]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
39236c6e | 2 | * Copyright (c) 1998-2013 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 A |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1982, 1986, 1988, 1991, 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 | |
62 | */ | |
2d21ac55 A |
63 | /* |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
65 | * support for mandatory and extensible security protections. This notice | |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
67 | * Version 2.0. | |
1c79356b A |
68 | */ |
69 | ||
70 | #include <sys/param.h> | |
71 | #include <sys/systm.h> | |
72 | #include <sys/malloc.h> | |
73 | #include <sys/mbuf.h> | |
74 | #include <sys/kernel.h> | |
91447636 | 75 | #include <sys/sysctl.h> |
1c79356b A |
76 | #include <sys/syslog.h> |
77 | #include <sys/protosw.h> | |
78 | #include <sys/domain.h> | |
2d21ac55 | 79 | #include <sys/queue.h> |
b0d623f7 | 80 | #include <sys/proc.h> |
1c79356b | 81 | |
39236c6e A |
82 | #include <dev/random/randomdev.h> |
83 | ||
9bccf70c | 84 | #include <kern/kern_types.h> |
2d21ac55 A |
85 | #include <kern/simple_lock.h> |
86 | #include <kern/queue.h> | |
9bccf70c | 87 | #include <kern/sched_prim.h> |
2d21ac55 | 88 | #include <kern/cpu_number.h> |
6d2010ae | 89 | #include <kern/zalloc.h> |
2d21ac55 A |
90 | |
91 | #include <libkern/OSAtomic.h> | |
39236c6e | 92 | #include <libkern/OSDebug.h> |
2d21ac55 | 93 | #include <libkern/libkern.h> |
9bccf70c | 94 | |
55e303ae A |
95 | #include <IOKit/IOMapper.h> |
96 | ||
2d21ac55 A |
97 | #include <machine/limits.h> |
98 | #include <machine/machine_routines.h> | |
55e303ae | 99 | |
2d21ac55 A |
100 | #if CONFIG_MACF_NET |
101 | #include <security/mac_framework.h> | |
102 | #endif /* MAC_NET */ | |
103 | ||
104 | #include <sys/mcache.h> | |
1c79356b | 105 | |
2d21ac55 A |
106 | /* |
107 | * MBUF IMPLEMENTATION NOTES. | |
108 | * | |
109 | * There is a total of 5 per-CPU caches: | |
110 | * | |
111 | * MC_MBUF: | |
112 | * This is a cache of rudimentary objects of MSIZE in size; each | |
113 | * object represents an mbuf structure. This cache preserves only | |
114 | * the m_type field of the mbuf during its transactions. | |
115 | * | |
116 | * MC_CL: | |
117 | * This is a cache of rudimentary objects of MCLBYTES in size; each | |
118 | * object represents a mcluster structure. This cache does not | |
119 | * preserve the contents of the objects during its transactions. | |
120 | * | |
121 | * MC_BIGCL: | |
6d2010ae | 122 | * This is a cache of rudimentary objects of MBIGCLBYTES in size; each |
2d21ac55 A |
123 | * object represents a mbigcluster structure. This cache does not |
124 | * preserve the contents of the objects during its transaction. | |
125 | * | |
126 | * MC_MBUF_CL: | |
127 | * This is a cache of mbufs each having a cluster attached to it. | |
128 | * It is backed by MC_MBUF and MC_CL rudimentary caches. Several | |
129 | * fields of the mbuf related to the external cluster are preserved | |
130 | * during transactions. | |
131 | * | |
132 | * MC_MBUF_BIGCL: | |
133 | * This is a cache of mbufs each having a big cluster attached to it. | |
134 | * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several | |
135 | * fields of the mbuf related to the external cluster are preserved | |
136 | * during transactions. | |
137 | * | |
138 | * OBJECT ALLOCATION: | |
139 | * | |
140 | * Allocation requests are handled first at the per-CPU (mcache) layer | |
141 | * before falling back to the slab layer. Performance is optimal when | |
142 | * the request is satisfied at the CPU layer because global data/lock | |
143 | * never gets accessed. When the slab layer is entered for allocation, | |
144 | * the slab freelist will be checked first for available objects before | |
145 | * the VM backing store is invoked. Slab layer operations are serialized | |
146 | * for all of the caches as the mbuf global lock is held most of the time. | |
147 | * Allocation paths are different depending on the class of objects: | |
148 | * | |
149 | * a. Rudimentary object: | |
150 | * | |
151 | * { m_get_common(), m_clattach(), m_mclget(), | |
152 | * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(), | |
153 | * composite object allocation } | |
154 | * | ^ | |
155 | * | | | |
156 | * | +-----------------------+ | |
157 | * v | | |
158 | * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit() | |
159 | * | ^ | |
160 | * v | | |
161 | * [CPU cache] -------> (found?) -------+ | |
162 | * | | | |
163 | * v | | |
164 | * mbuf_slab_alloc() | | |
165 | * | | | |
166 | * v | | |
167 | * +---------> [freelist] -------> (found?) -------+ | |
168 | * | | | |
169 | * | v | |
170 | * | m_clalloc() | |
171 | * | | | |
172 | * | v | |
173 | * +---<<---- kmem_mb_alloc() | |
174 | * | |
175 | * b. Composite object: | |
176 | * | |
177 | * { m_getpackets_internal(), m_allocpacket_internal() } | |
178 | * | ^ | |
179 | * | | | |
180 | * | +------ (done) ---------+ | |
181 | * v | | |
182 | * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit() | |
183 | * | ^ | |
184 | * v | | |
185 | * [CPU cache] -------> (found?) -------+ | |
186 | * | | | |
187 | * v | | |
188 | * mbuf_cslab_alloc() | | |
189 | * | | | |
190 | * v | | |
191 | * [freelist] -------> (found?) -------+ | |
192 | * | | | |
193 | * v | | |
194 | * (rudimentary object) | | |
195 | * mcache_alloc/mcache_alloc_ext() ------>>-----+ | |
196 | * | |
197 | * Auditing notes: If auditing is enabled, buffers will be subjected to | |
198 | * integrity checks by the audit routine. This is done by verifying their | |
199 | * contents against DEADBEEF (free) pattern before returning them to caller. | |
200 | * As part of this step, the routine will also record the transaction and | |
201 | * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will | |
202 | * also restore any constructed data structure fields if necessary. | |
203 | * | |
204 | * OBJECT DEALLOCATION: | |
205 | * | |
206 | * Freeing an object simply involves placing it into the CPU cache; this | |
207 | * pollutes the cache to benefit subsequent allocations. The slab layer | |
208 | * will only be entered if the object is to be purged out of the cache. | |
209 | * During normal operations, this happens only when the CPU layer resizes | |
210 | * its bucket while it's adjusting to the allocation load. Deallocation | |
211 | * paths are different depending on the class of objects: | |
212 | * | |
213 | * a. Rudimentary object: | |
214 | * | |
215 | * { m_free(), m_freem_list(), composite object deallocation } | |
216 | * | ^ | |
217 | * | | | |
218 | * | +------ (done) ---------+ | |
219 | * v | | |
220 | * mcache_free/mcache_free_ext() | | |
221 | * | | | |
222 | * v | | |
223 | * mbuf_slab_audit() | | |
224 | * | | | |
225 | * v | | |
226 | * [CPU cache] ---> (not purging?) -----+ | |
227 | * | | | |
228 | * v | | |
229 | * mbuf_slab_free() | | |
230 | * | | | |
231 | * v | | |
232 | * [freelist] ----------->>------------+ | |
233 | * (objects never get purged to VM) | |
234 | * | |
235 | * b. Composite object: | |
236 | * | |
237 | * { m_free(), m_freem_list() } | |
238 | * | ^ | |
239 | * | | | |
240 | * | +------ (done) ---------+ | |
241 | * v | | |
242 | * mcache_free/mcache_free_ext() | | |
243 | * | | | |
244 | * v | | |
245 | * mbuf_cslab_audit() | | |
246 | * | | | |
247 | * v | | |
248 | * [CPU cache] ---> (not purging?) -----+ | |
249 | * | | | |
250 | * v | | |
251 | * mbuf_cslab_free() | | |
252 | * | | | |
253 | * v | | |
254 | * [freelist] ---> (not purging?) -----+ | |
255 | * | | | |
256 | * v | | |
257 | * (rudimentary object) | | |
258 | * mcache_free/mcache_free_ext() ------->>------+ | |
259 | * | |
260 | * Auditing notes: If auditing is enabled, the audit routine will save | |
261 | * any constructed data structure fields (if necessary) before filling the | |
262 | * contents of the buffers with DEADBEEF (free) pattern and recording the | |
263 | * transaction. Buffers that are freed (whether at CPU or slab layer) are | |
264 | * expected to contain the free pattern. | |
265 | * | |
266 | * DEBUGGING: | |
267 | * | |
268 | * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this | |
269 | * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally, | |
270 | * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag, | |
6d2010ae A |
271 | * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak |
272 | * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g. | |
273 | * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory. | |
2d21ac55 A |
274 | * |
275 | * Each object is associated with exactly one mcache_audit_t structure that | |
276 | * contains the information related to its last buffer transaction. Given | |
277 | * an address of an object, the audit structure can be retrieved by finding | |
278 | * the position of the object relevant to the base address of the cluster: | |
279 | * | |
280 | * +------------+ +=============+ | |
281 | * | mbuf addr | | mclaudit[i] | | |
282 | * +------------+ +=============+ | |
283 | * | | cl_audit[0] | | |
6d2010ae | 284 | * i = MTOBG(addr) +-------------+ |
2d21ac55 | 285 | * | +-----> | cl_audit[1] | -----> mcache_audit_t |
6d2010ae | 286 | * b = BGTOM(i) | +-------------+ |
2d21ac55 A |
287 | * | | | ... | |
288 | * x = MCLIDX(b, addr) | +-------------+ | |
289 | * | | | cl_audit[7] | | |
290 | * +-----------------+ +-------------+ | |
291 | * (e.g. x == 1) | |
292 | * | |
293 | * The mclaudit[] array is allocated at initialization time, but its contents | |
6d2010ae A |
294 | * get populated when the corresponding cluster is created. Because a page |
295 | * can be turned into NMBPBG number of mbufs, we preserve enough space for the | |
296 | * mbufs so that there is a 1-to-1 mapping between them. A page that never | |
2d21ac55 | 297 | * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the |
6d2010ae A |
298 | * remaining entries unused. For 16KB cluster, only one entry from the first |
299 | * page is allocated and used for the entire object. | |
2d21ac55 | 300 | */ |
91447636 | 301 | |
2d21ac55 A |
302 | /* TODO: should be in header file */ |
303 | /* kernel translater */ | |
b0d623f7 | 304 | extern vm_offset_t kmem_mb_alloc(vm_map_t, int, int); |
2d21ac55 | 305 | extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va); |
1c79356b | 306 | extern vm_map_t mb_map; /* special map */ |
2d21ac55 A |
307 | |
308 | /* Global lock */ | |
316670eb A |
309 | decl_lck_mtx_data(static, mbuf_mlock_data); |
310 | static lck_mtx_t *mbuf_mlock = &mbuf_mlock_data; | |
2d21ac55 A |
311 | static lck_attr_t *mbuf_mlock_attr; |
312 | static lck_grp_t *mbuf_mlock_grp; | |
313 | static lck_grp_attr_t *mbuf_mlock_grp_attr; | |
314 | ||
315 | /* Back-end (common) layer */ | |
316 | static void *mbuf_worker_run; /* wait channel for worker thread */ | |
317 | static int mbuf_worker_ready; /* worker thread is runnable */ | |
318 | static int mbuf_expand_mcl; /* number of cluster creation requets */ | |
319 | static int mbuf_expand_big; /* number of big cluster creation requests */ | |
6d2010ae | 320 | static int mbuf_expand_16k; /* number of 16KB cluster creation requests */ |
2d21ac55 | 321 | static int ncpu; /* number of CPUs */ |
b0d623f7 A |
322 | static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */ |
323 | static ppnum_t mcl_pages; /* Size of array (# physical pages) */ | |
55e303ae | 324 | static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */ |
2d21ac55 A |
325 | static mcache_t *ref_cache; /* Cache of cluster reference & flags */ |
326 | static mcache_t *mcl_audit_con_cache; /* Audit contents cache */ | |
327 | static unsigned int mbuf_debug; /* patchable mbuf mcache flags */ | |
328 | static unsigned int mb_normalized; /* number of packets "normalized" */ | |
b0d623f7 A |
329 | |
330 | #define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */ | |
6d2010ae | 331 | #define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */ |
2d21ac55 A |
332 | |
333 | typedef enum { | |
334 | MC_MBUF = 0, /* Regular mbuf */ | |
335 | MC_CL, /* Cluster */ | |
6d2010ae A |
336 | MC_BIGCL, /* Large (4KB) cluster */ |
337 | MC_16KCL, /* Jumbo (16KB) cluster */ | |
2d21ac55 | 338 | MC_MBUF_CL, /* mbuf + cluster */ |
6d2010ae A |
339 | MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */ |
340 | MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */ | |
2d21ac55 A |
341 | } mbuf_class_t; |
342 | ||
343 | #define MBUF_CLASS_MIN MC_MBUF | |
344 | #define MBUF_CLASS_MAX MC_MBUF_16KCL | |
345 | #define MBUF_CLASS_LAST MC_16KCL | |
346 | #define MBUF_CLASS_VALID(c) \ | |
347 | ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX) | |
348 | #define MBUF_CLASS_COMPOSITE(c) \ | |
349 | ((int)(c) > MBUF_CLASS_LAST) | |
91447636 | 350 | |
9bccf70c | 351 | |
2d21ac55 A |
352 | /* |
353 | * mbuf specific mcache allocation request flags. | |
354 | */ | |
355 | #define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */ | |
9bccf70c | 356 | |
2d21ac55 A |
357 | /* |
358 | * Per-cluster slab structure. | |
359 | * | |
360 | * A slab is a cluster control structure that contains one or more object | |
361 | * chunks; the available chunks are chained in the slab's freelist (sl_head). | |
362 | * Each time a chunk is taken out of the slab, the slab's reference count | |
363 | * gets incremented. When all chunks have been taken out, the empty slab | |
364 | * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is | |
365 | * returned to a slab causes the slab's reference count to be decremented; | |
366 | * it also causes the slab to be reinserted back to class's slab list, if | |
367 | * it's not already done. | |
368 | * | |
369 | * Compartmentalizing of the object chunks into slabs allows us to easily | |
370 | * merge one or more slabs together when the adjacent slabs are idle, as | |
371 | * well as to convert or move a slab from one class to another; e.g. the | |
372 | * mbuf cluster slab can be converted to a regular cluster slab when all | |
373 | * mbufs in the slab have been freed. | |
374 | * | |
375 | * A slab may also span across multiple clusters for chunks larger than | |
376 | * a cluster's size. In this case, only the slab of the first cluster is | |
377 | * used. The rest of the slabs are marked with SLF_PARTIAL to indicate | |
378 | * that they are part of the larger slab. | |
6d2010ae A |
379 | * |
380 | * Each slab controls a page of memory. | |
2d21ac55 A |
381 | */ |
382 | typedef struct mcl_slab { | |
383 | struct mcl_slab *sl_next; /* neighboring slab */ | |
384 | u_int8_t sl_class; /* controlling mbuf class */ | |
385 | int8_t sl_refcnt; /* outstanding allocations */ | |
386 | int8_t sl_chunks; /* chunks (bufs) in this slab */ | |
387 | u_int16_t sl_flags; /* slab flags (see below) */ | |
388 | u_int16_t sl_len; /* slab length */ | |
389 | void *sl_base; /* base of allocated memory */ | |
390 | void *sl_head; /* first free buffer */ | |
391 | TAILQ_ENTRY(mcl_slab) sl_link; /* next/prev slab on freelist */ | |
392 | } mcl_slab_t; | |
393 | ||
394 | #define SLF_MAPPED 0x0001 /* backed by a mapped page */ | |
395 | #define SLF_PARTIAL 0x0002 /* part of another slab */ | |
396 | #define SLF_DETACHED 0x0004 /* not in slab freelist */ | |
1c79356b | 397 | |
2d21ac55 A |
398 | /* |
399 | * The array of slabs are broken into groups of arrays per 1MB of kernel | |
400 | * memory to reduce the footprint. Each group is allocated on demand | |
401 | * whenever a new piece of memory mapped in from the VM crosses the 1MB | |
402 | * boundary. | |
403 | */ | |
6d2010ae | 404 | #define NSLABSPMB ((1 << MBSHIFT) >> PGSHIFT) /* 256 slabs/grp */ |
91447636 | 405 | |
2d21ac55 A |
406 | typedef struct mcl_slabg { |
407 | mcl_slab_t slg_slab[NSLABSPMB]; /* group of slabs */ | |
408 | } mcl_slabg_t; | |
1c79356b | 409 | |
6d2010ae A |
410 | /* |
411 | * Number of slabs needed to control a 16KB cluster object. | |
412 | */ | |
413 | #define NSLABSP16KB (M16KCLBYTES >> PGSHIFT) | |
414 | ||
2d21ac55 A |
415 | /* |
416 | * Per-cluster audit structure. | |
417 | */ | |
418 | typedef struct { | |
6d2010ae | 419 | mcache_audit_t *cl_audit[NMBPBG]; /* array of audits */ |
2d21ac55 | 420 | } mcl_audit_t; |
91447636 | 421 | |
39236c6e A |
422 | typedef struct { |
423 | struct thread *msa_thread; /* thread doing transaction */ | |
424 | struct thread *msa_pthread; /* previous transaction thread */ | |
425 | uint32_t msa_tstamp; /* transaction timestamp (ms) */ | |
426 | uint32_t msa_ptstamp; /* prev transaction timestamp (ms) */ | |
427 | uint16_t msa_depth; /* pc stack depth */ | |
428 | uint16_t msa_pdepth; /* previous transaction pc stack */ | |
429 | void *msa_stack[MCACHE_STACK_DEPTH]; | |
430 | void *msa_pstack[MCACHE_STACK_DEPTH]; | |
431 | } mcl_scratch_audit_t; | |
432 | ||
433 | typedef struct { | |
434 | /* | |
435 | * Size of data from the beginning of an mbuf that covers m_hdr, | |
436 | * pkthdr and m_ext structures. If auditing is enabled, we allocate | |
437 | * a shadow mbuf structure of this size inside each audit structure, | |
438 | * and the contents of the real mbuf gets copied into it when the mbuf | |
439 | * is freed. This allows us to pattern-fill the mbuf for integrity | |
440 | * check, and to preserve any constructed mbuf fields (e.g. mbuf + | |
441 | * cluster cache case). Note that we don't save the contents of | |
442 | * clusters when they are freed; we simply pattern-fill them. | |
443 | */ | |
444 | u_int8_t sc_mbuf[(MSIZE - _MHLEN) + sizeof (_m_ext_t)]; | |
445 | mcl_scratch_audit_t sc_scratch __attribute__((aligned(8))); | |
446 | } mcl_saved_contents_t; | |
447 | ||
448 | #define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t)) | |
449 | ||
450 | #define MCA_SAVED_MBUF_PTR(_mca) \ | |
451 | ((struct mbuf *)(void *)((mcl_saved_contents_t *) \ | |
452 | (_mca)->mca_contents)->sc_mbuf) | |
453 | #define MCA_SAVED_MBUF_SIZE \ | |
454 | (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf)) | |
455 | #define MCA_SAVED_SCRATCH_PTR(_mca) \ | |
456 | (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch) | |
fa4905b1 | 457 | |
2d21ac55 A |
458 | /* |
459 | * mbuf specific mcache audit flags | |
460 | */ | |
461 | #define MB_INUSE 0x01 /* object has not been returned to slab */ | |
462 | #define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */ | |
463 | #define MB_SCVALID 0x04 /* object has valid saved contents */ | |
fa4905b1 | 464 | |
2d21ac55 A |
465 | /* |
466 | * Each of the following two arrays hold up to nmbclusters elements. | |
467 | */ | |
468 | static mcl_audit_t *mclaudit; /* array of cluster audit information */ | |
6d2010ae | 469 | static unsigned int maxclaudit; /* max # of entries in audit table */ |
2d21ac55 A |
470 | static mcl_slabg_t **slabstbl; /* cluster slabs table */ |
471 | static unsigned int maxslabgrp; /* max # of entries in slabs table */ | |
472 | static unsigned int slabgrp; /* # of entries in slabs table */ | |
473 | ||
474 | /* Globals */ | |
475 | int nclusters; /* # of clusters for non-jumbo (legacy) sizes */ | |
476 | int njcl; /* # of clusters for jumbo sizes */ | |
477 | int njclbytes; /* size of a jumbo cluster */ | |
6d2010ae A |
478 | union mbigcluster *mbutl; /* first mapped cluster address */ |
479 | union mbigcluster *embutl; /* ending virtual address of mclusters */ | |
316670eb A |
480 | int _max_linkhdr; /* largest link-level header */ |
481 | int _max_protohdr; /* largest protocol header */ | |
2d21ac55 A |
482 | int max_hdr; /* largest link+protocol header */ |
483 | int max_datalen; /* MHLEN - max_hdr */ | |
484 | ||
6d2010ae A |
485 | static boolean_t mclverify; /* debug: pattern-checking */ |
486 | static boolean_t mcltrace; /* debug: stack tracing */ | |
487 | static boolean_t mclfindleak; /* debug: leak detection */ | |
316670eb | 488 | static boolean_t mclexpleak; /* debug: expose leak info to user space */ |
6d2010ae | 489 | |
39236c6e A |
490 | static struct timeval mb_start; /* beginning of time */ |
491 | ||
6d2010ae A |
492 | /* mbuf leak detection variables */ |
493 | static struct mleak_table mleak_table; | |
494 | static mleak_stat_t *mleak_stat; | |
495 | ||
496 | #define MLEAK_STAT_SIZE(n) \ | |
497 | ((size_t)(&((mleak_stat_t *)0)->ml_trace[n])) | |
498 | ||
499 | struct mallocation { | |
500 | mcache_obj_t *element; /* the alloc'ed element, NULL if unused */ | |
501 | u_int32_t trace_index; /* mtrace index for corresponding backtrace */ | |
502 | u_int32_t count; /* How many objects were requested */ | |
503 | u_int64_t hitcount; /* for determining hash effectiveness */ | |
504 | }; | |
505 | ||
506 | struct mtrace { | |
507 | u_int64_t collisions; | |
508 | u_int64_t hitcount; | |
509 | u_int64_t allocs; | |
510 | u_int64_t depth; | |
511 | uintptr_t addr[MLEAK_STACK_DEPTH]; | |
512 | }; | |
513 | ||
514 | /* Size must be a power of two for the zhash to be able to just mask off bits */ | |
515 | #define MLEAK_ALLOCATION_MAP_NUM 512 | |
516 | #define MLEAK_TRACE_MAP_NUM 256 | |
517 | ||
518 | /* | |
519 | * Sample factor for how often to record a trace. This is overwritable | |
520 | * by the boot-arg mleak_sample_factor. | |
521 | */ | |
522 | #define MLEAK_SAMPLE_FACTOR 500 | |
523 | ||
524 | /* | |
525 | * Number of top leakers recorded. | |
526 | */ | |
527 | #define MLEAK_NUM_TRACES 5 | |
528 | ||
316670eb A |
529 | #define MB_LEAK_SPACING_64 " " |
530 | #define MB_LEAK_SPACING_32 " " | |
531 | ||
532 | ||
533 | #define MB_LEAK_HDR_32 "\n\ | |
534 | trace [1] trace [2] trace [3] trace [4] trace [5] \n\ | |
535 | ---------- ---------- ---------- ---------- ---------- \n\ | |
536 | " | |
537 | ||
538 | #define MB_LEAK_HDR_64 "\n\ | |
539 | trace [1] trace [2] trace [3] \ | |
540 | trace [4] trace [5] \n\ | |
541 | ------------------ ------------------ ------------------ \ | |
542 | ------------------ ------------------ \n\ | |
543 | " | |
544 | ||
6d2010ae A |
545 | static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM; |
546 | static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM; | |
547 | ||
548 | /* Hashmaps of allocations and their corresponding traces */ | |
549 | static struct mallocation *mleak_allocations; | |
550 | static struct mtrace *mleak_traces; | |
551 | static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES]; | |
552 | ||
553 | /* Lock to protect mleak tables from concurrent modification */ | |
316670eb A |
554 | decl_lck_mtx_data(static, mleak_lock_data); |
555 | static lck_mtx_t *mleak_lock = &mleak_lock_data; | |
6d2010ae A |
556 | static lck_attr_t *mleak_lock_attr; |
557 | static lck_grp_t *mleak_lock_grp; | |
558 | static lck_grp_attr_t *mleak_lock_grp_attr; | |
559 | ||
b0d623f7 A |
560 | extern u_int32_t high_sb_max; |
561 | ||
2d21ac55 A |
562 | /* The minimum number of objects that are allocated, to start. */ |
563 | #define MINCL 32 | |
564 | #define MINBIGCL (MINCL >> 1) | |
565 | #define MIN16KCL (MINCL >> 2) | |
566 | ||
567 | /* Low watermarks (only map in pages once free counts go below) */ | |
2d21ac55 A |
568 | #define MBIGCL_LOWAT MINBIGCL |
569 | #define M16KCL_LOWAT MIN16KCL | |
570 | ||
571 | typedef struct { | |
572 | mbuf_class_t mtbl_class; /* class type */ | |
573 | mcache_t *mtbl_cache; /* mcache for this buffer class */ | |
574 | TAILQ_HEAD(mcl_slhead, mcl_slab) mtbl_slablist; /* slab list */ | |
575 | mcache_obj_t *mtbl_cobjlist; /* composite objects freelist */ | |
576 | mb_class_stat_t *mtbl_stats; /* statistics fetchable via sysctl */ | |
577 | u_int32_t mtbl_maxsize; /* maximum buffer size */ | |
578 | int mtbl_minlimit; /* minimum allowed */ | |
