= current_pri) { | |
2112 | if (runq->urgency > 0) | |
2113 | return (AST_BLOCK | AST_URGENT); | |
2114 | ||
2115 | result |= AST_BLOCK; | |
2116 | } | |
2117 | ||
2118 | runq = &processor->runq; | |
2119 | if (runq->highq >= current_pri) { | |
2120 | if (runq->urgency > 0) | |
2121 | return (AST_BLOCK | AST_URGENT); | |
2122 | ||
2123 | result |= AST_BLOCK; | |
2124 | } | |
1c79356b | 2125 | } |
9bccf70c A |
2126 | |
2127 | if (result != AST_NONE) | |
2128 | return (result); | |
2129 | ||
2130 | if (thread->state & TH_SUSP) | |
2131 | result |= AST_BLOCK; | |
2132 | ||
2133 | return (result); | |
1c79356b A |
2134 | } |
2135 | ||
2136 | /* | |
9bccf70c | 2137 | * set_sched_pri: |
1c79356b | 2138 | * |
9bccf70c A |
2139 | * Set the current scheduled priority of the specified thread. |
2140 | * This may cause the thread to change queues. | |
1c79356b A |
2141 | * |
2142 | * The thread *must* be locked by the caller. | |
2143 | */ | |
2144 | void | |
9bccf70c | 2145 | set_sched_pri( |
1c79356b | 2146 | thread_t thread, |
9bccf70c | 2147 | int priority) |
1c79356b | 2148 | { |
9bccf70c A |
2149 | register struct run_queue *rq = rem_runq(thread); |
2150 | ||
2151 | if ( !(thread->sched_mode & TH_MODE_TIMESHARE) && | |
2152 | (priority >= BASEPRI_PREEMPT || | |
2153 | (thread->task_priority < MINPRI_KERNEL && | |
2154 | thread->task_priority >= BASEPRI_BACKGROUND && | |
2155 | priority > thread->task_priority) || | |
2156 | (thread->sched_mode & TH_MODE_FORCEDPREEMPT) ) ) | |
2157 | thread->sched_mode |= TH_MODE_PREEMPT; | |
2158 | else | |
2159 | thread->sched_mode &= ~TH_MODE_PREEMPT; | |
1c79356b | 2160 | |
9bccf70c A |
2161 | thread->sched_pri = priority; |
2162 | if (rq != RUN_QUEUE_NULL) | |
2163 | thread_setrun(thread, TAIL_Q); | |
2164 | else | |
2165 | if ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN) { | |
2166 | processor_t processor = thread->last_processor; | |
2167 | ||
2168 | if (thread == current_thread()) { | |
2169 | ast_t preempt = csw_check(thread, processor); | |
2170 | ||
2171 | if (preempt != AST_NONE) | |
2172 | ast_on(preempt); | |
2173 | processor->current_pri = priority; | |
2174 | } | |
2175 | else | |
2176 | if ( processor != PROCESSOR_NULL && | |
2177 | processor->cpu_data->active_thread == thread ) | |
2178 | cause_ast_check(processor); | |
1c79356b A |
2179 | } |
2180 | } | |
2181 | ||
2182 | /* | |
2183 | * rem_runq: | |
2184 | * | |
2185 | * Remove a thread from its run queue. | |
2186 | * The run queue that the process was on is returned | |
2187 | * (or RUN_QUEUE_NULL if not on a run queue). Thread *must* be locked | |
2188 | * before calling this routine. Unusual locking protocol on runq | |
2189 | * field in thread structure makes this code interesting; see thread.h. | |
2190 | */ | |
2191 | run_queue_t | |
2192 | rem_runq( | |
2193 | thread_t thread) | |
2194 | { | |
2195 | register struct run_queue *rq; | |
2196 | ||
2197 | rq = thread->runq; | |
2198 | /* | |
2199 | * If rq is RUN_QUEUE_NULL, the thread will stay out of the | |
2200 | * run_queues because the caller locked the thread. Otherwise | |
2201 | * the thread is on a runq, but could leave. | |
2202 | */ | |
2203 | if (rq != RUN_QUEUE_NULL) { | |
2204 | simple_lock(&rq->lock); | |
2205 | if (rq == thread->runq) { | |
2206 | /* | |
2207 | * Thread is in a runq and we have a lock on | |
2208 | * that runq. | |
2209 | */ | |
2210 | #if DEBUG | |
2211 | thread_check(thread, rq); | |
2212 | #endif /* DEBUG */ | |
2213 | remqueue(&rq->queues[0], (queue_entry_t)thread); | |
2214 | rq->count--; | |
9bccf70c A |
2215 | if (thread->sched_mode & TH_MODE_PREEMPT) |
2216 | rq->urgency--; | |
2217 | assert(rq->urgency >= 0); | |
1c79356b A |
2218 | |
2219 | if (queue_empty(rq->queues + thread->sched_pri)) { | |
