]>
Commit | Line | Data |
---|---|---|
39236c6e A |
1 | /* |
2 | * Copyright (c) 2012-2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <string.h> | |
30 | #include <sys/types.h> | |
31 | #include <sys/syslog.h> | |
32 | #include <sys/queue.h> | |
33 | #include <sys/malloc.h> | |
34 | #include <sys/socket.h> | |
35 | #include <sys/kpi_mbuf.h> | |
36 | #include <sys/mbuf.h> | |
37 | #include <sys/domain.h> | |
38 | #include <sys/protosw.h> | |
39 | #include <sys/socketvar.h> | |
40 | #include <sys/kernel.h> | |
41 | #include <sys/systm.h> | |
42 | #include <sys/kern_control.h> | |
43 | #include <sys/ubc.h> | |
44 | #include <sys/codesign.h> | |
45 | #include <libkern/tree.h> | |
46 | #include <kern/locks.h> | |
47 | #include <kern/debug.h> | |
48 | #include <net/if_var.h> | |
49 | #include <net/route.h> | |
50 | #include <net/flowhash.h> | |
51 | #include <net/ntstat.h> | |
52 | #include <netinet/in.h> | |
53 | #include <netinet/in_var.h> | |
54 | #include <netinet/tcp.h> | |
55 | #include <netinet/tcp_var.h> | |
56 | #include <netinet/tcp_fsm.h> | |
57 | #include <netinet/flow_divert.h> | |
58 | #include <netinet/flow_divert_proto.h> | |
59 | #if INET6 | |
60 | #include <netinet6/ip6protosw.h> | |
61 | #endif /* INET6 */ | |
62 | #include <dev/random/randomdev.h> | |
63 | #include <libkern/crypto/sha1.h> | |
64 | #include <libkern/crypto/crypto_internal.h> | |
65 | ||
66 | #define FLOW_DIVERT_CONNECT_STARTED 0x00000001 | |
67 | #define FLOW_DIVERT_READ_CLOSED 0x00000002 | |
68 | #define FLOW_DIVERT_WRITE_CLOSED 0x00000004 | |
69 | #define FLOW_DIVERT_TUNNEL_RD_CLOSED 0x00000008 | |
70 | #define FLOW_DIVERT_TUNNEL_WR_CLOSED 0x00000010 | |
71 | #define FLOW_DIVERT_TRANSFERRED 0x00000020 | |
72 | ||
73 | #define FDLOG(level, pcb, format, ...) do { \ | |
74 | if (level <= (pcb)->log_level) { \ | |
75 | log((level > LOG_NOTICE ? LOG_NOTICE : level), "%s (%u): " format "\n", __FUNCTION__, (pcb)->hash, __VA_ARGS__); \ | |
76 | } \ | |
77 | } while (0) | |
78 | ||
79 | #define FDLOG0(level, pcb, msg) do { \ | |
80 | if (level <= (pcb)->log_level) { \ | |
81 | log((level > LOG_NOTICE ? LOG_NOTICE : level), "%s (%u): %s\n", __FUNCTION__, (pcb)->hash, msg); \ | |
82 | } \ | |
83 | } while (0) | |
84 | ||
85 | #define FDRETAIN(pcb) if ((pcb) != NULL) OSIncrementAtomic(&(pcb)->ref_count) | |
86 | #define FDRELEASE(pcb) \ | |
87 | do { \ | |
88 | if ((pcb) != NULL && 1 == OSDecrementAtomic(&(pcb)->ref_count)) { \ | |
89 | flow_divert_pcb_destroy(pcb); \ | |
90 | } \ | |
91 | } while (0) | |
92 | ||
93 | #define FDLOCK(pcb) lck_mtx_lock(&(pcb)->mtx) | |
94 | #define FDUNLOCK(pcb) lck_mtx_unlock(&(pcb)->mtx) | |
95 | ||
96 | #define FD_CTL_SENDBUFF_SIZE (2 * FLOW_DIVERT_CHUNK_SIZE) | |
97 | #define FD_CTL_RCVBUFF_SIZE (128 * 1024) | |
98 | ||
99 | #define GROUP_BIT_CTL_ENQUEUE_BLOCKED 0 | |
100 | ||
101 | #define GROUP_COUNT_MAX 32 | |
102 | #define FLOW_DIVERT_MAX_NAME_SIZE 4096 | |
103 | #define FLOW_DIVERT_MAX_KEY_SIZE 1024 | |
104 | ||
105 | #define DNS_SERVICE_GROUP_UNIT (GROUP_COUNT_MAX + 1) | |
106 | ||
107 | struct flow_divert_trie_node | |
108 | { | |
109 | uint16_t start; | |
110 | uint16_t length; | |
111 | uint16_t child_map; | |
112 | uint32_t group_unit; | |
113 | }; | |
114 | ||
115 | struct flow_divert_trie | |
116 | { | |
117 | struct flow_divert_trie_node *nodes; | |
118 | uint16_t *child_maps; | |
119 | uint8_t *bytes; | |
120 | void *memory; | |
121 | size_t nodes_count; | |
122 | size_t child_maps_count; | |
123 | size_t bytes_count; | |
124 | size_t nodes_free_next; | |
125 | size_t child_maps_free_next; | |
126 | size_t bytes_free_next; | |
127 | uint16_t root; | |
128 | }; | |
129 | ||
130 | #define CHILD_MAP_SIZE 256 | |
131 | #define NULL_TRIE_IDX 0xffff | |
132 | #define TRIE_NODE(t, i) ((t)->nodes[(i)]) | |
133 | #define TRIE_CHILD(t, i, b) (((t)->child_maps + (CHILD_MAP_SIZE * TRIE_NODE(t, i).child_map))[(b)]) | |
134 | #define TRIE_BYTE(t, i) ((t)->bytes[(i)]) | |
135 | ||
136 | static struct flow_divert_pcb nil_pcb; | |
137 | ||
138 | decl_lck_rw_data(static, g_flow_divert_group_lck); | |
139 | static struct flow_divert_group **g_flow_divert_groups = NULL; | |
140 | static uint32_t g_active_group_count = 0; | |
141 | static struct flow_divert_trie g_signing_id_trie; | |
142 | ||
143 | static lck_grp_attr_t *flow_divert_grp_attr = NULL; | |
144 | static lck_attr_t *flow_divert_mtx_attr = NULL; | |
145 | static lck_grp_t *flow_divert_mtx_grp = NULL; | |
146 | static errno_t g_init_result = 0; | |
147 | ||
148 | static kern_ctl_ref g_flow_divert_kctl_ref = NULL; | |
149 | ||
150 | static struct protosw g_flow_divert_in_protosw; | |
151 | static struct pr_usrreqs g_flow_divert_in_usrreqs; | |
152 | #if INET6 | |
153 | static struct ip6protosw g_flow_divert_in6_protosw; | |
154 | static struct pr_usrreqs g_flow_divert_in6_usrreqs; | |
155 | #endif /* INET6 */ | |
156 | ||
157 | static struct protosw *g_tcp_protosw = NULL; | |
158 | static struct ip6protosw *g_tcp6_protosw = NULL; | |
159 | ||
160 | static inline int | |
161 | flow_divert_pcb_cmp(const struct flow_divert_pcb *pcb_a, const struct flow_divert_pcb *pcb_b) | |
162 | { | |
163 | return memcmp(&pcb_a->hash, &pcb_b->hash, sizeof(pcb_a->hash)); | |
164 | } | |
165 | ||
166 | RB_PROTOTYPE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); | |
167 | RB_GENERATE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); | |
168 | ||
169 | static const char * | |
170 | flow_divert_packet_type2str(uint8_t packet_type) | |
171 | { | |
172 | switch (packet_type) { | |
173 | case FLOW_DIVERT_PKT_CONNECT: | |
174 | return "connect"; | |
175 | case FLOW_DIVERT_PKT_CONNECT_RESULT: | |
176 | return "connect result"; | |
177 | case FLOW_DIVERT_PKT_DATA: | |
178 | return "data"; | |
179 | case FLOW_DIVERT_PKT_CLOSE: | |
180 | return "close"; | |
181 | case FLOW_DIVERT_PKT_READ_NOTIFY: | |
182 | return "read notification"; | |
183 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: | |
184 | return "properties update"; | |
185 | case FLOW_DIVERT_PKT_APP_MAP_UPDATE: | |
186 | return "app map update"; | |
187 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: | |
188 | return "app map create"; | |
189 | default: | |
190 | return "unknown"; | |
191 | } | |
192 | } | |
193 | ||
194 | static struct flow_divert_pcb * | |
195 | flow_divert_pcb_lookup(uint32_t hash, struct flow_divert_group *group) | |
196 | { | |
197 | struct flow_divert_pcb key_item; | |
198 | struct flow_divert_pcb *fd_cb = NULL; | |
199 | ||
200 | key_item.hash = hash; | |
201 | ||
202 | lck_rw_lock_shared(&group->lck); | |
203 | fd_cb = RB_FIND(fd_pcb_tree, &group->pcb_tree, &key_item); | |
204 | FDRETAIN(fd_cb); | |
205 | lck_rw_done(&group->lck); | |
206 | ||
207 | return fd_cb; | |
208 | } | |
209 | ||
210 | static errno_t | |
211 | flow_divert_pcb_insert(struct flow_divert_pcb *fd_cb, uint32_t ctl_unit) | |
212 | { | |
213 | int error = 0; | |
214 | struct flow_divert_pcb *exist = NULL; | |
215 | struct flow_divert_group *group; | |
216 | static uint32_t g_nextkey = 1; | |
217 | static uint32_t g_hash_seed = 0; | |
218 | errno_t result = 0; | |
219 | int try_count = 0; | |
220 | ||
221 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
222 | return EINVAL; | |
223 | } | |
224 | ||
225 | socket_unlock(fd_cb->so, 0); | |
226 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
227 | ||
228 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
229 | FDLOG0(LOG_ERR, &nil_pcb, "No active groups, flow divert cannot be used for this socket"); | |
230 | error = ENETUNREACH; | |
231 | goto done; | |
232 | } | |
233 | ||
234 | group = g_flow_divert_groups[ctl_unit]; | |
235 | if (group == NULL) { | |
236 | FDLOG(LOG_ERR, &nil_pcb, "Group for control unit %u is NULL, flow divert cannot be used for this socket", ctl_unit); | |
237 | error = ENETUNREACH; | |
238 | goto done; | |
239 | } | |
240 | ||
241 | socket_lock(fd_cb->so, 0); | |
242 | ||
243 | do { | |
244 | uint32_t key[2]; | |
245 | uint32_t idx; | |
246 | ||
247 | key[0] = g_nextkey++; | |
248 | key[1] = RandomULong(); | |
249 | ||
250 | if (g_hash_seed == 0) { | |
251 | g_hash_seed = RandomULong(); | |
252 | } | |
253 | ||
254 | fd_cb->hash = net_flowhash(key, sizeof(key), g_hash_seed); | |
255 | ||
256 | for (idx = 1; idx < GROUP_COUNT_MAX; idx++) { | |
257 | struct flow_divert_group *curr_group = g_flow_divert_groups[idx]; | |
258 | if (curr_group != NULL && curr_group != group) { | |
259 | lck_rw_lock_shared(&curr_group->lck); | |
260 | exist = RB_FIND(fd_pcb_tree, &curr_group->pcb_tree, fd_cb); | |
261 | lck_rw_done(&curr_group->lck); | |
262 | if (exist != NULL) { | |
263 | break; | |
264 | } | |
265 | } | |
266 | } | |
267 | ||
268 | if (exist == NULL) { | |
269 | lck_rw_lock_exclusive(&group->lck); | |
270 | exist = RB_INSERT(fd_pcb_tree, &group->pcb_tree, fd_cb); | |
271 | lck_rw_done(&group->lck); | |
272 | } | |
273 | } while (exist != NULL && try_count++ < 3); | |
274 | ||
275 | if (exist == NULL) { | |
276 | fd_cb->group = group; | |
277 | FDRETAIN(fd_cb); /* The group now has a reference */ | |
278 | } else { | |
279 | fd_cb->hash = 0; | |
280 | result = EEXIST; | |
281 | } | |
282 | ||
283 | socket_unlock(fd_cb->so, 0); | |
284 | ||
285 | done: | |
286 | lck_rw_done(&g_flow_divert_group_lck); | |
287 | socket_lock(fd_cb->so, 0); | |
288 | ||
289 | return result; | |
290 | } | |
291 | ||
292 | static struct flow_divert_pcb * | |
293 | flow_divert_pcb_create(socket_t so) | |
294 | { | |
295 | struct flow_divert_pcb *new_pcb = NULL; | |
296 | ||
297 | MALLOC_ZONE(new_pcb, struct flow_divert_pcb *, sizeof(*new_pcb), M_FLOW_DIVERT_PCB, M_WAITOK); | |
298 | if (new_pcb == NULL) { | |
299 | FDLOG0(LOG_ERR, &nil_pcb, "failed to allocate a pcb"); | |
300 | return NULL; | |
301 | } | |
302 | ||
303 | memset(new_pcb, 0, sizeof(*new_pcb)); | |
304 | ||
305 | lck_mtx_init(&new_pcb->mtx, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
306 | new_pcb->so = so; | |
307 | new_pcb->log_level = nil_pcb.log_level; | |
308 | ||
309 | FDRETAIN(new_pcb); /* Represents the socket's reference */ | |
310 | ||
311 | return new_pcb; | |
312 | } | |
313 | ||
314 | static void | |
315 | flow_divert_pcb_destroy(struct flow_divert_pcb *fd_cb) | |
316 | { | |
317 | FDLOG(LOG_INFO, fd_cb, "Destroying, app tx %u, app rx %u, tunnel tx %u, tunnel rx %u", | |
318 | fd_cb->bytes_written_by_app, fd_cb->bytes_read_by_app, fd_cb->bytes_sent, fd_cb->bytes_received); | |
319 | ||
320 | if (fd_cb->local_address != NULL) { | |
321 | FREE(fd_cb->local_address, M_SONAME); | |
322 | } | |
323 | if (fd_cb->remote_address != NULL) { | |
324 | FREE(fd_cb->remote_address, M_SONAME); | |
325 | } | |
326 | if (fd_cb->connect_token != NULL) { | |
327 | mbuf_freem(fd_cb->connect_token); | |
328 | } | |
329 | FREE_ZONE(fd_cb, sizeof(*fd_cb), M_FLOW_DIVERT_PCB); | |
330 | } | |
331 | ||
332 | static void | |
333 | flow_divert_pcb_remove(struct flow_divert_pcb *fd_cb) | |
334 | { | |
335 | if (fd_cb->group != NULL) { | |
336 | struct flow_divert_group *group = fd_cb->group; | |
337 | lck_rw_lock_exclusive(&group->lck); | |
338 | FDLOG(LOG_INFO, fd_cb, "Removing from group %d, ref count = %d", group->ctl_unit, fd_cb->ref_count); | |
339 | RB_REMOVE(fd_pcb_tree, &group->pcb_tree, fd_cb); | |
340 | fd_cb->group = NULL; | |
341 | FDRELEASE(fd_cb); /* Release the group's reference */ | |
342 | lck_rw_done(&group->lck); | |
343 | } | |
344 | } | |
345 | ||
346 | static int | |
347 | flow_divert_packet_init(struct flow_divert_pcb *fd_cb, uint8_t packet_type, mbuf_t *packet) | |
348 | { | |
349 | struct flow_divert_packet_header hdr; | |
350 | int error = 0; | |
351 | ||
352 | error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, packet); | |
353 | if (error) { | |
354 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d", error); | |
355 | return error; | |
356 | } | |
357 | ||
358 | hdr.packet_type = packet_type; | |
359 | hdr.conn_id = htonl(fd_cb->hash); | |
360 | ||
361 | /* Lay down the header */ | |
362 | error = mbuf_copyback(*packet, 0, sizeof(hdr), &hdr, MBUF_DONTWAIT); | |
363 | if (error) { | |
364 | FDLOG(LOG_ERR, fd_cb, "mbuf_copyback(hdr) failed: %d", error); | |
365 | mbuf_freem(*packet); | |
366 | *packet = NULL; | |
367 | return error; | |
368 | } | |
369 | ||
370 | return 0; | |
371 | } | |
372 | ||
373 | static int | |
374 | flow_divert_packet_append_tlv(mbuf_t packet, uint8_t type, size_t length, const void *value) | |
375 | { | |
376 | size_t net_length = htonl(length); | |
377 | int error = 0; | |
378 | ||
379 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), sizeof(type), &type, MBUF_DONTWAIT); | |
380 | if (error) { | |
381 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the type (%d)", type); | |
382 | return error; | |
383 | } | |
384 | ||
385 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), sizeof(net_length), &net_length, MBUF_DONTWAIT); | |
386 | if (error) { | |
387 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the length (%lu)", length); | |
388 | return error; | |
389 | } | |
390 | ||
391 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), length, value, MBUF_DONTWAIT); | |
392 | if (error) { | |
393 | FDLOG0(LOG_ERR, &nil_pcb, "failed to append the value"); | |
394 | return error; | |
395 | } | |
396 | ||
397 | return error; | |
398 | } | |
399 | ||
400 | static int | |
401 | flow_divert_packet_find_tlv(mbuf_t packet, int offset, uint8_t type, int *err, int next) | |
402 | { | |
403 | size_t cursor = offset; | |
404 | int error = 0; | |
405 | size_t curr_length; | |
406 | uint8_t curr_type; | |
407 | ||
408 | *err = 0; | |
409 | ||
410 | do { | |
411 | if (!next) { | |
412 | error = mbuf_copydata(packet, cursor, sizeof(curr_type), &curr_type); | |
413 | if (error) { | |
414 | *err = ENOENT; | |
415 | return -1; | |
416 | } | |
417 | } else { | |
418 | next = 0; | |
419 | curr_type = FLOW_DIVERT_TLV_NIL; | |
420 | } | |
421 | ||
422 | if (curr_type != type) { | |
423 | cursor += sizeof(curr_type); | |
424 | error = mbuf_copydata(packet, cursor, sizeof(curr_length), &curr_length); | |
425 | if (error) { | |
426 | *err = error; | |
427 | return -1; | |
