]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | * File: kern/lock.c | |
52 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
53 | * Date: 1985 | |
54 | * | |
55 | * Locking primitives implementation | |
56 | */ | |
57 | ||
58 | #include <cpus.h> | |
59 | #include <mach_kdb.h> | |
60 | #include <mach_ldebug.h> | |
61 | ||
62 | #include <kern/lock.h> | |
63 | #include <kern/etap_macros.h> | |
64 | #include <kern/misc_protos.h> | |
65 | #include <kern/thread.h> | |
9bccf70c | 66 | #include <kern/processor.h> |
1c79356b A |
67 | #include <kern/sched_prim.h> |
68 | #include <kern/xpr.h> | |
69 | #include <kern/debug.h> | |
70 | #include <string.h> | |
71 | ||
72 | #if MACH_KDB | |
73 | #include <ddb/db_command.h> | |
74 | #include <ddb/db_output.h> | |
75 | #include <ddb/db_sym.h> | |
76 | #include <ddb/db_print.h> | |
77 | #endif /* MACH_KDB */ | |
78 | ||
79 | #ifdef __ppc__ | |
80 | #include <ppc/Firmware.h> | |
81 | #include <ppc/POWERMAC/mp/MPPlugIn.h> | |
82 | #endif | |
83 | ||
9bccf70c A |
84 | #include <sys/kdebug.h> |
85 | ||
1c79356b A |
86 | #define ANY_LOCK_DEBUG (USLOCK_DEBUG || LOCK_DEBUG || MUTEX_DEBUG) |
87 | ||
88 | /* | |
89 | * Some portions of the lock debugging code must run with | |
90 | * interrupts disabled. This can be machine-dependent, | |
91 | * but we don't have any good hooks for that at the moment. | |
92 | * If your architecture is different, add a machine-dependent | |
93 | * ifdef here for these macros. XXX | |
94 | */ | |
95 | ||
96 | #define DISABLE_INTERRUPTS(s) s = ml_set_interrupts_enabled(FALSE) | |
97 | #define ENABLE_INTERRUPTS(s) (void)ml_set_interrupts_enabled(s) | |
98 | ||
99 | #if NCPUS > 1 | |
100 | /* Time we loop without holding the interlock. | |
101 | * The former is for when we cannot sleep, the latter | |
102 | * for when our thread can go to sleep (loop less) | |
103 | * we shouldn't retake the interlock at all frequently | |
104 | * if we cannot go to sleep, since it interferes with | |
105 | * any other processors. In particular, 100 is too small | |
106 | * a number for powerpc MP systems because of cache | |
107 | * coherency issues and differing lock fetch times between | |
108 | * the processors | |
109 | */ | |
110 | unsigned int lock_wait_time[2] = { (unsigned int)-1, 100 } ; | |
111 | #else /* NCPUS > 1 */ | |
112 | ||
113 | /* | |
114 | * It is silly to spin on a uni-processor as if we | |
115 | * thought something magical would happen to the | |
116 | * want_write bit while we are executing. | |
117 | */ | |
118 | ||
119 | unsigned int lock_wait_time[2] = { 0, 0 }; | |
120 | #endif /* NCPUS > 1 */ | |
121 | ||
122 | /* Forwards */ | |
123 | ||
124 | #if MACH_KDB | |
125 | void db_print_simple_lock( | |
126 | simple_lock_t addr); | |
127 | ||
128 | void db_print_mutex( | |
129 | mutex_t * addr); | |
130 | #endif /* MACH_KDB */ | |
131 | ||
132 | ||
133 | #if USLOCK_DEBUG | |
134 | /* | |
135 | * Perform simple lock checks. | |
136 | */ | |
137 | int uslock_check = 1; | |
138 | int max_lock_loops = 100000000; | |
139 | decl_simple_lock_data(extern , printf_lock) | |
140 | decl_simple_lock_data(extern , panic_lock) | |
141 | #if MACH_KDB && NCPUS > 1 | |
142 | decl_simple_lock_data(extern , kdb_lock) | |
143 | #endif /* MACH_KDB && NCPUS >1 */ | |
144 | #endif /* USLOCK_DEBUG */ | |
145 | ||
146 | ||
147 | /* | |
148 | * We often want to know the addresses of the callers | |
149 | * of the various lock routines. However, this information | |
150 | * is only used for debugging and statistics. | |
151 | */ | |
152 | typedef void *pc_t; | |
153 | #define INVALID_PC ((void *) VM_MAX_KERNEL_ADDRESS) | |
154 | #define INVALID_THREAD ((void *) VM_MAX_KERNEL_ADDRESS) | |
155 | #if ANY_LOCK_DEBUG || ETAP_LOCK_TRACE | |
156 | #define OBTAIN_PC(pc,l) ((pc) = (void *) GET_RETURN_PC(&(l))) | |
157 | #else /* ANY_LOCK_DEBUG || ETAP_LOCK_TRACE */ | |
158 | #ifdef lint | |
159 | /* | |
160 | * Eliminate lint complaints about unused local pc variables. | |
161 | */ | |
162 | #define OBTAIN_PC(pc,l) ++pc | |
163 | #else /* lint */ | |
164 | #define OBTAIN_PC(pc,l) | |
165 | #endif /* lint */ | |
166 | #endif /* USLOCK_DEBUG || ETAP_LOCK_TRACE */ | |
167 | ||
168 | ||
169 | /* #ifndef USIMPLE_LOCK_CALLS | |
170 | * The i386 production version of usimple_locks isn't ready yet. | |
171 | */ | |
172 | /* | |
173 | * Portable lock package implementation of usimple_locks. | |
174 | */ | |
175 | ||
176 | #if ETAP_LOCK_TRACE | |
177 | #define ETAPCALL(stmt) stmt | |
178 | void etap_simplelock_init(simple_lock_t, etap_event_t); | |
179 | void etap_simplelock_unlock(simple_lock_t); | |
180 | void etap_simplelock_hold(simple_lock_t, pc_t, etap_time_t); | |
181 | etap_time_t etap_simplelock_miss(simple_lock_t); | |
182 | ||
183 | void etap_mutex_init(mutex_t*, etap_event_t); | |
184 | void etap_mutex_unlock(mutex_t*); | |
185 | void etap_mutex_hold(mutex_t*, pc_t, etap_time_t); | |
186 | etap_time_t etap_mutex_miss(mutex_t*); | |
187 | #else /* ETAP_LOCK_TRACE */ | |
188 | #define ETAPCALL(stmt) | |
189 | #endif /* ETAP_LOCK_TRACE */ | |
190 | ||
191 | #if USLOCK_DEBUG | |
192 | #define USLDBG(stmt) stmt | |
193 | void usld_lock_init(usimple_lock_t, etap_event_t); | |
194 | void usld_lock_pre(usimple_lock_t, pc_t); | |
195 | void usld_lock_post(usimple_lock_t, pc_t); | |
196 | void usld_unlock(usimple_lock_t, pc_t); | |
197 | void usld_lock_try_pre(usimple_lock_t, pc_t); | |
198 | void usld_lock_try_post(usimple_lock_t, pc_t); | |
199 | void usld_lock_held(usimple_lock_t); | |
200 | void usld_lock_none_held(void); | |
201 | int usld_lock_common_checks(usimple_lock_t, char *); | |
202 | #else /* USLOCK_DEBUG */ | |
203 | #define USLDBG(stmt) | |
204 | #endif /* USLOCK_DEBUG */ | |
205 | ||
206 | /* | |
207 | * Initialize a usimple_lock. | |
208 | * | |
209 | * No change in preemption state. | |
210 | */ | |
211 | void | |
212 | usimple_lock_init( | |
213 | usimple_lock_t l, | |
214 | etap_event_t event) | |
215 | { | |
216 | USLDBG(usld_lock_init(l, event)); | |
217 | ETAPCALL(etap_simplelock_init((l),(event))); | |
218 | hw_lock_init(&l->interlock); | |
219 | } | |
220 | ||
221 | ||
222 | /* | |
223 | * Acquire a usimple_lock. | |
224 | * | |
225 | * Returns with preemption disabled. Note | |
226 | * that the hw_lock routines are responsible for | |
227 | * maintaining preemption state. | |
228 | */ | |
229 | void | |
230 | usimple_lock( | |
231 | usimple_lock_t l) | |
232 | { | |
233 | int i; | |
234 | pc_t pc; | |
235 | #if ETAP_LOCK_TRACE | |
236 | etap_time_t start_wait_time; | |
237 | int no_miss_info = 0; | |
238 | #endif /* ETAP_LOCK_TRACE */ | |
239 | #if USLOCK_DEBUG | |
240 | int count = 0; | |
241 | #endif /* USLOCK_DEBUG */ | |
242 | ||
243 | OBTAIN_PC(pc, l); | |
244 | USLDBG(usld_lock_pre(l, pc)); | |
245 | #if ETAP_LOCK_TRACE | |
246 | ETAP_TIME_CLEAR(start_wait_time); | |
247 | #endif /* ETAP_LOCK_TRACE */ | |
248 | ||
9bccf70c | 249 | if(!hw_lock_to(&l->interlock, LockTimeOut)) /* Try to get the lock with a timeout */ |
1c79356b A |
250 | panic("simple lock deadlock detection - l=%08X, cpu=%d, ret=%08X", l, cpu_number(), pc); |
251 | ||
1c79356b A |
252 | ETAPCALL(etap_simplelock_hold(l, pc, start_wait_time)); |
253 | USLDBG(usld_lock_post(l, pc)); | |
254 | } | |
255 | ||
256 | ||
257 | /* | |
258 | * Release a usimple_lock. | |
259 | * | |
260 | * Returns with preemption enabled. Note | |
261 | * that the hw_lock routines are responsible for | |
262 | * maintaining preemption state. | |
263 | */ | |
264 | void | |
265 | usimple_unlock( | |
266 | usimple_lock_t l) | |
267 | { | |
268 | pc_t pc; | |
269 | ||
270 | // checkNMI(); /* (TEST/DEBUG) */ | |
271 | ||
272 | OBTAIN_PC(pc, l); | |
273 | USLDBG(usld_unlock(l, pc)); | |
274 | ETAPCALL(etap_simplelock_unlock(l)); | |
275 | hw_lock_unlock(&l->interlock); | |
276 | } | |
277 | ||
278 | ||
279 | /* | |
280 | * Conditionally acquire a usimple_lock. | |
281 | * | |
282 | * On success, returns with preemption disabled. | |
283 | * On failure, returns with preemption in the same state | |
284 | * as when first invoked. Note that the hw_lock routines | |
285 | * are responsible for maintaining preemption state. | |
286 | * | |
287 | * XXX No stats are gathered on a miss; I preserved this | |
288 | * behavior from the original assembly-language code, but | |
289 | * doesn't it make sense to log misses? XXX | |
290 | */ | |
291 | unsigned int | |
292 | usimple_lock_try( | |
293 | usimple_lock_t l) | |
294 | { | |
295 | pc_t pc; | |
296 | unsigned int success; | |
297 | etap_time_t zero_time; | |
298 | ||
299 | OBTAIN_PC(pc, l); | |
300 | USLDBG(usld_lock_try_pre(l, pc)); | |
301 | if (success = hw_lock_try(&l->interlock)) { | |
302 | USLDBG(usld_lock_try_post(l, pc)); | |
303 | ETAP_TIME_CLEAR(zero_time); | |
304 | ETAPCALL(etap_simplelock_hold(l, pc, zero_time)); | |
305 | } | |
306 | return success; | |
307 | } | |
308 | ||
309 | #if ETAP_LOCK_TRACE | |
310 | void | |
