]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
91447636 | 2 | * Copyright (c) 2002-2004 Apple Computer, Inc. All rights reserved. |
1c79356b | 3 | * |
8ad349bb | 4 | * @APPLE_LICENSE_OSREFERENCE_HEADER_START@ |
1c79356b | 5 | * |
8ad349bb A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the | |
10 | * License may not be used to create, or enable the creation or | |
11 | * redistribution of, unlawful or unlicensed copies of an Apple operating | |
12 | * system, or to circumvent, violate, or enable the circumvention or | |
13 | * violation of, any terms of an Apple operating system software license | |
14 | * agreement. | |
15 | * | |
16 | * Please obtain a copy of the License at | |
17 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
18 | * file. | |
19 | * | |
20 | * The Original Code and all software distributed under the License are | |
21 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
22 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
23 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
24 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
25 | * Please see the License for the specific language governing rights and | |
26 | * limitations under the License. | |
27 | * | |
28 | * @APPLE_LICENSE_OSREFERENCE_HEADER_END@ | |
1c79356b A |
29 | */ |
30 | ; | |
91447636 | 31 | ; Copy bytes of data around. Handles overlapped data. |
1c79356b | 32 | ; |
1c79356b A |
33 | ; |
34 | #include <ppc/asm.h> | |
35 | #include <ppc/proc_reg.h> | |
55e303ae | 36 | #include <assym.s> |
1c79356b | 37 | |
91447636 A |
38 | ; These routines use CR5 for certain flags: |
39 | ; Use CR5_lt to indicate non-cached (in bcopy and memcpy) | |
1c79356b | 40 | #define noncache 20 |
55e303ae | 41 | |
55e303ae | 42 | |
91447636 A |
43 | ; The bcopy_phys variants use a stack frame so they can call bcopy as a subroutine. |
44 | #define BCOPY_SF_SIZE 32 // total size | |
45 | #define BCOPY_SF_MSR 16 // we save caller's MSR here (possibly minus VEC and FP) | |
1c79356b | 46 | |
1c79356b | 47 | |
91447636 | 48 | #define kShort 32 // short operands are special cased |
1c79356b | 49 | |
1c79356b | 50 | |
91447636 A |
51 | ; void bcopy_physvir_32(from, to, nbytes) |
52 | ; | |
9bccf70c | 53 | ; Attempt to copy physically addressed memory with translation on if conditions are met. |
55e303ae A |
54 | ; Otherwise do a normal bcopy_phys. This routine is used because some 32-bit processors |
55 | ; are very slow doing real-mode (translation off) copies, so we set up temporary BATs | |
56 | ; for the passed phys addrs and do the copy with translation on. | |
9bccf70c | 57 | ; |
91447636 A |
58 | ; Rules are: - neither source nor destination can cross a page. |
59 | ; - Interrupts must be disabled when this routine is called. | |
60 | ; - Translation must be on when called. | |
9bccf70c | 61 | ; |
91447636 A |
62 | ; To do the copy, we build a 128 DBAT for both the source and sink. If both are the same, only one |
63 | ; is loaded. We do not touch the IBATs, so there is no issue if either physical page | |
9bccf70c A |
64 | ; address is the same as the virtual address of the instructions we are executing. |
65 | ; | |
55e303ae A |
66 | ; At the end, we invalidate the used DBATs. |
67 | ; | |
68 | ; Note that the address parameters are long longs. We will transform these to 64-bit | |
69 | ; values. Note that on 32-bit architectures that this will ignore the high half of the | |
70 | ; passed in value. This should be ok since we can not have any bigger than 32 bit addresses | |
71 | ; there anyhow. | |
9bccf70c | 72 | ; |
91447636 A |
73 | ; Note also that this routine is used only on 32-bit machines. If you're contemplating use |
74 | ; on a 64-bit processor, use the physical memory window instead; please refer to copypv() | |
75 | ; for an example of how this is done. | |
9bccf70c A |
76 | |
77 | .align 5 | |
91447636 | 78 | .globl EXT(bcopy_physvir_32) |
9bccf70c | 79 | |
91447636 A |
80 | LEXT(bcopy_physvir_32) |
81 | mflr r0 ; get return address | |
55e303ae | 82 | rlwinm r3,r3,0,1,0 ; Duplicate high half of long long paddr into top of reg |
91447636 A |
83 | mfsprg r8,2 ; get processor feature flags |
84 | stw r0,8(r1) ; save return address | |
55e303ae | 85 | rlwimi r3,r4,0,0,31 ; Combine bottom of long long to full 64-bits |
91447636 | 86 | stwu r1,-BCOPY_SF_SIZE(r1) ; push on a stack frame so we can call bcopy |
55e303ae | 87 | mtcrf 0x02,r8 ; move pf64Bit to cr6 so we can test |
91447636 A |
88 | subi r0,r7,1 ; get length - 1 |
89 | rlwinm r4,r5,0,1,0 ; Duplicate high half of long long paddr into top of reg | |
90 | add r11,r3,r0 ; Point to last byte of sink | |
55e303ae | 91 | mr r5,r7 ; Get the length into the right register |
91447636 A |
92 | rlwimi r4,r6,0,0,31 ; Combine bottom of long long to full 64-bits |
93 | ||
94 | ; This test for page overflow may not work if the length is negative. Negative lengths are invalid input | |
95 | ; to bcopy_physvir() on 32-bit machines, and will result in a panic. | |
96 | ||
9bccf70c | 97 | add r12,r4,r0 ; Point to last byte of source |
9bccf70c A |
98 | xor r7,r11,r3 ; See if we went to next page |
99 | xor r8,r12,r4 ; See if we went to next page | |
100 | or r0,r7,r8 ; Combine wrap | |
101 | ||
55e303ae A |
102 | // li r9,((PTE_WIMG_CB_CACHED_COHERENT<<3)|2) ; Set default attributes |
103 | li r9,((2<<3)|2) ; Set default attributes | |
9bccf70c A |
104 | rlwinm. r0,r0,0,0,19 ; Did we overflow a page? |
105 | li r7,2 ; Set validity flags | |
