]>
Commit | Line | Data |
---|---|---|
55e303ae | 1 | /* |
8ad349bb | 2 | * Copyright (c) 2003 Apple Computer, Inc. All rights reserved. |
55e303ae | 3 | * |
8ad349bb | 4 | * @APPLE_LICENSE_OSREFERENCE_HEADER_START@ |
55e303ae | 5 | * |
8ad349bb A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the | |
10 | * License may not be used to create, or enable the creation or | |
11 | * redistribution of, unlawful or unlicensed copies of an Apple operating | |
12 | * system, or to circumvent, violate, or enable the circumvention or | |
13 | * violation of, any terms of an Apple operating system software license | |
14 | * agreement. | |
15 | * | |
16 | * Please obtain a copy of the License at | |
17 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
18 | * file. | |
19 | * | |
20 | * The Original Code and all software distributed under the License are | |
21 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
22 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
23 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
24 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
25 | * Please see the License for the specific language governing rights and | |
26 | * limitations under the License. | |
27 | * | |
28 | * @APPLE_LICENSE_OSREFERENCE_HEADER_END@ | |
55e303ae A |
29 | */ |
30 | ||
31 | #define ASSEMBLER | |
32 | #include <sys/appleapiopts.h> | |
33 | #include <ppc/asm.h> // EXT, LEXT | |
34 | #include <machine/cpu_capabilities.h> | |
35 | #include <machine/commpage.h> | |
36 | ||
8ad349bb A |
37 | #define USEC_PER_SEC 1000000 |
38 | ||
39 | ||
55e303ae A |
40 | /* The red zone is used to move data between GPRs and FPRs: */ |
41 | ||
42 | #define rzTicks -8 // elapsed ticks since timestamp (double) | |
43 | #define rzSeconds -16 // seconds since timestamp (double) | |
44 | #define rzUSeconds -24 // useconds since timestamp (double) | |
45 | ||
46 | ||
47 | .text | |
48 | .align 2 | |
55e303ae A |
49 | |
50 | ||
51 | // ********************************* | |
52 | // * G E T T I M E O F D A Y _ 3 2 * | |
53 | // ********************************* | |
54 | // | |
55 | // This is a subroutine of gettimeofday.c that gets the seconds and microseconds | |
56 | // in user mode, usually without having to make a system call. We do not deal with | |
57 | // the timezone. The kernel maintains the following values in the comm page: | |
58 | // | |
8ad349bb | 59 | // _COMM_PAGE_TIMESTAMP = a BSD-style pair of uint_32's for seconds and microseconds |
55e303ae A |
60 | // |
61 | // _COMM_PAGE_TIMEBASE = the timebase at which the timestamp was valid | |
62 | // | |
63 | // _COMM_PAGE_SEC_PER_TICK = multiply timebase ticks by this to get seconds (double) | |
64 | // | |
65 | // _COMM_PAGE_2_TO_52 = double precision constant 2**52 | |
66 | // | |
67 | // _COMM_PAGE_10_TO_6 = double precision constant 10**6 | |
68 | // | |
69 | // We have to be careful to read these values atomically. The kernel updates them | |
70 | // asynchronously to account for drift or time changes (eg, ntp.) We adopt the | |
71 | // convention that (timebase==0) means the timestamp is invalid, in which case we | |
72 | // return a bad status so our caller can make the system call. | |
73 | // | |
74 | // r3 = ptr to user's timeval structure (should not be null) | |
75 | ||
91447636 | 76 | gettimeofday_32: // int gettimeofday(timeval *tp); |
55e303ae A |
77 | 0: |