311 | simple_lock_no_trace( | |
312 | simple_lock_t l) | |
313 | { | |
314 | pc_t pc; | |
315 | ||
316 | OBTAIN_PC(pc, l); | |
317 | USLDBG(usld_lock_pre(l, pc)); | |
318 | while (!hw_lock_try(&l->interlock)) { | |
319 | while (hw_lock_held(&l->interlock)) { | |
320 | /* | |
321 | * Spin watching the lock value in cache, | |
322 | * without consuming external bus cycles. | |
323 | * On most SMP architectures, the atomic | |
324 | * instruction(s) used by hw_lock_try | |
325 | * cost much, much more than an ordinary | |
326 | * memory read. | |
327 | */ | |
328 | } | |
329 | } | |
330 | USLDBG(usld_lock_post(l, pc)); | |
331 | } | |
332 | ||
333 | void | |
334 | simple_unlock_no_trace( | |
335 | simple_lock_t l) | |
336 | { | |
337 | pc_t pc; | |
338 | ||
339 | OBTAIN_PC(pc, l); | |
340 | USLDBG(usld_unlock(l, pc)); | |
341 | hw_lock_unlock(&l->interlock); | |
342 | } | |
343 | ||
344 | int | |
345 | simple_lock_try_no_trace( | |
346 | simple_lock_t l) | |
347 | { | |
348 | pc_t pc; | |
349 | unsigned int success; | |
350 | ||
351 | OBTAIN_PC(pc, l); | |
352 | USLDBG(usld_lock_try_pre(l, pc)); | |
353 | if (success = hw_lock_try(&l->interlock)) { | |
354 | USLDBG(usld_lock_try_post(l, pc)); | |
355 | } | |
356 | return success; | |
357 | } | |
358 | #endif /* ETAP_LOCK_TRACE */ | |
359 | ||
360 | ||
361 | #if USLOCK_DEBUG | |
362 | /* | |
363 | * Verify that the lock is locked and owned by | |
364 | * the current thread. | |
365 | */ | |
366 | void | |
367 | usimple_lock_held( | |
368 | usimple_lock_t l) | |
369 | { | |
370 | usld_lock_held(l); | |
371 | } | |
372 | ||
373 | ||
374 | /* | |
375 | * Verify that no usimple_locks are held by | |
376 | * this processor. Typically used in a | |
377 | * trap handler when returning to user mode | |
378 | * or in a path known to relinquish the processor. | |
379 | */ | |
380 | void | |
381 | usimple_lock_none_held(void) | |
382 | { | |
383 | usld_lock_none_held(); | |
384 | } | |
385 | #endif /* USLOCK_DEBUG */ | |
386 | ||
387 | ||
388 | #if USLOCK_DEBUG | |
389 | /* | |
390 | * States of a usimple_lock. The default when initializing | |
391 | * a usimple_lock is setting it up for debug checking. | |
392 | */ | |
393 | #define USLOCK_CHECKED 0x0001 /* lock is being checked */ | |
394 | #define USLOCK_TAKEN 0x0002 /* lock has been taken */ | |
395 | #define USLOCK_INIT 0xBAA0 /* lock has been initialized */ | |
396 | #define USLOCK_INITIALIZED (USLOCK_INIT|USLOCK_CHECKED) | |
397 | #define USLOCK_CHECKING(l) (uslock_check && \ | |
398 | ((l)->debug.state & USLOCK_CHECKED)) | |
399 | ||
400 | /* | |
401 | * Maintain a per-cpu stack of acquired usimple_locks. | |
402 | */ | |
403 | void usl_stack_push(usimple_lock_t, int); | |
404 | void usl_stack_pop(usimple_lock_t, int); | |
405 | ||
406 | /* | |
407 | * Trace activities of a particularly interesting lock. | |
408 | */ | |
409 | void usl_trace(usimple_lock_t, int, pc_t, const char *); | |
410 | ||
411 | ||
412 | /* | |
413 | * Initialize the debugging information contained | |
414 | * in a usimple_lock. | |
415 | */ | |
416 | void | |
417 | usld_lock_init( | |
418 | usimple_lock_t l, | |
419 | etap_event_t type) | |
420 | { | |
421 | if (l == USIMPLE_LOCK_NULL) | |
422 | panic("lock initialization: null lock pointer"); | |
423 | l->lock_type = USLOCK_TAG; | |
424 | l->debug.state = uslock_check ? USLOCK_INITIALIZED : 0; | |
425 | l->debug.lock_cpu = l->debug.unlock_cpu = 0; | |
426 | l->debug.lock_pc = l->debug.unlock_pc = INVALID_PC; | |
427 | l->debug.lock_thread = l->debug.unlock_thread = INVALID_THREAD; | |
428 | l->debug.duration[0] = l->debug.duration[1] = 0; | |
429 | l->debug.unlock_cpu = l->debug.unlock_cpu = 0; | |
430 | l->debug.unlock_pc = l->debug.unlock_pc = INVALID_PC; | |
431 | l->debug.unlock_thread = l->debug.unlock_thread = INVALID_THREAD; | |
432 | } | |
433 | ||
434 | ||
435 | /* | |
436 | * These checks apply to all usimple_locks, not just | |
437 | * those with USLOCK_CHECKED turned on. | |
438 | */ | |
439 | int | |
440 | usld_lock_common_checks( | |
441 | usimple_lock_t l, | |
442 | char *caller) | |
443 | { | |
444 | if (l == USIMPLE_LOCK_NULL) | |
445 | panic("%s: null lock pointer", caller); | |
446 | if (l->lock_type != USLOCK_TAG) | |
447 | panic("%s: 0x%x is not a usimple lock", caller, (integer_t) l); | |
448 | if (!(l->debug.state & USLOCK_INIT)) | |
449 | panic("%s: 0x%x is not an initialized lock", | |
450 | caller, (integer_t) l); | |
451 | return USLOCK_CHECKING(l); | |
452 | } | |
453 | ||
454 | ||
455 | /* | |
456 | * Debug checks on a usimple_lock just before attempting | |
457 | * to acquire it. | |
458 | */ | |
459 | /* ARGSUSED */ | |
460 | void | |
461 | usld_lock_pre( | |
462 | usimple_lock_t l, | |
463 | pc_t pc) | |
464 | { | |
465 | char *caller = "usimple_lock"; | |
466 | ||
467 | ||
468 | #if 0 | |
469 | printf("*** %08X %08X %04X %02X %08X %02X %08X - %s\n", /* (TEST/DEBUG) */ | |
470 | l->debug.lock_pc, | |
471 | l->debug.lock_thread, | |
472 | l->debug.state, | |
473 | l->debug.lock_cpu, | |
474 | l->debug.unlock_thread, | |
475 | l->debug.unlock_cpu, | |
476 | l->debug.unlock_pc, | |
477 | caller); | |
478 | #endif | |
479 | ||
480 | if (!usld_lock_common_checks(l, caller)) | |
481 | return; | |
482 | ||
483 | /* | |
484 | * Note that we have a weird case where we are getting a lock when we are] | |
485 | * in the process of putting the system to sleep. We are running with no | |
486 | * current threads, therefore we can't tell if we are trying to retake a lock | |
487 | * we have or someone on the other processor has it. Therefore we just | |
488 | * ignore this test if the locking thread is 0. | |
489 | */ | |
490 | ||
491 | if ((l->debug.state & USLOCK_TAKEN) && l->debug.lock_thread && | |
492 | l->debug.lock_thread == (void *) current_thread()) { | |
493 | printf("%s: lock 0x%x already locked (at 0x%x) by", | |
494 | caller, (integer_t) l, l->debug.lock_pc); | |
495 | printf(" current thread 0x%x (new attempt at pc 0x%x)\n", | |
496 | l->debug.lock_thread, pc); | |
497 | panic(caller); | |
498 | } | |
499 | mp_disable_preemption(); | |
500 | usl_trace(l, cpu_number(), pc, caller); | |
501 | mp_enable_preemption(); | |
502 | } | |
503 | ||
504 | ||
505 | /* | |
506 | * Debug checks on a usimple_lock just after acquiring it. | |
507 | * | |
508 | * Pre-emption has been disabled at this point, | |
509 | * so we are safe in using cpu_number. | |
510 | */ | |
511 | void | |
512 | usld_lock_post( | |
513 | usimple_lock_t l, | |
514 | pc_t pc) | |
515 | { | |
516 | register int mycpu; | |
517 | char *caller = "successful usimple_lock"; | |
518 | ||
519 | ||
520 | #if 0 | |
521 | printf("*** %08X %08X %04X %02X %08X %02X %08X - %s\n", /* (TEST/DEBUG) */ | |
522 | l->debug.lock_pc, | |
523 | l->debug.lock_thread, | |
524 | l->debug.state, | |
525 | l->debug.lock_cpu, | |
526 | l->debug.unlock_thread, | |
527 | l->debug.unlock_cpu, | |
528 | l->debug.unlock_pc, | |
529 | caller); | |
530 | #endif | |
531 | ||
532 | if (!usld_lock_common_checks(l, caller)) | |
533 | return; | |
534 | ||
535 | if (!((l->debug.state & ~USLOCK_TAKEN) == USLOCK_INITIALIZED)) | |
536 | panic("%s: lock 0x%x became uninitialized", | |
537 | caller, (integer_t) l); | |
538 | if ((l->debug.state & USLOCK_TAKEN)) | |
539 | panic("%s: lock 0x%x became TAKEN by someone else", | |
540 | caller, (integer_t) l); | |
541 | ||
542 | mycpu = cpu_number(); | |
543 | l->debug.lock_thread = (void *)current_thread(); | |
544 | l->debug.state |= USLOCK_TAKEN; | |
545 | l->debug.lock_pc = pc; | |
546 | l->debug.lock_cpu = mycpu; | |
547 | ||
548 | usl_stack_push(l, mycpu); | |
549 | usl_trace(l, mycpu, pc, caller); | |
550 | } | |
551 | ||
552 | ||
553 | /* | |
554 | * Debug checks on a usimple_lock just before | |
555 | * releasing it. Note that the caller has not | |
556 | * yet released the hardware lock. | |
557 | * | |
558 | * Preemption is still disabled, so there's | |
559 | * no problem using cpu_number. | |
560 | */ | |
561 | void | |
562 | usld_unlock( | |
563 | usimple_lock_t l, | |
564 | pc_t pc) | |
565 | { | |
566 | register int mycpu; | |
567 | char *caller = "usimple_unlock"; | |
568 | ||
569 | ||
570 | #if 0 | |
571 | printf("*** %08X %08X %04X %02X %08X %02X %08X - %s\n", /* (TEST/DEBUG) */ | |
572 | l->debug.lock_pc, | |
573 | l->debug.lock_thread, | |
574 | l->debug.state, | |
575 | l->debug.lock_cpu, | |
576 | l->debug.unlock_thread, | |
577 | l->debug.unlock_cpu, | |
578 | l->debug.unlock_pc, | |
579 | caller); | |
580 | #endif | |
581 | ||
582 | if (!usld_lock_common_checks(l, caller)) | |
583 | return; | |
584 | ||
585 | mycpu = cpu_number(); | |
586 | ||
587 | if (!(l->debug.state & USLOCK_TAKEN)) | |
588 | panic("%s: lock 0x%x hasn't been taken", | |
589 | caller, (integer_t) l); | |
590 | if (l->debug.lock_thread != (void *) current_thread()) | |
591 | panic("%s: unlocking lock 0x%x, owned by thread 0x%x", | |
592 | caller, (integer_t) l, l->debug.lock_thread); | |