428 | } | |
429 | ||
430 | cursor += (sizeof(curr_length) + ntohl(curr_length)); | |
431 | } | |
432 | } while (curr_type != type); | |
433 | ||
434 | return cursor; | |
435 | } | |
436 | ||
437 | static int | |
438 | flow_divert_packet_get_tlv(mbuf_t packet, int offset, uint8_t type, size_t buff_len, void *buff, size_t *val_size) | |
439 | { | |
440 | int error = 0; | |
441 | size_t length; | |
442 | int tlv_offset; | |
443 | ||
444 | tlv_offset = flow_divert_packet_find_tlv(packet, offset, type, &error, 0); | |
445 | if (tlv_offset < 0) { | |
446 | return error; | |
447 | } | |
448 | ||
449 | error = mbuf_copydata(packet, tlv_offset + sizeof(type), sizeof(length), &length); | |
450 | if (error) { | |
451 | return error; | |
452 | } | |
453 | ||
454 | length = ntohl(length); | |
455 | ||
456 | if (val_size != NULL) { | |
457 | *val_size = length; | |
458 | } | |
459 | ||
460 | if (buff != NULL && buff_len > 0) { | |
461 | size_t to_copy = (length < buff_len) ? length : buff_len; | |
462 | error = mbuf_copydata(packet, tlv_offset + sizeof(type) + sizeof(length), to_copy, buff); | |
463 | if (error) { | |
464 | return error; | |
465 | } | |
466 | } | |
467 | ||
468 | return 0; | |
469 | } | |
470 | ||
471 | static int | |
472 | flow_divert_packet_compute_hmac(mbuf_t packet, struct flow_divert_group *group, uint8_t *hmac) | |
473 | { | |
474 | mbuf_t curr_mbuf = packet; | |
475 | ||
476 | if (g_crypto_funcs == NULL || group->token_key == NULL) { | |
477 | return ENOPROTOOPT; | |
478 | } | |
479 | ||
480 | cchmac_di_decl(g_crypto_funcs->ccsha1_di, hmac_ctx); | |
481 | g_crypto_funcs->cchmac_init_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, group->token_key_size, group->token_key); | |
482 | ||
483 | while (curr_mbuf != NULL) { | |
484 | g_crypto_funcs->cchmac_update_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, mbuf_len(curr_mbuf), mbuf_data(curr_mbuf)); | |
485 | curr_mbuf = mbuf_next(curr_mbuf); | |
486 | } | |
487 | ||
488 | g_crypto_funcs->cchmac_final_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, hmac); | |
489 | ||
490 | return 0; | |
491 | } | |
492 | ||
493 | static int | |
494 | flow_divert_packet_verify_hmac(mbuf_t packet, uint32_t ctl_unit) | |
495 | { | |
496 | int error = 0; | |
497 | struct flow_divert_group *group = NULL; | |
498 | int hmac_offset; | |
499 | uint8_t packet_hmac[SHA_DIGEST_LENGTH]; | |
500 | uint8_t computed_hmac[SHA_DIGEST_LENGTH]; | |
501 | mbuf_t tail; | |
502 | ||
503 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
504 | ||
505 | if (g_flow_divert_groups != NULL && g_active_group_count > 0) { | |
506 | group = g_flow_divert_groups[ctl_unit]; | |
507 | } | |
508 | ||
509 | if (group == NULL) { | |
510 | lck_rw_done(&g_flow_divert_group_lck); | |
511 | return ENOPROTOOPT; | |
512 | } | |
513 | ||
514 | lck_rw_lock_shared(&group->lck); | |
515 | ||
516 | if (group->token_key == NULL) { | |
517 | error = ENOPROTOOPT; | |
518 | goto done; | |
519 | } | |
520 | ||
521 | hmac_offset = flow_divert_packet_find_tlv(packet, 0, FLOW_DIVERT_TLV_HMAC, &error, 0); | |
522 | if (hmac_offset < 0) { | |
523 | goto done; | |
524 | } | |
525 | ||
526 | error = flow_divert_packet_get_tlv(packet, hmac_offset, FLOW_DIVERT_TLV_HMAC, sizeof(packet_hmac), packet_hmac, NULL); | |
527 | if (error) { | |
528 | goto done; | |
529 | } | |
530 | ||
531 | /* Chop off the HMAC TLV */ | |
532 | error = mbuf_split(packet, hmac_offset, MBUF_WAITOK, &tail); | |
533 | if (error) { | |
534 | goto done; | |
535 | } | |
536 | ||
537 | mbuf_free(tail); | |
538 | ||
539 | error = flow_divert_packet_compute_hmac(packet, group, computed_hmac); | |
540 | if (error) { | |
541 | goto done; | |
542 | } | |
543 | ||
544 | if (memcmp(packet_hmac, computed_hmac, sizeof(packet_hmac))) { | |
545 | FDLOG0(LOG_WARNING, &nil_pcb, "HMAC in token does not match computed HMAC"); | |
546 | error = EINVAL; | |
547 | goto done; | |
548 | } | |
549 | ||
550 | done: | |
551 | lck_rw_done(&group->lck); | |
552 | lck_rw_done(&g_flow_divert_group_lck); | |
553 | return error; | |
554 | } | |
555 | ||
556 | static void | |
557 | flow_divert_add_data_statistics(struct flow_divert_pcb *fd_cb, int data_len, Boolean send) | |
558 | { | |
559 | struct inpcb *inp = NULL; | |
560 | struct ifnet *ifp = NULL; | |
561 | Boolean cell = FALSE; | |
562 | Boolean wifi = FALSE; | |
563 | ||
564 | inp = sotoinpcb(fd_cb->so); | |
565 | if (inp == NULL) { | |
566 | return; | |
567 | } | |
568 | ||
569 | ifp = inp->inp_last_outifp; | |
570 | if (ifp != NULL) { | |
571 | cell = IFNET_IS_CELLULAR(ifp); | |
572 | wifi = (!cell && IFNET_IS_WIFI(ifp)); | |
573 | } | |
574 | ||
575 | if (send) { | |
576 | INP_ADD_STAT(inp, cell, wifi, txpackets, 1); | |
577 | INP_ADD_STAT(inp, cell, wifi, txbytes, data_len); | |
578 | } else { | |
579 | INP_ADD_STAT(inp, cell, wifi, rxpackets, 1); | |
580 | INP_ADD_STAT(inp, cell, wifi, rxbytes, data_len); | |
581 | } | |
582 | } | |
583 | ||
584 | static errno_t | |
585 | flow_divert_check_no_cellular(struct flow_divert_pcb *fd_cb) | |
586 | { | |
587 | struct inpcb *inp = NULL; | |
588 | struct ifnet *ifp = NULL; | |
589 | ||
590 | inp = sotoinpcb(fd_cb->so); | |
591 | if ((inp != NULL) && (inp->inp_flags & INP_NO_IFT_CELLULAR)) { | |
592 | ifp = inp->inp_last_outifp; | |
593 | if (ifp != NULL) { | |
594 | if (IFNET_IS_CELLULAR(ifp)) { | |
595 | return EHOSTUNREACH; | |
596 | } | |
597 | } | |
598 | } | |
599 | ||
600 | return 0; | |
601 | } | |
602 | ||
603 | static void | |
604 | flow_divert_update_closed_state(struct flow_divert_pcb *fd_cb, int how, Boolean tunnel) | |
605 | { | |
606 | if (how != SHUT_RD) { | |
607 | fd_cb->flags |= FLOW_DIVERT_WRITE_CLOSED; | |
608 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
609 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; | |
610 | /* If the tunnel is not accepting writes any more, then flush the send buffer */ | |
611 | sbflush(&fd_cb->so->so_snd); | |
612 | } | |
613 | } | |
614 | if (how != SHUT_WR) { | |
615 | fd_cb->flags |= FLOW_DIVERT_READ_CLOSED; | |
616 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
617 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; | |
618 | } | |
619 | } | |
620 | } | |
621 | ||
622 | static uint16_t | |
623 | trie_node_alloc(struct flow_divert_trie *trie) | |
624 | { | |
625 | if (trie->nodes_free_next < trie->nodes_count) { | |
626 | uint16_t node_idx = trie->nodes_free_next++; | |
627 | TRIE_NODE(trie, node_idx).child_map = NULL_TRIE_IDX; | |
628 | return node_idx; | |
629 | } else { | |
630 | return NULL_TRIE_IDX; | |
631 | } | |
632 | } | |
633 | ||
634 | static uint16_t | |
635 | trie_child_map_alloc(struct flow_divert_trie *trie) | |
636 | { | |
637 | if (trie->child_maps_free_next < trie->child_maps_count) { | |
638 | return trie->child_maps_free_next++; | |
639 | } else { | |
640 | return NULL_TRIE_IDX; | |
641 | } | |
642 | } | |
643 | ||
644 | static uint16_t | |
645 | trie_bytes_move(struct flow_divert_trie *trie, uint16_t bytes_idx, size_t bytes_size) | |
646 | { | |
647 | uint16_t start = trie->bytes_free_next; | |
648 | if (start + bytes_size <= trie->bytes_count) { | |
649 | if (start != bytes_idx) { | |
650 | memmove(&TRIE_BYTE(trie, start), &TRIE_BYTE(trie, bytes_idx), bytes_size); | |
651 | } | |
652 | trie->bytes_free_next += bytes_size; | |
653 | return start; | |
654 | } else { | |
655 | return NULL_TRIE_IDX; | |
656 | } | |
657 | } | |
658 | ||
659 | static uint16_t | |
660 | flow_divert_trie_insert(struct flow_divert_trie *trie, uint16_t string_start, size_t string_len) | |
661 | { | |
662 | uint16_t current = trie->root; | |
663 | uint16_t child = trie->root; | |
664 | uint16_t string_end = string_start + string_len; | |
665 | uint16_t string_idx = string_start; | |
666 | uint16_t string_remainder = string_len; | |
667 | ||
668 | while (child != NULL_TRIE_IDX) { | |
669 | uint16_t parent = current; | |
670 | uint16_t node_idx; | |
671 | uint16_t current_end; | |
672 | ||
673 | current = child; | |
674 | child = NULL_TRIE_IDX; | |
675 | ||
676 | current_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; | |
677 | ||
678 | for (node_idx = TRIE_NODE(trie, current).start; | |
679 | node_idx < current_end && | |
680 | string_idx < string_end && | |
681 | TRIE_BYTE(trie, node_idx) == TRIE_BYTE(trie, string_idx); | |
682 | node_idx++, string_idx++); | |
683 | ||
684 | string_remainder = string_end - string_idx; | |
685 | ||
686 | if (node_idx < (TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length)) { | |
687 | /* | |
688 | * We did not reach the end of the current node's string. | |
689 | * We need to split the current node into two: | |
690 | * 1. A new node that contains the prefix of the node that matches | |
691 | * the prefix of the string being inserted. | |
692 | * 2. The current node modified to point to the remainder | |
693 | * of the current node's string. | |
694 | */ | |
695 | uint16_t prefix = trie_node_alloc(trie); | |
696 | if (prefix == NULL_TRIE_IDX) { | |
697 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while splitting an existing node"); | |
698 | return NULL_TRIE_IDX; | |
699 | } | |
700 | ||
701 | /* | |
702 | * Prefix points to the portion of the current nodes's string that has matched | |
703 | * the input string thus far. | |
704 | */ | |
705 | TRIE_NODE(trie, prefix).start = TRIE_NODE(trie, current).start; | |
706 | TRIE_NODE(trie, prefix).length = (node_idx - TRIE_NODE(trie, current).start); | |
707 | ||
708 | /* | |
709 | * Prefix has the current node as the child corresponding to the first byte | |
710 | * after the split. | |
711 | */ | |
712 | TRIE_NODE(trie, prefix).child_map = trie_child_map_alloc(trie); | |
713 | if (TRIE_NODE(trie, prefix).child_map == NULL_TRIE_IDX) { | |
714 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while splitting an existing node"); | |
715 | return NULL_TRIE_IDX; | |
716 | } | |
717 | TRIE_CHILD(trie, prefix, TRIE_BYTE(trie, node_idx)) = current; | |
718 | ||
719 | /* Parent has the prefix as the child correspoding to the first byte in the prefix */ | |
720 | TRIE_CHILD(trie, parent, TRIE_BYTE(trie, TRIE_NODE(trie, prefix).start)) = prefix; | |
721 | ||
722 | /* Current node is adjusted to point to the remainder */ | |
723 | TRIE_NODE(trie, current).start = node_idx; | |
724 | TRIE_NODE(trie, current).length -= TRIE_NODE(trie, prefix).length; | |
725 | ||
726 | /* We want to insert the new leaf (if any) as a child of the prefix */ | |
727 | current = prefix; | |
728 | } | |
729 | ||
730 | if (string_remainder > 0) { | |
731 | /* | |
732 | * We still have bytes in the string that have not been matched yet. | |
733 | * If the current node has children, iterate to the child corresponding | |
734 | * to the next byte in the string. | |
735 | */ | |
736 | if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { | |
737 | child = TRIE_CHILD(trie, current, TRIE_BYTE(trie, string_idx)); | |
738 | } | |
739 | } | |
740 | } /* while (child != NULL_TRIE_IDX) */ | |
741 | ||
742 | if (string_remainder > 0) { | |
743 | /* Add a new leaf containing the remainder of the string */ | |
744 | uint16_t leaf = trie_node_alloc(trie); | |
745 | if (leaf == NULL_TRIE_IDX) { | |
746 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while inserting a new leaf"); | |
747 | return NULL_TRIE_IDX; | |
748 | } | |
749 | ||
750 | TRIE_NODE(trie, leaf).start = trie_bytes_move(trie, string_idx, string_remainder); | |
751 | if (TRIE_NODE(trie, leaf).start == NULL_TRIE_IDX) { | |
752 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of bytes while inserting a new leaf"); | |
753 | return NULL_TRIE_IDX; | |
754 | } | |
755 | TRIE_NODE(trie, leaf).length = string_remainder; | |
756 | ||
757 | /* Set the new leaf as the child of the current node */ | |
758 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { | |
759 | TRIE_NODE(trie, current).child_map = trie_child_map_alloc(trie); | |
760 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { | |
761 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while inserting a new leaf"); | |
762 | return NULL_TRIE_IDX; | |
763 | } | |
764 | } | |
765 | TRIE_CHILD(trie, current, TRIE_BYTE(trie, TRIE_NODE(trie, leaf).start)) = leaf; | |
766 | current = leaf; | |
767 | } /* else duplicate or this string is a prefix of one of the existing strings */ | |
768 | ||
769 | return current; | |
770 | } | |
771 | ||
772 | static uint16_t | |
773 | flow_divert_trie_search(struct flow_divert_trie *trie, const uint8_t *string_bytes) | |
774 | { | |
775 | uint16_t current = trie->root; | |
776 | uint16_t string_idx = 0; | |
777 | ||
778 | while (current != NULL_TRIE_IDX) { | |
779 | uint16_t next = NULL_TRIE_IDX; | |
780 | uint16_t node_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; | |
781 | uint16_t node_idx; | |
782 | ||
783 | for (node_idx = TRIE_NODE(trie, current).start; | |
784 | node_idx < node_end && string_bytes[string_idx] != '\0' && string_bytes[string_idx] == TRIE_BYTE(trie, node_idx); | |
785 | node_idx++, string_idx++); | |
786 | ||
787 | if (node_idx == node_end) { | |
788 | if (string_bytes[string_idx] == '\0') { | |
789 | return current; /* Got an exact match */ | |
790 | } else if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { | |
791 | next = TRIE_CHILD(trie, current, string_bytes[string_idx]); | |
792 | } | |
793 | } | |
794 | current = next; | |
795 | } | |
796 | ||
797 | return NULL_TRIE_IDX; | |
798 | } | |
799 | ||
800 | static int | |
801 | flow_divert_get_src_proc(struct socket *so, proc_t *proc, boolean_t match_delegate) | |
802 | { | |
803 | int release = 0; | |
804 | ||
805 | if (!match_delegate && | |
806 | (so->so_flags & SOF_DELEGATED) && | |
807 | (*proc == PROC_NULL || (*proc)->p_pid != so->e_pid)) | |
808 | { | |
809 | *proc = proc_find(so->e_pid); | |
810 | release = 1; | |
811 | } else if (*proc == PROC_NULL) { | |
812 | *proc = current_proc(); | |
813 | } | |
814 | ||
815 | if (*proc != PROC_NULL) { | |
816 | if ((*proc)->p_pid == 0) { | |
817 | if (release) { | |
818 | proc_rele(*proc); | |
819 | } | |
820 | release = 0; | |
821 | *proc = PROC_NULL; | |
822 | } | |