106 | li r8,2 ; Set validity flags | |
55e303ae | 107 | bne- bcopy_phys1 ; Overflowed page, do normal physical copy... |
9bccf70c | 108 | |
9bccf70c A |
109 | rlwimi r11,r9,0,15,31 ; Set sink lower DBAT value |
110 | rlwimi r12,r9,0,15,31 ; Set source lower DBAT value | |
111 | rlwimi r7,r11,0,0,14 ; Set sink upper DBAT value | |
112 | rlwimi r8,r12,0,0,14 ; Set source upper DBAT value | |
113 | cmplw cr1,r11,r12 ; See if sink and source are same block | |
114 | ||
115 | sync | |
116 | ||
117 | mtdbatl 0,r11 ; Set sink lower DBAT | |
118 | mtdbatu 0,r7 ; Set sink upper DBAT | |
119 | ||
120 | beq- cr1,bcpvsame ; Source and sink are in same block | |
121 | ||
122 | mtdbatl 1,r12 ; Set source lower DBAT | |
123 | mtdbatu 1,r8 ; Set source upper DBAT | |
91447636 | 124 | |
e5568f75 | 125 | bcpvsame: |
91447636 | 126 | sync ; wait for the BATs to stabilize |
e5568f75 | 127 | isync |
91447636 A |
128 | |
129 | bl EXT(bcopy) ; BATs set up, args in r3-r5, so do the copy with DR on | |
130 | ||
131 | li r0,0 ; Get set to invalidate upper half of BATs | |
132 | sync ; Make sure all is well | |
133 | mtdbatu 0,r0 ; Clear sink upper DBAT | |
134 | mtdbatu 1,r0 ; Clear source upper DBAT | |
135 | sync | |
136 | isync | |
137 | ||
138 | lwz r0,BCOPY_SF_SIZE+8(r1) ; get return address | |
139 | addi r1,r1,BCOPY_SF_SIZE ; pop off stack frame | |
140 | mtlr r0 | |
141 | blr | |
142 | ||
9bccf70c | 143 | |
1c79356b | 144 | ; void bcopy_phys(from, to, nbytes) |
91447636 A |
145 | ; |
146 | ; Turns off data translation before the copy. This one will not work in user state. | |
147 | ; This routine is used on 32 and 64-bit machines. | |
55e303ae A |
148 | ; |
149 | ; Note that the address parameters are long longs. We will transform these to 64-bit | |
150 | ; values. Note that on 32-bit architectures that this will ignore the high half of the | |
151 | ; passed in value. This should be ok since we can not have any bigger than 32 bit addresses | |
152 | ; there anyhow. | |
153 | ; | |
154 | ; Also note that you probably will not be happy if either the sink or source spans across the | |
155 | ; boundary between RAM and I/O space. Good chance of hanging the machine and this code | |
156 | ; will not check, so be careful. | |
1c79356b | 157 | ; |
91447636 A |
158 | ; NOTE: when called, translation must be on, and we must be in 32-bit mode. |
159 | ; Interrupts may or may not be disabled. | |
1c79356b | 160 | |
9bccf70c A |
161 | .align 5 |
162 | .globl EXT(bcopy_phys) | |
163 | ||
164 | LEXT(bcopy_phys) | |
91447636 | 165 | mflr r0 ; get return address |
55e303ae | 166 | rlwinm r3,r3,0,1,0 ; Duplicate high half of long long paddr into top of reg |
91447636 | 167 | stw r0,8(r1) ; save |
55e303ae | 168 | mfsprg r8,2 ; get processor feature flags |
91447636 | 169 | stwu r1,-BCOPY_SF_SIZE(r1) ; push on a stack frame so we can call bcopy |
55e303ae A |
170 | rlwimi r3,r4,0,0,31 ; Combine bottom of long long to full 64-bits |
171 | rlwinm r4,r5,0,1,0 ; Duplicate high half of long long paddr into top of reg | |
172 | mtcrf 0x02,r8 ; move pf64Bit to cr6 so we can test | |
173 | rlwimi r4,r6,0,0,31 ; Combine bottom of long long to full 64-bits | |
174 | mr r5,r7 ; Get the length into the right register | |
91447636 A |
175 | |
176 | bcopy_phys1: ; enter from bcopy_physvir with pf64Bit in cr6 and parms in r3-r5 | |
1c79356b | 177 | mfmsr r9 ; Get the MSR |
91447636 A |
178 | lis r6,hi16(MASK(MSR_VEC)) ; Get vector enable |
179 | ori r6,r6,lo16(MASK(MSR_FP)|MASK(MSR_DR)) ; Add in FP and DR | |
180 | andc r9,r9,r6 ; unconditionally turn DR, VEC, and FP off | |
55e303ae A |
181 | bt++ pf64Bitb,bcopy_phys64 ; skip if 64-bit (only they take hint) |
182 | ||
183 | ; 32-bit CPUs | |
91447636 A |
184 | |
185 | mtmsr r9 ; turn DR, FP, and VEC off | |
1c79356b A |
186 | isync ; Wait for it |
187 | ||
91447636 | 188 | bl EXT(bcopy) ; do the copy with translation off and caching on |
55e303ae | 189 | |
91447636 A |
190 | mfmsr r9 ; Get the MSR |
191 | ori r9,r9,lo16(MASK(MSR_DR)) ; turn translation back on (but leave VEC and FP off) | |
192 | mtmsr r9 ; restore msr | |
193 | isync ; wait for it to happen | |
194 | lwz r0,BCOPY_SF_SIZE+8(r1) ; get return address once translation is back on | |
195 | mtlr r0 | |
196 | addi r1,r1,BCOPY_SF_SIZE ; pop off stack frame | |
197 | blr | |
55e303ae | 198 | |
91447636 A |
199 | |
200 | ; 64-bit: turn DR off and SF on. | |
55e303ae | 201 | |
91447636 A |
202 | bcopy_phys64: ; r9 = MSR with DP, VEC, and FP off |
203 | ori r8,r9,lo16(MASK(MSR_DR)) ; make a copy with DR back on... this is what we return to caller | |
204 | srdi r2,r3,31 ; Get a 1 if source is in I/O memory | |
55e303ae | 205 | li r0,1 ; Note - we use this in a couple places below |
91447636 A |
206 | srdi r10,r4,31 ; Get a 1 if sink is in I/O memory |
207 | std r8,BCOPY_SF_MSR(r1) ; save caller's MSR so we remember whether EE was on | |
208 | rldimi r9,r0,63,MSR_SF_BIT ; set SF on in MSR we will copy with | |
209 | cmpldi cr0,r2,1 ; Is source in I/O memory? | |
210 | cmpldi cr7,r10,1 ; Is sink in I/O memory? | |
55e303ae | 211 | mtmsrd r9 ; turn 64-bit addressing on, data translation off |
55e303ae | 212 | isync ; wait for it to happen |
91447636 A |
213 | cror cr7_eq,cr0_eq,cr7_eq ; See if either source or sink is in I/O area |
214 | beq-- cr7,io_space_real_mode_copy ; an operand is in I/O space | |
215 | ||
216 | bl EXT(bcopy) ; do copy with DR off and SF on, cache enabled | |
217 | ||
