]>
Commit | Line | Data |
---|---|---|
91447636 A |
1 | /* |
2 | * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
14 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
16 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
17 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
18 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
19 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
20 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
21 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
22 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
23 | * SUCH DAMAGE. | |
24 | * | |
25 | * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.18 2003/10/17 11:01:03 scottl Exp $ | |
26 | */ | |
27 | ||
28 | #define DEB(x) | |
29 | #define DDB(x) x | |
30 | ||
31 | /* | |
32 | * Implement IP packet firewall (new version) | |
33 | */ | |
34 | ||
35 | #ifndef INET | |
36 | #error IPFIREWALL requires INET. | |
37 | #endif /* INET */ | |
38 | ||
39 | #ifdef IPFW2 | |
40 | #include <machine/spl.h> | |
41 | ||
42 | #include <sys/param.h> | |
43 | #include <sys/systm.h> | |
44 | #include <sys/malloc.h> | |
45 | #include <sys/mbuf.h> | |
46 | #include <sys/kernel.h> | |
47 | #include <sys/proc.h> | |
48 | #include <sys/socket.h> | |
49 | #include <sys/socketvar.h> | |
50 | #include <sys/sysctl.h> | |
51 | #include <sys/syslog.h> | |
52 | #include <sys/ucred.h> | |
53 | #include <net/if.h> | |
54 | #include <net/route.h> | |
55 | #include <netinet/in.h> | |
56 | #include <netinet/in_systm.h> | |
57 | #include <netinet/in_var.h> | |
58 | #include <netinet/in_pcb.h> | |
59 | #include <netinet/ip.h> | |
60 | #include <netinet/ip_var.h> | |
61 | #include <netinet/ip_icmp.h> | |
62 | #include <netinet/ip_fw.h> | |
63 | #include <netinet/ip_divert.h> | |
64 | ||
65 | #if DUMMYNET | |
66 | #include <netinet/ip_dummynet.h> | |
67 | #endif /* DUMMYNET */ | |
68 | ||
69 | #include <netinet/tcp.h> | |
70 | #include <netinet/tcp_timer.h> | |
71 | #include <netinet/tcp_var.h> | |
72 | #include <netinet/tcpip.h> | |
73 | #include <netinet/udp.h> | |
74 | #include <netinet/udp_var.h> | |
75 | ||
76 | #ifdef IPSEC | |
77 | #include <netinet6/ipsec.h> | |
78 | #endif | |
79 | ||
80 | #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */ | |
81 | ||
82 | #include "ip_fw2_compat.h" | |
83 | ||
84 | #include <sys/kern_event.h> | |
85 | #include <stdarg.h> | |
86 | ||
87 | /* | |
88 | #include <machine/in_cksum.h> | |
89 | */ /* XXX for in_cksum */ | |
90 | ||
91 | /* | |
92 | * XXX This one should go in sys/mbuf.h. It is used to avoid that | |
93 | * a firewall-generated packet loops forever through the firewall. | |
94 | */ | |
95 | #ifndef M_SKIP_FIREWALL | |
96 | #define M_SKIP_FIREWALL 0x4000 | |
97 | #endif | |
98 | ||
99 | /* | |
100 | * set_disable contains one bit per set value (0..31). | |
101 | * If the bit is set, all rules with the corresponding set | |
102 | * are disabled. Set RESVD_SET(31) is reserved for the default rule | |
103 | * and rules that are not deleted by the flush command, | |
104 | * and CANNOT be disabled. | |
105 | * Rules in set RESVD_SET can only be deleted explicitly. | |
106 | */ | |
107 | static u_int32_t set_disable; | |
108 | ||
109 | int fw_verbose; | |
110 | static int verbose_limit; | |
111 | ||
112 | #define IPFW_DEFAULT_RULE 65535 | |
113 | ||
114 | #define IPFW_RULE_INACTIVE 1 | |
115 | ||
116 | /* | |
117 | * list of rules for layer 3 | |
118 | */ | |
119 | static struct ip_fw *layer3_chain; | |
120 | ||
121 | MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's"); | |
122 | ||
123 | static int fw_debug = 1; | |
124 | static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */ | |
125 | ||
126 | #ifdef SYSCTL_NODE | |
127 | SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall"); | |
128 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable, | |
129 | CTLFLAG_RW, | |
130 | &fw_enable, 0, "Enable ipfw"); | |
131 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW, | |
132 | &autoinc_step, 0, "Rule number autincrement step"); | |
133 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass, | |
134 | CTLFLAG_RW, | |
135 | &fw_one_pass, 0, | |
136 | "Only do a single pass through ipfw when using dummynet(4)"); | |
137 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, | |
138 | CTLFLAG_RW, | |
139 | &fw_debug, 0, "Enable printing of debug ip_fw statements"); | |
140 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, | |
141 | CTLFLAG_RW, | |
142 | &fw_verbose, 0, "Log matches to ipfw rules"); | |
143 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW, | |
144 | &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged"); | |
145 | ||
146 | /* | |
147 | * Description of dynamic rules. | |
148 | * | |
149 | * Dynamic rules are stored in lists accessed through a hash table | |
150 | * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can | |
151 | * be modified through the sysctl variable dyn_buckets which is | |
152 | * updated when the table becomes empty. | |
153 | * | |
154 | * XXX currently there is only one list, ipfw_dyn. | |
155 | * | |
156 | * When a packet is received, its address fields are first masked | |
157 | * with the mask defined for the rule, then hashed, then matched | |
158 | * against the entries in the corresponding list. | |
159 | * Dynamic rules can be used for different purposes: | |
160 | * + stateful rules; | |
161 | * + enforcing limits on the number of sessions; | |
162 | * + in-kernel NAT (not implemented yet) | |
163 | * | |
164 | * The lifetime of dynamic rules is regulated by dyn_*_lifetime, | |
165 | * measured in seconds and depending on the flags. | |
166 | * | |
167 | * The total number of dynamic rules is stored in dyn_count. | |
168 | * The max number of dynamic rules is dyn_max. When we reach | |
169 | * the maximum number of rules we do not create anymore. This is | |
170 | * done to avoid consuming too much memory, but also too much | |
171 | * time when searching on each packet (ideally, we should try instead | |
172 | * to put a limit on the length of the list on each bucket...). | |
173 | * | |
174 | * Each dynamic rule holds a pointer to the parent ipfw rule so | |
175 | * we know what action to perform. Dynamic rules are removed when | |
176 | * the parent rule is deleted. XXX we should make them survive. | |
177 | * | |
178 | * There are some limitations with dynamic rules -- we do not | |
179 | * obey the 'randomized match', and we do not do multiple | |
180 | * passes through the firewall. XXX check the latter!!! | |
181 | */ | |
182 | static ipfw_dyn_rule **ipfw_dyn_v = NULL; | |
183 | static u_int32_t dyn_buckets = 256; /* must be power of 2 */ | |
184 | static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */ | |
185 | ||
186 | /* | |
187 | * Timeouts for various events in handing dynamic rules. | |
188 | */ | |
189 | static u_int32_t dyn_ack_lifetime = 300; | |
190 | static u_int32_t dyn_syn_lifetime = 20; | |
191 | static u_int32_t dyn_fin_lifetime = 1; | |
192 | static u_int32_t dyn_rst_lifetime = 1; | |
193 | static u_int32_t dyn_udp_lifetime = 10; | |
194 | static u_int32_t dyn_short_lifetime = 5; | |
195 | ||
196 | /* | |
197 | * Keepalives are sent if dyn_keepalive is set. They are sent every | |
198 | * dyn_keepalive_period seconds, in the last dyn_keepalive_interval | |
199 | * seconds of lifetime of a rule. | |
200 | * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower | |
201 | * than dyn_keepalive_period. | |
202 | */ | |
203 | ||
204 | static u_int32_t dyn_keepalive_interval = 20; | |
205 | static u_int32_t dyn_keepalive_period = 5; | |
206 | static u_int32_t dyn_keepalive = 1; /* do send keepalives */ | |
207 | ||
208 | static u_int32_t static_count; /* # of static rules */ | |
209 | static u_int32_t static_len; /* size in bytes of static rules */ | |
210 | static u_int32_t dyn_count; /* # of dynamic rules */ | |
211 | static u_int32_t dyn_max = 4096; /* max # of dynamic rules */ | |
212 | ||
213 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW, | |
214 | &dyn_buckets, 0, "Number of dyn. buckets"); | |
215 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD, | |
216 | &curr_dyn_buckets, 0, "Current Number of dyn. buckets"); | |
217 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD, | |
218 | &dyn_count, 0, "Number of dyn. rules"); | |
219 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW, | |
220 | &dyn_max, 0, "Max number of dyn. rules"); | |
221 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD, | |
222 | &static_count, 0, "Number of static rules"); | |
223 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW, | |
224 | &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks"); | |
225 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW, | |
226 | &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn"); | |
227 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW, | |
228 | &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin"); | |
229 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW, | |
230 | &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst"); | |
231 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW, | |
232 | &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP"); | |
233 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW, | |
234 | &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations"); | |
235 | SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW, | |
236 | &dyn_keepalive, 0, "Enable keepalives for dyn. rules"); | |
237 | ||
238 | #endif /* SYSCTL_NODE */ | |
239 | ||
240 | ||
91447636 A |
241 | static ip_fw_chk_t ipfw_chk; |
242 | ||
243 | /* firewall lock */ | |
244 | lck_grp_t *ipfw_mutex_grp; | |
245 | lck_grp_attr_t *ipfw_mutex_grp_attr; | |
246 | lck_attr_t *ipfw_mutex_attr; | |
247 | lck_mtx_t *ipfw_mutex; | |
248 | ||
249 | extern void ipfwsyslog( int level, char *format,...); | |
250 | ||
251 | #if DUMMYNET | |
252 | ip_dn_ruledel_t *ip_dn_ruledel_ptr = NULL; /* hook into dummynet */ | |
253 | #endif /* DUMMYNET */ | |
254 | ||
255 | #define KEV_LOG_SUBCLASS 10 | |
256 | #define IPFWLOGEVENT 0 | |
257 | ||
258 | #define ipfwstring "ipfw:" | |
259 | static size_t ipfwstringlen; | |
260 | ||
261 | #define dolog( a ) { \ | |
262 | if ( fw_verbose == 2 ) /* Apple logging, log to ipfw.log */ \ | |
263 | ipfwsyslog a ; \ | |
264 | else log a ; \ | |
265 | } | |
266 | ||
267 | void ipfwsyslog( int level, char *format,...) | |
268 | { | |
269 | #define msgsize 100 | |
270 | ||
271 | struct kev_msg ev_msg; | |
272 | va_list ap; | |
273 | char msgBuf[msgsize]; | |
274 | char *dptr = msgBuf; | |
275 | unsigned char pri; | |
276 | int loglen; | |
277 | ||
278 | va_start( ap, format ); | |
279 | loglen = vsnprintf(msgBuf, msgsize, format, ap); | |
280 | va_end( ap ); | |
281 | ||
282 | ev_msg.vendor_code = KEV_VENDOR_APPLE; | |
283 | ev_msg.kev_class = KEV_NETWORK_CLASS; | |
284 | ev_msg.kev_subclass = KEV_LOG_SUBCLASS; | |
285 | ev_msg.event_code = IPFWLOGEVENT; | |
286 | ||
287 | /* get rid of the trailing \n */ | |
288 | dptr[loglen-1] = 0; | |
289 | ||
290 | pri = LOG_PRI(level); | |
291 | ||
292 | /* remove "ipfw:" prefix if logging to ipfw log */ | |
293 | if ( !(strncmp( ipfwstring, msgBuf, ipfwstringlen))){ | |
294 | dptr = msgBuf+ipfwstringlen; | |
295 | } | |
296 | ||
297 | ev_msg.dv[0].data_ptr = &pri; | |
298 | ev_msg.dv[0].data_length = 1; | |
299 | ev_msg.dv[1].data_ptr = dptr; | |
300 | ev_msg.dv[1].data_length = 100; /* bug in kern_post_msg, it can't handle size > 256-msghdr */ | |
301 | ev_msg.dv[2].data_length = 0; | |
302 | ||
303 | kev_post_msg(&ev_msg); | |
304 | } | |
305 | ||
306 | /* | |
307 | * This macro maps an ip pointer into a layer3 header pointer of type T | |
308 | */ | |
309 | #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl)) | |
310 | ||
311 | static __inline int | |
312 | icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd) | |
313 | { | |
314 | int type = L3HDR(struct icmp,ip)->icmp_type; | |
315 | ||
316 | return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) ); | |
317 | } | |
318 | ||
319 | #define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \ | |
320 | (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) ) | |
321 | ||
322 | static int | |
323 | is_icmp_query(struct ip *ip) | |
324 | { | |
325 | int type = L3HDR(struct icmp, ip)->icmp_type; | |
326 | return (type <= ICMP_MAXTYPE && (TT & (1<<type)) ); | |
327 | } | |
328 | #undef TT | |
329 | ||
330 | /* | |
331 | * The following checks use two arrays of 8 or 16 bits to store the | |
332 | * bits that we want set or clear, respectively. They are in the | |
333 | * low and high half of cmd->arg1 or cmd->d[0]. | |
334 | * | |
335 | * We scan options and store the bits we find set. We succeed if | |
336 | * | |
337 | * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear | |
338 | * | |
339 | * The code is sometimes optimized not to store additional variables. | |
340 | */ | |
341 | ||
342 | static int | |
343 | flags_match(ipfw_insn *cmd, u_int8_t bits) | |
344 | { | |
345 | u_char want_clear; | |
346 | bits = ~bits; | |
347 | ||
348 | if ( ((cmd->arg1 & 0xff) & bits) != 0) | |
349 | return 0; /* some bits we want set were clear */ | |
350 | want_clear = (cmd->arg1 >> 8) & 0xff; | |
351 | if ( (want_clear & bits) != want_clear) | |
352 | return 0; /* some bits we want clear were set */ | |
353 | return 1; | |
354 | } | |
355 | ||
356 | static int | |
357 | ipopts_match(struct ip *ip, ipfw_insn *cmd) | |
358 | { | |
359 | int optlen, bits = 0; | |
360 | u_char *cp = (u_char *)(ip + 1); | |
361 | int x = (ip->ip_hl << 2) - sizeof (struct ip); | |
362 | ||
363 | for (; x > 0; x -= optlen, cp += optlen) { | |
364 | int opt = cp[IPOPT_OPTVAL]; | |
365 | ||
366 | if (opt == IPOPT_EOL) | |
367 | break; | |
368 | if (opt == IPOPT_NOP) | |
369 | optlen = 1; | |
370 | else { | |
371 | optlen = cp[IPOPT_OLEN]; | |
372 | if (optlen <= 0 || optlen > x) | |
373 | return 0; /* invalid or truncated */ | |
374 | } | |
375 | switch (opt) { | |
376 | ||
377 | default: | |
378 | break; | |
379 | ||
380 | case IPOPT_LSRR: | |