579 | int mtbl_maxlimit; /* maximum allowed */ | |
580 | u_int32_t mtbl_wantpurge; /* purge during next reclaim */ | |
581 | } mbuf_table_t; | |
582 | ||
583 | #define m_class(c) mbuf_table[c].mtbl_class | |
584 | #define m_cache(c) mbuf_table[c].mtbl_cache | |
585 | #define m_slablist(c) mbuf_table[c].mtbl_slablist | |
586 | #define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist | |
587 | #define m_maxsize(c) mbuf_table[c].mtbl_maxsize | |
588 | #define m_minlimit(c) mbuf_table[c].mtbl_minlimit | |
589 | #define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit | |
590 | #define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge | |
591 | #define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname | |
592 | #define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size | |
593 | #define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total | |
594 | #define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active | |
595 | #define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree | |
596 | #define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt | |
597 | #define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt | |
598 | #define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt | |
599 | #define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified | |
600 | #define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt | |
601 | #define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt | |
602 | #define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal | |
603 | ||
604 | static mbuf_table_t mbuf_table[] = { | |
605 | /* | |
606 | * The caches for mbufs, regular clusters and big clusters. | |
607 | */ | |
608 | { MC_MBUF, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF)), | |
609 | NULL, NULL, 0, 0, 0, 0 }, | |
610 | { MC_CL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL)), | |
611 | NULL, NULL, 0, 0, 0, 0 }, | |
612 | { MC_BIGCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL)), | |
613 | NULL, NULL, 0, 0, 0, 0 }, | |
614 | { MC_16KCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL)), | |
615 | NULL, NULL, 0, 0, 0, 0 }, | |
616 | /* | |
617 | * The following are special caches; they serve as intermediate | |
618 | * caches backed by the above rudimentary caches. Each object | |
619 | * in the cache is an mbuf with a cluster attached to it. Unlike | |
620 | * the above caches, these intermediate caches do not directly | |
621 | * deal with the slab structures; instead, the constructed | |
622 | * cached elements are simply stored in the freelists. | |
623 | */ | |
624 | { MC_MBUF_CL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0 }, | |
625 | { MC_MBUF_BIGCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0 }, | |
626 | { MC_MBUF_16KCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0 }, | |
627 | }; | |
628 | ||
629 | #define NELEM(a) (sizeof (a) / sizeof ((a)[0])) | |
630 | ||
631 | static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */ | |
6d2010ae A |
632 | static int mb_waiters; /* number of waiters */ |
633 | ||
634 | #define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */ | |
635 | static struct timeval mb_wdtstart; /* watchdog start timestamp */ | |
316670eb A |
636 | static char *mbuf_dump_buf; |
637 | ||
638 | #define MBUF_DUMP_BUF_SIZE 2048 | |
6d2010ae A |
639 | |
640 | /* | |
641 | * mbuf watchdog is enabled by default on embedded platforms. It is | |
642 | * also toggeable via the kern.ipc.mb_watchdog sysctl. | |
643 | */ | |
6d2010ae | 644 | static unsigned int mb_watchdog = 0; |
39236c6e A |
645 | |
646 | /* Red zone */ | |
647 | static u_int32_t mb_redzone_cookie; | |
648 | static void m_redzone_init(struct mbuf *); | |
649 | static void m_redzone_verify(struct mbuf *m); | |
2d21ac55 A |
650 | |
651 | /* The following are used to serialize m_clalloc() */ | |
652 | static boolean_t mb_clalloc_busy; | |
653 | static void *mb_clalloc_waitchan = &mb_clalloc_busy; | |
654 | static int mb_clalloc_waiters; | |
655 | ||
6d2010ae | 656 | static void mbuf_mtypes_sync(boolean_t); |
2d21ac55 | 657 | static int mbstat_sysctl SYSCTL_HANDLER_ARGS; |
6d2010ae | 658 | static void mbuf_stat_sync(void); |
2d21ac55 | 659 | static int mb_stat_sysctl SYSCTL_HANDLER_ARGS; |
6d2010ae A |
660 | static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS; |
661 | static int mleak_table_sysctl SYSCTL_HANDLER_ARGS; | |
662 | static char *mbuf_dump(void); | |
2d21ac55 A |
663 | static void mbuf_table_init(void); |
664 | static inline void m_incref(struct mbuf *); | |
665 | static inline u_int32_t m_decref(struct mbuf *); | |
666 | static int m_clalloc(const u_int32_t, const int, const u_int32_t); | |
667 | static void mbuf_worker_thread_init(void); | |
668 | static mcache_obj_t *slab_alloc(mbuf_class_t, int); | |
669 | static void slab_free(mbuf_class_t, mcache_obj_t *); | |
670 | static unsigned int mbuf_slab_alloc(void *, mcache_obj_t ***, | |
671 | unsigned int, int); | |
672 | static void mbuf_slab_free(void *, mcache_obj_t *, int); | |
673 | static void mbuf_slab_audit(void *, mcache_obj_t *, boolean_t); | |
674 | static void mbuf_slab_notify(void *, u_int32_t); | |
675 | static unsigned int cslab_alloc(mbuf_class_t, mcache_obj_t ***, | |
676 | unsigned int); | |
677 | static unsigned int cslab_free(mbuf_class_t, mcache_obj_t *, int); | |
678 | static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t ***, | |
679 | unsigned int, int); | |
680 | static void mbuf_cslab_free(void *, mcache_obj_t *, int); | |
681 | static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t); | |
682 | static int freelist_populate(mbuf_class_t, unsigned int, int); | |
6d2010ae | 683 | static void freelist_init(mbuf_class_t); |
2d21ac55 A |
684 | static boolean_t mbuf_cached_above(mbuf_class_t, int); |
685 | static boolean_t mbuf_steal(mbuf_class_t, unsigned int); | |
686 | static void m_reclaim(mbuf_class_t, unsigned int, boolean_t); | |
687 | static int m_howmany(int, size_t); | |
688 | static void mbuf_worker_thread(void); | |
6d2010ae | 689 | static void mbuf_watchdog(void); |
2d21ac55 A |
690 | static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int); |
691 | ||
692 | static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **, | |
693 | size_t, unsigned int); | |
694 | static mcache_audit_t *mcl_audit_buf2mca(mbuf_class_t, mcache_obj_t *); | |
695 | static void mcl_audit_mbuf(mcache_audit_t *, void *, boolean_t, boolean_t); | |
696 | static void mcl_audit_cluster(mcache_audit_t *, void *, size_t, boolean_t, | |
697 | boolean_t); | |
698 | static void mcl_audit_restore_mbuf(struct mbuf *, mcache_audit_t *, boolean_t); | |
699 | static void mcl_audit_save_mbuf(struct mbuf *, mcache_audit_t *); | |
39236c6e | 700 | static void mcl_audit_scratch(mcache_audit_t *); |
2d21ac55 A |
701 | static void mcl_audit_mcheck_panic(struct mbuf *); |
702 | static void mcl_audit_verify_nextptr(void *, mcache_audit_t *); | |
703 | ||
6d2010ae A |
704 | static void mleak_activate(void); |
705 | static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t); | |
706 | static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int); | |
707 | static void mleak_free(mcache_obj_t *); | |
316670eb A |
708 | static void mleak_sort_traces(void); |
709 | static void mleak_update_stats(void); | |
6d2010ae | 710 | |
2d21ac55 A |
711 | static mcl_slab_t *slab_get(void *); |
712 | static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t, | |
713 | void *, void *, unsigned int, int, int); | |
714 | static void slab_insert(mcl_slab_t *, mbuf_class_t); | |
715 | static void slab_remove(mcl_slab_t *, mbuf_class_t); | |
716 | static boolean_t slab_inrange(mcl_slab_t *, void *); | |
717 | static void slab_nextptr_panic(mcl_slab_t *, void *); | |
718 | static void slab_detach(mcl_slab_t *); | |
719 | static boolean_t slab_is_detached(mcl_slab_t *); | |
720 | ||
b0d623f7 A |
721 | static int m_copyback0(struct mbuf **, int, int, const void *, int, int); |
722 | static struct mbuf *m_split0(struct mbuf *, int, int, int); | |
723 | ||
724 | /* flags for m_copyback0 */ | |
725 | #define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */ | |
726 | #define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */ | |
727 | #define M_COPYBACK0_COW 0x0004 /* do copy-on-write */ | |
728 | #define M_COPYBACK0_EXTEND 0x0008 /* extend chain */ | |
729 | ||
2d21ac55 A |
730 | /* |
731 | * This flag is set for all mbufs that come out of and into the composite | |
732 | * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that | |
733 | * are marked with such a flag have clusters attached to them, and will be | |
734 | * treated differently when they are freed; instead of being placed back | |
735 | * into the mbuf and cluster freelists, the composite mbuf + cluster objects | |
736 | * are placed back into the appropriate composite cache's freelist, and the | |
737 | * actual freeing is deferred until the composite objects are purged. At | |
738 | * such a time, this flag will be cleared from the mbufs and the objects | |
739 | * will be freed into their own separate freelists. | |
740 | */ | |
741 | #define EXTF_COMPOSITE 0x1 | |
1c79356b | 742 | |
6d2010ae A |
743 | /* |
744 | * This flag indicates that the external cluster is read-only, i.e. it is | |
745 | * or was referred to by more than one mbufs. Once set, this flag is never | |
746 | * cleared. | |
747 | */ | |
748 | #define EXTF_READONLY 0x2 | |
749 | #define EXTF_MASK (EXTF_COMPOSITE | EXTF_READONLY) | |
750 | ||
2d21ac55 A |
751 | #define MEXT_RFA(m) ((m)->m_ext.ext_refflags) |
752 | #define MEXT_REF(m) (MEXT_RFA(m)->refcnt) | |
753 | #define MEXT_FLAGS(m) (MEXT_RFA(m)->flags) | |
754 | #define MBUF_IS_COMPOSITE(m) \ | |
6d2010ae | 755 | (MEXT_REF(m) == 0 && (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE) |
1c79356b | 756 | |
2d21ac55 A |
757 | /* |
758 | * Macros used to verify the integrity of the mbuf. | |
759 | */ | |
760 | #define _MCHECK(m) { \ | |
761 | if ((m)->m_type != MT_FREE) { \ | |
762 | if (mclaudit == NULL) \ | |
763 | panic("MCHECK: m_type=%d m=%p", \ | |
764 | (u_int16_t)(m)->m_type, m); \ | |
765 | else \ | |
766 | mcl_audit_mcheck_panic(m); \ | |
767 | } \ | |
768 | } | |
55e303ae | 769 | |
2d21ac55 A |
770 | #define MBUF_IN_MAP(addr) \ |
771 | ((void *)(addr) >= (void *)mbutl && (void *)(addr) < (void *)embutl) | |
55e303ae | 772 | |
2d21ac55 A |
773 | #define MRANGE(addr) { \ |
774 | if (!MBUF_IN_MAP(addr)) \ | |
775 | panic("MRANGE: address out of range 0x%p", addr); \ | |
1c79356b A |
776 | } |
777 | ||
778 | /* | |
2d21ac55 | 779 | * Macro version of mtod. |
1c79356b | 780 | */ |
2d21ac55 | 781 | #define MTOD(m, t) ((t)((m)->m_data)) |
1c79356b | 782 | |
2d21ac55 | 783 | /* |
6d2010ae A |
784 | * Macros to obtain (4KB) cluster index and base cluster address. |
785 | */ | |
786 | ||
787 | #define MTOBG(x) (((char *)(x) - (char *)mbutl) >> MBIGCLSHIFT) | |
788 | #define BGTOM(x) ((union mbigcluster *)(mbutl + (x))) | |
789 | ||
790 | /* | |
791 | * Macro to find the mbuf index relative to a base. | |
2d21ac55 | 792 | */ |
6d2010ae | 793 | #define MCLIDX(c, m) (((char *)(m) - (char *)(c)) >> MSIZESHIFT) |
1c79356b | 794 | |
2d21ac55 | 795 | /* |
6d2010ae | 796 | * Same thing for 2KB cluster index. |
2d21ac55 | 797 | */ |
6d2010ae | 798 | #define CLBGIDX(c, m) (((char *)(m) - (char *)(c)) >> MCLSHIFT) |
91447636 | 799 | |
2d21ac55 A |
800 | /* |
801 | * Macros used during mbuf and cluster initialization. | |
802 | */ | |
39236c6e A |
803 | #define MBUF_INIT_PKTHDR(m) { \ |
804 | (m)->m_pkthdr.rcvif = NULL; \ | |
805 | (m)->m_pkthdr.pkt_hdr = NULL; \ | |
806 | (m)->m_pkthdr.len = 0; \ | |
807 | (m)->m_pkthdr.csum_flags = 0; \ | |
808 | (m)->m_pkthdr.csum_data = 0; \ | |
809 | (m)->m_pkthdr.vlan_tag = 0; \ | |
810 | m_classifier_init(m, 0); \ | |
811 | m_tag_init(m, 1); \ | |
812 | m_scratch_init(m); \ | |
813 | m_redzone_init(m); \ | |
814 | } | |
815 | ||
2d21ac55 A |
816 | #define MBUF_INIT(m, pkthdr, type) { \ |
817 | _MCHECK(m); \ | |
818 | (m)->m_next = (m)->m_nextpkt = NULL; \ | |
819 | (m)->m_len = 0; \ | |
820 | (m)->m_type = type; \ | |
821 | if ((pkthdr) == 0) { \ | |
822 | (m)->m_data = (m)->m_dat; \ | |
823 | (m)->m_flags = 0; \ | |
824 | } else { \ | |
825 | (m)->m_data = (m)->m_pktdat; \ | |
826 | (m)->m_flags = M_PKTHDR; \ | |
39236c6e | 827 | MBUF_INIT_PKTHDR(m); \ |
2d21ac55 A |
828 | } \ |
829 | } | |
91447636 | 830 | |
2d21ac55 A |
831 | #define MEXT_INIT(m, buf, size, free, arg, rfa, ref, flag) { \ |
832 | (m)->m_data = (m)->m_ext.ext_buf = (buf); \ | |
833 | (m)->m_flags |= M_EXT; \ | |
834 | (m)->m_ext.ext_size = (size); \ | |
835 | (m)->m_ext.ext_free = (free); \ | |
836 | (m)->m_ext.ext_arg = (arg); \ | |
837 | (m)->m_ext.ext_refs.forward = (m)->m_ext.ext_refs.backward = \ | |
838 | &(m)->m_ext.ext_refs; \ | |
839 | MEXT_RFA(m) = (rfa); \ | |
840 | MEXT_REF(m) = (ref); \ | |
841 | MEXT_FLAGS(m) = (flag); \ | |
1c79356b A |
842 | } |
843 | ||
2d21ac55 A |
844 | #define MBUF_CL_INIT(m, buf, rfa, ref, flag) \ |
845 | MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, ref, flag) | |
846 | ||
847 | #define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \ | |
848 | MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, ref, flag) | |
849 | ||
850 | #define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \ | |
851 | MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, ref, flag) | |
852 | ||
1c79356b | 853 | /* |
2d21ac55 | 854 | * Macro to convert BSD malloc sleep flag to mcache's |
1c79356b | 855 | */ |
2d21ac55 | 856 | #define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP) |
1c79356b | 857 | |
2d21ac55 A |
858 | /* |
859 | * The structure that holds all mbuf class statistics exportable via sysctl. | |
860 | * Similar to mbstat structure, the mb_stat structure is protected by the | |
861 | * global mbuf lock. It contains additional information about the classes | |
862 | * that allows for a more accurate view of the state of the allocator. | |
863 | */ | |
864 | struct mb_stat *mb_stat; | |
b0d623f7 | 865 | struct omb_stat *omb_stat; /* For backwards compatibility */ |
1c79356b | 866 | |
2d21ac55 A |
867 | #define MB_STAT_SIZE(n) \ |
868 | ((size_t)(&((mb_stat_t *)0)->mbs_class[n])) | |
b0d623f7 A |
869 | #define OMB_STAT_SIZE(n) \ |
870 | ((size_t)(&((struct omb_stat *)0)->mbs_class[n])) | |
1c79356b A |
871 | |
872 | /* | |
2d21ac55 A |
873 | * The legacy structure holding all of the mbuf allocation statistics. |
874 | * The actual statistics used by the kernel are stored in the mbuf_table | |
875 | * instead, and are updated atomically while the global mbuf lock is held. | |
876 | * They are mirrored in mbstat to support legacy applications (e.g. netstat). | |
877 | * Unlike before, the kernel no longer relies on the contents of mbstat for | |
878 | * its operations (e.g. cluster expansion) because the structure is exposed | |
879 | * to outside and could possibly be modified, therefore making it unsafe. | |
880 | * With the exception of the mbstat.m_mtypes array (see below), all of the | |
881 | * statistics are updated as they change. | |
1c79356b | 882 | */ |
2d21ac55 | 883 | struct mbstat mbstat; |
1c79356b | 884 | |
2d21ac55 A |
885 | #define MBSTAT_MTYPES_MAX \ |
886 | (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0])) | |
1c79356b A |
887 | |
888 | /* | |
2d21ac55 A |
889 | * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated |
890 | * atomically and stored in a per-CPU structure which is lock-free; this is | |
891 | * done in order to avoid writing to the global mbstat data structure which | |
892 | * would cause false sharing. During sysctl request for kern.ipc.mbstat, | |
893 | * the statistics across all CPUs will be converged into the mbstat.m_mtypes | |
894 | * array and returned to the application. Any updates for types greater or | |
895 | * equal than MT_MAX would be done atomically to the mbstat; this slows down | |
896 | * performance but is okay since the kernel uses only up to MT_MAX-1 while | |
897 | * anything beyond that (up to type 255) is considered a corner case. | |
1c79356b | 898 | */ |
2d21ac55 A |
899 | typedef struct { |
900 | unsigned int cpu_mtypes[MT_MAX]; | |
39236c6e | 901 | } __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE), packed)) mtypes_cpu_t; |
1c79356b | 902 | |
2d21ac55 A |
903 | typedef struct { |
904 | mtypes_cpu_t mbs_cpu[1]; | |
905 | } mbuf_mtypes_t; | |
1c79356b | 906 | |
2d21ac55 A |
907 | static mbuf_mtypes_t *mbuf_mtypes; /* per-CPU statistics */ |
908 | ||
909 | #define MBUF_MTYPES_SIZE(n) \ | |
910 | ((size_t)(&((mbuf_mtypes_t *)0)->mbs_cpu[n])) | |
911 | ||
912 | #define MTYPES_CPU(p) \ | |
316670eb | 913 | ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number()))) |
2d21ac55 | 914 | |
2d21ac55 A |
915 | #define mtype_stat_add(type, n) { \ |
916 | if ((unsigned)(type) < MT_MAX) { \ | |
917 | mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \ | |
918 | atomic_add_32(&mbs->cpu_mtypes[type], n); \ | |
6d2010ae A |
919 | } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \ |
920 | atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \ | |
2d21ac55 | 921 | } \ |
1c79356b A |
922 | } |
923 | ||
2d21ac55 A |
924 | #define mtype_stat_sub(t, n) mtype_stat_add(t, -(n)) |
925 | #define mtype_stat_inc(t) mtype_stat_add(t, 1) | |
926 | #define mtype_stat_dec(t) mtype_stat_sub(t, 1) | |
91447636 | 927 | |
6d2010ae A |
928 | static void |
929 | mbuf_mtypes_sync(boolean_t locked) | |
2d21ac55 | 930 | { |
2d21ac55 A |
931 | int m, n; |
932 | mtypes_cpu_t mtc; | |
1c79356b | 933 | |
6d2010ae A |
934 | if (locked) |
935 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
936 | ||
2d21ac55 A |
937 | bzero(&mtc, sizeof (mtc)); |
938 | for (m = 0; m < ncpu; m++) { | |
939 | mtypes_cpu_t *scp = &mbuf_mtypes->mbs_cpu[m]; | |
940 | mtypes_cpu_t temp; | |
9bccf70c | 941 | |
2d21ac55 A |
942 | bcopy(&scp->cpu_mtypes, &temp.cpu_mtypes, |
943 | sizeof (temp.cpu_mtypes)); | |
91447636 | 944 | |
2d21ac55 A |
945 | for (n = 0; n < MT_MAX; n++) |
946 | mtc.cpu_mtypes[n] += temp.cpu_mtypes[n]; | |
947 | } | |
6d2010ae A |
948 | if (!locked) |
949 | lck_mtx_lock(mbuf_mlock); | |
2d21ac55 A |
950 | for (n = 0; n < MT_MAX; n++) |
951 | mbstat.m_mtypes[n] = mtc.cpu_mtypes[n]; | |
6d2010ae A |
952 | if (!locked) |
953 | lck_mtx_unlock(mbuf_mlock); | |
1c79356b A |
954 | } |
955 | ||
2d21ac55 | 956 | static int |
6d2010ae | 957 | mbstat_sysctl SYSCTL_HANDLER_ARGS |
1c79356b | 958 | { |
2d21ac55 | 959 | #pragma unused(oidp, arg1, arg2) |
6d2010ae A |
960 | mbuf_mtypes_sync(FALSE); |
961 | ||
962 | return (SYSCTL_OUT(req, &mbstat, sizeof (mbstat))); | |
963 | } | |
964 | ||
965 | static void | |
966 | mbuf_stat_sync(void) | |
967 | { | |
2d21ac55 | 968 | mb_class_stat_t *sp; |
6d2010ae A |
969 | mcache_cpu_t *ccp; |
970 | mcache_t *cp; | |
971 | int k, m, bktsize; | |
972 | ||
973 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2d21ac55 | 974 | |
2d21ac55 A |
975 | for (k = 0; k < NELEM(mbuf_table); k++) { |
976 | cp = m_cache(k); | |
977 | ccp = &cp->mc_cpu[0]; | |
978 | bktsize = ccp->cc_bktsize; | |
979 | sp = mbuf_table[k].mtbl_stats; | |
980 | ||
981 | if (cp->mc_flags & MCF_NOCPUCACHE) | |
982 | sp->mbcl_mc_state = MCS_DISABLED; | |
983 | else if (cp->mc_purge_cnt > 0) | |
984 | sp->mbcl_mc_state = MCS_PURGING; | |
985 | else if (bktsize == 0) | |
986 | sp->mbcl_mc_state = MCS_OFFLINE; | |
987 | else | |
988 | sp->mbcl_mc_state = MCS_ONLINE; | |
989 | ||
990 | sp->mbcl_mc_cached = 0; | |
991 | for (m = 0; m < ncpu; m++) { | |
992 | ccp = &cp->mc_cpu[m]; | |
993 | if (ccp->cc_objs > 0) | |
994 | sp->mbcl_mc_cached += ccp->cc_objs; | |
995 | if (ccp->cc_pobjs > 0) | |
996 | sp->mbcl_mc_cached += ccp->cc_pobjs; | |
997 | } | |
998 | sp->mbcl_mc_cached += (cp->mc_full.bl_total * bktsize); | |
999 | sp->mbcl_active = sp->mbcl_total - sp->mbcl_mc_cached - | |
1000 | sp->mbcl_infree; | |
1001 | ||
1002 | sp->mbcl_mc_waiter_cnt = cp->mc_waiter_cnt; | |
1003 | sp->mbcl_mc_wretry_cnt = cp->mc_wretry_cnt; | |
1004 | sp->mbcl_mc_nwretry_cnt = cp->mc_nwretry_cnt; | |
1005 | ||
1006 | /* Calculate total count specific to each class */ | |
1007 | sp->mbcl_ctotal = sp->mbcl_total; | |
1008 | switch (m_class(k)) { | |
1009 | case MC_MBUF: | |
1010 | /* Deduct mbufs used in composite caches */ | |
1011 | sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) + | |
1012 | m_total(MC_MBUF_BIGCL)); | |
1013 | break; | |
91447636 | 1014 | |
2d21ac55 | 1015 | case MC_CL: |
6d2010ae A |
1016 | /* Deduct clusters used in composite cache */ |
1017 | sp->mbcl_ctotal -= m_total(MC_MBUF_CL); | |
2d21ac55 | 1018 | break; |
91447636 | 1019 | |
2d21ac55 A |
1020 | case MC_BIGCL: |
1021 | /* Deduct clusters used in composite cache */ | |
1022 | sp->mbcl_ctotal -= m_total(MC_MBUF_BIGCL); | |
1023 | break; | |
1c79356b | 1024 | |
2d21ac55 A |
1025 | case MC_16KCL: |
1026 | /* Deduct clusters used in composite cache */ | |
1027 | sp->mbcl_ctotal -= m_total(MC_MBUF_16KCL); | |
1028 | break; | |
1029 | ||
1030 | default: | |
1031 | break; | |
1032 | } | |
1033 | } | |
6d2010ae A |
1034 | } |
1035 | ||
1036 | static int | |
1037 | mb_stat_sysctl SYSCTL_HANDLER_ARGS | |
1038 | { | |
1039 | #pragma unused(oidp, arg1, arg2) | |
1040 | void *statp; | |
1041 | int k, statsz, proc64 = proc_is64bit(req->p); | |
1042 | ||
1043 | lck_mtx_lock(mbuf_mlock); | |
1044 | mbuf_stat_sync(); | |
b0d623f7 A |
1045 | |
1046 | if (!proc64) { | |
1047 | struct omb_class_stat *oc; | |
1048 | struct mb_class_stat *c; | |
1049 | ||
1050 | omb_stat->mbs_cnt = mb_stat->mbs_cnt; | |
1051 | oc = &omb_stat->mbs_class[0]; | |
1052 | c = &mb_stat->mbs_class[0]; | |
1053 | for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) { | |
1054 | (void) snprintf(oc->mbcl_cname, sizeof (oc->mbcl_cname), | |
1055 | "%s", c->mbcl_cname); | |
1056 | oc->mbcl_size = c->mbcl_size; | |
1057 | oc->mbcl_total = c->mbcl_total; | |
1058 | oc->mbcl_active = c->mbcl_active; | |
1059 | oc->mbcl_infree = c->mbcl_infree; | |
1060 | oc->mbcl_slab_cnt = c->mbcl_slab_cnt; | |
1061 | oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt; | |
1062 | oc->mbcl_free_cnt = c->mbcl_free_cnt; | |
1063 | oc->mbcl_notified = c->mbcl_notified; | |
1064 | oc->mbcl_purge_cnt = c->mbcl_purge_cnt; | |
1065 | oc->mbcl_fail_cnt = c->mbcl_fail_cnt; | |
1066 | oc->mbcl_ctotal = c->mbcl_ctotal; | |
1067 | oc->mbcl_mc_state = c->mbcl_mc_state; | |
1068 | oc->mbcl_mc_cached = c->mbcl_mc_cached; | |
1069 | oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt; | |
1070 | oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt; | |
1071 | oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt; | |
1072 | } | |
1073 | statp = omb_stat; | |
1074 | statsz = OMB_STAT_SIZE(NELEM(mbuf_table)); | |
1075 | } else { | |
1076 | statp = mb_stat; | |
1077 | statsz = MB_STAT_SIZE(NELEM(mbuf_table)); | |
1078 | } | |
1079 | ||
2d21ac55 | 1080 | lck_mtx_unlock(mbuf_mlock); |
9bccf70c | 1081 | |
b0d623f7 | 1082 | return (SYSCTL_OUT(req, statp, statsz)); |
2d21ac55 | 1083 | } |
91447636 | 1084 | |
6d2010ae A |
1085 | static int |
1086 | mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS | |
1087 | { | |
1088 | #pragma unused(oidp, arg1, arg2) | |
6d2010ae A |
1089 | int i; |
1090 | ||
1091 | /* Ensure leak tracing turned on */ | |
316670eb | 1092 | if (!mclfindleak || !mclexpleak) |
6d2010ae A |
1093 | return (ENXIO); |
1094 | ||
6d2010ae | 1095 | lck_mtx_lock(mleak_lock); |
316670eb | 1096 | mleak_update_stats(); |
6d2010ae A |
1097 | i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES)); |
1098 | lck_mtx_unlock(mleak_lock); | |