823 | } | |
824 | ||
825 | return release; | |
826 | } | |
827 | ||
828 | static int | |
829 | flow_divert_send_packet(struct flow_divert_pcb *fd_cb, mbuf_t packet, Boolean enqueue) | |
830 | { | |
831 | int error; | |
832 | ||
833 | if (fd_cb->group == NULL) { | |
834 | fd_cb->so->so_error = ECONNABORTED; | |
835 | soisdisconnected(fd_cb->so); | |
836 | return ECONNABORTED; | |
837 | } | |
838 | ||
839 | lck_rw_lock_shared(&fd_cb->group->lck); | |
840 | ||
841 | if (MBUFQ_EMPTY(&fd_cb->group->send_queue)) { | |
842 | error = ctl_enqueuembuf(g_flow_divert_kctl_ref, fd_cb->group->ctl_unit, packet, CTL_DATA_EOR); | |
843 | } else { | |
844 | error = ENOBUFS; | |
845 | } | |
846 | ||
847 | if (error == ENOBUFS) { | |
848 | if (enqueue) { | |
849 | if (!lck_rw_lock_shared_to_exclusive(&fd_cb->group->lck)) { | |
850 | lck_rw_lock_exclusive(&fd_cb->group->lck); | |
851 | } | |
852 | MBUFQ_ENQUEUE(&fd_cb->group->send_queue, packet); | |
853 | error = 0; | |
854 | } | |
855 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &fd_cb->group->atomic_bits); | |
856 | } | |
857 | ||
858 | lck_rw_done(&fd_cb->group->lck); | |
859 | ||
860 | return error; | |
861 | } | |
862 | ||
863 | static int | |
864 | flow_divert_send_connect(struct flow_divert_pcb *fd_cb, struct sockaddr *to, proc_t p) | |
865 | { | |
866 | mbuf_t connect_packet = NULL; | |
867 | int error = 0; | |
868 | ||
869 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT, &connect_packet); | |
870 | if (error) { | |
871 | goto done; | |
872 | } | |
873 | ||
874 | error = flow_divert_packet_append_tlv(connect_packet, | |
875 | FLOW_DIVERT_TLV_TRAFFIC_CLASS, | |
876 | sizeof(fd_cb->so->so_traffic_class), | |
877 | &fd_cb->so->so_traffic_class); | |
878 | if (error) { | |
879 | goto done; | |
880 | } | |
881 | ||
882 | if (fd_cb->so->so_flags & SOF_DELEGATED) { | |
883 | error = flow_divert_packet_append_tlv(connect_packet, | |
884 | FLOW_DIVERT_TLV_PID, | |
885 | sizeof(fd_cb->so->e_pid), | |
886 | &fd_cb->so->e_pid); | |
887 | if (error) { | |
888 | goto done; | |
889 | } | |
890 | ||
891 | error = flow_divert_packet_append_tlv(connect_packet, | |
892 | FLOW_DIVERT_TLV_UUID, | |
893 | sizeof(fd_cb->so->e_uuid), | |
894 | &fd_cb->so->e_uuid); | |
895 | if (error) { | |
896 | goto done; | |
897 | } | |
898 | } else { | |
899 | error = flow_divert_packet_append_tlv(connect_packet, | |
900 | FLOW_DIVERT_TLV_PID, | |
901 | sizeof(fd_cb->so->e_pid), | |
902 | &fd_cb->so->last_pid); | |
903 | if (error) { | |
904 | goto done; | |
905 | } | |
906 | ||
907 | error = flow_divert_packet_append_tlv(connect_packet, | |
908 | FLOW_DIVERT_TLV_UUID, | |
909 | sizeof(fd_cb->so->e_uuid), | |
910 | &fd_cb->so->last_uuid); | |
911 | if (error) { | |
912 | goto done; | |
913 | } | |
914 | } | |
915 | ||
916 | if (fd_cb->connect_token != NULL) { | |
917 | unsigned int token_len = m_length(fd_cb->connect_token); | |
918 | mbuf_concatenate(connect_packet, fd_cb->connect_token); | |
919 | mbuf_pkthdr_adjustlen(connect_packet, token_len); | |
920 | fd_cb->connect_token = NULL; | |
921 | } else { | |
922 | uint32_t ctl_unit = htonl(fd_cb->control_group_unit); | |
923 | int port; | |
924 | int release_proc; | |
925 | ||
926 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit); | |
927 | if (error) { | |
928 | goto done; | |
929 | } | |
930 | ||
931 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_TARGET_ADDRESS, to->sa_len, to); | |
932 | if (error) { | |
933 | goto done; | |
934 | } | |
935 | ||
936 | if (to->sa_family == AF_INET) { | |
937 | port = ntohs((satosin(to))->sin_port); | |
938 | } | |
939 | #if INET6 | |
940 | else { | |
941 | port = ntohs((satosin6(to))->sin6_port); | |
942 | } | |
943 | #endif | |
944 | ||
945 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_TARGET_PORT, sizeof(port), &port); | |
946 | if (error) { | |
947 | goto done; | |
948 | } | |
949 | ||
950 | release_proc = flow_divert_get_src_proc(fd_cb->so, &p, FALSE); | |
951 | if (p != PROC_NULL) { | |
952 | proc_lock(p); | |
953 | if (p->p_csflags & CS_VALID) { | |
954 | const char *signing_id = cs_identity_get(p); | |
955 | if (signing_id != NULL) { | |
956 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_SIGNING_ID, strlen(signing_id), signing_id); | |
957 | } | |
958 | ||
959 | if (error == 0) { | |
960 | unsigned char cdhash[SHA1_RESULTLEN]; | |
961 | error = proc_getcdhash(p, cdhash); | |
962 | if (error == 0) { | |
963 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_CDHASH, sizeof(cdhash), cdhash); | |
964 | } | |
965 | } | |
966 | } | |
967 | proc_unlock(p); | |
968 | ||
969 | if (release_proc) { | |
970 | proc_rele(p); | |
971 | } | |
972 | } | |
973 | } | |
974 | ||
975 | error = flow_divert_send_packet(fd_cb, connect_packet, TRUE); | |
976 | if (error) { | |
977 | goto done; | |
978 | } | |
979 | ||
980 | done: | |
981 | if (error && connect_packet != NULL) { | |
982 | mbuf_free(connect_packet); | |
983 | } | |
984 | ||
985 | return error; | |
986 | } | |
987 | ||
988 | static int | |
989 | flow_divert_send_connect_result(struct flow_divert_pcb *fd_cb) | |
990 | { | |
991 | int error = 0; | |
992 | mbuf_t packet = NULL; | |
993 | int rbuff_space = 0; | |
994 | ||
995 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT_RESULT, &packet); | |
996 | if (error) { | |
997 | FDLOG(LOG_ERR, fd_cb, "failed to create a connect result packet: %d", error); | |
998 | goto done; | |
999 | } | |
1000 | ||
1001 | rbuff_space = sbspace(&fd_cb->so->so_rcv); | |
1002 | if (rbuff_space < 0) { | |
1003 | rbuff_space = 0; | |
1004 | } | |
1005 | rbuff_space = htonl(rbuff_space); | |
1006 | error = flow_divert_packet_append_tlv(packet, | |
1007 | FLOW_DIVERT_TLV_SPACE_AVAILABLE, | |
1008 | sizeof(rbuff_space), | |
1009 | &rbuff_space); | |
1010 | if (error) { | |
1011 | goto done; | |
1012 | } | |
1013 | ||
1014 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1015 | if (error) { | |
1016 | goto done; | |
1017 | } | |
1018 | ||
1019 | done: | |
1020 | if (error && packet != NULL) { | |
1021 | mbuf_free(packet); | |
1022 | } | |
1023 | ||
1024 | return error; | |
1025 | } | |
1026 | ||
1027 | static int | |
1028 | flow_divert_send_close(struct flow_divert_pcb *fd_cb, int how) | |
1029 | { | |
1030 | int error = 0; | |
1031 | mbuf_t packet = NULL; | |
1032 | uint32_t zero = 0; | |
1033 | ||
1034 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CLOSE, &packet); | |
1035 | if (error) { | |
1036 | FDLOG(LOG_ERR, fd_cb, "failed to create a close packet: %d", error); | |
1037 | goto done; | |
1038 | } | |
1039 | ||
1040 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(zero), &zero); | |
1041 | if (error) { | |
1042 | FDLOG(LOG_ERR, fd_cb, "failed to add the error code TLV: %d", error); | |
1043 | goto done; | |
1044 | } | |
1045 | ||
1046 | how = htonl(how); | |
1047 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_HOW, sizeof(how), &how); | |
1048 | if (error) { | |
1049 | FDLOG(LOG_ERR, fd_cb, "failed to add the how flag: %d", error); | |
1050 | goto done; | |
1051 | } | |
1052 | ||
1053 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1054 | if (error) { | |
1055 | goto done; | |
1056 | } | |
1057 | ||
1058 | done: | |
1059 | if (error && packet != NULL) { | |
1060 | mbuf_free(packet); | |
1061 | } | |
1062 | ||
1063 | return error; | |
1064 | } | |
1065 | ||
1066 | static int | |
1067 | flow_divert_tunnel_how_closed(struct flow_divert_pcb *fd_cb) | |
1068 | { | |
1069 | if ((fd_cb->flags & (FLOW_DIVERT_TUNNEL_RD_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) == | |
1070 | (FLOW_DIVERT_TUNNEL_RD_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) | |
1071 | { | |
1072 | return SHUT_RDWR; | |
1073 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_RD_CLOSED) { | |
1074 | return SHUT_RD; | |
1075 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_WR_CLOSED) { | |
1076 | return SHUT_WR; | |
1077 | } | |
1078 | ||
1079 | return -1; | |
1080 | } | |
1081 | ||
1082 | /* | |
1083 | * Determine what close messages if any need to be sent to the tunnel. Returns TRUE if the tunnel is closed for both reads and | |
1084 | * writes. Returns FALSE otherwise. | |
1085 | */ | |
1086 | static void | |
1087 | flow_divert_send_close_if_needed(struct flow_divert_pcb *fd_cb) | |
1088 | { | |
1089 | int how = -1; | |
1090 | ||
1091 | /* Do not send any close messages if there is still data in the send buffer */ | |
1092 | if (fd_cb->so->so_snd.sb_cc == 0) { | |
1093 | if ((fd_cb->flags & (FLOW_DIVERT_READ_CLOSED|FLOW_DIVERT_TUNNEL_RD_CLOSED)) == FLOW_DIVERT_READ_CLOSED) { | |
1094 | /* Socket closed reads, but tunnel did not. Tell tunnel to close reads */ | |
1095 | how = SHUT_RD; | |
1096 | } | |
1097 | if ((fd_cb->flags & (FLOW_DIVERT_WRITE_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) == FLOW_DIVERT_WRITE_CLOSED) { | |
1098 | /* Socket closed writes, but tunnel did not. Tell tunnel to close writes */ | |
1099 | if (how == SHUT_RD) { | |
1100 | how = SHUT_RDWR; | |
1101 | } else { | |
1102 | how = SHUT_WR; | |
1103 | } | |
1104 | } | |
1105 | } | |
1106 | ||
1107 | if (how != -1) { | |
1108 | FDLOG(LOG_INFO, fd_cb, "sending close, how = %d", how); | |
1109 | if (flow_divert_send_close(fd_cb, how) != ENOBUFS) { | |
1110 | /* Successfully sent the close packet. Record the ways in which the tunnel has been closed */ | |
1111 | if (how != SHUT_RD) { | |
1112 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; | |
1113 | } | |
1114 | if (how != SHUT_WR) { | |
1115 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; | |
1116 | } | |
1117 | } | |
1118 | } | |
1119 | ||
1120 | if (flow_divert_tunnel_how_closed(fd_cb) == SHUT_RDWR) { | |
1121 | soisdisconnected(fd_cb->so); | |
1122 | } | |
1123 | } | |
1124 | ||
1125 | static errno_t | |
1126 | flow_divert_send_data_packet(struct flow_divert_pcb *fd_cb, mbuf_t data, size_t data_len, Boolean force) | |
1127 | { | |
1128 | mbuf_t packet; | |
1129 | mbuf_t last; | |
1130 | int error = 0; | |
1131 | ||
1132 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_DATA, &packet); | |
1133 | if (error) { | |
1134 | FDLOG(LOG_ERR, fd_cb, "flow_divert_packet_init failed: %d", error); | |
1135 | return error; | |
1136 | } | |
1137 | ||
1138 | last = m_last(packet); | |
1139 | mbuf_setnext(last, data); | |
1140 | mbuf_pkthdr_adjustlen(packet, data_len); | |
1141 | ||
1142 | error = flow_divert_send_packet(fd_cb, packet, force); | |
1143 | ||
1144 | if (error) { | |
1145 | mbuf_setnext(last, NULL); | |
1146 | mbuf_free(packet); | |
1147 | } else { | |
1148 | fd_cb->bytes_sent += data_len; | |
1149 | flow_divert_add_data_statistics(fd_cb, data_len, TRUE); | |
1150 | } | |
1151 | ||
1152 | return error; | |
1153 | } | |
1154 | ||
1155 | static void | |
1156 | flow_divert_send_buffered_data(struct flow_divert_pcb *fd_cb, Boolean force) | |
1157 | { | |
1158 | size_t to_send; | |
1159 | size_t sent = 0; | |
1160 | int error = 0; | |
1161 | mbuf_t buffer; | |
1162 | ||
1163 | to_send = fd_cb->so->so_snd.sb_cc; | |
1164 | buffer = fd_cb->so->so_snd.sb_mb; | |
1165 | ||
1166 | if (buffer == NULL && to_send > 0) { | |
1167 | FDLOG(LOG_ERR, fd_cb, "Send buffer is NULL, but size is supposed to be %lu", to_send); | |
1168 | return; | |
1169 | } | |
1170 | ||
1171 | /* Ignore the send window if force is enabled */ | |
1172 | if (!force && (to_send > fd_cb->send_window)) { | |
1173 | to_send = fd_cb->send_window; | |
1174 | } | |
1175 | ||
1176 | while (sent < to_send) { | |
1177 | mbuf_t data; | |
1178 | size_t data_len; | |
1179 | ||
1180 | data_len = to_send - sent; | |
1181 | if (data_len > FLOW_DIVERT_CHUNK_SIZE) { | |
1182 | data_len = FLOW_DIVERT_CHUNK_SIZE; | |
1183 | } | |
1184 | ||
1185 | error = mbuf_copym(buffer, sent, data_len, MBUF_DONTWAIT, &data); | |
1186 | if (error) { | |
1187 | FDLOG(LOG_ERR, fd_cb, "mbuf_copym failed: %d", error); | |
1188 | break; | |
1189 | } | |
1190 | ||
1191 | error = flow_divert_send_data_packet(fd_cb, data, data_len, force); | |
1192 | if (error) { | |
1193 | mbuf_free(data); | |
1194 | break; | |
1195 | } | |
1196 | ||
1197 | sent += data_len; | |
1198 | } | |
1199 | ||
1200 | if (sent > 0) { | |
1201 | FDLOG(LOG_DEBUG, fd_cb, "sent %lu bytes of buffered data", sent); | |
1202 | if (fd_cb->send_window >= sent) { | |
1203 | fd_cb->send_window -= sent; | |
1204 | } else { | |
1205 | fd_cb->send_window = 0; | |
1206 | } | |
1207 | sbdrop(&fd_cb->so->so_snd, sent); | |
1208 | sowwakeup(fd_cb->so); | |
1209 | } | |
1210 | } | |
1211 | ||
1212 | static int | |
1213 | flow_divert_send_app_data(struct flow_divert_pcb *fd_cb, mbuf_t data) | |
1214 | { | |
1215 | size_t to_send = mbuf_pkthdr_len(data); | |
1216 | size_t sent = 0; | |
1217 | int error = 0; | |
1218 | mbuf_t remaining_data = data; | |
1219 | mbuf_t pkt_data = NULL; | |
1220 | ||
1221 | if (to_send > fd_cb->send_window) { | |
1222 | to_send = fd_cb->send_window; | |
1223 | } | |
1224 | ||
1225 | if (fd_cb->so->so_snd.sb_cc > 0) { | |
1226 | to_send = 0; /* If the send buffer is non-empty, then we can't send anything */ | |
1227 | } | |
1228 | ||
1229 | while (sent < to_send) { | |
1230 | size_t pkt_data_len; | |
1231 | ||
1232 | pkt_data = remaining_data; | |
1233 | ||
1234 | if ((to_send - sent) > FLOW_DIVERT_CHUNK_SIZE) { | |
1235 | pkt_data_len = FLOW_DIVERT_CHUNK_SIZE; | |
1236 | error = mbuf_split(pkt_data, pkt_data_len, MBUF_DONTWAIT, &remaining_data); | |
1237 | if (error) { | |
1238 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d", error); | |
1239 | pkt_data = NULL; | |
1240 | break; | |
1241 | } | |
1242 | } else { | |
1243 | pkt_data_len = to_send - sent; | |
1244 | remaining_data = NULL; | |
1245 | } | |
1246 | ||
1247 | error = flow_divert_send_data_packet(fd_cb, pkt_data, pkt_data_len, FALSE); | |
1248 | ||
1249 | if (error) { | |
1250 | break; | |
1251 | } | |
1252 | ||
1253 | pkt_data = NULL; | |
1254 | sent += pkt_data_len; | |
1255 | } | |
1256 | ||
1257 | fd_cb->send_window -= sent; | |
1258 | ||
1259 | error = 0; | |
1260 | ||
1261 | if (pkt_data != NULL) { | |
1262 | if (sbspace(&fd_cb->so->so_snd) > 0) { | |
1263 | if (!sbappendstream(&fd_cb->so->so_snd, pkt_data)) { | |