381 | bits |= IP_FW_IPOPT_LSRR; | |
382 | break; | |
383 | ||
384 | case IPOPT_SSRR: | |
385 | bits |= IP_FW_IPOPT_SSRR; | |
386 | break; | |
387 | ||
388 | case IPOPT_RR: | |
389 | bits |= IP_FW_IPOPT_RR; | |
390 | break; | |
391 | ||
392 | case IPOPT_TS: | |
393 | bits |= IP_FW_IPOPT_TS; | |
394 | break; | |
395 | } | |
396 | } | |
397 | return (flags_match(cmd, bits)); | |
398 | } | |
399 | ||
400 | static int | |
401 | tcpopts_match(struct ip *ip, ipfw_insn *cmd) | |
402 | { | |
403 | int optlen, bits = 0; | |
404 | struct tcphdr *tcp = L3HDR(struct tcphdr,ip); | |
405 | u_char *cp = (u_char *)(tcp + 1); | |
406 | int x = (tcp->th_off << 2) - sizeof(struct tcphdr); | |
407 | ||
408 | for (; x > 0; x -= optlen, cp += optlen) { | |
409 | int opt = cp[0]; | |
410 | if (opt == TCPOPT_EOL) | |
411 | break; | |
412 | if (opt == TCPOPT_NOP) | |
413 | optlen = 1; | |
414 | else { | |
415 | optlen = cp[1]; | |
416 | if (optlen <= 0) | |
417 | break; | |
418 | } | |
419 | ||
420 | switch (opt) { | |
421 | ||
422 | default: | |
423 | break; | |
424 | ||
425 | case TCPOPT_MAXSEG: | |
426 | bits |= IP_FW_TCPOPT_MSS; | |
427 | break; | |
428 | ||
429 | case TCPOPT_WINDOW: | |
430 | bits |= IP_FW_TCPOPT_WINDOW; | |
431 | break; | |
432 | ||
433 | case TCPOPT_SACK_PERMITTED: | |
434 | case TCPOPT_SACK: | |
435 | bits |= IP_FW_TCPOPT_SACK; | |
436 | break; | |
437 | ||
438 | case TCPOPT_TIMESTAMP: | |
439 | bits |= IP_FW_TCPOPT_TS; | |
440 | break; | |
441 | ||
442 | case TCPOPT_CC: | |
443 | case TCPOPT_CCNEW: | |
444 | case TCPOPT_CCECHO: | |
445 | bits |= IP_FW_TCPOPT_CC; | |
446 | break; | |
447 | } | |
448 | } | |
449 | return (flags_match(cmd, bits)); | |
450 | } | |
451 | ||
452 | static int | |
453 | iface_match(struct ifnet *ifp, ipfw_insn_if *cmd) | |
454 | { | |
455 | if (ifp == NULL) /* no iface with this packet, match fails */ | |
456 | return 0; | |
457 | /* Check by name or by IP address */ | |
458 | if (cmd->name[0] != '\0') { /* match by name */ | |
459 | /* Check unit number (-1 is wildcard) */ | |
460 | if (cmd->p.unit != -1 && cmd->p.unit != ifp->if_unit) | |
461 | return(0); | |
462 | /* Check name */ | |
463 | if (!strncmp(ifp->if_name, cmd->name, IFNAMSIZ)) | |
464 | return(1); | |
465 | } else { | |
466 | struct ifaddr *ia; | |
467 | ||
468 | ifnet_lock_shared(ifp); | |
469 | TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) { | |
470 | if (ia->ifa_addr == NULL) | |
471 | continue; | |
472 | if (ia->ifa_addr->sa_family != AF_INET) | |
473 | continue; | |
474 | if (cmd->p.ip.s_addr == ((struct sockaddr_in *) | |
475 | (ia->ifa_addr))->sin_addr.s_addr) { | |
476 | ifnet_lock_done(ifp); | |
477 | return(1); /* match */ | |
478 | } | |
479 | } | |
480 | ifnet_lock_done(ifp); | |
481 | } | |
482 | return(0); /* no match, fail ... */ | |
483 | } | |
484 | ||
485 | /* | |
486 | * The 'verrevpath' option checks that the interface that an IP packet | |
487 | * arrives on is the same interface that traffic destined for the | |
488 | * packet's source address would be routed out of. This is a measure | |
489 | * to block forged packets. This is also commonly known as "anti-spoofing" | |
490 | * or Unicast Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The | |
491 | * name of the knob is purposely reminisent of the Cisco IOS command, | |
492 | * | |
493 | * ip verify unicast reverse-path | |
494 | * | |
495 | * which implements the same functionality. But note that syntax is | |
496 | * misleading. The check may be performed on all IP packets whether unicast, | |
497 | * multicast, or broadcast. | |
498 | */ | |
499 | static int | |
500 | verify_rev_path(struct in_addr src, struct ifnet *ifp) | |
501 | { | |
502 | static struct route ro; | |
503 | struct sockaddr_in *dst; | |
504 | ||
505 | dst = (struct sockaddr_in *)&(ro.ro_dst); | |
506 | ||
507 | /* Check if we've cached the route from the previous call. */ | |
508 | if (src.s_addr != dst->sin_addr.s_addr) { | |
509 | ro.ro_rt = NULL; | |
510 | ||
511 | bzero(dst, sizeof(*dst)); | |
512 | dst->sin_family = AF_INET; | |
513 | dst->sin_len = sizeof(*dst); | |
514 | dst->sin_addr = src; | |
515 | ||
516 | rtalloc_ign(&ro, RTF_CLONING|RTF_PRCLONING); | |
517 | } | |
518 | ||
519 | if ((ro.ro_rt == NULL) || (ifp == NULL) || | |
520 | (ro.ro_rt->rt_ifp->if_index != ifp->if_index)) | |
521 | return 0; | |
522 | ||
523 | return 1; | |
524 | } | |
525 | ||
526 | ||
527 | static u_int64_t norule_counter; /* counter for ipfw_log(NULL...) */ | |
528 | ||
529 | #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0 | |
530 | #define SNP(buf) buf, sizeof(buf) | |
531 | ||
532 | /* | |
533 | * We enter here when we have a rule with O_LOG. | |
534 | * XXX this function alone takes about 2Kbytes of code! | |
535 | */ | |
536 | static void | |
537 | ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh, | |
538 | struct mbuf *m, struct ifnet *oif) | |
539 | { | |
540 | char *action; | |
541 | int limit_reached = 0; | |
542 | char ipv4str[MAX_IPv4_STR_LEN]; | |
543 | char action2[40], proto[48], fragment[28]; | |
544 | ||
545 | fragment[0] = '\0'; | |
546 | proto[0] = '\0'; | |
547 | ||
548 | if (f == NULL) { /* bogus pkt */ | |
549 | if (verbose_limit != 0 && norule_counter >= verbose_limit) | |
550 | return; | |
551 | norule_counter++; | |
552 | if (norule_counter == verbose_limit) | |
553 | limit_reached = verbose_limit; | |
554 | action = "Refuse"; | |
555 | } else { /* O_LOG is the first action, find the real one */ | |
556 | ipfw_insn *cmd = ACTION_PTR(f); | |
557 | ipfw_insn_log *l = (ipfw_insn_log *)cmd; | |
558 | ||
559 | if (l->max_log != 0 && l->log_left == 0) | |
560 | return; | |
561 | l->log_left--; | |
562 | if (l->log_left == 0) | |
563 | limit_reached = l->max_log; | |
564 | cmd += F_LEN(cmd); /* point to first action */ | |
565 | if (cmd->opcode == O_PROB) | |
566 | cmd += F_LEN(cmd); | |
567 | ||
568 | action = action2; | |
569 | switch (cmd->opcode) { | |
570 | case O_DENY: | |
571 | action = "Deny"; | |
572 | break; | |
573 | ||
574 | case O_REJECT: | |
575 | if (cmd->arg1==ICMP_REJECT_RST) | |
576 | action = "Reset"; | |
577 | else if (cmd->arg1==ICMP_UNREACH_HOST) | |
578 | action = "Reject"; | |
579 | else | |
580 | snprintf(SNPARGS(action2, 0), "Unreach %d", | |
581 | cmd->arg1); | |
582 | break; | |
583 | ||
584 | case O_ACCEPT: | |
585 | action = "Accept"; | |
586 | break; | |
587 | case O_COUNT: | |
588 | action = "Count"; | |
589 | break; | |
590 | case O_DIVERT: | |
591 | snprintf(SNPARGS(action2, 0), "Divert %d", | |
592 | cmd->arg1); | |
593 | break; | |
594 | case O_TEE: | |
595 | snprintf(SNPARGS(action2, 0), "Tee %d", | |
596 | cmd->arg1); | |
597 | break; | |
598 | case O_SKIPTO: | |
599 | snprintf(SNPARGS(action2, 0), "SkipTo %d", | |
600 | cmd->arg1); | |
601 | break; | |
602 | case O_PIPE: | |
603 | snprintf(SNPARGS(action2, 0), "Pipe %d", | |
604 | cmd->arg1); | |
605 | break; | |
606 | case O_QUEUE: | |
607 | snprintf(SNPARGS(action2, 0), "Queue %d", | |
608 | cmd->arg1); | |
609 | break; | |
610 | case O_FORWARD_IP: { | |
611 | ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd; | |
612 | int len; | |
613 | ||
614 | if (f->reserved_1 == IPFW_RULE_INACTIVE) { | |
615 | break; | |
616 | } | |
617 | len = snprintf(SNPARGS(action2, 0), "Forward to %s", | |
618 | inet_ntop(AF_INET, &sa->sa.sin_addr, ipv4str, sizeof(ipv4str))); | |
619 | if (sa->sa.sin_port) | |
620 | snprintf(SNPARGS(action2, len), ":%d", | |
621 | sa->sa.sin_port); | |
622 | } | |
623 | break; | |
624 | default: | |
625 | action = "UNKNOWN"; | |
626 | break; | |
627 | } | |
628 | } | |
629 | ||
630 | if (hlen == 0) { /* non-ip */ | |
631 | snprintf(SNPARGS(proto, 0), "MAC"); | |
632 | } else { | |
633 | struct ip *ip = mtod(m, struct ip *); | |
634 | /* these three are all aliases to the same thing */ | |
635 | struct icmp *const icmp = L3HDR(struct icmp, ip); | |
636 | struct tcphdr *const tcp = (struct tcphdr *)icmp; | |
637 | struct udphdr *const udp = (struct udphdr *)icmp; | |
638 | ||
639 | int ip_off, offset, ip_len; | |
640 | ||
641 | int len; | |
642 | ||
643 | if (eh != NULL) { /* layer 2 packets are as on the wire */ | |
644 | ip_off = ntohs(ip->ip_off); | |
645 | ip_len = ntohs(ip->ip_len); | |
646 | } else { | |
647 | ip_off = ip->ip_off; | |
648 | ip_len = ip->ip_len; | |
649 | } | |
650 | offset = ip_off & IP_OFFMASK; | |
651 | switch (ip->ip_p) { | |
652 | case IPPROTO_TCP: | |
653 | len = snprintf(SNPARGS(proto, 0), "TCP %s", | |
654 | inet_ntop(AF_INET, &ip->ip_src, ipv4str, sizeof(ipv4str))); | |
655 | if (offset == 0) | |
656 | snprintf(SNPARGS(proto, len), ":%d %s:%d", | |
657 | ntohs(tcp->th_sport), | |
658 | inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str)), | |
659 | ntohs(tcp->th_dport)); | |
660 | else | |
661 | snprintf(SNPARGS(proto, len), " %s", | |
662 | inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str))); | |
663 | break; | |
664 | ||
665 | case IPPROTO_UDP: | |
666 | len = snprintf(SNPARGS(proto, 0), "UDP %s", | |
667 | inet_ntop(AF_INET, &ip->ip_src, ipv4str, sizeof(ipv4str))); | |
668 | if (offset == 0) | |
669 | snprintf(SNPARGS(proto, len), ":%d %s:%d", | |
670 | ntohs(udp->uh_sport), | |
671 | inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str)), | |
672 | ntohs(udp->uh_dport)); | |
673 | else | |
674 | snprintf(SNPARGS(proto, len), " %s", | |
675 | inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str))); | |
676 | break; | |
677 | ||
678 | case IPPROTO_ICMP: | |
679 | if (offset == 0) | |
680 | len = snprintf(SNPARGS(proto, 0), | |
681 | "ICMP:%u.%u ", | |
682 | icmp->icmp_type, icmp->icmp_code); | |
683 | else | |
684 | len = snprintf(SNPARGS(proto, 0), "ICMP "); | |
685 | len += snprintf(SNPARGS(proto, len), "%s", | |
686 | inet_ntop(AF_INET, &ip->ip_src, ipv4str, sizeof(ipv4str))); | |
687 | snprintf(SNPARGS(proto, len), " %s", | |
688 | inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str))); | |
689 | break; | |
690 | ||
691 | default: | |
692 | len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p, | |
693 | inet_ntop(AF_INET, &ip->ip_src, ipv4str, sizeof(ipv4str))); | |
694 | snprintf(SNPARGS(proto, len), " %s", | |
695 | inet_ntop(AF_INET, &ip->ip_dst, ipv4str, sizeof(ipv4str))); | |
696 | break; | |
697 | } | |
698 | ||
699 | if (ip_off & (IP_MF | IP_OFFMASK)) | |
700 | snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)", | |
701 | ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2), | |
702 | offset << 3, | |
703 | (ip_off & IP_MF) ? "+" : ""); | |
704 | } | |
705 | if (oif || m->m_pkthdr.rcvif) | |
706 | { | |
707 | dolog((LOG_AUTHPRIV | LOG_INFO, | |
708 | "ipfw: %d %s %s %s via %s%d%s\n", | |
709 | f ? f->rulenum : -1, | |
710 | action, proto, oif ? "out" : "in", | |
711 | oif ? oif->if_name : m->m_pkthdr.rcvif->if_name, | |
712 | oif ? oif->if_unit : m->m_pkthdr.rcvif->if_unit, | |
713 | fragment)); | |
714 | } | |
715 | else{ | |
716 | dolog((LOG_AUTHPRIV | LOG_INFO, | |
717 | "ipfw: %d %s %s [no if info]%s\n", | |
718 | f ? f->rulenum : -1, | |
719 | action, proto, fragment)); | |
720 | } | |
721 | if (limit_reached){ | |
722 | dolog((LOG_AUTHPRIV | LOG_NOTICE, | |
723 | "ipfw: limit %d reached on entry %d\n", | |
724 | limit_reached, f ? f->rulenum : -1)); | |
725 | } | |
726 | } | |
727 | ||
728 | /* | |
729 | * IMPORTANT: the hash function for dynamic rules must be commutative | |
730 | * in source and destination (ip,port), because rules are bidirectional | |
731 | * and we want to find both in the same bucket. | |
732 | */ | |
733 | static __inline int | |
734 | hash_packet(struct ipfw_flow_id *id) | |
735 | { | |
736 | u_int32_t i; | |
737 | ||
738 | i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port); | |
739 | i &= (curr_dyn_buckets - 1); | |
740 | return i; | |
741 | } | |
742 | ||
743 | /** | |
744 | * unlink a dynamic rule from a chain. prev is a pointer to | |
745 | * the previous one, q is a pointer to the rule to delete, | |
746 | * head is a pointer to the head of the queue. | |
747 | * Modifies q and potentially also head. | |
748 | */ | |
749 | #define UNLINK_DYN_RULE(prev, head, q) { \ | |
750 | ipfw_dyn_rule *old_q = q; \ | |
751 | \ | |
752 | /* remove a refcount to the parent */ \ | |
753 | if (q->dyn_type == O_LIMIT) \ | |
754 | q->parent->count--; \ | |
755 | DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\ | |
756 | (q->id.src_ip), (q->id.src_port), \ | |
757 | (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \ | |
758 | if (prev != NULL) \ | |
759 | prev->next = q = q->next; \ | |
760 | else \ | |
761 | head = q = q->next; \ | |
762 | dyn_count--; \ | |
763 | _FREE(old_q, M_IPFW); } | |
764 | ||
765 | #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0) | |
766 | ||
767 | /** | |
768 | * Remove dynamic rules pointing to "rule", or all of them if rule == NULL. | |
769 | * | |
770 | * If keep_me == NULL, rules are deleted even if not expired, | |
771 | * otherwise only expired rules are removed. | |
772 | * | |
773 | * The value of the second parameter is also used to point to identify | |
774 | * a rule we absolutely do not want to remove (e.g. because we are | |
775 | * holding a reference to it -- this is the case with O_LIMIT_PARENT | |
776 | * rules). The pointer is only used for comparison, so any non-null | |
777 | * value will do. | |
778 | */ | |
779 | static void | |
780 | remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me) | |
781 | { | |
782 | static u_int32_t last_remove = 0; | |
783 | ||
784 | #define FORCE (keep_me == NULL) | |
785 | ||
786 | ipfw_dyn_rule *prev, *q; | |
787 | int i, pass = 0, max_pass = 0; | |
788 | struct timeval timenow; | |
789 | ||
790 | getmicrotime(&timenow); | |
791 | ||
792 | if (ipfw_dyn_v == NULL || dyn_count == 0) | |
793 | return; | |
794 | /* do not expire more than once per second, it is useless */ | |
795 | if (!FORCE && last_remove == timenow.tv_sec) | |
796 | return; | |
797 | last_remove = timenow.tv_sec; | |
798 | ||
799 | /* | |
800 | * because O_LIMIT refer to parent rules, during the first pass only | |
801 | * remove child and mark any pending LIMIT_PARENT, and remove | |