2220 | /* update run queue status */ | |
2221 | if (thread->sched_pri != IDLEPRI) | |
2222 | clrbit(MAXPRI - thread->sched_pri, rq->bitmap); | |
2223 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
2224 | } | |
2225 | thread->runq = RUN_QUEUE_NULL; | |
2226 | simple_unlock(&rq->lock); | |
2227 | } | |
2228 | else { | |
2229 | /* | |
2230 | * The thread left the runq before we could | |
2231 | * lock the runq. It is not on a runq now, and | |
2232 | * can't move again because this routine's | |
2233 | * caller locked the thread. | |
2234 | */ | |
2235 | assert(thread->runq == RUN_QUEUE_NULL); | |
2236 | simple_unlock(&rq->lock); | |
2237 | rq = RUN_QUEUE_NULL; | |
2238 | } | |
2239 | } | |
2240 | ||
2241 | return (rq); | |
2242 | } | |
2243 | ||
1c79356b A |
2244 | /* |
2245 | * choose_thread: | |
2246 | * | |
2247 | * Choose a thread to execute. The thread chosen is removed | |
2248 | * from its run queue. Note that this requires only that the runq | |
2249 | * lock be held. | |
2250 | * | |
2251 | * Strategy: | |
2252 | * Check processor runq first; if anything found, run it. | |
2253 | * Else check pset runq; if nothing found, return idle thread. | |
2254 | * | |
2255 | * Second line of strategy is implemented by choose_pset_thread. | |
9bccf70c A |
2256 | * |
2257 | * Called with both the local & pset run queues locked, returned | |
2258 | * unlocked. | |
1c79356b A |
2259 | */ |
2260 | thread_t | |
2261 | choose_thread( | |
2262 | processor_t myprocessor) | |
2263 | { | |
2264 | thread_t thread; | |
2265 | register queue_t q; | |
2266 | register run_queue_t runq; | |
2267 | processor_set_t pset; | |
2268 | ||
2269 | runq = &myprocessor->runq; | |
2270 | pset = myprocessor->processor_set; | |
2271 | ||
1c79356b | 2272 | if (runq->count > 0 && runq->highq >= pset->runq.highq) { |
9bccf70c | 2273 | simple_unlock(&pset->runq.lock); |
1c79356b A |
2274 | q = runq->queues + runq->highq; |
2275 | #if MACH_ASSERT | |
2276 | if (!queue_empty(q)) { | |
2277 | #endif /*MACH_ASSERT*/ | |
2278 | thread = (thread_t)q->next; | |
2279 | ((queue_entry_t)thread)->next->prev = q; | |
2280 | q->next = ((queue_entry_t)thread)->next; | |
2281 | thread->runq = RUN_QUEUE_NULL; | |
2282 | runq->count--; | |
9bccf70c A |
2283 | if (thread->sched_mode & TH_MODE_PREEMPT) |
2284 | runq->urgency--; | |
2285 | assert(runq->urgency >= 0); | |
1c79356b A |
2286 | if (queue_empty(q)) { |
2287 | if (runq->highq != IDLEPRI) | |
2288 | clrbit(MAXPRI - runq->highq, runq->bitmap); | |
2289 | runq->highq = MAXPRI - ffsbit(runq->bitmap); | |
2290 | } | |
2291 | simple_unlock(&runq->lock); | |
2292 | return (thread); | |
2293 | #if MACH_ASSERT | |
2294 | } | |
2295 | panic("choose_thread"); | |
2296 | #endif /*MACH_ASSERT*/ | |
2297 | /*NOTREACHED*/ | |
2298 | } | |
9bccf70c | 2299 | simple_unlock(&myprocessor->runq.lock); |
1c79356b | 2300 | |
1c79356b A |
2301 | return (choose_pset_thread(myprocessor, pset)); |
2302 | } | |
2303 | ||
1c79356b A |
2304 | /* |
2305 | * choose_pset_thread: choose a thread from processor_set runq or | |
2306 | * set processor idle and choose its idle thread. | |
2307 | * | |
1c79356b A |
2308 | * This routine chooses and removes a thread from the runq if there |
2309 | * is one (and returns it), else it sets the processor idle and | |
2310 | * returns its idle thread. | |
9bccf70c A |
2311 | * |
2312 | * Called with both local & pset run queues locked, returned | |
2313 | * unlocked. | |
1c79356b A |
2314 | */ |
2315 | thread_t | |
2316 | choose_pset_thread( | |
2317 | register processor_t myprocessor, | |
2318 | processor_set_t pset) | |
2319 | { | |
2320 | register run_queue_t runq; | |
2321 | register thread_t thread; | |
2322 | register queue_t q; | |
