]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * Copyright (c) 1982, 1986, 1991, 1993, 1995 | |
24 | * The Regents of the University of California. All rights reserved. | |
25 | * | |
26 | * Redistribution and use in source and binary forms, with or without | |
27 | * modification, are permitted provided that the following conditions | |
28 | * are met: | |
29 | * 1. Redistributions of source code must retain the above copyright | |
30 | * notice, this list of conditions and the following disclaimer. | |
31 | * 2. Redistributions in binary form must reproduce the above copyright | |
32 | * notice, this list of conditions and the following disclaimer in the | |
33 | * documentation and/or other materials provided with the distribution. | |
34 | * 3. All advertising materials mentioning features or use of this software | |
35 | * must display the following acknowledgement: | |
36 | * This product includes software developed by the University of | |
37 | * California, Berkeley and its contributors. | |
38 | * 4. Neither the name of the University nor the names of its contributors | |
39 | * may be used to endorse or promote products derived from this software | |
40 | * without specific prior written permission. | |
41 | * | |
42 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
52 | * SUCH DAMAGE. | |
53 | * | |
54 | * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 | |
9bccf70c | 55 | * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $ |
1c79356b A |
56 | */ |
57 | ||
58 | #include <sys/param.h> | |
59 | #include <sys/systm.h> | |
60 | #include <sys/malloc.h> | |
61 | #include <sys/mbuf.h> | |
1c79356b | 62 | #include <sys/domain.h> |
1c79356b A |
63 | #include <sys/protosw.h> |
64 | #include <sys/socket.h> | |
65 | #include <sys/socketvar.h> | |
66 | #include <sys/proc.h> | |
9bccf70c A |
67 | #ifndef __APPLE__ |
68 | #include <sys/jail.h> | |
69 | #endif | |
1c79356b A |
70 | #include <sys/kernel.h> |
71 | #include <sys/sysctl.h> | |
72 | ||
73 | #include <machine/limits.h> | |
74 | ||
9bccf70c | 75 | #ifdef __APPLE__ |
1c79356b A |
76 | #include <kern/zalloc.h> |
77 | #endif | |
78 | ||
79 | #include <net/if.h> | |
1c79356b | 80 | #include <net/if_types.h> |
9bccf70c | 81 | #include <net/route.h> |
1c79356b A |
82 | |
83 | #include <netinet/in.h> | |
84 | #include <netinet/in_pcb.h> | |
85 | #include <netinet/in_var.h> | |
86 | #include <netinet/ip_var.h> | |
87 | #if INET6 | |
88 | #include <netinet/ip6.h> | |
89 | #include <netinet6/ip6_var.h> | |
90 | #endif /* INET6 */ | |
91 | ||
92 | #include "faith.h" | |
93 | ||
94 | #if IPSEC | |
95 | #include <netinet6/ipsec.h> | |
96 | #include <netkey/key.h> | |
1c79356b A |
97 | #endif /* IPSEC */ |
98 | ||
99 | #include <sys/kdebug.h> | |
100 | ||
9bccf70c A |
101 | #if IPSEC |
102 | extern int ipsec_bypass; | |
103 | #endif | |
1c79356b A |
104 | |
105 | #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8)) | |
106 | #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1)) | |
107 | ||
108 | struct in_addr zeroin_addr; | |
109 | ||
1c79356b A |
110 | /* |
111 | * These configure the range of local port addresses assigned to | |
112 | * "unspecified" outgoing connections/packets/whatever. | |
113 | */ | |
9bccf70c A |
114 | int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ |
115 | int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ | |
116 | #ifndef __APPLE__ | |
117 | int ipport_firstauto = IPPORT_RESERVED; /* 1024 */ | |
118 | int ipport_lastauto = IPPORT_USERRESERVED; /* 5000 */ | |
119 | #else | |
120 | int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ | |
121 | int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ | |
122 | #endif | |
123 | int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ | |
124 | int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ | |
1c79356b A |
125 | |
126 | #define RANGECHK(var, min, max) \ | |
127 | if ((var) < (min)) { (var) = (min); } \ | |
128 | else if ((var) > (max)) { (var) = (max); } | |
129 | ||
1c79356b A |
130 | static int |
131 | sysctl_net_ipport_check SYSCTL_HANDLER_ARGS | |
132 | { | |
133 | int error = sysctl_handle_int(oidp, | |
134 | oidp->oid_arg1, oidp->oid_arg2, req); | |
135 | if (!error) { | |
136 | RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); | |
137 | RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); | |
138 | RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX); | |
139 | RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX); | |
140 | RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX); | |
141 | RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX); | |
142 | } | |
143 | return error; | |
144 | } | |
145 | ||
146 | #undef RANGECHK | |
147 | ||
148 | SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); | |
149 | ||
150 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, | |
151 | &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); | |
152 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, | |
153 | &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); | |
154 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, | |
155 | &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); | |
156 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, | |
157 | &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); | |
158 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, | |
159 | &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); | |
160 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, | |
161 | &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); | |
162 | ||
163 | /* | |
164 | * in_pcb.c: manage the Protocol Control Blocks. | |
165 | * | |
166 | * NOTE: It is assumed that most of these functions will be called at | |
167 | * splnet(). XXX - There are, unfortunately, a few exceptions to this | |
168 | * rule that should be fixed. | |
169 | */ | |
170 | ||
171 | /* | |
172 | * Allocate a PCB and associate it with the socket. | |
173 | */ | |
174 | int | |