802 | * them in a second pass. | |
803 | */ | |
804 | next_pass: | |
805 | for (i = 0 ; i < curr_dyn_buckets ; i++) { | |
806 | for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) { | |
807 | /* | |
808 | * Logic can become complex here, so we split tests. | |
809 | */ | |
810 | if (q == keep_me) | |
811 | goto next; | |
812 | if (rule != NULL && rule != q->rule) | |
813 | goto next; /* not the one we are looking for */ | |
814 | if (q->dyn_type == O_LIMIT_PARENT) { | |
815 | /* | |
816 | * handle parent in the second pass, | |
817 | * record we need one. | |
818 | */ | |
819 | max_pass = 1; | |
820 | if (pass == 0) | |
821 | goto next; | |
822 | if (FORCE && q->count != 0 ) { | |
823 | /* XXX should not happen! */ | |
824 | printf("ipfw: OUCH! cannot remove rule," | |
825 | " count %d\n", q->count); | |
826 | } | |
827 | } else { | |
828 | if (!FORCE && | |
829 | !TIME_LEQ( q->expire, timenow.tv_sec )) | |
830 | goto next; | |
831 | } | |
832 | if (q->dyn_type != O_LIMIT_PARENT || !q->count) { | |
833 | UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q); | |
834 | continue; | |
835 | } | |
836 | next: | |
837 | prev=q; | |
838 | q=q->next; | |
839 | } | |
840 | } | |
841 | if (pass++ < max_pass) | |
842 | goto next_pass; | |
843 | } | |
844 | ||
845 | ||
846 | /** | |
847 | * lookup a dynamic rule. | |
848 | */ | |
849 | static ipfw_dyn_rule * | |
850 | lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction, | |
851 | struct tcphdr *tcp) | |
852 | { | |
853 | /* | |
854 | * stateful ipfw extensions. | |
855 | * Lookup into dynamic session queue | |
856 | */ | |
857 | #define MATCH_REVERSE 0 | |
858 | #define MATCH_FORWARD 1 | |
859 | #define MATCH_NONE 2 | |
860 | #define MATCH_UNKNOWN 3 | |
861 | #define BOTH_SYN (TH_SYN | (TH_SYN << 8)) | |
862 | #define BOTH_FIN (TH_FIN | (TH_FIN << 8)) | |
863 | ||
864 | int i, dir = MATCH_NONE; | |
865 | ipfw_dyn_rule *prev, *q=NULL; | |
866 | struct timeval timenow; | |
867 | ||
868 | getmicrotime(&timenow); | |
869 | ||
870 | if (ipfw_dyn_v == NULL) | |
871 | goto done; /* not found */ | |
872 | i = hash_packet( pkt ); | |
873 | for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) { | |
874 | if (q->dyn_type == O_LIMIT_PARENT && q->count) | |
875 | goto next; | |
876 | if (TIME_LEQ( q->expire, timenow.tv_sec)) { /* expire entry */ | |
877 | int dounlink = 1; | |
878 | ||
879 | /* check if entry is TCP */ | |
880 | if ( q->id.proto == IPPROTO_TCP ) | |
881 | { | |
882 | /* do not delete an established TCP connection which hasn't been closed by both sides */ | |
883 | if ( (q->state & (BOTH_SYN | BOTH_FIN)) != (BOTH_SYN | BOTH_FIN) ) | |
884 | dounlink = 0; | |
885 | } | |
886 | if ( dounlink ){ | |
887 | UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q); | |
888 | continue; | |
889 | } | |
890 | } | |
891 | if (pkt->proto == q->id.proto && | |
892 | q->dyn_type != O_LIMIT_PARENT) { | |
893 | if (pkt->src_ip == q->id.src_ip && | |
894 | pkt->dst_ip == q->id.dst_ip && | |
895 | pkt->src_port == q->id.src_port && | |
896 | pkt->dst_port == q->id.dst_port ) { | |
897 | dir = MATCH_FORWARD; | |
898 | break; | |
899 | } | |
900 | if (pkt->src_ip == q->id.dst_ip && | |
901 | pkt->dst_ip == q->id.src_ip && | |
902 | pkt->src_port == q->id.dst_port && | |
903 | pkt->dst_port == q->id.src_port ) { | |
904 | dir = MATCH_REVERSE; | |
905 | break; | |
906 | } | |
907 | } | |
908 | next: | |
909 | prev = q; | |
910 | q = q->next; | |
911 | } | |
912 | if (q == NULL) | |
913 | goto done; /* q = NULL, not found */ | |
914 | ||
915 | if ( prev != NULL) { /* found and not in front */ | |
916 | prev->next = q->next; | |
917 | q->next = ipfw_dyn_v[i]; | |
918 | ipfw_dyn_v[i] = q; | |
919 | } | |
920 | if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */ | |
921 | u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST); | |
922 | ||
923 | q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8); | |
924 | switch (q->state) { | |
925 | case TH_SYN: /* opening */ | |
926 | q->expire = timenow.tv_sec + dyn_syn_lifetime; | |
927 | break; | |
928 | ||
929 | case BOTH_SYN: /* move to established */ | |
930 | case BOTH_SYN | TH_FIN : /* one side tries to close */ | |
931 | case BOTH_SYN | (TH_FIN << 8) : | |
932 | if (tcp) { | |
933 | #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0) | |
934 | u_int32_t ack = ntohl(tcp->th_ack); | |
935 | if (dir == MATCH_FORWARD) { | |
936 | if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd)) | |
937 | q->ack_fwd = ack; | |
938 | else { /* ignore out-of-sequence */ | |
939 | break; | |
940 | } | |
941 | } else { | |
942 | if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev)) | |
943 | q->ack_rev = ack; | |
944 | else { /* ignore out-of-sequence */ | |
945 | break; | |
946 | } | |
947 | } | |
948 | } | |
949 | q->expire = timenow.tv_sec + dyn_ack_lifetime; | |
950 | break; | |
951 | ||
952 | case BOTH_SYN | BOTH_FIN: /* both sides closed */ | |
953 | if (dyn_fin_lifetime >= dyn_keepalive_period) | |
954 | dyn_fin_lifetime = dyn_keepalive_period - 1; | |
955 | q->expire = timenow.tv_sec + dyn_fin_lifetime; | |
956 | break; | |
957 | ||
958 | default: | |
959 | #if 0 | |
960 | /* | |
961 | * reset or some invalid combination, but can also | |
962 | * occur if we use keep-state the wrong way. | |
963 | */ | |
964 | if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0) | |
965 | printf("invalid state: 0x%x\n", q->state); | |
966 | #endif | |
967 | if (dyn_rst_lifetime >= dyn_keepalive_period) | |
968 | dyn_rst_lifetime = dyn_keepalive_period - 1; | |
969 | q->expire = timenow.tv_sec + dyn_rst_lifetime; | |
970 | break; | |
971 | } | |
972 | } else if (pkt->proto == IPPROTO_UDP) { | |
973 | q->expire = timenow.tv_sec + dyn_udp_lifetime; | |
974 | } else { | |
975 | /* other protocols */ | |
976 | q->expire = timenow.tv_sec + dyn_short_lifetime; | |
977 | } | |
978 | done: | |
979 | if (match_direction) | |
980 | *match_direction = dir; | |
981 | return q; | |
982 | } | |
983 | ||
984 | static void | |
985 | realloc_dynamic_table(void) | |
986 | { | |
987 | /* | |
988 | * Try reallocation, make sure we have a power of 2 and do | |
989 | * not allow more than 64k entries. In case of overflow, | |
990 | * default to 1024. | |
991 | */ | |
992 | ||
993 | if (dyn_buckets > 65536) | |
994 | dyn_buckets = 1024; | |
995 | if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */ | |
996 | dyn_buckets = curr_dyn_buckets; /* reset */ | |
997 | return; | |
998 | } | |
999 | curr_dyn_buckets = dyn_buckets; | |
1000 | if (ipfw_dyn_v != NULL) | |
1001 | _FREE(ipfw_dyn_v, M_IPFW); | |
1002 | for (;;) { | |
1003 | ipfw_dyn_v = _MALLOC(curr_dyn_buckets * sizeof(ipfw_dyn_rule *), | |
1004 | M_IPFW, M_NOWAIT | M_ZERO); | |
1005 | if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2) | |
1006 | break; | |
1007 | curr_dyn_buckets /= 2; | |
1008 | } | |
1009 | } | |
1010 | ||
1011 | /** | |
1012 | * Install state of type 'type' for a dynamic session. | |
1013 | * The hash table contains two type of rules: | |
1014 | * - regular rules (O_KEEP_STATE) | |
1015 | * - rules for sessions with limited number of sess per user | |
1016 | * (O_LIMIT). When they are created, the parent is | |
1017 | * increased by 1, and decreased on delete. In this case, | |
1018 | * the third parameter is the parent rule and not the chain. | |
1019 | * - "parent" rules for the above (O_LIMIT_PARENT). | |
1020 | */ | |
1021 | static ipfw_dyn_rule * | |
1022 | add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule) | |
1023 | { | |
1024 | ipfw_dyn_rule *r; | |
1025 | int i; | |
1026 | struct timeval timenow; | |
1027 | ||
1028 | getmicrotime(&timenow); | |
1029 | ||
1030 | if (ipfw_dyn_v == NULL || | |
1031 | (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) { | |
1032 | realloc_dynamic_table(); | |
1033 | if (ipfw_dyn_v == NULL) | |
1034 | return NULL; /* failed ! */ | |
1035 | } | |
1036 | i = hash_packet(id); | |
1037 | ||
1038 | r = _MALLOC(sizeof *r, M_IPFW, M_NOWAIT | M_ZERO); | |
1039 | if (r == NULL) { | |
1040 | #if IPFW_DEBUG | |
1041 | printf ("ipfw: sorry cannot allocate state\n"); | |
1042 | #endif | |
1043 | return NULL; | |
1044 | } | |
1045 | ||
1046 | /* increase refcount on parent, and set pointer */ | |
1047 | if (dyn_type == O_LIMIT) { | |
1048 | ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule; | |
1049 | if ( parent->dyn_type != O_LIMIT_PARENT) | |
1050 | panic("invalid parent"); | |
1051 | parent->count++; | |
1052 | r->parent = parent; | |
1053 | rule = parent->rule; | |
1054 | } | |
1055 | ||
1056 | r->id = *id; | |
1057 | r->expire = timenow.tv_sec + dyn_syn_lifetime; | |
1058 | r->rule = rule; | |
1059 | r->dyn_type = dyn_type; | |
1060 | r->pcnt = r->bcnt = 0; | |
1061 | r->count = 0; | |
1062 | ||
1063 | r->bucket = i; | |
1064 | r->next = ipfw_dyn_v[i]; | |
1065 | ipfw_dyn_v[i] = r; | |
1066 | dyn_count++; | |
1067 | DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n", | |
1068 | dyn_type, | |
1069 | (r->id.src_ip), (r->id.src_port), | |
1070 | (r->id.dst_ip), (r->id.dst_port), | |
1071 | dyn_count ); ) | |
1072 | return r; | |
1073 | } | |
1074 | ||
1075 | /** | |
1076 | * lookup dynamic parent rule using pkt and rule as search keys. | |
1077 | * If the lookup fails, then install one. | |
1078 | */ | |
1079 | static ipfw_dyn_rule * | |
1080 | lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule) | |
1081 | { | |
1082 | ipfw_dyn_rule *q; | |
1083 | int i; | |
1084 | struct timeval timenow; | |
1085 | ||
1086 | getmicrotime(&timenow); | |
1087 | ||
1088 | if (ipfw_dyn_v) { | |
1089 | i = hash_packet( pkt ); | |
1090 | for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next) | |
1091 | if (q->dyn_type == O_LIMIT_PARENT && | |
1092 | rule== q->rule && | |
1093 | pkt->proto == q->id.proto && | |
1094 | pkt->src_ip == q->id.src_ip && | |
1095 | pkt->dst_ip == q->id.dst_ip && | |
1096 | pkt->src_port == q->id.src_port && | |
1097 | pkt->dst_port == q->id.dst_port) { | |
1098 | q->expire = timenow.tv_sec + dyn_short_lifetime; | |
1099 | DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);) | |
1100 | return q; | |
1101 | } | |
1102 | } | |
1103 | return add_dyn_rule(pkt, O_LIMIT_PARENT, rule); | |
1104 | } | |
1105 | ||
1106 | /** | |
1107 | * Install dynamic state for rule type cmd->o.opcode | |
1108 | * | |
1109 | * Returns 1 (failure) if state is not installed because of errors or because | |
1110 | * session limitations are enforced. | |
1111 | */ | |
1112 | static int | |
1113 | install_state(struct ip_fw *rule, ipfw_insn_limit *cmd, | |
1114 | struct ip_fw_args *args) | |
1115 | { | |
1116 | static int last_log; | |
1117 | struct timeval timenow; | |
1118 | ||
1119 | ipfw_dyn_rule *q; | |
1120 | getmicrotime(&timenow); | |
1121 | ||
1122 | DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n", | |
1123 | cmd->o.opcode, | |
1124 | (args->f_id.src_ip), (args->f_id.src_port), | |
1125 | (args->f_id.dst_ip), (args->f_id.dst_port) );) | |
1126 | ||
1127 | q = lookup_dyn_rule(&args->f_id, NULL, NULL); | |
1128 | ||
1129 | if (q != NULL) { /* should never occur */ | |
1130 | if (last_log != timenow.tv_sec) { | |
1131 | last_log = timenow.tv_sec; | |
1132 | printf("ipfw: install_state: entry already present, done\n"); | |
1133 | } | |
1134 | return 0; | |
1135 | } | |
1136 | ||
1137 | if (dyn_count >= dyn_max) | |
1138 | /* | |
1139 | * Run out of slots, try to remove any expired rule. | |
1140 | */ | |
1141 | remove_dyn_rule(NULL, (ipfw_dyn_rule *)1); | |
1142 | ||
1143 | if (dyn_count >= dyn_max) { | |
1144 | if (last_log != timenow.tv_sec) { | |
1145 | last_log = timenow.tv_sec; | |
1146 | printf("ipfw: install_state: Too many dynamic rules\n"); | |
1147 | } | |
1148 | return 1; /* cannot install, notify caller */ | |
1149 | } | |
1150 | ||
1151 | switch (cmd->o.opcode) { | |
1152 | case O_KEEP_STATE: /* bidir rule */ | |
1153 | add_dyn_rule(&args->f_id, O_KEEP_STATE, rule); | |
1154 | break; | |
1155 | ||
1156 | case O_LIMIT: /* limit number of sessions */ | |
1157 | { | |
1158 | u_int16_t limit_mask = cmd->limit_mask; | |
1159 | struct ipfw_flow_id id; | |
1160 | ipfw_dyn_rule *parent; | |
1161 | ||
1162 | DEB(printf("ipfw: installing dyn-limit rule %d\n", | |
1163 | cmd->conn_limit);) | |
1164 | ||
1165 | id.dst_ip = id.src_ip = 0; | |
1166 | id.dst_port = id.src_port = 0; | |
1167 | id.proto = args->f_id.proto; | |
1168 | ||
1169 | if (limit_mask & DYN_SRC_ADDR) | |
1170 | id.src_ip = args->f_id.src_ip; | |
1171 | if (limit_mask & DYN_DST_ADDR) | |
1172 | id.dst_ip = args->f_id.dst_ip; | |
1173 | if (limit_mask & DYN_SRC_PORT) | |
1174 | id.src_port = args->f_id.src_port; | |
1175 | if (limit_mask & DYN_DST_PORT) | |
1176 | id.dst_port = args->f_id.dst_port; | |
1177 | parent = lookup_dyn_parent(&id, rule); | |
1178 | if (parent == NULL) { | |
1179 | printf("ipfw: add parent failed\n"); | |
1180 | return 1; | |
1181 | } | |
1182 | if (parent->count >= cmd->conn_limit) { | |
1183 | /* | |
1184 | * See if we can remove some expired rule. | |
1185 | */ | |
1186 | remove_dyn_rule(rule, parent); | |
1187 | if (parent->count >= cmd->conn_limit) { | |
1188 | if (fw_verbose && last_log != timenow.tv_sec) { | |
1189 | last_log = timenow.tv_sec; | |
1190 | dolog((LOG_AUTHPRIV | LOG_DEBUG, | |
1191 | "drop session, too many entries\n")); | |
1192 | } | |
1193 | return 1; | |
1194 | } | |
1195 | } | |
1196 | add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent); | |
1197 | } | |
1198 | break; | |
1199 | default: | |
1200 | printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode); | |
1201 | return 1; | |
1202 | } | |
1203 | lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */ | |
1204 | return 0; | |
1205 | } | |
1206 | ||
1207 | /* | |
1208 | * Transmit a TCP packet, containing either a RST or a keepalive. | |
1209 | * When flags & TH_RST, we are sending a RST packet, because of a | |
1210 | * "reset" action matched the packet. | |
1211 | * Otherwise we are sending a keepalive, and flags & TH_ | |
1212 | */ | |
1213 | static void | |
1214 | send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags) | |
