]> git.saurik.com Git - apple/xnu.git/blame - bsd/sys/queue.h
xnu-792.12.6.tar.gz
[apple/xnu.git] / bsd / sys / queue.h
CommitLineData
1c79356b 1/*
8ad349bb 2 * Copyright (c) 2006 Apple Computer, Inc. All Rights Reserved.
1c79356b 3 *
8ad349bb 4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
1c79356b 5 *
8ad349bb
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
14 * agreement.
15 *
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
18 * file.
19 *
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
27 *
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
1c79356b
A
29 */
30/*
31 * Copyright (c) 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Berkeley and its contributors.
46 * 4. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)queue.h 8.5 (Berkeley) 8/20/94
63 */
64
65#ifndef _SYS_QUEUE_H_
66#define _SYS_QUEUE_H_
67
68/*
69 * This file defines five types of data structures: singly-linked lists,
70 * slingly-linked tail queues, lists, tail queues, and circular queues.
71 *
72 * A singly-linked list is headed by a single forward pointer. The elements
73 * are singly linked for minimum space and pointer manipulation overhead at
74 * the expense of O(n) removal for arbitrary elements. New elements can be
75 * added to the list after an existing element or at the head of the list.
76 * Elements being removed from the head of the list should use the explicit
77 * macro for this purpose for optimum efficiency. A singly-linked list may
78 * only be traversed in the forward direction. Singly-linked lists are ideal
79 * for applications with large datasets and few or no removals or for
80 * implementing a LIFO queue.
81 *
82 * A singly-linked tail queue is headed by a pair of pointers, one to the
83 * head of the list and the other to the tail of the list. The elements are
84 * singly linked for minimum space and pointer manipulation overhead at the
85 * expense of O(n) removal for arbitrary elements. New elements can be added
86 * to the list after an existing element, at the head of the list, or at the
87 * end of the list. Elements being removed from the head of the tail queue
88 * should use the explicit macro for this purpose for optimum efficiency.
89 * A singly-linked tail queue may only be traversed in the forward direction.
90 * Singly-linked tail queues are ideal for applications with large datasets
91 * and few or no removals or for implementing a FIFO queue.
92 *
93 * A list is headed by a single forward pointer (or an array of forward
94 * pointers for a hash table header). The elements are doubly linked
95 * so that an arbitrary element can be removed without a need to
96 * traverse the list. New elements can be added to the list before
97 * or after an existing element or at the head of the list. A list
98 * may only be traversed in the forward direction.
99 *
100 * A tail queue is headed by a pair of pointers, one to the head of the
101 * list and the other to the tail of the list. The elements are doubly
102 * linked so that an arbitrary element can be removed without a need to
103 * traverse the list. New elements can be added to the list before or
104 * after an existing element, at the head of the list, or at the end of
105 * the list. A tail queue may only be traversed in the forward direction.
106 *
107 * A circle queue is headed by a pair of pointers, one to the head of the
108 * list and the other to the tail of the list. The elements are doubly
109 * linked so that an arbitrary element can be removed without a need to
110 * traverse the list. New elements can be added to the list before or after
111 * an existing element, at the head of the list, or at the end of the list.
112 * A circle queue may be traversed in either direction, but has a more
113 * complex end of list detection.
114 *
115 * For details on the use of these macros, see the queue(3) manual page.
116 *
117 *
118 * SLIST LIST STAILQ TAILQ CIRCLEQ
119 * _HEAD + + + + +
120 * _ENTRY + + + + +
121 * _INIT + + + + +
122 * _EMPTY + + + + +
123 * _FIRST + + + + +
124 * _NEXT + + + + +
125 * _PREV - - - + +
126 * _LAST - - + + +
127 * _FOREACH + + - + +
128 * _INSERT_HEAD + + + + +
129 * _INSERT_BEFORE - + - + +
130 * _INSERT_AFTER + + + + +
131 * _INSERT_TAIL - - + + +
132 * _REMOVE_HEAD + - + - -
133 * _REMOVE + + + + +
134 *
135 */
136
137/*
138 * Singly-linked List definitions.
139 */
140#define SLIST_HEAD(name, type) \
141struct name { \
142 struct type *slh_first; /* first element */ \
143}
144
145#define SLIST_ENTRY(type) \
146struct { \
147 struct type *sle_next; /* next element */ \
148}
149
150/*
151 * Singly-linked List functions.