175 | in_pcballoc(so, pcbinfo, p) | |
176 | struct socket *so; | |
177 | struct inpcbinfo *pcbinfo; | |
178 | struct proc *p; | |
179 | { | |
180 | register struct inpcb *inp; | |
181 | caddr_t temp; | |
9bccf70c A |
182 | #if IPSEC |
183 | int error; | |
184 | #endif | |
1c79356b A |
185 | |
186 | if (so->cached_in_sock_layer == 0) { | |
187 | #if TEMPDEBUG | |
188 | printf("PCBALLOC calling zalloc for socket %x\n", so); | |
189 | #endif | |
190 | inp = (struct inpcb *) zalloc(pcbinfo->ipi_zone); | |
191 | if (inp == NULL) | |
192 | return (ENOBUFS); | |
193 | bzero((caddr_t)inp, sizeof(*inp)); | |
194 | } | |
195 | else { | |
196 | #if TEMPDEBUG | |
197 | printf("PCBALLOC reusing PCB for socket %x\n", so); | |
198 | #endif | |
199 | inp = (struct inpcb *) so->so_saved_pcb; | |
200 | temp = inp->inp_saved_ppcb; | |
201 | bzero((caddr_t) inp, sizeof(*inp)); | |
202 | inp->inp_saved_ppcb = temp; | |
203 | } | |
204 | ||
205 | inp->inp_gencnt = ++pcbinfo->ipi_gencnt; | |
206 | inp->inp_pcbinfo = pcbinfo; | |
207 | inp->inp_socket = so; | |
9bccf70c A |
208 | #if IPSEC |
209 | #ifndef __APPLE__ | |
210 | if (ipsec_bypass == 0) { | |
211 | error = ipsec_init_policy(so, &inp->inp_sp); | |
212 | if (error != 0) { | |
213 | zfree(pcbinfo->ipi_zone, (vm_offset_t)inp); | |
214 | return error; | |
215 | } | |
216 | } | |
217 | #endif | |
218 | #endif /*IPSEC*/ | |
219 | #if defined(INET6) | |
220 | if (INP_SOCKAF(so) == AF_INET6 && !ip6_mapped_addr_on) | |
221 | inp->inp_flags |= IN6P_IPV6_V6ONLY; | |
222 | #endif | |
1c79356b A |
223 | LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list); |
224 | pcbinfo->ipi_count++; | |
225 | so->so_pcb = (caddr_t)inp; | |
9bccf70c A |
226 | #if INET6 |
227 | if (ip6_auto_flowlabel) | |
228 | inp->inp_flags |= IN6P_AUTOFLOWLABEL; | |
229 | #endif | |
1c79356b A |
230 | return (0); |
231 | } | |
232 | ||
233 | int | |
234 | in_pcbbind(inp, nam, p) | |
235 | register struct inpcb *inp; | |
236 | struct sockaddr *nam; | |
237 | struct proc *p; | |
238 | { | |
239 | register struct socket *so = inp->inp_socket; | |
9bccf70c | 240 | unsigned short *lastport; |
1c79356b A |
241 | struct sockaddr_in *sin; |
242 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; | |
243 | u_short lport = 0; | |
244 | int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); | |
245 | int error; | |
246 | ||
247 | if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ | |
248 | return (EADDRNOTAVAIL); | |
249 | if (inp->inp_lport || inp->inp_laddr.s_addr != INADDR_ANY) | |
250 | return (EINVAL); | |
251 | if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) | |
252 | wild = 1; | |
253 | if (nam) { | |
254 | sin = (struct sockaddr_in *)nam; | |
255 | if (nam->sa_len != sizeof (*sin)) | |
256 | return (EINVAL); | |
257 | #ifdef notdef | |
258 | /* | |
259 | * We should check the family, but old programs | |
260 | * incorrectly fail to initialize it. | |
261 | */ | |
262 | if (sin->sin_family != AF_INET) | |
263 | return (EAFNOSUPPORT); | |
264 | #endif | |
265 | lport = sin->sin_port; | |
266 | if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { | |
267 | /* | |
268 | * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; | |
269 | * allow complete duplication of binding if | |
270 | * SO_REUSEPORT is set, or if SO_REUSEADDR is set | |
271 | * and a multicast address is bound on both | |
272 | * new and duplicated sockets. | |
273 | */ | |
274 | if (so->so_options & SO_REUSEADDR) | |
275 | reuseport = SO_REUSEADDR|SO_REUSEPORT; | |
276 | } else if (sin->sin_addr.s_addr != INADDR_ANY) { | |
277 | sin->sin_port = 0; /* yech... */ | |
278 | if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) | |
279 | return (EADDRNOTAVAIL); | |
280 | } | |
281 | if (lport) { | |
282 | struct inpcb *t; | |
283 | ||
284 | /* GROSS */ | |
285 | if (ntohs(lport) < IPPORT_RESERVED && p && | |
286 | suser(p->p_ucred, &p->p_acflag)) | |
287 | return (EACCES); | |
288 | if (so->so_uid && | |
289 | !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { | |
290 | t = in_pcblookup_local(inp->inp_pcbinfo, | |
291 | sin->sin_addr, lport, INPLOOKUP_WILDCARD); | |
292 | if (t && | |
293 | (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || | |
294 | ntohl(t->inp_laddr.s_addr) != INADDR_ANY || | |
295 | (t->inp_socket->so_options & | |
296 | SO_REUSEPORT) == 0) && | |
297 | (so->so_uid != t->inp_socket->so_uid)) { | |
298 | #if INET6 | |
9bccf70c | 299 | if (ntohl(sin->sin_addr.s_addr) != |
1c79356b A |
300 | INADDR_ANY || |
301 | ntohl(t->inp_laddr.s_addr) != | |
302 | INADDR_ANY || | |
303 | INP_SOCKAF(so) == | |
304 | INP_SOCKAF(t->inp_socket)) | |
9bccf70c | 305 | #endif /* defined(INET6) */ |
1c79356b A |
306 | return (EADDRINUSE); |
307 | } | |
308 | } | |
309 | t = in_pcblookup_local(pcbinfo, sin->sin_addr, | |
310 | lport, wild); | |
311 | if (t && | |
312 | (reuseport & t->inp_socket->so_options) == 0) { | |
313 | #if INET6 | |
314 | if (ip6_mapped_addr_on == 0 || | |
315 | ntohl(sin->sin_addr.s_addr) != | |
316 | INADDR_ANY || | |
317 | ntohl(t->inp_laddr.s_addr) != | |
318 | INADDR_ANY || | |
319 | INP_SOCKAF(so) == | |
320 | INP_SOCKAF(t->inp_socket)) | |
9bccf70c | 321 | #endif /* defined(INET6) */ |
1c79356b A |
322 | return (EADDRINUSE); |
323 | } | |
324 | } | |
325 | inp->inp_laddr = sin->sin_addr; | |
326 | } | |
327 | if (lport == 0) { | |
328 | u_short first, last; | |
329 | int count; | |
330 | ||
331 | inp->inp_flags |= INP_ANONPORT; | |
332 | ||
333 | if (inp->inp_flags & INP_HIGHPORT) { | |
334 | first = ipport_hifirstauto; /* sysctl */ | |
335 | last = ipport_hilastauto; | |
336 | lastport = &pcbinfo->lasthi; | |
337 | } else if (inp->inp_flags & INP_LOWPORT) { | |
338 | if (p && (error = suser(p->p_ucred, &p->p_acflag))) | |
339 | return error; | |
340 | first = ipport_lowfirstauto; /* 1023 */ | |
341 | last = ipport_lowlastauto; /* 600 */ | |
342 | lastport = &pcbinfo->lastlow; | |
343 | } else { | |
344 | first = ipport_firstauto; /* sysctl */ | |
345 | last = ipport_lastauto; | |