2323 | ||
2324 | runq = &pset->runq; | |
2325 | if (runq->count > 0) { | |
2326 | q = runq->queues + runq->highq; | |
2327 | #if MACH_ASSERT | |
2328 | if (!queue_empty(q)) { | |
2329 | #endif /*MACH_ASSERT*/ | |
2330 | thread = (thread_t)q->next; | |
2331 | ((queue_entry_t)thread)->next->prev = q; | |
2332 | q->next = ((queue_entry_t)thread)->next; | |
2333 | thread->runq = RUN_QUEUE_NULL; | |
2334 | runq->count--; | |
9bccf70c A |
2335 | if (thread->sched_mode & TH_MODE_PREEMPT) |
2336 | runq->urgency--; | |
2337 | assert(runq->urgency >= 0); | |
1c79356b A |
2338 | if (queue_empty(q)) { |
2339 | if (runq->highq != IDLEPRI) | |
2340 | clrbit(MAXPRI - runq->highq, runq->bitmap); | |
2341 | runq->highq = MAXPRI - ffsbit(runq->bitmap); | |
2342 | } | |
9bccf70c | 2343 | pset_quanta_update(pset); |
1c79356b A |
2344 | simple_unlock(&runq->lock); |
2345 | return (thread); | |
2346 | #if MACH_ASSERT | |
2347 | } | |
2348 | panic("choose_pset_thread"); | |
2349 | #endif /*MACH_ASSERT*/ | |
2350 | /*NOTREACHED*/ | |
2351 | } | |
2352 | simple_unlock(&runq->lock); | |
2353 | ||
2354 | /* | |
2355 | * Nothing is runnable, so set this processor idle if it | |
2356 | * was running. If it was in an assignment or shutdown, | |
2357 | * leave it alone. Return its idle thread. | |
2358 | */ | |
9bccf70c | 2359 | simple_lock(&pset->sched_lock); |
1c79356b | 2360 | if (myprocessor->state == PROCESSOR_RUNNING) { |
9bccf70c | 2361 | remqueue(&pset->active_queue, (queue_entry_t)myprocessor); |
1c79356b | 2362 | myprocessor->state = PROCESSOR_IDLE; |
9bccf70c | 2363 | |
1c79356b | 2364 | if (myprocessor == master_processor) |
9bccf70c | 2365 | enqueue_tail(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b | 2366 | else |
9bccf70c | 2367 | enqueue_head(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b A |
2368 | |
2369 | pset->idle_count++; | |
2370 | } | |
9bccf70c | 2371 | simple_unlock(&pset->sched_lock); |
1c79356b A |
2372 | |
2373 | return (myprocessor->idle_thread); | |
2374 | } | |
2375 | ||
2376 | /* | |
2377 | * no_dispatch_count counts number of times processors go non-idle | |
2378 | * without being dispatched. This should be very rare. | |
2379 | */ | |
2380 | int no_dispatch_count = 0; | |
2381 | ||
2382 | /* | |
2383 | * This is the idle thread, which just looks for other threads | |
2384 | * to execute. | |
2385 | */ | |
2386 | void | |
2387 | idle_thread_continue(void) | |
2388 | { | |
2389 | register processor_t myprocessor; | |
2390 | register volatile thread_t *threadp; | |
2391 | register volatile int *gcount; | |
2392 | register volatile int *lcount; | |
2393 | register thread_t new_thread; | |
2394 | register int state; | |
2395 | register processor_set_t pset; | |
2396 | int mycpu; | |
2397 | ||
2398 | mycpu = cpu_number(); | |
9bccf70c | 2399 | myprocessor = cpu_to_processor(mycpu); |
1c79356b A |
2400 | threadp = (volatile thread_t *) &myprocessor->next_thread; |
2401 | lcount = (volatile int *) &myprocessor->runq.count; | |
2402 | ||
2403 | for (;;) { | |
1c79356b A |
2404 | gcount = (volatile int *)&myprocessor->processor_set->runq.count; |
2405 | ||
2406 | (void)splsched(); | |
2407 | while ( (*threadp == (volatile thread_t)THREAD_NULL) && | |
2408 | (*gcount == 0) && (*lcount == 0) ) { | |
2409 | ||
2410 | /* check for ASTs while we wait */ | |
9bccf70c | 2411 | if (need_ast[mycpu] &~ ( AST_SCHEDULING | AST_BSD )) { |
1c79356b | 2412 | /* don't allow scheduling ASTs */ |
9bccf70c | 2413 | need_ast[mycpu] &= ~( AST_SCHEDULING | AST_BSD ); |
0b4e3aa0 | 2414 | ast_taken(AST_ALL, TRUE); /* back at spllo */ |
1c79356b A |
2415 | } |
2416 | else | |
2417 | #ifdef __ppc__ | |
2418 | machine_idle(); | |
2419 | #else | |
2420 | (void)spllo(); | |