593 | if (l->debug.lock_cpu != mycpu) { | |
594 | printf("%s: unlocking lock 0x%x on cpu 0x%x", | |
595 | caller, (integer_t) l, mycpu); | |
596 | printf(" (acquired on cpu 0x%x)\n", l->debug.lock_cpu); | |
597 | panic(caller); | |
598 | } | |
599 | usl_trace(l, mycpu, pc, caller); | |
600 | usl_stack_pop(l, mycpu); | |
601 | ||
602 | l->debug.unlock_thread = l->debug.lock_thread; | |
603 | l->debug.lock_thread = INVALID_PC; | |
604 | l->debug.state &= ~USLOCK_TAKEN; | |
605 | l->debug.unlock_pc = pc; | |
606 | l->debug.unlock_cpu = mycpu; | |
607 | } | |
608 | ||
609 | ||
610 | /* | |
611 | * Debug checks on a usimple_lock just before | |
612 | * attempting to acquire it. | |
613 | * | |
614 | * Preemption isn't guaranteed to be disabled. | |
615 | */ | |
616 | void | |
617 | usld_lock_try_pre( | |
618 | usimple_lock_t l, | |
619 | pc_t pc) | |
620 | { | |
621 | char *caller = "usimple_lock_try"; | |
622 | ||
623 | if (!usld_lock_common_checks(l, caller)) | |
624 | return; | |
625 | mp_disable_preemption(); | |
626 | usl_trace(l, cpu_number(), pc, caller); | |
627 | mp_enable_preemption(); | |
628 | } | |
629 | ||
630 | ||
631 | /* | |
632 | * Debug checks on a usimple_lock just after | |
633 | * successfully attempting to acquire it. | |
634 | * | |
635 | * Preemption has been disabled by the | |
636 | * lock acquisition attempt, so it's safe | |
637 | * to use cpu_number. | |
638 | */ | |
639 | void | |
640 | usld_lock_try_post( | |
641 | usimple_lock_t l, | |
642 | pc_t pc) | |
643 | { | |
644 | register int mycpu; | |
645 | char *caller = "successful usimple_lock_try"; | |
646 | ||
647 | if (!usld_lock_common_checks(l, caller)) | |
648 | return; | |
649 | ||
650 | if (!((l->debug.state & ~USLOCK_TAKEN) == USLOCK_INITIALIZED)) | |
651 | panic("%s: lock 0x%x became uninitialized", | |
652 | caller, (integer_t) l); | |
653 | if ((l->debug.state & USLOCK_TAKEN)) | |
654 | panic("%s: lock 0x%x became TAKEN by someone else", | |
655 | caller, (integer_t) l); | |
656 | ||
657 | mycpu = cpu_number(); | |
658 | l->debug.lock_thread = (void *) current_thread(); | |
659 | l->debug.state |= USLOCK_TAKEN; | |
660 | l->debug.lock_pc = pc; | |
661 | l->debug.lock_cpu = mycpu; | |
662 | ||
663 | #if 0 | |
664 | printf("*** %08X %08X %04X %02X %08X %02X %08X - %s\n", /* (TEST/DEBUG) */ | |
665 | l->debug.lock_pc, | |
666 | l->debug.lock_thread, | |
667 | l->debug.state, | |
668 | l->debug.lock_cpu, | |
669 | l->debug.unlock_thread, | |
670 | l->debug.unlock_cpu, | |
671 | l->debug.unlock_pc, | |
672 | caller); | |
673 | #endif | |
674 | ||
675 | usl_stack_push(l, mycpu); | |
676 | usl_trace(l, mycpu, pc, caller); | |
677 | } | |
678 | ||
679 | ||
680 | /* | |
681 | * Determine whether the lock in question is owned | |
682 | * by the current thread. | |
683 | */ | |
684 | void | |
685 | usld_lock_held( | |
686 | usimple_lock_t l) | |
687 | { | |
688 | char *caller = "usimple_lock_held"; | |
689 | ||
690 | ||
691 | #if 0 | |
692 | printf("*** %08X %08X %04X %02X %08X %02X %08X - %s\n", /* (TEST/DEBUG) */ | |
693 | l->debug.lock_pc, | |
694 | l->debug.lock_thread, | |
695 | l->debug.state, | |
696 | l->debug.lock_cpu, | |
697 | l->debug.unlock_thread, | |
698 | l->debug.unlock_cpu, | |
699 | l->debug.unlock_pc, | |
700 | caller); | |
701 | #endif | |
702 | ||
703 | if (!usld_lock_common_checks(l, caller)) | |
704 | return; | |
705 | ||
706 | if (!(l->debug.state & USLOCK_TAKEN)) | |
707 | panic("%s: lock 0x%x hasn't been taken", | |
708 | caller, (integer_t) l); | |
709 | if (l->debug.lock_thread != (void *) current_thread()) | |
710 | panic("%s: lock 0x%x is owned by thread 0x%x", caller, | |
711 | (integer_t) l, (integer_t) l->debug.lock_thread); | |
712 | ||
713 | /* | |
714 | * The usimple_lock is active, so preemption | |
715 | * is disabled and the current cpu should | |
716 | * match the one recorded at lock acquisition time. | |
717 | */ | |
718 | if (l->debug.lock_cpu != cpu_number()) | |
719 | panic("%s: current cpu 0x%x isn't acquiring cpu 0x%x", | |
720 | caller, cpu_number(), (integer_t) l->debug.lock_cpu); | |
721 | } | |
722 | ||
723 | ||
724 | /* | |
725 | * Per-cpu stack of currently active usimple_locks. | |
726 | * Requires spl protection so that interrupt-level | |
727 | * locks plug-n-play with their thread-context friends. | |
728 | */ | |
729 | #define USLOCK_STACK_DEPTH 20 | |
730 | usimple_lock_t uslock_stack[NCPUS][USLOCK_STACK_DEPTH]; | |
731 | unsigned int uslock_stack_index[NCPUS]; | |
732 | boolean_t uslock_stack_enabled = FALSE; | |
733 | ||
734 | ||
735 | /* | |
736 | * Record a usimple_lock just acquired on | |
737 | * the current processor. | |
738 | * | |
739 | * Preemption has been disabled by lock | |
740 | * acquisition, so it's safe to use the cpu number | |
741 | * specified by the caller. | |
742 | */ | |
743 | void | |
744 | usl_stack_push( | |
745 | usimple_lock_t l, | |
746 | int mycpu) | |
747 | { | |
748 | boolean_t s; | |
749 | ||
750 | if (uslock_stack_enabled == FALSE) | |
751 | return; | |
752 | ||
753 | DISABLE_INTERRUPTS(s); | |
754 | assert(uslock_stack_index[mycpu] >= 0); | |
755 | assert(uslock_stack_index[mycpu] < USLOCK_STACK_DEPTH); | |
756 | if (uslock_stack_index[mycpu] >= USLOCK_STACK_DEPTH) { | |
757 | printf("usl_stack_push (cpu 0x%x): too many locks (%d)", | |
758 | mycpu, uslock_stack_index[mycpu]); | |
759 | printf(" disabling stacks\n"); | |
760 | uslock_stack_enabled = FALSE; | |
761 | ENABLE_INTERRUPTS(s); | |
762 | return; | |
763 | } | |
764 | uslock_stack[mycpu][uslock_stack_index[mycpu]] = l; | |
765 | uslock_stack_index[mycpu]++; | |
766 | ENABLE_INTERRUPTS(s); | |
767 | } | |
768 | ||
769 | ||
770 | /* | |
771 | * Eliminate the entry for a usimple_lock | |
772 | * that had been active on the current processor. | |
773 | * | |
774 | * Preemption has been disabled by lock | |
775 | * acquisition, and we haven't yet actually | |
776 | * released the hardware lock associated with | |
777 | * this usimple_lock, so it's safe to use the | |
778 | * cpu number supplied by the caller. | |
779 | */ | |
780 | void | |
781 | usl_stack_pop( | |
782 | usimple_lock_t l, | |
783 | int mycpu) | |
784 | { | |
785 | unsigned int i, index; | |
786 | boolean_t s; | |
787 | ||
788 | if (uslock_stack_enabled == FALSE) | |
789 | return; | |
790 | ||
791 | DISABLE_INTERRUPTS(s); | |
792 | assert(uslock_stack_index[mycpu] > 0); | |
793 | assert(uslock_stack_index[mycpu] <= USLOCK_STACK_DEPTH); | |
794 | if (uslock_stack_index[mycpu] == 0) { | |
795 | printf("usl_stack_pop (cpu 0x%x): not enough locks (%d)", | |
796 | mycpu, uslock_stack_index[mycpu]); | |
797 | printf(" disabling stacks\n"); | |
798 | uslock_stack_enabled = FALSE; | |
799 | ENABLE_INTERRUPTS(s); | |
800 | return; | |
801 | } | |
802 | index = --uslock_stack_index[mycpu]; | |
803 | for (i = 0; i <= index; ++i) { | |
804 | if (uslock_stack[mycpu][i] == l) { | |
805 | if (i != index) | |
806 | uslock_stack[mycpu][i] = | |
807 | uslock_stack[mycpu][index]; | |
808 | ENABLE_INTERRUPTS(s); | |
809 | return; | |
810 | } | |
811 | } | |
812 | ENABLE_INTERRUPTS(s); | |
813 | panic("usl_stack_pop: can't find usimple_lock 0x%x", l); | |
814 | } | |
815 | ||
816 | ||
817 | /* | |
818 | * Determine whether any usimple_locks are currently held. | |
819 | * | |
820 | * Caller's preemption state is uncertain. If | |
821 | * preemption has been disabled, this check is accurate. | |
822 | * Otherwise, this check is just a guess. We do the best | |
823 | * we can by disabling scheduler interrupts, so at least | |
824 | * the check is accurate w.r.t. whatever cpu we're running | |
825 | * on while in this routine. | |
826 | */ | |
827 | void | |
828 | usld_lock_none_held() | |
829 | { | |
830 | register int mycpu; | |
831 | boolean_t s; | |
832 | unsigned int locks_held; | |
833 | char *caller = "usimple_lock_none_held"; | |
834 | ||
835 | DISABLE_INTERRUPTS(s); | |
836 | mp_disable_preemption(); | |
837 | mycpu = cpu_number(); | |
838 | locks_held = uslock_stack_index[mycpu]; | |
839 | mp_enable_preemption(); | |
840 | ENABLE_INTERRUPTS(s); | |
841 | if (locks_held > 0) | |
842 | panic("%s: no locks should be held (0x%x locks held)", | |
843 | caller, (integer_t) locks_held); | |
844 | } | |
845 | ||
846 | ||
847 | /* | |
848 | * For very special cases, set traced_lock to point to a | |
849 | * specific lock of interest. The result is a series of | |
850 | * XPRs showing lock operations on that lock. The lock_seq | |
851 | * value is used to show the order of those operations. | |
852 | */ | |
853 | usimple_lock_t traced_lock; | |
854 | unsigned int lock_seq; | |
855 | ||
856 | void | |
857 | usl_trace( | |
858 | usimple_lock_t l, | |
859 | int mycpu, | |
860 | pc_t pc, | |
861 | const char * op_name) | |
862 | { | |
863 | if (traced_lock == l) { | |
864 | XPR(XPR_SLOCK, | |
865 | "seq %d, cpu %d, %s @ %x\n", | |
866 | (integer_t) lock_seq, (integer_t) mycpu, | |