1215 | { | |
1216 | struct mbuf *m; | |
1217 | struct ip *ip; | |
1218 | struct tcphdr *tcp; | |
1219 | struct route sro; /* fake route */ | |
1220 | ||
1221 | MGETHDR(m, M_DONTWAIT, MT_HEADER); | |
1222 | if (m == 0) | |
1223 | return; | |
1224 | m->m_pkthdr.rcvif = (struct ifnet *)0; | |
1225 | m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr); | |
1226 | m->m_data += max_linkhdr; | |
1227 | ||
1228 | ip = mtod(m, struct ip *); | |
1229 | bzero(ip, m->m_len); | |
1230 | tcp = (struct tcphdr *)(ip + 1); /* no IP options */ | |
1231 | ip->ip_p = IPPROTO_TCP; | |
1232 | tcp->th_off = 5; | |
1233 | /* | |
1234 | * Assume we are sending a RST (or a keepalive in the reverse | |
1235 | * direction), swap src and destination addresses and ports. | |
1236 | */ | |
1237 | ip->ip_src.s_addr = htonl(id->dst_ip); | |
1238 | ip->ip_dst.s_addr = htonl(id->src_ip); | |
1239 | tcp->th_sport = htons(id->dst_port); | |
1240 | tcp->th_dport = htons(id->src_port); | |
1241 | if (flags & TH_RST) { /* we are sending a RST */ | |
1242 | if (flags & TH_ACK) { | |
1243 | tcp->th_seq = htonl(ack); | |
1244 | tcp->th_ack = htonl(0); | |
1245 | tcp->th_flags = TH_RST; | |
1246 | } else { | |
1247 | if (flags & TH_SYN) | |
1248 | seq++; | |
1249 | tcp->th_seq = htonl(0); | |
1250 | tcp->th_ack = htonl(seq); | |
1251 | tcp->th_flags = TH_RST | TH_ACK; | |
1252 | } | |
1253 | } else { | |
1254 | /* | |
1255 | * We are sending a keepalive. flags & TH_SYN determines | |
1256 | * the direction, forward if set, reverse if clear. | |
1257 | * NOTE: seq and ack are always assumed to be correct | |
1258 | * as set by the caller. This may be confusing... | |
1259 | */ | |
1260 | if (flags & TH_SYN) { | |
1261 | /* | |
1262 | * we have to rewrite the correct addresses! | |
1263 | */ | |
1264 | ip->ip_dst.s_addr = htonl(id->dst_ip); | |
1265 | ip->ip_src.s_addr = htonl(id->src_ip); | |
1266 | tcp->th_dport = htons(id->dst_port); | |
1267 | tcp->th_sport = htons(id->src_port); | |
1268 | } | |
1269 | tcp->th_seq = htonl(seq); | |
1270 | tcp->th_ack = htonl(ack); | |
1271 | tcp->th_flags = TH_ACK; | |
1272 | } | |
1273 | /* | |
1274 | * set ip_len to the payload size so we can compute | |
1275 | * the tcp checksum on the pseudoheader | |
1276 | * XXX check this, could save a couple of words ? | |
1277 | */ | |
1278 | ip->ip_len = htons(sizeof(struct tcphdr)); | |
1279 | tcp->th_sum = in_cksum(m, m->m_pkthdr.len); | |
1280 | /* | |
1281 | * now fill fields left out earlier | |
1282 | */ | |
1283 | ip->ip_ttl = ip_defttl; | |
1284 | ip->ip_len = m->m_pkthdr.len; | |
1285 | bzero (&sro, sizeof (sro)); | |
1286 | ip_rtaddr(ip->ip_dst, &sro); | |
1287 | m->m_flags |= M_SKIP_FIREWALL; | |
1288 | ip_output_list(m, 0, NULL, &sro, 0, NULL); | |
1289 | if (sro.ro_rt) | |
1290 | RTFREE(sro.ro_rt); | |
1291 | } | |
1292 | ||
1293 | /* | |
1294 | * sends a reject message, consuming the mbuf passed as an argument. | |
1295 | */ | |
1296 | static void | |
1297 | send_reject(struct ip_fw_args *args, int code, int offset, int ip_len) | |
1298 | { | |
1299 | ||
1300 | if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */ | |
1301 | /* We need the IP header in host order for icmp_error(). */ | |
1302 | if (args->eh != NULL) { | |
1303 | struct ip *ip = mtod(args->m, struct ip *); | |
1304 | ip->ip_len = ntohs(ip->ip_len); | |
1305 | ip->ip_off = ntohs(ip->ip_off); | |
1306 | } | |
13fec989 | 1307 | args->m->m_flags |= M_SKIP_FIREWALL; |
91447636 | 1308 | icmp_error(args->m, ICMP_UNREACH, code, 0L, 0); |
91447636 A |
1309 | } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) { |
1310 | struct tcphdr *const tcp = | |
1311 | L3HDR(struct tcphdr, mtod(args->m, struct ip *)); | |
1312 | if ( (tcp->th_flags & TH_RST) == 0) { | |
91447636 A |
1313 | send_pkt(&(args->f_id), ntohl(tcp->th_seq), |
1314 | ntohl(tcp->th_ack), | |
1315 | tcp->th_flags | TH_RST); | |
91447636 A |
1316 | } |
1317 | m_freem(args->m); | |
1318 | } else | |
1319 | m_freem(args->m); | |
1320 | args->m = NULL; | |
1321 | } | |
1322 | ||
1323 | /** | |
1324 | * | |
1325 | * Given an ip_fw *, lookup_next_rule will return a pointer | |
1326 | * to the next rule, which can be either the jump | |
1327 | * target (for skipto instructions) or the next one in the list (in | |
1328 | * all other cases including a missing jump target). | |
1329 | * The result is also written in the "next_rule" field of the rule. | |
1330 | * Backward jumps are not allowed, so start looking from the next | |
1331 | * rule... | |
1332 | * | |
1333 | * This never returns NULL -- in case we do not have an exact match, | |
1334 | * the next rule is returned. When the ruleset is changed, | |
1335 | * pointers are flushed so we are always correct. | |
1336 | */ | |
1337 | ||
1338 | static struct ip_fw * | |
1339 | lookup_next_rule(struct ip_fw *me) | |
1340 | { | |
1341 | struct ip_fw *rule = NULL; | |
1342 | ipfw_insn *cmd; | |
1343 | ||
1344 | /* look for action, in case it is a skipto */ | |
1345 | cmd = ACTION_PTR(me); | |
1346 | if (cmd->opcode == O_LOG) | |
1347 | cmd += F_LEN(cmd); | |
1348 | if ( cmd->opcode == O_SKIPTO ) | |
1349 | for (rule = me->next; rule ; rule = rule->next) | |
1350 | if (rule->rulenum >= cmd->arg1) | |
1351 | break; | |
1352 | if (rule == NULL) /* failure or not a skipto */ | |
1353 | rule = me->next; | |
1354 | me->next_rule = rule; | |
1355 | return rule; | |
1356 | } | |
1357 | ||
1358 | /* | |
1359 | * The main check routine for the firewall. | |
1360 | * | |
1361 | * All arguments are in args so we can modify them and return them | |
1362 | * back to the caller. | |
1363 | * | |
1364 | * Parameters: | |
1365 | * | |
1366 | * args->m (in/out) The packet; we set to NULL when/if we nuke it. | |
1367 | * Starts with the IP header. | |
1368 | * args->eh (in) Mac header if present, or NULL for layer3 packet. | |
1369 | * args->oif Outgoing interface, or NULL if packet is incoming. | |
1370 | * The incoming interface is in the mbuf. (in) | |
1371 | * args->divert_rule (in/out) | |
1372 | * Skip up to the first rule past this rule number; | |
1373 | * upon return, non-zero port number for divert or tee. | |
1374 | * | |
1375 | * args->rule Pointer to the last matching rule (in/out) | |
1376 | * args->next_hop Socket we are forwarding to (out). | |
1377 | * args->f_id Addresses grabbed from the packet (out) | |
1378 | * | |
1379 | * Return value: | |
1380 | * | |
1381 | * IP_FW_PORT_DENY_FLAG the packet must be dropped. | |
1382 | * 0 The packet is to be accepted and routed normally OR | |
1383 | * the packet was denied/rejected and has been dropped; | |
1384 | * in the latter case, *m is equal to NULL upon return. | |
1385 | * port Divert the packet to port, with these caveats: | |
1386 | * | |
1387 | * - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead | |
1388 | * of diverting it (ie, 'ipfw tee'). | |
1389 | * | |
1390 | * - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower | |
1391 | * 16 bits as a dummynet pipe number instead of diverting | |
1392 | */ | |
1393 | ||
1394 | static int | |
1395 | ipfw_chk(struct ip_fw_args *args) | |
1396 | { | |
1397 | /* | |
1398 | * Local variables hold state during the processing of a packet. | |
1399 | * | |
1400 | * IMPORTANT NOTE: to speed up the processing of rules, there | |
1401 | * are some assumption on the values of the variables, which | |
1402 | * are documented here. Should you change them, please check | |
1403 | * the implementation of the various instructions to make sure | |
1404 | * that they still work. | |
1405 | * | |
1406 | * args->eh The MAC header. It is non-null for a layer2 | |
1407 | * packet, it is NULL for a layer-3 packet. | |
1408 | * | |
1409 | * m | args->m Pointer to the mbuf, as received from the caller. | |
1410 | * It may change if ipfw_chk() does an m_pullup, or if it | |
1411 | * consumes the packet because it calls send_reject(). | |
1412 | * XXX This has to change, so that ipfw_chk() never modifies | |
1413 | * or consumes the buffer. | |
1414 | * ip is simply an alias of the value of m, and it is kept | |
1415 | * in sync with it (the packet is supposed to start with | |
1416 | * the ip header). | |
1417 | */ | |
1418 | struct mbuf *m = args->m; | |
1419 | struct ip *ip = mtod(m, struct ip *); | |
1420 | ||
1421 | /* | |
1422 | * oif | args->oif If NULL, ipfw_chk has been called on the | |
1423 | * inbound path (ether_input, bdg_forward, ip_input). | |
1424 | * If non-NULL, ipfw_chk has been called on the outbound path | |
1425 | * (ether_output, ip_output). | |
1426 | */ | |
1427 | struct ifnet *oif = args->oif; | |
1428 | ||
1429 | struct ip_fw *f = NULL; /* matching rule */ | |
1430 | int retval = 0; | |
1431 | ||
1432 | /* | |
1433 | * hlen The length of the IPv4 header. | |
1434 | * hlen >0 means we have an IPv4 packet. | |
1435 | */ | |
1436 | u_int hlen = 0; /* hlen >0 means we have an IP pkt */ | |
1437 | ||
1438 | /* | |
1439 | * offset The offset of a fragment. offset != 0 means that | |
1440 | * we have a fragment at this offset of an IPv4 packet. | |
1441 | * offset == 0 means that (if this is an IPv4 packet) | |
1442 | * this is the first or only fragment. | |
1443 | */ | |
1444 | u_short offset = 0; | |
1445 | ||
1446 | /* | |
1447 | * Local copies of addresses. They are only valid if we have | |
1448 | * an IP packet. | |
1449 | * | |
1450 | * proto The protocol. Set to 0 for non-ip packets, | |
1451 | * or to the protocol read from the packet otherwise. | |
1452 | * proto != 0 means that we have an IPv4 packet. | |
1453 | * | |
1454 | * src_port, dst_port port numbers, in HOST format. Only | |
1455 | * valid for TCP and UDP packets. | |
1456 | * | |
1457 | * src_ip, dst_ip ip addresses, in NETWORK format. | |
1458 | * Only valid for IPv4 packets. | |
1459 | */ | |
1460 | u_int8_t proto; | |
1461 | u_int16_t src_port = 0, dst_port = 0; /* NOTE: host format */ | |
1462 | struct in_addr src_ip, dst_ip; /* NOTE: network format */ | |
1463 | u_int16_t ip_len=0; | |
1464 | int pktlen; | |
1465 | int dyn_dir = MATCH_UNKNOWN; | |
1466 | ipfw_dyn_rule *q = NULL; | |
1467 | struct timeval timenow; | |
1468 | ||
1469 | if (m->m_flags & M_SKIP_FIREWALL) { | |
1470 | return 0; /* accept */ | |
1471 | } | |
1472 | ||
1473 | lck_mtx_lock(ipfw_mutex); | |
1474 | ||
1475 | getmicrotime(&timenow); | |
1476 | /* | |
1477 | * dyn_dir = MATCH_UNKNOWN when rules unchecked, | |
1478 | * MATCH_NONE when checked and not matched (q = NULL), | |
1479 | * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL) | |
1480 | */ | |
1481 | ||
1482 | pktlen = m->m_pkthdr.len; | |
1483 | if (args->eh == NULL || /* layer 3 packet */ | |
1484 | ( m->m_pkthdr.len >= sizeof(struct ip) && | |
1485 | ntohs(args->eh->ether_type) == ETHERTYPE_IP)) | |
1486 | hlen = ip->ip_hl << 2; | |
1487 | ||
1488 | /* | |
1489 | * Collect parameters into local variables for faster matching. | |
1490 | */ | |
1491 | if (hlen == 0) { /* do not grab addresses for non-ip pkts */ | |
1492 | proto = args->f_id.proto = 0; /* mark f_id invalid */ | |
1493 | goto after_ip_checks; | |
1494 | } | |
1495 | ||
1496 | proto = args->f_id.proto = ip->ip_p; | |
1497 | src_ip = ip->ip_src; | |
1498 | dst_ip = ip->ip_dst; | |
1499 | if (args->eh != NULL) { /* layer 2 packets are as on the wire */ | |
1500 | offset = ntohs(ip->ip_off) & IP_OFFMASK; | |
1501 | ip_len = ntohs(ip->ip_len); | |
1502 | } else { | |
1503 | offset = ip->ip_off & IP_OFFMASK; | |
1504 | ip_len = ip->ip_len; | |
1505 | } | |
1506 | pktlen = ip_len < pktlen ? ip_len : pktlen; | |
1507 | ||
1508 | #define PULLUP_TO(len) \ | |
1509 | do { \ | |
1510 | if ((m)->m_len < (len)) { \ | |
1511 | args->m = m = m_pullup(m, (len)); \ | |
1512 | if (m == 0) \ | |
1513 | goto pullup_failed; \ | |
1514 | ip = mtod(m, struct ip *); \ | |
1515 | } \ | |
1516 | } while (0) | |
1517 | ||
1518 | if (offset == 0) { | |
1519 | switch (proto) { | |
1520 | case IPPROTO_TCP: | |
1521 | { | |
1522 | struct tcphdr *tcp; | |
1523 | ||
1524 | PULLUP_TO(hlen + sizeof(struct tcphdr)); | |
1525 | tcp = L3HDR(struct tcphdr, ip); | |
1526 | dst_port = tcp->th_dport; | |
1527 | src_port = tcp->th_sport; | |
1528 | args->f_id.flags = tcp->th_flags; | |
1529 | } | |
1530 | break; | |
1531 | ||
1532 | case IPPROTO_UDP: | |
1533 | { | |
1534 | struct udphdr *udp; | |
1535 | ||
1536 | PULLUP_TO(hlen + sizeof(struct udphdr)); | |
1537 | udp = L3HDR(struct udphdr, ip); | |
1538 | dst_port = udp->uh_dport; | |
1539 | src_port = udp->uh_sport; | |
1540 | } | |
1541 | break; | |
1542 | ||
1543 | case IPPROTO_ICMP: | |
1544 | PULLUP_TO(hlen + 4); /* type, code and checksum. */ | |
1545 | args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type; | |
1546 | break; | |
1547 | ||
1548 | default: | |
1549 | break; | |
1550 | } | |
1551 | #undef PULLUP_TO | |
1552 | } | |
1553 | ||
1554 | args->f_id.src_ip = ntohl(src_ip.s_addr); | |
1555 | args->f_id.dst_ip = ntohl(dst_ip.s_addr); | |
1556 | args->f_id.src_port = src_port = ntohs(src_port); | |
1557 | args->f_id.dst_port = dst_port = ntohs(dst_port); | |
1558 | ||
1559 | after_ip_checks: | |
1560 | if (args->rule) { | |
1561 | /* | |
1562 | * Packet has already been tagged. Look for the next rule | |
1563 | * to restart processing. | |
1564 | * | |
1565 | * If fw_one_pass != 0 then just accept it. | |
1566 | * XXX should not happen here, but optimized out in | |
1567 | * the caller. | |
1568 | */ | |
1569 | if (fw_one_pass) { | |
1570 | lck_mtx_unlock(ipfw_mutex); | |
1571 | return 0; | |
1572 | } | |
1573 | ||
1574 | f = args->rule->next_rule; | |
1575 | if (f == NULL) | |
1576 | f = lookup_next_rule(args->rule); | |
1577 | } else { | |
1578 | /* | |
1579 | * Find the starting rule. It can be either the first | |
1580 | * one, or the one after divert_rule if asked so. | |
1581 | */ | |
1582 | int skipto = args->divert_rule; | |
1583 | ||
1584 | f = layer3_chain; | |
1585 | if (args->eh == NULL && skipto != 0) { | |
1586 | if (skipto >= IPFW_DEFAULT_RULE) { | |
1587 | lck_mtx_unlock(ipfw_mutex); | |
1588 | return(IP_FW_PORT_DENY_FLAG); /* invalid */ | |
1589 | } | |
1590 | while (f && f->rulenum <= skipto) | |