2421 | #endif | |
2422 | machine_clock_assist(); | |
2423 | ||
2424 | (void)splsched(); | |
2425 | } | |
2426 | ||
1c79356b A |
2427 | /* |
2428 | * This is not a switch statement to avoid the | |
2429 | * bounds checking code in the common case. | |
2430 | */ | |
2431 | pset = myprocessor->processor_set; | |
9bccf70c | 2432 | simple_lock(&pset->sched_lock); |
1c79356b A |
2433 | retry: |
2434 | state = myprocessor->state; | |
2435 | if (state == PROCESSOR_DISPATCHING) { | |
2436 | /* | |
2437 | * Commmon case -- cpu dispatched. | |
2438 | */ | |
2439 | new_thread = *threadp; | |
2440 | *threadp = (volatile thread_t) THREAD_NULL; | |
2441 | myprocessor->state = PROCESSOR_RUNNING; | |
9bccf70c A |
2442 | enqueue_tail(&pset->active_queue, (queue_entry_t)myprocessor); |
2443 | simple_unlock(&pset->sched_lock); | |
1c79356b | 2444 | |
1c79356b A |
2445 | if ( myprocessor->runq.highq > new_thread->sched_pri || |
2446 | pset->runq.highq > new_thread->sched_pri ) { | |
9bccf70c A |
2447 | thread_lock(new_thread); |
2448 | thread_setrun(new_thread, HEAD_Q); | |
1c79356b A |
2449 | thread_unlock(new_thread); |
2450 | ||
2451 | counter(c_idle_thread_block++); | |
2452 | thread_block(idle_thread_continue); | |
9bccf70c | 2453 | /* NOTREACHED */ |
1c79356b A |
2454 | } |
2455 | else { | |
1c79356b A |
2456 | counter(c_idle_thread_handoff++); |
2457 | thread_run(myprocessor->idle_thread, | |
2458 | idle_thread_continue, new_thread); | |
9bccf70c | 2459 | /* NOTREACHED */ |
1c79356b A |
2460 | } |
2461 | } | |
2462 | else | |
2463 | if (state == PROCESSOR_IDLE) { | |
2464 | if (myprocessor->state != PROCESSOR_IDLE) { | |
2465 | /* | |
2466 | * Something happened, try again. | |
2467 | */ | |
2468 | goto retry; | |
2469 | } | |
2470 | /* | |
2471 | * Processor was not dispatched (Rare). | |
2472 | * Set it running again. | |
2473 | */ | |
2474 | no_dispatch_count++; | |
2475 | pset->idle_count--; | |
9bccf70c | 2476 | remqueue(&pset->idle_queue, (queue_entry_t)myprocessor); |
1c79356b | 2477 | myprocessor->state = PROCESSOR_RUNNING; |
9bccf70c A |
2478 | enqueue_tail(&pset->active_queue, (queue_entry_t)myprocessor); |
2479 | simple_unlock(&pset->sched_lock); | |
1c79356b A |
2480 | |
2481 | counter(c_idle_thread_block++); | |
2482 | thread_block(idle_thread_continue); | |
9bccf70c | 2483 | /* NOTREACHED */ |
1c79356b A |
2484 | } |
2485 | else | |
2486 | if ( state == PROCESSOR_ASSIGN || | |
2487 | state == PROCESSOR_SHUTDOWN ) { | |
2488 | /* | |
2489 | * Changing processor sets, or going off-line. | |
2490 | * Release next_thread if there is one. Actual | |
2491 | * thread to run is on a runq. | |
2492 | */ | |
2493 | if ((new_thread = (thread_t)*threadp) != THREAD_NULL) { | |
2494 | *threadp = (volatile thread_t) THREAD_NULL; | |
9bccf70c A |
2495 | simple_unlock(&pset->sched_lock); |
2496 | ||
1c79356b | 2497 | thread_lock(new_thread); |
9bccf70c | 2498 | thread_setrun(new_thread, TAIL_Q); |
1c79356b | 2499 | thread_unlock(new_thread); |
9bccf70c A |
2500 | } |
2501 | else | |
2502 | simple_unlock(&pset->sched_lock); | |
1c79356b A |
2503 | |
2504 | counter(c_idle_thread_block++); | |
2505 | thread_block(idle_thread_continue); | |
9bccf70c | 2506 | /* NOTREACHED */ |
1c79356b A |
2507 | } |
2508 | else { | |
9bccf70c | 2509 | simple_unlock(&pset->sched_lock); |
1c79356b | 2510 | |
9bccf70c | 2511 | panic("idle_thread: bad processor state %d\n", cpu_state(mycpu)); |
1c79356b A |
2512 | } |
2513 | ||
2514 | (void)spllo(); | |
2515 | } | |
2516 | } | |
2517 | ||
2518 | void | |
2519 | idle_thread(void) | |
2520 | { | |
2521 | thread_t self = current_thread(); | |
2522 | spl_t s; | |
2523 | ||
2524 | stack_privilege(self); | |
1c79356b A |
2525 | |
2526 | s = splsched(); | |
2527 | thread_lock(self); | |