1099 | ||
1100 | return (i); | |
1101 | } | |
1102 | ||
1103 | static int | |
1104 | mleak_table_sysctl SYSCTL_HANDLER_ARGS | |
1105 | { | |
1106 | #pragma unused(oidp, arg1, arg2) | |
1107 | int i = 0; | |
1108 | ||
1109 | /* Ensure leak tracing turned on */ | |
316670eb | 1110 | if (!mclfindleak || !mclexpleak) |
6d2010ae A |
1111 | return (ENXIO); |
1112 | ||
1113 | lck_mtx_lock(mleak_lock); | |
1114 | i = SYSCTL_OUT(req, &mleak_table, sizeof (mleak_table)); | |
1115 | lck_mtx_unlock(mleak_lock); | |
1116 | ||
1117 | return (i); | |
1118 | } | |
1119 | ||
2d21ac55 A |
1120 | static inline void |
1121 | m_incref(struct mbuf *m) | |
1122 | { | |
1123 | UInt32 old, new; | |
1124 | volatile UInt32 *addr = (volatile UInt32 *)&MEXT_REF(m); | |
91447636 | 1125 | |
2d21ac55 A |
1126 | do { |
1127 | old = *addr; | |
1128 | new = old + 1; | |
1129 | ASSERT(new != 0); | |
1130 | } while (!OSCompareAndSwap(old, new, addr)); | |
6d2010ae A |
1131 | |
1132 | /* | |
1133 | * If cluster is shared, mark it with (sticky) EXTF_READONLY; | |
1134 | * we don't clear the flag when the refcount goes back to 1 | |
1135 | * to simplify code calling m_mclhasreference(). | |
1136 | */ | |
1137 | if (new > 1 && !(MEXT_FLAGS(m) & EXTF_READONLY)) | |
1138 | (void) OSBitOrAtomic(EXTF_READONLY, &MEXT_FLAGS(m)); | |
1c79356b A |
1139 | } |
1140 | ||
2d21ac55 A |
1141 | static inline u_int32_t |
1142 | m_decref(struct mbuf *m) | |
1c79356b | 1143 | { |
2d21ac55 A |
1144 | UInt32 old, new; |
1145 | volatile UInt32 *addr = (volatile UInt32 *)&MEXT_REF(m); | |
1c79356b | 1146 | |
2d21ac55 A |
1147 | do { |
1148 | old = *addr; | |
1149 | new = old - 1; | |
1150 | ASSERT(old != 0); | |
1151 | } while (!OSCompareAndSwap(old, new, addr)); | |
1152 | ||
1153 | return (new); | |
1c79356b A |
1154 | } |
1155 | ||
2d21ac55 A |
1156 | static void |
1157 | mbuf_table_init(void) | |
1c79356b | 1158 | { |
6d2010ae | 1159 | unsigned int b, c, s; |
2d21ac55 | 1160 | int m; |
91447636 | 1161 | |
b0d623f7 A |
1162 | MALLOC(omb_stat, struct omb_stat *, OMB_STAT_SIZE(NELEM(mbuf_table)), |
1163 | M_TEMP, M_WAITOK | M_ZERO); | |
1164 | VERIFY(omb_stat != NULL); | |
1165 | ||
2d21ac55 A |
1166 | MALLOC(mb_stat, mb_stat_t *, MB_STAT_SIZE(NELEM(mbuf_table)), |
1167 | M_TEMP, M_WAITOK | M_ZERO); | |
1168 | VERIFY(mb_stat != NULL); | |
1c79356b | 1169 | |
2d21ac55 A |
1170 | mb_stat->mbs_cnt = NELEM(mbuf_table); |
1171 | for (m = 0; m < NELEM(mbuf_table); m++) | |
1172 | mbuf_table[m].mtbl_stats = &mb_stat->mbs_class[m]; | |
1c79356b | 1173 | |
2d21ac55 A |
1174 | #if CONFIG_MBUF_JUMBO |
1175 | /* | |
1176 | * Set aside 1/3 of the mbuf cluster map for jumbo clusters; we do | |
1177 | * this only on platforms where jumbo cluster pool is enabled. | |
1178 | */ | |
1179 | njcl = nmbclusters / 3; | |
1180 | njclbytes = M16KCLBYTES; | |
1181 | #endif /* CONFIG_MBUF_JUMBO */ | |
9bccf70c | 1182 | |
2d21ac55 | 1183 | /* |
6d2010ae A |
1184 | * nclusters holds both the 2KB and 4KB pools, so ensure it's |
1185 | * a multiple of 4KB clusters. | |
2d21ac55 | 1186 | */ |
6d2010ae | 1187 | nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPBG); |
2d21ac55 A |
1188 | if (njcl > 0) { |
1189 | /* | |
6d2010ae A |
1190 | * Each jumbo cluster takes 8 2KB clusters, so make |
1191 | * sure that the pool size is evenly divisible by 8; | |
1192 | * njcl is in 2KB unit, hence treated as such. | |
2d21ac55 A |
1193 | */ |
1194 | njcl = P2ROUNDDOWN(nmbclusters - nclusters, 8); | |
1c79356b | 1195 | |
6d2010ae A |
1196 | /* Update nclusters with rounded down value of njcl */ |
1197 | nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPBG); | |
9bccf70c | 1198 | } |
2d21ac55 A |
1199 | |
1200 | /* | |
6d2010ae A |
1201 | * njcl is valid only on platforms with 16KB jumbo clusters, where |
1202 | * it is configured to 1/3 of the pool size. On these platforms, | |
1203 | * the remaining is used for 2KB and 4KB clusters. On platforms | |
1204 | * without 16KB jumbo clusters, the entire pool is used for both | |
1205 | * 2KB and 4KB clusters. A 4KB cluster can either be splitted into | |
1206 | * 16 mbufs, or into 2 2KB clusters. | |
1207 | * | |
1208 | * +---+---+------------ ... -----------+------- ... -------+ | |
1209 | * | c | b | s | njcl | | |
1210 | * +---+---+------------ ... -----------+------- ... -------+ | |
1211 | * | |
1212 | * 1/32th of the shared region is reserved for pure 2KB and 4KB | |
1213 | * clusters (1/64th each.) | |
1214 | */ | |
1215 | c = P2ROUNDDOWN((nclusters >> 6), 2); /* in 2KB unit */ | |
1216 | b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), 2); /* in 4KB unit */ | |
1217 | s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */ | |
1218 | ||
1219 | /* | |
1220 | * 1/64th (c) is reserved for 2KB clusters. | |
2d21ac55 | 1221 | */ |
6d2010ae A |
1222 | m_minlimit(MC_CL) = c; |
1223 | m_maxlimit(MC_CL) = s + c; /* in 2KB unit */ | |
2d21ac55 A |
1224 | m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES; |
1225 | (void) snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl"); | |
1226 | ||
1227 | /* | |
6d2010ae A |
1228 | * Another 1/64th (b) of the map is reserved for 4KB clusters. |
1229 | * It cannot be turned into 2KB clusters or mbufs. | |
2d21ac55 | 1230 | */ |
6d2010ae A |
1231 | m_minlimit(MC_BIGCL) = b; |
1232 | m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */ | |
1233 | m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES; | |
1234 | (void) snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl"); | |
2d21ac55 A |
1235 | |
1236 | /* | |
6d2010ae | 1237 | * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB) |
2d21ac55 | 1238 | */ |
6d2010ae A |
1239 | m_minlimit(MC_MBUF) = 0; |
1240 | m_maxlimit(MC_MBUF) = (s << NMBPCLSHIFT); /* in mbuf unit */ | |
1241 | m_maxsize(MC_MBUF) = m_size(MC_MBUF) = MSIZE; | |
1242 | (void) snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf"); | |
2d21ac55 A |
1243 | |
1244 | /* | |
1245 | * Set limits for the composite classes. | |
1246 | */ | |
1247 | m_minlimit(MC_MBUF_CL) = 0; | |
6d2010ae | 1248 | m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL); |
2d21ac55 A |
1249 | m_maxsize(MC_MBUF_CL) = MCLBYTES; |
1250 | m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL); | |
1251 | (void) snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl"); | |
1252 | ||
1253 | m_minlimit(MC_MBUF_BIGCL) = 0; | |
1254 | m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL); | |
6d2010ae | 1255 | m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES; |
2d21ac55 A |
1256 | m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL); |
1257 | (void) snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl"); | |
1258 | ||
1259 | /* | |
1260 | * And for jumbo classes. | |
1261 | */ | |
1262 | m_minlimit(MC_16KCL) = 0; | |
6d2010ae | 1263 | m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */ |
2d21ac55 A |
1264 | m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES; |
1265 | (void) snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl"); | |
1266 | ||
1267 | m_minlimit(MC_MBUF_16KCL) = 0; | |
1268 | m_maxlimit(MC_MBUF_16KCL) = m_maxlimit(MC_16KCL); | |
1269 | m_maxsize(MC_MBUF_16KCL) = M16KCLBYTES; | |
1270 | m_size(MC_MBUF_16KCL) = m_size(MC_MBUF) + m_size(MC_16KCL); | |
1271 | (void) snprintf(m_cname(MC_MBUF_16KCL), MAX_MBUF_CNAME, "mbuf_16kcl"); | |
1272 | ||
1273 | /* | |
1274 | * Initialize the legacy mbstat structure. | |
1275 | */ | |
1276 | bzero(&mbstat, sizeof (mbstat)); | |
1277 | mbstat.m_msize = m_maxsize(MC_MBUF); | |
1278 | mbstat.m_mclbytes = m_maxsize(MC_CL); | |
1279 | mbstat.m_minclsize = MINCLSIZE; | |
1280 | mbstat.m_mlen = MLEN; | |
1281 | mbstat.m_mhlen = MHLEN; | |
1282 | mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL); | |
1283 | } | |
1284 | ||
b0d623f7 A |
1285 | #if defined(__LP64__) |
1286 | typedef struct ncl_tbl { | |
1287 | uint64_t nt_maxmem; /* memory (sane) size */ | |
1288 | uint32_t nt_mbpool; /* mbuf pool size */ | |
1289 | } ncl_tbl_t; | |
1290 | ||
1291 | /* Non-server */ | |
1292 | static ncl_tbl_t ncl_table[] = { | |
316670eb | 1293 | { (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ }, |
b0d623f7 A |
1294 | { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (96 << MBSHIFT) /* 96 MB */ }, |
1295 | { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (128 << MBSHIFT) /* 128 MB */ }, | |
1296 | { 0, 0 } | |
1297 | }; | |
1298 | ||
1299 | /* Server */ | |
1300 | static ncl_tbl_t ncl_table_srv[] = { | |
316670eb | 1301 | { (1ULL << GBSHIFT) /* 1 GB */, (96 << MBSHIFT) /* 96 MB */ }, |
b0d623f7 A |
1302 | { (1ULL << (GBSHIFT + 2)) /* 4 GB */, (128 << MBSHIFT) /* 128 MB */ }, |
1303 | { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (160 << MBSHIFT) /* 160 MB */ }, | |
1304 | { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (192 << MBSHIFT) /* 192 MB */ }, | |
1305 | { (1ULL << (GBSHIFT + 5)) /* 32 GB */, (256 << MBSHIFT) /* 256 MB */ }, | |
1306 | { (1ULL << (GBSHIFT + 6)) /* 64 GB */, (384 << MBSHIFT) /* 384 MB */ }, | |
1307 | { 0, 0 } | |
1308 | }; | |
1309 | #endif /* __LP64__ */ | |
1310 | ||
1311 | __private_extern__ unsigned int | |
6d2010ae | 1312 | mbuf_default_ncl(int server, uint64_t mem) |
b0d623f7 A |
1313 | { |
1314 | #if !defined(__LP64__) | |
6d2010ae | 1315 | #pragma unused(server) |
b0d623f7 A |
1316 | unsigned int n; |
1317 | /* | |
1318 | * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM). | |
1319 | */ | |
6d2010ae A |
1320 | if ((n = ((mem / 16) / MCLBYTES)) > 32768) |
1321 | n = 32768; | |
b0d623f7 A |
1322 | #else |
1323 | unsigned int n, i; | |
6d2010ae | 1324 | ncl_tbl_t *tbl = (server ? ncl_table_srv : ncl_table); |
b0d623f7 A |
1325 | /* |
1326 | * 64-bit kernel (mbuf pool size based on table). | |
1327 | */ | |
1328 | n = tbl[0].nt_mbpool; | |
1329 | for (i = 0; tbl[i].nt_mbpool != 0; i++) { | |
1330 | if (mem < tbl[i].nt_maxmem) | |
1331 | break; | |
1332 | n = tbl[i].nt_mbpool; | |
1333 | } | |
1334 | n >>= MCLSHIFT; | |
1335 | #endif /* !__LP64__ */ | |
1336 | return (n); | |
1337 | } | |
1338 | ||
2d21ac55 A |
1339 | __private_extern__ void |
1340 | mbinit(void) | |
1341 | { | |
1342 | unsigned int m; | |
6d2010ae | 1343 | unsigned int initmcl = 0; |
2d21ac55 | 1344 | void *buf; |
b0d623f7 | 1345 | thread_t thread = THREAD_NULL; |
2d21ac55 | 1346 | |
39236c6e A |
1347 | microuptime(&mb_start); |
1348 | ||
316670eb A |
1349 | /* |
1350 | * These MBUF_ values must be equal to their private counterparts. | |
1351 | */ | |
1352 | _CASSERT(MBUF_EXT == M_EXT); | |
1353 | _CASSERT(MBUF_PKTHDR == M_PKTHDR); | |
1354 | _CASSERT(MBUF_EOR == M_EOR); | |
1355 | _CASSERT(MBUF_LOOP == M_LOOP); | |
1356 | _CASSERT(MBUF_BCAST == M_BCAST); | |
1357 | _CASSERT(MBUF_MCAST == M_MCAST); | |
1358 | _CASSERT(MBUF_FRAG == M_FRAG); | |
1359 | _CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG); | |
1360 | _CASSERT(MBUF_LASTFRAG == M_LASTFRAG); | |
1361 | _CASSERT(MBUF_PROMISC == M_PROMISC); | |
1362 | _CASSERT(MBUF_HASFCS == M_HASFCS); | |
1363 | ||
1364 | _CASSERT(MBUF_TYPE_FREE == MT_FREE); | |
1365 | _CASSERT(MBUF_TYPE_DATA == MT_DATA); | |
1366 | _CASSERT(MBUF_TYPE_HEADER == MT_HEADER); | |
1367 | _CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET); | |
1368 | _CASSERT(MBUF_TYPE_PCB == MT_PCB); | |
1369 | _CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE); | |
1370 | _CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE); | |
1371 | _CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE); | |
1372 | _CASSERT(MBUF_TYPE_SONAME == MT_SONAME); | |
1373 | _CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS); | |
1374 | _CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE); | |
1375 | _CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS); | |
1376 | _CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR); | |
1377 | _CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL); | |
1378 | _CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA); | |
1379 | ||
1380 | _CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4); | |
1381 | _CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6); | |
39236c6e | 1382 | _CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_PARTIAL); |
316670eb A |
1383 | _CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16); |
1384 | _CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP); | |
1385 | _CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP); | |
1386 | _CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP); | |
1387 | _CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6); | |
1388 | _CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6); | |
1389 | _CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED); | |
1390 | _CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID); | |
1391 | _CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID); | |
1392 | _CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR); | |
1393 | ||
1394 | _CASSERT(MBUF_WAITOK == M_WAIT); | |
1395 | _CASSERT(MBUF_DONTWAIT == M_DONTWAIT); | |
1396 | _CASSERT(MBUF_COPYALL == M_COPYALL); | |
1397 | ||
316670eb A |
1398 | _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK); |
1399 | _CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK); | |
1400 | _CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE); | |
1401 | _CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE); | |
1402 | _CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE); | |
1403 | _CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI); | |
1404 | _CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI); | |
1405 | _CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI); | |
1406 | _CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO); | |
1407 | _CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO); | |
1408 | ||
1409 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK); | |
1410 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE); | |
1411 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI); | |
1412 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO); | |
1413 | ||
39236c6e A |
1414 | /* Module specific scratch space (32-bit alignment requirement) */ |
1415 | _CASSERT(!(offsetof(struct mbuf, m_pkthdr.pkt_mpriv) % | |
1416 | sizeof (uint32_t))); | |
1417 | ||
1418 | /* Initialize random red zone cookie value */ | |
1419 | _CASSERT(sizeof (mb_redzone_cookie) == | |
1420 | sizeof (((struct pkthdr *)0)->redzone)); | |
1421 | read_random(&mb_redzone_cookie, sizeof (mb_redzone_cookie)); | |
1422 | ||
1423 | /* Make sure we don't save more than we should */ | |
1424 | _CASSERT(MCA_SAVED_MBUF_SIZE <= sizeof (struct mbuf)); | |
1425 | ||
2d21ac55 A |
1426 | if (nmbclusters == 0) |
1427 | nmbclusters = NMBCLUSTERS; | |
1428 | ||
6d2010ae A |
1429 | /* This should be a sane (at least even) value by now */ |
1430 | VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1)); | |
1431 | ||
2d21ac55 A |
1432 | /* Setup the mbuf table */ |
1433 | mbuf_table_init(); | |
1434 | ||
1435 | /* Global lock for common layer */ | |
1436 | mbuf_mlock_grp_attr = lck_grp_attr_alloc_init(); | |
1437 | mbuf_mlock_grp = lck_grp_alloc_init("mbuf", mbuf_mlock_grp_attr); | |
1438 | mbuf_mlock_attr = lck_attr_alloc_init(); | |
316670eb | 1439 | lck_mtx_init(mbuf_mlock, mbuf_mlock_grp, mbuf_mlock_attr); |
2d21ac55 | 1440 | |
6d2010ae A |
1441 | /* |
1442 | * Allocate cluster slabs table: | |
1443 | * | |
1444 | * maxslabgrp = (N * 2048) / (1024 * 1024) | |
1445 | * | |
1446 | * Where N is nmbclusters rounded up to the nearest 512. This yields | |
1447 | * mcl_slab_g_t units, each one representing a MB of memory. | |
1448 | */ | |
1449 | maxslabgrp = | |
1450 | (P2ROUNDUP(nmbclusters, (MBSIZE >> 11)) << MCLSHIFT) >> MBSHIFT; | |
2d21ac55 A |
1451 | MALLOC(slabstbl, mcl_slabg_t **, maxslabgrp * sizeof (mcl_slabg_t *), |
1452 | M_TEMP, M_WAITOK | M_ZERO); | |
1453 | VERIFY(slabstbl != NULL); | |
1454 | ||
6d2010ae A |
1455 | /* |
1456 | * Allocate audit structures, if needed: | |
1457 | * | |
1458 | * maxclaudit = (maxslabgrp * 1024 * 1024) / 4096 | |
1459 | * | |
1460 | * This yields mcl_audit_t units, each one representing a page. | |
1461 | */ | |
593a1d5f | 1462 | PE_parse_boot_argn("mbuf_debug", &mbuf_debug, sizeof (mbuf_debug)); |
2d21ac55 | 1463 | mbuf_debug |= mcache_getflags(); |
6d2010ae A |
1464 | if (mbuf_debug & MCF_DEBUG) { |
1465 | maxclaudit = ((maxslabgrp << MBSHIFT) >> PGSHIFT); | |
1466 | MALLOC(mclaudit, mcl_audit_t *, maxclaudit * sizeof (*mclaudit), | |
1467 | M_TEMP, M_WAITOK | M_ZERO); | |
2d21ac55 A |
1468 | VERIFY(mclaudit != NULL); |
1469 | ||
1470 | mcl_audit_con_cache = mcache_create("mcl_audit_contents", | |
39236c6e | 1471 | AUDIT_CONTENTS_SIZE, sizeof (u_int64_t), 0, MCR_SLEEP); |
2d21ac55 A |
1472 | VERIFY(mcl_audit_con_cache != NULL); |
1473 | } | |
6d2010ae A |
1474 | mclverify = (mbuf_debug & MCF_VERIFY); |
1475 | mcltrace = (mbuf_debug & MCF_TRACE); | |
1476 | mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG); | |
316670eb | 1477 | mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG); |
6d2010ae A |
1478 | |
1479 | /* Enable mbuf leak logging, with a lock to protect the tables */ | |
1480 | ||
1481 | mleak_lock_grp_attr = lck_grp_attr_alloc_init(); | |
1482 | mleak_lock_grp = lck_grp_alloc_init("mleak_lock", mleak_lock_grp_attr); | |
1483 | mleak_lock_attr = lck_attr_alloc_init(); | |
316670eb | 1484 | lck_mtx_init(mleak_lock, mleak_lock_grp, mleak_lock_attr); |
6d2010ae A |
1485 | |
1486 | mleak_activate(); | |
2d21ac55 A |
1487 | |
1488 | /* Calculate the number of pages assigned to the cluster pool */ | |
b0d623f7 A |
1489 | mcl_pages = (nmbclusters * MCLBYTES) / CLBYTES; |
1490 | MALLOC(mcl_paddr, ppnum_t *, mcl_pages * sizeof (ppnum_t), | |
1491 | M_TEMP, M_WAITOK); | |
2d21ac55 A |
1492 | VERIFY(mcl_paddr != NULL); |
1493 | ||
1494 | /* Register with the I/O Bus mapper */ | |
1495 | mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages); | |
b0d623f7 | 1496 | bzero((char *)mcl_paddr, mcl_pages * sizeof (ppnum_t)); |
2d21ac55 | 1497 | |
6d2010ae | 1498 | embutl = (union mbigcluster *) |
316670eb | 1499 | ((void *)((unsigned char *)mbutl + (nmbclusters * MCLBYTES))); |
6d2010ae | 1500 | VERIFY((((char *)embutl - (char *)mbutl) % MBIGCLBYTES) == 0); |
2d21ac55 | 1501 | |
6d2010ae | 1502 | /* Prime up the freelist */ |
593a1d5f | 1503 | PE_parse_boot_argn("initmcl", &initmcl, sizeof (initmcl)); |
6d2010ae A |
1504 | if (initmcl != 0) { |
1505 | initmcl >>= NCLPBGSHIFT; /* become a 4K unit */ | |
1506 | if (initmcl > m_maxlimit(MC_BIGCL)) | |
1507 | initmcl = m_maxlimit(MC_BIGCL); | |
1508 | } | |
1509 | if (initmcl < m_minlimit(MC_BIGCL)) | |
1510 | initmcl = m_minlimit(MC_BIGCL); | |
2d21ac55 A |
1511 | |
1512 | lck_mtx_lock(mbuf_mlock); | |
1513 | ||
6d2010ae A |
1514 | /* |
1515 | * For classes with non-zero minimum limits, populate their freelists | |
1516 | * so that m_total(class) is at least m_minlimit(class). | |
1517 | */ | |
1518 | VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0); | |
1519 | freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT); | |
1520 | VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL)); | |
1521 | freelist_init(m_class(MC_CL)); | |
1522 | ||
1523 | for (m = 0; m < NELEM(mbuf_table); m++) { | |
1524 | /* Make sure we didn't miss any */ | |
1525 | VERIFY(m_minlimit(m_class(m)) == 0 || | |
1526 | m_total(m_class(m)) >= m_minlimit(m_class(m))); | |
1527 | } | |
2d21ac55 A |
1528 | |
1529 | lck_mtx_unlock(mbuf_mlock); | |
1530 | ||
6d2010ae A |
1531 | (void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init, |
1532 | NULL, &thread); | |
b0d623f7 | 1533 | thread_deallocate(thread); |
2d21ac55 A |
1534 | |
1535 | ref_cache = mcache_create("mext_ref", sizeof (struct ext_ref), | |
1536 | 0, 0, MCR_SLEEP); | |
1537 | ||
1538 | /* Create the cache for each class */ | |
1539 | for (m = 0; m < NELEM(mbuf_table); m++) { | |
6d2010ae | 1540 | void *allocfunc, *freefunc, *auditfunc, *logfunc; |
2d21ac55 A |
1541 | u_int32_t flags; |
1542 | ||
1543 | flags = mbuf_debug; | |
1544 | if (m_class(m) == MC_MBUF_CL || m_class(m) == MC_MBUF_BIGCL || | |
1545 | m_class(m) == MC_MBUF_16KCL) { | |
1546 | allocfunc = mbuf_cslab_alloc; | |
1547 | freefunc = mbuf_cslab_free; | |
1548 | auditfunc = mbuf_cslab_audit; | |
6d2010ae | 1549 | logfunc = mleak_logger; |
2d21ac55 A |
1550 | } else { |
1551 | allocfunc = mbuf_slab_alloc; | |
1552 | freefunc = mbuf_slab_free; | |
1553 | auditfunc = mbuf_slab_audit; | |
6d2010ae | 1554 | logfunc = mleak_logger; |
2d21ac55 A |
1555 | } |
1556 | ||
1557 | /* | |
1558 | * Disable per-CPU caches for jumbo classes if there | |
1559 | * is no jumbo cluster pool available in the system. | |
1560 | * The cache itself is still created (but will never | |
1561 | * be populated) since it simplifies the code. | |
1562 | */ | |
1563 | if ((m_class(m) == MC_MBUF_16KCL || m_class(m) == MC_16KCL) && | |
1564 | njcl == 0) | |
1565 | flags |= MCF_NOCPUCACHE; | |
1566 | ||
6d2010ae A |
1567 | if (!mclfindleak) |
1568 | flags |= MCF_NOLEAKLOG; | |
1569 | ||
2d21ac55 | 1570 | m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m), |
6d2010ae | 1571 | allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify, |
b0d623f7 | 1572 | (void *)(uintptr_t)m, flags, MCR_SLEEP); |
2d21ac55 A |
1573 | } |
1574 | ||
1575 | /* | |
1576 | * Allocate structure for per-CPU statistics that's aligned | |
1577 | * on the CPU cache boundary; this code assumes that we never | |
1578 | * uninitialize this framework, since the original address | |
1579 | * before alignment is not saved. | |
1580 | */ | |
1581 | ncpu = ml_get_max_cpus(); | |
39236c6e | 1582 | MALLOC(buf, void *, MBUF_MTYPES_SIZE(ncpu) + CPU_CACHE_LINE_SIZE, |
2d21ac55 A |
1583 | M_TEMP, M_WAITOK); |
1584 | VERIFY(buf != NULL); | |
1585 | ||
39236c6e A |
1586 | mbuf_mtypes = (mbuf_mtypes_t *)P2ROUNDUP((intptr_t)buf, |
1587 | CPU_CACHE_LINE_SIZE); | |
2d21ac55 A |
1588 | bzero(mbuf_mtypes, MBUF_MTYPES_SIZE(ncpu)); |
1589 | ||
6d2010ae A |
1590 | /* |
1591 | * Set the max limit on sb_max to be 1/16 th of the size of | |
b0d623f7 A |
1592 | * memory allocated for mbuf clusters. |
1593 | */ | |
6d2010ae | 1594 | high_sb_max = (nmbclusters << (MCLSHIFT - 4)); |
b0d623f7 A |
1595 | if (high_sb_max < sb_max) { |
1596 | /* sb_max is too large for this configuration, scale it down */ | |
6d2010ae | 1597 | if (high_sb_max > (1 << MBSHIFT)) { |
b0d623f7 A |
1598 | /* We have atleast 16 M of mbuf pool */ |
1599 | sb_max = high_sb_max; | |
1600 | } else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) { | |
6d2010ae A |
1601 | /* |
1602 | * If we have more than 1M of mbufpool, cap the size of | |
b0d623f7 | 1603 | * max sock buf at 1M |
6d2010ae | 1604 | */ |
b0d623f7 A |
1605 | sb_max = high_sb_max = (1 << MBSHIFT); |
1606 | } else { | |
1607 | sb_max = high_sb_max; | |
1608 | } | |
1609 | } | |
1610 | ||
316670eb A |
1611 | /* allocate space for mbuf_dump_buf */ |
1612 | MALLOC(mbuf_dump_buf, char *, MBUF_DUMP_BUF_SIZE, M_TEMP, M_WAITOK); | |
1613 | VERIFY(mbuf_dump_buf != NULL); | |
1614 | ||
39236c6e A |
1615 | if (mbuf_debug & MCF_DEBUG) { |
1616 | printf("%s: MLEN %d, MHLEN %d\n", __func__, | |
1617 | (int)_MLEN, (int)_MHLEN); | |
1618 | } | |
1619 | ||
1620 | printf("%s: done [%d MB total pool size, (%d/%d) split]\n", __func__, | |
6d2010ae A |
1621 | (nmbclusters << MCLSHIFT) >> MBSHIFT, |
1622 | (nclusters << MCLSHIFT) >> MBSHIFT, | |
1623 | (njcl << MCLSHIFT) >> MBSHIFT); | |
2d21ac55 A |
1624 | } |
1625 | ||
1626 | /* | |
1627 | * Obtain a slab of object(s) from the class's freelist. | |
1628 | */ | |