1591 | f = f->next; | |
1592 | if (f == NULL) { /* drop packet */ | |
1593 | lck_mtx_unlock(ipfw_mutex); | |
1594 | return(IP_FW_PORT_DENY_FLAG); | |
1595 | } | |
1596 | } | |
1597 | } | |
1598 | args->divert_rule = 0; /* reset to avoid confusion later */ | |
1599 | ||
1600 | /* | |
1601 | * Now scan the rules, and parse microinstructions for each rule. | |
1602 | */ | |
1603 | for (; f; f = f->next) { | |
1604 | int l, cmdlen; | |
1605 | ipfw_insn *cmd; | |
1606 | int skip_or; /* skip rest of OR block */ | |
1607 | ||
1608 | again: | |
1609 | if (f->reserved_1 == IPFW_RULE_INACTIVE) { | |
1610 | continue; | |
1611 | } | |
1612 | ||
1613 | if (set_disable & (1 << f->set) ) | |
1614 | continue; | |
1615 | ||
1616 | skip_or = 0; | |
1617 | for (l = f->cmd_len, cmd = f->cmd ; l > 0 ; | |
1618 | l -= cmdlen, cmd += cmdlen) { | |
1619 | int match; | |
1620 | ||
1621 | /* | |
1622 | * check_body is a jump target used when we find a | |
1623 | * CHECK_STATE, and need to jump to the body of | |
1624 | * the target rule. | |
1625 | */ | |
1626 | ||
1627 | check_body: | |
1628 | cmdlen = F_LEN(cmd); | |
1629 | /* | |
1630 | * An OR block (insn_1 || .. || insn_n) has the | |
1631 | * F_OR bit set in all but the last instruction. | |
1632 | * The first match will set "skip_or", and cause | |
1633 | * the following instructions to be skipped until | |
1634 | * past the one with the F_OR bit clear. | |
1635 | */ | |
1636 | if (skip_or) { /* skip this instruction */ | |
1637 | if ((cmd->len & F_OR) == 0) | |
1638 | skip_or = 0; /* next one is good */ | |
1639 | continue; | |
1640 | } | |
1641 | match = 0; /* set to 1 if we succeed */ | |
1642 | ||
1643 | switch (cmd->opcode) { | |
1644 | /* | |
1645 | * The first set of opcodes compares the packet's | |
1646 | * fields with some pattern, setting 'match' if a | |
1647 | * match is found. At the end of the loop there is | |
1648 | * logic to deal with F_NOT and F_OR flags associated | |
1649 | * with the opcode. | |
1650 | */ | |
1651 | case O_NOP: | |
1652 | match = 1; | |
1653 | break; | |
1654 | ||
1655 | case O_FORWARD_MAC: | |
1656 | printf("ipfw: opcode %d unimplemented\n", | |
1657 | cmd->opcode); | |
1658 | break; | |
1659 | ||
1660 | #ifndef __APPLE__ | |
1661 | case O_GID: | |
1662 | #endif | |
1663 | case O_UID: | |
1664 | /* | |
1665 | * We only check offset == 0 && proto != 0, | |
1666 | * as this ensures that we have an IPv4 | |
1667 | * packet with the ports info. | |
1668 | */ | |
1669 | if (offset!=0) | |
1670 | break; | |
1671 | ||
1672 | { | |
1673 | struct inpcbinfo *pi; | |
1674 | int wildcard; | |
1675 | struct inpcb *pcb; | |
1676 | ||
1677 | if (proto == IPPROTO_TCP) { | |
1678 | wildcard = 0; | |
1679 | pi = &tcbinfo; | |
1680 | } else if (proto == IPPROTO_UDP) { | |
1681 | wildcard = 1; | |
1682 | pi = &udbinfo; | |
1683 | } else | |
1684 | break; | |
1685 | ||
1686 | pcb = (oif) ? | |
1687 | in_pcblookup_hash(pi, | |
1688 | dst_ip, htons(dst_port), | |
1689 | src_ip, htons(src_port), | |
1690 | wildcard, oif) : | |
1691 | in_pcblookup_hash(pi, | |
1692 | src_ip, htons(src_port), | |
1693 | dst_ip, htons(dst_port), | |
1694 | wildcard, NULL); | |
1695 | ||
1696 | if (pcb == NULL || pcb->inp_socket == NULL) | |
1697 | break; | |
1698 | #if __FreeBSD_version < 500034 | |
1699 | #define socheckuid(a,b) (kauth_cred_getuid((a)->so_cred) != (b)) | |
1700 | #endif | |
1701 | if (cmd->opcode == O_UID) { | |
1702 | match = | |
1703 | #ifdef __APPLE__ | |
1704 | (pcb->inp_socket->so_uid == (uid_t)((ipfw_insn_u32 *)cmd)->d[0]); | |
1705 | #else | |
1706 | !socheckuid(pcb->inp_socket, | |
1707 | (uid_t)((ipfw_insn_u32 *)cmd)->d[0]); | |
1708 | #endif | |
1709 | } | |
1710 | #ifndef __APPLE__ | |
1711 | else { | |
1712 | match = 0; | |
1713 | kauth_cred_ismember_gid(pcb->inp_socket->so_cred, | |
1714 | (gid_t)((ipfw_insn_u32 *)cmd)->d[0], &match); | |
1715 | } | |
1716 | #endif | |
1717 | } | |
1718 | ||
1719 | break; | |
1720 | ||
1721 | case O_RECV: | |
1722 | match = iface_match(m->m_pkthdr.rcvif, | |
1723 | (ipfw_insn_if *)cmd); | |
1724 | break; | |
1725 | ||
1726 | case O_XMIT: | |
1727 | match = iface_match(oif, (ipfw_insn_if *)cmd); | |
1728 | break; | |
1729 | ||
1730 | case O_VIA: | |
1731 | match = iface_match(oif ? oif : | |
1732 | m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd); | |
1733 | break; | |
1734 | ||
1735 | case O_MACADDR2: | |
1736 | if (args->eh != NULL) { /* have MAC header */ | |
1737 | u_int32_t *want = (u_int32_t *) | |
1738 | ((ipfw_insn_mac *)cmd)->addr; | |
1739 | u_int32_t *mask = (u_int32_t *) | |
1740 | ((ipfw_insn_mac *)cmd)->mask; | |
1741 | u_int32_t *hdr = (u_int32_t *)args->eh; | |
1742 | ||
1743 | match = | |
1744 | ( want[0] == (hdr[0] & mask[0]) && | |
1745 | want[1] == (hdr[1] & mask[1]) && | |
1746 | want[2] == (hdr[2] & mask[2]) ); | |
1747 | } | |
1748 | break; | |
1749 | ||
1750 | case O_MAC_TYPE: | |
1751 | if (args->eh != NULL) { | |
1752 | u_int16_t t = | |
1753 | ntohs(args->eh->ether_type); | |
1754 | u_int16_t *p = | |
1755 | ((ipfw_insn_u16 *)cmd)->ports; | |
1756 | int i; | |
1757 | ||
1758 | for (i = cmdlen - 1; !match && i>0; | |
1759 | i--, p += 2) | |
1760 | match = (t>=p[0] && t<=p[1]); | |
1761 | } | |
1762 | break; | |
1763 | ||
1764 | case O_FRAG: | |
1765 | match = (hlen > 0 && offset != 0); | |
1766 | break; | |
1767 | ||
1768 | case O_IN: /* "out" is "not in" */ | |
1769 | match = (oif == NULL); | |
1770 | break; | |
1771 | ||
1772 | case O_LAYER2: | |
1773 | match = (args->eh != NULL); | |
1774 | break; | |
1775 | ||
1776 | case O_PROTO: | |
1777 | /* | |
1778 | * We do not allow an arg of 0 so the | |
1779 | * check of "proto" only suffices. | |
1780 | */ | |
1781 | match = (proto == cmd->arg1); | |
1782 | break; | |
1783 | ||
1784 | case O_IP_SRC: | |
1785 | match = (hlen > 0 && | |
1786 | ((ipfw_insn_ip *)cmd)->addr.s_addr == | |
1787 | src_ip.s_addr); | |
1788 | break; | |
1789 | ||
1790 | case O_IP_SRC_MASK: | |
1791 | case O_IP_DST_MASK: | |
1792 | if (hlen > 0) { | |
1793 | uint32_t a = | |
1794 | (cmd->opcode == O_IP_DST_MASK) ? | |
1795 | dst_ip.s_addr : src_ip.s_addr; | |
1796 | uint32_t *p = ((ipfw_insn_u32 *)cmd)->d; | |
1797 | int i = cmdlen-1; | |
1798 | ||
1799 | for (; !match && i>0; i-= 2, p+= 2) | |
1800 | match = (p[0] == (a & p[1])); | |
1801 | } | |
1802 | break; | |
1803 | ||
1804 | case O_IP_SRC_ME: | |
1805 | if (hlen > 0) { | |
1806 | struct ifnet *tif; | |
1807 | ||
1808 | INADDR_TO_IFP(src_ip, tif); | |
1809 | match = (tif != NULL); | |
1810 | } | |
1811 | break; | |
1812 | ||
1813 | case O_IP_DST_SET: | |
1814 | case O_IP_SRC_SET: | |
1815 | if (hlen > 0) { | |
1816 | u_int32_t *d = (u_int32_t *)(cmd+1); | |
1817 | u_int32_t addr = | |
1818 | cmd->opcode == O_IP_DST_SET ? | |
1819 | args->f_id.dst_ip : | |
1820 | args->f_id.src_ip; | |
1821 | ||
1822 | if (addr < d[0]) | |
1823 | break; | |
1824 | addr -= d[0]; /* subtract base */ | |
1825 | match = (addr < cmd->arg1) && | |
1826 | ( d[ 1 + (addr>>5)] & | |
1827 | (1<<(addr & 0x1f)) ); | |
1828 | } | |
1829 | break; | |
1830 | ||
1831 | case O_IP_DST: | |
1832 | match = (hlen > 0 && | |
1833 | ((ipfw_insn_ip *)cmd)->addr.s_addr == | |
1834 | dst_ip.s_addr); | |
1835 | break; | |
1836 | ||
1837 | case O_IP_DST_ME: | |
1838 | if (hlen > 0) { | |
1839 | struct ifnet *tif; | |
1840 | ||
1841 | INADDR_TO_IFP(dst_ip, tif); | |
1842 | match = (tif != NULL); | |
1843 | } | |
1844 | break; | |
1845 | ||
1846 | case O_IP_SRCPORT: | |
1847 | case O_IP_DSTPORT: | |
1848 | /* | |
1849 | * offset == 0 && proto != 0 is enough | |
1850 | * to guarantee that we have an IPv4 | |
1851 | * packet with port info. | |
1852 | */ | |
1853 | if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP) | |
1854 | && offset == 0) { | |
1855 | u_int16_t x = | |
1856 | (cmd->opcode == O_IP_SRCPORT) ? | |
1857 | src_port : dst_port ; | |
1858 | u_int16_t *p = | |
1859 | ((ipfw_insn_u16 *)cmd)->ports; | |
1860 | int i; | |
1861 | ||
1862 | for (i = cmdlen - 1; !match && i>0; | |
1863 | i--, p += 2) | |
1864 | match = (x>=p[0] && x<=p[1]); | |
1865 | } | |
1866 | break; | |
1867 | ||
1868 | case O_ICMPTYPE: | |
1869 | match = (offset == 0 && proto==IPPROTO_ICMP && | |
1870 | icmptype_match(ip, (ipfw_insn_u32 *)cmd) ); | |
1871 | break; | |
1872 | ||
1873 | case O_IPOPT: | |
1874 | match = (hlen > 0 && ipopts_match(ip, cmd) ); | |
1875 | break; | |
1876 | ||
1877 | case O_IPVER: | |
1878 | match = (hlen > 0 && cmd->arg1 == ip->ip_v); | |
1879 | break; | |
1880 | ||
1881 | case O_IPID: | |
1882 | case O_IPLEN: | |
1883 | case O_IPTTL: | |
1884 | if (hlen > 0) { /* only for IP packets */ | |
1885 | uint16_t x; | |
1886 | uint16_t *p; | |
1887 | int i; | |
1888 | ||
1889 | if (cmd->opcode == O_IPLEN) | |
1890 | x = ip_len; | |
1891 | else if (cmd->opcode == O_IPTTL) | |
1892 | x = ip->ip_ttl; | |
1893 | else /* must be IPID */ | |
1894 | x = ntohs(ip->ip_id); | |
1895 | if (cmdlen == 1) { | |
1896 | match = (cmd->arg1 == x); | |
1897 | break; | |
1898 | } | |
1899 | /* otherwise we have ranges */ | |
1900 | p = ((ipfw_insn_u16 *)cmd)->ports; | |
1901 | i = cmdlen - 1; | |
1902 | for (; !match && i>0; i--, p += 2) | |
1903 | match = (x >= p[0] && x <= p[1]); | |
1904 | } | |
1905 | break; | |
1906 | ||
1907 | case O_IPPRECEDENCE: | |
1908 | match = (hlen > 0 && | |
1909 | (cmd->arg1 == (ip->ip_tos & 0xe0)) ); | |
1910 | break; | |
1911 | ||
1912 | case O_IPTOS: | |
1913 | match = (hlen > 0 && | |
1914 | flags_match(cmd, ip->ip_tos)); | |
1915 | break; | |
1916 | ||
1917 | case O_TCPFLAGS: | |
1918 | match = (proto == IPPROTO_TCP && offset == 0 && | |
1919 | flags_match(cmd, | |
1920 | L3HDR(struct tcphdr,ip)->th_flags)); | |
1921 | break; | |
1922 | ||
1923 | case O_TCPOPTS: | |
1924 | match = (proto == IPPROTO_TCP && offset == 0 && | |
1925 | tcpopts_match(ip, cmd)); | |
1926 | break; | |
1927 | ||
1928 | case O_TCPSEQ: | |
1929 | match = (proto == IPPROTO_TCP && offset == 0 && | |
1930 | ((ipfw_insn_u32 *)cmd)->d[0] == | |
1931 | L3HDR(struct tcphdr,ip)->th_seq); | |
1932 | break; | |
1933 | ||
1934 | case O_TCPACK: | |
1935 | match = (proto == IPPROTO_TCP && offset == 0 && | |
1936 | ((ipfw_insn_u32 *)cmd)->d[0] == | |
1937 | L3HDR(struct tcphdr,ip)->th_ack); | |
1938 | break; | |
1939 | ||
1940 | case O_TCPWIN: | |
1941 | match = (proto == IPPROTO_TCP && offset == 0 && | |
1942 | cmd->arg1 == | |
1943 | L3HDR(struct tcphdr,ip)->th_win); | |
1944 | break; | |
1945 | ||
1946 | case O_ESTAB: | |
1947 | /* reject packets which have SYN only */ | |
1948 | /* XXX should i also check for TH_ACK ? */ | |
1949 | match = (proto == IPPROTO_TCP && offset == 0 && | |
1950 | (L3HDR(struct tcphdr,ip)->th_flags & | |
1951 | (TH_RST | TH_ACK | TH_SYN)) != TH_SYN); | |
1952 | break; | |
1953 | ||
1954 | case O_LOG: | |
1955 | if (fw_verbose) | |
1956 | ipfw_log(f, hlen, args->eh, m, oif); | |
1957 | match = 1; | |
1958 | break; | |
1959 | ||
1960 | case O_PROB: | |
1961 | match = (random()<((ipfw_insn_u32 *)cmd)->d[0]); | |
1962 | break; | |
1963 | ||
1964 | case O_VERREVPATH: | |
1965 | /* Outgoing packets automatically pass/match */ | |
1966 | match = ((oif != NULL) || | |
1967 | (m->m_pkthdr.rcvif == NULL) || | |
1968 | verify_rev_path(src_ip, m->m_pkthdr.rcvif)); | |
1969 | break; | |
1970 | ||
1971 | case O_IPSEC: | |
1972 | #ifdef FAST_IPSEC | |
1973 | match = (m_tag_find(m, | |
1974 | PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL); | |
1975 | #endif | |
1976 | #ifdef IPSEC | |
1977 | match = (ipsec_gethist(m, NULL) != NULL); | |
1978 | #endif | |
1979 | /* otherwise no match */ | |
1980 | break; | |
1981 | ||
1982 | /* | |
1983 | * The second set of opcodes represents 'actions', | |
1984 | * i.e. the terminal part of a rule once the packet | |
1985 | * matches all previous patterns. | |
1986 | * Typically there is only one action for each rule, | |
1987 | * and the opcode is stored at the end of the rule | |
1988 | * (but there are exceptions -- see below). | |
1989 | * | |
1990 | * In general, here we set retval and terminate the | |
1991 | * outer loop (would be a 'break 3' in some language, | |
1992 | * but we need to do a 'goto done'). | |
1993 | * | |
1994 | * Exceptions: | |
1995 | * O_COUNT and O_SKIPTO actions: | |
1996 | * instead of terminating, we jump to the next rule | |
1997 | * ('goto next_rule', equivalent to a 'break 2'), | |
1998 | * or to the SKIPTO target ('goto again' after | |
1999 | * having set f, cmd and l), respectively. | |
2000 | * | |
2001 | * O_LIMIT and O_KEEP_STATE: these opcodes are | |
2002 | * not real 'actions', and are stored right | |
2003 | * before the 'action' part of the rule. | |
2004 | * These opcodes try to install an entry in the | |
2005 | * state tables; if successful, we continue with | |
2006 | * the next opcode (match=1; break;), otherwise | |
2007 | * the packet * must be dropped | |
2008 | * ('goto done' after setting retval); | |
2009 | * | |
2010 | * O_PROBE_STATE and O_CHECK_STATE: these opcodes | |
2011 | * cause a lookup of the state table, and a jump | |
2012 | * to the 'action' part of the parent rule | |
2013 | * ('goto check_body') if an entry is found, or | |
2014 | * (CHECK_STATE only) a jump to the next rule if | |
2015 | * the entry is not found ('goto next_rule'). | |
2016 | * The result of the lookup is cached to make | |
2017 | * further instances of these opcodes are | |
2018 | * effectively NOPs. | |
2019 | */ | |
2020 | case O_LIMIT: | |
2021 | case O_KEEP_STATE: | |
2022 | if (install_state(f, | |
2023 | (ipfw_insn_limit *)cmd, args)) { | |
2024 | retval = IP_FW_PORT_DENY_FLAG; | |
2025 | goto done; /* error/limit violation */ | |
2026 | } | |
2027 | match = 1; | |
2028 | break; | |
2029 | ||
2030 | case O_PROBE_STATE: | |
2031 | case O_CHECK_STATE: | |
2032 | /* | |
2033 | * dynamic rules are checked at the first | |
2034 | * keep-state or check-state occurrence, | |
2035 | * with the result being stored in dyn_dir. | |
2036 | * The compiler introduces a PROBE_STATE | |
2037 | * instruction for us when we have a | |
2038 | * KEEP_STATE (because PROBE_STATE needs | |
2039 | * to be run first). | |