1c79356b | 2528 | self->priority = IDLEPRI; |
9bccf70c | 2529 | set_sched_pri(self, self->priority); |
1c79356b A |
2530 | thread_unlock(self); |
2531 | splx(s); | |
2532 | ||
2533 | counter(c_idle_thread_block++); | |
9bccf70c | 2534 | thread_block(idle_thread_continue); |
1c79356b A |
2535 | /*NOTREACHED*/ |
2536 | } | |
2537 | ||
0b4e3aa0 A |
2538 | static uint64_t sched_tick_interval, sched_tick_deadline; |
2539 | ||
2540 | void sched_tick_thread(void); | |
2541 | ||
2542 | void | |
2543 | sched_tick_init(void) | |
2544 | { | |
2545 | kernel_thread_with_priority( | |
2546 | kernel_task, MAXPRI_STANDARD, | |
2547 | sched_tick_thread, TRUE, TRUE); | |
2548 | } | |
1c79356b A |
2549 | |
2550 | /* | |
2551 | * sched_tick_thread | |
2552 | * | |
2553 | * Update the priorities of all threads periodically. | |
2554 | */ | |
2555 | void | |
2556 | sched_tick_thread_continue(void) | |
2557 | { | |
0b4e3aa0 | 2558 | uint64_t abstime; |
1c79356b A |
2559 | #if SIMPLE_CLOCK |
2560 | int new_usec; | |
2561 | #endif /* SIMPLE_CLOCK */ | |
2562 | ||
2563 | clock_get_uptime(&abstime); | |
2564 | ||
2565 | sched_tick++; /* age usage one more time */ | |
2566 | #if SIMPLE_CLOCK | |
2567 | /* | |
2568 | * Compensate for clock drift. sched_usec is an | |
2569 | * exponential average of the number of microseconds in | |
2570 | * a second. It decays in the same fashion as cpu_usage. | |
2571 | */ | |
2572 | new_usec = sched_usec_elapsed(); | |
2573 | sched_usec = (5*sched_usec + 3*new_usec)/8; | |
2574 | #endif /* SIMPLE_CLOCK */ | |
2575 | ||
2576 | /* | |
2577 | * Compute the scheduler load factors. | |
2578 | */ | |
2579 | compute_mach_factor(); | |
2580 | ||
2581 | /* | |
2582 | * Scan the run queues for runnable threads that need to | |
2583 | * have their priorities recalculated. | |
2584 | */ | |
2585 | do_thread_scan(); | |
2586 | ||
2587 | clock_deadline_for_periodic_event(sched_tick_interval, abstime, | |
2588 | &sched_tick_deadline); | |
2589 | ||
2590 | assert_wait((event_t)sched_tick_thread_continue, THREAD_INTERRUPTIBLE); | |
2591 | thread_set_timer_deadline(sched_tick_deadline); | |
2592 | thread_block(sched_tick_thread_continue); | |
2593 | /*NOTREACHED*/ | |
2594 | } | |
2595 | ||
2596 | void | |
2597 | sched_tick_thread(void) | |
2598 | { | |
2599 | thread_t self = current_thread(); | |
2600 | natural_t rate; | |
2601 | spl_t s; | |
2602 | ||
2603 | stack_privilege(self); | |
1c79356b A |
2604 | |
2605 | rate = (1000 >> SCHED_TICK_SHIFT); | |
2606 | clock_interval_to_absolutetime_interval(rate, USEC_PER_SEC, | |
2607 | &sched_tick_interval); | |
2608 | clock_get_uptime(&sched_tick_deadline); | |
2609 | ||
2610 | thread_block(sched_tick_thread_continue); | |
2611 | /*NOTREACHED*/ | |
2612 | } | |
2613 | ||
2614 | #define MAX_STUCK_THREADS 128 | |
2615 | ||
2616 | /* | |
2617 | * do_thread_scan: scan for stuck threads. A thread is stuck if | |
2618 | * it is runnable but its priority is so low that it has not | |
2619 | * run for several seconds. Its priority should be higher, but | |
2620 | * won't be until it runs and calls update_priority. The scanner | |
2621 | * finds these threads and does the updates. | |
2622 | * | |
2623 | * Scanner runs in two passes. Pass one squirrels likely | |
2624 | * thread ids away in an array (takes out references for them). | |
2625 | * Pass two does the priority updates. This is necessary because | |
2626 | * the run queue lock is required for the candidate scan, but | |
9bccf70c | 2627 | * cannot be held during updates. |
1c79356b A |
2628 | * |
2629 | * Array length should be enough so that restart isn't necessary, | |
9bccf70c | 2630 | * but restart logic is included. |
1c79356b A |
2631 | * |
2632 | */ | |