867 | (integer_t) op_name, (integer_t) pc, 0); | |
868 | lock_seq++; | |
869 | } | |
870 | } | |
871 | ||
872 | ||
873 | ||
874 | #if MACH_KDB | |
875 | #define printf kdbprintf | |
876 | void db_show_all_slocks(void); | |
877 | void | |
878 | db_show_all_slocks(void) | |
879 | { | |
880 | unsigned int i, index; | |
881 | int mycpu = cpu_number(); | |
882 | usimple_lock_t l; | |
883 | ||
884 | if (uslock_stack_enabled == FALSE) { | |
885 | printf("Lock stack not enabled\n"); | |
886 | return; | |
887 | } | |
888 | ||
889 | #if 0 | |
890 | if (!mach_slocks_init) | |
891 | iprintf("WARNING: simple locks stack may not be accurate\n"); | |
892 | #endif | |
893 | assert(uslock_stack_index[mycpu] >= 0); | |
894 | assert(uslock_stack_index[mycpu] <= USLOCK_STACK_DEPTH); | |
895 | index = uslock_stack_index[mycpu]; | |
896 | for (i = 0; i < index; ++i) { | |
897 | l = uslock_stack[mycpu][i]; | |
898 | iprintf("%d: ", i); | |
899 | db_printsym((vm_offset_t)l, DB_STGY_ANY); | |
900 | if (l->debug.lock_pc != INVALID_PC) { | |
901 | printf(" locked by "); | |
902 | db_printsym((int)l->debug.lock_pc, DB_STGY_PROC); | |
903 | } | |
904 | printf("\n"); | |
905 | } | |
906 | } | |
907 | #endif /* MACH_KDB */ | |
908 | ||
909 | #endif /* USLOCK_DEBUG */ | |
910 | ||
911 | /* #endif USIMPLE_LOCK_CALLS */ | |
912 | ||
913 | /* | |
914 | * Routine: lock_alloc | |
915 | * Function: | |
916 | * Allocate a lock for external users who cannot | |
917 | * hard-code the structure definition into their | |
918 | * objects. | |
919 | * For now just use kalloc, but a zone is probably | |
920 | * warranted. | |
921 | */ | |
922 | lock_t * | |
923 | lock_alloc( | |
924 | boolean_t can_sleep, | |
925 | etap_event_t event, | |
926 | etap_event_t i_event) | |
927 | { | |
928 | lock_t *l; | |
929 | ||
930 | if ((l = (lock_t *)kalloc(sizeof(lock_t))) != 0) | |
931 | lock_init(l, can_sleep, event, i_event); | |
932 | return(l); | |
933 | } | |
934 | ||
935 | /* | |
936 | * Routine: lock_free | |
937 | * Function: | |
938 | * Free a lock allocated for external users. | |
939 | * For now just use kfree, but a zone is probably | |
940 | * warranted. | |
941 | */ | |
942 | void | |
943 | lock_free( | |
944 | lock_t *l) | |
945 | { | |
946 | kfree((vm_offset_t)l, sizeof(lock_t)); | |
947 | } | |
948 | ||
949 | ||
950 | /* | |
951 | * Routine: lock_init | |
952 | * Function: | |
953 | * Initialize a lock; required before use. | |
954 | * Note that clients declare the "struct lock" | |
955 | * variables and then initialize them, rather | |
956 | * than getting a new one from this module. | |
957 | */ | |
958 | void | |
959 | lock_init( | |
960 | lock_t *l, | |
961 | boolean_t can_sleep, | |
962 | etap_event_t event, | |
963 | etap_event_t i_event) | |
964 | { | |
965 | (void) memset((void *) l, 0, sizeof(lock_t)); | |
966 | ||
967 | #if ETAP_LOCK_TRACE | |
968 | etap_event_table_assign(&l->u.event_table_chain, event); | |
969 | l->u.s.start_list = SD_ENTRY_NULL; | |
970 | #endif /* ETAP_LOCK_TRACE */ | |
971 | ||
972 | simple_lock_init(&l->interlock, i_event); | |
973 | l->want_write = FALSE; | |
974 | l->want_upgrade = FALSE; | |
975 | l->read_count = 0; | |
976 | l->can_sleep = can_sleep; | |
977 | ||
978 | #if ETAP_LOCK_ACCUMULATE | |
979 | l->cbuff_write = etap_cbuff_reserve(lock_event_table(l)); | |
980 | if (l->cbuff_write != CBUFF_ENTRY_NULL) { | |
981 | l->cbuff_write->event = event; | |
982 | l->cbuff_write->instance = (unsigned long) l; | |
983 | l->cbuff_write->kind = WRITE_LOCK; | |
984 | } | |
985 | l->cbuff_read = CBUFF_ENTRY_NULL; | |
986 | #endif /* ETAP_LOCK_ACCUMULATE */ | |
987 | } | |
988 | ||
989 | ||
990 | /* | |
991 | * Sleep locks. These use the same data structure and algorithm | |
992 | * as the spin locks, but the process sleeps while it is waiting | |
993 | * for the lock. These work on uniprocessor systems. | |
994 | */ | |
995 | ||
996 | #define DECREMENTER_TIMEOUT 1000000 | |
997 | ||
998 | void | |
999 | lock_write( | |
1000 | register lock_t * l) | |
1001 | { | |
1002 | register int i; | |
1003 | start_data_node_t entry = {0}; | |
1004 | boolean_t lock_miss = FALSE; | |
1005 | unsigned short dynamic = 0; | |
1006 | unsigned short trace = 0; | |
1007 | etap_time_t total_time; | |
1008 | etap_time_t stop_wait_time; | |
1009 | pc_t pc; | |
1010 | #if MACH_LDEBUG | |
1011 | int decrementer; | |
1012 | #endif /* MACH_LDEBUG */ | |
1013 | ||
1014 | ||
1015 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
1016 | ETAP_CREATE_ENTRY(entry, trace); | |
1017 | MON_ASSIGN_PC(entry->start_pc, pc, trace); | |
1018 | ||
1019 | simple_lock(&l->interlock); | |
1020 | ||
1021 | /* | |
1022 | * Link the new start_list entry | |
1023 | */ | |
1024 | ETAP_LINK_ENTRY(l, entry, trace); | |
1025 | ||
1026 | #if MACH_LDEBUG | |
1027 | decrementer = DECREMENTER_TIMEOUT; | |
1028 | #endif /* MACH_LDEBUG */ | |
1029 | ||
1030 | /* | |
1031 | * Try to acquire the want_write bit. | |
1032 | */ | |
1033 | while (l->want_write) { | |
1034 | if (!lock_miss) { | |
1035 | ETAP_CONTENTION_TIMESTAMP(entry, trace); | |
1036 | lock_miss = TRUE; | |
1037 | } | |
1038 | ||
1039 | i = lock_wait_time[l->can_sleep ? 1 : 0]; | |
1040 | if (i != 0) { | |
1041 | simple_unlock(&l->interlock); | |
1042 | #if MACH_LDEBUG | |
1043 | if (!--decrementer) | |
1044 | Debugger("timeout - want_write"); | |
1045 | #endif /* MACH_LDEBUG */ | |
1046 | while (--i != 0 && l->want_write) | |
1047 | continue; | |
1048 | simple_lock(&l->interlock); | |
1049 | } | |
1050 | ||
1051 | if (l->can_sleep && l->want_write) { | |
1052 | l->waiting = TRUE; | |
1053 | ETAP_SET_REASON(current_thread(), | |
1054 | BLOCKED_ON_COMPLEX_LOCK); | |
1055 | thread_sleep_simple_lock((event_t) l, | |
9bccf70c A |
1056 | simple_lock_addr(l->interlock), |
1057 | THREAD_UNINT); | |
1058 | /* interlock relocked */ | |
1c79356b A |
1059 | } |
1060 | } | |
1061 | l->want_write = TRUE; | |
1062 | ||
1063 | /* Wait for readers (and upgrades) to finish */ | |
1064 | ||
1065 | #if MACH_LDEBUG | |
1066 | decrementer = DECREMENTER_TIMEOUT; | |
1067 | #endif /* MACH_LDEBUG */ | |
1068 | while ((l->read_count != 0) || l->want_upgrade) { | |
1069 | if (!lock_miss) { | |
1070 | ETAP_CONTENTION_TIMESTAMP(entry,trace); | |
1071 | lock_miss = TRUE; | |
1072 | } | |
1073 | ||
1074 | i = lock_wait_time[l->can_sleep ? 1 : 0]; | |
1075 | if (i != 0) { | |
1076 | simple_unlock(&l->interlock); | |
1077 | #if MACH_LDEBUG | |
1078 | if (!--decrementer) | |
1079 | Debugger("timeout - wait for readers"); | |
1080 | #endif /* MACH_LDEBUG */ | |
1081 | while (--i != 0 && (l->read_count != 0 || | |
1082 | l->want_upgrade)) | |
1083 | continue; | |
1084 | simple_lock(&l->interlock); | |
1085 | } | |
1086 | ||
1087 | if (l->can_sleep && (l->read_count != 0 || l->want_upgrade)) { | |
1088 | l->waiting = TRUE; | |
1089 | ETAP_SET_REASON(current_thread(), | |
1090 | BLOCKED_ON_COMPLEX_LOCK); | |
1091 | thread_sleep_simple_lock((event_t) l, | |
9bccf70c A |
1092 | simple_lock_addr(l->interlock), |
1093 | THREAD_UNINT); | |
1094 | /* interlock relocked */ | |
1c79356b A |
1095 | } |
1096 | } | |
1097 | ||
1098 | /* | |
1099 | * do not collect wait data if either the lock | |
1100 | * was free or no wait traces are enabled. | |
1101 | */ | |
1102 | ||
1103 | if (lock_miss && ETAP_CONTENTION_ENABLED(trace)) { | |
1104 | ETAP_TIMESTAMP(stop_wait_time); | |
1105 | ETAP_TOTAL_TIME(total_time, | |
1106 | stop_wait_time, | |
1107 | entry->start_wait_time); | |
1108 | CUM_WAIT_ACCUMULATE(l->cbuff_write, total_time, dynamic, trace); | |
1109 | MON_DATA_COLLECT(l, | |
1110 | entry, | |
1111 | total_time, | |
1112 | WRITE_LOCK, | |
1113 | MON_CONTENTION, | |
1114 | trace); | |
1115 | } | |
1116 | ||
1117 | simple_unlock(&l->interlock); | |
1118 | ||
1119 | /* | |
1120 | * Set start hold time if some type of hold tracing is enabled. | |
1121 | * | |
1122 | * Note: if the stop_wait_time was already stamped, use | |
1123 | * it as the start_hold_time instead of doing an | |
1124 | * expensive bus access. | |
1125 | * | |
1126 | */ | |
1127 | ||
1128 | if (lock_miss && ETAP_CONTENTION_ENABLED(trace)) | |
1129 | ETAP_COPY_START_HOLD_TIME(entry, stop_wait_time, trace); | |
1130 | else | |
1131 | ETAP_DURATION_TIMESTAMP(entry, trace); | |
1132 | ||
1133 | } | |
1134 | ||
1135 | void | |
1136 | lock_done( | |
1137 | register lock_t * l) | |
1138 | { | |
1139 | boolean_t do_wakeup = FALSE; | |
1140 | start_data_node_t entry; | |
1141 | unsigned short dynamic = 0; | |
1142 | unsigned short trace = 0; | |
1143 | etap_time_t stop_hold_time; | |
1144 | etap_time_t total_time; | |
1145 | unsigned long lock_kind; | |
1146 | pc_t pc; | |
1147 | ||
1148 | ||
1149 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
1150 | ||
1151 | simple_lock(&l->interlock); | |
1152 | ||
1153 | if (l->read_count != 0) { | |
1154 | l->read_count--; | |
1155 | lock_kind = READ_LOCK; | |
1156 | } | |
1157 | else | |
1158 | if (l->want_upgrade) { | |