152 */
153#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
154
155#define SLIST_FIRST(head) ((head)->slh_first)
156
157#define SLIST_FOREACH(var, head, field) \
158 for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
159
160#define SLIST_INIT(head) { \
161 (head)->slh_first = NULL; \
162}
163
164#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
165 (elm)->field.sle_next = (slistelm)->field.sle_next; \
166 (slistelm)->field.sle_next = (elm); \
167} while (0)
168
169#define SLIST_INSERT_HEAD(head, elm, field) do { \
170 (elm)->field.sle_next = (head)->slh_first; \
171 (head)->slh_first = (elm); \
172} while (0)
173
174#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
175
176#define SLIST_REMOVE_HEAD(head, field) do { \
177 (head)->slh_first = (head)->slh_first->field.sle_next; \
178} while (0)
179
180#define SLIST_REMOVE(head, elm, type, field) do { \
181 if ((head)->slh_first == (elm)) { \
182 SLIST_REMOVE_HEAD((head), field); \
183 } \
184 else { \
185 struct type *curelm = (head)->slh_first; \
186 while( curelm->field.sle_next != (elm) ) \
187 curelm = curelm->field.sle_next; \
188 curelm->field.sle_next = \
189 curelm->field.sle_next->field.sle_next; \
190 } \
191} while (0)
192
193/*
194 * Singly-linked Tail queue definitions.
195 */
196#define STAILQ_HEAD(name, type) \
197struct name { \
198 struct type *stqh_first;/* first element */ \
199 struct type **stqh_last;/* addr of last next element */ \
200}
201
202#define STAILQ_HEAD_INITIALIZER(head) \
203 { NULL, &(head).stqh_first }
204
205#define STAILQ_ENTRY(type) \
206struct { \
207 struct type *stqe_next; /* next element */ \
208}
209
210/*
211 * Singly-linked Tail queue functions.
212 */
213#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
214
215#define STAILQ_INIT(head) do { \
216 (head)->stqh_first = NULL; \
217 (head)->stqh_last = &(head)->stqh_first; \
218} while (0)
219
220#define STAILQ_FIRST(head) ((head)->stqh_first)
221#define STAILQ_LAST(head) (*(head)->stqh_last)
222
223#define STAILQ_INSERT_HEAD(head, elm, field) do { \
224 if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
225 (head)->stqh_last = &(elm)->field.stqe_next; \
226 (head)->stqh_first = (elm); \
227} while (0)
228
229#define STAILQ_INSERT_TAIL(head, elm, field) do { \
230 (elm)->field.stqe_next = NULL; \
231 *(head)->stqh_last = (elm); \
232 (head)->stqh_last = &(elm)->field.stqe_next; \
233} while (0)
234
235#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
236 if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
237 (head)->stqh_last = &(elm)->field.stqe_next; \
238 (tqelm)->field.stqe_next = (elm); \
239} while (0)
240
241#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
242
243#define STAILQ_REMOVE_HEAD(head, field) do { \
244 if (((head)->stqh_first = \
245 (head)->stqh_first->field.stqe_next) == NULL) \
246 (head)->stqh_last = &(head)->stqh_first; \
247} while (0)
248
249#define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
250 if (((head)->stqh_first = (elm)->field.stqe_next) == NULL) \
251 (head)->stqh_last = &(head)->stqh_first; \
252} while (0)
253
254
255#define STAILQ_REMOVE(head, elm, type, field) do { \
256 if ((head)->stqh_first == (elm)) { \
257 STAILQ_REMOVE_HEAD(head, field); \
258 } \
259 else { \
260 struct type *curelm = (head)->stqh_first; \
261 while( curelm->field.stqe_next != (elm) ) \
262 curelm = curelm->field.stqe_next; \
263 if((curelm->field.stqe_next = \
264 curelm->field.stqe_next->field.stqe_next) == NULL) \
265 (head)->stqh_last = &(curelm)->field.stqe_next; \
266 } \
267} while (0)
268
269/*
270 * List definitions.
271 */
272#define LIST_HEAD(name, type) \
273struct name { \
274 struct type *lh_first; /* first element */ \
275}
276
277#define LIST_HEAD_INITIALIZER(head) \
278 { NULL }
279
280#define LIST_ENTRY(type) \
281struct { \
282 struct type *le_next; /* next element */ \
283 struct type **le_prev; /* address of previous next element */ \
284}
285
286/*
287 * List functions.