218 | bcopy_phys64x: | |
219 | mfmsr r9 ; Get the MSR we used to copy | |
220 | rldicl r9,r9,0,MSR_SF_BIT+1 ; clear SF | |
221 | ori r9,r9,lo16(MASK(MSR_DR)) ; turn translation back on | |
222 | mtmsrd r9 ; turn 64-bit mode off, translation back on | |
223 | isync ; wait for it to happen | |
224 | lwz r0,BCOPY_SF_SIZE+8(r1) ; get return address once translation is back on | |
225 | ld r8,BCOPY_SF_MSR(r1) ; get caller's MSR once translation is back on | |
226 | mtlr r0 | |
227 | mtmsrd r8,1 ; turn EE back on if necessary | |
228 | addi r1,r1,BCOPY_SF_SIZE ; pop off stack frame | |
229 | blr | |
55e303ae | 230 | |
91447636 A |
231 | ; We need to copy with DR off, but one of the operands is in I/O space. To avoid wedging U3, |
232 | ; which cannot handle a cache burst in I/O space, we must turn caching off for the real memory access. | |
233 | ; This can only be done by setting bits in HID4. We cannot lose control and execute random code in | |
234 | ; this state, so we have to disable interrupts as well. This is an unpleasant hack. | |
235 | ||
236 | io_space_real_mode_copy: ; r0=1, r9=MSR we want to copy with | |
237 | sldi r11,r0,31-MSR_EE_BIT ; Get a mask for the EE bit | |
238 | sldi r0,r0,32+8 ; Get the right bit to turn off caching | |
239 | andc r9,r9,r11 ; Turn off EE bit | |
240 | mfspr r2,hid4 ; Get HID4 | |
241 | mtmsrd r9,1 ; Force off EE | |
242 | or r2,r2,r0 ; Set bit to make real accesses cache-inhibited | |
243 | sync ; Sync up | |
244 | mtspr hid4,r2 ; Make real accesses cache-inhibited | |
245 | isync ; Toss prefetches | |
246 | ||
247 | lis r12,0xE000 ; Get the unlikeliest ESID possible | |
248 | srdi r12,r12,1 ; Make 0x7FFFFFFFF0000000 | |
249 | slbie r12 ; Make sure the ERAT is cleared | |
55e303ae | 250 | |
91447636 A |
251 | sync |
252 | isync | |
55e303ae | 253 | |
91447636 | 254 | bl EXT(bcopy_nc) ; copy with SF on and EE, DR, VEC, and FP off, cache inhibited |
55e303ae | 255 | |
91447636 A |
256 | li r0,1 ; Get a 1 |
257 | sldi r0,r0,32+8 ; Get the right bit to turn off caching | |
258 | mfspr r2,hid4 ; Get HID4 | |
259 | andc r2,r2,r0 ; Clear bit to make real accesses cache-inhibited | |
260 | sync ; Sync up | |
261 | mtspr hid4,r2 ; Make real accesses not cache-inhibited | |
262 | isync ; Toss prefetches | |
263 | ||
264 | lis r12,0xE000 ; Get the unlikeliest ESID possible | |
265 | srdi r12,r12,1 ; Make 0x7FFFFFFFF0000000 | |
266 | slbie r12 ; Make sure the ERAT is cleared | |
267 | b bcopy_phys64x | |
268 | ||
1c79356b | 269 | |
91447636 A |
270 | ; |
271 | ; shortcopy | |
272 | ; | |
273 | ; Special case short operands (<32 bytes), which are very common. Note that the check for | |
274 | ; reverse vs normal moves isn't quite correct in 64-bit mode; in rare cases we will move in | |
275 | ; reverse when it wasn't necessary to do so. This is OK, since performance of the two cases | |
276 | ; is similar. We do get the direction right when it counts (ie, when the operands overlap.) | |
277 | ; Also note that we use the G3/G4 "backend" code, even on G5. This is OK too, since G5 has | |
278 | ; plenty of load/store dispatch bandwidth in this case, the extra ops are hidden by latency, | |
279 | ; and using word instead of doubleword moves reduces the possibility of unaligned accesses, | |
280 | ; which cost about 20 cycles if they cross a 32-byte boundary on G5. Finally, because we | |
281 | ; might do unaligned accesses this code cannot be called from bcopy_nc(). | |
282 | ; r4 = destination | |
283 | ; r5 = length (<32) | |
284 | ; r6 = source | |
285 | ; r12 = (dest - source) | |
286 | ||
287 | .align 5 | |
288 | shortcopy: | |
289 | cmplw r12,r5 ; must move reverse if (dest-source)<length | |
290 | mtcrf 2,r5 ; move length to cr6 and cr7 one at a time... | |
291 | mtcrf 1,r5 ; ...which is faster on G4 and G5 | |
292 | bge++ backend ; handle forward moves (most common case) | |
293 | add r6,r6,r5 ; point one past end of operands in reverse moves | |
294 | add r4,r4,r5 | |
295 | b bbackend ; handle reverse moves | |
296 | ||
1c79356b A |
297 | ; |
298 | ; void bcopy(from, to, nbytes) | |
299 | ; | |
91447636 A |
300 | ; NOTE: bcopy is called from copyin and copyout etc with the "thread_recover" ptr set. |
301 | ; This means bcopy must not set up a stack frame or touch non-volatile registers, and also means that it | |
302 | ; cannot rely on turning off interrupts, because we expect to get DSIs and have execution aborted by a "longjmp" | |
303 | ; to the thread_recover routine. What this means is that it would be hard to use vector or floating point | |
304 | ; registers to accelerate the copy. | |
305 | ; | |
306 | ; NOTE: this code can be called in any of three "modes": | |
307 | ; - on 32-bit processors (32-byte cache line) | |
308 | ; - on 64-bit processors running in 32-bit mode (128-byte cache line) | |
309 | ; - on 64-bit processors running in 64-bit mode (128-byte cache line) | |
1c79356b | 310 | |
9bccf70c A |
311 | .align 5 |
312 | .globl EXT(bcopy) | |
91447636 | 313 | .globl EXT(bcopy_nop_if_32bit) |
9bccf70c A |
314 | |
315 | LEXT(bcopy) | |
91447636 A |
316 | cmplwi cr1,r5,kShort ; less than 32 bytes? |
317 | sub. r12,r4,r3 ; test for to==from in mode-independent way, start fwd/rev check | |
318 | mr r6,r3 ; Set source (must preserve r3 for memcopy return) | |
319 | blt cr1,shortcopy ; special case short operands | |
1c79356b | 320 | crclr noncache ; Set cached |
91447636 A |
321 | LEXT(bcopy_nop_if_32bit) |