1159 | l->want_upgrade = FALSE; | |
1160 | lock_kind = WRITE_LOCK; | |
1161 | } | |
1162 | else { | |
1163 | l->want_write = FALSE; | |
1164 | lock_kind = WRITE_LOCK; | |
1165 | } | |
1166 | ||
1167 | /* | |
1168 | * There is no reason to wakeup a waiting thread | |
1169 | * if the read-count is non-zero. Consider: | |
1170 | * we must be dropping a read lock | |
1171 | * threads are waiting only if one wants a write lock | |
1172 | * if there are still readers, they can't proceed | |
1173 | */ | |
1174 | ||
1175 | if (l->waiting && (l->read_count == 0)) { | |
1176 | l->waiting = FALSE; | |
1177 | do_wakeup = TRUE; | |
1178 | } | |
1179 | /* | |
1180 | * Collect hold data if hold tracing is | |
1181 | * enabled. | |
1182 | */ | |
1183 | ||
1184 | /* | |
1185 | * NOTE: All complex locks whose tracing was on when the | |
1186 | * lock was acquired will have an entry in the start_data | |
1187 | * list. | |
1188 | */ | |
1189 | ||
1190 | ETAP_UNLINK_ENTRY(l,entry); | |
1191 | if (ETAP_DURATION_ENABLED(trace) && entry != SD_ENTRY_NULL) { | |
1192 | ETAP_TIMESTAMP (stop_hold_time); | |
1193 | ETAP_TOTAL_TIME (total_time, | |
1194 | stop_hold_time, | |
1195 | entry->start_hold_time); | |
1196 | ||
1197 | if (lock_kind & WRITE_LOCK) | |
1198 | CUM_HOLD_ACCUMULATE (l->cbuff_write, | |
1199 | total_time, | |
1200 | dynamic, | |
1201 | trace); | |
1202 | else { | |
1203 | CUM_READ_ENTRY_RESERVE(l,l->cbuff_read,trace); | |
1204 | CUM_HOLD_ACCUMULATE (l->cbuff_read, | |
1205 | total_time, | |
1206 | dynamic, | |
1207 | trace); | |
1208 | } | |
1209 | MON_ASSIGN_PC(entry->end_pc,pc,trace); | |
1210 | MON_DATA_COLLECT(l,entry, | |
1211 | total_time, | |
1212 | lock_kind, | |
1213 | MON_DURATION, | |
1214 | trace); | |
1215 | } | |
1216 | ||
1217 | simple_unlock(&l->interlock); | |
1218 | ||
1219 | ETAP_DESTROY_ENTRY(entry); | |
1220 | ||
1221 | if (do_wakeup) | |
1222 | thread_wakeup((event_t) l); | |
1223 | } | |
1224 | ||
1225 | void | |
1226 | lock_read( | |
1227 | register lock_t * l) | |
1228 | { | |
1229 | register int i; | |
1230 | start_data_node_t entry = {0}; | |
1231 | boolean_t lock_miss = FALSE; | |
1232 | unsigned short dynamic = 0; | |
1233 | unsigned short trace = 0; | |
1234 | etap_time_t total_time; | |
1235 | etap_time_t stop_wait_time; | |
1236 | pc_t pc; | |
1237 | #if MACH_LDEBUG | |
1238 | int decrementer; | |
1239 | #endif /* MACH_LDEBUG */ | |
1240 | ||
1241 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
1242 | ETAP_CREATE_ENTRY(entry, trace); | |
1243 | MON_ASSIGN_PC(entry->start_pc, pc, trace); | |
1244 | ||
1245 | simple_lock(&l->interlock); | |
1246 | ||
1247 | /* | |
1248 | * Link the new start_list entry | |
1249 | */ | |
1250 | ETAP_LINK_ENTRY(l,entry,trace); | |
1251 | ||
1252 | #if MACH_LDEBUG | |
1253 | decrementer = DECREMENTER_TIMEOUT; | |
1254 | #endif /* MACH_LDEBUG */ | |
1255 | while (l->want_write || l->want_upgrade) { | |
1256 | if (!lock_miss) { | |
1257 | ETAP_CONTENTION_TIMESTAMP(entry, trace); | |
1258 | lock_miss = TRUE; | |
1259 | } | |
1260 | ||
1261 | i = lock_wait_time[l->can_sleep ? 1 : 0]; | |
1262 | ||
1263 | if (i != 0) { | |
1264 | simple_unlock(&l->interlock); | |
1265 | #if MACH_LDEBUG | |
1266 | if (!--decrementer) | |
1267 | Debugger("timeout - wait no writers"); | |
1268 | #endif /* MACH_LDEBUG */ | |
1269 | while (--i != 0 && (l->want_write || l->want_upgrade)) | |
1270 | continue; | |
1271 | simple_lock(&l->interlock); | |
1272 | } | |
1273 | ||
1274 | if (l->can_sleep && (l->want_write || l->want_upgrade)) { | |
1275 | l->waiting = TRUE; | |
1276 | thread_sleep_simple_lock((event_t) l, | |
9bccf70c A |
1277 | simple_lock_addr(l->interlock), |
1278 | THREAD_UNINT); | |
1279 | /* interlock relocked */ | |
1c79356b A |
1280 | } |
1281 | } | |
1282 | ||
1283 | l->read_count++; | |
1284 | ||
1285 | /* | |
1286 | * Do not collect wait data if the lock was free | |
1287 | * or if no wait traces are enabled. | |
1288 | */ | |
1289 | ||
1290 | if (lock_miss && ETAP_CONTENTION_ENABLED(trace)) { | |
1291 | ETAP_TIMESTAMP(stop_wait_time); | |
1292 | ETAP_TOTAL_TIME(total_time, | |
1293 | stop_wait_time, | |
1294 | entry->start_wait_time); | |
1295 | CUM_READ_ENTRY_RESERVE(l, l->cbuff_read, trace); | |
1296 | CUM_WAIT_ACCUMULATE(l->cbuff_read, total_time, dynamic, trace); | |
1297 | MON_DATA_COLLECT(l, | |
1298 | entry, | |
1299 | total_time, | |
1300 | READ_LOCK, | |
1301 | MON_CONTENTION, | |
1302 | trace); | |
1303 | } | |
1304 | simple_unlock(&l->interlock); | |
1305 | ||
1306 | /* | |
1307 | * Set start hold time if some type of hold tracing is enabled. | |
1308 | * | |
1309 | * Note: if the stop_wait_time was already stamped, use | |
1310 | * it instead of doing an expensive bus access. | |
1311 | * | |
1312 | */ | |
1313 | ||
1314 | if (lock_miss && ETAP_CONTENTION_ENABLED(trace)) | |
1315 | ETAP_COPY_START_HOLD_TIME(entry, stop_wait_time, trace); | |
1316 | else | |
1317 | ETAP_DURATION_TIMESTAMP(entry,trace); | |
1318 | } | |
1319 | ||
1320 | ||
1321 | /* | |
1322 | * Routine: lock_read_to_write | |
1323 | * Function: | |
1324 | * Improves a read-only lock to one with | |
1325 | * write permission. If another reader has | |
1326 | * already requested an upgrade to a write lock, | |
1327 | * no lock is held upon return. | |
1328 | * | |
1329 | * Returns TRUE if the upgrade *failed*. | |
1330 | */ | |
1331 | ||
1332 | boolean_t | |
1333 | lock_read_to_write( | |
1334 | register lock_t * l) | |
1335 | { | |
1336 | register int i; | |
1337 | boolean_t do_wakeup = FALSE; | |
1338 | start_data_node_t entry = {0}; | |
1339 | boolean_t lock_miss = FALSE; | |
1340 | unsigned short dynamic = 0; | |
1341 | unsigned short trace = 0; | |
1342 | etap_time_t total_time; | |
1343 | etap_time_t stop_time; | |
1344 | pc_t pc; | |
1345 | #if MACH_LDEBUG | |
1346 | int decrementer; | |
1347 | #endif /* MACH_LDEBUG */ | |
1348 | ||
1349 | ||
1350 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
1351 | ||
1352 | simple_lock(&l->interlock); | |
1353 | ||
1354 | l->read_count--; | |
1355 | ||
1356 | /* | |
1357 | * Since the read lock is lost whether the write lock | |
1358 | * is acquired or not, read hold data is collected here. | |
1359 | * This, of course, is assuming some type of hold | |
1360 | * tracing is enabled. | |
1361 | * | |
1362 | * Note: trace is set to zero if the entry does not exist. | |
1363 | */ | |
1364 | ||
1365 | ETAP_FIND_ENTRY(l, entry, trace); | |
1366 | ||
1367 | if (ETAP_DURATION_ENABLED(trace)) { | |
1368 | ETAP_TIMESTAMP(stop_time); | |
1369 | ETAP_TOTAL_TIME(total_time, stop_time, entry->start_hold_time); | |
1370 | CUM_HOLD_ACCUMULATE(l->cbuff_read, total_time, dynamic, trace); | |
1371 | MON_ASSIGN_PC(entry->end_pc, pc, trace); | |
1372 | MON_DATA_COLLECT(l, | |
1373 | entry, | |
1374 | total_time, | |
1375 | READ_LOCK, | |
1376 | MON_DURATION, | |
1377 | trace); | |
1378 | } | |
1379 | ||
1380 | if (l->want_upgrade) { | |
1381 | /* | |
1382 | * Someone else has requested upgrade. | |
1383 | * Since we've released a read lock, wake | |
1384 | * him up. | |
1385 | */ | |
1386 | if (l->waiting && (l->read_count == 0)) { | |
1387 | l->waiting = FALSE; | |
1388 | do_wakeup = TRUE; | |
1389 | } | |
1390 | ||
1391 | ETAP_UNLINK_ENTRY(l, entry); | |
1392 | simple_unlock(&l->interlock); | |
1393 | ETAP_DESTROY_ENTRY(entry); | |
1394 | ||
1395 | if (do_wakeup) | |
1396 | thread_wakeup((event_t) l); | |
1397 | return (TRUE); | |
1398 | } | |
1399 | ||
1400 | l->want_upgrade = TRUE; | |
1401 | ||
1402 | MON_ASSIGN_PC(entry->start_pc, pc, trace); | |
1403 | ||
1404 | #if MACH_LDEBUG | |
1405 | decrementer = DECREMENTER_TIMEOUT; | |
1406 | #endif /* MACH_LDEBUG */ | |
1407 | while (l->read_count != 0) { | |
1408 | if (!lock_miss) { | |
1409 | ETAP_CONTENTION_TIMESTAMP(entry, trace); | |
1410 | lock_miss = TRUE; | |
1411 | } | |
1412 | ||
1413 | i = lock_wait_time[l->can_sleep ? 1 : 0]; | |
1414 | ||
1415 | if (i != 0) { | |
1416 | simple_unlock(&l->interlock); | |
1417 | #if MACH_LDEBUG | |
1418 | if (!--decrementer) | |
1419 | Debugger("timeout - read_count"); | |
1420 | #endif /* MACH_LDEBUG */ | |
1421 | while (--i != 0 && l->read_count != 0) | |
1422 | continue; | |
1423 | simple_lock(&l->interlock); | |
1424 | } | |
1425 | ||
1426 | if (l->can_sleep && l->read_count != 0) { | |
1427 | l->waiting = TRUE; | |
1428 | thread_sleep_simple_lock((event_t) l, | |
9bccf70c A |
1429 | simple_lock_addr(l->interlock), |
1430 | THREAD_UNINT); | |
1431 | /* interlock relocked */ | |
1c79356b A |
1432 | } |
1433 | } | |
1434 | ||
1435 | /* | |
1436 | * do not collect wait data if the lock was free | |
1437 | * or if no wait traces are enabled. | |
1438 | */ | |
1439 | ||
1440 | if (lock_miss && ETAP_CONTENTION_ENABLED(trace)) { | |
1441 | ETAP_TIMESTAMP (stop_time); | |
1442 | ETAP_TOTAL_TIME(total_time, stop_time, entry->start_wait_time); | |
1443 | CUM_WAIT_ACCUMULATE(l->cbuff_write, total_time, dynamic, trace); | |