288 */
289
290#define LIST_EMPTY(head) ((head)->lh_first == NULL)
291
292#define LIST_FIRST(head) ((head)->lh_first)
293
294#define LIST_FOREACH(var, head, field) \
295 for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next)
296
297#define LIST_INIT(head) do { \
298 (head)->lh_first = NULL; \
299} while (0)
300
301#define LIST_INSERT_AFTER(listelm, elm, field) do { \
302 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
303 (listelm)->field.le_next->field.le_prev = \
304 &(elm)->field.le_next; \
305 (listelm)->field.le_next = (elm); \
306 (elm)->field.le_prev = &(listelm)->field.le_next; \
307} while (0)
308
309#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
310 (elm)->field.le_prev = (listelm)->field.le_prev; \
311 (elm)->field.le_next = (listelm); \
312 *(listelm)->field.le_prev = (elm); \
313 (listelm)->field.le_prev = &(elm)->field.le_next; \
314} while (0)
315
316#define LIST_INSERT_HEAD(head, elm, field) do { \
317 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
318 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
319 (head)->lh_first = (elm); \
320 (elm)->field.le_prev = &(head)->lh_first; \
321} while (0)
322
323#define LIST_NEXT(elm, field) ((elm)->field.le_next)
324
325#define LIST_REMOVE(elm, field) do { \
326 if ((elm)->field.le_next != NULL) \
327 (elm)->field.le_next->field.le_prev = \
328 (elm)->field.le_prev; \
329 *(elm)->field.le_prev = (elm)->field.le_next; \
330} while (0)
331
332/*
333 * Tail queue definitions.
334 */
335#define TAILQ_HEAD(name, type) \
336struct name { \
337 struct type *tqh_first; /* first element */ \
338 struct type **tqh_last; /* addr of last next element */ \
339}
340
341#define TAILQ_HEAD_INITIALIZER(head) \
342 { NULL, &(head).tqh_first }
343
344#define TAILQ_ENTRY(type) \
345struct { \
346 struct type *tqe_next; /* next element */ \
347 struct type **tqe_prev; /* address of previous next element */ \
348}
349
350/*
351 * Tail queue functions.
352 */
353#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
354
355#define TAILQ_FOREACH(var, head, field) \
356 for (var = TAILQ_FIRST(head); var; var = TAILQ_NEXT(var, field))
357
358#define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
359 for (var = TAILQ_LAST(head, headname); \
360 var; var = TAILQ_PREV(var, headname, field))
361
362#define TAILQ_FIRST(head) ((head)->tqh_first)
363
364#define TAILQ_LAST(head, headname) \
365 (*(((struct headname *)((head)->tqh_last))->tqh_last))
366
367#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
368
369#define TAILQ_PREV(elm, headname, field) \
370 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
371
372#define TAILQ_INIT(head) do { \
373 (head)->tqh_first = NULL; \
374 (head)->tqh_last = &(head)->tqh_first; \
375} while (0)
376
377#define TAILQ_INSERT_HEAD(head, elm, field) do { \
378 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
379 (head)->tqh_first->field.tqe_prev = \
380 &(elm)->field.tqe_next; \
381 else \
382 (head)->tqh_last = &(elm)->field.tqe_next; \
383 (head)->tqh_first = (elm); \
384 (elm)->field.tqe_prev = &(head)->tqh_first; \
385} while (0)
386
387#define TAILQ_INSERT_TAIL(head, elm, field) do { \
388 (elm)->field.tqe_next = NULL; \
389 (elm)->field.tqe_prev = (head)->tqh_last; \
390 *(head)->tqh_last = (elm); \
391 (head)->tqh_last = &(elm)->field.tqe_next; \
392} while (0)
393
394#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
395 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
396 (elm)->field.tqe_next->field.tqe_prev = \
397 &(elm)->field.tqe_next; \
398 else \
399 (head)->tqh_last = &(elm)->field.tqe_next; \
400 (listelm)->field.tqe_next = (elm); \
401 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
402} while (0)
403
404#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
405 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
406 (elm)->field.tqe_next = (listelm); \
407 *(listelm)->field.tqe_prev = (elm); \
408 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
409} while (0)
410
411#define TAILQ_REMOVE(head, elm, field) do { \
412 if (((elm)->field.tqe_next) != NULL) \
413 (elm)->field.tqe_next->field.tqe_prev = \
414 (elm)->field.tqe_prev; \
415 else \
416 (head)->tqh_last = (elm)->field.tqe_prev; \
417 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
418} while (0)
419
420/*
421 * Circular queue definitions.