346 | lastport = &pcbinfo->lastport; | |
347 | } | |
348 | /* | |
349 | * Simple check to ensure all ports are not used up causing | |
350 | * a deadlock here. | |
351 | * | |
352 | * We split the two cases (up and down) so that the direction | |
353 | * is not being tested on each round of the loop. | |
354 | */ | |
355 | if (first > last) { | |
356 | /* | |
357 | * counting down | |
358 | */ | |
359 | count = first - last; | |
360 | ||
361 | do { | |
362 | if (count-- < 0) { /* completely used? */ | |
1c79356b | 363 | inp->inp_laddr.s_addr = INADDR_ANY; |
9bccf70c | 364 | return (EADDRNOTAVAIL); |
1c79356b A |
365 | } |
366 | --*lastport; | |
367 | if (*lastport > first || *lastport < last) | |
368 | *lastport = first; | |
369 | lport = htons(*lastport); | |
370 | } while (in_pcblookup_local(pcbinfo, | |
371 | inp->inp_laddr, lport, wild)); | |
372 | } else { | |
373 | /* | |
374 | * counting up | |
375 | */ | |
376 | count = last - first; | |
377 | ||
378 | do { | |
379 | if (count-- < 0) { /* completely used? */ | |
1c79356b | 380 | inp->inp_laddr.s_addr = INADDR_ANY; |
9bccf70c | 381 | return (EADDRNOTAVAIL); |
1c79356b A |
382 | } |
383 | ++*lastport; | |
384 | if (*lastport < first || *lastport > last) | |
385 | *lastport = first; | |
386 | lport = htons(*lastport); | |
387 | } while (in_pcblookup_local(pcbinfo, | |
388 | inp->inp_laddr, lport, wild)); | |
389 | } | |
390 | } | |
391 | inp->inp_lport = lport; | |
392 | if (in_pcbinshash(inp) != 0) { | |
393 | inp->inp_laddr.s_addr = INADDR_ANY; | |
394 | inp->inp_lport = 0; | |
395 | return (EAGAIN); | |
396 | } | |
397 | return (0); | |
398 | } | |
399 | ||
400 | /* | |
401 | * Transform old in_pcbconnect() into an inner subroutine for new | |
402 | * in_pcbconnect(): Do some validity-checking on the remote | |
403 | * address (in mbuf 'nam') and then determine local host address | |
404 | * (i.e., which interface) to use to access that remote host. | |
405 | * | |
406 | * This preserves definition of in_pcbconnect(), while supporting a | |
407 | * slightly different version for T/TCP. (This is more than | |
408 | * a bit of a kludge, but cleaning up the internal interfaces would | |
409 | * have forced minor changes in every protocol). | |
410 | */ | |
411 | ||
412 | int | |
413 | in_pcbladdr(inp, nam, plocal_sin) | |
414 | register struct inpcb *inp; | |
415 | struct sockaddr *nam; | |
416 | struct sockaddr_in **plocal_sin; | |
417 | { | |
418 | struct in_ifaddr *ia; | |
419 | register struct sockaddr_in *sin = (struct sockaddr_in *)nam; | |
420 | ||
421 | if (nam->sa_len != sizeof (*sin)) | |
422 | return (EINVAL); | |
423 | if (sin->sin_family != AF_INET) | |
424 | return (EAFNOSUPPORT); | |
425 | if (sin->sin_port == 0) | |
426 | return (EADDRNOTAVAIL); | |
427 | if (!TAILQ_EMPTY(&in_ifaddrhead)) { | |
428 | /* | |
429 | * If the destination address is INADDR_ANY, | |
430 | * use the primary local address. | |
431 | * If the supplied address is INADDR_BROADCAST, | |
432 | * and the primary interface supports broadcast, | |
433 | * choose the broadcast address for that interface. | |
434 | */ | |
435 | #define satosin(sa) ((struct sockaddr_in *)(sa)) | |
436 | #define sintosa(sin) ((struct sockaddr *)(sin)) | |
437 | #define ifatoia(ifa) ((struct in_ifaddr *)(ifa)) | |
438 | if (sin->sin_addr.s_addr == INADDR_ANY) | |
9bccf70c | 439 | sin->sin_addr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr; |
1c79356b | 440 | else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST && |
9bccf70c A |
441 | (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST)) |
442 | sin->sin_addr = satosin(&TAILQ_FIRST(&in_ifaddrhead)->ia_broadaddr)->sin_addr; | |
1c79356b A |
443 | } |
444 | if (inp->inp_laddr.s_addr == INADDR_ANY) { | |
445 | register struct route *ro; | |
446 | ||
447 | ia = (struct in_ifaddr *)0; | |
448 | /* | |
449 | * If route is known or can be allocated now, | |
450 | * our src addr is taken from the i/f, else punt. | |
451 | */ | |
452 | ro = &inp->inp_route; | |
453 | if (ro->ro_rt && | |
454 | (satosin(&ro->ro_dst)->sin_addr.s_addr != | |
455 | sin->sin_addr.s_addr || | |
456 | inp->inp_socket->so_options & SO_DONTROUTE)) { | |
9bccf70c | 457 | rtfree(ro->ro_rt); |
1c79356b A |
458 | ro->ro_rt = (struct rtentry *)0; |
459 | } | |
460 | if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0 && /*XXX*/ | |
461 | (ro->ro_rt == (struct rtentry *)0 || | |
462 | ro->ro_rt->rt_ifp == (struct ifnet *)0)) { | |
463 | /* No route yet, so try to acquire one */ | |
464 | ro->ro_dst.sa_family = AF_INET; | |
465 | ro->ro_dst.sa_len = sizeof(struct sockaddr_in); | |
466 | ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = | |
467 | sin->sin_addr; | |
468 | rtalloc(ro); | |
469 | } | |
470 | /* | |
471 | * If we found a route, use the address | |
472 | * corresponding to the outgoing interface | |
473 | * unless it is the loopback (in case a route | |
474 | * to our address on another net goes to loopback). | |
475 | */ | |
476 | if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) | |
477 | ia = ifatoia(ro->ro_rt->rt_ifa); | |
478 | if (ia == 0) { | |
479 | u_short fport = sin->sin_port; | |
480 | ||
481 | sin->sin_port = 0; | |
482 | ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin))); | |
483 | if (ia == 0) | |
484 | ia = ifatoia(ifa_ifwithnet(sintosa(sin))); | |
485 | sin->sin_port = fport; | |
486 | if (ia == 0) | |
9bccf70c | 487 | ia = TAILQ_FIRST(&in_ifaddrhead); |
1c79356b A |
488 | if (ia == 0) |
489 | return (EADDRNOTAVAIL); | |
490 | } | |
491 | /* | |
492 | * If the destination address is multicast and an outgoing | |
493 | * interface has been set as a multicast option, use the | |
494 | * address of that interface as our source address. | |
495 | */ | |
496 | if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && | |
497 | inp->inp_moptions != NULL) { | |
498 | struct ip_moptions *imo; | |
499 | struct ifnet *ifp; | |
500 | ||
501 | imo = inp->inp_moptions; | |