322 | bne++ copyit64 ; handle 64-bit processor (patched to NOP if 32-bit processor) | |
323 | bne+ copyit32 ; handle 32-bit processor | |
324 | blr ; to==from so nothing to do | |
325 | ||
326 | ; | |
327 | ; bcopy_nc(from, to, nbytes) | |
328 | ; | |
329 | ; bcopy_nc() operates on non-cached memory so we can not use any kind of cache instructions. | |
330 | ; Furthermore, we must avoid all unaligned accesses on 64-bit machines, since they take | |
331 | ; alignment exceptions. Thus we cannot use "shortcopy", which could do unaligned lwz/stw. | |
332 | ; Like bcopy(), bcopy_nc() can be called both in 32- and 64-bit mode. | |
1c79356b | 333 | |
91447636 A |
334 | .align 5 |
335 | .globl EXT(bcopy_nc) | |
336 | .globl EXT(bcopy_nc_nop_if_32bit) | |
337 | ||
338 | LEXT(bcopy_nc) | |
55e303ae | 339 | cmpwi cr1,r5,0 ; Check if we have a 0 length |
91447636 A |
340 | sub. r12,r4,r3 ; test for to==from in mode-independent way, start fwd/rev check |
341 | mr r6,r3 ; Set source (must preserve r3 for memcopy return) | |
342 | crset noncache ; Set non-cached | |
343 | cror cr0_eq,cr1_eq,cr0_eq ; set cr0 beq if either length zero or to==from | |
344 | LEXT(bcopy_nc_nop_if_32bit) | |
345 | bne++ copyit64 ; handle 64-bit processor (patched to NOP if 32-bit processor) | |
346 | bne+ copyit32 ; handle 32-bit processor | |
347 | blr ; either zero length or to==from | |
1c79356b A |
348 | |
349 | ; | |
91447636 A |
350 | ; void* memcpy(to, from, nbytes) |
351 | ; void* memmove(to, from, nbytes) | |
55e303ae | 352 | ; |
91447636 A |
353 | ; memcpy() and memmove() are only called in 32-bit mode, albeit on both 32- and 64-bit processors. |
354 | ; However, they would work correctly if called in 64-bit mode. | |
355 | ||
9bccf70c A |
356 | .align 5 |
357 | .globl EXT(memcpy) | |
91447636 A |
358 | .globl EXT(memmove) |
359 | .globl EXT(memcpy_nop_if_32bit) | |
360 | ||
9bccf70c | 361 | LEXT(memcpy) |
91447636 A |
362 | LEXT(memmove) |
363 | cmplwi cr1,r5,kShort ; less than 32 bytes? | |
364 | sub. r12,r3,r4 ; test for to==from in mode-independent way, start fwd/rev check | |
365 | mr r6,r4 ; Set source | |
366 | mr r4,r3 ; Set the "to" (must preserve r3 for return value) | |
367 | blt cr1,shortcopy ; special case short operands | |
1c79356b | 368 | crclr noncache ; Set cached |
91447636 A |
369 | LEXT(memcpy_nop_if_32bit) |
370 | bne++ copyit64 ; handle 64-bit processor (patched to NOP if 32-bit processor) | |
371 | beqlr- ; exit if to==from | |
1c79356b | 372 | |
91447636 A |
373 | |
374 | ; Here to copy on 32-bit processors. | |
1c79356b | 375 | ; |
91447636 A |
376 | ; When we move the memory, forward overlays must be handled. We |
377 | ; also can not use the cache instructions if we are from bcopy_nc. | |
378 | ; We need to preserve R3 because it needs to be returned for memcpy. | |
379 | ; We can be interrupted and lose control here. | |
1c79356b | 380 | ; |
91447636 A |
381 | ; When entered: |
382 | ; r4 = destination | |
383 | ; r5 = length (>0) | |
384 | ; r6 = source | |
385 | ; r12 = (dest - source) | |
386 | ; cr5 = noncache flag | |
387 | ||
388 | copyit32: ; WARNING! can drop down to this label | |
389 | cmplw cr1,r12,r5 ; must move reverse if (dest-source)<length | |
390 | cntlzw r11,r5 ; get magnitude of length | |
391 | dcbt 0,r6 ; start to touch in source | |
392 | lis r10,hi16(0x80000000) ; get 0x80000000 | |
393 | neg r9,r4 ; start to get alignment for destination | |
394 | dcbtst 0,r4 ; start to touch in destination | |
395 | sraw r8,r10,r11 ; get mask based on operand length, to limit alignment | |
396 | blt- cr1,reverse32bit ; reverse move required | |
397 | ||
398 | ; Forward moves on 32-bit machines, also word aligned uncached ops on 64-bit machines. | |
399 | ; NOTE: we never do an unaligned access if the source and destination are "relatively" | |
400 | ; word aligned. We depend on this in the uncached case on 64-bit processors. | |
401 | ; r4 = destination | |
402 | ; r5 = length (>0) | |
403 | ; r6 = source | |
404 | ; r8 = inverse of largest mask smaller than operand length | |
405 | ; r9 = neg(dest), used to compute alignment | |
406 | ; cr5 = noncache flag | |
407 | ||
408 | forward32bit: ; enter from 64-bit CPUs with word aligned uncached operands | |
409 | rlwinm r7,r9,0,0x1F ; get bytes to 32-byte-align destination | |
410 | andc. r0,r7,r8 ; limit to the maximum front end move | |
411 | mtcrf 0x01,r0 ; move length to cr6 and cr7 one cr at a time... | |
1c79356b A |
412 | beq alline ; Already on a line... |
413 | ||
91447636 A |
414 | mtcrf 0x02,r0 ; ...since moving more than one is slower on G4 and G5 |
415 | sub r5,r5,r0 ; Set the length left to move | |
416 | ||
1c79356b A |
417 | bf 31,alhalf ; No single byte to do... |
418 | lbz r7,0(r6) ; Get the byte | |
419 | addi r6,r6,1 ; Point to the next | |
420 | stb r7,0(r4) ; Save the single | |
421 | addi r4,r4,1 ; Bump sink | |
422 | ||
423 | ; Sink is halfword aligned here | |
424 | ||
425 | alhalf: bf 30,alword ; No halfword to do... | |
426 | lhz r7,0(r6) ; Get the halfword | |
427 | addi r6,r6,2 ; Point to the next | |
428 | sth r7,0(r4) ; Save the halfword | |
429 | addi r4,r4,2 ; Bump sink | |
430 | ||
431 | ; Sink is word aligned here | |
432 | ||
433 | alword: bf 29,aldouble ; No word to do... | |
434 | lwz r7,0(r6) ; Get the word | |
435 | addi r6,r6,4 ; Point to the next | |
436 | stw r7,0(r4) ; Save the word | |
437 | addi r4,r4,4 ; Bump sink | |
438 | ||
439 | ; Sink is double aligned here | |
440 | ||
