]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_kern.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * Date: 1985 | |
62 | * | |
63 | * Kernel memory management. | |
64 | */ | |
65 | ||
1c79356b A |
66 | #include <mach/kern_return.h> |
67 | #include <mach/vm_param.h> | |
68 | #include <kern/assert.h> | |
69 | #include <kern/lock.h> | |
70 | #include <kern/thread.h> | |
71 | #include <vm/vm_kern.h> | |
72 | #include <vm/vm_map.h> | |
73 | #include <vm/vm_object.h> | |
74 | #include <vm/vm_page.h> | |
75 | #include <vm/vm_pageout.h> | |
76 | #include <kern/misc_protos.h> | |
77 | #include <vm/cpm.h> | |
78 | ||
79 | #include <string.h> | |
2d21ac55 A |
80 | |
81 | #include <libkern/OSDebug.h> | |
82 | #include <sys/kdebug.h> | |
83 | ||
1c79356b A |
84 | /* |
85 | * Variables exported by this module. | |
86 | */ | |
87 | ||
88 | vm_map_t kernel_map; | |
89 | vm_map_t kernel_pageable_map; | |
90 | ||
2d21ac55 A |
91 | extern boolean_t vm_kernel_ready; |
92 | ||
1c79356b A |
93 | /* |
94 | * Forward declarations for internal functions. | |
95 | */ | |
96 | extern kern_return_t kmem_alloc_pages( | |
97 | register vm_object_t object, | |
98 | register vm_object_offset_t offset, | |
91447636 | 99 | register vm_object_size_t size); |
1c79356b A |
100 | |
101 | extern void kmem_remap_pages( | |
102 | register vm_object_t object, | |
103 | register vm_object_offset_t offset, | |
104 | register vm_offset_t start, | |
105 | register vm_offset_t end, | |
106 | vm_prot_t protection); | |
107 | ||
108 | kern_return_t | |
109 | kmem_alloc_contig( | |
91447636 A |
110 | vm_map_t map, |
111 | vm_offset_t *addrp, | |
112 | vm_size_t size, | |
113 | vm_offset_t mask, | |
2d21ac55 | 114 | ppnum_t max_pnum, |
91447636 | 115 | int flags) |
1c79356b A |
116 | { |
117 | vm_object_t object; | |
1c79356b | 118 | vm_object_offset_t offset; |
91447636 A |
119 | vm_map_offset_t map_addr; |
120 | vm_map_offset_t map_mask; | |
121 | vm_map_size_t map_size, i; | |
1c79356b | 122 | vm_map_entry_t entry; |
91447636 A |
123 | vm_page_t m, pages; |
124 | kern_return_t kr; | |
1c79356b A |
125 | |
126 | if (map == VM_MAP_NULL || (flags && (flags ^ KMA_KOBJECT))) | |
127 | return KERN_INVALID_ARGUMENT; | |
128 | ||
129 | if (size == 0) { | |
130 | *addrp = 0; | |
131 | return KERN_INVALID_ARGUMENT; | |
132 | } | |
133 | ||
91447636 A |
134 | map_size = vm_map_round_page(size); |
135 | map_mask = (vm_map_offset_t)mask; | |
1c79356b | 136 | |
91447636 A |
137 | /* |
138 | * Allocate a new object (if necessary) and the reference we | |
139 | * will be donating to the map entry. We must do this before | |
140 | * locking the map, or risk deadlock with the default pager. | |
141 | */ | |
142 | if ((flags & KMA_KOBJECT) != 0) { | |
143 | object = kernel_object; | |
144 | vm_object_reference(object); | |
1c79356b | 145 | } else { |
91447636 | 146 | object = vm_object_allocate(map_size); |
1c79356b A |
147 | } |
148 | ||
0c530ab8 | 149 | kr = vm_map_find_space(map, &map_addr, map_size, map_mask, 0, &entry); |
91447636 A |
150 | if (KERN_SUCCESS != kr) { |
151 | vm_object_deallocate(object); | |
1c79356b A |
152 | return kr; |
153 | } | |
154 | ||
91447636 A |
155 | entry->object.vm_object = object; |
156 | entry->offset = offset = (object == kernel_object) ? | |
157 | map_addr - VM_MIN_KERNEL_ADDRESS : 0; | |
158 | ||
159 | /* Take an extra object ref in case the map entry gets deleted */ | |
160 | vm_object_reference(object); | |
1c79356b A |
161 | vm_map_unlock(map); |
162 | ||
2d21ac55 | 163 | kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, max_pnum, FALSE); |
1c79356b A |
164 | |
165 | if (kr != KERN_SUCCESS) { | |
91447636 A |
166 | vm_map_remove(map, vm_map_trunc_page(map_addr), |
167 | vm_map_round_page(map_addr + map_size), 0); | |
168 | vm_object_deallocate(object); | |
1c79356b A |
169 | *addrp = 0; |
170 | return kr; | |
171 | } | |
172 | ||
173 | vm_object_lock(object); | |
91447636 | 174 | for (i = 0; i < map_size; i += PAGE_SIZE) { |
1c79356b A |
175 | m = pages; |
176 | pages = NEXT_PAGE(m); | |
0c530ab8 | 177 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; |
1c79356b A |
178 | m->busy = FALSE; |
179 | vm_page_insert(m, object, offset + i); | |
180 | } | |
181 | vm_object_unlock(object); | |
182 | ||
91447636 A |
183 | if ((kr = vm_map_wire(map, vm_map_trunc_page(map_addr), |
184 | vm_map_round_page(map_addr + map_size), VM_PROT_DEFAULT, FALSE)) | |
1c79356b A |
185 | != KERN_SUCCESS) { |