2633 | thread_t stuck_threads[MAX_STUCK_THREADS]; | |
2634 | int stuck_count = 0; | |
2635 | ||
2636 | /* | |
2637 | * do_runq_scan is the guts of pass 1. It scans a runq for | |
2638 | * stuck threads. A boolean is returned indicating whether | |
2639 | * a retry is needed. | |
2640 | */ | |
2641 | boolean_t | |
2642 | do_runq_scan( | |
2643 | run_queue_t runq) | |
2644 | { | |
2645 | register queue_t q; | |
2646 | register thread_t thread; | |
2647 | register int count; | |
2648 | spl_t s; | |
2649 | boolean_t result = FALSE; | |
2650 | ||
2651 | s = splsched(); | |
2652 | simple_lock(&runq->lock); | |
2653 | if ((count = runq->count) > 0) { | |
2654 | q = runq->queues + runq->highq; | |
2655 | while (count > 0) { | |
2656 | queue_iterate(q, thread, thread_t, links) { | |
0b4e3aa0 A |
2657 | if ( !(thread->state & (TH_WAIT|TH_SUSP)) && |
2658 | (thread->sched_mode & TH_MODE_TIMESHARE) ) { | |
1c79356b A |
2659 | if (thread->sched_stamp != sched_tick) { |
2660 | /* | |
2661 | * Stuck, save its id for later. | |
2662 | */ | |
2663 | if (stuck_count == MAX_STUCK_THREADS) { | |
2664 | /* | |
2665 | * !@#$% No more room. | |
2666 | */ | |
2667 | simple_unlock(&runq->lock); | |
2668 | splx(s); | |
2669 | ||
2670 | return (TRUE); | |
2671 | } | |
2672 | ||
2673 | /* | |
2674 | * Inline version of thread_reference | |
2675 | * XXX - lock ordering problem here: | |
2676 | * thread locks should be taken before runq | |
2677 | * locks: just try and get the thread's locks | |
2678 | * and ignore this thread if we fail, we might | |
2679 | * have better luck next time. | |
2680 | */ | |
9bccf70c | 2681 | if (thread_lock_try(thread)) { |
1c79356b A |
2682 | thread->ref_count++; |
2683 | thread_unlock(thread); | |
2684 | stuck_threads[stuck_count++] = thread; | |
2685 | } | |
2686 | else | |
2687 | result = TRUE; | |
2688 | } | |
2689 | } | |
2690 | ||
2691 | count--; | |
2692 | } | |
2693 | ||
2694 | q--; | |
2695 | } | |
2696 | } | |
2697 | simple_unlock(&runq->lock); | |
2698 | splx(s); | |
2699 | ||
2700 | return (result); | |
2701 | } | |
2702 | ||
2703 | boolean_t thread_scan_enabled = TRUE; | |
2704 | ||
2705 | void | |
2706 | do_thread_scan(void) | |
2707 | { | |
2708 | register boolean_t restart_needed = FALSE; | |
2709 | register thread_t thread; | |
2710 | register processor_set_t pset = &default_pset; | |
2711 | register processor_t processor; | |
2712 | spl_t s; | |
2713 | ||
2714 | if (!thread_scan_enabled) | |
2715 | return; | |
2716 | ||
2717 | do { | |
2718 | restart_needed = do_runq_scan(&pset->runq); | |
2719 | if (!restart_needed) { | |
2720 | simple_lock(&pset->processors_lock); | |
2721 | processor = (processor_t)queue_first(&pset->processors); | |
2722 | while (!queue_end(&pset->processors, (queue_entry_t)processor)) { | |
2723 | if (restart_needed = do_runq_scan(&processor->runq)) | |
2724 | break; | |
2725 | ||
0b4e3aa0 A |
2726 | thread = processor->idle_thread; |
2727 | if (thread->sched_stamp != sched_tick) { | |
2728 | if (stuck_count == MAX_STUCK_THREADS) { | |
2729 | restart_needed = TRUE; | |
2730 | break; | |
2731 | } | |
2732 | ||
2733 | stuck_threads[stuck_count++] = thread; | |
2734 | } | |
2735 | ||
1c79356b A |
2736 | processor = (processor_t)queue_next(&processor->processors); |
2737 | } | |
2738 | simple_unlock(&pset->processors_lock); | |
2739 | } | |
2740 | ||
2741 | /* | |
2742 | * Ok, we now have a collection of candidates -- fix them. | |
2743 | */ | |
2744 | while (stuck_count > 0) { | |
2745 | thread = stuck_threads[--stuck_count]; | |
2746 | stuck_threads[stuck_count] = THREAD_NULL; | |
2747 | s = splsched(); | |
2748 | thread_lock(thread); | |
0b4e3aa0 A |
2749 | if ( (thread->sched_mode & TH_MODE_TIMESHARE) || |
2750 | (thread->state & TH_IDLE) ) { | |