1444 | MON_DATA_COLLECT(l, | |
1445 | entry, | |
1446 | total_time, | |
1447 | WRITE_LOCK, | |
1448 | MON_CONTENTION, | |
1449 | trace); | |
1450 | } | |
1451 | ||
1452 | simple_unlock(&l->interlock); | |
1453 | ||
1454 | /* | |
1455 | * Set start hold time if some type of hold tracing is enabled | |
1456 | * | |
1457 | * Note: if the stop_time was already stamped, use | |
1458 | * it as the new start_hold_time instead of doing | |
1459 | * an expensive VME access. | |
1460 | * | |
1461 | */ | |
1462 | ||
1463 | if (lock_miss && ETAP_CONTENTION_ENABLED(trace)) | |
1464 | ETAP_COPY_START_HOLD_TIME(entry, stop_time, trace); | |
1465 | else | |
1466 | ETAP_DURATION_TIMESTAMP(entry, trace); | |
1467 | ||
1468 | return (FALSE); | |
1469 | } | |
1470 | ||
1471 | void | |
1472 | lock_write_to_read( | |
1473 | register lock_t * l) | |
1474 | { | |
1475 | boolean_t do_wakeup = FALSE; | |
1476 | start_data_node_t entry = {0}; | |
1477 | unsigned short dynamic = 0; | |
1478 | unsigned short trace = 0; | |
1479 | etap_time_t stop_hold_time; | |
1480 | etap_time_t total_time; | |
1481 | pc_t pc; | |
1482 | ||
1483 | ETAP_STAMP(lock_event_table(l), trace,dynamic); | |
1484 | ||
1485 | simple_lock(&l->interlock); | |
1486 | ||
1487 | l->read_count++; | |
1488 | if (l->want_upgrade) | |
1489 | l->want_upgrade = FALSE; | |
1490 | else | |
1491 | l->want_write = FALSE; | |
1492 | ||
1493 | if (l->waiting) { | |
1494 | l->waiting = FALSE; | |
1495 | do_wakeup = TRUE; | |
1496 | } | |
1497 | ||
1498 | /* | |
1499 | * Since we are switching from a write lock to a read lock, | |
1500 | * the write lock data is stored and the read lock data | |
1501 | * collection begins. | |
1502 | * | |
1503 | * Note: trace is set to zero if the entry does not exist. | |
1504 | */ | |
1505 | ||
1506 | ETAP_FIND_ENTRY(l, entry, trace); | |
1507 | ||
1508 | if (ETAP_DURATION_ENABLED(trace)) { | |
1509 | ETAP_TIMESTAMP (stop_hold_time); | |
1510 | ETAP_TOTAL_TIME(total_time, stop_hold_time, entry->start_hold_time); | |
1511 | CUM_HOLD_ACCUMULATE(l->cbuff_write, total_time, dynamic, trace); | |
1512 | MON_ASSIGN_PC(entry->end_pc, pc, trace); | |
1513 | MON_DATA_COLLECT(l, | |
1514 | entry, | |
1515 | total_time, | |
1516 | WRITE_LOCK, | |
1517 | MON_DURATION, | |
1518 | trace); | |
1519 | } | |
1520 | ||
1521 | simple_unlock(&l->interlock); | |
1522 | ||
1523 | /* | |
1524 | * Set start hold time if some type of hold tracing is enabled | |
1525 | * | |
1526 | * Note: if the stop_hold_time was already stamped, use | |
1527 | * it as the new start_hold_time instead of doing | |
1528 | * an expensive bus access. | |
1529 | * | |
1530 | */ | |
1531 | ||
1532 | if (ETAP_DURATION_ENABLED(trace)) | |
1533 | ETAP_COPY_START_HOLD_TIME(entry, stop_hold_time, trace); | |
1534 | else | |
1535 | ETAP_DURATION_TIMESTAMP(entry, trace); | |
1536 | ||
1537 | MON_ASSIGN_PC(entry->start_pc, pc, trace); | |
1538 | ||
1539 | if (do_wakeup) | |
1540 | thread_wakeup((event_t) l); | |
1541 | } | |
1542 | ||
1543 | ||
1544 | #if 0 /* Unused */ | |
1545 | /* | |
1546 | * Routine: lock_try_write | |
1547 | * Function: | |
1548 | * Tries to get a write lock. | |
1549 | * | |
1550 | * Returns FALSE if the lock is not held on return. | |
1551 | */ | |
1552 | ||
1553 | boolean_t | |
1554 | lock_try_write( | |
1555 | register lock_t * l) | |
1556 | { | |
1557 | start_data_node_t entry = {0}; | |
1558 | unsigned short trace = 0; | |
1559 | pc_t pc; | |
1560 | ||
1561 | ETAP_STAMP(lock_event_table(l), trace, trace); | |
1562 | ETAP_CREATE_ENTRY(entry, trace); | |
1563 | ||
1564 | simple_lock(&l->interlock); | |
1565 | ||
1566 | if (l->want_write || l->want_upgrade || l->read_count) { | |
1567 | /* | |
1568 | * Can't get lock. | |
1569 | */ | |
1570 | simple_unlock(&l->interlock); | |
1571 | ETAP_DESTROY_ENTRY(entry); | |
1572 | return(FALSE); | |
1573 | } | |
1574 | ||
1575 | /* | |
1576 | * Have lock. | |
1577 | */ | |
1578 | ||
1579 | l->want_write = TRUE; | |
1580 | ||
1581 | ETAP_LINK_ENTRY(l, entry, trace); | |
1582 | ||
1583 | simple_unlock(&l->interlock); | |
1584 | ||
1585 | MON_ASSIGN_PC(entry->start_pc, pc, trace); | |
1586 | ETAP_DURATION_TIMESTAMP(entry, trace); | |
1587 | ||
1588 | return(TRUE); | |
1589 | } | |
1590 | ||
1591 | /* | |
1592 | * Routine: lock_try_read | |
1593 | * Function: | |
1594 | * Tries to get a read lock. | |
1595 | * | |
1596 | * Returns FALSE if the lock is not held on return. | |
1597 | */ | |
1598 | ||
1599 | boolean_t | |
1600 | lock_try_read( | |
1601 | register lock_t * l) | |
1602 | { | |
1603 | start_data_node_t entry = {0}; | |
1604 | unsigned short trace = 0; | |
1605 | pc_t pc; | |
1606 | ||
1607 | ETAP_STAMP(lock_event_table(l), trace, trace); | |
1608 | ETAP_CREATE_ENTRY(entry, trace); | |
1609 | ||
1610 | simple_lock(&l->interlock); | |
1611 | ||
1612 | if (l->want_write || l->want_upgrade) { | |
1613 | simple_unlock(&l->interlock); | |
1614 | ETAP_DESTROY_ENTRY(entry); | |
1615 | return(FALSE); | |
1616 | } | |
1617 | ||
1618 | l->read_count++; | |
1619 | ||
1620 | ETAP_LINK_ENTRY(l, entry, trace); | |
1621 | ||
1622 | simple_unlock(&l->interlock); | |
1623 | ||
1624 | MON_ASSIGN_PC(entry->start_pc, pc, trace); | |
1625 | ETAP_DURATION_TIMESTAMP(entry, trace); | |
1626 | ||
1627 | return(TRUE); | |
1628 | } | |
1629 | #endif /* Unused */ | |
1630 | ||
1631 | #if MACH_KDB | |
1632 | ||
1633 | void db_show_one_lock(lock_t *); | |
1634 | ||
1635 | ||
1636 | void | |
1637 | db_show_one_lock( | |
1638 | lock_t *lock) | |
1639 | { | |
1640 | db_printf("Read_count = 0x%x, %swant_upgrade, %swant_write, ", | |
1641 | lock->read_count, | |
1642 | lock->want_upgrade ? "" : "!", | |
1643 | lock->want_write ? "" : "!"); | |
1644 | db_printf("%swaiting, %scan_sleep\n", | |
1645 | lock->waiting ? "" : "!", lock->can_sleep ? "" : "!"); | |
1646 | db_printf("Interlock:\n"); | |
1647 | db_show_one_simple_lock((db_expr_t)simple_lock_addr(lock->interlock), | |
1648 | TRUE, (db_expr_t)0, (char *)0); | |
1649 | } | |
1650 | #endif /* MACH_KDB */ | |
1651 | ||
1652 | /* | |
1653 | * The C portion of the mutex package. These routines are only invoked | |
1654 | * if the optimized assembler routines can't do the work. | |
1655 | */ | |
1656 | ||
1657 | /* | |
1658 | * Routine: lock_alloc | |
1659 | * Function: | |
1660 | * Allocate a mutex for external users who cannot | |
1661 | * hard-code the structure definition into their | |
1662 | * objects. | |
1663 | * For now just use kalloc, but a zone is probably | |
1664 | * warranted. | |
1665 | */ | |
1666 | mutex_t * | |
1667 | mutex_alloc( | |
1668 | etap_event_t event) | |
1669 | { | |
1670 | mutex_t *m; | |
1671 | ||
1672 | if ((m = (mutex_t *)kalloc(sizeof(mutex_t))) != 0) | |
1673 | mutex_init(m, event); | |
1674 | return(m); | |
1675 | } | |
1676 | ||
1677 | /* | |
1678 | * Routine: mutex_free | |
1679 | * Function: | |
1680 | * Free a mutex allocated for external users. | |
1681 | * For now just use kfree, but a zone is probably | |
1682 | * warranted. | |
1683 | */ | |
1684 | void | |
1685 | mutex_free( | |
1686 | mutex_t *m) | |
1687 | { | |
1688 | kfree((vm_offset_t)m, sizeof(mutex_t)); | |
1689 | } | |
1690 | ||
1c79356b | 1691 | /* |
9bccf70c A |
1692 | * mutex_lock_wait |
1693 | * | |
1694 | * Invoked in order to wait on contention. | |
1695 | * | |
1696 | * Called with the interlock locked and | |
1697 | * returns it unlocked. | |
1c79356b | 1698 | */ |
1c79356b A |
1699 | void |
1700 | mutex_lock_wait ( | |
9bccf70c A |
1701 | mutex_t *mutex, |
1702 | thread_act_t holder) | |
1c79356b | 1703 | { |
9bccf70c A |
1704 | thread_t thread, self = current_thread(); |
1705 | #if !defined(i386) | |
1706 | integer_t priority; | |
1707 | spl_t s = splsched(); | |
1708 | ||
1709 | priority = self->last_processor->current_pri; | |
1710 | if (priority < self->priority) | |
1711 | priority = self->priority; | |
1712 | if (priority > MINPRI_KERNEL) | |
1713 | priority = MINPRI_KERNEL; | |
1714 | else | |
1715 | if (priority < BASEPRI_DEFAULT) | |
1716 | priority = BASEPRI_DEFAULT; | |
1717 | ||
1718 | thread = holder->thread; | |
1719 | assert(thread->top_act == holder); /* XXX */ | |
1720 | thread_lock(thread); | |
1721 | if (mutex->promoted_pri == 0) | |
1722 | thread->promotions++; | |
1723 | if (thread->priority < MINPRI_KERNEL) { | |
1724 | thread->sched_mode |= TH_MODE_PROMOTED; | |
1725 | if ( mutex->promoted_pri < priority && | |
1726 | thread->sched_pri < priority ) { | |
1727 | KERNEL_DEBUG_CONSTANT( | |
1728 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_PROMOTE) | DBG_FUNC_NONE, | |
1729 | thread->sched_pri, priority, (int)thread, (int)mutex, 0); | |
1730 | ||
1731 | set_sched_pri(thread, priority); | |
1732 | } | |
1733 | } | |
1734 | thread_unlock(thread); | |
1735 | splx(s); | |
1736 | ||
1737 | if (mutex->promoted_pri < priority) | |
1738 | mutex->promoted_pri = priority; | |
1739 | #endif | |
1740 | ||