186 | if (object == kernel_object) { | |
187 | vm_object_lock(object); | |
91447636 | 188 | vm_object_page_remove(object, offset, offset + map_size); |
1c79356b A |
189 | vm_object_unlock(object); |
190 | } | |
91447636 A |
191 | vm_map_remove(map, vm_map_trunc_page(map_addr), |
192 | vm_map_round_page(map_addr + map_size), 0); | |
193 | vm_object_deallocate(object); | |
1c79356b A |
194 | return kr; |
195 | } | |
91447636 A |
196 | vm_object_deallocate(object); |
197 | ||
1c79356b | 198 | if (object == kernel_object) |
91447636 | 199 | vm_map_simplify(map, map_addr); |
1c79356b | 200 | |
91447636 | 201 | *addrp = map_addr; |
1c79356b A |
202 | return KERN_SUCCESS; |
203 | } | |
204 | ||
205 | /* | |
206 | * Master entry point for allocating kernel memory. | |
207 | * NOTE: this routine is _never_ interrupt safe. | |
208 | * | |
209 | * map : map to allocate into | |
210 | * addrp : pointer to start address of new memory | |
211 | * size : size of memory requested | |
212 | * flags : options | |
213 | * KMA_HERE *addrp is base address, else "anywhere" | |
214 | * KMA_NOPAGEWAIT don't wait for pages if unavailable | |
215 | * KMA_KOBJECT use kernel_object | |
0c530ab8 A |
216 | * KMA_LOMEM support for 32 bit devices in a 64 bit world |
217 | * if set and a lomemory pool is available | |
218 | * grab pages from it... this also implies | |
219 | * KMA_NOPAGEWAIT | |
1c79356b A |
220 | */ |
221 | ||
222 | kern_return_t | |
223 | kernel_memory_allocate( | |
224 | register vm_map_t map, | |
225 | register vm_offset_t *addrp, | |
226 | register vm_size_t size, | |
227 | register vm_offset_t mask, | |
228 | int flags) | |
229 | { | |
91447636 A |
230 | vm_object_t object; |
231 | vm_object_offset_t offset; | |
1c79356b | 232 | vm_map_entry_t entry; |
2d21ac55 | 233 | vm_map_offset_t map_addr, fill_start; |
91447636 | 234 | vm_map_offset_t map_mask; |
2d21ac55 | 235 | vm_map_size_t map_size, fill_size; |
91447636 | 236 | vm_map_size_t i; |
1c79356b | 237 | kern_return_t kr; |
2d21ac55 A |
238 | vm_page_t mem; |
239 | int vm_alloc_flags; | |
240 | ||
241 | if (! vm_kernel_ready) { | |
242 | panic("kernel_memory_allocate: VM is not ready"); | |
243 | } | |
1c79356b | 244 | |
91447636 A |
245 | if (size == 0) { |
246 | *addrp = 0; | |
247 | return KERN_INVALID_ARGUMENT; | |
1c79356b | 248 | } |
0c530ab8 A |
249 | if (flags & KMA_LOMEM) { |
250 | if ( !(flags & KMA_NOPAGEWAIT) ) { | |
251 | *addrp = 0; | |
252 | return KERN_INVALID_ARGUMENT; | |
253 | } | |
254 | } | |
91447636 A |
255 | |
256 | map_size = vm_map_round_page(size); | |
257 | map_mask = (vm_map_offset_t) mask; | |
2d21ac55 A |
258 | vm_alloc_flags = 0; |
259 | ||
260 | /* | |
261 | * Guard pages: | |
262 | * | |
263 | * Guard pages are implemented as ficticious pages. By placing guard pages | |
264 | * on either end of a stack, they can help detect cases where a thread walks | |
265 | * off either end of its stack. They are allocated and set up here and attempts | |
266 | * to access those pages are trapped in vm_fault_page(). | |
267 | * | |
268 | * The map_size we were passed may include extra space for | |
269 | * guard pages. If those were requested, then back it out of fill_size | |
270 | * since vm_map_find_space() takes just the actual size not including | |
271 | * guard pages. Similarly, fill_start indicates where the actual pages | |
272 | * will begin in the range. | |
273 | */ | |
274 | ||
275 | fill_start = 0; | |
276 | fill_size = map_size; | |
277 | if (flags & KMA_GUARD_FIRST) { | |
278 | vm_alloc_flags |= VM_FLAGS_GUARD_BEFORE; | |
279 | fill_start += PAGE_SIZE_64; | |
280 | fill_size -= PAGE_SIZE_64; | |
281 | if (map_size < fill_start + fill_size) { | |
282 | /* no space for a guard page */ | |
283 | *addrp = 0; | |
284 | return KERN_INVALID_ARGUMENT; | |
285 | } | |
286 | } | |
287 | if (flags & KMA_GUARD_LAST) { | |
288 | vm_alloc_flags |= VM_FLAGS_GUARD_AFTER; | |
289 | fill_size -= PAGE_SIZE_64; | |
290 | if (map_size <= fill_start + fill_size) { | |
291 | /* no space for a guard page */ | |
292 | *addrp = 0; | |
293 | return KERN_INVALID_ARGUMENT; | |
294 | } | |
295 | } | |
91447636 A |
296 | |
297 | /* | |
298 | * Allocate a new object (if necessary). We must do this before | |
299 | * locking the map, or risk deadlock with the default pager. | |
300 | */ | |
301 | if ((flags & KMA_KOBJECT) != 0) { | |
1c79356b | 302 | object = kernel_object; |
91447636 A |
303 | vm_object_reference(object); |
304 | } else { | |