1264 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with pkt_data, send buffer size = %u, send_window = %u\n", | |
1265 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); | |
1266 | } | |
1267 | } else { | |
1268 | error = ENOBUFS; | |
1269 | } | |
1270 | } | |
1271 | ||
1272 | if (remaining_data != NULL) { | |
1273 | if (sbspace(&fd_cb->so->so_snd) > 0) { | |
1274 | if (!sbappendstream(&fd_cb->so->so_snd, remaining_data)) { | |
1275 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with remaining_data, send buffer size = %u, send_window = %u\n", | |
1276 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); | |
1277 | } | |
1278 | } else { | |
1279 | error = ENOBUFS; | |
1280 | } | |
1281 | } | |
1282 | ||
1283 | return error; | |
1284 | } | |
1285 | ||
1286 | static int | |
1287 | flow_divert_send_read_notification(struct flow_divert_pcb *fd_cb, uint32_t read_count) | |
1288 | { | |
1289 | int error = 0; | |
1290 | mbuf_t packet = NULL; | |
1291 | uint32_t net_read_count = htonl(read_count); | |
1292 | ||
1293 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_READ_NOTIFY, &packet); | |
1294 | if (error) { | |
1295 | FDLOG(LOG_ERR, fd_cb, "failed to create a read notification packet: %d", error); | |
1296 | goto done; | |
1297 | } | |
1298 | ||
1299 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_READ_COUNT, sizeof(net_read_count), &net_read_count); | |
1300 | if (error) { | |
1301 | FDLOG(LOG_ERR, fd_cb, "failed to add the read count: %d", error); | |
1302 | goto done; | |
1303 | } | |
1304 | ||
1305 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1306 | if (error) { | |
1307 | goto done; | |
1308 | } | |
1309 | ||
1310 | done: | |
1311 | if (error && packet != NULL) { | |
1312 | mbuf_free(packet); | |
1313 | } | |
1314 | ||
1315 | return error; | |
1316 | } | |
1317 | ||
1318 | static int | |
1319 | flow_divert_send_traffic_class_update(struct flow_divert_pcb *fd_cb, int traffic_class) | |
1320 | { | |
1321 | int error = 0; | |
1322 | mbuf_t packet = NULL; | |
1323 | ||
1324 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_PROPERTIES_UPDATE, &packet); | |
1325 | if (error) { | |
1326 | FDLOG(LOG_ERR, fd_cb, "failed to create a properties update packet: %d", error); | |
1327 | goto done; | |
1328 | } | |
1329 | ||
1330 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_TRAFFIC_CLASS, sizeof(traffic_class), &traffic_class); | |
1331 | if (error) { | |
1332 | FDLOG(LOG_ERR, fd_cb, "failed to add the traffic class: %d", error); | |
1333 | goto done; | |
1334 | } | |
1335 | ||
1336 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1337 | if (error) { | |
1338 | goto done; | |
1339 | } | |
1340 | ||
1341 | done: | |
1342 | if (error && packet != NULL) { | |
1343 | mbuf_free(packet); | |
1344 | } | |
1345 | ||
1346 | return error; | |
1347 | } | |
1348 | ||
1349 | static void | |
1350 | flow_divert_handle_connect_result(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1351 | { | |
1352 | uint32_t connect_error; | |
1353 | uint32_t ctl_unit = 0; | |
1354 | int error = 0; | |
1355 | struct flow_divert_group *grp = NULL; | |
1356 | struct sockaddr_storage local_address; | |
1357 | int out_if_index = 0; | |
1358 | struct sockaddr_storage remote_address; | |
1359 | uint32_t send_window; | |
1360 | ||
1361 | memset(&local_address, 0, sizeof(local_address)); | |
1362 | memset(&remote_address, 0, sizeof(remote_address)); | |
1363 | ||
1364 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(connect_error), &connect_error, NULL); | |
1365 | if (error) { | |
1366 | FDLOG(LOG_ERR, fd_cb, "failed to get the connect result: %d", error); | |
1367 | return; | |
1368 | } | |
1369 | ||
1370 | FDLOG(LOG_INFO, fd_cb, "received connect result %u", connect_error); | |
1371 | ||
1372 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_SPACE_AVAILABLE, sizeof(send_window), &send_window, NULL); | |
1373 | if (error) { | |
1374 | FDLOG(LOG_ERR, fd_cb, "failed to get the send window: %d", error); | |
1375 | return; | |
1376 | } | |
1377 | ||
1378 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit, NULL); | |
1379 | if (error) { | |
1380 | FDLOG(LOG_ERR, fd_cb, "failed to get the control unit: %d", error); | |
1381 | return; | |
1382 | } | |
1383 | ||
1384 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOCAL_ADDR, sizeof(local_address), &local_address, NULL); | |
1385 | if (error) { | |
1386 | FDLOG0(LOG_NOTICE, fd_cb, "No local address provided"); | |
1387 | } | |
1388 | ||
1389 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_address), &remote_address, NULL); | |
1390 | if (error) { | |
1391 | FDLOG0(LOG_NOTICE, fd_cb, "No remote address provided"); | |
1392 | } | |
1393 | ||
1394 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, sizeof(out_if_index), &out_if_index, NULL); | |
1395 | if (error) { | |
1396 | FDLOG0(LOG_NOTICE, fd_cb, "No output if index provided"); | |
1397 | } | |
1398 | ||
1399 | connect_error = ntohl(connect_error); | |
1400 | ctl_unit = ntohl(ctl_unit); | |
1401 | ||
1402 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
1403 | ||
1404 | if (connect_error == 0) { | |
1405 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
1406 | FDLOG(LOG_ERR, fd_cb, "Connect result contains an invalid control unit: %u", ctl_unit); | |
1407 | error = EINVAL; | |
1408 | } else if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
1409 | FDLOG0(LOG_ERR, fd_cb, "No active groups, dropping connection"); | |
1410 | error = EINVAL; | |
1411 | } else { | |
1412 | grp = g_flow_divert_groups[ctl_unit]; | |
1413 | if (grp == NULL) { | |
1414 | error = ECONNRESET; | |
1415 | } | |
1416 | } | |
1417 | } | |
1418 | ||
1419 | FDLOCK(fd_cb); | |
1420 | if (fd_cb->so != NULL) { | |
1421 | struct inpcb *inp = NULL; | |
1422 | struct ifnet *ifp = NULL; | |
1423 | struct flow_divert_group *old_group; | |
1424 | ||
1425 | socket_lock(fd_cb->so, 0); | |
1426 | ||
1427 | if (!(fd_cb->so->so_state & SS_ISCONNECTING)) { | |
1428 | goto done; | |
1429 | } | |
1430 | ||
1431 | inp = sotoinpcb(fd_cb->so); | |
1432 | ||
1433 | if (connect_error || error) { | |
1434 | goto set_socket_state; | |
1435 | } | |
1436 | ||
1437 | if (local_address.ss_family != 0) { | |
1438 | if (local_address.ss_len > sizeof(local_address)) { | |
1439 | local_address.ss_len = sizeof(local_address); | |
1440 | } | |
1441 | fd_cb->local_address = dup_sockaddr((struct sockaddr *)&local_address, 1); | |
1442 | } else { | |
1443 | error = EINVAL; | |
1444 | goto set_socket_state; | |
1445 | } | |
1446 | ||
1447 | if (remote_address.ss_family != 0) { | |
1448 | if (remote_address.ss_len > sizeof(remote_address)) { | |
1449 | remote_address.ss_len = sizeof(remote_address); | |
1450 | } | |
1451 | fd_cb->remote_address = dup_sockaddr((struct sockaddr *)&remote_address, 1); | |
1452 | } else { | |
1453 | error = EINVAL; | |
1454 | goto set_socket_state; | |
1455 | } | |
1456 | ||
1457 | ifnet_head_lock_shared(); | |
1458 | if (out_if_index > 0 && out_if_index <= if_index) { | |
1459 | ifp = ifindex2ifnet[out_if_index]; | |
1460 | } | |
1461 | ||
1462 | if (ifp != NULL) { | |
1463 | inp->inp_last_outifp = ifp; | |
1464 | } else { | |
1465 | error = EINVAL; | |
1466 | } | |
1467 | ifnet_head_done(); | |
1468 | ||
1469 | if (error) { | |
1470 | goto set_socket_state; | |
1471 | } | |
1472 | ||
1473 | if (fd_cb->group == NULL) { | |
1474 | error = EINVAL; | |
1475 | goto set_socket_state; | |
1476 | } | |
1477 | ||
1478 | old_group = fd_cb->group; | |
1479 | ||
1480 | lck_rw_lock_exclusive(&old_group->lck); | |
1481 | lck_rw_lock_exclusive(&grp->lck); | |
1482 | ||
1483 | RB_REMOVE(fd_pcb_tree, &old_group->pcb_tree, fd_cb); | |
1484 | if (RB_INSERT(fd_pcb_tree, &grp->pcb_tree, fd_cb) != NULL) { | |
1485 | panic("group with unit %u already contains a connection with hash %u", grp->ctl_unit, fd_cb->hash); | |
1486 | } | |
1487 | ||
1488 | fd_cb->group = grp; | |
1489 | ||
1490 | lck_rw_done(&grp->lck); | |
1491 | lck_rw_done(&old_group->lck); | |
1492 | ||
1493 | fd_cb->send_window = ntohl(send_window); | |
1494 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
1495 | ||
1496 | set_socket_state: | |
1497 | if (!connect_error && !error) { | |
1498 | FDLOG0(LOG_INFO, fd_cb, "sending connect result"); | |
1499 | error = flow_divert_send_connect_result(fd_cb); | |
1500 | } | |
1501 | ||
1502 | if (connect_error || error) { | |
1503 | if (!connect_error) { | |
1504 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
1505 | fd_cb->so->so_error = error; | |
1506 | flow_divert_send_close_if_needed(fd_cb); | |
1507 | } else { | |
1508 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
1509 | fd_cb->so->so_error = connect_error; | |
1510 | } | |
1511 | soisdisconnected(fd_cb->so); | |
1512 | } else { | |
1513 | soisconnected(fd_cb->so); | |
1514 | } | |
1515 | ||
1516 | done: | |
1517 | socket_unlock(fd_cb->so, 0); | |
1518 | } | |
1519 | FDUNLOCK(fd_cb); | |
1520 | ||
1521 | lck_rw_done(&g_flow_divert_group_lck); | |
1522 | } | |
1523 | ||
1524 | static void | |
1525 | flow_divert_handle_close(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1526 | { | |
1527 | uint32_t close_error; | |
1528 | int error = 0; | |
1529 | int how; | |
1530 | ||
1531 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(close_error), &close_error, NULL); | |
1532 | if (error) { | |
1533 | FDLOG(LOG_ERR, fd_cb, "failed to get the close error: %d", error); | |
1534 | return; | |
1535 | } | |
1536 | ||
1537 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_HOW, sizeof(how), &how, NULL); | |
1538 | if (error) { | |
1539 | FDLOG(LOG_ERR, fd_cb, "failed to get the close how flag: %d", error); | |
1540 | return; | |
1541 | } | |
1542 | ||
1543 | how = ntohl(how); | |
1544 | ||
1545 | FDLOG(LOG_INFO, fd_cb, "close received, how = %d", how); | |
1546 | ||
1547 | FDLOCK(fd_cb); | |
1548 | if (fd_cb->so != NULL) { | |
1549 | socket_lock(fd_cb->so, 0); | |
1550 | ||
1551 | fd_cb->so->so_error = ntohl(close_error); | |
1552 | ||
1553 | flow_divert_update_closed_state(fd_cb, how, TRUE); | |
1554 | ||
1555 | how = flow_divert_tunnel_how_closed(fd_cb); | |
1556 | if (how == SHUT_RDWR) { | |
1557 | soisdisconnected(fd_cb->so); | |
1558 | } else if (how == SHUT_RD) { | |
1559 | socantrcvmore(fd_cb->so); | |
1560 | } else if (how == SHUT_WR) { | |
1561 | socantsendmore(fd_cb->so); | |
1562 | } | |
1563 | ||
1564 | socket_unlock(fd_cb->so, 0); | |
1565 | } | |
1566 | FDUNLOCK(fd_cb); | |
1567 | } | |
1568 | ||
1569 | static void | |
1570 | flow_divert_handle_data(struct flow_divert_pcb *fd_cb, mbuf_t packet, size_t offset) | |
1571 | { | |
1572 | int error = 0; | |
1573 | mbuf_t data = NULL; | |
1574 | size_t data_size; | |
1575 | ||
1576 | data_size = (mbuf_pkthdr_len(packet) - offset); | |
1577 | ||
1578 | FDLOG(LOG_DEBUG, fd_cb, "received %lu bytes of data", data_size); | |
1579 | ||
1580 | error = mbuf_split(packet, offset, MBUF_DONTWAIT, &data); | |
1581 | if (error || data == NULL) { | |
1582 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d", error); | |
1583 | return; | |
1584 | } | |
1585 | ||
1586 | FDLOCK(fd_cb); | |
1587 | if (fd_cb->so != NULL) { | |
1588 | socket_lock(fd_cb->so, 0); | |
1589 | if (flow_divert_check_no_cellular(fd_cb)) { | |
1590 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
1591 | flow_divert_send_close(fd_cb, SHUT_RDWR); | |
1592 | soisdisconnected(fd_cb->so); | |
1593 | } else if (!(fd_cb->so->so_state & SS_CANTRCVMORE)) { | |
1594 | if (sbappendstream(&fd_cb->so->so_rcv, data)) { | |
1595 | fd_cb->bytes_received += data_size; | |
1596 | flow_divert_add_data_statistics(fd_cb, data_size, FALSE); | |
1597 | fd_cb->sb_size = fd_cb->so->so_rcv.sb_cc; | |
1598 | sorwakeup(fd_cb->so); | |
1599 | data = NULL; | |
1600 | } else { | |
1601 | FDLOG0(LOG_ERR, fd_cb, "received data, but appendstream failed"); | |
1602 | } | |
1603 | } | |
1604 | socket_unlock(fd_cb->so, 0); | |
1605 | } | |
1606 | FDUNLOCK(fd_cb); | |
1607 | ||
1608 | if (data != NULL) { | |
1609 | mbuf_free(data); | |
1610 | } | |
1611 | } | |
1612 | ||
1613 | static void | |
1614 | flow_divert_handle_read_notification(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1615 | { | |
1616 | uint32_t read_count; | |
1617 | int error = 0; | |
1618 | ||
1619 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_READ_COUNT, sizeof(read_count), &read_count, NULL); | |
1620 | if (error) { | |
1621 | FDLOG(LOG_ERR, fd_cb, "failed to get the read count: %d", error); | |
1622 | return; | |
1623 | } | |
1624 | ||
1625 | FDLOG(LOG_DEBUG, fd_cb, "received a read notification for %u bytes", read_count); | |
1626 | ||
1627 | FDLOCK(fd_cb); | |
1628 | if (fd_cb->so != NULL) { | |
1629 | socket_lock(fd_cb->so, 0); | |
1630 | fd_cb->send_window += ntohl(read_count); | |
1631 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
1632 | socket_unlock(fd_cb->so, 0); | |
1633 | } | |
1634 | FDUNLOCK(fd_cb); | |
1635 | } | |
1636 | ||
1637 | static void | |
1638 | flow_divert_handle_group_init(struct flow_divert_group *group, mbuf_t packet, int offset) | |
1639 | { | |
1640 | int error = 0; | |
1641 | size_t key_size = 0; | |
1642 | int log_level; | |
1643 | ||
1644 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, 0, NULL, &key_size); | |
1645 | if (error) { | |
1646 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the key size: %d", error); | |
1647 | return; | |
1648 | } | |
1649 | ||
1650 | if (key_size == 0 || key_size > FLOW_DIVERT_MAX_KEY_SIZE) { | |
1651 | FDLOG(LOG_ERR, &nil_pcb, "Invalid key size: %lu", key_size); | |
1652 | return; | |
1653 | } | |
1654 | ||
1655 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOG_LEVEL, sizeof(log_level), &log_level, NULL); | |
1656 | if (!error) { | |
1657 | nil_pcb.log_level = log_level; | |
1658 | } | |
1659 | ||
1660 | lck_rw_lock_exclusive(&group->lck); | |
1661 | ||
1662 | MALLOC(group->token_key, uint8_t *, key_size, M_TEMP, M_WAITOK); | |
1663 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, key_size, group->token_key, NULL); | |
1664 | if (error) { | |
1665 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the token key: %d", error); | |