2040 | */ | |
2041 | if (dyn_dir == MATCH_UNKNOWN && | |
2042 | (q = lookup_dyn_rule(&args->f_id, | |
2043 | &dyn_dir, proto == IPPROTO_TCP ? | |
2044 | L3HDR(struct tcphdr, ip) : NULL)) | |
2045 | != NULL) { | |
2046 | /* | |
2047 | * Found dynamic entry, update stats | |
2048 | * and jump to the 'action' part of | |
2049 | * the parent rule. | |
2050 | */ | |
2051 | q->pcnt++; | |
2052 | q->bcnt += pktlen; | |
2053 | f = q->rule; | |
2054 | cmd = ACTION_PTR(f); | |
2055 | l = f->cmd_len - f->act_ofs; | |
2056 | goto check_body; | |
2057 | } | |
2058 | /* | |
2059 | * Dynamic entry not found. If CHECK_STATE, | |
2060 | * skip to next rule, if PROBE_STATE just | |
2061 | * ignore and continue with next opcode. | |
2062 | */ | |
2063 | if (cmd->opcode == O_CHECK_STATE) | |
2064 | goto next_rule; | |
2065 | match = 1; | |
2066 | break; | |
2067 | ||
2068 | case O_ACCEPT: | |
2069 | retval = 0; /* accept */ | |
2070 | goto done; | |
2071 | ||
2072 | case O_PIPE: | |
2073 | case O_QUEUE: | |
2074 | args->rule = f; /* report matching rule */ | |
2075 | retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG; | |
2076 | goto done; | |
2077 | ||
2078 | case O_DIVERT: | |
2079 | case O_TEE: | |
2080 | if (args->eh) /* not on layer 2 */ | |
2081 | break; | |
2082 | args->divert_rule = f->rulenum; | |
2083 | retval = (cmd->opcode == O_DIVERT) ? | |
2084 | cmd->arg1 : | |
2085 | cmd->arg1 | IP_FW_PORT_TEE_FLAG; | |
2086 | goto done; | |
2087 | ||
2088 | case O_COUNT: | |
2089 | case O_SKIPTO: | |
2090 | f->pcnt++; /* update stats */ | |
2091 | f->bcnt += pktlen; | |
2092 | f->timestamp = timenow.tv_sec; | |
2093 | if (cmd->opcode == O_COUNT) | |
2094 | goto next_rule; | |
2095 | /* handle skipto */ | |
2096 | if (f->next_rule == NULL) | |
2097 | lookup_next_rule(f); | |
2098 | f = f->next_rule; | |
2099 | goto again; | |
2100 | ||
2101 | case O_REJECT: | |
2102 | /* | |
2103 | * Drop the packet and send a reject notice | |
2104 | * if the packet is not ICMP (or is an ICMP | |
2105 | * query), and it is not multicast/broadcast. | |
2106 | */ | |
2107 | if (hlen > 0 && | |
2108 | (proto != IPPROTO_ICMP || | |
2109 | is_icmp_query(ip)) && | |
2110 | !(m->m_flags & (M_BCAST|M_MCAST)) && | |
2111 | !IN_MULTICAST(dst_ip.s_addr)) { | |
2112 | send_reject(args, cmd->arg1, | |
2113 | offset,ip_len); | |
2114 | m = args->m; | |
2115 | } | |
2116 | /* FALLTHROUGH */ | |
2117 | case O_DENY: | |
2118 | retval = IP_FW_PORT_DENY_FLAG; | |
2119 | goto done; | |
2120 | ||
2121 | case O_FORWARD_IP: | |
2122 | if (args->eh) /* not valid on layer2 pkts */ | |
2123 | break; | |
2124 | if (!q || dyn_dir == MATCH_FORWARD) | |
2125 | args->next_hop = | |
2126 | &((ipfw_insn_sa *)cmd)->sa; | |
2127 | retval = 0; | |
2128 | goto done; | |
2129 | ||
2130 | default: | |
2131 | panic("-- unknown opcode %d\n", cmd->opcode); | |
2132 | } /* end of switch() on opcodes */ | |
2133 | ||
2134 | if (cmd->len & F_NOT) | |
2135 | match = !match; | |
2136 | ||
2137 | if (match) { | |
2138 | if (cmd->len & F_OR) | |
2139 | skip_or = 1; | |
2140 | } else { | |
2141 | if (!(cmd->len & F_OR)) /* not an OR block, */ | |
2142 | break; /* try next rule */ | |
2143 | } | |
2144 | ||
2145 | } /* end of inner for, scan opcodes */ | |
2146 | ||
2147 | next_rule:; /* try next rule */ | |
2148 | ||
2149 | } /* end of outer for, scan rules */ | |
2150 | printf("ipfw: ouch!, skip past end of rules, denying packet\n"); | |
2151 | lck_mtx_unlock(ipfw_mutex); | |
2152 | return(IP_FW_PORT_DENY_FLAG); | |
2153 | ||
2154 | done: | |
2155 | /* Update statistics */ | |
2156 | f->pcnt++; | |
2157 | f->bcnt += pktlen; | |
2158 | f->timestamp = timenow.tv_sec; | |
2159 | lck_mtx_unlock(ipfw_mutex); | |
2160 | return retval; | |
2161 | ||
2162 | pullup_failed: | |
2163 | if (fw_verbose) | |
2164 | printf("ipfw: pullup failed\n"); | |
2165 | lck_mtx_unlock(ipfw_mutex); | |
2166 | return(IP_FW_PORT_DENY_FLAG); | |
2167 | } | |
2168 | ||
2169 | /* | |
2170 | * When a rule is added/deleted, clear the next_rule pointers in all rules. | |
2171 | * These will be reconstructed on the fly as packets are matched. | |
2172 | * Must be called at splimp(). | |
2173 | */ | |
2174 | static void | |
2175 | flush_rule_ptrs(void) | |
2176 | { | |
2177 | struct ip_fw *rule; | |
2178 | ||
2179 | for (rule = layer3_chain; rule; rule = rule->next) | |
2180 | rule->next_rule = NULL; | |
2181 | } | |
2182 | ||
2183 | /* | |
2184 | * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given | |
2185 | * pipe/queue, or to all of them (match == NULL). | |
2186 | * Must be called at splimp(). | |
2187 | */ | |
2188 | void | |
2189 | flush_pipe_ptrs(struct dn_flow_set *match) | |
2190 | { | |
2191 | struct ip_fw *rule; | |
2192 | ||
2193 | for (rule = layer3_chain; rule; rule = rule->next) { | |
2194 | ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule); | |
2195 | ||
2196 | if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE) | |
2197 | continue; | |
2198 | /* | |
2199 | * XXX Use bcmp/bzero to handle pipe_ptr to overcome | |
2200 | * possible alignment problems on 64-bit architectures. | |
2201 | * This code is seldom used so we do not worry too | |
2202 | * much about efficiency. | |
2203 | */ | |
2204 | if (match == NULL || | |
2205 | !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) ) | |
2206 | bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr)); | |
2207 | } | |
2208 | } | |
2209 | ||
2210 | /* | |
2211 | * Add a new rule to the list. Copy the rule into a malloc'ed area, then | |
2212 | * possibly create a rule number and add the rule to the list. | |
2213 | * Update the rule_number in the input struct so the caller knows it as well. | |
2214 | */ | |
2215 | static int | |
2216 | add_rule(struct ip_fw **head, struct ip_fw *input_rule) | |
2217 | { | |
2218 | struct ip_fw *rule, *f, *prev; | |
2219 | int s; | |
2220 | int l = RULESIZE(input_rule); | |
2221 | ||
2222 | if (*head == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE) | |
2223 | return (EINVAL); | |
2224 | ||
2225 | rule = _MALLOC(l, M_IPFW, M_WAIT); | |
2226 | if (rule == NULL) { | |
2227 | printf("ipfw2: add_rule MALLOC failed\n"); | |
2228 | return (ENOSPC); | |
2229 | } | |
2230 | ||
2231 | bzero(rule, l); | |
2232 | bcopy(input_rule, rule, l); | |
2233 | ||
2234 | rule->next = NULL; | |
2235 | rule->next_rule = NULL; | |
2236 | ||
2237 | rule->pcnt = 0; | |
2238 | rule->bcnt = 0; | |
2239 | rule->timestamp = 0; | |
2240 | ||
2241 | if (*head == NULL) { /* default rule */ | |
2242 | *head = rule; | |
2243 | goto done; | |
2244 | } | |
2245 | ||
2246 | /* | |
2247 | * If rulenum is 0, find highest numbered rule before the | |
2248 | * default rule, and add autoinc_step | |
2249 | */ | |
2250 | if (autoinc_step < 1) | |
2251 | autoinc_step = 1; | |
2252 | else if (autoinc_step > 1000) | |
2253 | autoinc_step = 1000; | |
2254 | if (rule->rulenum == 0) { | |
2255 | /* | |
2256 | * locate the highest numbered rule before default | |
2257 | */ | |
2258 | for (f = *head; f; f = f->next) { | |
2259 | if (f->rulenum == IPFW_DEFAULT_RULE) | |
2260 | break; | |
2261 | rule->rulenum = f->rulenum; | |
2262 | } | |
2263 | if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step) | |
2264 | rule->rulenum += autoinc_step; | |
2265 | input_rule->rulenum = rule->rulenum; | |
2266 | } | |
2267 | ||
2268 | /* | |
2269 | * Now insert the new rule in the right place in the sorted list. | |
2270 | */ | |
2271 | for (prev = NULL, f = *head; f; prev = f, f = f->next) { | |
2272 | if (f->rulenum > rule->rulenum) { /* found the location */ | |
2273 | if (prev) { | |
2274 | rule->next = f; | |
2275 | prev->next = rule; | |
2276 | } else { /* head insert */ | |
2277 | rule->next = *head; | |
2278 | *head = rule; | |
2279 | } | |
2280 | break; | |
2281 | } | |
2282 | } | |
2283 | flush_rule_ptrs(); | |
2284 | done: | |
2285 | static_count++; | |
2286 | static_len += l; | |
2287 | DEB(printf("ipfw: installed rule %d, static count now %d\n", | |
2288 | rule->rulenum, static_count);) | |
2289 | return (0); | |
2290 | } | |
2291 | ||
2292 | /** | |
2293 | * Free storage associated with a static rule (including derived | |
2294 | * dynamic rules). | |
2295 | * The caller is in charge of clearing rule pointers to avoid | |
2296 | * dangling pointers. | |
2297 | * @return a pointer to the next entry. | |
2298 | * Arguments are not checked, so they better be correct. | |
2299 | * Must be called at splimp(). | |
2300 | */ | |
2301 | static struct ip_fw * | |
2302 | delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule) | |
2303 | { | |
2304 | struct ip_fw *n; | |
2305 | int l = RULESIZE(rule); | |
2306 | ||
2307 | n = rule->next; | |
2308 | remove_dyn_rule(rule, NULL /* force removal */); | |
2309 | if (prev == NULL) | |
2310 | *head = n; | |
2311 | else | |
2312 | prev->next = n; | |
2313 | static_count--; | |
2314 | static_len -= l; | |
2315 | ||
2316 | #if DUMMYNET | |
2317 | if (DUMMYNET_LOADED) | |
2318 | ip_dn_ruledel_ptr(rule); | |
2319 | #endif /* DUMMYNET */ | |
2320 | _FREE(rule, M_IPFW); | |
2321 | return n; | |
2322 | } | |
2323 | ||
2324 | #if DEBUG_INACTIVE_RULES | |
2325 | static void | |
2326 | print_chain(struct ip_fw **chain) | |
2327 | { | |
2328 | struct ip_fw *rule = *chain; | |
2329 | ||
2330 | for (; rule; rule = rule->next) { | |
2331 | ipfw_insn *cmd = ACTION_PTR(rule); | |
2332 | ||
2333 | printf("ipfw: rule->rulenum = %d\n", rule->rulenum); | |
2334 | ||
2335 | if (rule->reserved_1 == IPFW_RULE_INACTIVE) { | |
2336 | printf("ipfw: rule->reserved = IPFW_RULE_INACTIVE\n"); | |
2337 | } | |
2338 | ||
2339 | switch (cmd->opcode) { | |
2340 | case O_DENY: | |
2341 | printf("ipfw: ACTION: Deny\n"); | |
2342 | break; | |
2343 | ||
2344 | case O_REJECT: | |
2345 | if (cmd->arg1==ICMP_REJECT_RST) | |
2346 | printf("ipfw: ACTION: Reset\n"); | |
2347 | else if (cmd->arg1==ICMP_UNREACH_HOST) | |
2348 | printf("ipfw: ACTION: Reject\n"); | |
2349 | break; | |
2350 | ||
2351 | case O_ACCEPT: | |
2352 | printf("ipfw: ACTION: Accept\n"); | |
2353 | break; | |
2354 | case O_COUNT: | |
2355 | printf("ipfw: ACTION: Count\n"); | |
2356 | break; | |
2357 | case O_DIVERT: | |
2358 | printf("ipfw: ACTION: Divert\n"); | |
2359 | break; | |
2360 | case O_TEE: | |
2361 | printf("ipfw: ACTION: Tee\n"); | |
2362 | break; | |
2363 | case O_SKIPTO: | |
2364 | printf("ipfw: ACTION: SkipTo\n"); | |
2365 | break; | |
2366 | case O_PIPE: | |
2367 | printf("ipfw: ACTION: Pipe\n"); | |
2368 | break; | |
2369 | case O_QUEUE: | |
2370 | printf("ipfw: ACTION: Queue\n"); | |
2371 | break; | |
2372 | case O_FORWARD_IP: | |
2373 | printf("ipfw: ACTION: Forward\n"); | |
2374 | break; | |
2375 | default: | |
2376 | printf("ipfw: invalid action! %d\n", cmd->opcode); | |
2377 | } | |
2378 | } | |
2379 | } | |
2380 | #endif /* DEBUG_INACTIVE_RULES */ | |
2381 | ||
2382 | static void | |
2383 | flush_inactive(void *param) | |
2384 | { | |
2385 | struct ip_fw *inactive_rule = (struct ip_fw *)param; | |
2386 | struct ip_fw *rule, *prev; | |
2387 | ||
2388 | lck_mtx_lock(ipfw_mutex); | |
2389 | ||
2390 | for (rule = layer3_chain, prev = NULL; rule; ) { | |
2391 | if (rule == inactive_rule && rule->reserved_1 == IPFW_RULE_INACTIVE) { | |
2392 | struct ip_fw *n = rule; | |
2393 | ||
2394 | if (prev == NULL) { | |
2395 | layer3_chain = rule->next; | |
2396 | } | |
2397 | else { | |
2398 | prev->next = rule->next; | |
2399 | } | |
2400 | rule = rule->next; | |
2401 | _FREE(n, M_IPFW); | |
2402 | } | |
2403 | else { | |
2404 | prev = rule; | |
2405 | rule = rule->next; | |
2406 | } | |
2407 | } | |
2408 | ||
2409 | #if DEBUG_INACTIVE_RULES | |
2410 | print_chain(&layer3_chain); | |
2411 | #endif | |
2412 | lck_mtx_unlock(ipfw_mutex); | |
2413 | } | |
2414 | ||
2415 | static void | |
2416 | mark_inactive(struct ip_fw **prev, struct ip_fw **rule) | |
2417 | { | |
2418 | int l = RULESIZE(*rule); | |
2419 | ||
2420 | if ((*rule)->reserved_1 != IPFW_RULE_INACTIVE) { | |
2421 | (*rule)->reserved_1 = IPFW_RULE_INACTIVE; | |
2422 | static_count--; | |
2423 | static_len -= l; | |
2424 | ||
2425 | timeout(flush_inactive, *rule, 30*hz); /* 30 sec. */ | |
2426 | } | |
2427 | ||
2428 | *prev = *rule; | |
2429 | *rule = (*rule)->next; | |
2430 | } | |
2431 | ||
2432 | /* | |
2433 | * Deletes all rules from a chain (except rules in set RESVD_SET | |
2434 | * unless kill_default = 1). | |
2435 | * Must be called at splimp(). | |
2436 | */ | |
2437 | static void | |
2438 | free_chain(struct ip_fw **chain, int kill_default) | |
2439 | { | |
2440 | struct ip_fw *prev, *rule; | |
2441 | ||
2442 | flush_rule_ptrs(); /* more efficient to do outside the loop */ | |
2443 | for (prev = NULL, rule = *chain; rule ; ) | |
2444 | if (kill_default || rule->set != RESVD_SET) { | |
2445 | ipfw_insn *cmd = ACTION_PTR(rule); | |
2446 | ||
2447 | /* skip over forwarding rules so struct isn't | |
2448 | * deleted while pointer is still in use elsewhere | |
2449 | */ | |
2450 | if (cmd->opcode == O_FORWARD_IP) { | |
2451 | mark_inactive(&prev, &rule); | |
2452 | } | |
2453 | else { | |
2454 | rule = delete_rule(chain, prev, rule); | |
2455 | } | |
2456 | } | |
2457 | else { | |
2458 | prev = rule; | |
2459 | rule = rule->next; | |
2460 | } | |
2461 | } | |
2462 | ||
2463 | /** | |
2464 | * Remove all rules with given number, and also do set manipulation. | |
2465 | * Assumes chain != NULL && *chain != NULL. | |
2466 | * | |
2467 | * The argument is an u_int32_t. The low 16 bit are the rule or set number, | |
2468 | * the next 8 bits are the new set, the top 8 bits are the command: | |
2469 | * | |
2470 | * 0 delete rules with given number | |
2471 | * 1 delete rules with given set number | |
2472 | * 2 move rules with given number to new set | |
2473 | * 3 move rules with given set number to new set | |
2474 | * 4 swap sets with given numbers | |
2475 | */ | |
2476 | static int | |
2477 | del_entry(struct ip_fw **chain, u_int32_t arg) | |
2478 | { | |
2479 | struct ip_fw *prev = NULL, *rule = *chain; | |
2480 | int s; | |
2481 | u_int16_t rulenum; /* rule or old_set */ | |
2482 | u_int8_t cmd, new_set; | |
2483 | ||