441 | aldouble: bf 28,alquad ; No double to do... | |
442 | lwz r7,0(r6) ; Get the first word | |
443 | lwz r8,4(r6) ; Get the second word | |
444 | addi r6,r6,8 ; Point to the next | |
445 | stw r7,0(r4) ; Save the first word | |
446 | stw r8,4(r4) ; Save the second word | |
447 | addi r4,r4,8 ; Bump sink | |
448 | ||
449 | ; Sink is quadword aligned here | |
450 | ||
451 | alquad: bf 27,alline ; No quad to do... | |
452 | lwz r7,0(r6) ; Get the first word | |
453 | lwz r8,4(r6) ; Get the second word | |
454 | lwz r9,8(r6) ; Get the third word | |
455 | stw r7,0(r4) ; Save the first word | |
456 | lwz r11,12(r6) ; Get the fourth word | |
457 | addi r6,r6,16 ; Point to the next | |
458 | stw r8,4(r4) ; Save the second word | |
459 | stw r9,8(r4) ; Save the third word | |
460 | stw r11,12(r4) ; Save the fourth word | |
461 | addi r4,r4,16 ; Bump sink | |
462 | ||
463 | ; Sink is line aligned here | |
464 | ||
465 | alline: rlwinm. r0,r5,27,5,31 ; Get the number of full lines to move | |
91447636 A |
466 | mtcrf 0x02,r5 ; move length to cr6 and cr7 one cr at a time... |
467 | mtcrf 0x01,r5 ; ...since moving more than one is slower on G4 and G5 | |
1c79356b | 468 | beq- backend ; No full lines to move |
91447636 A |
469 | |
470 | mtctr r0 ; set up loop count | |
471 | li r0,96 ; Stride for touch ahead | |
472 | b nxtline | |
473 | ||
474 | .align 4 | |
475 | nxtline: | |
476 | lwz r2,0(r6) ; Get the first word | |
477 | lwz r5,4(r6) ; Get the second word | |
478 | lwz r7,8(r6) ; Get the third word | |
479 | lwz r8,12(r6) ; Get the fourth word | |
480 | lwz r9,16(r6) ; Get the fifth word | |
481 | lwz r10,20(r6) ; Get the sixth word | |
482 | lwz r11,24(r6) ; Get the seventh word | |
483 | lwz r12,28(r6) ; Get the eighth word | |
1c79356b | 484 | bt- noncache,skipz ; Skip if we are not cached... |
91447636 A |
485 | dcbz 0,r4 ; Blow away the whole line because we are replacing it |
486 | dcbt r6,r0 ; Touch ahead a bit | |
487 | skipz: | |
1c79356b | 488 | addi r6,r6,32 ; Point to the next |
91447636 A |
489 | stw r2,0(r4) ; Save the first word |
490 | stw r5,4(r4) ; Save the second word | |
491 | stw r7,8(r4) ; Save the third word | |
492 | stw r8,12(r4) ; Save the fourth word | |
493 | stw r9,16(r4) ; Save the fifth word | |
494 | stw r10,20(r4) ; Save the sixth word | |
495 | stw r11,24(r4) ; Save the seventh word | |
496 | stw r12,28(r4) ; Save the eighth word | |
1c79356b | 497 | addi r4,r4,32 ; Bump sink |
91447636 | 498 | bdnz+ nxtline ; Do the next line, if any... |
1c79356b A |
499 | |
500 | ||
501 | ; Move backend quadword | |
502 | ||
91447636 A |
503 | backend: ; Join here from "shortcopy" for forward moves <32 bytes |
504 | bf 27,noquad ; No quad to do... | |
1c79356b A |
505 | lwz r7,0(r6) ; Get the first word |
506 | lwz r8,4(r6) ; Get the second word | |
507 | lwz r9,8(r6) ; Get the third word | |
508 | lwz r11,12(r6) ; Get the fourth word | |
509 | stw r7,0(r4) ; Save the first word | |
510 | addi r6,r6,16 ; Point to the next | |
511 | stw r8,4(r4) ; Save the second word | |
512 | stw r9,8(r4) ; Save the third word | |
513 | stw r11,12(r4) ; Save the fourth word | |
514 | addi r4,r4,16 ; Bump sink | |
515 | ||
516 | ; Move backend double | |
517 | ||
518 | noquad: bf 28,nodouble ; No double to do... | |
519 | lwz r7,0(r6) ; Get the first word | |
520 | lwz r8,4(r6) ; Get the second word | |
521 | addi r6,r6,8 ; Point to the next | |
522 | stw r7,0(r4) ; Save the first word | |
523 | stw r8,4(r4) ; Save the second word | |
524 | addi r4,r4,8 ; Bump sink | |
525 | ||
526 | ; Move backend word | |
527 | ||
528 | nodouble: bf 29,noword ; No word to do... | |
529 | lwz r7,0(r6) ; Get the word | |
530 | addi r6,r6,4 ; Point to the next | |
531 | stw r7,0(r4) ; Save the word | |
532 | addi r4,r4,4 ; Bump sink | |
533 | ||
534 | ; Move backend halfword | |
535 | ||
536 | noword: bf 30,nohalf ; No halfword to do... | |
537 | lhz r7,0(r6) ; Get the halfword | |
538 | addi r6,r6,2 ; Point to the next | |
539 | sth r7,0(r4) ; Save the halfword | |
540 | addi r4,r4,2 ; Bump sink | |
541 | ||
542 | ; Move backend byte | |
543 | ||
91447636 | 544 | nohalf: bflr 31 ; Leave cuz we are all done... |
1c79356b A |
545 | lbz r7,0(r6) ; Get the byte |
546 | stb r7,0(r4) ; Save the single | |
55e303ae A |
547 | blr |
548 | ||
9bccf70c | 549 | |
91447636 A |
550 | ; Reverse moves on 32-bit machines, also reverse word aligned uncached moves on 64-bit machines. |
551 | ; NOTE: we never do an unaligned access if the source and destination are "relatively" | |
552 | ; word aligned. We depend on this in the uncached case on 64-bit processors. | |
553 | ; These are slower because we don't bother with dcbz. Fortunately, reverse moves are uncommon. | |
554 | ; r4 = destination | |
555 | ; r5 = length (>0) | |
556 | ; r6 = source | |
557 | ; r8 = inverse of largest mask smaller than operand length | |
558 | ; cr5 = noncache flag (but we don't dcbz anyway) | |
1c79356b | 559 | |
91447636 A |
560 | reverse32bit: ; here from 64-bit code with word aligned uncached operands |
561 | add r4,r5,r4 ; Point past the last sink byte | |
1c79356b | 562 | add r6,r5,r6 ; Point past the last source byte |
91447636 A |
563 | rlwinm r7,r4,0,0x1F ; Calculate the length to align dest on cache boundary |
564 | li r12,-1 ; Make sure we touch in the actual line | |
565 | andc. r0,r7,r8 ; Apply movement limit | |
1c79356b | 566 | dcbt r12,r6 ; Touch in the last line of source |
91447636 | 567 | mtcrf 0x01,r0 ; move length to cr6 and cr7 one cr at a time... |