305 | object = vm_object_allocate(map_size); | |
1c79356b | 306 | } |
91447636 | 307 | |
2d21ac55 A |
308 | kr = vm_map_find_space(map, &map_addr, |
309 | fill_size, map_mask, | |
310 | vm_alloc_flags, &entry); | |
91447636 A |
311 | if (KERN_SUCCESS != kr) { |
312 | vm_object_deallocate(object); | |
1c79356b A |
313 | return kr; |
314 | } | |
2d21ac55 | 315 | |
91447636 A |
316 | entry->object.vm_object = object; |
317 | entry->offset = offset = (object == kernel_object) ? | |
318 | map_addr - VM_MIN_KERNEL_ADDRESS : 0; | |
1c79356b | 319 | |
b4c24cb9 | 320 | vm_object_reference(object); |
1c79356b A |
321 | vm_map_unlock(map); |
322 | ||
323 | vm_object_lock(object); | |
1c79356b | 324 | |
2d21ac55 A |
325 | /* |
326 | * Allocate the lower guard page if one was requested. The guard | |
327 | * page extends up to fill_start which is where the real memory | |
328 | * begins. | |
329 | */ | |
330 | ||
331 | for (i = 0; i < fill_start; i += PAGE_SIZE) { | |
332 | for (;;) { | |
333 | mem = vm_page_alloc_guard(object, offset + i); | |
334 | if (mem != VM_PAGE_NULL) | |
335 | break; | |
336 | if (flags & KMA_NOPAGEWAIT) { | |
337 | kr = KERN_RESOURCE_SHORTAGE; | |
338 | goto nopage; | |
339 | } | |
340 | vm_object_unlock(object); | |
341 | vm_page_more_fictitious(); | |
342 | vm_object_lock(object); | |
343 | } | |
344 | mem->busy = FALSE; | |
345 | } | |
346 | ||
347 | /* | |
348 | * Allocate the real memory here. This extends from offset fill_start | |
349 | * for fill_size bytes. | |
350 | */ | |
351 | ||
352 | for (i = fill_start; i < fill_start + fill_size; i += PAGE_SIZE) { | |
0c530ab8 A |
353 | for (;;) { |
354 | if (flags & KMA_LOMEM) | |
355 | mem = vm_page_alloclo(object, offset + i); | |
356 | else | |
357 | mem = vm_page_alloc(object, offset + i); | |
358 | ||
359 | if (mem != VM_PAGE_NULL) | |
360 | break; | |
361 | ||
1c79356b | 362 | if (flags & KMA_NOPAGEWAIT) { |
2d21ac55 A |
363 | kr = KERN_RESOURCE_SHORTAGE; |
364 | goto nopage; | |
1c79356b A |
365 | } |
366 | vm_object_unlock(object); | |
367 | VM_PAGE_WAIT(); | |
368 | vm_object_lock(object); | |
369 | } | |
370 | mem->busy = FALSE; | |
371 | } | |
1c79356b | 372 | |
2d21ac55 A |
373 | /* |
374 | * Lastly, allocate the ending guard page if requested. This starts at the ending | |
375 | * address from the loop above up to the map_size that was originaly | |
376 | * requested. | |
377 | */ | |
378 | ||
379 | for (i = fill_start + fill_size; i < map_size; i += PAGE_SIZE) { | |
380 | for (;;) { | |
381 | mem = vm_page_alloc_guard(object, offset + i); | |
382 | if (mem != VM_PAGE_NULL) | |
383 | break; | |
384 | if (flags & KMA_NOPAGEWAIT) { | |
385 | kr = KERN_RESOURCE_SHORTAGE; | |
386 | goto nopage; | |
387 | } | |
1c79356b | 388 | vm_object_unlock(object); |
2d21ac55 A |
389 | vm_page_more_fictitious(); |
390 | vm_object_lock(object); | |
1c79356b | 391 | } |
2d21ac55 | 392 | mem->busy = FALSE; |
1c79356b | 393 | } |
2d21ac55 A |
394 | vm_object_unlock(object); |
395 | ||
396 | kr = vm_map_wire(map, map_addr, map_addr + map_size, | |
397 | VM_PROT_DEFAULT, FALSE); | |
398 | if (kr != KERN_SUCCESS) { | |
399 | vm_object_lock(object); | |
400 | goto nopage; | |
401 | } | |
402 | ||
b4c24cb9 A |
403 | /* now that the page is wired, we no longer have to fear coalesce */ |
404 | vm_object_deallocate(object); | |
1c79356b | 405 | if (object == kernel_object) |
91447636 | 406 | vm_map_simplify(map, map_addr); |
1c79356b A |
407 | |
408 | /* | |
409 | * Return the memory, not zeroed. | |
410 | */ | |
91447636 | 411 | *addrp = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b | 412 | return KERN_SUCCESS; |
2d21ac55 A |
413 | |
414 | nopage: | |
415 | if (object == kernel_object) | |
416 | vm_object_page_remove(object, offset, offset + i); | |
417 | vm_object_unlock(object); | |
418 | vm_map_remove(map, map_addr, map_addr + map_size, 0); | |
419 | vm_object_deallocate(object); | |
420 | return KERN_RESOURCE_SHORTAGE; | |
1c79356b A |
421 | } |
422 | ||
423 | /* | |
424 | * kmem_alloc: | |
425 | * | |
426 | * Allocate wired-down memory in the kernel's address map | |
427 | * or a submap. The memory is not zero-filled. | |
428 | */ | |
429 | ||
430 | kern_return_t | |
431 | kmem_alloc( | |
432 | vm_map_t map, | |
433 | vm_offset_t *addrp, | |
434 | vm_size_t size) | |
435 | { | |
2d21ac55 A |
436 | kern_return_t kr = kernel_memory_allocate(map, addrp, size, 0, 0); |
437 | TRACE_MACHLEAKS(KMEM_ALLOC_CODE, KMEM_ALLOC_CODE_2, size, *addrp); | |