1629 | static mcache_obj_t * | |
1630 | slab_alloc(mbuf_class_t class, int wait) | |
1631 | { | |
1632 | mcl_slab_t *sp; | |
1633 | mcache_obj_t *buf; | |
1634 | ||
1635 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
1636 | ||
1637 | VERIFY(class != MC_16KCL || njcl > 0); | |
1638 | ||
1639 | /* This should always be NULL for us */ | |
1640 | VERIFY(m_cobjlist(class) == NULL); | |
1641 | ||
1642 | /* | |
1643 | * Treat composite objects as having longer lifespan by using | |
1644 | * a slab from the reverse direction, in hoping that this could | |
1645 | * reduce the probability of fragmentation for slabs that hold | |
1646 | * more than one buffer chunks (e.g. mbuf slabs). For other | |
1647 | * slabs, this probably doesn't make much of a difference. | |
1648 | */ | |
6d2010ae | 1649 | if ((class == MC_MBUF || class == MC_CL) && (wait & MCR_COMP)) |
2d21ac55 A |
1650 | sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead); |
1651 | else | |
1652 | sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class)); | |
1653 | ||
1654 | if (sp == NULL) { | |
1655 | VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0); | |
1656 | /* The slab list for this class is empty */ | |
1657 | return (NULL); | |
1658 | } | |
1659 | ||
1660 | VERIFY(m_infree(class) > 0); | |
1661 | VERIFY(!slab_is_detached(sp)); | |
1662 | VERIFY(sp->sl_class == class && | |
1663 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); | |
1664 | buf = sp->sl_head; | |
1665 | VERIFY(slab_inrange(sp, buf) && sp == slab_get(buf)); | |
1666 | ||
1667 | if (class == MC_MBUF) { | |
1668 | sp->sl_head = buf->obj_next; | |
6d2010ae A |
1669 | VERIFY(sp->sl_head != NULL || sp->sl_refcnt == (NMBPBG - 1)); |
1670 | } else if (class == MC_CL) { | |
1671 | sp->sl_head = buf->obj_next; | |
1672 | VERIFY(sp->sl_head != NULL || sp->sl_refcnt == (NCLPBG - 1)); | |
2d21ac55 A |
1673 | } else { |
1674 | sp->sl_head = NULL; | |
1675 | } | |
1676 | if (sp->sl_head != NULL && !slab_inrange(sp, sp->sl_head)) { | |
1677 | slab_nextptr_panic(sp, sp->sl_head); | |
1678 | /* In case sl_head is in the map but not in the slab */ | |
1679 | VERIFY(slab_inrange(sp, sp->sl_head)); | |
1680 | /* NOTREACHED */ | |
1681 | } | |
1682 | ||
1683 | /* Increment slab reference */ | |
1684 | sp->sl_refcnt++; | |
1685 | ||
1686 | if (mclaudit != NULL) { | |
1687 | mcache_audit_t *mca = mcl_audit_buf2mca(class, buf); | |
1688 | mca->mca_uflags = 0; | |
1689 | /* Save contents on mbuf objects only */ | |
1690 | if (class == MC_MBUF) | |
1691 | mca->mca_uflags |= MB_SCVALID; | |
1692 | } | |
1693 | ||
1694 | if (class == MC_CL) { | |
1695 | mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL); | |
1696 | /* | |
6d2010ae | 1697 | * A 2K cluster slab can have at most NCLPBG references. |
2d21ac55 | 1698 | */ |
6d2010ae A |
1699 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPBG && |
1700 | sp->sl_chunks == NCLPBG && | |
1701 | sp->sl_len == m_maxsize(MC_BIGCL)); | |
1702 | VERIFY(sp->sl_refcnt < NCLPBG || sp->sl_head == NULL); | |
2d21ac55 | 1703 | } else if (class == MC_BIGCL) { |
2d21ac55 A |
1704 | mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) + |
1705 | m_infree(MC_MBUF_BIGCL); | |
1706 | /* | |
6d2010ae | 1707 | * A 4K cluster slab can have at most 1 reference. |
2d21ac55 A |
1708 | */ |
1709 | VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 && | |
6d2010ae | 1710 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
2d21ac55 A |
1711 | } else if (class == MC_16KCL) { |
1712 | mcl_slab_t *nsp; | |
1713 | int k; | |
1714 | ||
1715 | --m_infree(MC_16KCL); | |
1716 | VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 && | |
6d2010ae | 1717 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
2d21ac55 | 1718 | /* |
6d2010ae A |
1719 | * Increment 2nd-Nth slab reference, where N is NSLABSP16KB. |
1720 | * A 16KB big cluster takes NSLABSP16KB slabs, each having at | |
1721 | * most 1 reference. | |
2d21ac55 | 1722 | */ |
6d2010ae | 1723 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
1724 | nsp = nsp->sl_next; |
1725 | /* Next slab must already be present */ | |
1726 | VERIFY(nsp != NULL); | |
1727 | nsp->sl_refcnt++; | |
1728 | VERIFY(!slab_is_detached(nsp)); | |
1729 | VERIFY(nsp->sl_class == MC_16KCL && | |
1730 | nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) && | |
1731 | nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 && | |
1732 | nsp->sl_len == 0 && nsp->sl_base == sp->sl_base && | |
1733 | nsp->sl_head == NULL); | |
1734 | } | |
1735 | } else { | |
6d2010ae | 1736 | VERIFY(class == MC_MBUF); |
2d21ac55 A |
1737 | --m_infree(MC_MBUF); |
1738 | /* | |
1739 | * If auditing is turned on, this check is | |
1740 | * deferred until later in mbuf_slab_audit(). | |
1741 | */ | |
1742 | if (mclaudit == NULL) | |
1743 | _MCHECK((struct mbuf *)buf); | |
1744 | /* | |
1745 | * Since we have incremented the reference count above, | |
6d2010ae | 1746 | * an mbuf slab (formerly a 4KB cluster slab that was cut |
2d21ac55 | 1747 | * up into mbufs) must have a reference count between 1 |
6d2010ae | 1748 | * and NMBPBG at this point. |
2d21ac55 | 1749 | */ |
6d2010ae A |
1750 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPBG && |
1751 | sp->sl_chunks == NMBPBG && | |
1752 | sp->sl_len == m_maxsize(MC_BIGCL)); | |
1753 | VERIFY(sp->sl_refcnt < NMBPBG || sp->sl_head == NULL); | |
2d21ac55 A |
1754 | } |
1755 | ||
1756 | /* If empty, remove this slab from the class's freelist */ | |
1757 | if (sp->sl_head == NULL) { | |
6d2010ae A |
1758 | VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPBG); |
1759 | VERIFY(class != MC_CL || sp->sl_refcnt == NCLPBG); | |
2d21ac55 A |
1760 | slab_remove(sp, class); |
1761 | } | |
1762 | ||
1763 | return (buf); | |
1764 | } | |
1765 | ||
1766 | /* | |
1767 | * Place a slab of object(s) back into a class's slab list. | |
1768 | */ | |
1769 | static void | |
1770 | slab_free(mbuf_class_t class, mcache_obj_t *buf) | |
1771 | { | |
1772 | mcl_slab_t *sp; | |
1773 | ||
1774 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
1775 | ||
1776 | VERIFY(class != MC_16KCL || njcl > 0); | |
1777 | VERIFY(buf->obj_next == NULL); | |
1778 | sp = slab_get(buf); | |
1779 | VERIFY(sp->sl_class == class && slab_inrange(sp, buf) && | |
1780 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); | |
1781 | ||
1782 | /* Decrement slab reference */ | |
1783 | sp->sl_refcnt--; | |
1784 | ||
6d2010ae | 1785 | if (class == MC_CL) { |
2d21ac55 A |
1786 | VERIFY(IS_P2ALIGNED(buf, MCLBYTES)); |
1787 | /* | |
6d2010ae A |
1788 | * A slab that has been splitted for 2KB clusters can have |
1789 | * at most 1 outstanding reference at this point. | |
1790 | */ | |
1791 | VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPBG - 1) && | |
1792 | sp->sl_chunks == NCLPBG && | |
1793 | sp->sl_len == m_maxsize(MC_BIGCL)); | |
1794 | VERIFY(sp->sl_refcnt < (NCLPBG - 1) || | |
1795 | (slab_is_detached(sp) && sp->sl_head == NULL)); | |
1796 | } else if (class == MC_BIGCL) { | |
1797 | VERIFY(IS_P2ALIGNED(buf, MCLBYTES)); | |
1798 | /* | |
1799 | * A 4KB cluster slab can have at most 1 reference | |
2d21ac55 A |
1800 | * which must be 0 at this point. |
1801 | */ | |
1802 | VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 && | |
1803 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); | |
1804 | VERIFY(slab_is_detached(sp)); | |
2d21ac55 A |
1805 | } else if (class == MC_16KCL) { |
1806 | mcl_slab_t *nsp; | |
1807 | int k; | |
1808 | /* | |
6d2010ae | 1809 | * A 16KB cluster takes NSLABSP16KB slabs, all must |
2d21ac55 A |
1810 | * now have 0 reference. |
1811 | */ | |
6d2010ae | 1812 | VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES)); |
2d21ac55 | 1813 | VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 && |
6d2010ae | 1814 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
2d21ac55 | 1815 | VERIFY(slab_is_detached(sp)); |
6d2010ae | 1816 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
1817 | nsp = nsp->sl_next; |
1818 | /* Next slab must already be present */ | |
1819 | VERIFY(nsp != NULL); | |
1820 | nsp->sl_refcnt--; | |
1821 | VERIFY(slab_is_detached(nsp)); | |
1822 | VERIFY(nsp->sl_class == MC_16KCL && | |
1823 | (nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) && | |
1824 | nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 && | |
1825 | nsp->sl_len == 0 && nsp->sl_base == sp->sl_base && | |
1826 | nsp->sl_head == NULL); | |
1827 | } | |
1828 | } else { | |
1829 | /* | |
6d2010ae A |
1830 | * A slab that has been splitted for mbufs has at most NMBPBG |
1831 | * reference counts. Since we have decremented one reference | |
1832 | * above, it must now be between 0 and NMBPBG-1. | |
2d21ac55 | 1833 | */ |
6d2010ae A |
1834 | VERIFY(class == MC_MBUF); |
1835 | VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NMBPBG - 1) && | |
1836 | sp->sl_chunks == NMBPBG && | |
1837 | sp->sl_len == m_maxsize(MC_BIGCL)); | |
1838 | VERIFY(sp->sl_refcnt < (NMBPBG - 1) || | |
2d21ac55 A |
1839 | (slab_is_detached(sp) && sp->sl_head == NULL)); |
1840 | } | |
1841 | ||
1842 | /* | |
1843 | * When auditing is enabled, ensure that the buffer still | |
1844 | * contains the free pattern. Otherwise it got corrupted | |
1845 | * while at the CPU cache layer. | |
1846 | */ | |
1847 | if (mclaudit != NULL) { | |
1848 | mcache_audit_t *mca = mcl_audit_buf2mca(class, buf); | |
6d2010ae A |
1849 | if (mclverify) { |
1850 | mcache_audit_free_verify(mca, buf, 0, m_maxsize(class)); | |
1851 | } | |
2d21ac55 A |
1852 | mca->mca_uflags &= ~MB_SCVALID; |
1853 | } | |
1854 | ||
1855 | if (class == MC_CL) { | |
1856 | mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL); | |
6d2010ae | 1857 | buf->obj_next = sp->sl_head; |
2d21ac55 A |
1858 | } else if (class == MC_BIGCL) { |
1859 | mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) + | |
1860 | m_infree(MC_MBUF_BIGCL); | |
1861 | } else if (class == MC_16KCL) { | |
1862 | ++m_infree(MC_16KCL); | |
1863 | } else { | |
1864 | ++m_infree(MC_MBUF); | |
1865 | buf->obj_next = sp->sl_head; | |
1866 | } | |
1867 | sp->sl_head = buf; | |
1868 | ||
6d2010ae A |
1869 | /* |
1870 | * If a slab has been splitted to either one which holds 2KB clusters, | |
1871 | * or one which holds mbufs, turn it back to one which holds a 4KB | |
1872 | * cluster. | |
1873 | */ | |
1874 | if (class == MC_MBUF && sp->sl_refcnt == 0 && | |
1875 | m_total(class) > m_minlimit(class) && | |
1876 | m_total(MC_BIGCL) < m_maxlimit(MC_BIGCL)) { | |
1877 | int i = NMBPBG; | |
1878 | ||
1879 | m_total(MC_BIGCL)++; | |
1880 | mbstat.m_bigclusters = m_total(MC_BIGCL); | |
1881 | m_total(MC_MBUF) -= NMBPBG; | |
2d21ac55 | 1882 | mbstat.m_mbufs = m_total(MC_MBUF); |
6d2010ae A |
1883 | m_infree(MC_MBUF) -= NMBPBG; |
1884 | mtype_stat_add(MT_FREE, -((unsigned)NMBPBG)); | |
1885 | ||
1886 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); | |
1887 | VERIFY(m_total(MC_MBUF) >= m_minlimit(MC_MBUF)); | |
2d21ac55 A |
1888 | |
1889 | while (i--) { | |
1890 | struct mbuf *m = sp->sl_head; | |
1891 | VERIFY(m != NULL); | |
1892 | sp->sl_head = m->m_next; | |
1893 | m->m_next = NULL; | |
1894 | } | |
1895 | VERIFY(sp->sl_head == NULL); | |
1896 | ||
1897 | /* Remove the slab from the mbuf class's slab list */ | |
1898 | slab_remove(sp, class); | |
1899 | ||
6d2010ae A |
1900 | /* Reinitialize it as a 4KB cluster slab */ |
1901 | slab_init(sp, MC_BIGCL, sp->sl_flags, sp->sl_base, sp->sl_base, | |
2d21ac55 A |
1902 | sp->sl_len, 0, 1); |
1903 | ||
6d2010ae | 1904 | if (mclverify) { |
2d21ac55 | 1905 | mcache_set_pattern(MCACHE_FREE_PATTERN, |
6d2010ae A |
1906 | (caddr_t)sp->sl_head, m_maxsize(MC_BIGCL)); |
1907 | } | |
1908 | mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) + | |
1909 | m_infree(MC_MBUF_BIGCL); | |
2d21ac55 | 1910 | |
6d2010ae A |
1911 | VERIFY(slab_is_detached(sp)); |
1912 | /* And finally switch class */ | |
1913 | class = MC_BIGCL; | |
1914 | } else if (class == MC_CL && sp->sl_refcnt == 0 && | |
1915 | m_total(class) > m_minlimit(class) && | |
1916 | m_total(MC_BIGCL) < m_maxlimit(MC_BIGCL)) { | |
1917 | int i = NCLPBG; | |
1918 | ||
1919 | m_total(MC_BIGCL)++; | |
1920 | mbstat.m_bigclusters = m_total(MC_BIGCL); | |
1921 | m_total(MC_CL) -= NCLPBG; | |
1922 | mbstat.m_clusters = m_total(MC_CL); | |
1923 | m_infree(MC_CL) -= NCLPBG; | |
1924 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); | |
1925 | VERIFY(m_total(MC_CL) >= m_minlimit(MC_CL)); | |
1926 | ||
1927 | while (i--) { | |
1928 | union mcluster *c = sp->sl_head; | |
1929 | VERIFY(c != NULL); | |
1930 | sp->sl_head = c->mcl_next; | |
1931 | c->mcl_next = NULL; | |
1932 | } | |
1933 | VERIFY(sp->sl_head == NULL); | |
1934 | ||
1935 | /* Remove the slab from the 2KB cluster class's slab list */ | |
1936 | slab_remove(sp, class); | |
1937 | ||
1938 | /* Reinitialize it as a 4KB cluster slab */ | |
1939 | slab_init(sp, MC_BIGCL, sp->sl_flags, sp->sl_base, sp->sl_base, | |
1940 | sp->sl_len, 0, 1); | |
1941 | ||
1942 | if (mclverify) { | |
1943 | mcache_set_pattern(MCACHE_FREE_PATTERN, | |
1944 | (caddr_t)sp->sl_head, m_maxsize(MC_BIGCL)); | |
1945 | } | |
1946 | mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) + | |
1947 | m_infree(MC_MBUF_BIGCL); | |
2d21ac55 A |
1948 | |
1949 | VERIFY(slab_is_detached(sp)); | |
1950 | /* And finally switch class */ | |
6d2010ae | 1951 | class = MC_BIGCL; |
2d21ac55 A |
1952 | } |
1953 | ||
1954 | /* Reinsert the slab to the class's slab list */ | |
1955 | if (slab_is_detached(sp)) | |
1956 | slab_insert(sp, class); | |
1957 | } | |
1958 | ||
1959 | /* | |
1960 | * Common allocator for rudimentary objects called by the CPU cache layer | |
1961 | * during an allocation request whenever there is no available element in the | |
1962 | * bucket layer. It returns one or more elements from the appropriate global | |
1963 | * freelist. If the freelist is empty, it will attempt to populate it and | |
1964 | * retry the allocation. | |
1965 | */ | |
1966 | static unsigned int | |
1967 | mbuf_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait) | |
1968 | { | |
1969 | mbuf_class_t class = (mbuf_class_t)arg; | |
1970 | unsigned int need = num; | |
1971 | mcache_obj_t **list = *plist; | |
1972 | ||
1973 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); | |
1974 | ASSERT(need > 0); | |
1975 | ||
1976 | lck_mtx_lock(mbuf_mlock); | |
1977 | ||
1978 | for (;;) { | |
1979 | if ((*list = slab_alloc(class, wait)) != NULL) { | |
1980 | (*list)->obj_next = NULL; | |
1981 | list = *plist = &(*list)->obj_next; | |
1982 | ||
1983 | if (--need == 0) { | |
1984 | /* | |
1985 | * If the number of elements in freelist has | |
1986 | * dropped below low watermark, asynchronously | |
1987 | * populate the freelist now rather than doing | |
1988 | * it later when we run out of elements. | |
1989 | */ | |
1990 | if (!mbuf_cached_above(class, wait) && | |
1991 | m_infree(class) < m_total(class) >> 5) { | |
1992 | (void) freelist_populate(class, 1, | |
1993 | M_DONTWAIT); | |
1994 | } | |
1995 | break; | |
1996 | } | |
1997 | } else { | |
1998 | VERIFY(m_infree(class) == 0 || class == MC_CL); | |
1999 | ||
2000 | (void) freelist_populate(class, 1, | |
2001 | (wait & MCR_NOSLEEP) ? M_DONTWAIT : M_WAIT); | |
2002 | ||
2003 | if (m_infree(class) > 0) | |
2004 | continue; | |
2005 | ||
2006 | /* Check if there's anything at the cache layer */ | |
2007 | if (mbuf_cached_above(class, wait)) | |
2008 | break; | |
2009 | ||
6d2010ae A |
2010 | /* watchdog checkpoint */ |
2011 | mbuf_watchdog(); | |
2012 | ||
2d21ac55 A |
2013 | /* We have nothing and cannot block; give up */ |
2014 | if (wait & MCR_NOSLEEP) { | |
2015 | if (!(wait & MCR_TRYHARD)) { | |
2016 | m_fail_cnt(class)++; | |
2017 | mbstat.m_drops++; | |
2018 | break; | |
2019 | } | |
2020 | } | |
2021 | ||
2022 | /* | |
2023 | * If the freelist is still empty and the caller is | |
2024 | * willing to be blocked, sleep on the wait channel | |
2025 | * until an element is available. Otherwise, if | |
2026 | * MCR_TRYHARD is set, do our best to satisfy the | |
2027 | * request without having to go to sleep. | |
2028 | */ | |
2029 | if (mbuf_worker_ready && | |
2030 | mbuf_sleep(class, need, wait)) | |
2031 | break; | |
2032 | ||
2033 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2034 | } | |
2035 | } | |
2036 | ||
2037 | m_alloc_cnt(class) += num - need; | |
2038 | lck_mtx_unlock(mbuf_mlock); | |
2039 | ||
2040 | return (num - need); | |
2041 | } | |
2042 | ||
2043 | /* | |
2044 | * Common de-allocator for rudimentary objects called by the CPU cache | |
2045 | * layer when one or more elements need to be returned to the appropriate | |
2046 | * global freelist. | |
2047 | */ | |
2048 | static void | |
2049 | mbuf_slab_free(void *arg, mcache_obj_t *list, __unused int purged) | |
2050 | { | |
2051 | mbuf_class_t class = (mbuf_class_t)arg; | |
2052 | mcache_obj_t *nlist; | |
2053 | unsigned int num = 0; | |
2054 | int w; | |
2055 | ||
2056 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); | |
2057 | ||
2058 | lck_mtx_lock(mbuf_mlock); | |
2059 | ||
2060 | for (;;) { | |
2061 | nlist = list->obj_next; | |
2062 | list->obj_next = NULL; | |
2063 | slab_free(class, list); | |
2064 | ++num; | |
2065 | if ((list = nlist) == NULL) | |
2066 | break; | |
2067 | } | |
2068 | m_free_cnt(class) += num; | |
2069 | ||
2070 | if ((w = mb_waiters) > 0) | |
2071 | mb_waiters = 0; | |
2072 | ||
2073 | lck_mtx_unlock(mbuf_mlock); | |
2074 | ||
2075 | if (w != 0) | |
2076 | wakeup(mb_waitchan); | |
2077 | } | |
2078 | ||
2079 | /* | |
2080 | * Common auditor for rudimentary objects called by the CPU cache layer | |
2081 | * during an allocation or free request. For the former, this is called | |
2082 | * after the objects are obtained from either the bucket or slab layer | |
2083 | * and before they are returned to the caller. For the latter, this is | |
2084 | * called immediately during free and before placing the objects into | |
2085 | * the bucket or slab layer. | |
2086 | */ | |
2087 | static void | |
2088 | mbuf_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) | |
2089 | { | |
2090 | mbuf_class_t class = (mbuf_class_t)arg; | |
2091 | mcache_audit_t *mca; | |
2092 | ||
2093 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); | |
2094 | ||
2095 | while (list != NULL) { | |
2096 | lck_mtx_lock(mbuf_mlock); | |
2097 | mca = mcl_audit_buf2mca(class, list); | |
2098 | ||
2099 | /* Do the sanity checks */ | |
2100 | if (class == MC_MBUF) { | |
2101 | mcl_audit_mbuf(mca, list, FALSE, alloc); | |
2102 | ASSERT(mca->mca_uflags & MB_SCVALID); | |
2103 | } else { | |
2104 | mcl_audit_cluster(mca, list, m_maxsize(class), | |
2105 | alloc, TRUE); | |
2106 | ASSERT(!(mca->mca_uflags & MB_SCVALID)); | |
2107 | } | |
2108 | /* Record this transaction */ | |
6d2010ae | 2109 | if (mcltrace) |
39236c6e | 2110 | mcache_buffer_log(mca, list, m_cache(class), &mb_start); |
6d2010ae | 2111 | |
2d21ac55 A |
2112 | if (alloc) |
2113 | mca->mca_uflags |= MB_INUSE; | |
2114 | else | |
2115 | mca->mca_uflags &= ~MB_INUSE; | |
2116 | /* Unpair the object (unconditionally) */ | |
2117 | mca->mca_uptr = NULL; | |
2118 | lck_mtx_unlock(mbuf_mlock); | |
2119 | ||
2120 | list = list->obj_next; | |
2121 | } | |
2122 | } | |
2123 | ||
2124 | /* | |
2125 | * Common notify routine for all caches. It is called by mcache when | |
2126 | * one or more objects get freed. We use this indication to trigger | |
2127 | * the wakeup of any sleeping threads so that they can retry their | |
2128 | * allocation requests. | |
2129 | */ | |
2130 | static void | |
2131 | mbuf_slab_notify(void *arg, u_int32_t reason) | |
2132 | { | |
2133 | mbuf_class_t class = (mbuf_class_t)arg; | |
2134 | int w; | |
2135 | ||
2136 | ASSERT(MBUF_CLASS_VALID(class)); | |
2137 | ||
2138 | if (reason != MCN_RETRYALLOC) | |
2139 | return; | |
2140 | ||
2141 | lck_mtx_lock(mbuf_mlock); | |
2142 | if ((w = mb_waiters) > 0) { | |
2143 | m_notified(class)++; | |
2144 | mb_waiters = 0; | |
2145 | } | |
2146 | lck_mtx_unlock(mbuf_mlock); | |
2147 | ||
2148 | if (w != 0) | |
2149 | wakeup(mb_waitchan); | |
2150 | } | |
2151 | ||
2152 | /* | |
2153 | * Obtain object(s) from the composite class's freelist. | |
2154 | */ | |
2155 | static unsigned int | |
2156 | cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num) | |
2157 | { | |
2158 | unsigned int need = num; | |
2159 | mcl_slab_t *sp, *clsp, *nsp; | |
2160 | struct mbuf *m; | |
2161 | mcache_obj_t **list = *plist; | |
2162 | void *cl; | |
2163 | ||
2164 | VERIFY(need > 0); | |
2165 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); | |
2166 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2167 | ||
2168 | /* Get what we can from the freelist */ | |
2169 | while ((*list = m_cobjlist(class)) != NULL) { | |
2170 | MRANGE(*list); | |
2171 | ||
2172 | m = (struct mbuf *)*list; | |
2173 | sp = slab_get(m); | |
2174 | cl = m->m_ext.ext_buf; | |
2175 | clsp = slab_get(cl); | |
2176 | VERIFY(m->m_flags == M_EXT && cl != NULL); | |
2177 | VERIFY(MEXT_RFA(m) != NULL && MBUF_IS_COMPOSITE(m)); | |
6d2010ae A |
2178 | |
2179 | if (class == MC_MBUF_CL) { | |
2180 | VERIFY(clsp->sl_refcnt >= 1 && | |
2181 | clsp->sl_refcnt <= NCLPBG); | |
2182 | } else { | |
2183 | VERIFY(clsp->sl_refcnt == 1); | |
2184 | } | |
2185 | ||
2186 | if (class == MC_MBUF_16KCL) { | |
2d21ac55 | 2187 | int k; |
6d2010ae | 2188 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
2189 | nsp = nsp->sl_next; |
2190 | /* Next slab must already be present */ | |
2191 | VERIFY(nsp != NULL); | |
2192 | VERIFY(nsp->sl_refcnt == 1); | |
2193 | } | |
2194 | } | |
2195 | ||
2196 | if ((m_cobjlist(class) = (*list)->obj_next) != NULL && | |
2197 | !MBUF_IN_MAP(m_cobjlist(class))) { | |
2198 | slab_nextptr_panic(sp, m_cobjlist(class)); | |
2199 | /* NOTREACHED */ | |
2200 | } | |
2201 | (*list)->obj_next = NULL; | |
2202 | list = *plist = &(*list)->obj_next; | |
2203 | ||
2204 | if (--need == 0) | |
2205 | break; | |
2206 | } | |
2207 | m_infree(class) -= (num - need); | |
2208 | ||
2209 | return (num - need); | |
2210 | } | |
2211 | ||
2212 | /* | |
2213 | * Place object(s) back into a composite class's freelist. | |
2214 | */ | |
2215 | static unsigned int | |
2216 | cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged) | |
2217 | { | |
2218 | mcache_obj_t *o, *tail; | |
2219 | unsigned int num = 0; | |
2220 | struct mbuf *m, *ms; | |
2221 | mcache_audit_t *mca = NULL; | |
2222 | mcache_obj_t *ref_list = NULL; | |
2223 | mcl_slab_t *clsp, *nsp; | |
2224 | void *cl; | |
6d2010ae | 2225 | mbuf_class_t cl_class; |
2d21ac55 A |
2226 | |
2227 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); | |
2228 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); | |
2229 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2230 | ||
6d2010ae A |
2231 | if (class == MC_MBUF_CL) { |
2232 | cl_class = MC_CL; | |
2233 | } else if (class == MC_MBUF_BIGCL) { | |
2234 | cl_class = MC_BIGCL; | |
2235 | } else { | |
2236 | VERIFY(class == MC_MBUF_16KCL); | |
2237 | cl_class = MC_16KCL; | |
2238 | } | |
2239 | ||
2d21ac55 A |
2240 | o = tail = list; |
2241 | ||
2242 | while ((m = ms = (struct mbuf *)o) != NULL) { | |
2243 | mcache_obj_t *rfa, *nexto = o->obj_next; | |
2244 | ||
2245 | /* Do the mbuf sanity checks */ | |
2246 | if (mclaudit != NULL) { | |
2247 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
6d2010ae A |
2248 | if (mclverify) { |
2249 | mcache_audit_free_verify(mca, m, 0, | |
2250 | m_maxsize(MC_MBUF)); | |
2251 | } | |
39236c6e | 2252 | ms = MCA_SAVED_MBUF_PTR(mca); |
2d21ac55 A |
2253 | } |
2254 | ||
2255 | /* Do the cluster sanity checks */ | |