502 | if (imo->imo_multicast_ifp != NULL) { | |
503 | ifp = imo->imo_multicast_ifp; | |
9bccf70c | 504 | TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) |
1c79356b A |
505 | if (ia->ia_ifp == ifp) |
506 | break; | |
507 | if (ia == 0) | |
508 | return (EADDRNOTAVAIL); | |
509 | } | |
510 | } | |
511 | /* | |
512 | * Don't do pcblookup call here; return interface in plocal_sin | |
513 | * and exit to caller, that will do the lookup. | |
514 | */ | |
515 | *plocal_sin = &ia->ia_addr; | |
516 | ||
517 | } | |
518 | return(0); | |
519 | } | |
520 | ||
521 | /* | |
522 | * Outer subroutine: | |
523 | * Connect from a socket to a specified address. | |
524 | * Both address and port must be specified in argument sin. | |
525 | * If don't have a local address for this socket yet, | |
526 | * then pick one. | |
527 | */ | |
528 | int | |
529 | in_pcbconnect(inp, nam, p) | |
530 | register struct inpcb *inp; | |
531 | struct sockaddr *nam; | |
532 | struct proc *p; | |
533 | { | |
534 | struct sockaddr_in *ifaddr; | |
9bccf70c A |
535 | struct sockaddr_in *sin = (struct sockaddr_in *)nam; |
536 | struct sockaddr_in sa; | |
1c79356b A |
537 | int error; |
538 | ||
539 | /* | |
540 | * Call inner routine, to assign local interface address. | |
541 | */ | |
542 | if ((error = in_pcbladdr(inp, nam, &ifaddr)) != 0) | |
543 | return(error); | |
544 | ||
545 | if (in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, | |
546 | inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr, | |
547 | inp->inp_lport, 0, NULL) != NULL) { | |
548 | return (EADDRINUSE); | |
549 | } | |
550 | if (inp->inp_laddr.s_addr == INADDR_ANY) { | |
9bccf70c A |
551 | if (inp->inp_lport == 0) { |
552 | error = in_pcbbind(inp, (struct sockaddr *)0, p); | |
553 | if (error) | |
554 | return (error); | |
555 | } | |
1c79356b A |
556 | inp->inp_laddr = ifaddr->sin_addr; |
557 | } | |
558 | inp->inp_faddr = sin->sin_addr; | |
559 | inp->inp_fport = sin->sin_port; | |
560 | in_pcbrehash(inp); | |
561 | return (0); | |
562 | } | |
563 | ||
564 | void | |
565 | in_pcbdisconnect(inp) | |
566 | struct inpcb *inp; | |
567 | { | |
568 | ||
569 | inp->inp_faddr.s_addr = INADDR_ANY; | |
570 | inp->inp_fport = 0; | |
571 | in_pcbrehash(inp); | |
572 | if (inp->inp_socket->so_state & SS_NOFDREF) | |
573 | in_pcbdetach(inp); | |
574 | } | |
575 | ||
576 | void | |
577 | in_pcbdetach(inp) | |
578 | struct inpcb *inp; | |
579 | { | |
580 | struct socket *so = inp->inp_socket; | |
581 | struct inpcbinfo *ipi = inp->inp_pcbinfo; | |
9bccf70c | 582 | struct rtentry *rt = inp->inp_route.ro_rt; |
1c79356b A |
583 | |
584 | #if IPSEC | |
585 | ipsec4_delete_pcbpolicy(inp); | |
586 | #endif /*IPSEC*/ | |
587 | inp->inp_gencnt = ++ipi->ipi_gencnt; | |
588 | in_pcbremlists(inp); | |
589 | ||
590 | #if TEMPDEBUG | |
591 | if (so->cached_in_sock_layer) | |
592 | printf("PCB_DETACH for cached socket %x\n", so); | |
593 | else | |
594 | printf("PCB_DETACH for allocated socket %x\n", so); | |
595 | #endif | |
596 | ||
597 | so->so_pcb = 0; | |
598 | ||
599 | if (inp->inp_options) | |
600 | (void)m_free(inp->inp_options); | |
9bccf70c A |
601 | if (rt) { |
602 | /* | |
603 | * route deletion requires reference count to be <= zero | |
604 | */ | |
605 | if ((rt->rt_flags & RTF_DELCLONE) && | |
606 | (rt->rt_flags & RTF_WASCLONED) && | |
607 | (rt->rt_refcnt <= 1)) { | |
608 | rtunref(rt); | |
609 | rt->rt_flags &= ~RTF_UP; | |
610 | rtrequest(RTM_DELETE, rt_key(rt), | |
611 | rt->rt_gateway, rt_mask(rt), | |
612 | rt->rt_flags, (struct rtentry **)0); | |
613 | } | |
614 | else | |
615 | rtfree(rt); | |
616 | } | |
1c79356b | 617 | ip_freemoptions(inp->inp_moptions); |
9bccf70c | 618 | inp->inp_vflag = 0; |
1c79356b A |
619 | if (so->cached_in_sock_layer) |
620 | so->so_saved_pcb = (caddr_t) inp; | |
621 | else | |
622 | zfree(ipi->ipi_zone, (vm_offset_t) inp); | |
623 | ||
624 | sofree(so); | |
625 | } | |
626 | ||
627 | /* | |
628 | * The calling convention of in_setsockaddr() and in_setpeeraddr() was | |
629 | * modified to match the pru_sockaddr() and pru_peeraddr() entry points | |
630 | * in struct pr_usrreqs, so that protocols can just reference then directly | |
631 | * without the need for a wrapper function. The socket must have a valid | |
632 | * (i.e., non-nil) PCB, but it should be impossible to get an invalid one | |
633 | * except through a kernel programming error, so it is acceptable to panic | |
634 | * (or in this case trap) if the PCB is invalid. (Actually, we don't trap | |
635 | * because there actually /is/ a programming error somewhere... XXX) | |
636 | */ | |
637 | int | |
638 | in_setsockaddr(so, nam) | |
639 | struct socket *so; | |
640 | struct sockaddr **nam; | |
641 | { | |
642 | int s; | |
643 | register struct inpcb *inp; | |
644 | register struct sockaddr_in *sin; | |
645 | ||
646 | /* | |
647 | * Do the malloc first in case it blocks. | |
648 | */ | |
649 | MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK); | |
0b4e3aa0 A |
650 | if (sin == NULL) |
651 | return ENOBUFS; | |
1c79356b A |
652 | bzero(sin, sizeof *sin); |
653 | sin->sin_family = AF_INET; | |
654 | sin->sin_len = sizeof(*sin); | |
655 | ||
656 | s = splnet(); | |
657 | inp = sotoinpcb(so); | |
658 | if (!inp) { | |
659 | splx(s); | |
660 | FREE(sin, M_SONAME); | |
9bccf70c | 661 | return ECONNRESET; |
1c79356b A |
662 | } |
663 | sin->sin_port = inp->inp_lport; | |
664 | sin->sin_addr = inp->inp_laddr; | |
665 | splx(s); | |
666 | ||
667 | *nam = (struct sockaddr *)sin; | |
668 | return 0; | |
669 | } | |
670 | ||
671 | int | |
672 | in_setpeeraddr(so, nam) | |
673 | struct socket *so; | |
674 | struct sockaddr **nam; | |
675 | { | |
676 | int s; | |
677 | struct inpcb *inp; | |
678 | register struct sockaddr_in *sin; | |
679 | ||
680 | /* | |
681 | * Do the malloc first in case it blocks. | |
682 | */ | |
683 | MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK); | |
0b4e3aa0 A |
684 | if (sin == NULL) |
685 | return ENOBUFS; | |
1c79356b A |