1666 | FREE(group->token_key, M_TEMP); | |
1667 | group->token_key = NULL; | |
1668 | lck_rw_done(&group->lck); | |
1669 | return; | |
1670 | } | |
1671 | ||
1672 | group->token_key_size = key_size; | |
1673 | ||
1674 | lck_rw_done(&group->lck); | |
1675 | } | |
1676 | ||
1677 | static void | |
1678 | flow_divert_handle_properties_update(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1679 | { | |
1680 | int error = 0; | |
1681 | struct sockaddr_storage local_address; | |
1682 | int out_if_index = 0; | |
1683 | struct sockaddr_storage remote_address; | |
1684 | ||
1685 | FDLOG0(LOG_INFO, fd_cb, "received a properties update"); | |
1686 | ||
1687 | memset(&local_address, 0, sizeof(local_address)); | |
1688 | memset(&remote_address, 0, sizeof(remote_address)); | |
1689 | ||
1690 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOCAL_ADDR, sizeof(local_address), &local_address, NULL); | |
1691 | if (error) { | |
1692 | FDLOG0(LOG_INFO, fd_cb, "No local address provided"); | |
1693 | } | |
1694 | ||
1695 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_address), &remote_address, NULL); | |
1696 | if (error) { | |
1697 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided"); | |
1698 | } | |
1699 | ||
1700 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, sizeof(out_if_index), &out_if_index, NULL); | |
1701 | if (error) { | |
1702 | FDLOG0(LOG_INFO, fd_cb, "No output if index provided"); | |
1703 | } | |
1704 | ||
1705 | FDLOCK(fd_cb); | |
1706 | if (fd_cb->so != NULL) { | |
1707 | struct inpcb *inp = NULL; | |
1708 | struct ifnet *ifp = NULL; | |
1709 | ||
1710 | socket_lock(fd_cb->so, 0); | |
1711 | ||
1712 | inp = sotoinpcb(fd_cb->so); | |
1713 | ||
1714 | if (local_address.ss_family != 0) { | |
1715 | if (local_address.ss_len > sizeof(local_address)) { | |
1716 | local_address.ss_len = sizeof(local_address); | |
1717 | } | |
1718 | fd_cb->local_address = dup_sockaddr((struct sockaddr *)&local_address, 1); | |
1719 | } | |
1720 | ||
1721 | if (remote_address.ss_family != 0) { | |
1722 | if (remote_address.ss_len > sizeof(remote_address)) { | |
1723 | remote_address.ss_len = sizeof(remote_address); | |
1724 | } | |
1725 | fd_cb->remote_address = dup_sockaddr((struct sockaddr *)&remote_address, 1); | |
1726 | } | |
1727 | ||
1728 | ifnet_head_lock_shared(); | |
1729 | if (out_if_index > 0 && out_if_index <= if_index) { | |
1730 | ifp = ifindex2ifnet[out_if_index]; | |
1731 | } | |
1732 | ||
1733 | if (ifp != NULL) { | |
1734 | inp->inp_last_outifp = ifp; | |
1735 | } | |
1736 | ifnet_head_done(); | |
1737 | ||
1738 | socket_unlock(fd_cb->so, 0); | |
1739 | } | |
1740 | FDUNLOCK(fd_cb); | |
1741 | } | |
1742 | ||
1743 | static void | |
1744 | flow_divert_handle_app_map_create(mbuf_t packet, int offset) | |
1745 | { | |
1746 | size_t bytes_mem_size; | |
1747 | size_t child_maps_mem_size; | |
1748 | int cursor; | |
1749 | int error = 0; | |
1750 | struct flow_divert_trie new_trie; | |
1751 | int insert_error = 0; | |
1752 | size_t nodes_mem_size; | |
1753 | int prefix_count = 0; | |
1754 | int signing_id_count = 0; | |
1755 | ||
1756 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
1757 | ||
1758 | /* Re-set the current trie */ | |
1759 | if (g_signing_id_trie.memory != NULL) { | |
1760 | FREE(g_signing_id_trie.memory, M_TEMP); | |
1761 | } | |
1762 | memset(&g_signing_id_trie, 0, sizeof(g_signing_id_trie)); | |
1763 | g_signing_id_trie.root = NULL_TRIE_IDX; | |
1764 | ||
1765 | memset(&new_trie, 0, sizeof(new_trie)); | |
1766 | ||
1767 | /* Get the number of shared prefixes in the new set of signing ID strings */ | |
1768 | flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_PREFIX_COUNT, sizeof(prefix_count), &prefix_count, NULL); | |
1769 | ||
1770 | /* Compute the number of signing IDs and the total amount of bytes needed to store them */ | |
1771 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
1772 | cursor >= 0; | |
1773 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
1774 | { | |
1775 | size_t sid_size = 0; | |
1776 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
1777 | new_trie.bytes_count += sid_size; | |
1778 | signing_id_count++; | |
1779 | } | |
1780 | ||
1781 | if (signing_id_count == 0) { | |
1782 | lck_rw_done(&g_flow_divert_group_lck); | |
1783 | return; | |
1784 | } | |
1785 | ||
1786 | new_trie.nodes_count = (prefix_count + signing_id_count + 1); /* + 1 for the root node */ | |
1787 | new_trie.child_maps_count = (prefix_count + 1); /* + 1 for the root node */ | |
1788 | ||
1789 | FDLOG(LOG_INFO, &nil_pcb, "Nodes count = %lu, child maps count = %lu, bytes_count = %lu", | |
1790 | new_trie.nodes_count, new_trie.child_maps_count, new_trie.bytes_count); | |
1791 | ||
1792 | nodes_mem_size = (sizeof(*new_trie.nodes) * new_trie.nodes_count); | |
1793 | child_maps_mem_size = (sizeof(*new_trie.child_maps) * CHILD_MAP_SIZE * new_trie.child_maps_count); | |
1794 | bytes_mem_size = (sizeof(*new_trie.bytes) * new_trie.bytes_count); | |
1795 | ||
1796 | MALLOC(new_trie.memory, void *, nodes_mem_size + child_maps_mem_size + bytes_mem_size, M_TEMP, M_WAITOK); | |
1797 | if (new_trie.memory == NULL) { | |
1798 | FDLOG(LOG_ERR, &nil_pcb, "Failed to allocate %lu bytes of memory for the signing ID trie", | |
1799 | nodes_mem_size + child_maps_mem_size + bytes_mem_size); | |
1800 | return; | |
1801 | } | |
1802 | ||
1803 | /* Initialize the free lists */ | |
1804 | new_trie.nodes = (struct flow_divert_trie_node *)new_trie.memory; | |
1805 | new_trie.nodes_free_next = 0; | |
1806 | memset(new_trie.nodes, 0, nodes_mem_size); | |
1807 | ||
1808 | new_trie.child_maps = (uint16_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size); | |
1809 | new_trie.child_maps_free_next = 0; | |
1810 | memset(new_trie.child_maps, 0xff, child_maps_mem_size); | |
1811 | ||
1812 | new_trie.bytes = (uint8_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size + child_maps_mem_size); | |
1813 | new_trie.bytes_free_next = 0; | |
1814 | ||
1815 | /* The root is an empty node */ | |
1816 | new_trie.root = trie_node_alloc(&new_trie); | |
1817 | ||
1818 | /* Add each signing ID to the trie */ | |
1819 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
1820 | cursor >= 0; | |
1821 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
1822 | { | |
1823 | size_t sid_size = 0; | |
1824 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
1825 | if (new_trie.bytes_free_next + sid_size <= new_trie.bytes_count) { | |
1826 | boolean_t is_dns; | |
1827 | uint16_t new_node_idx; | |
1828 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, sid_size, &TRIE_BYTE(&new_trie, new_trie.bytes_free_next), NULL); | |
1829 | is_dns = (sid_size == sizeof(FLOW_DIVERT_DNS_SERVICE_SIGNING_ID) - 1 && | |
1830 | !memcmp(&TRIE_BYTE(&new_trie, new_trie.bytes_free_next), | |
1831 | FLOW_DIVERT_DNS_SERVICE_SIGNING_ID, | |
1832 | sid_size)); | |
1833 | new_node_idx = flow_divert_trie_insert(&new_trie, new_trie.bytes_free_next, sid_size); | |
1834 | if (new_node_idx != NULL_TRIE_IDX) { | |
1835 | if (is_dns) { | |
1836 | FDLOG(LOG_NOTICE, &nil_pcb, "Setting group unit for %s to %d", FLOW_DIVERT_DNS_SERVICE_SIGNING_ID, DNS_SERVICE_GROUP_UNIT); | |
1837 | TRIE_NODE(&new_trie, new_node_idx).group_unit = DNS_SERVICE_GROUP_UNIT; | |
1838 | } | |
1839 | } else { | |
1840 | insert_error = EINVAL; | |
1841 | break; | |
1842 | } | |
1843 | } else { | |
1844 | FDLOG0(LOG_ERR, &nil_pcb, "No place to put signing ID for insertion"); | |
1845 | insert_error = ENOBUFS; | |
1846 | break; | |
1847 | } | |
1848 | } | |
1849 | ||
1850 | if (!insert_error) { | |
1851 | g_signing_id_trie = new_trie; | |
1852 | } else { | |
1853 | FREE(new_trie.memory, M_TEMP); | |
1854 | } | |
1855 | ||
1856 | lck_rw_done(&g_flow_divert_group_lck); | |
1857 | } | |
1858 | ||
1859 | static void | |
1860 | flow_divert_handle_app_map_update(struct flow_divert_group *group, mbuf_t packet, int offset) | |
1861 | { | |
1862 | int error = 0; | |
1863 | int cursor; | |
1864 | size_t max_size = 0; | |
1865 | uint8_t *signing_id; | |
1866 | uint32_t ctl_unit; | |
1867 | ||
1868 | lck_rw_lock_shared(&group->lck); | |
1869 | ctl_unit = group->ctl_unit; | |
1870 | lck_rw_done(&group->lck); | |
1871 | ||
1872 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
1873 | cursor >= 0; | |
1874 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
1875 | { | |
1876 | size_t sid_size = 0; | |
1877 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
1878 | if (sid_size > max_size) { | |
1879 | max_size = sid_size; | |
1880 | } | |
1881 | } | |
1882 | ||
1883 | MALLOC(signing_id, uint8_t *, max_size + 1, M_TEMP, M_WAITOK); | |
1884 | if (signing_id == NULL) { | |
1885 | FDLOG(LOG_ERR, &nil_pcb, "Failed to allocate a string to hold the signing ID (size %lu)", max_size); | |
1886 | return; | |
1887 | } | |
1888 | ||
1889 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
1890 | cursor >= 0; | |
1891 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
1892 | { | |
1893 | size_t signing_id_len = 0; | |
1894 | uint16_t node; | |
1895 | ||
1896 | flow_divert_packet_get_tlv(packet, | |
1897 | cursor, FLOW_DIVERT_TLV_SIGNING_ID, max_size, signing_id, &signing_id_len); | |
1898 | ||
1899 | signing_id[signing_id_len] = '\0'; | |
1900 | ||
1901 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
1902 | ||
1903 | node = flow_divert_trie_search(&g_signing_id_trie, signing_id); | |
1904 | if (node != NULL_TRIE_IDX) { | |
1905 | if (TRIE_NODE(&g_signing_id_trie, node).group_unit != DNS_SERVICE_GROUP_UNIT) { | |
1906 | FDLOG(LOG_INFO, &nil_pcb, "Setting %s to ctl unit %u", signing_id, group->ctl_unit); | |
1907 | TRIE_NODE(&g_signing_id_trie, node).group_unit = ctl_unit; | |
1908 | } | |
1909 | } else { | |
1910 | FDLOG(LOG_ERR, &nil_pcb, "Failed to find signing ID %s", signing_id); | |
1911 | } | |
1912 | ||
1913 | lck_rw_done(&g_flow_divert_group_lck); | |
1914 | } | |
1915 | ||
1916 | FREE(signing_id, M_TEMP); | |
1917 | } | |
1918 | ||
1919 | static int | |
1920 | flow_divert_input(mbuf_t packet, struct flow_divert_group *group) | |
1921 | { | |
1922 | struct flow_divert_packet_header hdr; | |
1923 | int error = 0; | |
1924 | struct flow_divert_pcb *fd_cb; | |
1925 | ||
1926 | if (mbuf_pkthdr_len(packet) < sizeof(hdr)) { | |
1927 | FDLOG(LOG_ERR, &nil_pcb, "got a bad packet, length (%lu) < sizeof hdr (%lu)", mbuf_pkthdr_len(packet), sizeof(hdr)); | |
1928 | error = EINVAL; | |
1929 | goto done; | |
1930 | } | |
1931 | ||
1932 | error = mbuf_copydata(packet, 0, sizeof(hdr), &hdr); | |
1933 | if (error) { | |
1934 | FDLOG(LOG_ERR, &nil_pcb, "mbuf_copydata failed for the header: %d", error); | |
1935 | error = ENOBUFS; | |
1936 | goto done; | |
1937 | } | |
1938 | ||
1939 | hdr.conn_id = ntohl(hdr.conn_id); | |
1940 | ||
1941 | if (hdr.conn_id == 0) { | |
1942 | switch (hdr.packet_type) { | |
1943 | case FLOW_DIVERT_PKT_GROUP_INIT: | |
1944 | flow_divert_handle_group_init(group, packet, sizeof(hdr)); | |
1945 | break; | |
1946 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: | |
1947 | flow_divert_handle_app_map_create(packet, sizeof(hdr)); | |
1948 | break; | |
1949 | case FLOW_DIVERT_PKT_APP_MAP_UPDATE: | |
1950 | flow_divert_handle_app_map_update(group, packet, sizeof(hdr)); | |
1951 | break; | |
1952 | default: | |
1953 | FDLOG(LOG_WARNING, &nil_pcb, "got an unknown message type: %d", hdr.packet_type); | |
1954 | break; | |
1955 | } | |
1956 | goto done; | |
1957 | } | |
1958 | ||
1959 | fd_cb = flow_divert_pcb_lookup(hdr.conn_id, group); /* This retains the PCB */ | |
1960 | if (fd_cb == NULL) { | |
1961 | if (hdr.packet_type != FLOW_DIVERT_PKT_CLOSE && hdr.packet_type != FLOW_DIVERT_PKT_READ_NOTIFY) { | |
1962 | FDLOG(LOG_NOTICE, &nil_pcb, "got a %s message from group %d for an unknown pcb: %u", flow_divert_packet_type2str(hdr.packet_type), group->ctl_unit, hdr.conn_id); | |
1963 | } | |
1964 | goto done; | |
1965 | } | |
1966 | ||
1967 | switch (hdr.packet_type) { | |
1968 | case FLOW_DIVERT_PKT_CONNECT_RESULT: | |
1969 | flow_divert_handle_connect_result(fd_cb, packet, sizeof(hdr)); | |
1970 | break; | |
1971 | case FLOW_DIVERT_PKT_CLOSE: | |
1972 | flow_divert_handle_close(fd_cb, packet, sizeof(hdr)); | |
1973 | break; | |
1974 | case FLOW_DIVERT_PKT_DATA: | |
1975 | flow_divert_handle_data(fd_cb, packet, sizeof(hdr)); | |
1976 | break; | |
1977 | case FLOW_DIVERT_PKT_READ_NOTIFY: | |
1978 | flow_divert_handle_read_notification(fd_cb, packet, sizeof(hdr)); | |
1979 | break; | |
1980 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: | |
1981 | flow_divert_handle_properties_update(fd_cb, packet, sizeof(hdr)); | |
1982 | break; | |
1983 | default: | |
1984 | FDLOG(LOG_WARNING, fd_cb, "got an unknown message type: %d", hdr.packet_type); | |
1985 | break; | |
1986 | } | |
1987 | ||
1988 | FDRELEASE(fd_cb); | |
1989 | ||
1990 | done: | |
1991 | mbuf_free(packet); | |
1992 | return error; | |
1993 | } | |
1994 | ||
1995 | static void | |
1996 | flow_divert_close_all(struct flow_divert_group *group) | |
1997 | { | |
1998 | struct flow_divert_pcb *fd_cb; | |
1999 | SLIST_HEAD(, flow_divert_pcb) tmp_list; | |
2000 | ||
2001 | SLIST_INIT(&tmp_list); | |
2002 | ||
2003 | lck_rw_lock_exclusive(&group->lck); | |
2004 | ||
2005 | MBUFQ_DRAIN(&group->send_queue); | |
2006 | ||
2007 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { | |
2008 | FDRETAIN(fd_cb); | |
2009 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); | |
2010 | } | |
2011 | ||
2012 | lck_rw_done(&group->lck); | |
2013 | ||
2014 | while (!SLIST_EMPTY(&tmp_list)) { | |
2015 | fd_cb = SLIST_FIRST(&tmp_list); | |
2016 | FDLOCK(fd_cb); | |
2017 | SLIST_REMOVE_HEAD(&tmp_list, tmp_list_entry); | |
2018 | if (fd_cb->so != NULL) { | |
2019 | socket_lock(fd_cb->so, 0); | |
2020 | flow_divert_pcb_remove(fd_cb); | |
2021 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
2022 | fd_cb->so->so_error = ECONNABORTED; | |
2023 | socket_unlock(fd_cb->so, 0); | |
2024 | } | |
2025 | FDUNLOCK(fd_cb); | |
2026 | FDRELEASE(fd_cb); | |
2027 | } | |
2028 | } | |
2029 | ||
2030 | void | |
2031 | flow_divert_detach(struct socket *so) | |
2032 | { | |