2256 | cl = ms->m_ext.ext_buf; | |
2257 | clsp = slab_get(cl); | |
6d2010ae A |
2258 | if (mclverify) { |
2259 | size_t size = m_maxsize(cl_class); | |
2260 | mcache_audit_free_verify(mcl_audit_buf2mca(cl_class, | |
2d21ac55 A |
2261 | (mcache_obj_t *)cl), cl, 0, size); |
2262 | } | |
2263 | VERIFY(ms->m_type == MT_FREE); | |
2264 | VERIFY(ms->m_flags == M_EXT); | |
2265 | VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms)); | |
6d2010ae A |
2266 | if (cl_class == MC_CL) { |
2267 | VERIFY(clsp->sl_refcnt >= 1 && | |
2268 | clsp->sl_refcnt <= NCLPBG); | |
2269 | } else { | |
2270 | VERIFY(clsp->sl_refcnt == 1); | |
2271 | } | |
2272 | if (cl_class == MC_16KCL) { | |
2d21ac55 | 2273 | int k; |
6d2010ae | 2274 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
2275 | nsp = nsp->sl_next; |
2276 | /* Next slab must already be present */ | |
2277 | VERIFY(nsp != NULL); | |
2278 | VERIFY(nsp->sl_refcnt == 1); | |
2279 | } | |
2280 | } | |
2281 | ||
2282 | /* | |
2283 | * If we're asked to purge, restore the actual mbuf using | |
2284 | * contents of the shadow structure (if auditing is enabled) | |
2285 | * and clear EXTF_COMPOSITE flag from the mbuf, as we are | |
2286 | * about to free it and the attached cluster into their caches. | |
2287 | */ | |
2288 | if (purged) { | |
2289 | /* Restore constructed mbuf fields */ | |
2290 | if (mclaudit != NULL) | |
2291 | mcl_audit_restore_mbuf(m, mca, TRUE); | |
2292 | ||
2293 | MEXT_REF(m) = 0; | |
2294 | MEXT_FLAGS(m) = 0; | |
2295 | ||
316670eb | 2296 | rfa = (mcache_obj_t *)(void *)MEXT_RFA(m); |
2d21ac55 A |
2297 | rfa->obj_next = ref_list; |
2298 | ref_list = rfa; | |
2299 | MEXT_RFA(m) = NULL; | |
2300 | ||
2301 | m->m_type = MT_FREE; | |
2302 | m->m_flags = m->m_len = 0; | |
2303 | m->m_next = m->m_nextpkt = NULL; | |
2304 | ||
2305 | /* Save mbuf fields and make auditing happy */ | |
2306 | if (mclaudit != NULL) | |
2307 | mcl_audit_mbuf(mca, o, FALSE, FALSE); | |
2308 | ||
2309 | VERIFY(m_total(class) > 0); | |
2310 | m_total(class)--; | |
2311 | ||
2312 | /* Free the mbuf */ | |
2313 | o->obj_next = NULL; | |
2314 | slab_free(MC_MBUF, o); | |
2315 | ||
2316 | /* And free the cluster */ | |
2317 | ((mcache_obj_t *)cl)->obj_next = NULL; | |
2318 | if (class == MC_MBUF_CL) | |
2319 | slab_free(MC_CL, cl); | |
2320 | else if (class == MC_MBUF_BIGCL) | |
2321 | slab_free(MC_BIGCL, cl); | |
2322 | else | |
2323 | slab_free(MC_16KCL, cl); | |
2324 | } | |
2325 | ||
2326 | ++num; | |
2327 | tail = o; | |
2328 | o = nexto; | |
2329 | } | |
2330 | ||
2331 | if (!purged) { | |
2332 | tail->obj_next = m_cobjlist(class); | |
2333 | m_cobjlist(class) = list; | |
2334 | m_infree(class) += num; | |
2335 | } else if (ref_list != NULL) { | |
2336 | mcache_free_ext(ref_cache, ref_list); | |
2337 | } | |
2338 | ||
2339 | return (num); | |
2340 | } | |
2341 | ||
2342 | /* | |
2343 | * Common allocator for composite objects called by the CPU cache layer | |
2344 | * during an allocation request whenever there is no available element in | |
2345 | * the bucket layer. It returns one or more composite elements from the | |
2346 | * appropriate global freelist. If the freelist is empty, it will attempt | |
2347 | * to obtain the rudimentary objects from their caches and construct them | |
2348 | * into composite mbuf + cluster objects. | |
2349 | */ | |
2350 | static unsigned int | |
2351 | mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed, | |
2352 | int wait) | |
2353 | { | |
2354 | mbuf_class_t class = (mbuf_class_t)arg; | |
6d2010ae | 2355 | mbuf_class_t cl_class = 0; |
2d21ac55 A |
2356 | unsigned int num = 0, cnum = 0, want = needed; |
2357 | mcache_obj_t *ref_list = NULL; | |
2358 | mcache_obj_t *mp_list = NULL; | |
2359 | mcache_obj_t *clp_list = NULL; | |
2360 | mcache_obj_t **list; | |
2361 | struct ext_ref *rfa; | |
2362 | struct mbuf *m; | |
2363 | void *cl; | |
2364 | ||
2365 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); | |
2366 | ASSERT(needed > 0); | |
2367 | ||
2368 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); | |
2369 | ||
2370 | /* There should not be any slab for this class */ | |
2371 | VERIFY(m_slab_cnt(class) == 0 && | |
2372 | m_slablist(class).tqh_first == NULL && | |
2373 | m_slablist(class).tqh_last == NULL); | |
2374 | ||
2375 | lck_mtx_lock(mbuf_mlock); | |
2376 | ||
2377 | /* Try using the freelist first */ | |
2378 | num = cslab_alloc(class, plist, needed); | |
2379 | list = *plist; | |
2380 | if (num == needed) { | |
2381 | m_alloc_cnt(class) += num; | |
2382 | lck_mtx_unlock(mbuf_mlock); | |
2383 | return (needed); | |
2384 | } | |
2385 | ||
2386 | lck_mtx_unlock(mbuf_mlock); | |
2387 | ||
2388 | /* | |
2389 | * We could not satisfy the request using the freelist alone; | |
2390 | * allocate from the appropriate rudimentary caches and use | |
2391 | * whatever we can get to construct the composite objects. | |
2392 | */ | |
2393 | needed -= num; | |
2394 | ||
2395 | /* | |
2396 | * Mark these allocation requests as coming from a composite cache. | |
2397 | * Also, if the caller is willing to be blocked, mark the request | |
2398 | * with MCR_FAILOK such that we don't end up sleeping at the mbuf | |
2399 | * slab layer waiting for the individual object when one or more | |
2400 | * of the already-constructed composite objects are available. | |
2401 | */ | |
2402 | wait |= MCR_COMP; | |
2403 | if (!(wait & MCR_NOSLEEP)) | |
2404 | wait |= MCR_FAILOK; | |
2405 | ||
6d2010ae | 2406 | /* allocate mbufs */ |
2d21ac55 A |
2407 | needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait); |
2408 | if (needed == 0) { | |
2409 | ASSERT(mp_list == NULL); | |
2410 | goto fail; | |
2411 | } | |
6d2010ae A |
2412 | |
2413 | /* allocate clusters */ | |
2414 | if (class == MC_MBUF_CL) { | |
2415 | cl_class = MC_CL; | |
2416 | } else if (class == MC_MBUF_BIGCL) { | |
2417 | cl_class = MC_BIGCL; | |
2418 | } else { | |
2419 | VERIFY(class == MC_MBUF_16KCL); | |
2420 | cl_class = MC_16KCL; | |
2421 | } | |
2422 | needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait); | |
2d21ac55 A |
2423 | if (needed == 0) { |
2424 | ASSERT(clp_list == NULL); | |
2425 | goto fail; | |
2426 | } | |
6d2010ae | 2427 | |
2d21ac55 A |
2428 | needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait); |
2429 | if (needed == 0) { | |
2430 | ASSERT(ref_list == NULL); | |
2431 | goto fail; | |
2432 | } | |
2433 | ||
2434 | /* | |
2435 | * By this time "needed" is MIN(mbuf, cluster, ref). Any left | |
2436 | * overs will get freed accordingly before we return to caller. | |
2437 | */ | |
2438 | for (cnum = 0; cnum < needed; cnum++) { | |
2439 | struct mbuf *ms; | |
2440 | ||
2441 | m = ms = (struct mbuf *)mp_list; | |
2442 | mp_list = mp_list->obj_next; | |
2443 | ||
2444 | cl = clp_list; | |
2445 | clp_list = clp_list->obj_next; | |
2446 | ((mcache_obj_t *)cl)->obj_next = NULL; | |
2447 | ||
2448 | rfa = (struct ext_ref *)ref_list; | |
2449 | ref_list = ref_list->obj_next; | |
316670eb | 2450 | ((mcache_obj_t *)(void *)rfa)->obj_next = NULL; |
2d21ac55 A |
2451 | |
2452 | /* | |
2453 | * If auditing is enabled, construct the shadow mbuf | |
2454 | * in the audit structure instead of in the actual one. | |
2455 | * mbuf_cslab_audit() will take care of restoring the | |
2456 | * contents after the integrity check. | |
2457 | */ | |
2458 | if (mclaudit != NULL) { | |
2459 | mcache_audit_t *mca, *cl_mca; | |
2d21ac55 A |
2460 | |
2461 | lck_mtx_lock(mbuf_mlock); | |
2462 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
39236c6e | 2463 | ms = MCA_SAVED_MBUF_PTR(mca); |
2d21ac55 A |
2464 | cl_mca = mcl_audit_buf2mca(MC_CL, (mcache_obj_t *)cl); |
2465 | ||
2466 | /* | |
2467 | * Pair them up. Note that this is done at the time | |
2468 | * the mbuf+cluster objects are constructed. This | |
2469 | * information should be treated as "best effort" | |
2470 | * debugging hint since more than one mbufs can refer | |
2471 | * to a cluster. In that case, the cluster might not | |
2472 | * be freed along with the mbuf it was paired with. | |
2473 | */ | |
2474 | mca->mca_uptr = cl_mca; | |
2475 | cl_mca->mca_uptr = mca; | |
2476 | ||
2477 | ASSERT(mca->mca_uflags & MB_SCVALID); | |
2478 | ASSERT(!(cl_mca->mca_uflags & MB_SCVALID)); | |
2479 | lck_mtx_unlock(mbuf_mlock); | |
2480 | ||
2481 | /* Technically, they are in the freelist */ | |
6d2010ae A |
2482 | if (mclverify) { |
2483 | size_t size; | |
2484 | ||
2485 | mcache_set_pattern(MCACHE_FREE_PATTERN, m, | |
2486 | m_maxsize(MC_MBUF)); | |
2487 | ||
2488 | if (class == MC_MBUF_CL) | |
2489 | size = m_maxsize(MC_CL); | |
2490 | else if (class == MC_MBUF_BIGCL) | |
2491 | size = m_maxsize(MC_BIGCL); | |
2492 | else | |
2493 | size = m_maxsize(MC_16KCL); | |
2494 | ||
2495 | mcache_set_pattern(MCACHE_FREE_PATTERN, cl, | |
2496 | size); | |
2497 | } | |
2d21ac55 A |
2498 | } |
2499 | ||
2500 | MBUF_INIT(ms, 0, MT_FREE); | |
2501 | if (class == MC_MBUF_16KCL) { | |
2502 | MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); | |
2503 | } else if (class == MC_MBUF_BIGCL) { | |
2504 | MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); | |
2505 | } else { | |
2506 | MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); | |
2507 | } | |
2508 | VERIFY(ms->m_flags == M_EXT); | |
2509 | VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms)); | |
2510 | ||
2511 | *list = (mcache_obj_t *)m; | |
2512 | (*list)->obj_next = NULL; | |
2513 | list = *plist = &(*list)->obj_next; | |
2514 | } | |
2515 | ||
2516 | fail: | |
2517 | /* | |
2518 | * Free up what's left of the above. | |
2519 | */ | |
2520 | if (mp_list != NULL) | |
2521 | mcache_free_ext(m_cache(MC_MBUF), mp_list); | |
2522 | if (clp_list != NULL) | |
6d2010ae | 2523 | mcache_free_ext(m_cache(cl_class), clp_list); |
2d21ac55 A |
2524 | if (ref_list != NULL) |
2525 | mcache_free_ext(ref_cache, ref_list); | |
2526 | ||
2527 | lck_mtx_lock(mbuf_mlock); | |
2528 | if (num > 0 || cnum > 0) { | |
2529 | m_total(class) += cnum; | |
2530 | VERIFY(m_total(class) <= m_maxlimit(class)); | |
2531 | m_alloc_cnt(class) += num + cnum; | |
2532 | } | |
2533 | if ((num + cnum) < want) | |
2534 | m_fail_cnt(class) += (want - (num + cnum)); | |
2535 | lck_mtx_unlock(mbuf_mlock); | |
2536 | ||
2537 | return (num + cnum); | |
2538 | } | |
2539 | ||
2540 | /* | |
2541 | * Common de-allocator for composite objects called by the CPU cache | |
2542 | * layer when one or more elements need to be returned to the appropriate | |
2543 | * global freelist. | |
2544 | */ | |
2545 | static void | |
2546 | mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged) | |
2547 | { | |
2548 | mbuf_class_t class = (mbuf_class_t)arg; | |
2549 | unsigned int num; | |
2550 | int w; | |
2551 | ||
2552 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); | |
2553 | ||
2554 | lck_mtx_lock(mbuf_mlock); | |
2555 | ||
2556 | num = cslab_free(class, list, purged); | |
2557 | m_free_cnt(class) += num; | |
2558 | ||
2559 | if ((w = mb_waiters) > 0) | |
2560 | mb_waiters = 0; | |
2561 | ||
2562 | lck_mtx_unlock(mbuf_mlock); | |
2563 | ||
2564 | if (w != 0) | |
2565 | wakeup(mb_waitchan); | |
2566 | } | |
2567 | ||
2568 | /* | |
2569 | * Common auditor for composite objects called by the CPU cache layer | |
2570 | * during an allocation or free request. For the former, this is called | |
2571 | * after the objects are obtained from either the bucket or slab layer | |
2572 | * and before they are returned to the caller. For the latter, this is | |
2573 | * called immediately during free and before placing the objects into | |
2574 | * the bucket or slab layer. | |
2575 | */ | |
2576 | static void | |
2577 | mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) | |
2578 | { | |
2579 | mbuf_class_t class = (mbuf_class_t)arg; | |
2580 | mcache_audit_t *mca; | |
2581 | struct mbuf *m, *ms; | |
2582 | mcl_slab_t *clsp, *nsp; | |
2583 | size_t size; | |
2584 | void *cl; | |
2585 | ||
2586 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); | |
2587 | ||
2588 | while ((m = ms = (struct mbuf *)list) != NULL) { | |
2589 | lck_mtx_lock(mbuf_mlock); | |
2590 | /* Do the mbuf sanity checks and record its transaction */ | |
2591 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
2592 | mcl_audit_mbuf(mca, m, TRUE, alloc); | |
6d2010ae | 2593 | if (mcltrace) |
39236c6e | 2594 | mcache_buffer_log(mca, m, m_cache(class), &mb_start); |
6d2010ae | 2595 | |
2d21ac55 A |
2596 | if (alloc) |
2597 | mca->mca_uflags |= MB_COMP_INUSE; | |
2598 | else | |
2599 | mca->mca_uflags &= ~MB_COMP_INUSE; | |
2600 | ||
2601 | /* | |
2602 | * Use the shadow mbuf in the audit structure if we are | |
2603 | * freeing, since the contents of the actual mbuf has been | |
2604 | * pattern-filled by the above call to mcl_audit_mbuf(). | |
2605 | */ | |
6d2010ae | 2606 | if (!alloc && mclverify) |
39236c6e | 2607 | ms = MCA_SAVED_MBUF_PTR(mca); |
2d21ac55 A |
2608 | |
2609 | /* Do the cluster sanity checks and record its transaction */ | |
2610 | cl = ms->m_ext.ext_buf; | |
2611 | clsp = slab_get(cl); | |
2612 | VERIFY(ms->m_flags == M_EXT && cl != NULL); | |
2613 | VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms)); | |
6d2010ae A |
2614 | if (class == MC_MBUF_CL) |
2615 | VERIFY(clsp->sl_refcnt >= 1 && | |
2616 | clsp->sl_refcnt <= NCLPBG); | |
2617 | else | |
2618 | VERIFY(clsp->sl_refcnt == 1); | |
2619 | ||
2620 | if (class == MC_MBUF_16KCL) { | |
2d21ac55 | 2621 | int k; |
6d2010ae | 2622 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
2623 | nsp = nsp->sl_next; |
2624 | /* Next slab must already be present */ | |
2625 | VERIFY(nsp != NULL); | |
2626 | VERIFY(nsp->sl_refcnt == 1); | |
2627 | } | |
2628 | } | |
2629 | ||
2630 | mca = mcl_audit_buf2mca(MC_CL, cl); | |
2631 | if (class == MC_MBUF_CL) | |
2632 | size = m_maxsize(MC_CL); | |
2633 | else if (class == MC_MBUF_BIGCL) | |
2634 | size = m_maxsize(MC_BIGCL); | |
2635 | else | |
2636 | size = m_maxsize(MC_16KCL); | |
2637 | mcl_audit_cluster(mca, cl, size, alloc, FALSE); | |
6d2010ae | 2638 | if (mcltrace) |
39236c6e | 2639 | mcache_buffer_log(mca, cl, m_cache(class), &mb_start); |
6d2010ae | 2640 | |
2d21ac55 A |
2641 | if (alloc) |
2642 | mca->mca_uflags |= MB_COMP_INUSE; | |
2643 | else | |
2644 | mca->mca_uflags &= ~MB_COMP_INUSE; | |
2645 | lck_mtx_unlock(mbuf_mlock); | |
2646 | ||
2647 | list = list->obj_next; | |
2648 | } | |
2649 | } | |
2650 | ||
2651 | /* | |
2652 | * Allocate some number of mbuf clusters and place on cluster freelist. | |
2653 | */ | |
2654 | static int | |
2655 | m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize) | |
2656 | { | |
2657 | int i; | |
2658 | vm_size_t size = 0; | |
b0d623f7 | 2659 | int numpages = 0, large_buffer = (bufsize == m_maxsize(MC_16KCL)); |
2d21ac55 A |
2660 | vm_offset_t page = 0; |
2661 | mcache_audit_t *mca_list = NULL; | |
2662 | mcache_obj_t *con_list = NULL; | |
2663 | mcl_slab_t *sp; | |
2664 | ||
6d2010ae A |
2665 | VERIFY(bufsize == m_maxsize(MC_BIGCL) || |
2666 | bufsize == m_maxsize(MC_16KCL)); | |
2d21ac55 A |
2667 | |
2668 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2669 | ||
2670 | /* | |
2671 | * Multiple threads may attempt to populate the cluster map one | |
2672 | * after another. Since we drop the lock below prior to acquiring | |
2673 | * the physical page(s), our view of the cluster map may no longer | |
2674 | * be accurate, and we could end up over-committing the pages beyond | |
2675 | * the maximum allowed for each class. To prevent it, this entire | |
2676 | * operation (including the page mapping) is serialized. | |
2677 | */ | |
2678 | while (mb_clalloc_busy) { | |
2679 | mb_clalloc_waiters++; | |
2680 | (void) msleep(mb_clalloc_waitchan, mbuf_mlock, | |
2681 | (PZERO-1), "m_clalloc", NULL); | |
2682 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2683 | } | |
2684 | ||
2685 | /* We are busy now; tell everyone else to go away */ | |
2686 | mb_clalloc_busy = TRUE; | |
2687 | ||
2688 | /* | |
2689 | * Honor the caller's wish to block or not block. We have a way | |
2690 | * to grow the pool asynchronously using the mbuf worker thread. | |
2691 | */ | |
2692 | i = m_howmany(num, bufsize); | |
2693 | if (i == 0 || (wait & M_DONTWAIT)) | |
2694 | goto out; | |
2695 | ||
2696 | lck_mtx_unlock(mbuf_mlock); | |
2697 | ||
b0d623f7 A |
2698 | size = round_page(i * bufsize); |
2699 | page = kmem_mb_alloc(mb_map, size, large_buffer); | |
2700 | ||
2701 | /* | |
6d2010ae | 2702 | * If we did ask for "n" 16KB physically contiguous chunks |
b0d623f7 A |
2703 | * and didn't get them, then please try again without this |
2704 | * restriction. | |
2705 | */ | |
2706 | if (large_buffer && page == 0) | |
2707 | page = kmem_mb_alloc(mb_map, size, 0); | |
2d21ac55 A |
2708 | |
2709 | if (page == 0) { | |
6d2010ae A |
2710 | if (bufsize == m_maxsize(MC_BIGCL)) { |
2711 | /* Try for 1 page if failed, only 4KB request */ | |
2d21ac55 | 2712 | size = NBPG; |
b0d623f7 | 2713 | page = kmem_mb_alloc(mb_map, size, 0); |
2d21ac55 A |
2714 | } |
2715 | ||
2716 | if (page == 0) { | |
2717 | lck_mtx_lock(mbuf_mlock); | |
2718 | goto out; | |
2719 | } | |
2720 | } | |
2721 | ||
2722 | VERIFY(IS_P2ALIGNED(page, NBPG)); | |
2723 | numpages = size / NBPG; | |
2724 | ||
2725 | /* If auditing is enabled, allocate the audit structures now */ | |
2726 | if (mclaudit != NULL) { | |
2727 | int needed; | |
2728 | ||
2729 | /* | |
2730 | * Yes, I realize this is a waste of memory for clusters | |
2731 | * that never get transformed into mbufs, as we may end | |
6d2010ae | 2732 | * up with NMBPBG-1 unused audit structures per cluster. |
2d21ac55 A |
2733 | * But doing so tremendously simplifies the allocation |
2734 | * strategy, since at this point we are not holding the | |
6d2010ae | 2735 | * mbuf lock and the caller is okay to be blocked. |
2d21ac55 | 2736 | */ |
6d2010ae A |
2737 | if (bufsize == m_maxsize(MC_BIGCL)) { |
2738 | needed = numpages * NMBPBG; | |
2d21ac55 A |
2739 | |
2740 | i = mcache_alloc_ext(mcl_audit_con_cache, | |
2741 | &con_list, needed, MCR_SLEEP); | |
2742 | ||
2743 | VERIFY(con_list != NULL && i == needed); | |
2d21ac55 | 2744 | } else { |
6d2010ae | 2745 | needed = numpages / NSLABSP16KB; |
2d21ac55 A |
2746 | } |
2747 | ||
2748 | i = mcache_alloc_ext(mcache_audit_cache, | |
2749 | (mcache_obj_t **)&mca_list, needed, MCR_SLEEP); | |
2750 | ||
2751 | VERIFY(mca_list != NULL && i == needed); | |
2752 | } | |
2753 | ||
2754 | lck_mtx_lock(mbuf_mlock); | |
2755 | ||
2756 | for (i = 0; i < numpages; i++, page += NBPG) { | |
2757 | ppnum_t offset = ((char *)page - (char *)mbutl) / NBPG; | |
99c3a104 | 2758 | ppnum_t new_page = pmap_find_phys(kernel_pmap, page); |
2d21ac55 A |
2759 | |
2760 | /* | |
39236c6e A |
2761 | * If there is a mapper the appropriate I/O page is returned; |
2762 | * zero out the page to discard its past contents to prevent | |
2763 | * exposing leftover kernel memory. | |
2d21ac55 | 2764 | */ |
b0d623f7 | 2765 | VERIFY(offset < mcl_pages); |
39236c6e A |
2766 | if (mcl_paddr_base != 0) { |
2767 | bzero((void *)(uintptr_t) page, page_size); | |
2768 | new_page = IOMapperInsertPage(mcl_paddr_base, | |
2769 | offset, new_page); | |
99c3a104 | 2770 | } |
39236c6e | 2771 | mcl_paddr[offset] = new_page; |
2d21ac55 A |
2772 | |
2773 | /* Pattern-fill this fresh page */ | |
6d2010ae | 2774 | if (mclverify) { |
2d21ac55 A |
2775 | mcache_set_pattern(MCACHE_FREE_PATTERN, |
2776 | (caddr_t)page, NBPG); | |
6d2010ae A |
2777 | } |
2778 | if (bufsize == m_maxsize(MC_BIGCL)) { | |
2d21ac55 | 2779 | union mbigcluster *mbc = (union mbigcluster *)page; |
2d21ac55 A |
2780 | |
2781 | /* One for the entire page */ | |
2782 | sp = slab_get(mbc); | |
6d2010ae A |
2783 | if (mclaudit != NULL) { |
2784 | mcl_audit_init(mbc, &mca_list, &con_list, | |
2785 | AUDIT_CONTENTS_SIZE, NMBPBG); | |
2786 | } | |
2d21ac55 A |
2787 | VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0); |
2788 | slab_init(sp, MC_BIGCL, SLF_MAPPED, | |
2789 | mbc, mbc, bufsize, 0, 1); | |
2790 | ||
2d21ac55 A |
2791 | /* Insert this slab */ |
2792 | slab_insert(sp, MC_BIGCL); | |
2793 | ||
2794 | /* Update stats now since slab_get() drops the lock */ | |
2795 | mbstat.m_bigclfree = ++m_infree(MC_BIGCL) + | |
2796 | m_infree(MC_MBUF_BIGCL); | |
2797 | mbstat.m_bigclusters = ++m_total(MC_BIGCL); | |
2798 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); | |
6d2010ae | 2799 | } else if ((i % NSLABSP16KB) == 0) { |
2d21ac55 A |
2800 | union m16kcluster *m16kcl = (union m16kcluster *)page; |
2801 | mcl_slab_t *nsp; | |
2802 | int k; | |
2803 | ||
2804 | VERIFY(njcl > 0); | |
2805 | /* One for the entire 16KB */ | |
2806 | sp = slab_get(m16kcl); | |
2807 | if (mclaudit != NULL) | |
2808 | mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1); | |
2809 | ||
2810 | VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0); | |
2811 | slab_init(sp, MC_16KCL, SLF_MAPPED, | |
2812 | m16kcl, m16kcl, bufsize, 0, 1); | |
2813 | ||
6d2010ae A |
2814 | /* |
2815 | * 2nd-Nth page's slab is part of the first one, | |
2816 | * where N is NSLABSP16KB. | |
2817 | */ | |
2818 | for (k = 1; k < NSLABSP16KB; k++) { | |
2819 | nsp = slab_get(((union mbigcluster *)page) + k); | |
2d21ac55 A |
2820 | VERIFY(nsp->sl_refcnt == 0 && |
2821 | nsp->sl_flags == 0); | |
2822 | slab_init(nsp, MC_16KCL, | |
2823 | SLF_MAPPED | SLF_PARTIAL, | |
2824 | m16kcl, NULL, 0, 0, 0); | |
2825 | } | |
2826 | ||
2827 | /* Insert this slab */ | |
2828 | slab_insert(sp, MC_16KCL); | |
2829 | ||
2830 | /* Update stats now since slab_get() drops the lock */ | |
2831 | m_infree(MC_16KCL)++; | |
2832 | m_total(MC_16KCL)++; | |
2833 | VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL)); | |
2834 | } | |
2835 | } | |
2836 | VERIFY(mca_list == NULL && con_list == NULL); | |
2837 | ||
2838 | /* We're done; let others enter */ | |
2839 | mb_clalloc_busy = FALSE; | |
2840 | if (mb_clalloc_waiters > 0) { | |
2841 | mb_clalloc_waiters = 0; | |
2842 | wakeup(mb_clalloc_waitchan); | |
2843 | } | |
2844 | ||
6d2010ae | 2845 | if (bufsize == m_maxsize(MC_BIGCL)) |
2d21ac55 A |
2846 | return (numpages); |
2847 | ||
2848 | VERIFY(bufsize == m_maxsize(MC_16KCL)); | |
6d2010ae | 2849 | return (numpages / NSLABSP16KB); |
2d21ac55 A |
2850 | |
2851 | out: | |
2852 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
2853 | ||
2854 | /* We're done; let others enter */ | |
2855 | mb_clalloc_busy = FALSE; | |
2856 | if (mb_clalloc_waiters > 0) { | |
2857 | mb_clalloc_waiters = 0; | |
2858 | wakeup(mb_clalloc_waitchan); | |
2859 | } | |
2860 | ||
2861 | /* | |
2862 | * When non-blocking we kick a thread if we have to grow the | |
2863 | * pool or if the number of free clusters is less than requested. | |
2864 | */ | |
6d2010ae | 2865 | if (bufsize == m_maxsize(MC_BIGCL)) { |
2d21ac55 A |
2866 | if (i > 0) { |
2867 | /* | |
2868 | * Remember total number of 4KB clusters needed | |
2869 | * at this time. | |
2870 | */ | |
2871 | i += m_total(MC_BIGCL); | |
2872 | if (i > mbuf_expand_big) { | |
2873 | mbuf_expand_big = i; | |
2874 | if (mbuf_worker_ready) | |
2875 | wakeup((caddr_t)&mbuf_worker_run); | |
2876 | } | |
2877 | } | |
2878 | ||
2879 | if (m_infree(MC_BIGCL) >= num) | |
2880 | return (1); | |
2881 | } else { | |
2882 | if (i > 0) { | |
2883 | /* | |
2884 | * Remember total number of 16KB clusters needed | |
2885 | * at this time. | |
2886 | */ | |
2887 | i += m_total(MC_16KCL); | |
2888 | if (i > mbuf_expand_16k) { | |
2889 | mbuf_expand_16k = i; | |
2890 | if (mbuf_worker_ready) | |
2891 | wakeup((caddr_t)&mbuf_worker_run); | |
2892 | } | |
2893 | } | |
2894 | ||