686 | bzero((caddr_t)sin, sizeof (*sin)); |
687 | sin->sin_family = AF_INET; | |
688 | sin->sin_len = sizeof(*sin); | |
689 | ||
690 | s = splnet(); | |
691 | inp = sotoinpcb(so); | |
692 | if (!inp) { | |
693 | splx(s); | |
694 | FREE(sin, M_SONAME); | |
9bccf70c | 695 | return ECONNRESET; |
1c79356b A |
696 | } |
697 | sin->sin_port = inp->inp_fport; | |
698 | sin->sin_addr = inp->inp_faddr; | |
699 | splx(s); | |
700 | ||
701 | *nam = (struct sockaddr *)sin; | |
702 | return 0; | |
703 | } | |
704 | ||
1c79356b | 705 | void |
9bccf70c | 706 | in_pcbnotifyall(head, faddr, errno, notify) |
1c79356b | 707 | struct inpcbhead *head; |
9bccf70c | 708 | struct in_addr faddr; |
1c79356b A |
709 | void (*notify) __P((struct inpcb *, int)); |
710 | { | |
9bccf70c A |
711 | struct inpcb *inp, *ninp; |
712 | int s; | |
1c79356b | 713 | |
1c79356b | 714 | s = splnet(); |
9bccf70c A |
715 | for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) { |
716 | ninp = LIST_NEXT(inp, inp_list); | |
717 | #if INET6 | |
718 | if ((inp->inp_vflag & INP_IPV4) == 0) | |
1c79356b | 719 | continue; |
9bccf70c | 720 | #endif |
1c79356b | 721 | if (inp->inp_faddr.s_addr != faddr.s_addr || |
9bccf70c A |
722 | inp->inp_socket == NULL) |
723 | continue; | |
724 | (*notify)(inp, errno); | |
1c79356b A |
725 | } |
726 | splx(s); | |
727 | } | |
728 | ||
9bccf70c A |
729 | void |
730 | in_pcbpurgeif0(head, ifp) | |
731 | struct inpcb *head; | |
732 | struct ifnet *ifp; | |
733 | { | |
734 | struct inpcb *inp; | |
735 | struct ip_moptions *imo; | |
736 | int i, gap; | |
737 | ||
738 | for (inp = head; inp != NULL; inp = LIST_NEXT(inp, inp_list)) { | |
739 | imo = inp->inp_moptions; | |
740 | if ((inp->inp_vflag & INP_IPV4) && | |
741 | imo != NULL) { | |
742 | /* | |
743 | * Unselect the outgoing interface if it is being | |
744 | * detached. | |
745 | */ | |
746 | if (imo->imo_multicast_ifp == ifp) | |
747 | imo->imo_multicast_ifp = NULL; | |
748 | ||
749 | /* | |
750 | * Drop multicast group membership if we joined | |
751 | * through the interface being detached. | |
752 | */ | |
753 | for (i = 0, gap = 0; i < imo->imo_num_memberships; | |
754 | i++) { | |
755 | if (imo->imo_membership[i]->inm_ifp == ifp) { | |
756 | in_delmulti(imo->imo_membership[i]); | |
757 | gap++; | |
758 | } else if (gap != 0) | |
759 | imo->imo_membership[i - gap] = | |
760 | imo->imo_membership[i]; | |
761 | } | |
762 | imo->imo_num_memberships -= gap; | |
763 | } | |
764 | } | |
765 | } | |
766 | ||
1c79356b A |
767 | /* |
768 | * Check for alternatives when higher level complains | |
769 | * about service problems. For now, invalidate cached | |
770 | * routing information. If the route was created dynamically | |
771 | * (by a redirect), time to try a default gateway again. | |
772 | */ | |
773 | void | |
774 | in_losing(inp) | |
775 | struct inpcb *inp; | |
776 | { | |
777 | register struct rtentry *rt; | |
778 | struct rt_addrinfo info; | |
779 | ||
780 | if ((rt = inp->inp_route.ro_rt)) { | |
1c79356b A |
781 | bzero((caddr_t)&info, sizeof(info)); |
782 | info.rti_info[RTAX_DST] = | |
783 | (struct sockaddr *)&inp->inp_route.ro_dst; | |
784 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; | |
785 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); | |
786 | rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0); | |
787 | if (rt->rt_flags & RTF_DYNAMIC) | |
788 | (void) rtrequest(RTM_DELETE, rt_key(rt), | |
789 | rt->rt_gateway, rt_mask(rt), rt->rt_flags, | |
790 | (struct rtentry **)0); | |
9bccf70c A |
791 | inp->inp_route.ro_rt = 0; |
792 | rtfree(rt); | |
1c79356b A |
793 | /* |
794 | * A new route can be allocated | |
795 | * the next time output is attempted. | |
796 | */ | |
1c79356b A |
797 | } |
798 | } | |
799 | ||
800 | /* | |
801 | * After a routing change, flush old routing | |
802 | * and allocate a (hopefully) better one. | |
803 | */ | |
9bccf70c | 804 | void |
1c79356b A |
805 | in_rtchange(inp, errno) |
806 | register struct inpcb *inp; | |
807 | int errno; | |
808 | { | |
809 | if (inp->inp_route.ro_rt) { | |
810 | rtfree(inp->inp_route.ro_rt); | |
811 | inp->inp_route.ro_rt = 0; | |
812 | /* | |
813 | * A new route can be allocated the next time | |
814 | * output is attempted. | |
815 | */ | |
816 | } | |
817 | } | |
818 | ||
819 | /* | |
820 | * Lookup a PCB based on the local address and port. | |
821 | */ | |
822 | struct inpcb * | |
823 | in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay) | |
824 | struct inpcbinfo *pcbinfo; | |
825 | struct in_addr laddr; | |
826 | u_int lport_arg; | |
827 | int wild_okay; | |
828 | { | |
829 | register struct inpcb *inp; | |
830 | int matchwild = 3, wildcard; | |
831 | u_short lport = lport_arg; | |
832 | ||
833 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_START, 0,0,0,0,0); | |
834 | ||
835 | if (!wild_okay) { | |
836 | struct inpcbhead *head; | |
837 | /* | |
838 | * Look for an unconnected (wildcard foreign addr) PCB that | |
839 | * matches the local address and port we're looking for. | |
840 | */ | |
841 | head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; | |
9bccf70c A |
842 | LIST_FOREACH(inp, head, inp_hash) { |
843 | #if INET6 | |
844 | if ((inp->inp_vflag & INP_IPV4) == 0) | |
1c79356b | 845 | continue; |
9bccf70c | 846 | #endif |
1c79356b A |
847 | if (inp->inp_faddr.s_addr == INADDR_ANY && |
848 | inp->inp_laddr.s_addr == laddr.s_addr && | |
849 | inp->inp_lport == lport) { | |
850 | /* | |
851 | * Found. | |
852 | */ | |
853 | return (inp); | |
854 | } | |
855 | } | |
856 | /* | |
857 | * Not found. | |
858 | */ | |
859 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, 0,0,0,0,0); | |
860 | return (NULL); | |
861 | } else { | |
862 | struct inpcbporthead *porthash; | |
863 | struct inpcbport *phd; | |
864 | struct inpcb *match = NULL; | |
865 | /* | |
866 | * Best fit PCB lookup. | |
867 | * | |
868 | * First see if this local port is in use by looking on the | |
869 | * port hash list. | |
870 | */ | |