422 */
423#define CIRCLEQ_HEAD(name, type) \
424struct name { \
425 struct type *cqh_first; /* first element */ \
426 struct type *cqh_last; /* last element */ \
427}
428
429#define CIRCLEQ_ENTRY(type) \
430struct { \
431 struct type *cqe_next; /* next element */ \
432 struct type *cqe_prev; /* previous element */ \
433}
434
435/*
436 * Circular queue functions.
437 */
438#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
439
440#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
441
442#define CIRCLEQ_FOREACH(var, head, field) \
443 for((var) = (head)->cqh_first; \
444 (var) != (void *)(head); \
445 (var) = (var)->field.cqe_next)
446
447#define CIRCLEQ_INIT(head) do { \
448 (head)->cqh_first = (void *)(head); \
449 (head)->cqh_last = (void *)(head); \
450} while (0)
451
452#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
453 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
454 (elm)->field.cqe_prev = (listelm); \
455 if ((listelm)->field.cqe_next == (void *)(head)) \
456 (head)->cqh_last = (elm); \
457 else \
458 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
459 (listelm)->field.cqe_next = (elm); \
460} while (0)
461
462#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
463 (elm)->field.cqe_next = (listelm); \
464 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
465 if ((listelm)->field.cqe_prev == (void *)(head)) \
466 (head)->cqh_first = (elm); \
467 else \
468 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
469 (listelm)->field.cqe_prev = (elm); \
470} while (0)
471
472#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
473 (elm)->field.cqe_next = (head)->cqh_first; \
474 (elm)->field.cqe_prev = (void *)(head); \
475 if ((head)->cqh_last == (void *)(head)) \
476 (head)->cqh_last = (elm); \
477 else \
478 (head)->cqh_first->field.cqe_prev = (elm); \
479 (head)->cqh_first = (elm); \
480} while (0)
481
482#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
483 (elm)->field.cqe_next = (void *)(head); \
484 (elm)->field.cqe_prev = (head)->cqh_last; \
485 if ((head)->cqh_first == (void *)(head)) \
486 (head)->cqh_first = (elm); \
487 else \
488 (head)->cqh_last->field.cqe_next = (elm); \
489 (head)->cqh_last = (elm); \
490} while (0)
491
492#define CIRCLEQ_LAST(head) ((head)->cqh_last)
493
494#define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
495
496#define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
497
498#define CIRCLEQ_REMOVE(head, elm, field) do { \
499 if ((elm)->field.cqe_next == (void *)(head)) \
500 (head)->cqh_last = (elm)->field.cqe_prev; \
501 else \
502 (elm)->field.cqe_next->field.cqe_prev = \
503 (elm)->field.cqe_prev; \
504 if ((elm)->field.cqe_prev == (void *)(head)) \
505 (head)->cqh_first = (elm)->field.cqe_next; \
506 else \
507 (elm)->field.cqe_prev->field.cqe_next = \
508 (elm)->field.cqe_next; \
509} while (0)
510
511#ifdef KERNEL
512
513#if NOTFB31
514
515/*
516 * XXX insque() and remque() are an old way of handling certain queues.
517 * They bogusly assumes that all queue heads look alike.
518 */
519
520struct quehead {
521 struct quehead *qh_link;
522 struct quehead *qh_rlink;
523};
524
525#ifdef __GNUC__
526
527static __inline void
528insque(void *a, void *b)
529{
530 struct quehead *element = a, *head = b;
531
532 element->qh_link = head->qh_link;
533 element->qh_rlink = head;
534 head->qh_link = element;
535 element->qh_link->qh_rlink = element;
536}
537
538static __inline void
539remque(void *a)
540{
541 struct quehead *element = a;
542
543 element->qh_link->qh_rlink = element->qh_rlink;
544 element->qh_rlink->qh_link = element->qh_link;
545 element->qh_rlink = 0;
546}
547
548#else /* !__GNUC__ */
549
91447636
A
550void insque(void *a, void *b);
551void remque(void *a);
1c79356b
A
552
553#endif /* __GNUC__ */
554
555#endif
556#endif /* KERNEL */
557
558#endif /* !_SYS_QUEUE_H_ */