78 | lwz r5,_COMM_PAGE_TIMEBASE+0(0) // r5,r6 = TBR at timestamp | |
79 | lwz r6,_COMM_PAGE_TIMEBASE+4(0) | |
8ad349bb A |
80 | lwz r7,_COMM_PAGE_TIMESTAMP+0(0) // r7 = timestamp seconds |
81 | lwz r8,_COMM_PAGE_TIMESTAMP+4(0) // r8 = timestamp microseconds | |
55e303ae A |
82 | lfd f1,_COMM_PAGE_SEC_PER_TICK(0) |
83 | 1: | |
84 | mftbu r10 // r10,r11 = current timebase | |
85 | mftb r11 | |
86 | mftbu r12 | |
87 | cmplw r10,r12 | |
88 | bne- 1b | |
89 | or. r0,r5,r6 // timebase 0? (ie, is timestamp invalid?) | |
90 | ||
91 | sync // create a barrier (patched to NOP if UP) | |
92 | ||
93 | lwz r0,_COMM_PAGE_TIMEBASE+0(0) // then load data a 2nd time | |
94 | lwz r12,_COMM_PAGE_TIMEBASE+4(0) | |
8ad349bb | 95 | lwz r2,_COMM_PAGE_TIMESTAMP+0(0) |
55e303ae A |
96 | lwz r9,_COMM_PAGE_TIMESTAMP+4(0) |
97 | cmplw cr6,r5,r0 // did we read a consistent set? | |
98 | cmplw cr7,r6,r12 | |
99 | beq- 3f // timestamp is disabled so return bad status | |
8ad349bb | 100 | cmplw cr1,r2,r7 |
55e303ae A |
101 | cmplw cr5,r9,r8 |
102 | crand cr0_eq,cr6_eq,cr7_eq | |
8ad349bb A |
103 | crand cr1_eq,cr1_eq,cr5_eq |
104 | crand cr0_eq,cr0_eq,cr1_eq | |
55e303ae A |
105 | bne- 0b // loop until we have a consistent set of data |
106 | ||
107 | subfc r11,r6,r11 // compute ticks since timestamp | |
108 | lwz r9,_COMM_PAGE_2_TO_52(0) // get exponent for (2**52) | |
109 | subfe r10,r5,r10 // complete 64-bit subtract | |
8ad349bb | 110 | lfd f2,_COMM_PAGE_2_TO_52(0) // f3 <- (2**52) |
55e303ae A |
111 | srwi. r0,r10,2 // if more than 2**34 ticks have elapsed... |
112 | stw r11,rzTicks+4(r1) // store elapsed ticks into red zone | |
113 | or r10,r10,r9 // convert long-long in (r10,r11) into double | |
114 | bne- 3f // ...call kernel to reprime timestamp | |
115 | ||
116 | stw r10,rzTicks(r1) // complete double | |
8ad349bb A |
117 | lis r12,hi16(USEC_PER_SEC) |
118 | ori r12,r12,lo16(USEC_PER_SEC) | |
119 | ||
55e303ae A |
120 | lfd f3,rzTicks(r1) // get elapsed ticks since timestamp + 2**52 |
121 | fsub f4,f3,f2 // subtract 2**52 and normalize | |
122 | fmul f5,f4,f1 // f5 <- elapsed seconds since timestamp | |
123 | lfd f3,_COMM_PAGE_10_TO_6(0) // get 10**6 | |
124 | fctiwz f6,f5 // convert to integer | |
125 | stfd f6,rzSeconds(r1) // store integer seconds into red zone | |
126 | stw r9,rzSeconds(r1) // prepare to reload as floating pt | |
127 | lfd f6,rzSeconds(r1) // get seconds + 2**52 | |
128 | fsub f6,f6,f2 // f6 <- integral seconds | |
129 | fsub f6,f5,f6 // f6 <- fractional part of elapsed seconds | |
130 | fmul f6,f6,f3 // f6 <- fractional elapsed useconds | |
131 | fctiwz f6,f6 // convert useconds to integer | |
132 | stfd f6,rzUSeconds(r1) // store useconds into red zone | |
133 | ||
134 | lwz r5,rzSeconds+4(r1) // r5 <- seconds since timestamp | |
8ad349bb A |
135 | lwz r6,rzUSeconds+4(r1) // r6 <- useconds since timestamp |
136 | add r7,r7,r5 // add elapsed seconds to timestamp seconds | |
137 | add r8,r8,r6 // ditto useconds | |
55e303ae | 138 | |
8ad349bb A |
139 | cmplw r8,r12 // r8 >= USEC_PER_SEC ? |
140 | blt 2f // no | |
141 | addi r7,r7,1 // add 1 to secs | |
142 | sub r8,r8,r12 // subtract USEC_PER_SEC from usecs | |
143 | 2: | |
144 | stw r7,0(r3) // store secs//usecs into user's timeval | |
145 | stw r8,4(r3) | |
55e303ae A |
146 | li r3,0 // return success |
147 | blr | |
148 | 3: // too long since last timestamp or this code is disabled | |