871 | porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, | |
872 | pcbinfo->porthashmask)]; | |
9bccf70c | 873 | LIST_FOREACH(phd, porthash, phd_hash) { |
1c79356b A |
874 | if (phd->phd_port == lport) |
875 | break; | |
876 | } | |
877 | if (phd != NULL) { | |
878 | /* | |
879 | * Port is in use by one or more PCBs. Look for best | |
880 | * fit. | |
881 | */ | |
9bccf70c | 882 | LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { |
1c79356b | 883 | wildcard = 0; |
9bccf70c A |
884 | #if INET6 |
885 | if ((inp->inp_vflag & INP_IPV4) == 0) | |
1c79356b | 886 | continue; |
9bccf70c | 887 | #endif |
1c79356b A |
888 | if (inp->inp_faddr.s_addr != INADDR_ANY) |
889 | wildcard++; | |
890 | if (inp->inp_laddr.s_addr != INADDR_ANY) { | |
891 | if (laddr.s_addr == INADDR_ANY) | |
892 | wildcard++; | |
893 | else if (inp->inp_laddr.s_addr != laddr.s_addr) | |
894 | continue; | |
895 | } else { | |
896 | if (laddr.s_addr != INADDR_ANY) | |
897 | wildcard++; | |
898 | } | |
899 | if (wildcard < matchwild) { | |
900 | match = inp; | |
901 | matchwild = wildcard; | |
902 | if (matchwild == 0) { | |
903 | break; | |
904 | } | |
905 | } | |
906 | } | |
907 | } | |
908 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, match,0,0,0,0); | |
909 | return (match); | |
910 | } | |
911 | } | |
912 | ||
913 | /* | |
914 | * Lookup PCB in hash list. | |
915 | */ | |
916 | struct inpcb * | |
9bccf70c A |
917 | in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard, |
918 | ifp) | |
1c79356b A |
919 | struct inpcbinfo *pcbinfo; |
920 | struct in_addr faddr, laddr; | |
921 | u_int fport_arg, lport_arg; | |
922 | int wildcard; | |
923 | struct ifnet *ifp; | |
924 | { | |
925 | struct inpcbhead *head; | |
926 | register struct inpcb *inp; | |
927 | u_short fport = fport_arg, lport = lport_arg; | |
928 | ||
929 | /* | |
930 | * We may have found the pcb in the last lookup - check this first. | |
931 | */ | |
932 | ||
933 | if ((!IN_MULTICAST(laddr.s_addr)) && (pcbinfo->last_pcb)) { | |
934 | if (faddr.s_addr == pcbinfo->last_pcb->inp_faddr.s_addr && | |
935 | laddr.s_addr == pcbinfo->last_pcb->inp_laddr.s_addr && | |
936 | fport_arg == pcbinfo->last_pcb->inp_fport && | |
937 | lport_arg == pcbinfo->last_pcb->inp_lport) { | |
938 | /* | |
939 | * Found. | |
940 | */ | |
941 | return (pcbinfo->last_pcb); | |
942 | } | |
943 | ||
944 | pcbinfo->last_pcb = 0; | |
945 | } | |
946 | ||
947 | /* | |
948 | * First look for an exact match. | |
949 | */ | |
950 | head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)]; | |
9bccf70c A |
951 | LIST_FOREACH(inp, head, inp_hash) { |
952 | #if INET6 | |
953 | if ((inp->inp_vflag & INP_IPV4) == 0) | |
1c79356b | 954 | continue; |
9bccf70c | 955 | #endif |
1c79356b A |
956 | if (inp->inp_faddr.s_addr == faddr.s_addr && |
957 | inp->inp_laddr.s_addr == laddr.s_addr && | |
958 | inp->inp_fport == fport && | |
959 | inp->inp_lport == lport) { | |
960 | /* | |
961 | * Found. | |
962 | */ | |
963 | return (inp); | |
964 | } | |
965 | } | |
966 | if (wildcard) { | |
967 | struct inpcb *local_wild = NULL; | |
968 | #if INET6 | |
969 | struct inpcb *local_wild_mapped = NULL; | |
970 | #endif | |
971 | ||
972 | head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; | |
9bccf70c A |
973 | LIST_FOREACH(inp, head, inp_hash) { |
974 | #if INET6 | |
975 | if ((inp->inp_vflag & INP_IPV4) == 0) | |
1c79356b | 976 | continue; |
9bccf70c | 977 | #endif |
1c79356b A |
978 | if (inp->inp_faddr.s_addr == INADDR_ANY && |
979 | inp->inp_lport == lport) { | |
980 | #if defined(NFAITH) && NFAITH > 0 | |
981 | if (ifp && ifp->if_type == IFT_FAITH && | |
982 | (inp->inp_flags & INP_FAITH) == 0) | |
983 | continue; | |
984 | #endif | |
985 | if (inp->inp_laddr.s_addr == laddr.s_addr) | |
986 | return (inp); | |
987 | else if (inp->inp_laddr.s_addr == INADDR_ANY) { | |
9bccf70c | 988 | #if defined(INET6) |
1c79356b A |
989 | if (INP_CHECK_SOCKAF(inp->inp_socket, |
990 | AF_INET6)) | |
991 | local_wild_mapped = inp; | |
992 | else | |
9bccf70c | 993 | #endif /* defined(INET6) */ |
1c79356b A |
994 | local_wild = inp; |
995 | } | |
996 | } | |
997 | } | |
9bccf70c | 998 | #if defined(INET6) |
1c79356b A |
999 | if (local_wild == NULL) |
1000 | return (local_wild_mapped); | |
9bccf70c | 1001 | #endif /* defined(INET6) */ |
1c79356b A |
1002 | return (local_wild); |
1003 | } | |
1004 | ||
1005 | /* | |
1006 | * Not found. | |
1007 | */ | |
1008 | return (NULL); | |
1009 | } | |
1010 | ||
1011 | /* | |
1012 | * Insert PCB onto various hash lists. | |
1013 | */ | |
1014 | int | |
1015 | in_pcbinshash(inp) | |
1016 | struct inpcb *inp; | |
1017 | { | |
1018 | struct inpcbhead *pcbhash; | |
1019 | struct inpcbporthead *pcbporthash; | |
1020 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; | |
1021 | struct inpcbport *phd; | |
1022 | u_int32_t hashkey_faddr; | |
1023 | ||
1024 | #if INET6 | |
1025 | if (inp->inp_vflag & INP_IPV6) | |
1026 | hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; | |
1027 | else | |
1028 | #endif /* INET6 */ | |
1029 | hashkey_faddr = inp->inp_faddr.s_addr; | |
1030 | ||
1031 | pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, | |
1032 | inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; | |
1033 | ||
1034 | pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport, | |
1035 | pcbinfo->porthashmask)]; | |
1036 | ||
1037 | /* | |
1038 | * Go through port list and look for a head for this lport. | |
1039 | */ | |
9bccf70c | 1040 | LIST_FOREACH(phd, pcbporthash, phd_hash) { |
1c79356b A |
1041 | if (phd->phd_port == inp->inp_lport) |
1042 | break; | |
1043 | } | |
1044 | /* | |
1045 | * If none exists, malloc one and tack it on. | |
1046 | */ | |
1047 | if (phd == NULL) { | |
0b4e3aa0 | 1048 | MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_WAITOK); |
1c79356b A |
1049 | if (phd == NULL) { |
1050 | return (ENOBUFS); /* XXX */ | |
1051 | } | |
1052 | phd->phd_port = inp->inp_lport; | |
1053 | LIST_INIT(&phd->phd_pcblist); | |
1054 | LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); | |