2033 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2034 | ||
2035 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2036 | ||
2037 | so->so_flags &= ~SOF_FLOW_DIVERT; | |
2038 | so->so_fd_pcb = NULL; | |
2039 | ||
2040 | FDLOG(LOG_INFO, fd_cb, "Detaching, ref count = %d", fd_cb->ref_count); | |
2041 | ||
2042 | if (fd_cb->group != NULL) { | |
2043 | /* Last-ditch effort to send any buffered data */ | |
2044 | flow_divert_send_buffered_data(fd_cb, TRUE); | |
2045 | ||
2046 | /* Remove from the group */ | |
2047 | flow_divert_pcb_remove(fd_cb); | |
2048 | } | |
2049 | ||
2050 | socket_unlock(so, 0); | |
2051 | FDLOCK(fd_cb); | |
2052 | fd_cb->so = NULL; | |
2053 | FDUNLOCK(fd_cb); | |
2054 | socket_lock(so, 0); | |
2055 | ||
2056 | FDRELEASE(fd_cb); /* Release the socket's reference */ | |
2057 | } | |
2058 | ||
2059 | static int | |
2060 | flow_divert_close(struct socket *so) | |
2061 | { | |
2062 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2063 | ||
2064 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2065 | ||
2066 | FDLOG0(LOG_INFO, fd_cb, "Closing"); | |
2067 | ||
2068 | soisdisconnecting(so); | |
2069 | sbflush(&so->so_rcv); | |
2070 | ||
2071 | flow_divert_send_buffered_data(fd_cb, TRUE); | |
2072 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
2073 | flow_divert_send_close_if_needed(fd_cb); | |
2074 | ||
2075 | /* Remove from the group */ | |
2076 | flow_divert_pcb_remove(fd_cb); | |
2077 | ||
2078 | return 0; | |
2079 | } | |
2080 | ||
2081 | static int | |
2082 | flow_divert_disconnectx(struct socket *so, associd_t aid, connid_t cid __unused) | |
2083 | { | |
2084 | if (aid != ASSOCID_ANY && aid != ASSOCID_ALL) { | |
2085 | return (EINVAL); | |
2086 | } | |
2087 | ||
2088 | return (flow_divert_close(so)); | |
2089 | } | |
2090 | ||
2091 | static int | |
2092 | flow_divert_shutdown(struct socket *so) | |
2093 | { | |
2094 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2095 | ||
2096 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2097 | ||
2098 | FDLOG0(LOG_INFO, fd_cb, "Can't send more"); | |
2099 | ||
2100 | socantsendmore(so); | |
2101 | ||
2102 | flow_divert_update_closed_state(fd_cb, SHUT_WR, FALSE); | |
2103 | flow_divert_send_close_if_needed(fd_cb); | |
2104 | ||
2105 | return 0; | |
2106 | } | |
2107 | ||
2108 | static int | |
2109 | flow_divert_rcvd(struct socket *so, int flags __unused) | |
2110 | { | |
2111 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2112 | uint32_t latest_sb_size; | |
2113 | uint32_t read_count; | |
2114 | ||
2115 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2116 | ||
2117 | latest_sb_size = fd_cb->so->so_rcv.sb_cc; | |
2118 | ||
2119 | if (fd_cb->sb_size < latest_sb_size) { | |
2120 | panic("flow divert rcvd event handler (%u): saved rcv buffer size (%u) is less than latest rcv buffer size (%u)", | |
2121 | fd_cb->hash, fd_cb->sb_size, latest_sb_size); | |
2122 | } | |
2123 | ||
2124 | read_count = fd_cb->sb_size - latest_sb_size; | |
2125 | ||
2126 | FDLOG(LOG_DEBUG, fd_cb, "app read %u bytes", read_count); | |
2127 | ||
2128 | if (read_count > 0 && flow_divert_send_read_notification(fd_cb, read_count) == 0) { | |
2129 | fd_cb->bytes_read_by_app += read_count; | |
2130 | fd_cb->sb_size = latest_sb_size; | |
2131 | } | |
2132 | ||
2133 | return 0; | |
2134 | } | |
2135 | ||
2136 | static errno_t | |
2137 | flow_divert_dup_addr(sa_family_t family, struct sockaddr *addr, | |
2138 | struct sockaddr **dup) | |
2139 | { | |
2140 | int error = 0; | |
2141 | struct sockaddr *result; | |
2142 | struct sockaddr_storage ss; | |
2143 | ||
2144 | if (addr != NULL) { | |
2145 | result = addr; | |
2146 | } else { | |
2147 | memset(&ss, 0, sizeof(ss)); | |
2148 | ss.ss_family = family; | |
2149 | if (ss.ss_family == AF_INET) { | |
2150 | ss.ss_len = sizeof(struct sockaddr_in); | |
2151 | } | |
2152 | #if INET6 | |
2153 | else if (ss.ss_family == AF_INET6) { | |
2154 | ss.ss_len = sizeof(struct sockaddr_in6); | |
2155 | } | |
2156 | #endif /* INET6 */ | |
2157 | else { | |
2158 | error = EINVAL; | |
2159 | } | |
2160 | result = (struct sockaddr *)&ss; | |
2161 | } | |
2162 | ||
2163 | if (!error) { | |
2164 | *dup = dup_sockaddr(result, 1); | |
2165 | if (*dup == NULL) { | |
2166 | error = ENOBUFS; | |
2167 | } | |
2168 | } | |
2169 | ||
2170 | return error; | |
2171 | } | |
2172 | ||
2173 | static errno_t | |
2174 | flow_divert_getpeername(struct socket *so, struct sockaddr **sa) | |
2175 | { | |
2176 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2177 | ||
2178 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2179 | ||
2180 | return flow_divert_dup_addr(so->so_proto->pr_domain->dom_family, | |
2181 | fd_cb->remote_address, | |
2182 | sa); | |
2183 | } | |
2184 | ||
2185 | static errno_t | |
2186 | flow_divert_getsockaddr(struct socket *so, struct sockaddr **sa) | |
2187 | { | |
2188 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2189 | ||
2190 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2191 | ||
2192 | return flow_divert_dup_addr(so->so_proto->pr_domain->dom_family, | |
2193 | fd_cb->local_address, | |
2194 | sa); | |
2195 | } | |
2196 | ||
2197 | static errno_t | |
2198 | flow_divert_ctloutput(struct socket *so, struct sockopt *sopt) | |
2199 | { | |
2200 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2201 | ||
2202 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2203 | ||
2204 | if (sopt->sopt_name == SO_TRAFFIC_CLASS) { | |
2205 | if (sopt->sopt_dir == SOPT_SET && fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) { | |
2206 | flow_divert_send_traffic_class_update(fd_cb, so->so_traffic_class); | |
2207 | } | |
2208 | } | |
2209 | ||
2210 | if (SOCK_DOM(so) == PF_INET) { | |
2211 | return g_tcp_protosw->pr_ctloutput(so, sopt); | |
2212 | } | |
2213 | #if INET6 | |
2214 | else if (SOCK_DOM(so) == PF_INET6) { | |
2215 | return g_tcp6_protosw->pr_ctloutput(so, sopt); | |
2216 | } | |
2217 | #endif | |
2218 | return 0; | |
2219 | } | |
2220 | ||
2221 | errno_t | |
2222 | flow_divert_connect_out(struct socket *so, struct sockaddr *to, proc_t p) | |
2223 | { | |
2224 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2225 | int error = 0; | |
2226 | struct inpcb *inp = sotoinpcb(so); | |
2227 | struct sockaddr_in *sinp; | |
2228 | ||
2229 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2230 | ||
2231 | if (fd_cb->group == NULL) { | |
2232 | error = ENETUNREACH; | |
2233 | goto done; | |
2234 | } | |
2235 | ||
2236 | if (inp == NULL) { | |
2237 | error = EINVAL; | |
2238 | goto done; | |
2239 | } else if (inp->inp_state == INPCB_STATE_DEAD) { | |
2240 | if (so->so_error) { | |
2241 | error = so->so_error; | |
2242 | so->so_error = 0; | |
2243 | } else { | |
2244 | error = EINVAL; | |
2245 | } | |
2246 | goto done; | |
2247 | } | |
2248 | ||
2249 | sinp = (struct sockaddr_in *)(void *)to; | |
2250 | if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { | |
2251 | error = EAFNOSUPPORT; | |
2252 | goto done; | |
2253 | } | |
2254 | ||
2255 | if ((fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) && !(fd_cb->flags & FLOW_DIVERT_TRANSFERRED)) { | |
2256 | error = EALREADY; | |
2257 | goto done; | |
2258 | } | |
2259 | ||
2260 | if (fd_cb->flags & FLOW_DIVERT_TRANSFERRED) { | |
2261 | FDLOG0(LOG_INFO, fd_cb, "fully transferred"); | |
2262 | fd_cb->flags &= ~FLOW_DIVERT_TRANSFERRED; | |
2263 | if (fd_cb->remote_address != NULL) { | |
2264 | soisconnected(fd_cb->so); | |
2265 | goto done; | |
2266 | } | |
2267 | } | |
2268 | ||
2269 | FDLOG0(LOG_INFO, fd_cb, "Connecting"); | |
2270 | ||
2271 | error = flow_divert_send_connect(fd_cb, to, p); | |
2272 | if (error) { | |
2273 | goto done; | |
2274 | } | |
2275 | ||
2276 | fd_cb->flags |= FLOW_DIVERT_CONNECT_STARTED; | |
2277 | ||
2278 | soisconnecting(so); | |
2279 | ||
2280 | done: | |
2281 | return error; | |
2282 | } | |
2283 | ||
2284 | static int | |
2285 | flow_divert_connectx_out_common(struct socket *so, int af, | |
2286 | struct sockaddr_list **src_sl, struct sockaddr_list **dst_sl, | |
2287 | struct proc *p, uint32_t ifscope __unused, associd_t aid __unused, | |
2288 | connid_t *pcid, uint32_t flags __unused, void *arg __unused, | |
2289 | uint32_t arglen __unused) | |
2290 | { | |
2291 | struct sockaddr_entry *src_se = NULL, *dst_se = NULL; | |
2292 | struct inpcb *inp = sotoinpcb(so); | |
2293 | int error; | |
2294 | ||
2295 | if (inp == NULL) { | |
2296 | return (EINVAL); | |
2297 | } | |
2298 | ||
2299 | VERIFY(dst_sl != NULL); | |
2300 | ||
2301 | /* select source (if specified) and destination addresses */ | |
2302 | error = in_selectaddrs(af, src_sl, &src_se, dst_sl, &dst_se); | |
2303 | if (error != 0) { | |
2304 | return (error); | |
2305 | } | |
2306 | ||
2307 | VERIFY(*dst_sl != NULL && dst_se != NULL); | |
2308 | VERIFY(src_se == NULL || *src_sl != NULL); | |
2309 | VERIFY(dst_se->se_addr->sa_family == af); | |
2310 | VERIFY(src_se == NULL || src_se->se_addr->sa_family == af); | |
2311 | ||
2312 | error = flow_divert_connect_out(so, dst_se->se_addr, p); | |
2313 | ||
2314 | if (error == 0 && pcid != NULL) { | |
2315 | *pcid = 1; /* there is only 1 connection for a TCP */ | |
2316 | } | |
2317 | ||
2318 | return (error); | |
2319 | } | |
2320 | ||
2321 | static int | |
2322 | flow_divert_connectx_out(struct socket *so, struct sockaddr_list **src_sl, | |
2323 | struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, | |
2324 | associd_t aid, connid_t *pcid, uint32_t flags, void *arg, | |
2325 | uint32_t arglen) | |
2326 | { | |
2327 | return (flow_divert_connectx_out_common(so, AF_INET, src_sl, dst_sl, | |
2328 | p, ifscope, aid, pcid, flags, arg, arglen)); | |
2329 | } | |
2330 | ||
2331 | #if INET6 | |
2332 | static int | |
2333 | flow_divert_connectx6_out(struct socket *so, struct sockaddr_list **src_sl, | |
2334 | struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, | |
2335 | associd_t aid, connid_t *pcid, uint32_t flags, void *arg, | |
2336 | uint32_t arglen) | |
2337 | { | |
2338 | return (flow_divert_connectx_out_common(so, AF_INET6, src_sl, dst_sl, | |
2339 | p, ifscope, aid, pcid, flags, arg, arglen)); | |
2340 | } | |
2341 | #endif /* INET6 */ | |
2342 | ||
2343 | static int | |
2344 | flow_divert_getconninfo(struct socket *so, connid_t cid, uint32_t *flags, | |
2345 | uint32_t *ifindex, int32_t *soerror, user_addr_t src, socklen_t *src_len, | |
2346 | user_addr_t dst, socklen_t *dst_len, uint32_t *aux_type, | |
2347 | user_addr_t aux_data __unused, uint32_t *aux_len) | |
2348 | { | |
2349 | int error = 0; | |
2350 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2351 | struct ifnet *ifp = NULL; | |
2352 | struct inpcb *inp = sotoinpcb(so); | |
2353 | ||
2354 | VERIFY((so->so_flags & SOF_FLOW_DIVERT)); | |
2355 | ||
2356 | if (so->so_fd_pcb == NULL || inp == NULL) { | |
2357 | error = EINVAL; | |
2358 | goto out; | |
2359 | } | |
2360 | ||
2361 | if (cid != CONNID_ANY && cid != CONNID_ALL && cid != 1) { | |
2362 | error = EINVAL; | |
2363 | goto out; | |
2364 | } | |
2365 | ||
2366 | ifp = inp->inp_last_outifp; | |
2367 | *ifindex = ((ifp != NULL) ? ifp->if_index : 0); | |
2368 | *soerror = so->so_error; | |
2369 | *flags = 0; | |
2370 | ||
2371 | if (so->so_state & SS_ISCONNECTED) { | |
2372 | *flags |= (CIF_CONNECTED | CIF_PREFERRED); | |
2373 | } | |
2374 | ||
2375 | if (fd_cb->local_address == NULL) { | |
2376 | struct sockaddr_in sin; | |
2377 | bzero(&sin, sizeof(sin)); | |
2378 | sin.sin_len = sizeof(sin); | |
2379 | sin.sin_family = AF_INET; | |
2380 | *src_len = sin.sin_len; | |
2381 | if (src != USER_ADDR_NULL) { | |
2382 | error = copyout(&sin, src, sin.sin_len); | |
2383 | if (error != 0) { | |
2384 | goto out; | |
2385 | } | |
2386 | } | |
2387 | } else { | |
2388 | *src_len = fd_cb->local_address->sa_len; | |
2389 | if (src != USER_ADDR_NULL) { | |
2390 | error = copyout(fd_cb->local_address, src, fd_cb->local_address->sa_len); | |
2391 | if (error != 0) { | |
2392 | goto out; | |
2393 | } | |
2394 | } | |
2395 | } | |
2396 | ||
2397 | if (fd_cb->remote_address == NULL) { | |
2398 | struct sockaddr_in sin; | |
2399 | bzero(&sin, sizeof(sin)); | |
2400 | sin.sin_len = sizeof(sin); | |
2401 | sin.sin_family = AF_INET; | |
2402 | *dst_len = sin.sin_len; | |
2403 | if (dst != USER_ADDR_NULL) { | |
2404 | error = copyout(&sin, dst, sin.sin_len); | |
2405 | if (error != 0) { | |
2406 | goto out; | |
2407 | } | |
2408 | } | |
2409 | } else { | |
2410 | *dst_len = fd_cb->remote_address->sa_len; | |
2411 | if (dst != USER_ADDR_NULL) { | |
2412 | error = copyout(fd_cb->remote_address, dst, fd_cb->remote_address->sa_len); | |
2413 | if (error != 0) { | |
2414 | goto out; | |
2415 | } | |
2416 | } | |
2417 | } | |
2418 | ||
2419 | *aux_type = 0; | |
2420 | *aux_len = 0; | |
2421 | ||
2422 | out: | |
2423 | return error; | |
2424 | } | |
2425 | ||
2426 | static int | |
2427 | flow_divert_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp __unused, struct proc *p __unused) | |
2428 | { | |
2429 | int error = 0; | |
2430 | ||
2431 | switch (cmd) { | |
2432 | case SIOCGCONNINFO32: { | |
2433 | struct so_cinforeq32 cifr; | |
2434 | bcopy(data, &cifr, sizeof (cifr)); | |
2435 | error = flow_divert_getconninfo(so, cifr.scir_cid, &cifr.scir_flags, | |
2436 | &cifr.scir_ifindex, &cifr.scir_error, cifr.scir_src, | |
2437 | &cifr.scir_src_len, cifr.scir_dst, &cifr.scir_dst_len, | |
2438 | &cifr.scir_aux_type, cifr.scir_aux_data, | |
2439 | &cifr.scir_aux_len); | |
2440 | if (error == 0) { | |
2441 | bcopy(&cifr, data, sizeof (cifr)); | |
2442 | } | |
2443 | break; | |
2444 | } | |
2445 | ||
2446 | case SIOCGCONNINFO64: { | |
2447 | struct so_cinforeq64 cifr; | |
2448 | bcopy(data, &cifr, sizeof (cifr)); | |
2449 | error = flow_divert_getconninfo(so, cifr.scir_cid, &cifr.scir_flags, | |
2450 | &cifr.scir_ifindex, &cifr.scir_error, cifr.scir_src, | |
2451 | &cifr.scir_src_len, cifr.scir_dst, &cifr.scir_dst_len, | |
2452 | &cifr.scir_aux_type, cifr.scir_aux_data, | |
2453 | &cifr.scir_aux_len); | |
2454 | if (error == 0) { | |
2455 | bcopy(&cifr, data, sizeof (cifr)); | |
2456 | } | |
2457 | break; | |
2458 | } | |
2459 | ||
2460 | default: | |