2895 | if (m_infree(MC_16KCL) >= num) | |
2896 | return (1); | |
2897 | } | |
2898 | return (0); | |
2899 | } | |
2900 | ||
2901 | /* | |
2902 | * Populate the global freelist of the corresponding buffer class. | |
2903 | */ | |
2904 | static int | |
2905 | freelist_populate(mbuf_class_t class, unsigned int num, int wait) | |
2906 | { | |
2907 | mcache_obj_t *o = NULL; | |
6d2010ae | 2908 | int i, numpages = 0, count; |
2d21ac55 A |
2909 | |
2910 | VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL || | |
2911 | class == MC_16KCL); | |
2912 | ||
2d21ac55 A |
2913 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
2914 | ||
2915 | switch (class) { | |
2916 | case MC_MBUF: | |
2917 | case MC_CL: | |
6d2010ae A |
2918 | case MC_BIGCL: |
2919 | numpages = (num * m_size(class) + NBPG - 1) / NBPG; | |
2920 | i = m_clalloc(numpages, wait, m_maxsize(MC_BIGCL)); | |
2d21ac55 | 2921 | |
6d2010ae A |
2922 | /* Respect the 4KB clusters minimum limit */ |
2923 | if (m_total(MC_BIGCL) == m_maxlimit(MC_BIGCL) && | |
2924 | m_infree(MC_BIGCL) <= m_minlimit(MC_BIGCL)) { | |
2925 | if (class != MC_BIGCL || (wait & MCR_COMP)) | |
2d21ac55 A |
2926 | return (0); |
2927 | } | |
6d2010ae | 2928 | if (class == MC_BIGCL) |
2d21ac55 A |
2929 | return (i != 0); |
2930 | break; | |
2931 | ||
2d21ac55 A |
2932 | case MC_16KCL: |
2933 | return (m_clalloc(num, wait, m_maxsize(class)) != 0); | |
2934 | /* NOTREACHED */ | |
2935 | ||
2936 | default: | |
2937 | VERIFY(0); | |
2938 | /* NOTREACHED */ | |
2939 | } | |
2940 | ||
6d2010ae A |
2941 | VERIFY(class == MC_MBUF || class == MC_CL); |
2942 | ||
2943 | /* how many objects will we cut the page into? */ | |
2944 | int numobj = (class == MC_MBUF ? NMBPBG : NCLPBG); | |
2945 | ||
2946 | for (count = 0; count < numpages; count++) { | |
2947 | ||
2948 | /* respect totals, minlimit, maxlimit */ | |
2949 | if (m_total(MC_BIGCL) <= m_minlimit(MC_BIGCL) || | |
2950 | m_total(class) >= m_maxlimit(class)) | |
2951 | break; | |
2952 | ||
2953 | if ((o = slab_alloc(MC_BIGCL, wait)) == NULL) | |
2954 | break; | |
2955 | ||
2d21ac55 | 2956 | struct mbuf *m = (struct mbuf *)o; |
6d2010ae | 2957 | union mcluster *c = (union mcluster *)o; |
2d21ac55 | 2958 | mcl_slab_t *sp = slab_get(o); |
6d2010ae | 2959 | mcache_audit_t *mca = NULL; |
2d21ac55 A |
2960 | |
2961 | VERIFY(slab_is_detached(sp) && | |
2962 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); | |
2963 | ||
6d2010ae A |
2964 | /* |
2965 | * Make sure that the cluster is unmolested | |
2966 | * while in freelist | |
2967 | */ | |
2968 | if (mclverify) { | |
2969 | mca = mcl_audit_buf2mca(MC_BIGCL, o); | |
2970 | mcache_audit_free_verify(mca, o, 0, | |
2971 | m_maxsize(MC_BIGCL)); | |
2d21ac55 A |
2972 | } |
2973 | ||
6d2010ae A |
2974 | /* Reinitialize it as an mbuf or 2K slab */ |
2975 | slab_init(sp, class, sp->sl_flags, | |
2976 | sp->sl_base, NULL, sp->sl_len, 0, numobj); | |
2d21ac55 | 2977 | |
6d2010ae | 2978 | VERIFY(o == (mcache_obj_t *)sp->sl_base); |
2d21ac55 A |
2979 | VERIFY(sp->sl_head == NULL); |
2980 | ||
6d2010ae A |
2981 | VERIFY(m_total(MC_BIGCL) > 0); |
2982 | m_total(MC_BIGCL)--; | |
2983 | mbstat.m_bigclusters = m_total(MC_BIGCL); | |
2d21ac55 | 2984 | |
6d2010ae A |
2985 | m_total(class) += numobj; |
2986 | m_infree(class) += numobj; | |
2987 | ||
2988 | VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL)); | |
2989 | VERIFY(m_total(class) <= m_maxlimit(class)); | |
2990 | ||
2991 | i = numobj; | |
2992 | if (class == MC_MBUF) { | |
2993 | mbstat.m_mbufs = m_total(MC_MBUF); | |
2994 | mtype_stat_add(MT_FREE, NMBPBG); | |
2995 | while (i--) { | |
2996 | /* | |
2997 | * If auditing is enabled, construct the | |
2998 | * shadow mbuf in the audit structure | |
2999 | * instead of the actual one. | |
3000 | * mbuf_slab_audit() will take care of | |
3001 | * restoring the contents after the | |
3002 | * integrity check. | |
3003 | */ | |
3004 | if (mclaudit != NULL) { | |
3005 | struct mbuf *ms; | |
3006 | mca = mcl_audit_buf2mca(MC_MBUF, | |
3007 | (mcache_obj_t *)m); | |
39236c6e | 3008 | ms = MCA_SAVED_MBUF_PTR(mca); |
6d2010ae A |
3009 | ms->m_type = MT_FREE; |
3010 | } else { | |
3011 | m->m_type = MT_FREE; | |
3012 | } | |
3013 | m->m_next = sp->sl_head; | |
3014 | sp->sl_head = (void *)m++; | |
3015 | } | |
3016 | } else { /* MC_CL */ | |
3017 | mbstat.m_clfree = | |
3018 | m_infree(MC_CL) + m_infree(MC_MBUF_CL); | |
3019 | mbstat.m_clusters = m_total(MC_CL); | |
3020 | while (i--) { | |
3021 | c->mcl_next = sp->sl_head; | |
3022 | sp->sl_head = (void *)c++; | |
2d21ac55 | 3023 | } |
2d21ac55 A |
3024 | } |
3025 | ||
6d2010ae A |
3026 | /* Insert into the mbuf or 2k slab list */ |
3027 | slab_insert(sp, class); | |
2d21ac55 A |
3028 | |
3029 | if ((i = mb_waiters) > 0) | |
3030 | mb_waiters = 0; | |
3031 | if (i != 0) | |
3032 | wakeup(mb_waitchan); | |
2d21ac55 | 3033 | } |
6d2010ae A |
3034 | return (count != 0); |
3035 | } | |
2d21ac55 | 3036 | |
6d2010ae A |
3037 | /* |
3038 | * For each class, initialize the freelist to hold m_minlimit() objects. | |
3039 | */ | |
3040 | static void | |
3041 | freelist_init(mbuf_class_t class) | |
3042 | { | |
3043 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
3044 | ||
3045 | VERIFY(class == MC_CL || class == MC_BIGCL); | |
3046 | VERIFY(m_total(class) == 0); | |
3047 | VERIFY(m_minlimit(class) > 0); | |
3048 | ||
3049 | while (m_total(class) < m_minlimit(class)) | |
3050 | (void) freelist_populate(class, m_minlimit(class), M_WAIT); | |
3051 | ||
3052 | VERIFY(m_total(class) >= m_minlimit(class)); | |
2d21ac55 A |
3053 | } |
3054 | ||
3055 | /* | |
3056 | * (Inaccurately) check if it might be worth a trip back to the | |
3057 | * mcache layer due the availability of objects there. We'll | |
3058 | * end up back here if there's nothing up there. | |
3059 | */ | |
3060 | static boolean_t | |
3061 | mbuf_cached_above(mbuf_class_t class, int wait) | |
3062 | { | |
3063 | switch (class) { | |
3064 | case MC_MBUF: | |
3065 | if (wait & MCR_COMP) | |
3066 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL)) || | |
3067 | !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL))); | |
3068 | break; | |
3069 | ||
3070 | case MC_CL: | |
3071 | if (wait & MCR_COMP) | |
3072 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL))); | |
3073 | break; | |
3074 | ||
3075 | case MC_BIGCL: | |
3076 | if (wait & MCR_COMP) | |
3077 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL))); | |
3078 | break; | |
3079 | ||
3080 | case MC_16KCL: | |
3081 | if (wait & MCR_COMP) | |
3082 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_16KCL))); | |
3083 | break; | |
3084 | ||
3085 | case MC_MBUF_CL: | |
3086 | case MC_MBUF_BIGCL: | |
3087 | case MC_MBUF_16KCL: | |
3088 | break; | |
3089 | ||
3090 | default: | |
3091 | VERIFY(0); | |
3092 | /* NOTREACHED */ | |
3093 | } | |
3094 | ||
3095 | return (!mcache_bkt_isempty(m_cache(class))); | |
3096 | } | |
3097 | ||
3098 | /* | |
3099 | * If possible, convert constructed objects to raw ones. | |
3100 | */ | |
3101 | static boolean_t | |
3102 | mbuf_steal(mbuf_class_t class, unsigned int num) | |
3103 | { | |
3104 | mcache_obj_t *top = NULL; | |
3105 | mcache_obj_t **list = ⊤ | |
3106 | unsigned int tot = 0; | |
3107 | ||
3108 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
3109 | ||
3110 | switch (class) { | |
3111 | case MC_MBUF: | |
3112 | case MC_CL: | |
3113 | case MC_BIGCL: | |
3114 | case MC_16KCL: | |
3115 | return (FALSE); | |
3116 | ||
3117 | case MC_MBUF_CL: | |
3118 | case MC_MBUF_BIGCL: | |
3119 | case MC_MBUF_16KCL: | |
3120 | /* Get the required number of constructed objects if possible */ | |
3121 | if (m_infree(class) > m_minlimit(class)) { | |
3122 | tot = cslab_alloc(class, &list, | |
3123 | MIN(num, m_infree(class))); | |
3124 | } | |
3125 | ||
3126 | /* And destroy them to get back the raw objects */ | |
3127 | if (top != NULL) | |
3128 | (void) cslab_free(class, top, 1); | |
3129 | break; | |
3130 | ||
3131 | default: | |
3132 | VERIFY(0); | |
3133 | /* NOTREACHED */ | |
3134 | } | |
3135 | ||
3136 | return (tot == num); | |
3137 | } | |
3138 | ||
3139 | static void | |
3140 | m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp) | |
3141 | { | |
3142 | int m, bmap = 0; | |
3143 | ||
3144 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
3145 | ||
3146 | VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL)); | |
3147 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); | |
3148 | VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL)); | |
3149 | ||
3150 | /* | |
3151 | * This logic can be made smarter; for now, simply mark | |
3152 | * all other related classes as potential victims. | |
3153 | */ | |
3154 | switch (class) { | |
3155 | case MC_MBUF: | |
3156 | m_wantpurge(MC_CL)++; | |
6d2010ae | 3157 | m_wantpurge(MC_BIGCL)++; |
2d21ac55 A |
3158 | m_wantpurge(MC_MBUF_CL)++; |
3159 | m_wantpurge(MC_MBUF_BIGCL)++; | |
3160 | break; | |
3161 | ||
3162 | case MC_CL: | |
3163 | m_wantpurge(MC_MBUF)++; | |
6d2010ae A |
3164 | m_wantpurge(MC_BIGCL)++; |
3165 | m_wantpurge(MC_MBUF_BIGCL)++; | |
2d21ac55 A |
3166 | if (!comp) |
3167 | m_wantpurge(MC_MBUF_CL)++; | |
3168 | break; | |
3169 | ||
3170 | case MC_BIGCL: | |
6d2010ae A |
3171 | m_wantpurge(MC_MBUF)++; |
3172 | m_wantpurge(MC_CL)++; | |
3173 | m_wantpurge(MC_MBUF_CL)++; | |
2d21ac55 A |
3174 | if (!comp) |
3175 | m_wantpurge(MC_MBUF_BIGCL)++; | |
3176 | break; | |
3177 | ||
3178 | case MC_16KCL: | |
3179 | if (!comp) | |
3180 | m_wantpurge(MC_MBUF_16KCL)++; | |
3181 | break; | |
3182 | ||
3183 | default: | |
3184 | VERIFY(0); | |
3185 | /* NOTREACHED */ | |
3186 | } | |
3187 | ||
3188 | /* | |
3189 | * Run through each marked class and check if we really need to | |
3190 | * purge (and therefore temporarily disable) the per-CPU caches | |
3191 | * layer used by the class. If so, remember the classes since | |
3192 | * we are going to drop the lock below prior to purging. | |
3193 | */ | |
3194 | for (m = 0; m < NELEM(mbuf_table); m++) { | |
3195 | if (m_wantpurge(m) > 0) { | |
3196 | m_wantpurge(m) = 0; | |
3197 | /* | |
3198 | * Try hard to steal the required number of objects | |
3199 | * from the freelist of other mbuf classes. Only | |
3200 | * purge and disable the per-CPU caches layer when | |
3201 | * we don't have enough; it's the last resort. | |
3202 | */ | |
3203 | if (!mbuf_steal(m, num)) | |
3204 | bmap |= (1 << m); | |
3205 | } | |
3206 | } | |
3207 | ||
3208 | lck_mtx_unlock(mbuf_mlock); | |
3209 | ||
3210 | if (bmap != 0) { | |
39236c6e A |
3211 | /* signal the domains to drain */ |
3212 | net_drain_domains(); | |
2d21ac55 A |
3213 | |
3214 | /* Sigh; we have no other choices but to ask mcache to purge */ | |
3215 | for (m = 0; m < NELEM(mbuf_table); m++) { | |
3216 | if ((bmap & (1 << m)) && | |
3217 | mcache_purge_cache(m_cache(m))) { | |
3218 | lck_mtx_lock(mbuf_mlock); | |
3219 | m_purge_cnt(m)++; | |
3220 | mbstat.m_drain++; | |
3221 | lck_mtx_unlock(mbuf_mlock); | |
3222 | } | |
3223 | } | |
3224 | } else { | |
3225 | /* | |
3226 | * Request mcache to reap extra elements from all of its caches; | |
3227 | * note that all reaps are serialized and happen only at a fixed | |
3228 | * interval. | |
3229 | */ | |
3230 | mcache_reap(); | |
3231 | } | |
3232 | lck_mtx_lock(mbuf_mlock); | |
3233 | } | |
3234 | ||
3235 | static inline struct mbuf * | |
3236 | m_get_common(int wait, short type, int hdr) | |
3237 | { | |
3238 | struct mbuf *m; | |
3239 | int mcflags = MSLEEPF(wait); | |
3240 | ||
3241 | /* Is this due to a non-blocking retry? If so, then try harder */ | |
3242 | if (mcflags & MCR_NOSLEEP) | |
3243 | mcflags |= MCR_TRYHARD; | |
3244 | ||
3245 | m = mcache_alloc(m_cache(MC_MBUF), mcflags); | |
3246 | if (m != NULL) { | |
3247 | MBUF_INIT(m, hdr, type); | |
3248 | mtype_stat_inc(type); | |
3249 | mtype_stat_dec(MT_FREE); | |
3250 | #if CONFIG_MACF_NET | |
3251 | if (hdr && mac_init_mbuf(m, wait) != 0) { | |
3252 | m_free(m); | |
3253 | return (NULL); | |
3254 | } | |
3255 | #endif /* MAC_NET */ | |
3256 | } | |
3257 | return (m); | |
3258 | } | |
3259 | ||
3260 | /* | |
3261 | * Space allocation routines; these are also available as macros | |
3262 | * for critical paths. | |
3263 | */ | |
3264 | #define _M_GET(wait, type) m_get_common(wait, type, 0) | |
3265 | #define _M_GETHDR(wait, type) m_get_common(wait, type, 1) | |
3266 | #define _M_RETRY(wait, type) _M_GET(wait, type) | |
3267 | #define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type) | |
3268 | #define _MGET(m, how, type) ((m) = _M_GET(how, type)) | |
3269 | #define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type)) | |
3270 | ||
3271 | struct mbuf * | |
3272 | m_get(int wait, int type) | |
3273 | { | |
3274 | return (_M_GET(wait, type)); | |
3275 | } | |
3276 | ||
3277 | struct mbuf * | |
3278 | m_gethdr(int wait, int type) | |
3279 | { | |
3280 | return (_M_GETHDR(wait, type)); | |
3281 | } | |
3282 | ||
3283 | struct mbuf * | |
3284 | m_retry(int wait, int type) | |
3285 | { | |
3286 | return (_M_RETRY(wait, type)); | |
3287 | } | |
3288 | ||
3289 | struct mbuf * | |
3290 | m_retryhdr(int wait, int type) | |
3291 | { | |
3292 | return (_M_RETRYHDR(wait, type)); | |
3293 | } | |
3294 | ||
3295 | struct mbuf * | |
3296 | m_getclr(int wait, int type) | |
3297 | { | |
3298 | struct mbuf *m; | |
3299 | ||
3300 | _MGET(m, wait, type); | |
3301 | if (m != NULL) | |
3302 | bzero(MTOD(m, caddr_t), MLEN); | |
3303 | return (m); | |
3304 | } | |
3305 | ||
3306 | struct mbuf * | |
3307 | m_free(struct mbuf *m) | |
3308 | { | |
3309 | struct mbuf *n = m->m_next; | |
3310 | ||
3311 | if (m->m_type == MT_FREE) | |
3312 | panic("m_free: freeing an already freed mbuf"); | |
3313 | ||
2d21ac55 | 3314 | if (m->m_flags & M_PKTHDR) { |
39236c6e A |
3315 | /* Check for scratch area overflow */ |
3316 | m_redzone_verify(m); | |
3317 | /* Free the aux data and tags if there is any */ | |
2d21ac55 A |
3318 | m_tag_delete_chain(m, NULL); |
3319 | } | |
3320 | ||
3321 | if (m->m_flags & M_EXT) { | |
3322 | u_int32_t refcnt; | |
6d2010ae | 3323 | u_int32_t composite; |
2d21ac55 A |
3324 | |
3325 | refcnt = m_decref(m); | |
6d2010ae A |
3326 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
3327 | if (refcnt == 0 && !composite) { | |
2d21ac55 A |
3328 | if (m->m_ext.ext_free == NULL) { |
3329 | mcache_free(m_cache(MC_CL), m->m_ext.ext_buf); | |
3330 | } else if (m->m_ext.ext_free == m_bigfree) { | |
3331 | mcache_free(m_cache(MC_BIGCL), | |
3332 | m->m_ext.ext_buf); | |
3333 | } else if (m->m_ext.ext_free == m_16kfree) { | |
3334 | mcache_free(m_cache(MC_16KCL), | |
3335 | m->m_ext.ext_buf); | |
3336 | } else { | |
3337 | (*(m->m_ext.ext_free))(m->m_ext.ext_buf, | |
3338 | m->m_ext.ext_size, m->m_ext.ext_arg); | |
3339 | } | |
3340 | mcache_free(ref_cache, MEXT_RFA(m)); | |
3341 | MEXT_RFA(m) = NULL; | |
6d2010ae | 3342 | } else if (refcnt == 0 && composite) { |
2d21ac55 A |
3343 | VERIFY(m->m_type != MT_FREE); |
3344 | ||
3345 | mtype_stat_dec(m->m_type); | |
3346 | mtype_stat_inc(MT_FREE); | |
3347 | ||
3348 | m->m_type = MT_FREE; | |
3349 | m->m_flags = M_EXT; | |
3350 | m->m_len = 0; | |
3351 | m->m_next = m->m_nextpkt = NULL; | |
3352 | ||
6d2010ae A |
3353 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
3354 | ||
2d21ac55 A |
3355 | /* "Free" into the intermediate cache */ |
3356 | if (m->m_ext.ext_free == NULL) { | |
3357 | mcache_free(m_cache(MC_MBUF_CL), m); | |
3358 | } else if (m->m_ext.ext_free == m_bigfree) { | |
3359 | mcache_free(m_cache(MC_MBUF_BIGCL), m); | |
3360 | } else { | |
3361 | VERIFY(m->m_ext.ext_free == m_16kfree); | |
3362 | mcache_free(m_cache(MC_MBUF_16KCL), m); | |
3363 | } | |
3364 | return (n); | |
3365 | } | |
3366 | } | |
3367 | ||
3368 | if (m->m_type != MT_FREE) { | |
3369 | mtype_stat_dec(m->m_type); | |
3370 | mtype_stat_inc(MT_FREE); | |
3371 | } | |
3372 | ||
3373 | m->m_type = MT_FREE; | |
3374 | m->m_flags = m->m_len = 0; | |
3375 | m->m_next = m->m_nextpkt = NULL; | |
3376 | ||
3377 | mcache_free(m_cache(MC_MBUF), m); | |
3378 | ||
3379 | return (n); | |
3380 | } | |
3381 | ||
3382 | __private_extern__ struct mbuf * | |
3383 | m_clattach(struct mbuf *m, int type, caddr_t extbuf, | |
3384 | void (*extfree)(caddr_t, u_int, caddr_t), u_int extsize, caddr_t extarg, | |
3385 | int wait) | |
3386 | { | |
3387 | struct ext_ref *rfa = NULL; | |
3388 | ||
3389 | if (m == NULL && (m = _M_GETHDR(wait, type)) == NULL) | |
3390 | return (NULL); | |
3391 | ||
3392 | if (m->m_flags & M_EXT) { | |
3393 | u_int32_t refcnt; | |
6d2010ae | 3394 | u_int32_t composite; |
2d21ac55 A |
3395 | |
3396 | refcnt = m_decref(m); | |
6d2010ae A |
3397 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
3398 | if (refcnt == 0 && !composite) { | |
2d21ac55 A |
3399 | if (m->m_ext.ext_free == NULL) { |
3400 | mcache_free(m_cache(MC_CL), m->m_ext.ext_buf); | |
3401 | } else if (m->m_ext.ext_free == m_bigfree) { | |
3402 | mcache_free(m_cache(MC_BIGCL), | |
3403 | m->m_ext.ext_buf); | |
3404 | } else if (m->m_ext.ext_free == m_16kfree) { | |
3405 | mcache_free(m_cache(MC_16KCL), | |
3406 | m->m_ext.ext_buf); | |
3407 | } else { | |
3408 | (*(m->m_ext.ext_free))(m->m_ext.ext_buf, | |
3409 | m->m_ext.ext_size, m->m_ext.ext_arg); | |
3410 | } | |
3411 | /* Re-use the reference structure */ | |
3412 | rfa = MEXT_RFA(m); | |
6d2010ae | 3413 | } else if (refcnt == 0 && composite) { |
2d21ac55 A |
3414 | VERIFY(m->m_type != MT_FREE); |
3415 | ||
3416 | mtype_stat_dec(m->m_type); | |
3417 | mtype_stat_inc(MT_FREE); | |
3418 | ||
3419 | m->m_type = MT_FREE; | |
3420 | m->m_flags = M_EXT; | |
3421 | m->m_len = 0; | |
3422 | m->m_next = m->m_nextpkt = NULL; | |
6d2010ae A |
3423 | |
3424 | MEXT_FLAGS(m) &= ~EXTF_READONLY; | |
3425 | ||
2d21ac55 A |
3426 | /* "Free" into the intermediate cache */ |
3427 | if (m->m_ext.ext_free == NULL) { | |
3428 | mcache_free(m_cache(MC_MBUF_CL), m); | |
3429 | } else if (m->m_ext.ext_free == m_bigfree) { | |
3430 | mcache_free(m_cache(MC_MBUF_BIGCL), m); | |
3431 | } else { | |
3432 | VERIFY(m->m_ext.ext_free == m_16kfree); | |
3433 | mcache_free(m_cache(MC_MBUF_16KCL), m); | |
3434 | } | |
3435 | /* | |
3436 | * Allocate a new mbuf, since we didn't divorce | |
3437 | * the composite mbuf + cluster pair above. | |
3438 | */ | |
3439 | if ((m = _M_GETHDR(wait, type)) == NULL) | |
3440 | return (NULL); | |
3441 | } | |
3442 | } | |
3443 | ||
3444 | if (rfa == NULL && | |
3445 | (rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) { | |
3446 | m_free(m); | |
3447 | return (NULL); | |
3448 | } | |
3449 | ||
3450 | MEXT_INIT(m, extbuf, extsize, extfree, extarg, rfa, 1, 0); | |
3451 | ||
3452 | return (m); | |
3453 | } | |
3454 | ||
b0d623f7 A |
3455 | /* |
3456 | * Perform `fast' allocation mbuf clusters from a cache of recently-freed | |
3457 | * clusters. (If the cache is empty, new clusters are allocated en-masse.) | |
3458 | */ | |
3459 | struct mbuf * | |
3460 | m_getcl(int wait, int type, int flags) | |
3461 | { | |
3462 | struct mbuf *m; | |
3463 | int mcflags = MSLEEPF(wait); | |
3464 | int hdr = (flags & M_PKTHDR); | |
3465 | ||
3466 | /* Is this due to a non-blocking retry? If so, then try harder */ | |
3467 | if (mcflags & MCR_NOSLEEP) | |
3468 | mcflags |= MCR_TRYHARD; | |
3469 | ||
6d2010ae A |
3470 | m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags); |
3471 | if (m != NULL) { | |
3472 | u_int32_t flag; | |
3473 | struct ext_ref *rfa; | |
3474 | void *cl; | |
3475 | ||
3476 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); | |
3477 | cl = m->m_ext.ext_buf; | |
3478 | rfa = MEXT_RFA(m); | |
3479 | ||
3480 | ASSERT(cl != NULL && rfa != NULL); | |
3481 | VERIFY(MBUF_IS_COMPOSITE(m) && m->m_ext.ext_free == NULL); | |
3482 | ||
3483 | flag = MEXT_FLAGS(m); | |
3484 | ||
b0d623f7 | 3485 | MBUF_INIT(m, hdr, type); |
6d2010ae A |
3486 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
3487 | ||
b0d623f7 A |
3488 | mtype_stat_inc(type); |
3489 | mtype_stat_dec(MT_FREE); | |
3490 | #if CONFIG_MACF_NET | |
3491 | if (hdr && mac_init_mbuf(m, wait) != 0) { | |
6d2010ae | 3492 | m_freem(m); |
b0d623f7 A |
3493 | return (NULL); |
3494 | } | |
3495 | #endif /* MAC_NET */ | |
3496 | } | |
3497 | return (m); | |
3498 | } | |
3499 | ||
2d21ac55 A |
3500 | /* m_mclget() add an mbuf cluster to a normal mbuf */ |
3501 | struct mbuf * | |
3502 | m_mclget(struct mbuf *m, int wait) | |
3503 | { | |
3504 | struct ext_ref *rfa; | |
3505 | ||
3506 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) | |
3507 | return (m); | |
3508 | ||
3509 | m->m_ext.ext_buf = m_mclalloc(wait); | |
3510 | if (m->m_ext.ext_buf != NULL) { | |
3511 | MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); | |
3512 | } else { | |
3513 | mcache_free(ref_cache, rfa); | |
3514 | } | |
3515 | return (m); | |
3516 | } | |
3517 | ||
3518 | /* Allocate an mbuf cluster */ | |
3519 | caddr_t | |
3520 | m_mclalloc(int wait) | |
3521 | { | |
3522 | int mcflags = MSLEEPF(wait); | |
3523 | ||
3524 | /* Is this due to a non-blocking retry? If so, then try harder */ | |
3525 | if (mcflags & MCR_NOSLEEP) | |
3526 | mcflags |= MCR_TRYHARD; | |
3527 | ||
3528 | return (mcache_alloc(m_cache(MC_CL), mcflags)); | |
3529 | } | |
3530 | ||
3531 | /* Free an mbuf cluster */ | |
3532 | void | |
3533 | m_mclfree(caddr_t p) | |
3534 | { | |
3535 | mcache_free(m_cache(MC_CL), p); | |
3536 | } | |
3537 | ||
3538 | /* | |
3539 | * mcl_hasreference() checks if a cluster of an mbuf is referenced by | |
6d2010ae | 3540 | * another mbuf; see comments in m_incref() regarding EXTF_READONLY. |
2d21ac55 A |
3541 | */ |
3542 | int | |
3543 | m_mclhasreference(struct mbuf *m) | |
3544 | { | |
3545 | if (!(m->m_flags & M_EXT)) | |
3546 | return (0); | |
9bccf70c | 3547 | |
2d21ac55 A |
3548 | ASSERT(MEXT_RFA(m) != NULL); |
3549 | ||
6d2010ae | 3550 | return ((MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0); |
9bccf70c A |
3551 | } |
3552 | ||
2d21ac55 A |
3553 | __private_extern__ caddr_t |
3554 | m_bigalloc(int wait) | |
9bccf70c | 3555 | { |
2d21ac55 | 3556 | int mcflags = MSLEEPF(wait); |
91447636 | 3557 | |
2d21ac55 A |
3558 | /* Is this due to a non-blocking retry? If so, then try harder */ |
3559 | if (mcflags & MCR_NOSLEEP) | |
3560 | mcflags |= MCR_TRYHARD; | |
91447636 | 3561 | |
2d21ac55 | 3562 | return (mcache_alloc(m_cache(MC_BIGCL), mcflags)); |
9bccf70c A |
3563 | } |
3564 | ||
2d21ac55 A |
3565 | __private_extern__ void |
3566 | m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg) | |
9bccf70c | 3567 | { |
2d21ac55 | 3568 | mcache_free(m_cache(MC_BIGCL), p); |
9bccf70c A |
3569 | } |
3570 | ||
2d21ac55 A |
3571 | /* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */ |
3572 | __private_extern__ struct mbuf * | |
3573 | m_mbigget(struct mbuf *m, int wait) | |
3574 | { | |
3575 | struct ext_ref *rfa; | |
3576 | ||
3577 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) | |
3578 | return (m); | |
3579 | ||
3580 | m->m_ext.ext_buf = m_bigalloc(wait); | |
3581 | if (m->m_ext.ext_buf != NULL) { | |
3582 | MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); | |
91447636 | 3583 | } else { |
2d21ac55 | 3584 | mcache_free(ref_cache, rfa); |
91447636 | 3585 | } |
2d21ac55 A |
3586 | return (m); |
3587 | } | |
3588 | ||
3589 | __private_extern__ caddr_t | |
3590 | m_16kalloc(int wait) | |
3591 | { | |
3592 | int mcflags = MSLEEPF(wait); | |
3593 | ||
3594 | /* Is this due to a non-blocking retry? If so, then try harder */ | |
3595 | if (mcflags & MCR_NOSLEEP) | |
3596 | mcflags |= MCR_TRYHARD; | |
3597 | ||
3598 | return (mcache_alloc(m_cache(MC_16KCL), mcflags)); | |