2484 | rulenum = arg & 0xffff; | |
2485 | cmd = (arg >> 24) & 0xff; | |
2486 | new_set = (arg >> 16) & 0xff; | |
2487 | ||
2488 | if (cmd > 4) | |
2489 | return EINVAL; | |
2490 | if (new_set > RESVD_SET) | |
2491 | return EINVAL; | |
2492 | if (cmd == 0 || cmd == 2) { | |
2493 | if (rulenum >= IPFW_DEFAULT_RULE) | |
2494 | return EINVAL; | |
2495 | } else { | |
2496 | if (rulenum > RESVD_SET) /* old_set */ | |
2497 | return EINVAL; | |
2498 | } | |
2499 | ||
2500 | switch (cmd) { | |
2501 | case 0: /* delete rules with given number */ | |
2502 | /* | |
2503 | * locate first rule to delete | |
2504 | */ | |
2505 | for (; rule->rulenum < rulenum; prev = rule, rule = rule->next) | |
2506 | ; | |
2507 | if (rule->rulenum != rulenum) | |
2508 | return EINVAL; | |
2509 | ||
2510 | /* | |
2511 | * flush pointers outside the loop, then delete all matching | |
2512 | * rules. prev remains the same throughout the cycle. | |
2513 | */ | |
2514 | flush_rule_ptrs(); | |
2515 | while (rule->rulenum == rulenum) { | |
2516 | ipfw_insn *cmd = ACTION_PTR(rule); | |
2517 | ||
2518 | /* keep forwarding rules around so struct isn't | |
2519 | * deleted while pointer is still in use elsewhere | |
2520 | */ | |
2521 | if (cmd->opcode == O_FORWARD_IP) { | |
2522 | mark_inactive(&prev, &rule); | |
2523 | } | |
2524 | else { | |
2525 | rule = delete_rule(chain, prev, rule); | |
2526 | } | |
2527 | } | |
2528 | break; | |
2529 | ||
2530 | case 1: /* delete all rules with given set number */ | |
2531 | flush_rule_ptrs(); | |
2532 | while (rule->rulenum < IPFW_DEFAULT_RULE) { | |
2533 | if (rule->set == rulenum) { | |
2534 | ipfw_insn *cmd = ACTION_PTR(rule); | |
2535 | ||
2536 | /* keep forwarding rules around so struct isn't | |
2537 | * deleted while pointer is still in use elsewhere | |
2538 | */ | |
2539 | if (cmd->opcode == O_FORWARD_IP) { | |
2540 | mark_inactive(&prev, &rule); | |
2541 | } | |
2542 | else { | |
2543 | rule = delete_rule(chain, prev, rule); | |
2544 | } | |
2545 | } | |
2546 | else { | |
2547 | prev = rule; | |
2548 | rule = rule->next; | |
2549 | } | |
2550 | } | |
2551 | break; | |
2552 | ||
2553 | case 2: /* move rules with given number to new set */ | |
2554 | for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next) | |
2555 | if (rule->rulenum == rulenum) | |
2556 | rule->set = new_set; | |
2557 | break; | |
2558 | ||
2559 | case 3: /* move rules with given set number to new set */ | |
2560 | for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next) | |
2561 | if (rule->set == rulenum) | |
2562 | rule->set = new_set; | |
2563 | break; | |
2564 | ||
2565 | case 4: /* swap two sets */ | |
2566 | for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next) | |
2567 | if (rule->set == rulenum) | |
2568 | rule->set = new_set; | |
2569 | else if (rule->set == new_set) | |
2570 | rule->set = rulenum; | |
2571 | break; | |
2572 | } | |
2573 | return 0; | |
2574 | } | |
2575 | ||
2576 | /* | |
2577 | * Clear counters for a specific rule. | |
2578 | */ | |
2579 | static void | |
2580 | clear_counters(struct ip_fw *rule, int log_only) | |
2581 | { | |
2582 | ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule); | |
2583 | ||
2584 | if (log_only == 0) { | |
2585 | rule->bcnt = rule->pcnt = 0; | |
2586 | rule->timestamp = 0; | |
2587 | } | |
2588 | if (l->o.opcode == O_LOG) | |
2589 | l->log_left = l->max_log; | |
2590 | } | |
2591 | ||
2592 | /** | |
2593 | * Reset some or all counters on firewall rules. | |
2594 | * @arg frwl is null to clear all entries, or contains a specific | |
2595 | * rule number. | |
2596 | * @arg log_only is 1 if we only want to reset logs, zero otherwise. | |
2597 | */ | |
2598 | static int | |
2599 | zero_entry(int rulenum, int log_only) | |
2600 | { | |
2601 | struct ip_fw *rule; | |
2602 | int s; | |
2603 | char *msg; | |
2604 | ||
2605 | if (rulenum == 0) { | |
2606 | norule_counter = 0; | |
2607 | for (rule = layer3_chain; rule; rule = rule->next) | |
2608 | clear_counters(rule, log_only); | |
2609 | msg = log_only ? "ipfw: All logging counts reset.\n" : | |
2610 | "ipfw: Accounting cleared.\n"; | |
2611 | } else { | |
2612 | int cleared = 0; | |
2613 | /* | |
2614 | * We can have multiple rules with the same number, so we | |
2615 | * need to clear them all. | |
2616 | */ | |
2617 | for (rule = layer3_chain; rule; rule = rule->next) | |
2618 | if (rule->rulenum == rulenum) { | |
2619 | while (rule && rule->rulenum == rulenum) { | |
2620 | clear_counters(rule, log_only); | |
2621 | rule = rule->next; | |
2622 | } | |
2623 | cleared = 1; | |
2624 | break; | |
2625 | } | |
2626 | if (!cleared) /* we did not find any matching rules */ | |
2627 | return (EINVAL); | |
2628 | msg = log_only ? "ipfw: Entry %d logging count reset.\n" : | |
2629 | "ipfw: Entry %d cleared.\n"; | |
2630 | } | |
2631 | if (fw_verbose) | |
2632 | { | |
2633 | dolog((LOG_AUTHPRIV | LOG_NOTICE, msg, rulenum)); | |
2634 | } | |
2635 | return (0); | |
2636 | } | |
2637 | ||
2638 | /* | |
2639 | * Check validity of the structure before insert. | |
2640 | * Fortunately rules are simple, so this mostly need to check rule sizes. | |
2641 | */ | |
2642 | static int | |
2643 | check_ipfw_struct(struct ip_fw *rule, int size) | |
2644 | { | |
2645 | int l, cmdlen = 0; | |
2646 | int have_action=0; | |
2647 | ipfw_insn *cmd; | |
2648 | ||
2649 | if (size < sizeof(*rule)) { | |
2650 | printf("ipfw: rule too short\n"); | |
2651 | return (EINVAL); | |
2652 | } | |
2653 | /* first, check for valid size */ | |
2654 | l = RULESIZE(rule); | |
2655 | if (l != size) { | |
2656 | printf("ipfw: size mismatch (have %d want %d)\n", size, l); | |
2657 | return (EINVAL); | |
2658 | } | |
2659 | /* | |
2660 | * Now go for the individual checks. Very simple ones, basically only | |
2661 | * instruction sizes. | |
2662 | */ | |
2663 | for (l = rule->cmd_len, cmd = rule->cmd ; | |
2664 | l > 0 ; l -= cmdlen, cmd += cmdlen) { | |
2665 | cmdlen = F_LEN(cmd); | |
2666 | if (cmdlen > l) { | |
2667 | printf("ipfw: opcode %d size truncated\n", | |
2668 | cmd->opcode); | |
2669 | return EINVAL; | |
2670 | } | |
2671 | DEB(printf("ipfw: opcode %d\n", cmd->opcode);) | |
2672 | switch (cmd->opcode) { | |
2673 | case O_PROBE_STATE: | |
2674 | case O_KEEP_STATE: | |
2675 | case O_PROTO: | |
2676 | case O_IP_SRC_ME: | |
2677 | case O_IP_DST_ME: | |
2678 | case O_LAYER2: | |
2679 | case O_IN: | |
2680 | case O_FRAG: | |
2681 | case O_IPOPT: | |
2682 | case O_IPTOS: | |
2683 | case O_IPPRECEDENCE: | |
2684 | case O_IPVER: | |
2685 | case O_TCPWIN: | |
2686 | case O_TCPFLAGS: | |
2687 | case O_TCPOPTS: | |
2688 | case O_ESTAB: | |
2689 | case O_VERREVPATH: | |
2690 | case O_IPSEC: | |
2691 | if (cmdlen != F_INSN_SIZE(ipfw_insn)) | |
2692 | goto bad_size; | |
2693 | break; | |
2694 | case O_UID: | |
2695 | #ifndef __APPLE__ | |
2696 | case O_GID: | |
2697 | #endif /* __APPLE__ */ | |
2698 | case O_IP_SRC: | |
2699 | case O_IP_DST: | |
2700 | case O_TCPSEQ: | |
2701 | case O_TCPACK: | |
2702 | case O_PROB: | |
2703 | case O_ICMPTYPE: | |
2704 | if (cmdlen != F_INSN_SIZE(ipfw_insn_u32)) | |
2705 | goto bad_size; | |
2706 | break; | |
2707 | ||
2708 | case O_LIMIT: | |
2709 | if (cmdlen != F_INSN_SIZE(ipfw_insn_limit)) | |
2710 | goto bad_size; | |
2711 | break; | |
2712 | ||
2713 | case O_LOG: | |
2714 | if (cmdlen != F_INSN_SIZE(ipfw_insn_log)) | |
2715 | goto bad_size; | |
2716 | ||
2717 | /* enforce logging limit */ | |
2718 | if (fw_verbose && | |
2719 | ((ipfw_insn_log *)cmd)->max_log == 0 && verbose_limit != 0) { | |
2720 | ((ipfw_insn_log *)cmd)->max_log = verbose_limit; | |
2721 | } | |
2722 | ||
2723 | ((ipfw_insn_log *)cmd)->log_left = | |
2724 | ((ipfw_insn_log *)cmd)->max_log; | |
2725 | ||
2726 | break; | |
2727 | ||
2728 | case O_IP_SRC_MASK: | |
2729 | case O_IP_DST_MASK: | |
2730 | /* only odd command lengths */ | |
2731 | if ( !(cmdlen & 1) || cmdlen > 31) | |
2732 | goto bad_size; | |
2733 | break; | |
2734 | ||
2735 | case O_IP_SRC_SET: | |
2736 | case O_IP_DST_SET: | |
2737 | if (cmd->arg1 == 0 || cmd->arg1 > 256) { | |
2738 | printf("ipfw: invalid set size %d\n", | |
2739 | cmd->arg1); | |
2740 | return EINVAL; | |
2741 | } | |
2742 | if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + | |
2743 | (cmd->arg1+31)/32 ) | |
2744 | goto bad_size; | |
2745 | break; | |
2746 | ||
2747 | case O_MACADDR2: | |
2748 | if (cmdlen != F_INSN_SIZE(ipfw_insn_mac)) | |
2749 | goto bad_size; | |
2750 | break; | |
2751 | ||
2752 | case O_NOP: | |
2753 | case O_IPID: | |
2754 | case O_IPTTL: | |
2755 | case O_IPLEN: | |
2756 | if (cmdlen < 1 || cmdlen > 31) | |
2757 | goto bad_size; | |
2758 | break; | |
2759 | ||
2760 | case O_MAC_TYPE: | |
2761 | case O_IP_SRCPORT: | |
2762 | case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */ | |
2763 | if (cmdlen < 2 || cmdlen > 31) | |
2764 | goto bad_size; | |
2765 | break; | |
2766 | ||
2767 | case O_RECV: | |
2768 | case O_XMIT: | |
2769 | case O_VIA: | |
2770 | if (cmdlen != F_INSN_SIZE(ipfw_insn_if)) | |
2771 | goto bad_size; | |
2772 | break; | |
2773 | ||
2774 | case O_PIPE: | |
2775 | case O_QUEUE: | |
2776 | if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe)) | |
2777 | goto bad_size; | |
2778 | goto check_action; | |
2779 | ||
2780 | case O_FORWARD_IP: | |
2781 | if (cmdlen != F_INSN_SIZE(ipfw_insn_sa)) | |
2782 | goto bad_size; | |
2783 | goto check_action; | |
2784 | ||
2785 | case O_FORWARD_MAC: /* XXX not implemented yet */ | |
2786 | case O_CHECK_STATE: | |
2787 | case O_COUNT: | |
2788 | case O_ACCEPT: | |
2789 | case O_DENY: | |
2790 | case O_REJECT: | |
2791 | case O_SKIPTO: | |
2792 | case O_DIVERT: | |
2793 | case O_TEE: | |
2794 | if (cmdlen != F_INSN_SIZE(ipfw_insn)) | |
2795 | goto bad_size; | |
2796 | check_action: | |
2797 | if (have_action) { | |
2798 | printf("ipfw: opcode %d, multiple actions" | |
2799 | " not allowed\n", | |
2800 | cmd->opcode); | |
2801 | return EINVAL; | |
2802 | } | |
2803 | have_action = 1; | |
2804 | if (l != cmdlen) { | |
2805 | printf("ipfw: opcode %d, action must be" | |
2806 | " last opcode\n", | |
2807 | cmd->opcode); | |
2808 | return EINVAL; | |
2809 | } | |
2810 | break; | |
2811 | default: | |
2812 | printf("ipfw: opcode %d, unknown opcode\n", | |
2813 | cmd->opcode); | |
2814 | return EINVAL; | |
2815 | } | |
2816 | } | |
2817 | if (have_action == 0) { | |
2818 | printf("ipfw: missing action\n"); | |
2819 | return EINVAL; | |
2820 | } | |
2821 | return 0; | |
2822 | ||
2823 | bad_size: | |
2824 | printf("ipfw: opcode %d size %d wrong\n", | |
2825 | cmd->opcode, cmdlen); | |
2826 | return EINVAL; | |
2827 | } | |
2828 | ||
2829 | ||
2830 | /** | |
2831 | * {set|get}sockopt parser. | |
2832 | */ | |
2833 | static int | |
2834 | ipfw_ctl(struct sockopt *sopt) | |
2835 | { | |
2836 | #define RULE_MAXSIZE (256*sizeof(u_int32_t)) | |
2837 | u_int32_t api_version; | |
2838 | int command; | |
2839 | int error, s; | |
2840 | size_t size; | |
2841 | struct ip_fw *bp , *buf, *rule; | |
2842 | ||
2843 | /* copy of orig sopt to send to ipfw_get_command_and_version() */ | |
2844 | struct sockopt tmp_sopt = *sopt; | |
2845 | struct timeval timenow; | |
2846 | ||
2847 | getmicrotime(&timenow); | |
2848 | ||
2849 | /* | |
2850 | * Disallow modifications in really-really secure mode, but still allow | |
2851 | * the logging counters to be reset. | |
2852 | */ | |
2853 | if (sopt->sopt_name == IP_FW_ADD || | |
2854 | (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) { | |
2855 | #if __FreeBSD_version >= 500034 | |
2856 | error = securelevel_ge(sopt->sopt_td->td_ucred, 3); | |
2857 | if (error) | |
2858 | return (error); | |
2859 | #else /* FreeBSD 4.x */ | |
2860 | if (securelevel >= 3) | |
2861 | return (EPERM); | |
2862 | #endif | |
2863 | } | |
2864 | ||
2865 | /* first get the command and version, then do conversion as necessary */ | |
2866 | error = ipfw_get_command_and_version(&tmp_sopt, &command, &api_version); | |
2867 | ||
2868 | if (error) { | |
2869 | /* error getting the version */ | |
2870 | return error; | |
2871 | } | |
2872 | ||
2873 | switch (command) { | |
2874 | case IP_FW_GET: | |
2875 | /* | |
2876 | * pass up a copy of the current rules. Static rules | |
2877 | * come first (the last of which has number IPFW_DEFAULT_RULE), | |
2878 | * followed by a possibly empty list of dynamic rule. | |
2879 | * The last dynamic rule has NULL in the "next" field. | |
2880 | */ | |
2881 | lck_mtx_lock(ipfw_mutex); | |
2882 | size = static_len; /* size of static rules */ | |
2883 | if (ipfw_dyn_v) /* add size of dyn.rules */ | |
2884 | size += (dyn_count * sizeof(ipfw_dyn_rule)); | |
2885 | ||
2886 | /* | |
2887 | * XXX todo: if the user passes a short length just to know | |
2888 | * how much room is needed, do not bother filling up the | |
2889 | * buffer, just jump to the sooptcopyout. | |
2890 | */ | |
2891 | buf = _MALLOC(size, M_TEMP, M_WAITOK); | |
2892 | if (buf == 0) { | |
2893 | lck_mtx_unlock(ipfw_mutex); | |
2894 | error = ENOBUFS; | |
2895 | break; | |
2896 | } | |
2897 | ||
2898 | bzero(buf, size); | |
2899 | ||
2900 | bp = buf; | |
2901 | for (rule = layer3_chain; rule ; rule = rule->next) { | |
2902 | int i = RULESIZE(rule); | |
2903 | ||
2904 | if (rule->reserved_1 == IPFW_RULE_INACTIVE) { | |
2905 | continue; | |
2906 | } | |
2907 | bcopy(rule, bp, i); | |
2908 | bcopy(&set_disable, &(bp->next_rule), | |
2909 | sizeof(set_disable)); | |
2910 | bp = (struct ip_fw *)((char *)bp + i); | |
2911 | } | |
2912 | if (ipfw_dyn_v) { | |
2913 | int i; | |
2914 | ipfw_dyn_rule *p, *dst, *last = NULL; | |
2915 | ||
2916 | dst = (ipfw_dyn_rule *)bp; | |
2917 | for (i = 0 ; i < curr_dyn_buckets ; i++ ) | |
2918 | for ( p = ipfw_dyn_v[i] ; p != NULL ; | |
2919 | p = p->next, dst++ ) { | |
2920 | bcopy(p, dst, sizeof *p); | |
2921 | bcopy(&(p->rule->rulenum), &(dst->rule), | |
2922 | sizeof(p->rule->rulenum)); | |
2923 | /* | |
2924 | * store a non-null value in "next". | |
2925 | * The userland code will interpret a | |
2926 | * NULL here as a marker | |
2927 | * for the last dynamic rule. | |
2928 | */ | |
2929 | bcopy(&dst, &dst->next, sizeof(dst)); | |
2930 | last = dst ; | |