1c79356b | 568 | dcbtst r12,r4 ; Touch in the last line of the sink |
91447636 A |
569 | mtcrf 0x02,r0 ; ...since moving more than one is slower on G4 and G5 |
570 | beq- balline ; Aready on cache line boundary (or too short to bother) | |
1c79356b A |
571 | |
572 | sub r5,r5,r0 ; Precaculate move length left after alignment | |
573 | ||
574 | bf 31,balhalf ; No single byte to do... | |
575 | lbz r7,-1(r6) ; Get the byte | |
576 | subi r6,r6,1 ; Point to the next | |
577 | stb r7,-1(r4) ; Save the single | |
578 | subi r4,r4,1 ; Bump sink | |
579 | ||
580 | ; Sink is halfword aligned here | |
581 | ||
582 | balhalf: bf 30,balword ; No halfword to do... | |
583 | lhz r7,-2(r6) ; Get the halfword | |
584 | subi r6,r6,2 ; Point to the next | |
585 | sth r7,-2(r4) ; Save the halfword | |
586 | subi r4,r4,2 ; Bump sink | |
587 | ||
588 | ; Sink is word aligned here | |
589 | ||
590 | balword: bf 29,baldouble ; No word to do... | |
591 | lwz r7,-4(r6) ; Get the word | |
592 | subi r6,r6,4 ; Point to the next | |
593 | stw r7,-4(r4) ; Save the word | |
594 | subi r4,r4,4 ; Bump sink | |
595 | ||
596 | ; Sink is double aligned here | |
597 | ||
598 | baldouble: bf 28,balquad ; No double to do... | |
599 | lwz r7,-8(r6) ; Get the first word | |
600 | lwz r8,-4(r6) ; Get the second word | |
601 | subi r6,r6,8 ; Point to the next | |
602 | stw r7,-8(r4) ; Save the first word | |
603 | stw r8,-4(r4) ; Save the second word | |
604 | subi r4,r4,8 ; Bump sink | |
605 | ||
606 | ; Sink is quadword aligned here | |
607 | ||
608 | balquad: bf 27,balline ; No quad to do... | |
609 | lwz r7,-16(r6) ; Get the first word | |
610 | lwz r8,-12(r6) ; Get the second word | |
611 | lwz r9,-8(r6) ; Get the third word | |
612 | lwz r11,-4(r6) ; Get the fourth word | |
613 | stw r7,-16(r4) ; Save the first word | |
614 | subi r6,r6,16 ; Point to the next | |
615 | stw r8,-12(r4) ; Save the second word | |
616 | stw r9,-8(r4) ; Save the third word | |
617 | stw r11,-4(r4) ; Save the fourth word | |
618 | subi r4,r4,16 ; Bump sink | |
619 | ||
620 | ; Sink is line aligned here | |
621 | ||
622 | balline: rlwinm. r0,r5,27,5,31 ; Get the number of full lines to move | |
91447636 A |
623 | mtcrf 0x02,r5 ; move length to cr6 and cr7 one cr at a time... |
624 | mtcrf 0x01,r5 ; ...since moving more than one is slower on G4 and G5 | |
1c79356b | 625 | beq- bbackend ; No full lines to move |
91447636 A |
626 | mtctr r0 ; set up loop count |
627 | b bnxtline | |
1c79356b | 628 | |
91447636 A |
629 | .align 4 |
630 | bnxtline: | |
1c79356b A |
631 | lwz r7,-32(r6) ; Get the first word |
632 | lwz r5,-28(r6) ; Get the second word | |
633 | lwz r2,-24(r6) ; Get the third word | |
634 | lwz r12,-20(r6) ; Get the third word | |
635 | lwz r11,-16(r6) ; Get the fifth word | |
636 | lwz r10,-12(r6) ; Get the sixth word | |
637 | lwz r9,-8(r6) ; Get the seventh word | |
638 | lwz r8,-4(r6) ; Get the eighth word | |
639 | subi r6,r6,32 ; Point to the next | |
640 | ||
641 | stw r7,-32(r4) ; Get the first word | |
91447636 | 642 | stw r5,-28(r4) ; Get the second word |
1c79356b A |
643 | stw r2,-24(r4) ; Get the third word |
644 | stw r12,-20(r4) ; Get the third word | |
645 | stw r11,-16(r4) ; Get the fifth word | |
646 | stw r10,-12(r4) ; Get the sixth word | |
647 | stw r9,-8(r4) ; Get the seventh word | |
648 | stw r8,-4(r4) ; Get the eighth word | |
649 | subi r4,r4,32 ; Bump sink | |
650 | ||
91447636 | 651 | bdnz+ bnxtline ; Do the next line, if any... |
1c79356b A |
652 | |
653 | ; | |
654 | ; Note: We touched these lines in at the beginning | |
655 | ; | |
656 | ||
657 | ; Move backend quadword | |
658 | ||
91447636 A |
659 | bbackend: ; Join here from "shortcopy" for reverse moves of <32 bytes |
660 | bf 27,bnoquad ; No quad to do... | |
1c79356b A |
661 | lwz r7,-16(r6) ; Get the first word |
662 | lwz r8,-12(r6) ; Get the second word | |
663 | lwz r9,-8(r6) ; Get the third word | |
664 | lwz r11,-4(r6) ; Get the fourth word | |
665 | stw r7,-16(r4) ; Save the first word | |
666 | subi r6,r6,16 ; Point to the next | |
667 | stw r8,-12(r4) ; Save the second word | |
668 | stw r9,-8(r4) ; Save the third word | |
669 | stw r11,-4(r4) ; Save the fourth word | |
670 | subi r4,r4,16 ; Bump sink | |
671 | ||
672 | ; Move backend double | |
673 | ||
674 | bnoquad: bf 28,bnodouble ; No double to do... | |
675 | lwz r7,-8(r6) ; Get the first word | |
676 | lwz r8,-4(r6) ; Get the second word | |
677 | subi r6,r6,8 ; Point to the next | |
678 | stw r7,-8(r4) ; Save the first word | |
679 | stw r8,-4(r4) ; Save the second word | |
680 | subi r4,r4,8 ; Bump sink | |
681 | ||
682 | ; Move backend word | |
683 | ||
684 | bnodouble: bf 29,bnoword ; No word to do... | |
685 | lwz r7,-4(r6) ; Get the word | |
686 | subi r6,r6,4 ; Point to the next | |
687 | stw r7,-4(r4) ; Save the word | |
688 | subi r4,r4,4 ; Bump sink | |
689 | ||
690 | ; Move backend halfword | |
691 | ||
692 | bnoword: bf 30,bnohalf ; No halfword to do... | |
693 | lhz r7,-2(r6) ; Get the halfword | |
694 | subi r6,r6,2 ; Point to the next | |
695 | sth r7,-2(r4) ; Save the halfword | |
696 | subi r4,r4,2 ; Bump sink | |
697 | ||
698 | ; Move backend byte | |
699 | ||
91447636 | 700 | bnohalf: bflr 31 ; Leave cuz we are all done... |
1c79356b A |
701 | lbz r7,-1(r6) ; Get the byte |
702 | stb r7,-1(r4) ; Save the single | |
91447636 | 703 | blr |
55e303ae A |
704 | |
705 | ||
706 | // Here on 64-bit processors, which have a 128-byte cache line. This can be | |