438 | return kr; | |
1c79356b A |
439 | } |
440 | ||
441 | /* | |
442 | * kmem_realloc: | |
443 | * | |
444 | * Reallocate wired-down memory in the kernel's address map | |
445 | * or a submap. Newly allocated pages are not zeroed. | |
446 | * This can only be used on regions allocated with kmem_alloc. | |
447 | * | |
448 | * If successful, the pages in the old region are mapped twice. | |
449 | * The old region is unchanged. Use kmem_free to get rid of it. | |
450 | */ | |
451 | kern_return_t | |
452 | kmem_realloc( | |
91447636 A |
453 | vm_map_t map, |
454 | vm_offset_t oldaddr, | |
455 | vm_size_t oldsize, | |
456 | vm_offset_t *newaddrp, | |
457 | vm_size_t newsize) | |
1c79356b | 458 | { |
91447636 A |
459 | vm_object_t object; |
460 | vm_object_offset_t offset; | |
461 | vm_map_offset_t oldmapmin; | |
462 | vm_map_offset_t oldmapmax; | |
463 | vm_map_offset_t newmapaddr; | |
464 | vm_map_size_t oldmapsize; | |
465 | vm_map_size_t newmapsize; | |
466 | vm_map_entry_t oldentry; | |
467 | vm_map_entry_t newentry; | |
468 | vm_page_t mem; | |
469 | kern_return_t kr; | |
1c79356b | 470 | |
91447636 A |
471 | oldmapmin = vm_map_trunc_page(oldaddr); |
472 | oldmapmax = vm_map_round_page(oldaddr + oldsize); | |
473 | oldmapsize = oldmapmax - oldmapmin; | |
474 | newmapsize = vm_map_round_page(newsize); | |
1c79356b | 475 | |
1c79356b A |
476 | |
477 | /* | |
478 | * Find the VM object backing the old region. | |
479 | */ | |
480 | ||
b4c24cb9 A |
481 | vm_map_lock(map); |
482 | ||
91447636 | 483 | if (!vm_map_lookup_entry(map, oldmapmin, &oldentry)) |
1c79356b A |
484 | panic("kmem_realloc"); |
485 | object = oldentry->object.vm_object; | |
486 | ||
487 | /* | |
488 | * Increase the size of the object and | |
489 | * fill in the new region. | |
490 | */ | |
491 | ||
492 | vm_object_reference(object); | |
b4c24cb9 A |
493 | /* by grabbing the object lock before unlocking the map */ |
494 | /* we guarantee that we will panic if more than one */ | |
495 | /* attempt is made to realloc a kmem_alloc'd area */ | |
1c79356b | 496 | vm_object_lock(object); |
b4c24cb9 | 497 | vm_map_unlock(map); |
91447636 | 498 | if (object->size != oldmapsize) |
1c79356b | 499 | panic("kmem_realloc"); |
91447636 | 500 | object->size = newmapsize; |
1c79356b A |
501 | vm_object_unlock(object); |
502 | ||
b4c24cb9 A |
503 | /* allocate the new pages while expanded portion of the */ |
504 | /* object is still not mapped */ | |
91447636 A |
505 | kmem_alloc_pages(object, vm_object_round_page(oldmapsize), |
506 | vm_object_round_page(newmapsize-oldmapsize)); | |
1c79356b A |
507 | |
508 | /* | |
b4c24cb9 | 509 | * Find space for the new region. |
1c79356b A |
510 | */ |
511 | ||
91447636 | 512 | kr = vm_map_find_space(map, &newmapaddr, newmapsize, |
0c530ab8 | 513 | (vm_map_offset_t) 0, 0, &newentry); |
b4c24cb9 A |
514 | if (kr != KERN_SUCCESS) { |
515 | vm_object_lock(object); | |
91447636 A |
516 | for(offset = oldmapsize; |
517 | offset < newmapsize; offset += PAGE_SIZE) { | |
b4c24cb9 A |
518 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
519 | vm_page_lock_queues(); | |
520 | vm_page_free(mem); | |
521 | vm_page_unlock_queues(); | |
522 | } | |
523 | } | |
91447636 | 524 | object->size = oldmapsize; |
b4c24cb9 A |
525 | vm_object_unlock(object); |
526 | vm_object_deallocate(object); | |
527 | return kr; | |
528 | } | |
529 | newentry->object.vm_object = object; | |
530 | newentry->offset = 0; | |
531 | assert (newentry->wired_count == 0); | |
532 | ||
533 | ||
534 | /* add an extra reference in case we have someone doing an */ | |
535 | /* unexpected deallocate */ | |
536 | vm_object_reference(object); | |
1c79356b A |
537 | vm_map_unlock(map); |
538 | ||
91447636 A |
539 | kr = vm_map_wire(map, newmapaddr, newmapaddr + newmapsize, VM_PROT_DEFAULT, FALSE); |
540 | if (KERN_SUCCESS != kr) { | |
541 | vm_map_remove(map, newmapaddr, newmapaddr + newmapsize, 0); | |
b4c24cb9 | 542 | vm_object_lock(object); |
91447636 | 543 | for(offset = oldsize; offset < newmapsize; offset += PAGE_SIZE) { |
b4c24cb9 A |
544 | if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
545 | vm_page_lock_queues(); | |
546 | vm_page_free(mem); | |
547 | vm_page_unlock_queues(); | |
548 | } | |
549 | } | |
91447636 | 550 | object->size = oldmapsize; |
b4c24cb9 A |
551 | vm_object_unlock(object); |
552 | vm_object_deallocate(object); | |
553 | return (kr); | |
554 | } | |
555 | vm_object_deallocate(object); | |
1c79356b | 556 | |