1055 | } | |
1056 | inp->inp_phd = phd; | |
1057 | LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); | |
1058 | LIST_INSERT_HEAD(pcbhash, inp, inp_hash); | |
9bccf70c | 1059 | #ifdef __APPLE__ |
1c79356b A |
1060 | inp->hash_element = INP_PCBHASH(inp->inp_faddr.s_addr, inp->inp_lport, |
1061 | inp->inp_fport, pcbinfo->hashmask); | |
9bccf70c | 1062 | #endif |
1c79356b A |
1063 | return (0); |
1064 | } | |
1065 | ||
1066 | /* | |
1067 | * Move PCB to the proper hash bucket when { faddr, fport } have been | |
1068 | * changed. NOTE: This does not handle the case of the lport changing (the | |
1069 | * hashed port list would have to be updated as well), so the lport must | |
1070 | * not change after in_pcbinshash() has been called. | |
1071 | */ | |
1072 | void | |
1073 | in_pcbrehash(inp) | |
1074 | struct inpcb *inp; | |
1075 | { | |
1076 | struct inpcbhead *head; | |
1077 | u_int32_t hashkey_faddr; | |
1078 | ||
1079 | #if INET6 | |
1080 | if (inp->inp_vflag & INP_IPV6) | |
1081 | hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; | |
1082 | else | |
1083 | #endif /* INET6 */ | |
1084 | hashkey_faddr = inp->inp_faddr.s_addr; | |
1085 | ||
1086 | head = &inp->inp_pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, | |
1087 | inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->hashmask)]; | |
1088 | ||
1089 | LIST_REMOVE(inp, inp_hash); | |
1090 | LIST_INSERT_HEAD(head, inp, inp_hash); | |
9bccf70c | 1091 | #ifdef __APPLE__ |
1c79356b A |
1092 | inp->hash_element = INP_PCBHASH(inp->inp_faddr.s_addr, inp->inp_lport, |
1093 | inp->inp_fport, inp->inp_pcbinfo->hashmask); | |
9bccf70c | 1094 | #endif |
1c79356b A |
1095 | } |
1096 | ||
1097 | /* | |
1098 | * Remove PCB from various lists. | |
1099 | */ | |
1100 | void | |
1101 | in_pcbremlists(inp) | |
1102 | struct inpcb *inp; | |
1103 | { | |
1104 | inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt; | |
9bccf70c | 1105 | #ifdef __APPLE__ |
1c79356b A |
1106 | if (inp == inp->inp_pcbinfo->last_pcb) |
1107 | inp->inp_pcbinfo->last_pcb = 0; | |
9bccf70c | 1108 | #endif |
1c79356b A |
1109 | |
1110 | if (inp->inp_lport) { | |
1111 | struct inpcbport *phd = inp->inp_phd; | |
1112 | ||
1113 | LIST_REMOVE(inp, inp_hash); | |
1114 | LIST_REMOVE(inp, inp_portlist); | |
9bccf70c | 1115 | if (LIST_FIRST(&phd->phd_pcblist) == NULL) { |
1c79356b A |
1116 | LIST_REMOVE(phd, phd_hash); |
1117 | FREE(phd, M_PCB); | |
1118 | } | |
1119 | } | |
1c79356b A |
1120 | LIST_REMOVE(inp, inp_list); |
1121 | inp->inp_pcbinfo->ipi_count--; | |
1122 | } | |
1123 | ||
1124 | int | |
1125 | in_pcb_grab_port __P((struct inpcbinfo *pcbinfo, | |
1126 | u_short options, | |
1127 | struct in_addr laddr, | |
1128 | u_short *lport, | |
1129 | struct in_addr faddr, | |
1130 | u_short fport, | |
1131 | u_int cookie, | |
1132 | u_char owner_id)) | |
1133 | { | |
1134 | struct inpcb *pcb; | |
1135 | struct sockaddr_in sin; | |
1136 | struct proc *p = current_proc(); | |
1137 | int stat; | |
1138 | ||
1139 | ||
1140 | pcbinfo->nat_dummy_socket.so_pcb = 0; | |
1141 | pcbinfo->nat_dummy_socket.so_options = 0; | |
1142 | if (*lport) { | |
1143 | /* The grabber wants a particular port */ | |
1144 | ||
1145 | if (faddr.s_addr || fport) { | |
1146 | /* | |
1147 | * This is either the second half of an active connect, or | |
1148 | * it's from the acceptance of an incoming connection. | |
1149 | */ | |
1150 | if (laddr.s_addr == 0) { | |
1151 | return EINVAL; | |
1152 | } | |
1153 | ||
1154 | if (in_pcblookup_hash(pcbinfo, faddr, fport, | |
1155 | laddr, *lport, 0, NULL) != NULL) { | |
1156 | if (!(IN_MULTICAST(ntohl(laddr.s_addr)))) { | |
1157 | return (EADDRINUSE); | |
1158 | } | |
1159 | } | |
1160 | ||
1161 | stat = in_pcballoc(&pcbinfo->nat_dummy_socket, pcbinfo, p); | |
1162 | if (stat) | |
1163 | return stat; | |
1164 | pcb = sotoinpcb(&pcbinfo->nat_dummy_socket); | |
1165 | pcb->inp_vflag |= INP_IPV4; | |
1166 | ||
1167 | pcb->inp_lport = *lport; | |
1168 | pcb->inp_laddr.s_addr = laddr.s_addr; | |
1169 | ||
1170 | pcb->inp_faddr = faddr; | |
1171 | pcb->inp_fport = fport; | |
1172 | in_pcbinshash(pcb); | |
1173 | } | |
1174 | else { | |
1175 | /* | |
1176 | * This is either a bind for a passive socket, or it's the | |
1177 | * first part of bind-connect sequence (not likely since an | |
1178 | * ephemeral port is usually used in this case). Or, it's | |
1179 | * the result of a connection acceptance when the foreign | |
1180 | * address/port cannot be provided (which requires the SO_REUSEADDR | |
1181 | * flag if laddr is not multicast). | |
1182 | */ | |
1183 | ||
1184 | stat = in_pcballoc(&pcbinfo->nat_dummy_socket, pcbinfo, p); | |
1185 | if (stat) | |
1186 | return stat; | |
1187 | pcb = sotoinpcb(&pcbinfo->nat_dummy_socket); | |
1188 | pcb->inp_vflag |= INP_IPV4; | |
1189 | ||
1190 | pcbinfo->nat_dummy_socket.so_options = options; | |
1191 | bzero(&sin, sizeof(struct sockaddr_in)); | |
1192 | sin.sin_len = sizeof(struct sockaddr_in); | |
1193 | sin.sin_family = AF_INET; | |
1194 | sin.sin_addr.s_addr = laddr.s_addr; | |
1195 | sin.sin_port = *lport; | |
1196 | ||
1197 | stat = in_pcbbind((struct inpcb *) pcbinfo->nat_dummy_socket.so_pcb, | |
1198 | (struct sockaddr *) &sin, p); | |
1199 | if (stat) { | |
1200 | in_pcbdetach(pcb); | |
1201 | return stat; | |
1202 | } | |
1203 | } | |
1204 | } | |
1205 | else { | |
1206 | /* The grabber wants an ephemeral port */ | |
1207 | ||
1208 | stat = in_pcballoc(&pcbinfo->nat_dummy_socket, pcbinfo, p); | |
1209 | if (stat) | |
1210 | return stat; | |
1211 | pcb = sotoinpcb(&pcbinfo->nat_dummy_socket); | |
1212 | pcb->inp_vflag |= INP_IPV4; | |
1213 | ||
1214 | bzero(&sin, sizeof(struct sockaddr_in)); | |
1215 | sin.sin_len = sizeof(struct sockaddr_in); | |
1216 | sin.sin_family = AF_INET; | |
1217 | sin.sin_addr.s_addr = laddr.s_addr; | |
1218 | sin.sin_port = 0; | |
1219 | ||
1220 | if (faddr.s_addr || fport) { | |
1221 | /* | |
1222 | * Not sure if this case will be used - could occur when connect | |