1741 | if (self->pending_promoter[self->pending_promoter_index] == NULL) { | |
1742 | self->pending_promoter[self->pending_promoter_index] = mutex; | |
1743 | mutex->waiters++; | |
1744 | } | |
1745 | else | |
1746 | if (self->pending_promoter[self->pending_promoter_index] != mutex) { | |
1747 | self->pending_promoter[++self->pending_promoter_index] = mutex; | |
1748 | mutex->waiters++; | |
1749 | } | |
1750 | ||
1751 | assert_wait(mutex, THREAD_UNINT); | |
1752 | interlock_unlock(&mutex->interlock); | |
1753 | ||
1754 | thread_block(THREAD_CONTINUE_NULL); | |
1c79356b A |
1755 | } |
1756 | ||
1757 | /* | |
9bccf70c A |
1758 | * mutex_lock_acquire |
1759 | * | |
1760 | * Invoked on acquiring the mutex when there is | |
1761 | * contention. | |
1762 | * | |
1763 | * Returns the current number of waiters. | |
1764 | * | |
1765 | * Called with the interlock locked. | |
1c79356b | 1766 | */ |
9bccf70c A |
1767 | int |
1768 | mutex_lock_acquire( | |
1769 | mutex_t *mutex) | |
1770 | { | |
1771 | thread_t thread = current_thread(); | |
1772 | ||
1773 | if (thread->pending_promoter[thread->pending_promoter_index] == mutex) { | |
1774 | thread->pending_promoter[thread->pending_promoter_index] = NULL; | |
1775 | if (thread->pending_promoter_index > 0) | |
1776 | thread->pending_promoter_index--; | |
1777 | mutex->waiters--; | |
1778 | } | |
1779 | ||
1780 | #if !defined(i386) | |
1781 | if (mutex->waiters > 0) { | |
1782 | integer_t priority = mutex->promoted_pri; | |
1783 | spl_t s = splsched(); | |
1784 | ||
1785 | thread_lock(thread); | |
1786 | thread->promotions++; | |
1787 | if (thread->priority < MINPRI_KERNEL) { | |
1788 | thread->sched_mode |= TH_MODE_PROMOTED; | |
1789 | if (thread->sched_pri < priority) { | |
1790 | KERNEL_DEBUG_CONSTANT( | |
1791 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_PROMOTE) | DBG_FUNC_NONE, | |
1792 | thread->sched_pri, priority, 0, (int)mutex, 0); | |
1793 | ||
1794 | set_sched_pri(thread, priority); | |
1795 | } | |
1796 | } | |
1797 | thread_unlock(thread); | |
1798 | splx(s); | |
1799 | } | |
1800 | else | |
1801 | mutex->promoted_pri = 0; | |
1802 | #endif | |
1803 | ||
1804 | return (mutex->waiters); | |
1805 | } | |
1c79356b | 1806 | |
9bccf70c A |
1807 | /* |
1808 | * mutex_unlock_wakeup | |
1809 | * | |
1810 | * Invoked on unlock when there is contention. | |
1811 | * | |
1812 | * Called with the interlock locked. | |
1813 | */ | |
1c79356b A |
1814 | void |
1815 | mutex_unlock_wakeup ( | |
9bccf70c A |
1816 | mutex_t *mutex, |
1817 | thread_act_t holder) | |
1c79356b | 1818 | { |
9bccf70c A |
1819 | #if !defined(i386) |
1820 | thread_t thread = current_thread(); | |
1821 | ||
1822 | if (thread->top_act != holder) | |
1823 | panic("mutex_unlock_wakeup: mutex %x holder %x\n", mutex, holder); | |
1824 | ||
1825 | if (thread->promotions > 0) { | |
1826 | spl_t s = splsched(); | |
1827 | ||
1828 | thread_lock(thread); | |
1829 | if ( --thread->promotions == 0 && | |
1830 | (thread->sched_mode & TH_MODE_PROMOTED) ) { | |
1831 | thread->sched_mode &= ~TH_MODE_PROMOTED; | |
1832 | if (thread->sched_mode & TH_MODE_ISDEPRESSED) { | |
1833 | KERNEL_DEBUG_CONSTANT( | |
1834 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DEMOTE) | DBG_FUNC_NONE, | |
1835 | thread->sched_pri, DEPRESSPRI, 0, (int)mutex, 0); | |
1836 | ||
1837 | set_sched_pri(thread, DEPRESSPRI); | |
1838 | } | |
1839 | else { | |
1840 | if (thread->priority < thread->sched_pri) { | |
1841 | KERNEL_DEBUG_CONSTANT( | |
1842 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_DEMOTE) | | |
1843 | DBG_FUNC_NONE, | |
1844 | thread->sched_pri, thread->priority, | |
1845 | 0, (int)mutex, 0); | |
1846 | } | |
1847 | ||
1848 | compute_priority(thread, FALSE); | |
1849 | } | |
1850 | } | |
1851 | thread_unlock(thread); | |
1852 | splx(s); | |
1853 | } | |
1854 | #endif | |
1855 | ||
1856 | assert(mutex->waiters > 0); | |
1857 | thread_wakeup_one(mutex); | |
1c79356b A |
1858 | } |
1859 | ||
1860 | /* | |
1861 | * mutex_pause: Called by former callers of simple_lock_pause(). | |
1862 | */ | |
1863 | ||
1864 | void | |
1865 | mutex_pause(void) | |
1866 | { | |
9bccf70c A |
1867 | wait_result_t wait_result; |
1868 | ||
1869 | wait_result = assert_wait_timeout( 1, THREAD_UNINT); | |
1870 | assert(wait_result == THREAD_WAITING); | |
1c79356b | 1871 | |
1c79356b | 1872 | ETAP_SET_REASON(current_thread(), BLOCKED_ON_MUTEX_LOCK); |
9bccf70c A |
1873 | |
1874 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
1875 | assert(wait_result == THREAD_TIMED_OUT); | |
1c79356b A |
1876 | } |
1877 | ||
1878 | #if MACH_KDB | |
1879 | /* | |
1880 | * Routines to print out simple_locks and mutexes in a nicely-formatted | |
1881 | * fashion. | |
1882 | */ | |
1883 | ||
1884 | char *simple_lock_labels = "ENTRY ILK THREAD DURATION CALLER"; | |
1885 | char *mutex_labels = "ENTRY LOCKED WAITERS THREAD CALLER"; | |
1886 | ||
1887 | void | |
1888 | db_show_one_simple_lock ( | |
1889 | db_expr_t addr, | |
1890 | boolean_t have_addr, | |
1891 | db_expr_t count, | |
1892 | char * modif) | |
1893 | { | |
1894 | simple_lock_t saddr = (simple_lock_t)addr; | |
1895 | ||
1896 | if (saddr == (simple_lock_t)0 || !have_addr) { | |
1897 | db_error ("No simple_lock\n"); | |
1898 | } | |
1899 | #if USLOCK_DEBUG | |
1900 | else if (saddr->lock_type != USLOCK_TAG) | |
1901 | db_error ("Not a simple_lock\n"); | |
1902 | #endif /* USLOCK_DEBUG */ | |
1903 | ||
1904 | db_printf ("%s\n", simple_lock_labels); | |
1905 | db_print_simple_lock (saddr); | |
1906 | } | |
1907 | ||
1908 | void | |
1909 | db_print_simple_lock ( | |
1910 | simple_lock_t addr) | |
1911 | { | |
1912 | ||
1913 | db_printf ("%08x %3d", addr, *hw_lock_addr(addr->interlock)); | |
1914 | #if USLOCK_DEBUG | |
1915 | db_printf (" %08x", addr->debug.lock_thread); | |
1916 | db_printf (" %08x ", addr->debug.duration[1]); | |
1917 | db_printsym ((int)addr->debug.lock_pc, DB_STGY_ANY); | |
1918 | #endif /* USLOCK_DEBUG */ | |
1919 | db_printf ("\n"); | |
1920 | } | |
1921 | ||
1922 | void | |
1923 | db_show_one_mutex ( | |
1924 | db_expr_t addr, | |
1925 | boolean_t have_addr, | |
1926 | db_expr_t count, | |
1927 | char * modif) | |
1928 | { | |
1929 | mutex_t * maddr = (mutex_t *)addr; | |
1930 | ||
1931 | if (maddr == (mutex_t *)0 || !have_addr) | |
1932 | db_error ("No mutex\n"); | |
1933 | #if MACH_LDEBUG | |
1934 | else if (maddr->type != MUTEX_TAG) | |
1935 | db_error ("Not a mutex\n"); | |
1936 | #endif /* MACH_LDEBUG */ | |
1937 | ||
1938 | db_printf ("%s\n", mutex_labels); | |
1939 | db_print_mutex (maddr); | |
1940 | } | |
1941 | ||
1942 | void | |
1943 | db_print_mutex ( | |
1944 | mutex_t * addr) | |
1945 | { | |
1946 | db_printf ("%08x %6d %7d", | |
1947 | addr, *hw_lock_addr(addr->locked), addr->waiters); | |
1948 | #if MACH_LDEBUG | |
1949 | db_printf (" %08x ", addr->thread); | |
1950 | db_printsym (addr->pc, DB_STGY_ANY); | |
1951 | #endif /* MACH_LDEBUG */ | |
1952 | db_printf ("\n"); | |
1953 | } | |
1954 | #endif /* MACH_KDB */ | |
1955 | ||
1956 | #if MACH_LDEBUG | |
1957 | extern void meter_simple_lock ( | |
1958 | simple_lock_t l); | |
1959 | extern void meter_simple_unlock ( | |
1960 | simple_lock_t l); | |
1961 | extern void cyctm05_stamp ( | |
1962 | unsigned long * start); | |
1963 | extern void cyctm05_diff ( | |
1964 | unsigned long * start, | |
1965 | unsigned long * end, | |
1966 | unsigned long * diff); | |
1967 | ||
1968 | #if 0 | |
1969 | simple_lock_data_t loser; | |
1970 | #endif | |
1971 | ||
1972 | void | |
1973 | meter_simple_lock( | |
1974 | simple_lock_t lp) | |
1975 | { | |
1976 | #if 0 | |
1977 | cyctm05_stamp (lp->duration); | |
1978 | #endif | |
1979 | } | |
1980 | ||
1981 | int long_simple_lock_crash; | |
1982 | int long_simple_lock_time = 0x600; | |
1983 | /* | |
1984 | * This is pretty gawd-awful. XXX | |
1985 | */ | |
1986 | decl_simple_lock_data(extern,kd_tty) | |
1987 | ||
1988 | void | |
1989 | meter_simple_unlock( | |
1990 | simple_lock_t lp) | |
1991 | { | |
1992 | #if 0 | |
1993 | unsigned long stime[2], etime[2], delta[2]; | |
1994 | ||
1995 | if (lp == &kd_tty) /* XXX */ | |
1996 | return; /* XXX */ | |
1997 | ||
1998 | stime[0] = lp->duration[0]; | |
1999 | stime[1] = lp->duration[1]; | |
2000 | ||
2001 | cyctm05_stamp (etime); | |
2002 | ||
2003 | if (etime[1] < stime[1]) /* XXX */ | |
2004 | return; /* XXX */ | |
2005 | ||
2006 | cyctm05_diff (stime, etime, delta); | |
2007 | ||
2008 | if (delta[1] >= 0x10000) /* XXX */ | |
2009 | return; /* XXX */ | |
2010 | ||
2011 | lp->duration[0] = delta[0]; | |
2012 | lp->duration[1] = delta[1]; | |
2013 | ||
2014 | if (loser.duration[1] < lp->duration[1]) | |
2015 | loser = *lp; | |
2016 | ||
2017 | assert (!long_simple_lock_crash || delta[1] < long_simple_lock_time); | |
2018 | #endif | |
2019 | } | |
2020 | #endif /* MACH_LDEBUG */ | |
2021 | ||
2022 | ||
2023 | #if ETAP_LOCK_TRACE | |
2024 | ||
2025 | /* | |
2026 | * ============================================================== | |