1c79356b | 2751 | if ( !(thread->state & (TH_WAIT|TH_SUSP)) && |
0b4e3aa0 | 2752 | thread->sched_stamp != sched_tick ) |
1c79356b A |
2753 | update_priority(thread); |
2754 | } | |
2755 | thread_unlock(thread); | |
2756 | splx(s); | |
0b4e3aa0 A |
2757 | if (!(thread->state & TH_IDLE)) |
2758 | thread_deallocate(thread); | |
1c79356b | 2759 | } |
9bccf70c A |
2760 | |
2761 | if (restart_needed) | |
2762 | delay(1); /* XXX */ | |
1c79356b A |
2763 | |
2764 | } while (restart_needed); | |
2765 | } | |
2766 | ||
2767 | /* | |
2768 | * Just in case someone doesn't use the macro | |
2769 | */ | |
2770 | #undef thread_wakeup | |
2771 | void | |
2772 | thread_wakeup( | |
2773 | event_t x); | |
2774 | ||
2775 | void | |
2776 | thread_wakeup( | |
2777 | event_t x) | |
2778 | { | |
2779 | thread_wakeup_with_result(x, THREAD_AWAKENED); | |
2780 | } | |
2781 | ||
9bccf70c | 2782 | |
0b4e3aa0 A |
2783 | #if DEBUG |
2784 | ||
2785 | static boolean_t | |
1c79356b | 2786 | thread_runnable( |
0b4e3aa0 | 2787 | thread_t thread) |
1c79356b | 2788 | { |
0b4e3aa0 | 2789 | return ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN); |
1c79356b A |
2790 | } |
2791 | ||
1c79356b A |
2792 | void |
2793 | dump_processor_set( | |
2794 | processor_set_t ps) | |
2795 | { | |
2796 | printf("processor_set: %08x\n",ps); | |
2797 | printf("idle_queue: %08x %08x, idle_count: 0x%x\n", | |
2798 | ps->idle_queue.next,ps->idle_queue.prev,ps->idle_count); | |
2799 | printf("processors: %08x %08x, processor_count: 0x%x\n", | |
2800 | ps->processors.next,ps->processors.prev,ps->processor_count); | |
2801 | printf("tasks: %08x %08x, task_count: 0x%x\n", | |
2802 | ps->tasks.next,ps->tasks.prev,ps->task_count); | |
2803 | printf("threads: %08x %08x, thread_count: 0x%x\n", | |
2804 | ps->threads.next,ps->threads.prev,ps->thread_count); | |
2805 | printf("ref_count: 0x%x, active: %x\n", | |
2806 | ps->ref_count,ps->active); | |
2807 | printf("pset_self: %08x, pset_name_self: %08x\n",ps->pset_self, ps->pset_name_self); | |
0b4e3aa0 | 2808 | printf("set_quanta: 0x%x\n", ps->set_quanta); |
1c79356b A |
2809 | } |
2810 | ||
2811 | #define processor_state(s) (((s)>PROCESSOR_SHUTDOWN)?"*unknown*":states[s]) | |
2812 | ||
2813 | void | |
2814 | dump_processor( | |
2815 | processor_t p) | |
2816 | { | |
2817 | char *states[]={"OFF_LINE","RUNNING","IDLE","DISPATCHING", | |
2818 | "ASSIGN","SHUTDOWN"}; | |
2819 | ||
2820 | printf("processor: %08x\n",p); | |
2821 | printf("processor_queue: %08x %08x\n", | |
2822 | p->processor_queue.next,p->processor_queue.prev); | |
2823 | printf("state: %8s, next_thread: %08x, idle_thread: %08x\n", | |
2824 | processor_state(p->state), p->next_thread, p->idle_thread); | |
0b4e3aa0 | 2825 | printf("slice_quanta: %x\n", p->slice_quanta); |
1c79356b A |
2826 | printf("processor_set: %08x, processor_set_next: %08x\n", |
2827 | p->processor_set, p->processor_set_next); | |
2828 | printf("processors: %08x %08x\n", p->processors.next,p->processors.prev); | |
2829 | printf("processor_self: %08x, slot_num: 0x%x\n", p->processor_self, p->slot_num); | |
2830 | } | |
2831 | ||
2832 | void | |
2833 | dump_run_queue_struct( | |
2834 | run_queue_t rq) | |
2835 | { | |
2836 | char dump_buf[80]; | |
2837 | int i; | |
2838 | ||
2839 | for( i=0; i < NRQS; ) { | |
2840 | int j; | |
2841 | ||
2842 | printf("%6s",(i==0)?"runq:":""); | |
2843 | for( j=0; (j<8) && (i < NRQS); j++,i++ ) { | |
2844 | if( rq->queues[i].next == &rq->queues[i] ) | |
2845 | printf( " --------"); | |
2846 | else | |
2847 | printf(" %08x",rq->queues[i].next); | |
2848 | } | |
2849 | printf("\n"); | |
2850 | } | |
2851 | for( i=0; i < NRQBM; ) { | |
2852 | register unsigned int mask; | |
2853 | char *d=dump_buf; | |
2854 | ||