91447636 | 557 | *newaddrp = CAST_DOWN(vm_offset_t, newmapaddr); |
1c79356b A |
558 | return KERN_SUCCESS; |
559 | } | |
560 | ||
561 | /* | |
562 | * kmem_alloc_wired: | |
563 | * | |
564 | * Allocate wired-down memory in the kernel's address map | |
565 | * or a submap. The memory is not zero-filled. | |
566 | * | |
567 | * The memory is allocated in the kernel_object. | |
568 | * It may not be copied with vm_map_copy, and | |
569 | * it may not be reallocated with kmem_realloc. | |
570 | */ | |
571 | ||
572 | kern_return_t | |
573 | kmem_alloc_wired( | |
574 | vm_map_t map, | |
575 | vm_offset_t *addrp, | |
576 | vm_size_t size) | |
577 | { | |
578 | return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT); | |
579 | } | |
580 | ||
581 | /* | |
582 | * kmem_alloc_aligned: | |
583 | * | |
584 | * Like kmem_alloc_wired, except that the memory is aligned. | |
585 | * The size should be a power-of-2. | |
586 | */ | |
587 | ||
588 | kern_return_t | |
589 | kmem_alloc_aligned( | |
590 | vm_map_t map, | |
591 | vm_offset_t *addrp, | |
592 | vm_size_t size) | |
593 | { | |
594 | if ((size & (size - 1)) != 0) | |
595 | panic("kmem_alloc_aligned: size not aligned"); | |
596 | return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT); | |
597 | } | |
598 | ||
599 | /* | |
600 | * kmem_alloc_pageable: | |
601 | * | |
602 | * Allocate pageable memory in the kernel's address map. | |
603 | */ | |
604 | ||
605 | kern_return_t | |
606 | kmem_alloc_pageable( | |
607 | vm_map_t map, | |
608 | vm_offset_t *addrp, | |
609 | vm_size_t size) | |
610 | { | |
91447636 A |
611 | vm_map_offset_t map_addr; |
612 | vm_map_size_t map_size; | |
1c79356b A |
613 | kern_return_t kr; |
614 | ||
615 | #ifndef normal | |
91447636 | 616 | map_addr = (vm_map_min(map)) + 0x1000; |
1c79356b | 617 | #else |
91447636 | 618 | map_addr = vm_map_min(map); |
1c79356b | 619 | #endif |
91447636 A |
620 | map_size = vm_map_round_page(size); |
621 | ||
622 | kr = vm_map_enter(map, &map_addr, map_size, | |
623 | (vm_map_offset_t) 0, VM_FLAGS_ANYWHERE, | |
1c79356b A |
624 | VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE, |
625 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
91447636 | 626 | |
1c79356b A |
627 | if (kr != KERN_SUCCESS) |
628 | return kr; | |
629 | ||
91447636 | 630 | *addrp = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b A |
631 | return KERN_SUCCESS; |
632 | } | |
633 | ||
634 | /* | |
635 | * kmem_free: | |
636 | * | |
637 | * Release a region of kernel virtual memory allocated | |
638 | * with kmem_alloc, kmem_alloc_wired, or kmem_alloc_pageable, | |
639 | * and return the physical pages associated with that region. | |
640 | */ | |
641 | ||
642 | void | |
643 | kmem_free( | |
644 | vm_map_t map, | |
645 | vm_offset_t addr, | |
646 | vm_size_t size) | |
647 | { | |
648 | kern_return_t kr; | |
649 | ||
2d21ac55 A |
650 | TRACE_MACHLEAKS(KMEM_FREE_CODE, KMEM_FREE_CODE_2, size, addr); |
651 | ||
91447636 A |
652 | kr = vm_map_remove(map, vm_map_trunc_page(addr), |
653 | vm_map_round_page(addr + size), | |
55e303ae | 654 | VM_MAP_REMOVE_KUNWIRE); |
1c79356b A |
655 | if (kr != KERN_SUCCESS) |
656 | panic("kmem_free"); | |
657 | } | |
658 | ||
659 | /* | |
b4c24cb9 | 660 | * Allocate new pages in an object. |
1c79356b A |
661 | */ |
662 | ||
663 | kern_return_t | |
664 | kmem_alloc_pages( | |
665 | register vm_object_t object, | |
666 | register vm_object_offset_t offset, | |
91447636 | 667 | register vm_object_size_t size) |
1c79356b | 668 | { |
91447636 | 669 | vm_object_size_t alloc_size; |
1c79356b | 670 | |
91447636 | 671 | alloc_size = vm_object_round_page(size); |
b4c24cb9 | 672 | vm_object_lock(object); |
91447636 | 673 | while (alloc_size) { |
1c79356b A |
674 | register vm_page_t mem; |
675 | ||
1c79356b A |
676 | |
677 | /* | |
678 | * Allocate a page | |
679 | */ | |
91447636 A |
680 | while (VM_PAGE_NULL == |
681 | (mem = vm_page_alloc(object, offset))) { | |
1c79356b A |
682 | vm_object_unlock(object); |
683 | VM_PAGE_WAIT(); | |
684 | vm_object_lock(object); | |
685 | } | |
91447636 | 686 | mem->busy = FALSE; |
1c79356b | 687 | |
91447636 | 688 | alloc_size -= PAGE_SIZE; |
b4c24cb9 | 689 | offset += PAGE_SIZE; |
1c79356b | 690 | } |
b4c24cb9 | 691 | vm_object_unlock(object); |
1c79356b A |
692 | return KERN_SUCCESS; |
693 | } | |
694 | ||
695 | /* | |
696 | * Remap wired pages in an object into a new region. | |
697 | * The object is assumed to be mapped into the kernel map or | |
698 | * a submap. | |