149 | li r3,1 // return bad status so our caller will make syscall | |
150 | blr | |
151 | ||
91447636 | 152 | COMMPAGE_DESCRIPTOR(gettimeofday_32,_COMM_PAGE_GETTIMEOFDAY,0,k64Bit,kCommPageSYNC+kCommPage32) |
55e303ae A |
153 | |
154 | ||
91447636 A |
155 | // *************************************** |
156 | // * G E T T I M E O F D A Y _ G 5 _ 3 2 * | |
157 | // *************************************** | |
158 | // | |
159 | // This routine is called in 32-bit mode on 64-bit processors. A timeval is a struct of | |
8ad349bb | 160 | // a long seconds and int useconds, so it's size depends on mode. |
55e303ae | 161 | |
91447636 | 162 | gettimeofday_g5_32: // int gettimeofday(timeval *tp); |
55e303ae A |
163 | 0: |
164 | ld r6,_COMM_PAGE_TIMEBASE(0) // r6 = TBR at timestamp | |
8ad349bb | 165 | ld r8,_COMM_PAGE_TIMESTAMP(0) // r8 = timestamp (seconds,useconds) |
55e303ae A |
166 | lfd f1,_COMM_PAGE_SEC_PER_TICK(0) |
167 | mftb r10 // r10 = get current timebase | |
168 | lwsync // create a barrier if MP (patched to NOP if UP) | |
169 | ld r11,_COMM_PAGE_TIMEBASE(0) // then get data a 2nd time | |
170 | ld r12,_COMM_PAGE_TIMESTAMP(0) | |
171 | cmpdi cr1,r6,0 // is the timestamp disabled? | |
172 | cmpld cr6,r6,r11 // did we read a consistent set? | |
173 | cmpld cr7,r8,r12 | |
174 | beq-- cr1,3f // exit if timestamp disabled | |
175 | crand cr6_eq,cr7_eq,cr6_eq | |
176 | sub r11,r10,r6 // compute elapsed ticks from timestamp | |
177 | bne-- cr6,0b // loop until we have a consistent set of data | |
178 | ||
179 | srdi. r0,r11,35 // has it been more than 2**35 ticks since last timestamp? | |
180 | std r11,rzTicks(r1) // put ticks in redzone where we can "lfd" it | |
181 | bne-- 3f // timestamp too old, so reprime | |
182 | ||
183 | lfd f3,rzTicks(r1) // get elapsed ticks since timestamp (fixed pt) | |
184 | fcfid f4,f3 // float the tick count | |
185 | fmul f5,f4,f1 // f5 <- elapsed seconds since timestamp | |
186 | lfd f3,_COMM_PAGE_10_TO_6(0) // get 10**6 | |
187 | fctidz f6,f5 // convert integer seconds to fixed pt | |
188 | stfd f6,rzSeconds(r1) // save fixed pt integer seconds in red zone | |
189 | fcfid f6,f6 // float the integer seconds | |
190 | fsub f6,f5,f6 // f6 <- fractional part of elapsed seconds | |
191 | fmul f6,f6,f3 // f6 <- fractional elapsed useconds | |
192 | fctidz f6,f6 // convert useconds to fixed pt integer | |
193 | stfd f6,rzUSeconds(r1) // store useconds into red zone | |
194 | ||
8ad349bb A |
195 | lis r12,hi16(USEC_PER_SEC) // r12 <- 10**6 |
196 | srdi r7,r8,32 // extract seconds from doubleword timestamp | |
55e303ae | 197 | lwz r5,rzSeconds+4(r1) // r5 <- seconds since timestamp |
8ad349bb A |
198 | ori r12,r12,lo16(USEC_PER_SEC) |
199 | lwz r6,rzUSeconds+4(r1) // r6 <- useconds since timestamp | |
200 | add r7,r7,r5 // add elapsed seconds to timestamp seconds | |
201 | add r8,r8,r6 // ditto useconds | |
55e303ae | 202 | |
8ad349bb A |
203 | cmplw r8,r12 // r8 >= USEC_PER_SEC ? |
204 | blt 2f // no | |
205 | addi r7,r7,1 // add 1 to secs | |
206 | sub r8,r8,r12 // subtract USEC_PER_SEC from usecs | |
207 | 2: | |
208 | stw r7,0(r3) // store secs//usecs into user's timeval | |
209 | stw r8,4(r3) | |
55e303ae A |
210 | li r3,0 // return success |
211 | blr | |
212 | 3: // too long since last timestamp or this code is disabled | |
213 | li r3,1 // return bad status so our caller will make syscall | |
214 | blr | |
215 | ||
91447636 A |