91447636 A |
3599 | } |
3600 | ||
3601 | __private_extern__ void | |
2d21ac55 | 3602 | m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg) |
91447636 | 3603 | { |
2d21ac55 | 3604 | mcache_free(m_cache(MC_16KCL), p); |
91447636 A |
3605 | } |
3606 | ||
2d21ac55 | 3607 | /* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */ |
91447636 | 3608 | __private_extern__ struct mbuf * |
2d21ac55 | 3609 | m_m16kget(struct mbuf *m, int wait) |
91447636 | 3610 | { |
2d21ac55 A |
3611 | struct ext_ref *rfa; |
3612 | ||
3613 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) | |
3614 | return (m); | |
3615 | ||
3616 | m->m_ext.ext_buf = m_16kalloc(wait); | |
3617 | if (m->m_ext.ext_buf != NULL) { | |
3618 | MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); | |
3619 | } else { | |
3620 | mcache_free(ref_cache, rfa); | |
91447636 | 3621 | } |
2d21ac55 | 3622 | return (m); |
91447636 A |
3623 | } |
3624 | ||
b0d623f7 A |
3625 | /* |
3626 | * "Move" mbuf pkthdr from "from" to "to". | |
3627 | * "from" must have M_PKTHDR set, and "to" must be empty. | |
3628 | */ | |
9bccf70c | 3629 | void |
2d21ac55 | 3630 | m_copy_pkthdr(struct mbuf *to, struct mbuf *from) |
9bccf70c | 3631 | { |
39236c6e A |
3632 | VERIFY(from->m_flags & M_PKTHDR); |
3633 | ||
3634 | /* Check for scratch area overflow */ | |
3635 | m_redzone_verify(from); | |
3636 | ||
3637 | if (to->m_flags & M_PKTHDR) { | |
3638 | /* Check for scratch area overflow */ | |
3639 | m_redzone_verify(to); | |
3640 | /* We will be taking over the tags of 'to' */ | |
2d21ac55 | 3641 | m_tag_delete_chain(to, NULL); |
39236c6e | 3642 | } |
2d21ac55 | 3643 | to->m_pkthdr = from->m_pkthdr; /* especially tags */ |
39236c6e A |
3644 | m_classifier_init(from, 0); /* purge classifier info */ |
3645 | m_tag_init(from, 1); /* purge all tags from src */ | |
3646 | m_scratch_init(from); /* clear src scratch area */ | |
935ed37a A |
3647 | to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); |
3648 | if ((to->m_flags & M_EXT) == 0) | |
3649 | to->m_data = to->m_pktdat; | |
39236c6e | 3650 | m_redzone_init(to); /* setup red zone on dst */ |
9bccf70c A |
3651 | } |
3652 | ||
91447636 A |
3653 | /* |
3654 | * Duplicate "from"'s mbuf pkthdr in "to". | |
3655 | * "from" must have M_PKTHDR set, and "to" must be empty. | |
3656 | * In particular, this does a deep copy of the packet tags. | |
3657 | */ | |
3a60a9f5 | 3658 | static int |
91447636 A |
3659 | m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) |
3660 | { | |
39236c6e A |
3661 | VERIFY(from->m_flags & M_PKTHDR); |
3662 | ||
3663 | /* Check for scratch area overflow */ | |
3664 | m_redzone_verify(from); | |
3665 | ||
3666 | if (to->m_flags & M_PKTHDR) { | |
3667 | /* Check for scratch area overflow */ | |
3668 | m_redzone_verify(to); | |
3669 | /* We will be taking over the tags of 'to' */ | |
2d21ac55 | 3670 | m_tag_delete_chain(to, NULL); |
39236c6e | 3671 | } |
2d21ac55 A |
3672 | to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); |
3673 | if ((to->m_flags & M_EXT) == 0) | |
3674 | to->m_data = to->m_pktdat; | |
3675 | to->m_pkthdr = from->m_pkthdr; | |
39236c6e A |
3676 | m_redzone_init(to); /* setup red zone on dst */ |
3677 | m_tag_init(to, 0); /* preserve dst static tags */ | |
2d21ac55 | 3678 | return (m_tag_copy_chain(to, from, how)); |
91447636 | 3679 | } |
fa4905b1 | 3680 | |
316670eb A |
3681 | void |
3682 | m_copy_pftag(struct mbuf *to, struct mbuf *from) | |
3683 | { | |
3684 | to->m_pkthdr.pf_mtag = from->m_pkthdr.pf_mtag; | |
39236c6e | 3685 | #if PF_ECN |
316670eb A |
3686 | to->m_pkthdr.pf_mtag.pftag_hdr = NULL; |
3687 | to->m_pkthdr.pf_mtag.pftag_flags &= ~(PF_TAG_HDR_INET|PF_TAG_HDR_INET6); | |
39236c6e A |
3688 | #endif /* PF_ECN */ |
3689 | } | |
3690 | ||
3691 | void | |
3692 | m_classifier_init(struct mbuf *m, uint32_t pktf_mask) | |
3693 | { | |
3694 | VERIFY(m->m_flags & M_PKTHDR); | |
3695 | ||
3696 | m->m_pkthdr.pkt_proto = 0; | |
3697 | m->m_pkthdr.pkt_flowsrc = 0; | |
3698 | m->m_pkthdr.pkt_flowid = 0; | |
3699 | m->m_pkthdr.pkt_flags &= pktf_mask; /* caller-defined mask */ | |
3700 | /* preserve service class and interface info for loopback packets */ | |
3701 | if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) | |
3702 | (void) m_set_service_class(m, MBUF_SC_BE); | |
3703 | if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) | |
3704 | m->m_pkthdr.pkt_ifainfo = 0; | |
3705 | #if MEASURE_BW | |
3706 | m->m_pkthdr.pkt_bwseq = 0; | |
3707 | #endif /* MEASURE_BW */ | |
3708 | } | |
3709 | ||
3710 | void | |
3711 | m_copy_classifier(struct mbuf *to, struct mbuf *from) | |
3712 | { | |
3713 | VERIFY(to->m_flags & M_PKTHDR); | |
3714 | VERIFY(from->m_flags & M_PKTHDR); | |
3715 | ||
3716 | to->m_pkthdr.pkt_proto = from->m_pkthdr.pkt_proto; | |
3717 | to->m_pkthdr.pkt_flowsrc = from->m_pkthdr.pkt_flowsrc; | |
3718 | to->m_pkthdr.pkt_flowid = from->m_pkthdr.pkt_flowid; | |
3719 | to->m_pkthdr.pkt_flags = from->m_pkthdr.pkt_flags; | |
3720 | (void) m_set_service_class(to, from->m_pkthdr.pkt_svc); | |
3721 | to->m_pkthdr.pkt_ifainfo = from->m_pkthdr.pkt_ifainfo; | |
3722 | to->m_pkthdr.ipsec_policy = from->m_pkthdr.ipsec_policy; | |
3723 | #if MEASURE_BW | |
3724 | to->m_pkthdr.pkt_bwseq = from->m_pkthdr.pkt_bwseq; | |
3725 | #endif /* MEASURE_BW */ | |
316670eb A |
3726 | } |
3727 | ||
9bccf70c | 3728 | /* |
2d21ac55 A |
3729 | * Return a list of mbuf hdrs that point to clusters. Try for num_needed; |
3730 | * if wantall is not set, return whatever number were available. Set up the | |
3731 | * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these | |
3732 | * are chained on the m_nextpkt field. Any packets requested beyond this | |
3733 | * are chained onto the last packet header's m_next field. The size of | |
3734 | * the cluster is controlled by the parameter bufsize. | |
9bccf70c | 3735 | */ |
91447636 | 3736 | __private_extern__ struct mbuf * |
2d21ac55 A |
3737 | m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs, |
3738 | int wait, int wantall, size_t bufsize) | |
fa4905b1 A |
3739 | { |
3740 | struct mbuf *m; | |
3741 | struct mbuf **np, *top; | |
2d21ac55 A |
3742 | unsigned int pnum, needed = *num_needed; |
3743 | mcache_obj_t *mp_list = NULL; | |
3744 | int mcflags = MSLEEPF(wait); | |
3745 | u_int32_t flag; | |
3746 | struct ext_ref *rfa; | |
3747 | mcache_t *cp; | |
3748 | void *cl; | |
3749 | ||
3750 | ASSERT(bufsize == m_maxsize(MC_CL) || | |
3751 | bufsize == m_maxsize(MC_BIGCL) || | |
3752 | bufsize == m_maxsize(MC_16KCL)); | |
3753 | ||
3754 | /* | |
3755 | * Caller must first check for njcl because this | |
3756 | * routine is internal and not exposed/used via KPI. | |
3757 | */ | |
3758 | VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0); | |
3759 | ||
fa4905b1 A |
3760 | top = NULL; |
3761 | np = ⊤ | |
2d21ac55 | 3762 | pnum = 0; |
fa4905b1 | 3763 | |
2d21ac55 A |
3764 | /* |
3765 | * The caller doesn't want all the requested buffers; only some. | |
3766 | * Try hard to get what we can, but don't block. This effectively | |
3767 | * overrides MCR_SLEEP, since this thread will not go to sleep | |
3768 | * if we can't get all the buffers. | |
3769 | */ | |
3770 | if (!wantall || (mcflags & MCR_NOSLEEP)) | |
3771 | mcflags |= MCR_TRYHARD; | |
3772 | ||
3773 | /* Allocate the composite mbuf + cluster elements from the cache */ | |
3774 | if (bufsize == m_maxsize(MC_CL)) | |
3775 | cp = m_cache(MC_MBUF_CL); | |
3776 | else if (bufsize == m_maxsize(MC_BIGCL)) | |
3777 | cp = m_cache(MC_MBUF_BIGCL); | |
3778 | else | |
3779 | cp = m_cache(MC_MBUF_16KCL); | |
3780 | needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags); | |
3781 | ||
3782 | for (pnum = 0; pnum < needed; pnum++) { | |
3783 | m = (struct mbuf *)mp_list; | |
3784 | mp_list = mp_list->obj_next; | |
3785 | ||
3786 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); | |
3787 | cl = m->m_ext.ext_buf; | |
3788 | rfa = MEXT_RFA(m); | |
3789 | ||
3790 | ASSERT(cl != NULL && rfa != NULL); | |
3791 | VERIFY(MBUF_IS_COMPOSITE(m)); | |
3792 | ||
3793 | flag = MEXT_FLAGS(m); | |
3794 | ||
3795 | MBUF_INIT(m, num_with_pkthdrs, MT_DATA); | |
3796 | if (bufsize == m_maxsize(MC_16KCL)) { | |
3797 | MBUF_16KCL_INIT(m, cl, rfa, 1, flag); | |
3798 | } else if (bufsize == m_maxsize(MC_BIGCL)) { | |
3799 | MBUF_BIGCL_INIT(m, cl, rfa, 1, flag); | |
91447636 | 3800 | } else { |
2d21ac55 A |
3801 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
3802 | } | |
3803 | ||
3804 | if (num_with_pkthdrs > 0) { | |
3805 | --num_with_pkthdrs; | |
3806 | #if CONFIG_MACF_NET | |
3807 | if (mac_mbuf_label_init(m, wait) != 0) { | |
6d2010ae | 3808 | m_freem(m); |
2d21ac55 | 3809 | break; |
91447636 | 3810 | } |
2d21ac55 | 3811 | #endif /* MAC_NET */ |
91447636 | 3812 | } |
2d21ac55 A |
3813 | |
3814 | *np = m; | |
3815 | if (num_with_pkthdrs > 0) | |
91447636 A |
3816 | np = &m->m_nextpkt; |
3817 | else | |
3818 | np = &m->m_next; | |
3819 | } | |
2d21ac55 A |
3820 | ASSERT(pnum != *num_needed || mp_list == NULL); |
3821 | if (mp_list != NULL) | |
3822 | mcache_free_ext(cp, mp_list); | |
3823 | ||
3824 | if (pnum > 0) { | |
3825 | mtype_stat_add(MT_DATA, pnum); | |
3826 | mtype_stat_sub(MT_FREE, pnum); | |
3827 | } | |
3828 | ||
3829 | if (wantall && (pnum != *num_needed)) { | |
3830 | if (top != NULL) | |
3831 | m_freem_list(top); | |
3832 | return (NULL); | |
91447636 | 3833 | } |
fa4905b1 | 3834 | |
316670eb A |
3835 | if (pnum > *num_needed) { |
3836 | printf("%s: File a radar related to <rdar://10146739>. \ | |
3837 | needed = %u, pnum = %u, num_needed = %u \n", | |
3838 | __func__, needed, pnum, *num_needed); | |
3839 | } | |
3840 | ||
2d21ac55 A |
3841 | *num_needed = pnum; |
3842 | return (top); | |
3843 | } | |
fa4905b1 | 3844 | |
91447636 | 3845 | /* |
2d21ac55 A |
3846 | * Return list of mbuf linked by m_nextpkt. Try for numlist, and if |
3847 | * wantall is not set, return whatever number were available. The size of | |
3848 | * each mbuf in the list is controlled by the parameter packetlen. Each | |
3849 | * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf | |
3850 | * in the chain is called a segment. If maxsegments is not null and the | |
3851 | * value pointed to is not null, this specify the maximum number of segments | |
3852 | * for a chain of mbufs. If maxsegments is zero or the value pointed to | |
3853 | * is zero the caller does not have any restriction on the number of segments. | |
3854 | * The actual number of segments of a mbuf chain is return in the value | |
3855 | * pointed to by maxsegments. | |
91447636 | 3856 | */ |
91447636 | 3857 | __private_extern__ struct mbuf * |
2d21ac55 A |
3858 | m_allocpacket_internal(unsigned int *numlist, size_t packetlen, |
3859 | unsigned int *maxsegments, int wait, int wantall, size_t wantsize) | |
91447636 | 3860 | { |
2d21ac55 A |
3861 | struct mbuf **np, *top, *first = NULL; |
3862 | size_t bufsize, r_bufsize; | |
3863 | unsigned int num = 0; | |
3864 | unsigned int nsegs = 0; | |
3865 | unsigned int needed, resid; | |
3866 | int mcflags = MSLEEPF(wait); | |
3867 | mcache_obj_t *mp_list = NULL, *rmp_list = NULL; | |
3868 | mcache_t *cp = NULL, *rcp = NULL; | |
3869 | ||
3870 | if (*numlist == 0) | |
3871 | return (NULL); | |
fa4905b1 | 3872 | |
91447636 A |
3873 | top = NULL; |
3874 | np = ⊤ | |
2d21ac55 | 3875 | |
91447636 | 3876 | if (wantsize == 0) { |
2d21ac55 | 3877 | if (packetlen <= MINCLSIZE) { |
91447636 | 3878 | bufsize = packetlen; |
2d21ac55 A |
3879 | } else if (packetlen > m_maxsize(MC_CL)) { |
3880 | /* Use 4KB if jumbo cluster pool isn't available */ | |
3881 | if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0) | |
3882 | bufsize = m_maxsize(MC_BIGCL); | |
3883 | else | |
3884 | bufsize = m_maxsize(MC_16KCL); | |
3885 | } else { | |
3886 | bufsize = m_maxsize(MC_CL); | |
3887 | } | |
3888 | } else if (wantsize == m_maxsize(MC_CL) || | |
3889 | wantsize == m_maxsize(MC_BIGCL) || | |
3890 | (wantsize == m_maxsize(MC_16KCL) && njcl > 0)) { | |
91447636 | 3891 | bufsize = wantsize; |
2d21ac55 A |
3892 | } else { |
3893 | return (NULL); | |
3894 | } | |
91447636 A |
3895 | |
3896 | if (bufsize <= MHLEN) { | |
2d21ac55 | 3897 | nsegs = 1; |
91447636 A |
3898 | } else if (bufsize <= MINCLSIZE) { |
3899 | if (maxsegments != NULL && *maxsegments == 1) { | |
2d21ac55 A |
3900 | bufsize = m_maxsize(MC_CL); |
3901 | nsegs = 1; | |
91447636 | 3902 | } else { |
2d21ac55 | 3903 | nsegs = 2; |
fa4905b1 | 3904 | } |
2d21ac55 A |
3905 | } else if (bufsize == m_maxsize(MC_16KCL)) { |
3906 | VERIFY(njcl > 0); | |
3907 | nsegs = ((packetlen - 1) >> (PGSHIFT + 2)) + 1; | |
3908 | } else if (bufsize == m_maxsize(MC_BIGCL)) { | |
3909 | nsegs = ((packetlen - 1) >> PGSHIFT) + 1; | |
91447636 | 3910 | } else { |
2d21ac55 | 3911 | nsegs = ((packetlen - 1) >> MCLSHIFT) + 1; |
91447636 A |
3912 | } |
3913 | if (maxsegments != NULL) { | |
2d21ac55 A |
3914 | if (*maxsegments && nsegs > *maxsegments) { |
3915 | *maxsegments = nsegs; | |
3916 | return (NULL); | |
91447636 | 3917 | } |
2d21ac55 | 3918 | *maxsegments = nsegs; |
91447636 | 3919 | } |
91447636 | 3920 | |
2d21ac55 A |
3921 | /* |
3922 | * The caller doesn't want all the requested buffers; only some. | |
3923 | * Try hard to get what we can, but don't block. This effectively | |
3924 | * overrides MCR_SLEEP, since this thread will not go to sleep | |
3925 | * if we can't get all the buffers. | |
3926 | */ | |
3927 | if (!wantall || (mcflags & MCR_NOSLEEP)) | |
3928 | mcflags |= MCR_TRYHARD; | |
3929 | ||
3930 | /* | |
3931 | * Simple case where all elements in the lists/chains are mbufs. | |
3932 | * Unless bufsize is greater than MHLEN, each segment chain is made | |
3933 | * up of exactly 1 mbuf. Otherwise, each segment chain is made up | |
3934 | * of 2 mbufs; the second one is used for the residual data, i.e. | |
3935 | * the remaining data that cannot fit into the first mbuf. | |
3936 | */ | |
3937 | if (bufsize <= MINCLSIZE) { | |
3938 | /* Allocate the elements in one shot from the mbuf cache */ | |
3939 | ASSERT(bufsize <= MHLEN || nsegs == 2); | |
3940 | cp = m_cache(MC_MBUF); | |
3941 | needed = mcache_alloc_ext(cp, &mp_list, | |
3942 | (*numlist) * nsegs, mcflags); | |
3943 | ||
3944 | /* | |
3945 | * The number of elements must be even if we are to use an | |
3946 | * mbuf (instead of a cluster) to store the residual data. | |
3947 | * If we couldn't allocate the requested number of mbufs, | |
3948 | * trim the number down (if it's odd) in order to avoid | |
3949 | * creating a partial segment chain. | |
3950 | */ | |
3951 | if (bufsize > MHLEN && (needed & 0x1)) | |
3952 | needed--; | |
91447636 | 3953 | |
2d21ac55 A |
3954 | while (num < needed) { |
3955 | struct mbuf *m; | |
91447636 | 3956 | |
2d21ac55 A |
3957 | m = (struct mbuf *)mp_list; |
3958 | mp_list = mp_list->obj_next; | |
3959 | ASSERT(m != NULL); | |
91447636 | 3960 | |
2d21ac55 A |
3961 | MBUF_INIT(m, 1, MT_DATA); |
3962 | #if CONFIG_MACF_NET | |
3963 | if (mac_init_mbuf(m, wait) != 0) { | |
3964 | m_free(m); | |
3965 | break; | |
91447636 | 3966 | } |
2d21ac55 A |
3967 | #endif /* MAC_NET */ |
3968 | num++; | |
3969 | if (bufsize > MHLEN) { | |
3970 | /* A second mbuf for this segment chain */ | |
3971 | m->m_next = (struct mbuf *)mp_list; | |
3972 | mp_list = mp_list->obj_next; | |
3973 | ASSERT(m->m_next != NULL); | |
3974 | ||
3975 | MBUF_INIT(m->m_next, 0, MT_DATA); | |
3976 | num++; | |
91447636 | 3977 | } |
2d21ac55 A |
3978 | *np = m; |
3979 | np = &m->m_nextpkt; | |
3980 | } | |
3981 | ASSERT(num != *numlist || mp_list == NULL); | |
3982 | ||
3983 | if (num > 0) { | |
3984 | mtype_stat_add(MT_DATA, num); | |
3985 | mtype_stat_sub(MT_FREE, num); | |
3986 | } | |
3987 | num /= nsegs; | |
3988 | ||
3989 | /* We've got them all; return to caller */ | |
3990 | if (num == *numlist) | |
3991 | return (top); | |
3992 | ||
3993 | goto fail; | |
3994 | } | |
3995 | ||
3996 | /* | |
3997 | * Complex cases where elements are made up of one or more composite | |
3998 | * mbufs + cluster, depending on packetlen. Each N-segment chain can | |
3999 | * be illustrated as follows: | |
4000 | * | |
4001 | * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N] | |
4002 | * | |
4003 | * Every composite mbuf + cluster element comes from the intermediate | |
4004 | * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency, | |
4005 | * the last composite element will come from the MC_MBUF_CL cache, | |
4006 | * unless the residual data is larger than 2KB where we use the | |
4007 | * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual | |
4008 | * data is defined as extra data beyond the first element that cannot | |
4009 | * fit into the previous element, i.e. there is no residual data if | |
4010 | * the chain only has 1 segment. | |
4011 | */ | |
4012 | r_bufsize = bufsize; | |
4013 | resid = packetlen > bufsize ? packetlen % bufsize : 0; | |
4014 | if (resid > 0) { | |
4015 | /* There is residual data; figure out the cluster size */ | |
4016 | if (wantsize == 0 && packetlen > MINCLSIZE) { | |
4017 | /* | |
4018 | * Caller didn't request that all of the segments | |
4019 | * in the chain use the same cluster size; use the | |
4020 | * smaller of the cluster sizes. | |
4021 | */ | |
4022 | if (njcl > 0 && resid > m_maxsize(MC_BIGCL)) | |
4023 | r_bufsize = m_maxsize(MC_16KCL); | |
4024 | else if (resid > m_maxsize(MC_CL)) | |
4025 | r_bufsize = m_maxsize(MC_BIGCL); | |
4026 | else | |
4027 | r_bufsize = m_maxsize(MC_CL); | |
4028 | } else { | |
4029 | /* Use the same cluster size as the other segments */ | |
4030 | resid = 0; | |
4031 | } | |
4032 | } | |
4033 | ||
4034 | needed = *numlist; | |
4035 | if (resid > 0) { | |
4036 | /* | |
4037 | * Attempt to allocate composite mbuf + cluster elements for | |
4038 | * the residual data in each chain; record the number of such | |
4039 | * elements that can be allocated so that we know how many | |
4040 | * segment chains we can afford to create. | |
4041 | */ | |
4042 | if (r_bufsize <= m_maxsize(MC_CL)) | |
4043 | rcp = m_cache(MC_MBUF_CL); | |
4044 | else if (r_bufsize <= m_maxsize(MC_BIGCL)) | |
4045 | rcp = m_cache(MC_MBUF_BIGCL); | |
4046 | else | |
4047 | rcp = m_cache(MC_MBUF_16KCL); | |
4048 | needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags); | |
4049 | ||
4050 | if (needed == 0) | |
4051 | goto fail; | |
4052 | ||
4053 | /* This is temporarily reduced for calculation */ | |
4054 | ASSERT(nsegs > 1); | |
4055 | nsegs--; | |
4056 | } | |
4057 | ||
4058 | /* | |
4059 | * Attempt to allocate the rest of the composite mbuf + cluster | |
4060 | * elements for the number of segment chains that we need. | |
4061 | */ | |
4062 | if (bufsize <= m_maxsize(MC_CL)) | |
4063 | cp = m_cache(MC_MBUF_CL); | |
4064 | else if (bufsize <= m_maxsize(MC_BIGCL)) | |
4065 | cp = m_cache(MC_MBUF_BIGCL); | |
4066 | else | |
4067 | cp = m_cache(MC_MBUF_16KCL); | |
4068 | needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags); | |
4069 | ||
4070 | /* Round it down to avoid creating a partial segment chain */ | |
4071 | needed = (needed / nsegs) * nsegs; | |
4072 | if (needed == 0) | |
4073 | goto fail; | |
4074 | ||
4075 | if (resid > 0) { | |
4076 | /* | |
4077 | * We're about to construct the chain(s); take into account | |
4078 | * the number of segments we have created above to hold the | |
4079 | * residual data for each chain, as well as restore the | |
4080 | * original count of segments per chain. | |
4081 | */ | |
4082 | ASSERT(nsegs > 0); | |
4083 | needed += needed / nsegs; | |
4084 | nsegs++; | |
4085 | } | |
4086 | ||
4087 | for (;;) { | |
4088 | struct mbuf *m; | |
4089 | u_int32_t flag; | |
4090 | struct ext_ref *rfa; | |
4091 | void *cl; | |
4092 | int pkthdr; | |
4093 | ||
4094 | ++num; | |
4095 | if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) { | |
4096 | m = (struct mbuf *)mp_list; | |
4097 | mp_list = mp_list->obj_next; | |
4098 | } else { | |
4099 | m = (struct mbuf *)rmp_list; | |
4100 | rmp_list = rmp_list->obj_next; | |
4101 | } | |
4102 | ASSERT(m != NULL); | |
4103 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); | |
4104 | VERIFY(m->m_ext.ext_free == NULL || | |
4105 | m->m_ext.ext_free == m_bigfree || | |
4106 | m->m_ext.ext_free == m_16kfree); | |
4107 | ||
4108 | cl = m->m_ext.ext_buf; | |
4109 | rfa = MEXT_RFA(m); | |
4110 | ||
4111 | ASSERT(cl != NULL && rfa != NULL); | |
4112 | VERIFY(MBUF_IS_COMPOSITE(m)); | |
4113 | ||
4114 | flag = MEXT_FLAGS(m); | |
4115 | ||
4116 | pkthdr = (nsegs == 1 || (num % nsegs) == 1); | |
4117 | if (pkthdr) | |
4118 | first = m; | |
4119 | MBUF_INIT(m, pkthdr, MT_DATA); | |
4120 | if (m->m_ext.ext_free == m_16kfree) { | |
4121 | MBUF_16KCL_INIT(m, cl, rfa, 1, flag); | |
4122 | } else if (m->m_ext.ext_free == m_bigfree) { | |
4123 | MBUF_BIGCL_INIT(m, cl, rfa, 1, flag); | |
4124 | } else { | |
4125 | MBUF_CL_INIT(m, cl, rfa, 1, flag); | |
4126 | } | |
4127 | #if CONFIG_MACF_NET | |
4128 | if (pkthdr && mac_init_mbuf(m, wait) != 0) { | |
4129 | --num; | |
6d2010ae | 4130 | m_freem(m); |
2d21ac55 | 4131 | break; |
91447636 | 4132 | } |
2d21ac55 A |
4133 | #endif /* MAC_NET */ |
4134 | ||
4135 | *np = m; | |
4136 | if ((num % nsegs) == 0) | |
4137 | np = &first->m_nextpkt; | |
4138 | else | |
4139 | np = &m->m_next; | |
4140 | ||
4141 | if (num == needed) | |
4142 | break; | |
4143 | } | |
4144 | ||
4145 | if (num > 0) { | |
4146 | mtype_stat_add(MT_DATA, num); | |
4147 | mtype_stat_sub(MT_FREE, num); | |
91447636 | 4148 | } |
2d21ac55 A |
4149 | |
4150 | num /= nsegs; | |
4151 | ||
4152 | /* We've got them all; return to caller */ | |
4153 | if (num == *numlist) { | |
4154 | ASSERT(mp_list == NULL && rmp_list == NULL); | |
4155 | return (top); | |
4156 | } | |
4157 | ||
91447636 | 4158 | fail: |
2d21ac55 A |
4159 | /* Free up what's left of the above */ |
4160 | if (mp_list != NULL) | |
4161 | mcache_free_ext(cp, mp_list); | |
4162 | if (rmp_list != NULL) | |
4163 | mcache_free_ext(rcp, rmp_list); | |
4164 | if (wantall && top != NULL) { | |
91447636 | 4165 | m_freem(top); |
2d21ac55 | 4166 | return (NULL); |
91447636 | 4167 | } |
2d21ac55 A |
4168 | *numlist = num; |
4169 | return (top); | |
91447636 | 4170 | } |
fa4905b1 | 4171 | |
2d21ac55 A |
4172 | /* |
4173 | * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated | |
4174 | * packets on receive ring. | |
91447636 A |
4175 | */ |
4176 | __private_extern__ struct mbuf * | |
2d21ac55 | 4177 | m_getpacket_how(int wait) |
91447636 A |
4178 | { |
4179 | unsigned int num_needed = 1; | |
2d21ac55 A |
4180 | |
4181 | return (m_getpackets_internal(&num_needed, 1, wait, 1, | |
4182 | m_maxsize(MC_CL))); | |
91447636 | 4183 | } |
fa4905b1 | 4184 | |
2d21ac55 A |
4185 | /* |
4186 | * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated | |
4187 | * packets on receive ring. | |
91447636 A |
4188 | */ |
4189 | struct mbuf * | |
4190 | m_getpacket(void) | |
4191 | { | |
4192 | unsigned int num_needed = 1; | |
9bccf70c | 4193 | |
2d21ac55 A |
4194 | return (m_getpackets_internal(&num_needed, 1, M_WAIT, 1, |
4195 | m_maxsize(MC_CL))); | |
91447636 | 4196 | } |
fa4905b1 | 4197 | |
91447636 | 4198 | /* |
2d21ac55 A |
4199 | * Return a list of mbuf hdrs that point to clusters. Try for num_needed; |
4200 | * if this can't be met, return whatever number were available. Set up the | |
4201 | * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These | |
4202 | * are chained on the m_nextpkt field. Any packets requested beyond this are | |
4203 | * chained onto the last packet header's m_next field. | |
91447636 A |
4204 | */ |
4205 | struct mbuf * | |