2027 | * ETAP hook when initializing a usimple_lock. May be invoked | |
2028 | * from the portable lock package or from an optimized machine- | |
2029 | * dependent implementation. | |
2030 | * ============================================================== | |
2031 | */ | |
2032 | ||
2033 | void | |
2034 | etap_simplelock_init ( | |
2035 | simple_lock_t l, | |
2036 | etap_event_t event) | |
2037 | { | |
2038 | ETAP_CLEAR_TRACE_DATA(l); | |
2039 | etap_event_table_assign(&l->u.event_table_chain, event); | |
2040 | ||
2041 | #if ETAP_LOCK_ACCUMULATE | |
2042 | /* reserve an entry in the cumulative buffer */ | |
2043 | l->cbuff_entry = etap_cbuff_reserve(lock_event_table(l)); | |
2044 | /* initialize the entry if one was returned */ | |
2045 | if (l->cbuff_entry != CBUFF_ENTRY_NULL) { | |
2046 | l->cbuff_entry->event = event; | |
2047 | l->cbuff_entry->instance = (unsigned long) l; | |
2048 | l->cbuff_entry->kind = SPIN_LOCK; | |
2049 | } | |
2050 | #endif /* ETAP_LOCK_ACCUMULATE */ | |
2051 | } | |
2052 | ||
2053 | ||
2054 | void | |
2055 | etap_simplelock_unlock( | |
2056 | simple_lock_t l) | |
2057 | { | |
2058 | unsigned short dynamic = 0; | |
2059 | unsigned short trace = 0; | |
2060 | etap_time_t total_time; | |
2061 | etap_time_t stop_hold_time; | |
2062 | pc_t pc; | |
2063 | ||
2064 | OBTAIN_PC(pc, l); | |
2065 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
2066 | ||
2067 | /* | |
2068 | * Calculate & collect hold time data only if | |
2069 | * the hold tracing was enabled throughout the | |
2070 | * whole operation. This prevents collection of | |
2071 | * bogus data caused by mid-operation trace changes. | |
2072 | * | |
2073 | */ | |
2074 | ||
2075 | if (ETAP_DURATION_ENABLED(trace) && ETAP_WHOLE_OP(l)) { | |
2076 | ETAP_TIMESTAMP (stop_hold_time); | |
2077 | ETAP_TOTAL_TIME(total_time, stop_hold_time, | |
2078 | l->u.s.start_hold_time); | |
2079 | CUM_HOLD_ACCUMULATE(l->cbuff_entry, total_time, dynamic, trace); | |
2080 | MON_ASSIGN_PC(l->end_pc, pc, trace); | |
2081 | MON_DATA_COLLECT(l, | |
2082 | l, | |
2083 | total_time, | |
2084 | SPIN_LOCK, | |
2085 | MON_DURATION, | |
2086 | trace); | |
2087 | } | |
2088 | ETAP_CLEAR_TRACE_DATA(l); | |
2089 | } | |
2090 | ||
2091 | /* ======================================================================== | |
2092 | * Since the the simple_lock() routine is machine dependant, it must always | |
2093 | * be coded in assembly. The two hook routines below are used to collect | |
2094 | * lock_stat data. | |
2095 | * ======================================================================== | |
2096 | */ | |
2097 | ||
2098 | /* | |
2099 | * ROUTINE: etap_simplelock_miss() | |
2100 | * | |
2101 | * FUNCTION: This spin lock routine is called upon the first | |
2102 | * spin (miss) of the lock. | |
2103 | * | |
2104 | * A timestamp is taken at the beginning of the wait period, | |
2105 | * if wait tracing is enabled. | |
2106 | * | |
2107 | * | |
2108 | * PARAMETERS: | |
2109 | * - lock address. | |
2110 | * - timestamp address. | |
2111 | * | |
2112 | * RETURNS: Wait timestamp value. The timestamp value is later used | |
2113 | * by etap_simplelock_hold(). | |
2114 | * | |
2115 | * NOTES: This routine is NOT ALWAYS called. The lock may be free | |
2116 | * (never spinning). For this reason the pc is collected in | |
2117 | * etap_simplelock_hold(). | |
2118 | * | |
2119 | */ | |
2120 | etap_time_t | |
2121 | etap_simplelock_miss ( | |
2122 | simple_lock_t l) | |
2123 | ||
2124 | { | |
2125 | unsigned short trace = 0; | |
2126 | unsigned short dynamic = 0; | |
2127 | etap_time_t start_miss_time; | |
2128 | ||
2129 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
2130 | ||
2131 | if (trace & ETAP_CONTENTION) | |
2132 | ETAP_TIMESTAMP(start_miss_time); | |
2133 | ||
2134 | return(start_miss_time); | |
2135 | } | |
2136 | ||
2137 | /* | |
2138 | * ROUTINE: etap_simplelock_hold() | |
2139 | * | |
2140 | * FUNCTION: This spin lock routine is ALWAYS called once the lock | |
2141 | * is acquired. Here, the contention time is calculated and | |
2142 | * the start hold time is stamped. | |
2143 | * | |
2144 | * PARAMETERS: | |
2145 | * - lock address. | |
2146 | * - PC of the calling function. | |
2147 | * - start wait timestamp. | |
2148 | * | |
2149 | */ | |
2150 | ||
2151 | void | |
2152 | etap_simplelock_hold ( | |
2153 | simple_lock_t l, | |
2154 | pc_t pc, | |
2155 | etap_time_t start_hold_time) | |
2156 | { | |
2157 | unsigned short dynamic = 0; | |
2158 | unsigned short trace = 0; | |
2159 | etap_time_t total_time; | |
2160 | etap_time_t stop_hold_time; | |
2161 | ||
2162 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
2163 | ||
2164 | MON_ASSIGN_PC(l->start_pc, pc, trace); | |
2165 | ||
2166 | /* do not collect wait data if lock was free */ | |
2167 | if (ETAP_TIME_IS_ZERO(start_hold_time) && (trace & ETAP_CONTENTION)) { | |
2168 | ETAP_TIMESTAMP(stop_hold_time); | |
2169 | ETAP_TOTAL_TIME(total_time, | |
2170 | stop_hold_time, | |
2171 | start_hold_time); | |
2172 | CUM_WAIT_ACCUMULATE(l->cbuff_entry, total_time, dynamic, trace); | |
2173 | MON_DATA_COLLECT(l, | |
2174 | l, | |
2175 | total_time, | |
2176 | SPIN_LOCK, | |
2177 | MON_CONTENTION, | |
2178 | trace); | |
2179 | ETAP_COPY_START_HOLD_TIME(&l->u.s, stop_hold_time, trace); | |
2180 | } | |
2181 | else | |
2182 | ETAP_DURATION_TIMESTAMP(&l->u.s, trace); | |
2183 | } | |
2184 | ||
2185 | void | |
2186 | etap_mutex_init ( | |
2187 | mutex_t *l, | |
2188 | etap_event_t event) | |
2189 | { | |
2190 | ETAP_CLEAR_TRACE_DATA(l); | |
2191 | etap_event_table_assign(&l->u.event_table_chain, event); | |
2192 | ||
2193 | #if ETAP_LOCK_ACCUMULATE | |
2194 | /* reserve an entry in the cumulative buffer */ | |
2195 | l->cbuff_entry = etap_cbuff_reserve(lock_event_table(l)); | |
2196 | /* initialize the entry if one was returned */ | |
2197 | if (l->cbuff_entry != CBUFF_ENTRY_NULL) { | |
2198 | l->cbuff_entry->event = event; | |
2199 | l->cbuff_entry->instance = (unsigned long) l; | |
2200 | l->cbuff_entry->kind = MUTEX_LOCK; | |
2201 | } | |
2202 | #endif /* ETAP_LOCK_ACCUMULATE */ | |
2203 | } | |
2204 | ||
2205 | etap_time_t | |
2206 | etap_mutex_miss ( | |
2207 | mutex_t *l) | |
2208 | { | |
2209 | unsigned short trace = 0; | |
2210 | unsigned short dynamic = 0; | |
2211 | etap_time_t start_miss_time; | |
2212 | ||
2213 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
2214 | ||
2215 | if (trace & ETAP_CONTENTION) | |
2216 | ETAP_TIMESTAMP(start_miss_time); | |
2217 | else | |
2218 | ETAP_TIME_CLEAR(start_miss_time); | |
2219 | ||
2220 | return(start_miss_time); | |
2221 | } | |
2222 | ||
2223 | void | |
2224 | etap_mutex_hold ( | |
2225 | mutex_t *l, | |
2226 | pc_t pc, | |
2227 | etap_time_t start_hold_time) | |
2228 | { | |
2229 | unsigned short dynamic = 0; | |
2230 | unsigned short trace = 0; | |
2231 | etap_time_t total_time; | |
2232 | etap_time_t stop_hold_time; | |
2233 | ||
2234 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
2235 | ||
2236 | MON_ASSIGN_PC(l->start_pc, pc, trace); | |
2237 | ||
2238 | /* do not collect wait data if lock was free */ | |
2239 | if (!ETAP_TIME_IS_ZERO(start_hold_time) && (trace & ETAP_CONTENTION)) { | |
2240 | ETAP_TIMESTAMP(stop_hold_time); | |
2241 | ETAP_TOTAL_TIME(total_time, | |
2242 | stop_hold_time, | |
2243 | start_hold_time); | |
2244 | CUM_WAIT_ACCUMULATE(l->cbuff_entry, total_time, dynamic, trace); | |
2245 | MON_DATA_COLLECT(l, | |
2246 | l, | |
2247 | total_time, | |
2248 | MUTEX_LOCK, | |
2249 | MON_CONTENTION, | |
2250 | trace); | |
2251 | ETAP_COPY_START_HOLD_TIME(&l->u.s, stop_hold_time, trace); | |
2252 | } | |
2253 | else | |
2254 | ETAP_DURATION_TIMESTAMP(&l->u.s, trace); | |
2255 | } | |
2256 | ||
2257 | void | |
2258 | etap_mutex_unlock( | |
2259 | mutex_t *l) | |
2260 | { | |
2261 | unsigned short dynamic = 0; | |
2262 | unsigned short trace = 0; | |
2263 | etap_time_t total_time; | |
2264 | etap_time_t stop_hold_time; | |
2265 | pc_t pc; | |
2266 | ||
2267 | OBTAIN_PC(pc, l); | |
2268 | ETAP_STAMP(lock_event_table(l), trace, dynamic); | |
2269 | ||
2270 | /* | |
2271 | * Calculate & collect hold time data only if | |
2272 | * the hold tracing was enabled throughout the | |
2273 | * whole operation. This prevents collection of | |
2274 | * bogus data caused by mid-operation trace changes. | |
2275 | * | |
2276 | */ | |
2277 | ||
2278 | if (ETAP_DURATION_ENABLED(trace) && ETAP_WHOLE_OP(l)) { | |
2279 | ETAP_TIMESTAMP(stop_hold_time); | |
2280 | ETAP_TOTAL_TIME(total_time, stop_hold_time, | |
2281 | l->u.s.start_hold_time); | |
2282 | CUM_HOLD_ACCUMULATE(l->cbuff_entry, total_time, dynamic, trace); | |
2283 | MON_ASSIGN_PC(l->end_pc, pc, trace); | |
2284 | MON_DATA_COLLECT(l, | |
2285 | l, | |
2286 | total_time, | |
2287 | MUTEX_LOCK, | |
2288 | MON_DURATION, | |
2289 | trace); | |
2290 | } | |
2291 | ETAP_CLEAR_TRACE_DATA(l); | |
2292 | } | |
2293 | ||
2294 | #endif /* ETAP_LOCK_TRACE */ |