2931 | dst->expire = | |
2932 | TIME_LEQ(dst->expire, timenow.tv_sec) ? | |
2933 | 0 : dst->expire - timenow.tv_sec ; | |
2934 | } | |
2935 | if (last != NULL) /* mark last dynamic rule */ | |
2936 | bzero(&last->next, sizeof(last)); | |
2937 | } | |
2938 | lck_mtx_unlock(ipfw_mutex); | |
2939 | ||
2940 | /* convert back if necessary and copyout */ | |
2941 | if (api_version == IP_FW_VERSION_0) { | |
2942 | int i, len = 0; | |
2943 | struct ip_old_fw *buf2, *rule_vers0; | |
2944 | ||
2945 | buf2 = _MALLOC(static_count * sizeof(struct ip_old_fw), M_TEMP, M_WAITOK); | |
2946 | if (buf2 == 0) { | |
2947 | error = ENOBUFS; | |
2948 | } | |
2949 | ||
2950 | if (!error) { | |
2951 | bp = buf; | |
2952 | rule_vers0 = buf2; | |
2953 | ||
2954 | for (i = 0; i < static_count; i++) { | |
2955 | /* static rules have different sizes */ | |
2956 | int j = RULESIZE(bp); | |
2957 | ipfw_convert_from_latest(bp, rule_vers0, api_version); | |
2958 | bp = (struct ip_fw *)((char *)bp + j); | |
2959 | len += sizeof(*rule_vers0); | |
2960 | rule_vers0++; | |
2961 | } | |
2962 | error = sooptcopyout(sopt, buf2, len); | |
2963 | _FREE(buf2, M_TEMP); | |
2964 | } | |
2965 | } else if (api_version == IP_FW_VERSION_1) { | |
2966 | int i, len = 0, buf_size; | |
2967 | struct ip_fw_compat *buf2, *rule_vers1; | |
2968 | struct ipfw_dyn_rule_compat *dyn_rule_vers1, *dyn_last = NULL; | |
2969 | ipfw_dyn_rule *p; | |
2970 | ||
2971 | buf_size = static_count * sizeof(struct ip_fw_compat) + | |
2972 | dyn_count * sizeof(struct ipfw_dyn_rule_compat); | |
2973 | ||
2974 | buf2 = _MALLOC(buf_size, M_TEMP, M_WAITOK); | |
2975 | if (buf2 == 0) { | |
2976 | error = ENOBUFS; | |
2977 | } | |
2978 | ||
2979 | if (!error) { | |
2980 | bp = buf; | |
2981 | rule_vers1 = buf2; | |
2982 | ||
2983 | /* first do static rules */ | |
2984 | for (i = 0; i < static_count; i++) { | |
2985 | /* static rules have different sizes */ | |
2986 | int j = RULESIZE(bp); | |
2987 | ipfw_convert_from_latest(bp, rule_vers1, api_version); | |
2988 | bp = (struct ip_fw *)((char *)bp + j); | |
2989 | len += sizeof(*rule_vers1); | |
2990 | rule_vers1++; | |
2991 | } | |
2992 | ||
2993 | /* now do dynamic rules */ | |
2994 | dyn_rule_vers1 = (struct ipfw_dyn_rule_compat *)rule_vers1; | |
2995 | if (ipfw_dyn_v) { | |
2996 | for (i = 0; i < curr_dyn_buckets; i++) { | |
2997 | for ( p = ipfw_dyn_v[i] ; p != NULL ; p = p->next) { | |
2998 | (int) dyn_rule_vers1->chain = p->rule->rulenum; | |
2999 | dyn_rule_vers1->id = p->id; | |
3000 | dyn_rule_vers1->mask = p->id; | |
3001 | dyn_rule_vers1->type = p->dyn_type; | |
3002 | dyn_rule_vers1->expire = p->expire; | |
3003 | dyn_rule_vers1->pcnt = p->pcnt; | |
3004 | dyn_rule_vers1->bcnt = p->bcnt; | |
3005 | dyn_rule_vers1->bucket = p->bucket; | |
3006 | dyn_rule_vers1->state = p->state; | |
3007 | ||
3008 | dyn_rule_vers1->next = dyn_rule_vers1; | |
3009 | dyn_last = dyn_rule_vers1; | |
3010 | ||
3011 | len += sizeof(*dyn_rule_vers1); | |
3012 | dyn_rule_vers1++; | |
3013 | } | |
3014 | } | |
3015 | ||
3016 | if (dyn_last != NULL) { | |
3017 | dyn_last->next = NULL; | |
3018 | } | |
3019 | } | |
3020 | ||
3021 | error = sooptcopyout(sopt, buf2, len); | |
3022 | _FREE(buf2, M_TEMP); | |
3023 | } | |
3024 | } else { | |
3025 | error = sooptcopyout(sopt, buf, size); | |
3026 | } | |
3027 | ||
3028 | _FREE(buf, M_TEMP); | |
3029 | break; | |
3030 | ||
3031 | case IP_FW_FLUSH: | |
3032 | /* | |
3033 | * Normally we cannot release the lock on each iteration. | |
3034 | * We could do it here only because we start from the head all | |
3035 | * the times so there is no risk of missing some entries. | |
3036 | * On the other hand, the risk is that we end up with | |
3037 | * a very inconsistent ruleset, so better keep the lock | |
3038 | * around the whole cycle. | |
3039 | * | |
3040 | * XXX this code can be improved by resetting the head of | |
3041 | * the list to point to the default rule, and then freeing | |
3042 | * the old list without the need for a lock. | |
3043 | */ | |
3044 | ||
3045 | lck_mtx_lock(ipfw_mutex); | |
3046 | free_chain(&layer3_chain, 0 /* keep default rule */); | |
3047 | #if DEBUG_INACTIVE_RULES | |
3048 | print_chain(&layer3_chain); | |
3049 | #endif | |
3050 | lck_mtx_unlock(ipfw_mutex); | |
3051 | break; | |
3052 | ||
3053 | case IP_FW_ADD: | |
3054 | rule = _MALLOC(RULE_MAXSIZE, M_TEMP, M_WAITOK); | |
3055 | if (rule == 0) { | |
3056 | error = ENOBUFS; | |
3057 | break; | |
3058 | } | |
3059 | ||
3060 | bzero(rule, RULE_MAXSIZE); | |
3061 | ||
3062 | if (api_version != IP_FW_CURRENT_API_VERSION) { | |
3063 | error = ipfw_convert_to_latest(sopt, rule, api_version); | |
3064 | } | |
3065 | else { | |
3066 | error = sooptcopyin(sopt, rule, RULE_MAXSIZE, | |
3067 | sizeof(struct ip_fw) ); | |
3068 | } | |
3069 | ||
3070 | if (!error) { | |
3071 | if ((api_version == IP_FW_VERSION_0) || (api_version == IP_FW_VERSION_1)) { | |
3072 | /* the rule has already been checked so just | |
3073 | * adjust sopt_valsize to match what would be expected. | |
3074 | */ | |
3075 | sopt->sopt_valsize = RULESIZE(rule); | |
3076 | } | |
3077 | error = check_ipfw_struct(rule, sopt->sopt_valsize); | |
3078 | if (!error) { | |
3079 | lck_mtx_lock(ipfw_mutex); | |
3080 | error = add_rule(&layer3_chain, rule); | |
3081 | lck_mtx_unlock(ipfw_mutex); | |
3082 | ||
3083 | size = RULESIZE(rule); | |
3084 | if (!error && sopt->sopt_dir == SOPT_GET) { | |
3085 | /* convert back if necessary and copyout */ | |
3086 | if (api_version == IP_FW_VERSION_0) { | |
3087 | struct ip_old_fw rule_vers0; | |
3088 | ||
3089 | ipfw_convert_from_latest(rule, &rule_vers0, api_version); | |
3090 | sopt->sopt_valsize = sizeof(struct ip_old_fw); | |
3091 | ||
3092 | error = sooptcopyout(sopt, &rule_vers0, sizeof(struct ip_old_fw)); | |
3093 | } else if (api_version == IP_FW_VERSION_1) { | |
3094 | struct ip_fw_compat rule_vers1; | |
3095 | ||
3096 | ipfw_convert_from_latest(rule, &rule_vers1, api_version); | |
3097 | sopt->sopt_valsize = sizeof(struct ip_fw_compat); | |
3098 | ||
3099 | error = sooptcopyout(sopt, &rule_vers1, sizeof(struct ip_fw_compat)); | |
3100 | } else { | |
3101 | error = sooptcopyout(sopt, rule, size); | |
3102 | } | |
3103 | } | |
3104 | } | |
3105 | } | |
3106 | ||
3107 | _FREE(rule, M_TEMP); | |
3108 | break; | |
3109 | ||
3110 | case IP_FW_DEL: | |
3111 | { | |
3112 | /* | |
3113 | * IP_FW_DEL is used for deleting single rules or sets, | |
3114 | * and (ab)used to atomically manipulate sets. | |
ff6e181a A |
3115 | * rule->rulenum != 0 indicates single rule delete |
3116 | * rule->set_masks used to manipulate sets | |
3117 | * rule->set_masks[0] contains info on sets to be | |
3118 | * disabled, swapped, or moved | |
3119 | * rule->set_masks[1] contains sets to be enabled. | |
91447636 | 3120 | */ |
ff6e181a | 3121 | |
91447636 A |
3122 | /* there is only a simple rule passed in |
3123 | * (no cmds), so use a temp struct to copy | |
3124 | */ | |
ff6e181a A |
3125 | struct ip_fw temp_rule; |
3126 | u_int32_t arg; | |
3127 | u_int8_t cmd; | |
91447636 | 3128 | |
ff6e181a | 3129 | bzero(&temp_rule, sizeof(struct ip_fw)); |
91447636 A |
3130 | if (api_version != IP_FW_CURRENT_API_VERSION) { |
3131 | error = ipfw_convert_to_latest(sopt, &temp_rule, api_version); | |
3132 | } | |
3133 | else { | |
3134 | error = sooptcopyin(sopt, &temp_rule, sizeof(struct ip_fw), | |
3135 | sizeof(struct ip_fw) ); | |
3136 | } | |
3137 | ||
3138 | if (!error) { | |
3139 | /* set_masks is used to distinguish between deleting | |
3140 | * single rules or atomically manipulating sets | |
3141 | */ | |
3142 | lck_mtx_lock(ipfw_mutex); | |
3143 | ||
ff6e181a A |
3144 | arg = temp_rule.set_masks[0]; |
3145 | cmd = (arg >> 24) & 0xff; | |
3146 | ||
3147 | if (temp_rule.rulenum) { | |
91447636 A |
3148 | /* single rule */ |
3149 | error = del_entry(&layer3_chain, temp_rule.rulenum); | |
3150 | #if DEBUG_INACTIVE_RULES | |
3151 | print_chain(&layer3_chain); | |
3152 | #endif | |
91447636 | 3153 | } |
ff6e181a A |
3154 | else if (cmd) { |
3155 | /* set reassignment - see comment above del_entry() for details */ | |
3156 | error = del_entry(&layer3_chain, temp_rule.set_masks[0]); | |
3157 | #if DEBUG_INACTIVE_RULES | |
3158 | print_chain(&layer3_chain); | |
3159 | #endif | |
3160 | } | |
3161 | else if (temp_rule.set_masks[0] != 0 || | |
3162 | temp_rule.set_masks[1] != 0) { | |
3163 | /* set enable/disable */ | |
3164 | set_disable = | |
3165 | (set_disable | temp_rule.set_masks[0]) & ~temp_rule.set_masks[1] & | |
3166 | ~(1<<RESVD_SET); /* set RESVD_SET always enabled */ | |
3167 | } | |
3168 | ||
91447636 A |
3169 | lck_mtx_unlock(ipfw_mutex); |
3170 | } | |
3171 | break; | |
3172 | } | |
3173 | case IP_FW_ZERO: | |
3174 | case IP_FW_RESETLOG: /* using rule->rulenum */ | |
3175 | { | |
3176 | /* there is only a simple rule passed in | |
3177 | * (no cmds), so use a temp struct to copy | |
3178 | */ | |
3179 | struct ip_fw temp_rule = { 0 }; | |
3180 | ||
3181 | if (api_version != IP_FW_CURRENT_API_VERSION) { | |
3182 | error = ipfw_convert_to_latest(sopt, &temp_rule, api_version); | |
3183 | } | |
3184 | else { | |
3185 | if (sopt->sopt_val != 0) { | |
3186 | error = sooptcopyin(sopt, &temp_rule, sizeof(struct ip_fw), | |
3187 | sizeof(struct ip_fw) ); | |
3188 | } | |
3189 | } | |
3190 | ||
3191 | if (!error) { | |
3192 | lck_mtx_lock(ipfw_mutex); | |
3193 | error = zero_entry(temp_rule.rulenum, sopt->sopt_name == IP_FW_RESETLOG); | |
3194 | lck_mtx_unlock(ipfw_mutex); | |
3195 | } | |
3196 | break; | |
3197 | } | |
3198 | default: | |
3199 | printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name); | |
3200 | error = EINVAL; | |
3201 | } | |
3202 | ||
3203 | return (error); | |
3204 | } | |
3205 | ||
3206 | /** | |
3207 | * dummynet needs a reference to the default rule, because rules can be | |
3208 | * deleted while packets hold a reference to them. When this happens, | |
3209 | * dummynet changes the reference to the default rule (it could well be a | |
3210 | * NULL pointer, but this way we do not need to check for the special | |
3211 | * case, plus here he have info on the default behaviour). | |
3212 | */ | |
3213 | struct ip_fw *ip_fw_default_rule; | |
3214 | ||
3215 | /* | |
3216 | * This procedure is only used to handle keepalives. It is invoked | |
3217 | * every dyn_keepalive_period | |
3218 | */ | |
3219 | static void | |
3220 | ipfw_tick(void * __unused unused) | |
3221 | { | |
3222 | int i; | |
3223 | int s; | |
3224 | ipfw_dyn_rule *q; | |
3225 | struct timeval timenow; | |
3226 | ||
3227 | ||
3228 | if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0) | |
3229 | goto done; | |
3230 | ||
3231 | getmicrotime(&timenow); | |
3232 | ||
3233 | lck_mtx_lock(ipfw_mutex); | |
3234 | for (i = 0 ; i < curr_dyn_buckets ; i++) { | |
3235 | for (q = ipfw_dyn_v[i] ; q ; q = q->next ) { | |
3236 | if (q->dyn_type == O_LIMIT_PARENT) | |
3237 | continue; | |
3238 | if (q->id.proto != IPPROTO_TCP) | |
3239 | continue; | |
3240 | if ( (q->state & BOTH_SYN) != BOTH_SYN) | |
3241 | continue; | |
3242 | if (TIME_LEQ( timenow.tv_sec+dyn_keepalive_interval, | |
3243 | q->expire)) | |
3244 | continue; /* too early */ | |
3245 | if (TIME_LEQ(q->expire, timenow.tv_sec)) | |
3246 | continue; /* too late, rule expired */ | |
3247 | ||
3248 | send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN); | |
3249 | send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0); | |
3250 | } | |
3251 | } | |
3252 | lck_mtx_unlock(ipfw_mutex); | |
3253 | done: | |
3254 | timeout(ipfw_tick, NULL, dyn_keepalive_period*hz); | |
3255 | } | |
3256 | ||
3257 | void | |
3258 | ipfw_init(void) | |
3259 | { | |
3260 | struct ip_fw default_rule; | |
3261 | ||
3262 | /* setup locks */ | |
3263 | ipfw_mutex_grp_attr = lck_grp_attr_alloc_init(); | |
3264 | ipfw_mutex_grp = lck_grp_alloc_init("ipfw", ipfw_mutex_grp_attr); | |
3265 | ipfw_mutex_attr = lck_attr_alloc_init(); | |
8f6c56a5 | 3266 | lck_attr_setdefault(ipfw_mutex_attr); |
91447636 A |
3267 | |
3268 | if ((ipfw_mutex = lck_mtx_alloc_init(ipfw_mutex_grp, ipfw_mutex_attr)) == NULL) { | |
3269 | printf("ipfw_init: can't alloc ipfw_mutex\n"); | |
3270 | return; | |
3271 | } | |
3272 | ||
3273 | layer3_chain = NULL; | |
3274 | ||
3275 | bzero(&default_rule, sizeof default_rule); | |
3276 | ||
3277 | default_rule.act_ofs = 0; | |
3278 | default_rule.rulenum = IPFW_DEFAULT_RULE; | |
3279 | default_rule.cmd_len = 1; | |
3280 | default_rule.set = RESVD_SET; | |
3281 | ||
3282 | default_rule.cmd[0].len = 1; | |
3283 | default_rule.cmd[0].opcode = | |
3284 | #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT | |
3285 | 1 ? O_ACCEPT : | |
3286 | #endif | |
3287 | O_DENY; | |
3288 | ||
3289 | if (add_rule(&layer3_chain, &default_rule)) { | |
3290 | printf("ipfw2: add_rule failed adding default rule\n"); | |
3291 | printf("ipfw2 failed initialization!!\n"); | |
3292 | fw_enable = 0; | |
3293 | } | |
3294 | else { | |
3295 | ip_fw_default_rule = layer3_chain; | |
3296 | #if 0 | |
3297 | /* Radar 3920649, don't print unncessary messages to the log */ | |
3298 | printf("ipfw2 initialized, divert %s, " | |
3299 | "rule-based forwarding enabled, default to %s, logging ", | |
3300 | #ifdef IPDIVERT | |
3301 | "enabled", | |
3302 | #else | |
3303 | "disabled", | |
3304 | #endif | |
3305 | default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny"); | |
3306 | #endif | |
3307 | ||
3308 | #ifdef IPFIREWALL_VERBOSE | |
3309 | fw_verbose = 1; | |
3310 | #endif | |
3311 | #ifdef IPFIREWALL_VERBOSE_LIMIT | |
3312 | verbose_limit = IPFIREWALL_VERBOSE_LIMIT; | |
3313 | #endif | |
3314 | if (fw_verbose == 0) | |
3315 | printf("disabled\n"); | |
3316 | else if (verbose_limit == 0) | |
3317 | printf("unlimited\n"); | |
3318 | else | |
3319 | printf("limited to %d packets/entry by default\n", | |
3320 | verbose_limit); | |
3321 | } | |
3322 | ||
3323 | ip_fw_chk_ptr = ipfw_chk; | |
3324 | ip_fw_ctl_ptr = ipfw_ctl; | |
3325 | ||
3326 | ipfwstringlen = strlen( ipfwstring ); | |
3327 | ||
3328 | timeout(ipfw_tick, NULL, hz); | |
3329 | } | |
3330 | ||
3331 | #endif /* IPFW2 */ |