1223 | * is called, skipping the bind. | |
1224 | */ | |
1225 | ||
1226 | if (laddr.s_addr == 0) { | |
1227 | in_pcbdetach(pcb); | |
1228 | return EINVAL; | |
1229 | } | |
1230 | ||
1231 | stat = in_pcbbind((struct inpcb *) pcbinfo->nat_dummy_socket.so_pcb, | |
1232 | (struct sockaddr *) &sin, p); | |
1233 | if (stat) { | |
1234 | in_pcbdetach(pcb); | |
1235 | return stat; | |
1236 | } | |
1237 | ||
1238 | if (in_pcblookup_hash(pcbinfo, faddr, fport, | |
1239 | pcb->inp_laddr, pcb->inp_lport, 0, NULL) != NULL) { | |
1240 | in_pcbdetach(pcb); | |
1241 | return (EADDRINUSE); | |
1242 | } | |
1243 | ||
1244 | pcb->inp_faddr = faddr; | |
1245 | pcb->inp_fport = fport; | |
1246 | in_pcbrehash(pcb); | |
1247 | } | |
1248 | else { | |
1249 | /* | |
1250 | * This is a simple bind of an ephemeral port. The local addr | |
1251 | * may or may not be defined. | |
1252 | */ | |
1253 | ||
1254 | stat = in_pcbbind((struct inpcb *) pcbinfo->nat_dummy_socket.so_pcb, | |
1255 | (struct sockaddr *) &sin, p); | |
1256 | if (stat) { | |
1257 | in_pcbdetach(pcb); | |
1258 | return stat; | |
1259 | } | |
1260 | } | |
1261 | *lport = pcb->inp_lport; | |
1262 | } | |
1263 | ||
1264 | ||
1265 | pcb->nat_owner = owner_id; | |
1266 | pcb->nat_cookie = cookie; | |
1267 | pcb->inp_ppcb = (caddr_t) pcbinfo->dummy_cb; | |
1268 | return 0; | |
1269 | } | |
1270 | ||
1271 | int | |
1272 | in_pcb_letgo_port __P((struct inpcbinfo *pcbinfo, struct in_addr laddr, u_short lport, | |
1273 | struct in_addr faddr, u_short fport, u_char owner_id)) | |
1274 | { | |
1275 | struct inpcbhead *head; | |
1276 | register struct inpcb *inp; | |
1277 | ||
1278 | ||
1279 | /* | |
1280 | * First look for an exact match. | |
1281 | */ | |
1282 | head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)]; | |
1283 | for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) { | |
1284 | if (inp->inp_faddr.s_addr == faddr.s_addr && | |
1285 | inp->inp_laddr.s_addr == laddr.s_addr && | |
1286 | inp->inp_fport == fport && | |
1287 | inp->inp_lport == lport && | |
1288 | inp->nat_owner == owner_id) { | |
1289 | /* | |
1290 | * Found. | |
1291 | */ | |
1292 | in_pcbdetach(inp); | |
1293 | return 0; | |
1294 | } | |
1295 | } | |
1296 | ||
1297 | return ENOENT; | |
1298 | } | |
1299 | ||
1300 | u_char | |
1301 | in_pcb_get_owner(struct inpcbinfo *pcbinfo, | |
1302 | struct in_addr laddr, u_short lport, | |
1303 | struct in_addr faddr, u_short fport, | |
1304 | u_int *cookie) | |
1305 | ||
1306 | { | |
1307 | struct inpcb *inp; | |
1308 | u_char owner_id = INPCB_NO_OWNER; | |
1309 | struct inpcbport *phd; | |
1310 | struct inpcbporthead *porthash; | |
1311 | ||
1312 | ||
1313 | if (IN_MULTICAST(laddr.s_addr)) { | |
1314 | /* | |
1315 | * Walk through PCB's looking for registered | |
1316 | * owners. | |
1317 | */ | |
1318 | ||
1319 | porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, | |
1320 | pcbinfo->porthashmask)]; | |
1321 | for (phd = porthash->lh_first; phd != NULL; phd = phd->phd_hash.le_next) { | |
1322 | if (phd->phd_port == lport) | |
1323 | break; | |
1324 | } | |
1325 | ||
1326 | if (phd == 0) { | |
1327 | return INPCB_NO_OWNER; | |
1328 | } | |
1329 | ||
1330 | owner_id = INPCB_NO_OWNER; | |
1331 | for (inp = phd->phd_pcblist.lh_first; inp != NULL; | |
1332 | inp = inp->inp_portlist.le_next) { | |
1333 | ||
1334 | if (inp->inp_laddr.s_addr == laddr.s_addr) { | |
1335 | if (inp->nat_owner == 0) | |
1336 | owner_id |= INPCB_OWNED_BY_X; | |
1337 | else | |
1338 | owner_id |= inp->nat_owner; | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | return owner_id; | |
1343 | } | |
1344 | else { | |
1345 | inp = in_pcblookup_hash(pcbinfo, faddr, fport, | |
1346 | laddr, lport, 1, NULL); | |
1347 | if (inp) { | |
1348 | if (inp->nat_owner) { | |
1349 | owner_id = inp->nat_owner; | |
1350 | *cookie = inp->nat_cookie; | |
1351 | } | |
1352 | else { | |
1353 | pcbinfo->last_pcb = inp; | |
1354 | owner_id = INPCB_OWNED_BY_X; | |
1355 | } | |
1356 | } | |
1357 | else | |
1358 | owner_id = INPCB_NO_OWNER; | |
1359 | ||
1360 | return owner_id; | |
1361 | } | |
1362 | } | |
1363 | ||
1364 | int | |
1365 | in_pcb_new_share_client(struct inpcbinfo *pcbinfo, u_char *owner_id) | |
1366 | { | |
1367 | ||
1368 | int i; | |
1369 | ||
1370 | ||
1371 | for (i=0; i < INPCB_MAX_IDS; i++) { | |
1372 | if ((pcbinfo->all_owners & (1 << i)) == 0) { | |
1373 | pcbinfo->all_owners |= (1 << i); | |
1374 | *owner_id = (1 << i); | |
1375 | return 0; | |
1376 | } | |
1377 | } | |
1378 | ||
1379 | return ENOSPC; | |
1380 | } | |
1381 | ||
1382 | int | |
1383 | in_pcb_rem_share_client(struct inpcbinfo *pcbinfo, u_char owner_id) | |
1384 | { | |
1385 | struct inpcb *inp; | |
1386 | ||
1387 | ||
1388 | if (pcbinfo->all_owners & owner_id) { | |
1389 | pcbinfo->all_owners &= ~owner_id; | |
1390 | for (inp = pcbinfo->listhead->lh_first; inp != NULL; inp = inp->inp_list.le_next) { | |
1391 | if (inp->nat_owner & owner_id) { | |
1392 | if (inp->nat_owner == owner_id) | |
1393 | /* | |
1394 | * Deallocate the pcb | |
1395 | */ | |
1396 | in_pcbdetach(inp); | |
1397 | else | |
1398 | inp->nat_owner &= ~owner_id; | |
1399 | } | |
1400 | } | |
1401 | } | |
1402 | else { | |
1403 | return ENOENT; | |
1404 | } | |
1405 | ||
1406 | return 0; | |
1407 | } | |
1408 | ||
9bccf70c A |
1409 | |
1410 | ||
1c79356b A |
1411 | void in_pcb_nat_init(struct inpcbinfo *pcbinfo, int afamily, |
1412 | int pfamily, int protocol) | |
1413 | { | |
1414 | bzero(&pcbinfo->nat_dummy_socket, sizeof(struct socket)); | |
1415 | pcbinfo->nat_dummy_socket.so_proto = pffindproto(afamily, pfamily, protocol); | |
1416 | pcbinfo->all_owners = 0; | |
1417 | } | |
9bccf70c A |
1418 | |
1419 | ||
1420 | #ifndef __APPLE__ | |
1421 | prison_xinpcb(struct proc *p, struct inpcb *inp) | |
1422 | { | |
1423 | if (!p->p_prison) | |
1424 | return (0); | |
1425 | if (ntohl(inp->inp_laddr.s_addr) == p->p_prison->pr_ip) | |
1426 | return (0); | |
1427 | return (1); | |
1428 | } | |
1429 | #endif |