699 | */ | |
700 | void | |
701 | kmem_remap_pages( | |
702 | register vm_object_t object, | |
703 | register vm_object_offset_t offset, | |
704 | register vm_offset_t start, | |
705 | register vm_offset_t end, | |
706 | vm_prot_t protection) | |
707 | { | |
91447636 A |
708 | |
709 | vm_map_offset_t map_start; | |
710 | vm_map_offset_t map_end; | |
711 | ||
1c79356b A |
712 | /* |
713 | * Mark the pmap region as not pageable. | |
714 | */ | |
91447636 A |
715 | map_start = vm_map_trunc_page(start); |
716 | map_end = vm_map_round_page(end); | |
1c79356b | 717 | |
91447636 A |
718 | pmap_pageable(kernel_pmap, map_start, map_end, FALSE); |
719 | ||
720 | while (map_start < map_end) { | |
1c79356b A |
721 | register vm_page_t mem; |
722 | ||
723 | vm_object_lock(object); | |
724 | ||
725 | /* | |
726 | * Find a page | |
727 | */ | |
728 | if ((mem = vm_page_lookup(object, offset)) == VM_PAGE_NULL) | |
729 | panic("kmem_remap_pages"); | |
730 | ||
731 | /* | |
732 | * Wire it down (again) | |
733 | */ | |
2d21ac55 | 734 | vm_page_lockspin_queues(); |
1c79356b A |
735 | vm_page_wire(mem); |
736 | vm_page_unlock_queues(); | |
737 | vm_object_unlock(object); | |
738 | ||
91447636 A |
739 | /* |
740 | * ENCRYPTED SWAP: | |
741 | * The page is supposed to be wired now, so it | |
742 | * shouldn't be encrypted at this point. It can | |
743 | * safely be entered in the page table. | |
744 | */ | |
745 | ASSERT_PAGE_DECRYPTED(mem); | |
746 | ||
1c79356b A |
747 | /* |
748 | * Enter it in the kernel pmap. The page isn't busy, | |
749 | * but this shouldn't be a problem because it is wired. | |
750 | */ | |
91447636 | 751 | PMAP_ENTER(kernel_pmap, map_start, mem, protection, |
55e303ae A |
752 | ((unsigned int)(mem->object->wimg_bits)) |
753 | & VM_WIMG_MASK, | |
754 | TRUE); | |
1c79356b | 755 | |
91447636 | 756 | map_start += PAGE_SIZE; |
1c79356b A |
757 | offset += PAGE_SIZE; |
758 | } | |
759 | } | |
760 | ||
761 | /* | |
762 | * kmem_suballoc: | |
763 | * | |
764 | * Allocates a map to manage a subrange | |
765 | * of the kernel virtual address space. | |
766 | * | |
767 | * Arguments are as follows: | |
768 | * | |
769 | * parent Map to take range from | |
770 | * addr Address of start of range (IN/OUT) | |
771 | * size Size of range to find | |
772 | * pageable Can region be paged | |
773 | * anywhere Can region be located anywhere in map | |
774 | * new_map Pointer to new submap | |
775 | */ | |
776 | kern_return_t | |
777 | kmem_suballoc( | |
778 | vm_map_t parent, | |
779 | vm_offset_t *addr, | |
780 | vm_size_t size, | |
781 | boolean_t pageable, | |
91447636 | 782 | int flags, |
1c79356b A |
783 | vm_map_t *new_map) |
784 | { | |
91447636 A |
785 | vm_map_t map; |
786 | vm_map_offset_t map_addr; | |
787 | vm_map_size_t map_size; | |
788 | kern_return_t kr; | |
1c79356b | 789 | |
91447636 | 790 | map_size = vm_map_round_page(size); |
1c79356b A |
791 | |
792 | /* | |
793 | * Need reference on submap object because it is internal | |
794 | * to the vm_system. vm_object_enter will never be called | |
795 | * on it (usual source of reference for vm_map_enter). | |
796 | */ | |
797 | vm_object_reference(vm_submap_object); | |
798 | ||
91447636 A |
799 | map_addr = (flags & VM_FLAGS_ANYWHERE) ? |
800 | vm_map_min(parent) : vm_map_trunc_page(*addr); | |
801 | ||
802 | kr = vm_map_enter(parent, &map_addr, map_size, | |
803 | (vm_map_offset_t) 0, flags, | |
1c79356b A |
804 | vm_submap_object, (vm_object_offset_t) 0, FALSE, |
805 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
806 | if (kr != KERN_SUCCESS) { | |
807 | vm_object_deallocate(vm_submap_object); | |
808 | return (kr); | |
809 | } | |
810 | ||
811 | pmap_reference(vm_map_pmap(parent)); | |
91447636 | 812 | map = vm_map_create(vm_map_pmap(parent), map_addr, map_addr + map_size, pageable); |
1c79356b A |
813 | if (map == VM_MAP_NULL) |
814 | panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */ | |
815 | ||
91447636 | 816 | kr = vm_map_submap(parent, map_addr, map_addr + map_size, map, map_addr, FALSE); |
1c79356b A |
817 | if (kr != KERN_SUCCESS) { |
818 | /* | |
819 | * See comment preceding vm_map_submap(). | |
820 | */ | |
91447636 | 821 | vm_map_remove(parent, map_addr, map_addr + map_size, VM_MAP_NO_FLAGS); |
1c79356b A |
822 | vm_map_deallocate(map); /* also removes ref to pmap */ |
823 | vm_object_deallocate(vm_submap_object); | |
824 | return (kr); | |
825 | } | |
91447636 | 826 | *addr = CAST_DOWN(vm_offset_t, map_addr); |