216 | COMMPAGE_DESCRIPTOR(gettimeofday_g5_32,_COMM_PAGE_GETTIMEOFDAY,k64Bit,0,kCommPageSYNC+kCommPage32) |
217 | ||
218 | ||
219 | // *************************************** | |
220 | // * G E T T I M E O F D A Y _ G 5 _ 6 4 * | |
221 | // *************************************** | |
222 | // | |
223 | // This routine is called in 64-bit mode on 64-bit processors. A timeval is a struct of | |
8ad349bb | 224 | // a long seconds and int useconds, so it's size depends on mode. |
91447636 A |
225 | |
226 | gettimeofday_g5_64: // int gettimeofday(timeval *tp); | |
227 | 0: | |
228 | ld r6,_COMM_PAGE_TIMEBASE(0) // r6 = TBR at timestamp | |
8ad349bb | 229 | ld r8,_COMM_PAGE_TIMESTAMP(0) // r8 = timestamp (seconds,useconds) |
91447636 A |
230 | lfd f1,_COMM_PAGE_SEC_PER_TICK(0) |
231 | mftb r10 // r10 = get current timebase | |
232 | lwsync // create a barrier if MP (patched to NOP if UP) | |
233 | ld r11,_COMM_PAGE_TIMEBASE(0) // then get data a 2nd time | |
234 | ld r12,_COMM_PAGE_TIMESTAMP(0) | |
235 | cmpdi cr1,r6,0 // is the timestamp disabled? | |
236 | cmpld cr6,r6,r11 // did we read a consistent set? | |
237 | cmpld cr7,r8,r12 | |
238 | beq-- cr1,3f // exit if timestamp disabled | |
239 | crand cr6_eq,cr7_eq,cr6_eq | |
240 | sub r11,r10,r6 // compute elapsed ticks from timestamp | |
241 | bne-- cr6,0b // loop until we have a consistent set of data | |
242 | ||
243 | srdi. r0,r11,35 // has it been more than 2**35 ticks since last timestamp? | |
244 | std r11,rzTicks(r1) // put ticks in redzone where we can "lfd" it | |
245 | bne-- 3f // timestamp too old, so reprime | |
246 | ||
247 | lfd f3,rzTicks(r1) // get elapsed ticks since timestamp (fixed pt) | |
248 | fcfid f4,f3 // float the tick count | |
249 | fmul f5,f4,f1 // f5 <- elapsed seconds since timestamp | |
250 | lfd f3,_COMM_PAGE_10_TO_6(0) // get 10**6 | |
251 | fctidz f6,f5 // convert integer seconds to fixed pt | |
252 | stfd f6,rzSeconds(r1) // save fixed pt integer seconds in red zone | |
253 | fcfid f6,f6 // float the integer seconds | |
254 | fsub f6,f5,f6 // f6 <- fractional part of elapsed seconds | |
255 | fmul f6,f6,f3 // f6 <- fractional elapsed useconds | |
256 | fctidz f6,f6 // convert useconds to fixed pt integer | |
257 | stfd f6,rzUSeconds(r1) // store useconds into red zone | |
258 | ||
8ad349bb A |
259 | lis r12,hi16(USEC_PER_SEC) // r12 <- 10**6 |
260 | srdi r7,r8,32 // extract seconds from doubleword timestamp | |
91447636 | 261 | lwz r5,rzSeconds+4(r1) // r5 <- seconds since timestamp |
8ad349bb A |
262 | ori r12,r12,lo16(USEC_PER_SEC) |
263 | lwz r6,rzUSeconds+4(r1) // r6 <- useconds since timestamp | |
264 | add r7,r7,r5 // add elapsed seconds to timestamp seconds | |
265 | add r8,r8,r6 // ditto useconds | |
91447636 | 266 | |
8ad349bb A |
267 | cmplw r8,r12 // r8 >= USEC_PER_SEC ? |
268 | blt 2f // no | |
269 | addi r7,r7,1 // add 1 to secs | |
270 | sub r8,r8,r12 // subtract USEC_PER_SEC from usecs | |
271 | 2: | |
272 | std r7,0(r3) // store secs//usecs into user's timeval | |
273 | stw r8,8(r3) | |
91447636 A |
274 | li r3,0 // return success |
275 | blr | |
276 | 3: // too long since last timestamp or this code is disabled | |
277 | li r3,1 // return bad status so our caller will make syscall | |
278 | blr | |
279 | ||
280 | COMMPAGE_DESCRIPTOR(gettimeofday_g5_64,_COMM_PAGE_GETTIMEOFDAY,k64Bit,0,kCommPageSYNC+kCommPage64) | |
55e303ae A |
281 | |
282 |