2461 | error = EOPNOTSUPP; | |
2462 | } | |
2463 | ||
2464 | return error; | |
2465 | } | |
2466 | ||
2467 | static int | |
2468 | flow_divert_in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p) | |
2469 | { | |
2470 | int error = flow_divert_control(so, cmd, data, ifp, p); | |
2471 | ||
2472 | if (error == EOPNOTSUPP) { | |
2473 | error = in_control(so, cmd, data, ifp, p); | |
2474 | } | |
2475 | ||
2476 | return error; | |
2477 | } | |
2478 | ||
2479 | static int | |
2480 | flow_divert_in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p) | |
2481 | { | |
2482 | int error = flow_divert_control(so, cmd, data, ifp, p); | |
2483 | ||
2484 | if (error == EOPNOTSUPP) { | |
2485 | error = in6_control(so, cmd, data, ifp, p); | |
2486 | } | |
2487 | ||
2488 | return error; | |
2489 | } | |
2490 | ||
2491 | static errno_t | |
2492 | flow_divert_data_out(struct socket *so, int flags, mbuf_t data, struct sockaddr *to, mbuf_t control, struct proc *p __unused) | |
2493 | { | |
2494 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2495 | int error = 0; | |
2496 | struct inpcb *inp; | |
2497 | ||
2498 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2499 | ||
2500 | inp = sotoinpcb(so); | |
2501 | if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { | |
2502 | error = ECONNRESET; | |
2503 | goto done; | |
2504 | } | |
2505 | ||
2506 | if (control && mbuf_len(control) > 0) { | |
2507 | error = EINVAL; | |
2508 | goto done; | |
2509 | } | |
2510 | ||
2511 | if (flags & MSG_OOB) { | |
2512 | error = EINVAL; | |
2513 | goto done; /* We don't support OOB data */ | |
2514 | } | |
2515 | ||
2516 | error = flow_divert_check_no_cellular(fd_cb); | |
2517 | if (error) { | |
2518 | goto done; | |
2519 | } | |
2520 | ||
2521 | /* Implicit connect */ | |
2522 | if (!(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
2523 | FDLOG0(LOG_INFO, fd_cb, "implicit connect"); | |
2524 | error = flow_divert_connect_out(so, to, NULL); | |
2525 | if (error) { | |
2526 | goto done; | |
2527 | } | |
2528 | } | |
2529 | ||
2530 | FDLOG(LOG_DEBUG, fd_cb, "app wrote %lu bytes", mbuf_pkthdr_len(data)); | |
2531 | ||
2532 | fd_cb->bytes_written_by_app += mbuf_pkthdr_len(data); | |
2533 | error = flow_divert_send_app_data(fd_cb, data); | |
2534 | if (error) { | |
2535 | goto done; | |
2536 | } | |
2537 | ||
2538 | data = NULL; | |
2539 | ||
2540 | if (flags & PRUS_EOF) { | |
2541 | flow_divert_shutdown(so); | |
2542 | } | |
2543 | ||
2544 | done: | |
2545 | if (data) { | |
2546 | mbuf_free(data); | |
2547 | } | |
2548 | if (control) { | |
2549 | mbuf_free(control); | |
2550 | } | |
2551 | return error; | |
2552 | } | |
2553 | ||
2554 | boolean_t | |
2555 | flow_divert_is_dns_service(struct socket *so) | |
2556 | { | |
2557 | uint32_t ctl_unit = 0; | |
2558 | flow_divert_check_policy(so, NULL, TRUE, &ctl_unit); | |
2559 | FDLOG(LOG_INFO, &nil_pcb, "Check for DNS resulted in %u", ctl_unit); | |
2560 | return (ctl_unit == DNS_SERVICE_GROUP_UNIT); | |
2561 | } | |
2562 | ||
2563 | errno_t | |
2564 | flow_divert_check_policy(struct socket *so, proc_t p, boolean_t match_delegate, uint32_t *ctl_unit) | |
2565 | { | |
2566 | int error = EPROTOTYPE; | |
2567 | ||
2568 | if (ctl_unit != NULL) { | |
2569 | *ctl_unit = 0; | |
2570 | } | |
2571 | ||
2572 | if (SOCK_DOM(so) != PF_INET | |
2573 | #if INET6 | |
2574 | && SOCK_DOM(so) != PF_INET6 | |
2575 | #endif | |
2576 | ) | |
2577 | { | |
2578 | return error; | |
2579 | } | |
2580 | ||
2581 | if (g_signing_id_trie.root != NULL_TRIE_IDX) { | |
2582 | int release_proc = flow_divert_get_src_proc(so, &p, match_delegate); | |
2583 | if (p != PROC_NULL) { | |
2584 | proc_lock(p); | |
2585 | if (p->p_csflags & CS_VALID) { | |
2586 | const char *signing_id = cs_identity_get(p); | |
2587 | if (signing_id != NULL) { | |
2588 | uint16_t result = NULL_TRIE_IDX; | |
2589 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
2590 | result = flow_divert_trie_search(&g_signing_id_trie, (const uint8_t *)signing_id); | |
2591 | if (result != NULL_TRIE_IDX) { | |
2592 | uint32_t unit = TRIE_NODE(&g_signing_id_trie, result).group_unit; | |
2593 | ||
2594 | error = 0; | |
2595 | ||
2596 | FDLOG(LOG_INFO, &nil_pcb, "%s matched, ctl_unit = %u", signing_id, unit); | |
2597 | ||
2598 | if (ctl_unit != NULL) { | |
2599 | *ctl_unit = unit; | |
2600 | } | |
2601 | } | |
2602 | lck_rw_done(&g_flow_divert_group_lck); | |
2603 | } | |
2604 | } | |
2605 | proc_unlock(p); | |
2606 | ||
2607 | if (release_proc) { | |
2608 | proc_rele(p); | |
2609 | } | |
2610 | } | |
2611 | } | |
2612 | ||
2613 | return error; | |
2614 | } | |
2615 | ||
2616 | static void | |
2617 | flow_divert_set_protosw(struct socket *so) | |
2618 | { | |
2619 | so->so_flags |= SOF_FLOW_DIVERT; | |
2620 | if (SOCK_DOM(so) == PF_INET) { | |
2621 | so->so_proto = &g_flow_divert_in_protosw; | |
2622 | } | |
2623 | #if INET6 | |
2624 | else { | |
2625 | so->so_proto = (struct protosw *)&g_flow_divert_in6_protosw; | |
2626 | } | |
2627 | #endif /* INET6 */ | |
2628 | } | |
2629 | ||
2630 | static errno_t | |
2631 | flow_divert_attach(struct socket *so, uint32_t flow_id, uint32_t ctl_unit) | |
2632 | { | |
2633 | int error = 0; | |
2634 | struct flow_divert_pcb *fd_cb = NULL; | |
2635 | struct ifnet *ifp = NULL; | |
2636 | struct inpcb *inp = NULL; | |
2637 | struct socket *old_so; | |
2638 | mbuf_t recv_data = NULL; | |
2639 | ||
2640 | socket_unlock(so, 0); | |
2641 | ||
2642 | FDLOG(LOG_INFO, &nil_pcb, "Attaching socket to flow %u", flow_id); | |
2643 | ||
2644 | /* Find the flow divert control block */ | |
2645 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
2646 | if (g_flow_divert_groups != NULL && g_active_group_count > 0) { | |
2647 | struct flow_divert_group *group = g_flow_divert_groups[ctl_unit]; | |
2648 | if (group != NULL) { | |
2649 | fd_cb = flow_divert_pcb_lookup(flow_id, group); | |
2650 | } | |
2651 | } | |
2652 | lck_rw_done(&g_flow_divert_group_lck); | |
2653 | ||
2654 | if (fd_cb == NULL) { | |
2655 | error = ENOENT; | |
2656 | goto done; | |
2657 | } | |
2658 | ||
2659 | FDLOCK(fd_cb); | |
2660 | ||
2661 | /* Dis-associate the flow divert control block from its current socket */ | |
2662 | old_so = fd_cb->so; | |
2663 | ||
2664 | inp = sotoinpcb(old_so); | |
2665 | ||
2666 | VERIFY(inp != NULL); | |
2667 | ||
2668 | socket_lock(old_so, 0); | |
2669 | soisdisconnected(old_so); | |
2670 | old_so->so_flags &= ~SOF_FLOW_DIVERT; | |
2671 | old_so->so_fd_pcb = NULL; | |
2672 | old_so->so_proto = pffindproto(SOCK_DOM(old_so), IPPROTO_TCP, SOCK_STREAM); | |
2673 | fd_cb->so = NULL; | |
2674 | /* Save the output interface */ | |
2675 | ifp = inp->inp_last_outifp; | |
2676 | if (old_so->so_rcv.sb_cc > 0) { | |
2677 | error = mbuf_dup(old_so->so_rcv.sb_mb, MBUF_DONTWAIT, &recv_data); | |
2678 | sbflush(&old_so->so_rcv); | |
2679 | } | |
2680 | socket_unlock(old_so, 0); | |
2681 | ||
2682 | /* Associate the new socket with the flow divert control block */ | |
2683 | socket_lock(so, 0); | |
2684 | so->so_fd_pcb = fd_cb; | |
2685 | inp = sotoinpcb(so); | |
2686 | inp->inp_last_outifp = ifp; | |
2687 | if (recv_data != NULL) { | |
2688 | if (sbappendstream(&so->so_rcv, recv_data)) { | |
2689 | sorwakeup(so); | |
2690 | } | |
2691 | } | |
2692 | flow_divert_set_protosw(so); | |
2693 | socket_unlock(so, 0); | |
2694 | ||
2695 | fd_cb->so = so; | |
2696 | fd_cb->flags |= FLOW_DIVERT_TRANSFERRED; | |
2697 | ||
2698 | FDUNLOCK(fd_cb); | |
2699 | ||
2700 | done: | |
2701 | socket_lock(so, 0); | |
2702 | ||
2703 | if (fd_cb != NULL) { | |
2704 | FDRELEASE(fd_cb); /* Release the reference obtained via flow_divert_pcb_lookup */ | |
2705 | } | |
2706 | ||
2707 | return error; | |
2708 | } | |
2709 | ||
2710 | errno_t | |
2711 | flow_divert_pcb_init(struct socket *so, uint32_t ctl_unit) | |
2712 | { | |
2713 | errno_t error = 0; | |
2714 | struct flow_divert_pcb *fd_cb; | |
2715 | ||
2716 | if (so->so_flags & SOF_FLOW_DIVERT) { | |
2717 | return EALREADY; | |
2718 | } | |
2719 | ||
2720 | fd_cb = flow_divert_pcb_create(so); | |
2721 | if (fd_cb != NULL) { | |
2722 | error = flow_divert_pcb_insert(fd_cb, ctl_unit); | |
2723 | if (error) { | |
2724 | FDLOG(LOG_ERR, fd_cb, "pcb insert failed: %d", error); | |
2725 | FDRELEASE(fd_cb); | |
2726 | } else { | |
2727 | fd_cb->log_level = LOG_NOTICE; | |
2728 | fd_cb->control_group_unit = ctl_unit; | |
2729 | so->so_fd_pcb = fd_cb; | |
2730 | ||
2731 | flow_divert_set_protosw(so); | |
2732 | ||
2733 | FDLOG0(LOG_INFO, fd_cb, "Created"); | |
2734 | } | |
2735 | } else { | |
2736 | error = ENOMEM; | |
2737 | } | |
2738 | ||
2739 | return error; | |
2740 | } | |
2741 | ||
2742 | errno_t | |
2743 | flow_divert_token_set(struct socket *so, struct sockopt *sopt) | |
2744 | { | |
2745 | uint32_t ctl_unit = 0; | |
2746 | uint32_t key_unit = 0; | |
2747 | uint32_t flow_id = 0; | |
2748 | int error = 0; | |
2749 | mbuf_t token = NULL; | |
2750 | ||
2751 | if (so->so_flags & SOF_FLOW_DIVERT) { | |
2752 | error = EALREADY; | |
2753 | goto done; | |
2754 | } | |
2755 | ||
2756 | if (g_init_result) { | |
2757 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_init failed (%d), cannot use flow divert", g_init_result); | |
2758 | error = ENOPROTOOPT; | |
2759 | goto done; | |
2760 | } | |
2761 | ||
2762 | if (SOCK_TYPE(so) != SOCK_STREAM || | |
2763 | SOCK_PROTO(so) != IPPROTO_TCP || | |
2764 | (SOCK_DOM(so) != PF_INET | |
2765 | #if INET6 | |
2766 | && SOCK_DOM(so) != PF_INET6 | |
2767 | #endif | |
2768 | )) | |
2769 | { | |
2770 | error = EINVAL; | |
2771 | goto done; | |
2772 | } else { | |
2773 | struct tcpcb *tp = sototcpcb(so); | |
2774 | if (tp == NULL || tp->t_state != TCPS_CLOSED) { | |
2775 | error = EINVAL; | |
2776 | goto done; | |
2777 | } | |
2778 | } | |
2779 | ||
2780 | error = soopt_getm(sopt, &token); | |
2781 | if (error) { | |
2782 | goto done; | |
2783 | } | |
2784 | ||
2785 | error = soopt_mcopyin(sopt, token); | |
2786 | if (error) { | |
2787 | goto done; | |
2788 | } | |
2789 | ||
2790 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_KEY_UNIT, sizeof(key_unit), (void *)&key_unit, NULL); | |
2791 | if (!error) { | |
2792 | key_unit = ntohl(key_unit); | |
2793 | } else if (error != ENOENT) { | |
2794 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the key unit from the token: %d", error); | |
2795 | goto done; | |
2796 | } else { | |
2797 | key_unit = 0; | |
2798 | } | |
2799 | ||
2800 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), (void *)&ctl_unit, NULL); | |
2801 | if (error) { | |
2802 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the control socket unit from the token: %d", error); | |
2803 | goto done; | |
2804 | } | |
2805 | ||
2806 | /* A valid kernel control unit is required */ | |
2807 | ctl_unit = ntohl(ctl_unit); | |
2808 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
2809 | FDLOG(LOG_ERR, &nil_pcb, "Got an invalid control socket unit: %u", ctl_unit); | |
2810 | error = EINVAL; | |
2811 | goto done; | |
2812 | } | |
2813 | ||
2814 | socket_unlock(so, 0); | |
2815 | error = flow_divert_packet_verify_hmac(token, (key_unit != 0 ? key_unit : ctl_unit)); | |
2816 | socket_lock(so, 0); | |
2817 | ||
2818 | if (error) { | |
2819 | FDLOG(LOG_ERR, &nil_pcb, "HMAC verfication failed: %d", error); | |
2820 | goto done; | |
2821 | } | |
2822 | ||
2823 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_FLOW_ID, sizeof(flow_id), (void *)&flow_id, NULL); | |
2824 | if (error && error != ENOENT) { | |
2825 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the flow ID from the token: %d", error); | |
2826 | goto done; | |
2827 | } | |
2828 | ||
2829 | if (flow_id == 0) { | |
2830 | error = flow_divert_pcb_init(so, ctl_unit); | |
2831 | if (error == 0) { | |
2832 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2833 | int log_level = LOG_NOTICE; | |
2834 | ||
2835 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_LOG_LEVEL, | |
2836 | sizeof(log_level), &log_level, NULL); | |
2837 | if (error == 0) { | |
2838 | fd_cb->log_level = log_level; | |
2839 | } | |
2840 | error = 0; | |
2841 | ||
2842 | fd_cb->connect_token = token; | |
2843 | token = NULL; | |
2844 | } | |
2845 | } else { | |
2846 | error = flow_divert_attach(so, flow_id, ctl_unit); | |
2847 | } | |
2848 | ||
2849 | done: | |
2850 | if (token != NULL) { | |
2851 | mbuf_freem(token); | |
2852 | } | |
2853 | ||
2854 | return error; | |
2855 | } | |
2856 | ||
2857 | errno_t | |
2858 | flow_divert_token_get(struct socket *so, struct sockopt *sopt) | |
2859 | { | |
2860 | uint32_t ctl_unit; | |
2861 | int error = 0; | |
2862 | uint8_t hmac[SHA_DIGEST_LENGTH]; | |
2863 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2864 | mbuf_t token = NULL; | |
2865 | struct flow_divert_group *control_group = NULL; | |
2866 | ||
2867 | if (!(so->so_flags & SOF_FLOW_DIVERT)) { | |
2868 | error = EINVAL; | |
2869 | goto done; | |
2870 | } | |
2871 | ||
2872 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2873 | ||
2874 | if (fd_cb->group == NULL) { | |
2875 | error = EINVAL; | |
2876 | goto done; | |
2877 | } | |
2878 | ||
2879 | error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, &token); | |
2880 | if (error) { | |
2881 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d", error); | |
2882 | goto done; | |
2883 | } | |
2884 | ||
2885 | ctl_unit = htonl(fd_cb->group->ctl_unit); | |
2886 | ||
2887 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit); | |
2888 | if (error) { | |
2889 | goto done; | |
2890 | } | |
2891 | ||
2892 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_FLOW_ID, sizeof(fd_cb->hash), &fd_cb->hash); | |
2893 | if (error) { | |
2894 | goto done; | |
2895 | } | |
2896 | ||
2897 | socket_unlock(so, 0); | |
2898 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
2899 | ||
2900 | if (g_flow_divert_groups != NULL && g_active_group_count > 0 && | |
2901 | fd_cb->control_group_unit > 0 && fd_cb->control_group_unit < GROUP_COUNT_MAX) | |
2902 | { | |
2903 | control_group = g_flow_divert_groups[fd_cb->control_group_unit]; | |
2904 | } | |
2905 | ||
2906 | if (control_group != NULL) { | |
2907 | lck_rw_lock_shared(&control_group->lck); | |