1c79356b A |
827 | *new_map = map; |
828 | return (KERN_SUCCESS); | |
829 | } | |
830 | ||
831 | /* | |
832 | * kmem_init: | |
833 | * | |
834 | * Initialize the kernel's virtual memory map, taking | |
835 | * into account all memory allocated up to this time. | |
836 | */ | |
837 | void | |
838 | kmem_init( | |
839 | vm_offset_t start, | |
840 | vm_offset_t end) | |
841 | { | |
91447636 A |
842 | vm_map_offset_t map_start; |
843 | vm_map_offset_t map_end; | |
844 | ||
845 | map_start = vm_map_trunc_page(start); | |
846 | map_end = vm_map_round_page(end); | |
847 | ||
848 | kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_ADDRESS, | |
0c530ab8 | 849 | map_end, FALSE); |
1c79356b A |
850 | /* |
851 | * Reserve virtual memory allocated up to this time. | |
852 | */ | |
1c79356b | 853 | if (start != VM_MIN_KERNEL_ADDRESS) { |
91447636 | 854 | vm_map_offset_t map_addr; |
0c530ab8 | 855 | |
91447636 | 856 | map_addr = VM_MIN_KERNEL_ADDRESS; |
1c79356b | 857 | (void) vm_map_enter(kernel_map, |
0c530ab8 A |
858 | &map_addr, |
859 | (vm_map_size_t)(map_start - VM_MIN_KERNEL_ADDRESS), | |
860 | (vm_map_offset_t) 0, | |
861 | VM_FLAGS_ANYWHERE | VM_FLAGS_NO_PMAP_CHECK, | |
862 | VM_OBJECT_NULL, | |
863 | (vm_object_offset_t) 0, FALSE, | |
864 | VM_PROT_NONE, VM_PROT_NONE, | |
865 | VM_INHERIT_DEFAULT); | |
1c79356b A |
866 | } |
867 | ||
2d21ac55 | 868 | |
1c79356b A |
869 | /* |
870 | * Account for kernel memory (text, data, bss, vm shenanigans). | |
871 | * This may include inaccessible "holes" as determined by what | |
55e303ae | 872 | * the machine-dependent init code includes in max_mem. |
1c79356b | 873 | */ |
55e303ae | 874 | vm_page_wire_count = (atop_64(max_mem) - (vm_page_free_count |
1c79356b A |
875 | + vm_page_active_count |
876 | + vm_page_inactive_count)); | |
2d21ac55 A |
877 | |
878 | /* | |
879 | * Set the default global user wire limit which limits the amount of | |
880 | * memory that can be locked via mlock(). We set this to the total number of | |
881 | * pages that are potentially usable by a user app (max_mem) minus | |
882 | * 1000 pages. This keeps 4MB in reserve for the kernel which will hopefully be | |
883 | * enough to avoid memory deadlocks. If for some reason the system has less than | |
884 | * 2000 pages of memory at this point, then we'll allow users to lock up to 80% | |
885 | * of that. This can be overridden via a sysctl. | |
886 | */ | |
887 | ||
888 | if (max_mem > 2000) | |
889 | vm_global_user_wire_limit = max_mem - 1000; | |
890 | else | |
891 | vm_global_user_wire_limit = max_mem * 100 / 80; | |
892 | ||
893 | vm_user_wire_limit = vm_global_user_wire_limit; /* the default per user limit is the same as the global limit */ | |
1c79356b A |
894 | } |
895 | ||
1c79356b | 896 | |
1c79356b A |
897 | /* |
898 | * Routine: copyinmap | |
899 | * Purpose: | |
900 | * Like copyin, except that fromaddr is an address | |
901 | * in the specified VM map. This implementation | |
902 | * is incomplete; it handles the current user map | |
903 | * and the kernel map/submaps. | |
904 | */ | |
91447636 | 905 | kern_return_t |
1c79356b | 906 | copyinmap( |
91447636 A |
907 | vm_map_t map, |
908 | vm_map_offset_t fromaddr, | |
909 | void *todata, | |
910 | vm_size_t length) | |
1c79356b | 911 | { |
91447636 A |
912 | kern_return_t kr = KERN_SUCCESS; |
913 | vm_map_t oldmap; | |
914 | ||
915 | if (vm_map_pmap(map) == pmap_kernel()) | |
916 | { | |
1c79356b | 917 | /* assume a correct copy */ |
91447636 A |
918 | memcpy(todata, CAST_DOWN(void *, fromaddr), length); |
919 | } | |
920 | else if (current_map() == map) | |
921 | { | |
922 | if (copyin(fromaddr, todata, length) != 0) | |
923 | kr = KERN_INVALID_ADDRESS; | |
1c79356b | 924 | } |
91447636 A |
925 | else |
926 | { | |
927 | vm_map_reference(map); | |
928 | oldmap = vm_map_switch(map); | |
929 | if (copyin(fromaddr, todata, length) != 0) | |
930 | kr = KERN_INVALID_ADDRESS; | |
931 | vm_map_switch(oldmap); | |
932 | vm_map_deallocate(map); | |
933 | } | |
934 | return kr; | |
1c79356b A |
935 | } |
936 | ||
937 | /* | |
938 | * Routine: copyoutmap | |
939 | * Purpose: | |
940 | * Like copyout, except that toaddr is an address | |
941 | * in the specified VM map. This implementation | |
942 | * is incomplete; it handles the current user map | |
943 | * and the kernel map/submaps. | |
944 | */ | |
91447636 | 945 | kern_return_t |
1c79356b | 946 | copyoutmap( |
91447636 A |
947 | vm_map_t map, |
948 | void *fromdata, | |