707 | // called either in 32 or 64-bit mode, which makes the test for reverse moves | |
708 | // a little tricky. We've already filtered out the (sou==dest) and (len==0) | |
709 | // special cases. | |
710 | // | |
711 | // When entered: | |
712 | // r4 = destination (32 or 64-bit ptr) | |
713 | // r5 = length (always 32 bits) | |
714 | // r6 = source (32 or 64-bit ptr) | |
91447636 A |
715 | // r12 = (dest - source), reverse move required if (dest-source)<length |
716 | // cr5 = noncache flag | |
55e303ae A |
717 | |
718 | .align 5 | |
719 | copyit64: | |
91447636 A |
720 | rlwinm r7,r5,0,0,31 // truncate length to 32-bit, in case we're running in 64-bit mode |
721 | cntlzw r11,r5 // get magnitude of length | |
55e303ae | 722 | dcbt 0,r6 // touch in 1st block of source |
55e303ae | 723 | dcbtst 0,r4 // touch in 1st destination cache block |
91447636 A |
724 | subc r7,r12,r7 // set Carry if (dest-source)>=length, in mode-independent way |
725 | li r0,0 // get a 0 | |
726 | lis r10,hi16(0x80000000)// get 0x80000000 | |
727 | addze. r0,r0 // set cr0 on carry bit (beq if reverse move required) | |
728 | neg r9,r4 // start to get alignment for destination | |
729 | sraw r8,r10,r11 // get mask based on operand length, to limit alignment | |
730 | bt-- noncache,c64uncached// skip if uncached | |
731 | beq-- c64rdouble // handle cached reverse moves | |
732 | ||
55e303ae A |
733 | |
734 | // Forward, cached or doubleword aligned uncached. This is the common case. | |
91447636 A |
735 | // NOTE: we never do an unaligned access if the source and destination are "relatively" |
736 | // doubleword aligned. We depend on this in the uncached case. | |
737 | // r4 = destination | |
738 | // r5 = length (>0) | |
739 | // r6 = source | |
740 | // r8 = inverse of largest mask smaller than operand length | |
741 | // r9 = neg(dest), used to compute alignment | |
742 | // cr5 = noncache flag | |
55e303ae A |
743 | |
744 | c64double: | |
91447636 A |
745 | rlwinm r7,r9,0,0x7F // get #bytes to 128-byte align destination |
746 | andc r7,r7,r8 // limit by operand length | |
55e303ae A |
747 | andi. r8,r7,7 // r8 <- #bytes to doubleword align |
748 | srwi r9,r7,3 // r9 <- #doublewords to 128-byte align | |
749 | sub r5,r5,r7 // adjust length remaining | |
750 | cmpwi cr1,r9,0 // any doublewords to move to cache align? | |
751 | srwi r10,r5,7 // r10 <- 128-byte chunks to xfer after aligning dest | |
752 | cmpwi cr7,r10,0 // set cr7 on chunk count | |
753 | beq c64double2 // dest already doubleword aligned | |
754 | mtctr r8 | |
755 | b c64double1 | |
756 | ||
757 | .align 5 // align inner loops | |
758 | c64double1: // copy bytes until dest is doubleword aligned | |
759 | lbz r0,0(r6) | |
760 | addi r6,r6,1 | |
761 | stb r0,0(r4) | |
762 | addi r4,r4,1 | |
763 | bdnz c64double1 | |
764 | ||
91447636 | 765 | c64double2: // r9/cr1=doublewords, r10/cr7=128-byte chunks |
55e303ae A |
766 | beq cr1,c64double4 // no doublewords to xfer in order to cache align |
767 | mtctr r9 | |
768 | b c64double3 | |
769 | ||
770 | .align 5 // align inner loops | |
771 | c64double3: // copy doublewords until dest is 128-byte aligned | |
772 | ld r7,0(r6) | |
773 | addi r6,r6,8 | |
774 | std r7,0(r4) | |
775 | addi r4,r4,8 | |
776 | bdnz c64double3 | |
777 | ||
91447636 | 778 | // Here to xfer 128-byte chunks, if any. Since we only have 8 GPRs for |
55e303ae A |
779 | // data (64 bytes), we load/store each twice per 128-byte chunk. |
780 | ||
781 | c64double4: // r10/cr7=128-byte chunks | |
782 | rlwinm r0,r5,29,28,31 // r0 <- count of leftover doublewords, after moving chunks | |
783 | cmpwi cr1,r0,0 // set cr1 on leftover doublewords | |
784 | beq cr7,c64double7 // no 128-byte chunks | |
55e303ae | 785 | |
91447636 A |
786 | ; We must check for (source-dest)<128 in a mode-independent way. If within 128 bytes, |
787 | ; turn on "noncache" because we cannot use dcbz128 even if operands are cacheable. | |
55e303ae | 788 | |
91447636 A |
789 | sub r8,r6,r4 // r8 <- (source - dest) |
790 | rldicr. r0,r8,0,63-7 // zero low 7 bits and check for 0, mode independent | |
791 | cror noncache,cr0_eq,noncache // turn on "noncache" flag if (source-dest)<128 | |
792 | mtctr r10 | |
793 | b c64InnerLoop | |
794 | ||
55e303ae A |
795 | .align 5 // align inner loop |
796 | c64InnerLoop: // loop copying 128-byte cache lines to 128-aligned destination | |
91447636 | 797 | ld r0,0(r6) // start pipe: load 1st half-line |
55e303ae | 798 | ld r2,8(r6) |
55e303ae | 799 | ld r7,16(r6) |
55e303ae | 800 | ld r8,24(r6) |
55e303ae | 801 | ld r9,32(r6) |
55e303ae | 802 | ld r10,40(r6) |
55e303ae | 803 | ld r11,48(r6) |
55e303ae | 804 | ld r12,56(r6) |
55e303ae A |
805 | bt noncache,c64InnerLoop1 // skip if uncached or overlap |
806 | dcbz128 0,r4 // avoid prefetch of next cache line | |
807 | c64InnerLoop1: | |
91447636 A |
808 | |
809 | std r0,0(r4) | |
55e303ae | 810 | std r2,8(r4) |
55e303ae | 811 | std r7,16(r4) |
55e303ae | 812 | std r8,24(r4) |
55e303ae | 813 | std r9,32(r4) |
55e303ae | 814 | std r10,40(r4) |
55e303ae | 815 | std r11,48(r4) |
55e303ae | 816 | std r12,56(r4) |
55e303ae | 817 | |
91447636 A |
818 | ld r0,64(r6) // load 2nd half of chunk |
819 | ld r2,72(r6) | |
820 | ld r7,80(r6) | |
821 | ld r8,88(r6) | |
822 | ld r9,96(r6) | |
823 | ld r10,104(r6) | |
824 | ld r11,112(r6) | |
825 | ld r12,120(r6) | |
826 | addi r6,r6,128 | |
827 | ||
828 | std r0,64(r4) | |
55e303ae A |
829 | std r2,72(r4) |