2855 | mask = ~0; | |
2856 | mask ^= (mask>>1); | |
2857 | ||
2858 | do { | |
2859 | *d++ = ((rq->bitmap[i]&mask)?'r':'e'); | |
2860 | mask >>=1; | |
2861 | } while( mask ); | |
2862 | *d = '\0'; | |
2863 | printf("%8s%s\n",((i==0)?"bitmap:":""),dump_buf); | |
2864 | i++; | |
2865 | } | |
2866 | printf("highq: 0x%x, count: %u\n", rq->highq, rq->count); | |
2867 | } | |
2868 | ||
2869 | void | |
2870 | dump_run_queues( | |
2871 | run_queue_t runq) | |
2872 | { | |
2873 | register queue_t q1; | |
2874 | register int i; | |
2875 | register queue_entry_t e; | |
2876 | ||
2877 | q1 = runq->queues; | |
2878 | for (i = 0; i < NRQS; i++) { | |
2879 | if (q1->next != q1) { | |
2880 | int t_cnt; | |
2881 | ||
2882 | printf("[%u]",i); | |
2883 | for (t_cnt=0, e = q1->next; e != q1; e = e->next) { | |
2884 | printf("\t0x%08x",e); | |
2885 | if( (t_cnt = ++t_cnt%4) == 0 ) | |
2886 | printf("\n"); | |
2887 | } | |
2888 | if( t_cnt ) | |
2889 | printf("\n"); | |
2890 | } | |
2891 | /* else | |
2892 | printf("[%u]\t<empty>\n",i); | |
2893 | */ | |
2894 | q1++; | |
2895 | } | |
2896 | } | |
2897 | ||
2898 | void | |
2899 | checkrq( | |
2900 | run_queue_t rq, | |
2901 | char *msg) | |
2902 | { | |
2903 | register queue_t q1; | |
2904 | register int i, j; | |
2905 | register queue_entry_t e; | |
2906 | register int highq; | |
2907 | ||
2908 | highq = NRQS; | |
2909 | j = 0; | |
2910 | q1 = rq->queues; | |
2911 | for (i = MAXPRI; i >= 0; i--) { | |
2912 | if (q1->next == q1) { | |
2913 | if (q1->prev != q1) { | |
2914 | panic("checkrq: empty at %s", msg); | |
2915 | } | |
2916 | } | |
2917 | else { | |
2918 | if (highq == -1) | |
2919 | highq = i; | |
2920 | ||
2921 | for (e = q1->next; e != q1; e = e->next) { | |
2922 | j++; | |
2923 | if (e->next->prev != e) | |
2924 | panic("checkrq-2 at %s", msg); | |
2925 | if (e->prev->next != e) | |
2926 | panic("checkrq-3 at %s", msg); | |
2927 | } | |
2928 | } | |
2929 | q1++; | |
2930 | } | |
2931 | if (j != rq->count) | |
2932 | panic("checkrq: count wrong at %s", msg); | |
2933 | if (rq->count != 0 && highq > rq->highq) | |
2934 | panic("checkrq: highq wrong at %s", msg); | |
2935 | } | |
2936 | ||
2937 | void | |
2938 | thread_check( | |
2939 | register thread_t thread, | |
2940 | register run_queue_t rq) | |
2941 | { | |
2942 | register int whichq = thread->sched_pri; | |
2943 | register queue_entry_t queue, entry; | |
2944 | ||
2945 | if (whichq < MINPRI || whichq > MAXPRI) | |
2946 | panic("thread_check: bad pri"); | |
2947 | ||
1c79356b A |
2948 | queue = &rq->queues[whichq]; |
2949 | entry = queue_first(queue); | |
2950 | while (!queue_end(queue, entry)) { | |
2951 | if (entry == (queue_entry_t)thread) | |
2952 | return; | |
2953 | ||
2954 | entry = queue_next(entry); | |
2955 | } | |
2956 | ||
2957 | panic("thread_check: not found"); | |
2958 | } | |
2959 | ||
2960 | #endif /* DEBUG */ | |
2961 | ||
2962 | #if MACH_KDB | |
2963 | #include <ddb/db_output.h> | |
2964 | #define printf kdbprintf | |
2965 | extern int db_indent; | |
2966 | void db_sched(void); | |
2967 | ||
2968 | void | |
2969 | db_sched(void) | |
2970 | { | |
2971 | iprintf("Scheduling Statistics:\n"); | |
2972 | db_indent += 2; | |
2973 | iprintf("Thread invocations: csw %d same %d\n", | |
2974 | c_thread_invoke_csw, c_thread_invoke_same); | |
2975 | #if MACH_COUNTERS | |
2976 | iprintf("Thread block: calls %d\n", | |
2977 | c_thread_block_calls); | |
2978 | iprintf("Idle thread:\n\thandoff %d block %d no_dispatch %d\n", | |
2979 | c_idle_thread_handoff, | |
2980 | c_idle_thread_block, no_dispatch_count); | |
2981 | iprintf("Sched thread blocks: %d\n", c_sched_thread_block); | |
2982 | #endif /* MACH_COUNTERS */ | |
2983 | db_indent -= 2; | |
2984 | } | |
2985 | #endif /* MACH_KDB */ |