949 | vm_map_address_t toaddr, | |
950 | vm_size_t length) | |
1c79356b A |
951 | { |
952 | if (vm_map_pmap(map) == pmap_kernel()) { | |
953 | /* assume a correct copy */ | |
91447636 A |
954 | memcpy(CAST_DOWN(void *, toaddr), fromdata, length); |
955 | return KERN_SUCCESS; | |
1c79356b A |
956 | } |
957 | ||
91447636 A |
958 | if (current_map() != map) |
959 | return KERN_NOT_SUPPORTED; | |
960 | ||
961 | if (copyout(fromdata, toaddr, length) != 0) | |
962 | return KERN_INVALID_ADDRESS; | |
1c79356b | 963 | |
91447636 | 964 | return KERN_SUCCESS; |
1c79356b | 965 | } |
9bccf70c A |
966 | |
967 | ||
968 | kern_return_t | |
969 | vm_conflict_check( | |
970 | vm_map_t map, | |
91447636 A |
971 | vm_map_offset_t off, |
972 | vm_map_size_t len, | |
973 | memory_object_t pager, | |
9bccf70c A |
974 | vm_object_offset_t file_off) |
975 | { | |
976 | vm_map_entry_t entry; | |
977 | vm_object_t obj; | |
978 | vm_object_offset_t obj_off; | |
979 | vm_map_t base_map; | |
91447636 A |
980 | vm_map_offset_t base_offset; |
981 | vm_map_offset_t original_offset; | |
9bccf70c | 982 | kern_return_t kr; |
91447636 | 983 | vm_map_size_t local_len; |
9bccf70c A |
984 | |
985 | base_map = map; | |
986 | base_offset = off; | |
987 | original_offset = off; | |
988 | kr = KERN_SUCCESS; | |
989 | vm_map_lock(map); | |
990 | while(vm_map_lookup_entry(map, off, &entry)) { | |
991 | local_len = len; | |
992 | ||
993 | if (entry->object.vm_object == VM_OBJECT_NULL) { | |
994 | vm_map_unlock(map); | |
995 | return KERN_SUCCESS; | |
996 | } | |
997 | if (entry->is_sub_map) { | |
998 | vm_map_t old_map; | |
55e303ae | 999 | |
9bccf70c A |
1000 | old_map = map; |
1001 | vm_map_lock(entry->object.sub_map); | |
1002 | map = entry->object.sub_map; | |
1003 | off = entry->offset + (off - entry->vme_start); | |
1004 | vm_map_unlock(old_map); | |
1005 | continue; | |
1006 | } | |
1007 | obj = entry->object.vm_object; | |
1008 | obj_off = (off - entry->vme_start) + entry->offset; | |
1009 | while(obj->shadow) { | |
1010 | obj_off += obj->shadow_offset; | |
1011 | obj = obj->shadow; | |
1012 | } | |
1013 | if((obj->pager_created) && (obj->pager == pager)) { | |
1014 | if(((obj->paging_offset) + obj_off) == file_off) { | |
1015 | if(off != base_offset) { | |
1016 | vm_map_unlock(map); | |
1017 | return KERN_FAILURE; | |
1018 | } | |
1019 | kr = KERN_ALREADY_WAITING; | |
55e303ae A |
1020 | } else { |
1021 | vm_object_offset_t obj_off_aligned; | |
1022 | vm_object_offset_t file_off_aligned; | |
1023 | ||
1024 | obj_off_aligned = obj_off & ~PAGE_MASK; | |
1025 | file_off_aligned = file_off & ~PAGE_MASK; | |
1026 | ||
1027 | if (file_off_aligned == (obj->paging_offset + obj_off_aligned)) { | |
1028 | /* | |
1029 | * the target map and the file offset start in the same page | |
1030 | * but are not identical... | |
1031 | */ | |
1032 | vm_map_unlock(map); | |
1033 | return KERN_FAILURE; | |
1034 | } | |
1035 | if ((file_off < (obj->paging_offset + obj_off_aligned)) && | |
1036 | ((file_off + len) > (obj->paging_offset + obj_off_aligned))) { | |
1037 | /* | |
1038 | * some portion of the tail of the I/O will fall | |
1039 | * within the encompass of the target map | |
1040 | */ | |
1041 | vm_map_unlock(map); | |
1042 | return KERN_FAILURE; | |
1043 | } | |
1044 | if ((file_off_aligned > (obj->paging_offset + obj_off)) && | |
1045 | (file_off_aligned < (obj->paging_offset + obj_off) + len)) { | |
1046 | /* | |
1047 | * the beginning page of the file offset falls within | |
1048 | * the target map's encompass | |
1049 | */ | |
1050 | vm_map_unlock(map); | |
1051 | return KERN_FAILURE; | |
1052 | } | |
9bccf70c A |
1053 | } |
1054 | } else if(kr != KERN_SUCCESS) { | |
55e303ae | 1055 | vm_map_unlock(map); |
9bccf70c A |
1056 | return KERN_FAILURE; |
1057 | } | |
1058 | ||
55e303ae | 1059 | if(len <= ((entry->vme_end - entry->vme_start) - |
9bccf70c A |
1060 | (off - entry->vme_start))) { |
1061 | vm_map_unlock(map); | |
1062 | return kr; | |
1063 | } else { | |
1064 | len -= (entry->vme_end - entry->vme_start) - | |
1065 | (off - entry->vme_start); | |
1066 | } | |
1067 | base_offset = base_offset + (local_len - len); | |
1068 | file_off = file_off + (local_len - len); | |
1069 | off = base_offset; | |
1070 | if(map != base_map) { | |
1071 | vm_map_unlock(map); | |
1072 | vm_map_lock(base_map); | |
1073 | map = base_map; | |
1074 | } | |
1075 | } | |
1076 | ||
1077 | vm_map_unlock(map); | |
1078 | return kr; | |
9bccf70c | 1079 | } |