2908 | ctl_unit = htonl(control_group->ctl_unit); | |
2909 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_KEY_UNIT, sizeof(ctl_unit), &ctl_unit); | |
2910 | if (!error) { | |
2911 | error = flow_divert_packet_compute_hmac(token, control_group, hmac); | |
2912 | } | |
2913 | lck_rw_done(&control_group->lck); | |
2914 | } else { | |
2915 | error = ENOPROTOOPT; | |
2916 | } | |
2917 | ||
2918 | lck_rw_done(&g_flow_divert_group_lck); | |
2919 | socket_lock(so, 0); | |
2920 | ||
2921 | if (error) { | |
2922 | goto done; | |
2923 | } | |
2924 | ||
2925 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_HMAC, sizeof(hmac), hmac); | |
2926 | if (error) { | |
2927 | goto done; | |
2928 | } | |
2929 | ||
2930 | error = soopt_mcopyout(sopt, token); | |
2931 | if (error) { | |
2932 | token = NULL; /* For some reason, soopt_mcopyout() frees the mbuf if it fails */ | |
2933 | goto done; | |
2934 | } | |
2935 | ||
2936 | done: | |
2937 | if (token != NULL) { | |
2938 | mbuf_freem(token); | |
2939 | } | |
2940 | ||
2941 | return error; | |
2942 | } | |
2943 | ||
2944 | static errno_t | |
2945 | flow_divert_kctl_connect(kern_ctl_ref kctlref __unused, struct sockaddr_ctl *sac, void **unitinfo) | |
2946 | { | |
2947 | struct flow_divert_group *new_group; | |
2948 | int error = 0; | |
2949 | ||
2950 | if (sac->sc_unit >= GROUP_COUNT_MAX) { | |
2951 | error = EINVAL; | |
2952 | goto done; | |
2953 | } | |
2954 | ||
2955 | *unitinfo = NULL; | |
2956 | ||
2957 | MALLOC_ZONE(new_group, struct flow_divert_group *, sizeof(*new_group), M_FLOW_DIVERT_GROUP, M_WAITOK); | |
2958 | if (new_group == NULL) { | |
2959 | error = ENOBUFS; | |
2960 | goto done; | |
2961 | } | |
2962 | ||
2963 | memset(new_group, 0, sizeof(*new_group)); | |
2964 | ||
2965 | lck_rw_init(&new_group->lck, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
2966 | RB_INIT(&new_group->pcb_tree); | |
2967 | new_group->ctl_unit = sac->sc_unit; | |
2968 | MBUFQ_INIT(&new_group->send_queue); | |
2969 | ||
2970 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
2971 | ||
2972 | if (g_flow_divert_groups == NULL) { | |
2973 | MALLOC(g_flow_divert_groups, | |
2974 | struct flow_divert_group **, | |
2975 | GROUP_COUNT_MAX * sizeof(struct flow_divert_group *), | |
2976 | M_TEMP, | |
2977 | M_WAITOK | M_ZERO); | |
2978 | } | |
2979 | ||
2980 | if (g_flow_divert_groups == NULL) { | |
2981 | error = ENOBUFS; | |
2982 | } else if (g_flow_divert_groups[sac->sc_unit] != NULL) { | |
2983 | error = EALREADY; | |
2984 | } else { | |
2985 | g_flow_divert_groups[sac->sc_unit] = new_group; | |
2986 | g_active_group_count++; | |
2987 | } | |
2988 | ||
2989 | lck_rw_done(&g_flow_divert_group_lck); | |
2990 | ||
2991 | *unitinfo = new_group; | |
2992 | ||
2993 | done: | |
2994 | if (error != 0 && new_group != NULL) { | |
2995 | FREE_ZONE(new_group, sizeof(*new_group), M_FLOW_DIVERT_GROUP); | |
2996 | } | |
2997 | return error; | |
2998 | } | |
2999 | ||
3000 | static errno_t | |
3001 | flow_divert_kctl_disconnect(kern_ctl_ref kctlref __unused, uint32_t unit, void *unitinfo) | |
3002 | { | |
3003 | struct flow_divert_group *group = NULL; | |
3004 | errno_t error = 0; | |
3005 | uint16_t node = 0; | |
3006 | ||
3007 | if (unit >= GROUP_COUNT_MAX) { | |
3008 | return EINVAL; | |
3009 | } | |
3010 | ||
3011 | FDLOG(LOG_INFO, &nil_pcb, "disconnecting group %d", unit); | |
3012 | ||
3013 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
3014 | ||
3015 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
3016 | panic("flow divert group %u is disconnecting, but no groups are active (groups = %p, active count = %u", unit, | |
3017 | g_flow_divert_groups, g_active_group_count); | |
3018 | } | |
3019 | ||
3020 | group = g_flow_divert_groups[unit]; | |
3021 | ||
3022 | if (group != (struct flow_divert_group *)unitinfo) { | |
3023 | panic("group with unit %d (%p) != unit info (%p)", unit, group, unitinfo); | |
3024 | } | |
3025 | ||
3026 | if (group != NULL) { | |
3027 | flow_divert_close_all(group); | |
3028 | if (group->token_key != NULL) { | |
3029 | memset(group->token_key, 0, group->token_key_size); | |
3030 | FREE(group->token_key, M_TEMP); | |
3031 | group->token_key = NULL; | |
3032 | group->token_key_size = 0; | |
3033 | } | |
3034 | FREE_ZONE(group, sizeof(*group), M_FLOW_DIVERT_GROUP); | |
3035 | g_flow_divert_groups[unit] = NULL; | |
3036 | g_active_group_count--; | |
3037 | } else { | |
3038 | error = EINVAL; | |
3039 | } | |
3040 | ||
3041 | if (g_active_group_count == 0) { | |
3042 | FREE(g_flow_divert_groups, M_TEMP); | |
3043 | g_flow_divert_groups = NULL; | |
3044 | } | |
3045 | ||
3046 | /* Remove all signing IDs that point to this unit */ | |
3047 | for (node = 0; node < g_signing_id_trie.nodes_count; node++) { | |
3048 | if (TRIE_NODE(&g_signing_id_trie, node).group_unit == unit) { | |
3049 | TRIE_NODE(&g_signing_id_trie, node).group_unit = 0; | |
3050 | } | |
3051 | } | |
3052 | ||
3053 | lck_rw_done(&g_flow_divert_group_lck); | |
3054 | ||
3055 | return error; | |
3056 | } | |
3057 | ||
3058 | static errno_t | |
3059 | flow_divert_kctl_send(kern_ctl_ref kctlref __unused, uint32_t unit __unused, void *unitinfo, mbuf_t m, int flags __unused) | |
3060 | { | |
3061 | return flow_divert_input(m, (struct flow_divert_group *)unitinfo); | |
3062 | } | |
3063 | ||
3064 | static void | |
3065 | flow_divert_kctl_rcvd(kern_ctl_ref kctlref __unused, uint32_t unit __unused, void *unitinfo, int flags __unused) | |
3066 | { | |
3067 | struct flow_divert_group *group = (struct flow_divert_group *)unitinfo; | |
3068 | ||
3069 | if (!OSTestAndClear(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &group->atomic_bits)) { | |
3070 | struct flow_divert_pcb *fd_cb; | |
3071 | SLIST_HEAD(, flow_divert_pcb) tmp_list; | |
3072 | ||
3073 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
3074 | lck_rw_lock_exclusive(&group->lck); | |
3075 | ||
3076 | while (!MBUFQ_EMPTY(&group->send_queue)) { | |
3077 | mbuf_t next_packet; | |
3078 | FDLOG0(LOG_DEBUG, &nil_pcb, "trying ctl_enqueuembuf again"); | |
3079 | next_packet = MBUFQ_FIRST(&group->send_queue); | |
3080 | int error = ctl_enqueuembuf(g_flow_divert_kctl_ref, group->ctl_unit, next_packet, CTL_DATA_EOR); | |
3081 | if (error) { | |
3082 | FDLOG(LOG_DEBUG, &nil_pcb, "ctl_enqueuembuf returned an error: %d", error); | |
3083 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &group->atomic_bits); | |
3084 | lck_rw_done(&group->lck); | |
3085 | lck_rw_done(&g_flow_divert_group_lck); | |
3086 | return; | |
3087 | } | |
3088 | MBUFQ_DEQUEUE(&group->send_queue, next_packet); | |
3089 | } | |
3090 | ||
3091 | SLIST_INIT(&tmp_list); | |
3092 | ||
3093 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { | |
3094 | FDRETAIN(fd_cb); | |
3095 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); | |
3096 | } | |
3097 | ||
3098 | lck_rw_done(&group->lck); | |
3099 | ||
3100 | SLIST_FOREACH(fd_cb, &tmp_list, tmp_list_entry) { | |
3101 | FDLOCK(fd_cb); | |
3102 | if (fd_cb->so != NULL) { | |
3103 | socket_lock(fd_cb->so, 0); | |
3104 | if (fd_cb->group != NULL) { | |
3105 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
3106 | } | |
3107 | socket_unlock(fd_cb->so, 0); | |
3108 | } | |
3109 | FDUNLOCK(fd_cb); | |
3110 | FDRELEASE(fd_cb); | |
3111 | } | |
3112 | ||
3113 | lck_rw_done(&g_flow_divert_group_lck); | |
3114 | } | |
3115 | } | |
3116 | ||
3117 | static int | |
3118 | flow_divert_kctl_init(void) | |
3119 | { | |
3120 | struct kern_ctl_reg ctl_reg; | |
3121 | int result; | |
3122 | ||
3123 | memset(&ctl_reg, 0, sizeof(ctl_reg)); | |
3124 | ||
3125 | strncpy(ctl_reg.ctl_name, FLOW_DIVERT_CONTROL_NAME, sizeof(ctl_reg.ctl_name)); | |
3126 | ctl_reg.ctl_name[sizeof(ctl_reg.ctl_name)-1] = '\0'; | |
3127 | ctl_reg.ctl_flags = CTL_FLAG_PRIVILEGED | CTL_FLAG_REG_EXTENDED; | |
3128 | ctl_reg.ctl_sendsize = FD_CTL_SENDBUFF_SIZE; | |
3129 | ctl_reg.ctl_recvsize = FD_CTL_RCVBUFF_SIZE; | |
3130 | ||
3131 | ctl_reg.ctl_connect = flow_divert_kctl_connect; | |
3132 | ctl_reg.ctl_disconnect = flow_divert_kctl_disconnect; | |
3133 | ctl_reg.ctl_send = flow_divert_kctl_send; | |
3134 | ctl_reg.ctl_rcvd = flow_divert_kctl_rcvd; | |
3135 | ||
3136 | result = ctl_register(&ctl_reg, &g_flow_divert_kctl_ref); | |
3137 | ||
3138 | if (result) { | |
3139 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_kctl_init - ctl_register failed: %d\n", result); | |
3140 | return result; | |
3141 | } | |
3142 | ||
3143 | return 0; | |
3144 | } | |
3145 | ||
3146 | void | |
3147 | flow_divert_init(void) | |
3148 | { | |
3149 | memset(&nil_pcb, 0, sizeof(nil_pcb)); | |
3150 | nil_pcb.log_level = LOG_INFO; | |
3151 | ||
3152 | g_tcp_protosw = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM); | |
3153 | ||
3154 | VERIFY(g_tcp_protosw != NULL); | |
3155 | ||
3156 | memcpy(&g_flow_divert_in_protosw, g_tcp_protosw, sizeof(g_flow_divert_in_protosw)); | |
3157 | memcpy(&g_flow_divert_in_usrreqs, g_tcp_protosw->pr_usrreqs, sizeof(g_flow_divert_in_usrreqs)); | |
3158 | ||
3159 | g_flow_divert_in_usrreqs.pru_connect = flow_divert_connect_out; | |
3160 | g_flow_divert_in_usrreqs.pru_connectx = flow_divert_connectx_out; | |
3161 | g_flow_divert_in_usrreqs.pru_control = flow_divert_in_control; | |
3162 | g_flow_divert_in_usrreqs.pru_disconnect = flow_divert_close; | |
3163 | g_flow_divert_in_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
3164 | g_flow_divert_in_usrreqs.pru_peeraddr = flow_divert_getpeername; | |
3165 | g_flow_divert_in_usrreqs.pru_rcvd = flow_divert_rcvd; | |
3166 | g_flow_divert_in_usrreqs.pru_send = flow_divert_data_out; | |
3167 | g_flow_divert_in_usrreqs.pru_shutdown = flow_divert_shutdown; | |
3168 | g_flow_divert_in_usrreqs.pru_sockaddr = flow_divert_getsockaddr; | |
3169 | ||
3170 | g_flow_divert_in_protosw.pr_usrreqs = &g_flow_divert_in_usrreqs; | |
3171 | g_flow_divert_in_protosw.pr_ctloutput = flow_divert_ctloutput; | |
3172 | ||
3173 | /* | |
3174 | * Socket filters shouldn't attach/detach to/from this protosw | |
3175 | * since pr_protosw is to be used instead, which points to the | |
3176 | * real protocol; if they do, it is a bug and we should panic. | |
3177 | */ | |
3178 | g_flow_divert_in_protosw.pr_filter_head.tqh_first = | |
3179 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
3180 | g_flow_divert_in_protosw.pr_filter_head.tqh_last = | |
3181 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
3182 | ||
3183 | #if INET6 | |
3184 | g_tcp6_protosw = (struct ip6protosw *)pffindproto(AF_INET6, IPPROTO_TCP, SOCK_STREAM); | |
3185 | ||
3186 | VERIFY(g_tcp6_protosw != NULL); | |
3187 | ||
3188 | memcpy(&g_flow_divert_in6_protosw, g_tcp6_protosw, sizeof(g_flow_divert_in6_protosw)); | |
3189 | memcpy(&g_flow_divert_in6_usrreqs, g_tcp6_protosw->pr_usrreqs, sizeof(g_flow_divert_in6_usrreqs)); | |
3190 | ||
3191 | g_flow_divert_in6_usrreqs.pru_connect = flow_divert_connect_out; | |
3192 | g_flow_divert_in6_usrreqs.pru_connectx = flow_divert_connectx6_out; | |
3193 | g_flow_divert_in6_usrreqs.pru_control = flow_divert_in6_control; | |
3194 | g_flow_divert_in6_usrreqs.pru_disconnect = flow_divert_close; | |
3195 | g_flow_divert_in6_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
3196 | g_flow_divert_in6_usrreqs.pru_peeraddr = flow_divert_getpeername; | |
3197 | g_flow_divert_in6_usrreqs.pru_rcvd = flow_divert_rcvd; | |
3198 | g_flow_divert_in6_usrreqs.pru_send = flow_divert_data_out; | |
3199 | g_flow_divert_in6_usrreqs.pru_shutdown = flow_divert_shutdown; | |
3200 | g_flow_divert_in6_usrreqs.pru_sockaddr = flow_divert_getsockaddr; | |
3201 | ||
3202 | g_flow_divert_in6_protosw.pr_usrreqs = &g_flow_divert_in6_usrreqs; | |
3203 | g_flow_divert_in6_protosw.pr_ctloutput = flow_divert_ctloutput; | |
3204 | /* | |
3205 | * Socket filters shouldn't attach/detach to/from this protosw | |
3206 | * since pr_protosw is to be used instead, which points to the | |
3207 | * real protocol; if they do, it is a bug and we should panic. | |
3208 | */ | |
3209 | g_flow_divert_in6_protosw.pr_filter_head.tqh_first = | |
3210 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
3211 | g_flow_divert_in6_protosw.pr_filter_head.tqh_last = | |
3212 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
3213 | #endif /* INET6 */ | |
3214 | ||
3215 | flow_divert_grp_attr = lck_grp_attr_alloc_init(); | |
3216 | if (flow_divert_grp_attr == NULL) { | |
3217 | FDLOG0(LOG_ERR, &nil_pcb, "lck_grp_attr_alloc_init failed"); | |
3218 | g_init_result = ENOMEM; | |
3219 | goto done; | |
3220 | } | |
3221 | ||
3222 | flow_divert_mtx_grp = lck_grp_alloc_init(FLOW_DIVERT_CONTROL_NAME, flow_divert_grp_attr); | |
3223 | if (flow_divert_mtx_grp == NULL) { | |
3224 | FDLOG0(LOG_ERR, &nil_pcb, "lck_grp_alloc_init failed"); | |
3225 | g_init_result = ENOMEM; | |
3226 | goto done; | |
3227 | } | |
3228 | ||
3229 | flow_divert_mtx_attr = lck_attr_alloc_init(); | |
3230 | if (flow_divert_mtx_attr == NULL) { | |
3231 | FDLOG0(LOG_ERR, &nil_pcb, "lck_attr_alloc_init failed"); | |
3232 | g_init_result = ENOMEM; | |
3233 | goto done; | |
3234 | } | |
3235 | ||
3236 | g_init_result = flow_divert_kctl_init(); | |
3237 | if (g_init_result) { | |
3238 | goto done; | |
3239 | } | |
3240 | ||
3241 | lck_rw_init(&g_flow_divert_group_lck, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
3242 | ||
3243 | memset(&g_signing_id_trie, 0, sizeof(g_signing_id_trie)); | |
3244 | g_signing_id_trie.root = NULL_TRIE_IDX; | |
3245 | ||
3246 | done: | |
3247 | if (g_init_result != 0) { | |
3248 | if (flow_divert_mtx_attr != NULL) { | |
3249 | lck_attr_free(flow_divert_mtx_attr); | |
3250 | flow_divert_mtx_attr = NULL; | |
3251 | } | |
3252 | if (flow_divert_mtx_grp != NULL) { | |
3253 | lck_grp_free(flow_divert_mtx_grp); | |
3254 | flow_divert_mtx_grp = NULL; | |
3255 | } | |
3256 | if (flow_divert_grp_attr != NULL) { | |
3257 | lck_grp_attr_free(flow_divert_grp_attr); | |
3258 | flow_divert_grp_attr = NULL; | |
3259 | } | |
3260 | ||
3261 | if (g_flow_divert_kctl_ref != NULL) { | |
3262 | ctl_deregister(g_flow_divert_kctl_ref); | |
3263 | g_flow_divert_kctl_ref = NULL; | |
3264 | } | |
3265 | } | |
3266 | } |