830 | std r7,80(r4) | |
831 | std r8,88(r4) | |
832 | std r9,96(r4) | |
833 | std r10,104(r4) | |
834 | std r11,112(r4) | |
835 | std r12,120(r4) | |
836 | addi r4,r4,128 // advance to next dest chunk | |
837 | ||
91447636 A |
838 | bdnz c64InnerLoop // loop if more chunks |
839 | ||
840 | ||
55e303ae A |
841 | c64double7: // r5 <- leftover bytes, cr1 set on doubleword count |
842 | rlwinm r0,r5,29,28,31 // r0 <- count of leftover doublewords (0-15) | |
843 | andi. r5,r5,7 // r5/cr0 <- count of leftover bytes (0-7) | |
844 | beq cr1,c64byte // no leftover doublewords | |
845 | mtctr r0 | |
846 | b c64double8 | |
847 | ||
848 | .align 5 // align inner loop | |
849 | c64double8: // loop copying leftover doublewords | |
850 | ld r0,0(r6) | |
851 | addi r6,r6,8 | |
852 | std r0,0(r4) | |
853 | addi r4,r4,8 | |
854 | bdnz c64double8 | |
855 | ||
856 | ||
857 | // Forward byte loop. | |
858 | ||
859 | c64byte: // r5/cr0 <- byte count (can be big if unaligned uncached) | |
91447636 | 860 | beqlr // done if no leftover bytes |
55e303ae A |
861 | mtctr r5 |
862 | b c64byte1 | |
863 | ||
864 | .align 5 // align inner loop | |
865 | c64byte1: | |
866 | lbz r0,0(r6) | |
867 | addi r6,r6,1 | |
868 | stb r0,0(r4) | |
869 | addi r4,r4,1 | |
870 | bdnz c64byte1 | |
871 | ||
91447636 | 872 | blr |
55e303ae A |
873 | |
874 | ||
875 | // Uncached copies. We must avoid unaligned accesses, since they always take alignment | |
876 | // exceptions on uncached memory on 64-bit processors. This may mean we copy long operands | |
877 | // a byte at a time, but that is still much faster than alignment exceptions. | |
91447636 A |
878 | // r4 = destination |
879 | // r5 = length (>0) | |
880 | // r6 = source | |
881 | // r8 = inverse of largest mask smaller than operand length | |
882 | // r9 = neg(dest), used to compute alignment | |
883 | // r12 = (dest-source), used to test relative alignment | |
884 | // cr0 = beq if reverse move required | |
885 | // cr5 = noncache flag | |
55e303ae A |
886 | |
887 | c64uncached: | |
91447636 A |
888 | rlwinm r10,r12,0,29,31 // relatively doubleword aligned? |
889 | rlwinm r11,r12,0,30,31 // relatively word aligned? | |
890 | cmpwi cr7,r10,0 // set cr7 beq if doubleword aligned | |
55e303ae | 891 | cmpwi cr1,r11,0 // set cr1 beq if word aligned |
91447636 A |
892 | beq-- c64reverseUncached |
893 | ||
894 | beq cr7,c64double // doubleword aligned | |
895 | beq cr1,forward32bit // word aligned, use G3/G4 code | |
55e303ae A |
896 | cmpwi r5,0 // set cr0 on byte count |
897 | b c64byte // unaligned operands | |
898 | ||
899 | c64reverseUncached: | |
91447636 A |
900 | beq cr7,c64rdouble // doubleword aligned so can use LD/STD |
901 | beq cr1,reverse32bit // word aligned, use G3/G4 code | |
55e303ae A |
902 | add r6,r6,r5 // point to (end+1) of source and dest |
903 | add r4,r4,r5 | |
904 | cmpwi r5,0 // set cr0 on length | |
905 | b c64rbyte // copy a byte at a time | |
906 | ||
907 | ||
908 | ||
909 | // Reverse doubleword copies. This is used for all cached copies, and doubleword | |
910 | // aligned uncached copies. | |
91447636 A |
911 | // r4 = destination |
912 | // r5 = length (>0) | |
913 | // r6 = source | |
914 | // r8 = inverse of largest mask of low-order 1s smaller than operand length | |
915 | // cr5 = noncache flag | |
55e303ae A |
916 | |
917 | c64rdouble: | |
918 | add r6,r6,r5 // point to (end+1) of source and dest | |
919 | add r4,r4,r5 | |
91447636 A |
920 | rlwinm r7,r4,0,29,31 // r7 <- #bytes to doubleword align dest |
921 | andc. r7,r7,r8 // limit by operand length | |
55e303ae A |
922 | sub r5,r5,r7 // adjust length |
923 | srwi r8,r5,6 // r8 <- 64-byte chunks to xfer | |
924 | cmpwi cr1,r8,0 // any chunks? | |
925 | beq c64rd2 // source already doubleword aligned | |
926 | mtctr r7 | |
927 | ||
928 | c64rd1: // copy bytes until source doublword aligned | |
929 | lbzu r0,-1(r6) | |
930 | stbu r0,-1(r4) | |
931 | bdnz c64rd1 | |
932 | ||
933 | c64rd2: // r8/cr1 <- count of 64-byte chunks | |
934 | rlwinm r0,r5,29,29,31 // r0 <- count of leftover doublewords | |
935 | andi. r5,r5,7 // r5/cr0 <- count of leftover bytes | |
936 | cmpwi cr7,r0,0 // leftover doublewords? | |
937 | beq cr1,c64rd4 // no chunks to xfer | |
55e303ae | 938 | mtctr r8 |
55e303ae A |
939 | b c64rd3 |
940 | ||
941 | .align 5 // align inner loop | |
942 | c64rd3: // loop copying 64-byte chunks | |
943 | ld r7,-8(r6) | |
944 | ld r8,-16(r6) | |
945 | ld r9,-24(r6) | |
946 | ld r10,-32(r6) | |
947 | ld r11,-40(r6) | |
948 | ld r12,-48(r6) | |
949 | std r7,-8(r4) | |
950 | std r8,-16(r4) | |
951 | ld r7,-56(r6) | |
952 | ldu r8,-64(r6) | |
953 | std r9,-24(r4) | |
954 | std r10,-32(r4) | |
955 | std r11,-40(r4) | |
956 | std r12,-48(r4) | |
957 | std r7,-56(r4) | |
958 | stdu r8,-64(r4) | |
959 | bdnz c64rd3 | |
960 | ||
961 | c64rd4: // r0/cr7 = leftover doublewords r5/cr0 = leftover bytes | |
962 | beq cr7,c64rbyte // no leftover doublewords | |
963 | mtctr r0 | |
964 | ||
965 | c64rd5: // loop copying leftover doublewords | |
966 | ldu r0,-8(r6) | |
967 | stdu r0,-8(r4) | |
968 | bdnz c64rd5 | |
969 | ||
970 | ||
971 | // Reverse byte loop. | |
972 | ||
973 | c64rbyte: // r5/cr0 <- byte count (can be big if unaligned uncached) | |
91447636 | 974 | beqlr // done if no leftover bytes |
55e303ae A |
975 | mtctr r5 |
976 | ||
977 | c64rbyte1: | |
978 | lbzu r0,-1(r6) | |
979 | stbu r0,-1(r4) | |
980 | bdnz c64rbyte1 | |
981 | ||
91447636 | 982 | blr |
55e303ae | 983 |