4206 | m_getpackets(int num_needed, int num_with_pkthdrs, int how) | |
4207 | { | |
4208 | unsigned int n = num_needed; | |
fa4905b1 | 4209 | |
2d21ac55 A |
4210 | return (m_getpackets_internal(&n, num_with_pkthdrs, how, 0, |
4211 | m_maxsize(MC_CL))); | |
4212 | } | |
fa4905b1 | 4213 | |
9bccf70c | 4214 | /* |
2d21ac55 A |
4215 | * Return a list of mbuf hdrs set up as packet hdrs chained together |
4216 | * on the m_nextpkt field | |
9bccf70c | 4217 | */ |
fa4905b1 A |
4218 | struct mbuf * |
4219 | m_getpackethdrs(int num_needed, int how) | |
4220 | { | |
4221 | struct mbuf *m; | |
4222 | struct mbuf **np, *top; | |
4223 | ||
4224 | top = NULL; | |
4225 | np = ⊤ | |
4226 | ||
fa4905b1 | 4227 | while (num_needed--) { |
2d21ac55 A |
4228 | m = _M_RETRYHDR(how, MT_DATA); |
4229 | if (m == NULL) | |
4230 | break; | |
4231 | ||
4232 | *np = m; | |
4233 | np = &m->m_nextpkt; | |
4234 | } | |
fa4905b1 A |
4235 | |
4236 | return (top); | |
4237 | } | |
4238 | ||
2d21ac55 A |
4239 | /* |
4240 | * Free an mbuf list (m_nextpkt) while following m_next. Returns the count | |
4241 | * for mbufs packets freed. Used by the drivers. | |
1c79356b | 4242 | */ |
2d21ac55 A |
4243 | int |
4244 | m_freem_list(struct mbuf *m) | |
1c79356b A |
4245 | { |
4246 | struct mbuf *nextpkt; | |
2d21ac55 A |
4247 | mcache_obj_t *mp_list = NULL; |
4248 | mcache_obj_t *mcl_list = NULL; | |
4249 | mcache_obj_t *mbc_list = NULL; | |
4250 | mcache_obj_t *m16k_list = NULL; | |
4251 | mcache_obj_t *m_mcl_list = NULL; | |
4252 | mcache_obj_t *m_mbc_list = NULL; | |
4253 | mcache_obj_t *m_m16k_list = NULL; | |
4254 | mcache_obj_t *ref_list = NULL; | |
4255 | int pktcount = 0; | |
4256 | int mt_free = 0, mt_data = 0, mt_header = 0, mt_soname = 0, mt_tag = 0; | |
4257 | ||
4258 | while (m != NULL) { | |
4259 | pktcount++; | |
4260 | ||
4261 | nextpkt = m->m_nextpkt; | |
4262 | m->m_nextpkt = NULL; | |
4263 | ||
4264 | while (m != NULL) { | |
4265 | struct mbuf *next = m->m_next; | |
4266 | mcache_obj_t *o, *rfa; | |
6d2010ae | 4267 | u_int32_t refcnt, composite; |
fa4905b1 | 4268 | |
2d21ac55 A |
4269 | if (m->m_type == MT_FREE) |
4270 | panic("m_free: freeing an already freed mbuf"); | |
9bccf70c | 4271 | |
2d21ac55 A |
4272 | if (m->m_type != MT_FREE) |
4273 | mt_free++; | |
91447636 | 4274 | |
2d21ac55 | 4275 | if (m->m_flags & M_PKTHDR) { |
39236c6e A |
4276 | /* Check for scratch area overflow */ |
4277 | m_redzone_verify(m); | |
4278 | /* Free the aux data and tags if there is any */ | |
91447636 | 4279 | m_tag_delete_chain(m, NULL); |
91447636 | 4280 | } |
9bccf70c | 4281 | |
2d21ac55 A |
4282 | if (!(m->m_flags & M_EXT)) |
4283 | goto simple_free; | |
4284 | ||
316670eb | 4285 | o = (mcache_obj_t *)(void *)m->m_ext.ext_buf; |
2d21ac55 | 4286 | refcnt = m_decref(m); |
6d2010ae A |
4287 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
4288 | if (refcnt == 0 && !composite) { | |
2d21ac55 A |
4289 | if (m->m_ext.ext_free == NULL) { |
4290 | o->obj_next = mcl_list; | |
4291 | mcl_list = o; | |
4292 | } else if (m->m_ext.ext_free == m_bigfree) { | |
4293 | o->obj_next = mbc_list; | |
4294 | mbc_list = o; | |
4295 | } else if (m->m_ext.ext_free == m_16kfree) { | |
4296 | o->obj_next = m16k_list; | |
4297 | m16k_list = o; | |
4298 | } else { | |
4299 | (*(m->m_ext.ext_free))((caddr_t)o, | |
4300 | m->m_ext.ext_size, | |
4301 | m->m_ext.ext_arg); | |
4302 | } | |
316670eb | 4303 | rfa = (mcache_obj_t *)(void *)MEXT_RFA(m); |
2d21ac55 A |
4304 | rfa->obj_next = ref_list; |
4305 | ref_list = rfa; | |
4306 | MEXT_RFA(m) = NULL; | |
6d2010ae | 4307 | } else if (refcnt == 0 && composite) { |
2d21ac55 A |
4308 | VERIFY(m->m_type != MT_FREE); |
4309 | /* | |
4310 | * Amortize the costs of atomic operations | |
4311 | * by doing them at the end, if possible. | |
4312 | */ | |
4313 | if (m->m_type == MT_DATA) | |
4314 | mt_data++; | |
4315 | else if (m->m_type == MT_HEADER) | |
4316 | mt_header++; | |
4317 | else if (m->m_type == MT_SONAME) | |
4318 | mt_soname++; | |
4319 | else if (m->m_type == MT_TAG) | |
4320 | mt_tag++; | |
4321 | else | |
4322 | mtype_stat_dec(m->m_type); | |
fa4905b1 | 4323 | |
2d21ac55 A |
4324 | m->m_type = MT_FREE; |
4325 | m->m_flags = M_EXT; | |
4326 | m->m_len = 0; | |
4327 | m->m_next = m->m_nextpkt = NULL; | |
4328 | ||
6d2010ae A |
4329 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
4330 | ||
2d21ac55 A |
4331 | /* "Free" into the intermediate cache */ |
4332 | o = (mcache_obj_t *)m; | |
4333 | if (m->m_ext.ext_free == NULL) { | |
4334 | o->obj_next = m_mcl_list; | |
4335 | m_mcl_list = o; | |
4336 | } else if (m->m_ext.ext_free == m_bigfree) { | |
4337 | o->obj_next = m_mbc_list; | |
4338 | m_mbc_list = o; | |
1c79356b | 4339 | } else { |
2d21ac55 A |
4340 | VERIFY(m->m_ext.ext_free == m_16kfree); |
4341 | o->obj_next = m_m16k_list; | |
4342 | m_m16k_list = o; | |
1c79356b | 4343 | } |
2d21ac55 A |
4344 | m = next; |
4345 | continue; | |
1c79356b | 4346 | } |
2d21ac55 A |
4347 | simple_free: |
4348 | /* | |
4349 | * Amortize the costs of atomic operations | |
4350 | * by doing them at the end, if possible. | |
4351 | */ | |
4352 | if (m->m_type == MT_DATA) | |
4353 | mt_data++; | |
4354 | else if (m->m_type == MT_HEADER) | |
4355 | mt_header++; | |
4356 | else if (m->m_type == MT_SONAME) | |
4357 | mt_soname++; | |
4358 | else if (m->m_type == MT_TAG) | |
4359 | mt_tag++; | |
4360 | else if (m->m_type != MT_FREE) | |
4361 | mtype_stat_dec(m->m_type); | |
4362 | ||
1c79356b | 4363 | m->m_type = MT_FREE; |
2d21ac55 A |
4364 | m->m_flags = m->m_len = 0; |
4365 | m->m_next = m->m_nextpkt = NULL; | |
fa4905b1 | 4366 | |
2d21ac55 A |
4367 | ((mcache_obj_t *)m)->obj_next = mp_list; |
4368 | mp_list = (mcache_obj_t *)m; | |
4369 | ||
4370 | m = next; | |
4371 | } | |
fa4905b1 | 4372 | |
2d21ac55 A |
4373 | m = nextpkt; |
4374 | } | |
fa4905b1 | 4375 | |
2d21ac55 A |
4376 | if (mt_free > 0) |
4377 | mtype_stat_add(MT_FREE, mt_free); | |
4378 | if (mt_data > 0) | |
4379 | mtype_stat_sub(MT_DATA, mt_data); | |
4380 | if (mt_header > 0) | |
4381 | mtype_stat_sub(MT_HEADER, mt_header); | |
4382 | if (mt_soname > 0) | |
4383 | mtype_stat_sub(MT_SONAME, mt_soname); | |
4384 | if (mt_tag > 0) | |
4385 | mtype_stat_sub(MT_TAG, mt_tag); | |
4386 | ||
4387 | if (mp_list != NULL) | |
4388 | mcache_free_ext(m_cache(MC_MBUF), mp_list); | |
4389 | if (mcl_list != NULL) | |
4390 | mcache_free_ext(m_cache(MC_CL), mcl_list); | |
4391 | if (mbc_list != NULL) | |
4392 | mcache_free_ext(m_cache(MC_BIGCL), mbc_list); | |
4393 | if (m16k_list != NULL) | |
4394 | mcache_free_ext(m_cache(MC_16KCL), m16k_list); | |
4395 | if (m_mcl_list != NULL) | |
4396 | mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list); | |
4397 | if (m_mbc_list != NULL) | |
4398 | mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list); | |
4399 | if (m_m16k_list != NULL) | |
4400 | mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list); | |
4401 | if (ref_list != NULL) | |
4402 | mcache_free_ext(ref_cache, ref_list); | |
4403 | ||
4404 | return (pktcount); | |
1c79356b A |
4405 | } |
4406 | ||
4407 | void | |
2d21ac55 | 4408 | m_freem(struct mbuf *m) |
1c79356b | 4409 | { |
2d21ac55 | 4410 | while (m != NULL) |
1c79356b A |
4411 | m = m_free(m); |
4412 | } | |
4413 | ||
4414 | /* | |
4415 | * Mbuffer utility routines. | |
4416 | */ | |
2d21ac55 | 4417 | |
1c79356b | 4418 | /* |
2d21ac55 A |
4419 | * Compute the amount of space available before the current start |
4420 | * of data in an mbuf. | |
1c79356b | 4421 | */ |
91447636 | 4422 | int |
2d21ac55 | 4423 | m_leadingspace(struct mbuf *m) |
1c79356b A |
4424 | { |
4425 | if (m->m_flags & M_EXT) { | |
4426 | if (MCLHASREFERENCE(m)) | |
2d21ac55 | 4427 | return (0); |
1c79356b A |
4428 | return (m->m_data - m->m_ext.ext_buf); |
4429 | } | |
4430 | if (m->m_flags & M_PKTHDR) | |
4431 | return (m->m_data - m->m_pktdat); | |
4432 | return (m->m_data - m->m_dat); | |
4433 | } | |
4434 | ||
4435 | /* | |
2d21ac55 | 4436 | * Compute the amount of space available after the end of data in an mbuf. |
1c79356b | 4437 | */ |
91447636 | 4438 | int |
2d21ac55 | 4439 | m_trailingspace(struct mbuf *m) |
1c79356b A |
4440 | { |
4441 | if (m->m_flags & M_EXT) { | |
4442 | if (MCLHASREFERENCE(m)) | |
2d21ac55 | 4443 | return (0); |
1c79356b | 4444 | return (m->m_ext.ext_buf + m->m_ext.ext_size - |
2d21ac55 | 4445 | (m->m_data + m->m_len)); |
1c79356b A |
4446 | } |
4447 | return (&m->m_dat[MLEN] - (m->m_data + m->m_len)); | |
4448 | } | |
4449 | ||
4450 | /* | |
2d21ac55 A |
4451 | * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain, |
4452 | * copy junk along. Does not adjust packet header length. | |
1c79356b A |
4453 | */ |
4454 | struct mbuf * | |
2d21ac55 | 4455 | m_prepend(struct mbuf *m, int len, int how) |
1c79356b A |
4456 | { |
4457 | struct mbuf *mn; | |
4458 | ||
2d21ac55 A |
4459 | _MGET(mn, how, m->m_type); |
4460 | if (mn == NULL) { | |
1c79356b | 4461 | m_freem(m); |
2d21ac55 | 4462 | return (NULL); |
1c79356b A |
4463 | } |
4464 | if (m->m_flags & M_PKTHDR) { | |
4465 | M_COPY_PKTHDR(mn, m); | |
4466 | m->m_flags &= ~M_PKTHDR; | |
4467 | } | |
4468 | mn->m_next = m; | |
4469 | m = mn; | |
4470 | if (len < MHLEN) | |
4471 | MH_ALIGN(m, len); | |
4472 | m->m_len = len; | |
4473 | return (m); | |
4474 | } | |
4475 | ||
9bccf70c | 4476 | /* |
2d21ac55 A |
4477 | * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to |
4478 | * chain, copy junk along, and adjust length. | |
9bccf70c A |
4479 | */ |
4480 | struct mbuf * | |
2d21ac55 A |
4481 | m_prepend_2(struct mbuf *m, int len, int how) |
4482 | { | |
4483 | if (M_LEADINGSPACE(m) >= len) { | |
4484 | m->m_data -= len; | |
4485 | m->m_len += len; | |
4486 | } else { | |
9bccf70c | 4487 | m = m_prepend(m, len, how); |
2d21ac55 A |
4488 | } |
4489 | if ((m) && (m->m_flags & M_PKTHDR)) | |
4490 | m->m_pkthdr.len += len; | |
4491 | return (m); | |
9bccf70c A |
4492 | } |
4493 | ||
1c79356b A |
4494 | /* |
4495 | * Make a copy of an mbuf chain starting "off0" bytes from the beginning, | |
4496 | * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. | |
4497 | * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller. | |
4498 | */ | |
4499 | int MCFail; | |
4500 | ||
4501 | struct mbuf * | |
39236c6e | 4502 | m_copym_mode(struct mbuf *m, int off0, int len, int wait, uint32_t mode) |
1c79356b | 4503 | { |
2d21ac55 | 4504 | struct mbuf *n, *mhdr = NULL, **np; |
91447636 | 4505 | int off = off0; |
1c79356b A |
4506 | struct mbuf *top; |
4507 | int copyhdr = 0; | |
4508 | ||
4509 | if (off < 0 || len < 0) | |
2d21ac55 A |
4510 | panic("m_copym: invalid offset %d or len %d", off, len); |
4511 | ||
4512 | if (off == 0 && (m->m_flags & M_PKTHDR)) { | |
4513 | mhdr = m; | |
1c79356b | 4514 | copyhdr = 1; |
2d21ac55 | 4515 | } |
fa4905b1 A |
4516 | |
4517 | while (off >= m->m_len) { | |
2d21ac55 A |
4518 | if (m->m_next == NULL) |
4519 | panic("m_copym: invalid mbuf chain"); | |
1c79356b A |
4520 | off -= m->m_len; |
4521 | m = m->m_next; | |
4522 | } | |
4523 | np = ⊤ | |
2d21ac55 | 4524 | top = NULL; |
fa4905b1 | 4525 | |
1c79356b | 4526 | while (len > 0) { |
2d21ac55 | 4527 | if (m == NULL) { |
1c79356b | 4528 | if (len != M_COPYALL) |
2d21ac55 | 4529 | panic("m_copym: len != M_COPYALL"); |
1c79356b A |
4530 | break; |
4531 | } | |
2d21ac55 A |
4532 | |
4533 | n = _M_RETRY(wait, m->m_type); | |
1c79356b | 4534 | *np = n; |
fa4905b1 | 4535 | |
2d21ac55 | 4536 | if (n == NULL) |
1c79356b | 4537 | goto nospace; |
2d21ac55 A |
4538 | |
4539 | if (copyhdr != 0) { | |
39236c6e A |
4540 | if (mode == M_COPYM_MOVE_HDR) { |
4541 | M_COPY_PKTHDR(n, mhdr); | |
4542 | } else if (mode == M_COPYM_COPY_HDR) { | |
4543 | if (m_dup_pkthdr(n, mhdr, wait) == 0) | |
4544 | goto nospace; | |
4545 | } | |
1c79356b A |
4546 | if (len == M_COPYALL) |
4547 | n->m_pkthdr.len -= off0; | |
4548 | else | |
4549 | n->m_pkthdr.len = len; | |
4550 | copyhdr = 0; | |
4551 | } | |
4552 | if (len == M_COPYALL) { | |
2d21ac55 | 4553 | if (MIN(len, (m->m_len - off)) == len) { |
b0d623f7 | 4554 | printf("m->m_len %d - off %d = %d, %d\n", |
2d21ac55 A |
4555 | m->m_len, off, m->m_len - off, |
4556 | MIN(len, (m->m_len - off))); | |
4557 | } | |
1c79356b | 4558 | } |
2d21ac55 | 4559 | n->m_len = MIN(len, (m->m_len - off)); |
1c79356b | 4560 | if (n->m_len == M_COPYALL) { |
2d21ac55 A |
4561 | printf("n->m_len == M_COPYALL, fixing\n"); |
4562 | n->m_len = MHLEN; | |
1c79356b A |
4563 | } |
4564 | if (m->m_flags & M_EXT) { | |
1c79356b | 4565 | n->m_ext = m->m_ext; |
2d21ac55 | 4566 | m_incref(m); |
1c79356b A |
4567 | n->m_data = m->m_data + off; |
4568 | n->m_flags |= M_EXT; | |
fa4905b1 | 4569 | } else { |
2d21ac55 | 4570 | bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t), |
1c79356b | 4571 | (unsigned)n->m_len); |
fa4905b1 | 4572 | } |
1c79356b A |
4573 | if (len != M_COPYALL) |
4574 | len -= n->m_len; | |
4575 | off = 0; | |
4576 | m = m->m_next; | |
4577 | np = &n->m_next; | |
4578 | } | |
fa4905b1 | 4579 | |
2d21ac55 | 4580 | if (top == NULL) |
1c79356b | 4581 | MCFail++; |
fa4905b1 | 4582 | |
1c79356b A |
4583 | return (top); |
4584 | nospace: | |
fa4905b1 | 4585 | |
1c79356b A |
4586 | m_freem(top); |
4587 | MCFail++; | |
2d21ac55 | 4588 | return (NULL); |
1c79356b A |
4589 | } |
4590 | ||
39236c6e A |
4591 | |
4592 | struct mbuf * | |
4593 | m_copym(struct mbuf *m, int off0, int len, int wait) | |
4594 | { | |
4595 | return (m_copym_mode(m, off0, len, wait, M_COPYM_MOVE_HDR)); | |
4596 | } | |
4597 | ||
9bccf70c | 4598 | /* |
2d21ac55 A |
4599 | * Equivalent to m_copym except that all necessary mbuf hdrs are allocated |
4600 | * within this routine also, the last mbuf and offset accessed are passed | |
4601 | * out and can be passed back in to avoid having to rescan the entire mbuf | |
4602 | * list (normally hung off of the socket) | |
9bccf70c | 4603 | */ |
fa4905b1 | 4604 | struct mbuf * |
2d21ac55 | 4605 | m_copym_with_hdrs(struct mbuf *m, int off0, int len0, int wait, |
39236c6e | 4606 | struct mbuf **m_lastm, int *m_off, uint32_t mode) |
2d21ac55 A |
4607 | { |
4608 | struct mbuf *n, **np = NULL; | |
4609 | int off = off0, len = len0; | |
4610 | struct mbuf *top = NULL; | |
4611 | int mcflags = MSLEEPF(wait); | |
fa4905b1 | 4612 | int copyhdr = 0; |
2d21ac55 A |
4613 | int type = 0; |
4614 | mcache_obj_t *list = NULL; | |
4615 | int needed = 0; | |
fa4905b1 | 4616 | |
2d21ac55 | 4617 | if (off == 0 && (m->m_flags & M_PKTHDR)) |
fa4905b1 A |
4618 | copyhdr = 1; |
4619 | ||
6d2010ae A |
4620 | if (*m_lastm != NULL) { |
4621 | m = *m_lastm; | |
fa4905b1 A |
4622 | off = *m_off; |
4623 | } else { | |
2d21ac55 A |
4624 | while (off >= m->m_len) { |
4625 | off -= m->m_len; | |
fa4905b1 A |
4626 | m = m->m_next; |
4627 | } | |
4628 | } | |
91447636 | 4629 | |
2d21ac55 A |
4630 | n = m; |
4631 | while (len > 0) { | |
4632 | needed++; | |
4633 | ASSERT(n != NULL); | |
4634 | len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0))); | |
4635 | n = n->m_next; | |
4636 | } | |
4637 | needed++; | |
4638 | len = len0; | |
4639 | ||
4640 | /* | |
4641 | * If the caller doesn't want to be put to sleep, mark it with | |
4642 | * MCR_TRYHARD so that we may reclaim buffers from other places | |
4643 | * before giving up. | |
4644 | */ | |
4645 | if (mcflags & MCR_NOSLEEP) | |
4646 | mcflags |= MCR_TRYHARD; | |
4647 | ||
4648 | if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed, | |
4649 | mcflags) != needed) | |
4650 | goto nospace; | |
fa4905b1 | 4651 | |
2d21ac55 | 4652 | needed = 0; |
fa4905b1 | 4653 | while (len > 0) { |
2d21ac55 A |
4654 | n = (struct mbuf *)list; |
4655 | list = list->obj_next; | |
4656 | ASSERT(n != NULL && m != NULL); | |
4657 | ||
4658 | type = (top == NULL) ? MT_HEADER : m->m_type; | |
4659 | MBUF_INIT(n, (top == NULL), type); | |
4660 | #if CONFIG_MACF_NET | |
4661 | if (top == NULL && mac_mbuf_label_init(n, wait) != 0) { | |
4662 | mtype_stat_inc(MT_HEADER); | |
4663 | mtype_stat_dec(MT_FREE); | |
4664 | m_free(n); | |
fa4905b1 | 4665 | goto nospace; |
2d21ac55 A |
4666 | } |
4667 | #endif /* MAC_NET */ | |
4668 | ||
4669 | if (top == NULL) { | |
4670 | top = n; | |
fa4905b1 A |
4671 | np = &top->m_next; |
4672 | continue; | |
2d21ac55 A |
4673 | } else { |
4674 | needed++; | |
4675 | *np = n; | |
4676 | } | |
fa4905b1 A |
4677 | |
4678 | if (copyhdr) { | |
39236c6e A |
4679 | if (mode == M_COPYM_MOVE_HDR) { |
4680 | M_COPY_PKTHDR(n, m); | |
4681 | } else if (mode == M_COPYM_COPY_HDR) { | |
4682 | if (m_dup_pkthdr(n, m, wait) == 0) | |
4683 | goto nospace; | |
4684 | } | |
fa4905b1 A |
4685 | n->m_pkthdr.len = len; |
4686 | copyhdr = 0; | |
4687 | } | |
2d21ac55 | 4688 | n->m_len = MIN(len, (m->m_len - off)); |
fa4905b1 A |
4689 | |
4690 | if (m->m_flags & M_EXT) { | |
4691 | n->m_ext = m->m_ext; | |
2d21ac55 | 4692 | m_incref(m); |
fa4905b1 A |
4693 | n->m_data = m->m_data + off; |
4694 | n->m_flags |= M_EXT; | |
4695 | } else { | |
2d21ac55 | 4696 | bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t), |
fa4905b1 A |
4697 | (unsigned)n->m_len); |
4698 | } | |
4699 | len -= n->m_len; | |
2d21ac55 | 4700 | |
fa4905b1 | 4701 | if (len == 0) { |
2d21ac55 | 4702 | if ((off + n->m_len) == m->m_len) { |
6d2010ae | 4703 | *m_lastm = m->m_next; |
2d21ac55 | 4704 | *m_off = 0; |
fa4905b1 | 4705 | } else { |
6d2010ae | 4706 | *m_lastm = m; |
2d21ac55 | 4707 | *m_off = off + n->m_len; |
fa4905b1 | 4708 | } |
2d21ac55 | 4709 | break; |
fa4905b1 A |
4710 | } |
4711 | off = 0; | |
4712 | m = m->m_next; | |
4713 | np = &n->m_next; | |
4714 | } | |
fa4905b1 | 4715 | |
2d21ac55 A |
4716 | mtype_stat_inc(MT_HEADER); |
4717 | mtype_stat_add(type, needed); | |
4718 | mtype_stat_sub(MT_FREE, needed + 1); | |
4719 | ||
4720 | ASSERT(list == NULL); | |
fa4905b1 | 4721 | return (top); |
fa4905b1 | 4722 | |
2d21ac55 A |
4723 | nospace: |
4724 | if (list != NULL) | |
4725 | mcache_free_ext(m_cache(MC_MBUF), list); | |
4726 | if (top != NULL) | |
4727 | m_freem(top); | |
fa4905b1 | 4728 | MCFail++; |
2d21ac55 | 4729 | return (NULL); |
fa4905b1 A |
4730 | } |
4731 | ||
1c79356b A |
4732 | /* |
4733 | * Copy data from an mbuf chain starting "off" bytes from the beginning, | |
4734 | * continuing for "len" bytes, into the indicated buffer. | |
4735 | */ | |
2d21ac55 | 4736 | void |
b0d623f7 | 4737 | m_copydata(struct mbuf *m, int off, int len, void *vp) |
1c79356b | 4738 | { |
91447636 | 4739 | unsigned count; |
b0d623f7 | 4740 | char *cp = vp; |
1c79356b A |
4741 | |
4742 | if (off < 0 || len < 0) | |
2d21ac55 A |
4743 | panic("m_copydata: invalid offset %d or len %d", off, len); |
4744 | ||
1c79356b | 4745 | while (off > 0) { |
2d21ac55 A |
4746 | if (m == NULL) |
4747 | panic("m_copydata: invalid mbuf chain"); | |
1c79356b A |
4748 | if (off < m->m_len) |
4749 | break; | |
4750 | off -= m->m_len; | |
4751 | m = m->m_next; | |
4752 | } | |
4753 | while (len > 0) { | |
2d21ac55 A |
4754 | if (m == NULL) |
4755 | panic("m_copydata: invalid mbuf chain"); | |
4756 | count = MIN(m->m_len - off, len); | |
4757 | bcopy(MTOD(m, caddr_t) + off, cp, count); | |
1c79356b A |
4758 | len -= count; |
4759 | cp += count; | |
4760 | off = 0; | |
4761 | m = m->m_next; | |
4762 | } | |
4763 | } | |
4764 | ||
4765 | /* | |
2d21ac55 A |
4766 | * Concatenate mbuf chain n to m. Both chains must be of the same type |
4767 | * (e.g. MT_DATA). Any m_pkthdr is not updated. | |
1c79356b | 4768 | */ |
2d21ac55 A |
4769 | void |
4770 | m_cat(struct mbuf *m, struct mbuf *n) | |
1c79356b A |
4771 | { |
4772 | while (m->m_next) | |
4773 | m = m->m_next; | |
4774 | while (n) { | |
2d21ac55 | 4775 | if ((m->m_flags & M_EXT) || |
1c79356b A |
4776 | m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) { |
4777 | /* just join the two chains */ | |
4778 | m->m_next = n; | |
4779 | return; | |
4780 | } | |
4781 | /* splat the data from one into the other */ | |
2d21ac55 | 4782 | bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len, |
1c79356b A |
4783 | (u_int)n->m_len); |
4784 | m->m_len += n->m_len; | |
4785 | n = m_free(n); | |
4786 | } | |
4787 | } | |
4788 | ||
4789 | void | |
2d21ac55 | 4790 | m_adj(struct mbuf *mp, int req_len) |
1c79356b | 4791 | { |
91447636 A |
4792 | int len = req_len; |
4793 | struct mbuf *m; | |
4794 | int count; | |
1c79356b A |
4795 | |
4796 | if ((m = mp) == NULL) | |
4797 | return; | |
4798 | if (len >= 0) { | |
4799 | /* | |
4800 | * Trim from head. | |
4801 | */ | |
4802 | while (m != NULL && len > 0) { | |
4803 | if (m->m_len <= len) { | |
4804 | len -= m->m_len; | |
4805 | m->m_len = 0; | |
4806 | m = m->m_next; | |
4807 | } else { | |
4808 | m->m_len -= len; | |
4809 | m->m_data += len; | |
4810 | len = 0; | |
4811 | } | |
4812 | } | |
4813 | m = mp; | |
4814 | if (m->m_flags & M_PKTHDR) | |
4815 | m->m_pkthdr.len -= (req_len - len); | |
4816 | } else { | |
4817 | /* | |
4818 | * Trim from tail. Scan the mbuf chain, | |
4819 | * calculating its length and finding the last mbuf. | |
4820 | * If the adjustment only affects this mbuf, then just | |
4821 | * adjust and return. Otherwise, rescan and truncate | |
4822 | * after the remaining size. | |
4823 | */ | |
4824 | len = -len; | |
4825 | count = 0; | |
4826 | for (;;) { | |
4827 | count += m->m_len; | |
4828 | if (m->m_next == (struct mbuf *)0) | |
4829 | break; | |
4830 | m = m->m_next; | |
4831 | } | |
4832 | if (m->m_len >= len) { | |
4833 | m->m_len -= len; | |
4834 | m = mp; | |
4835 | if (m->m_flags & M_PKTHDR) | |
4836 | m->m_pkthdr.len -= len; | |
4837 | return; | |
4838 | } | |
4839 | count -= len; | |
4840 | if (count < 0) | |
4841 | count = 0; | |
4842 | /* | |
4843 | * Correct length for chain is "count". | |
4844 | * Find the mbuf with last data, adjust its length, | |
4845 | * and toss data from remaining mbufs on chain. | |
4846 | */ | |
4847 | m = mp; | |
4848 | if (m->m_flags & M_PKTHDR) | |
4849 | m->m_pkthdr.len = count; | |
4850 | for (; m; m = m->m_next) { | |
4851 | if (m->m_len >= count) { | |
4852 | m->m_len = count; | |
4853 | break; | |
4854 | } | |
4855 | count -= m->m_len; | |
4856 | } | |
91447636 | 4857 | while ((m = m->m_next)) |
1c79356b A |
4858 | m->m_len = 0; |
4859 | } | |
4860 | } | |
4861 | ||
4862 | /* | |
4863 | * Rearange an mbuf chain so that len bytes are contiguous | |
4864 | * and in the data area of an mbuf (so that mtod and dtom | |
4865 | * will work for a structure of size len). Returns the resulting | |
4866 | * mbuf chain on success, frees it and returns null on failure. | |
4867 | * If there is room, it will add up to max_protohdr-len extra bytes to the | |
4868 | * contiguous region in an attempt to avoid being called next time. | |
4869 | */ | |
4870 | int MPFail; | |
4871 | ||
4872 | struct mbuf * | |
2d21ac55 | 4873 | m_pullup(struct mbuf *n, int len) |
1c79356b | 4874 | { |
91447636 A |
4875 | struct mbuf *m; |
4876 | int count; | |
1c79356b A |
4877 | int space; |
4878 | ||
4879 | /* | |
4880 | * If first mbuf has no cluster, and has room for len bytes | |
4881 | * without shifting current data, pullup into it, | |
4882 | * otherwise allocate a new mbuf to prepend to the chain. | |
4883 | */ | |
4884 | if ((n->m_flags & M_EXT) == 0 && | |
4885 | n->m_data + len < &n->m_dat[MLEN] && n->m_next) { | |
4886 | if (n->m_len >= len) | |
4887 | return (n); | |
4888 | m = n; | |
4889 | n = n->m_next; | |
4890 | len -= m->m_len; | |
4891 | } else { | |
4892 | if (len > MHLEN) | |
4893 | goto bad; | |
2d21ac55 | 4894 | _MGET(m, M_DONTWAIT, n->m_type); |
1c79356b A |
4895 | if (m == 0) |
4896 | goto bad; | |
4897 | m->m_len = 0; | |
4898 | if (n->m_flags & M_PKTHDR) { | |
4899 | M_COPY_PKTHDR(m, n); | |
4900 | n->m_flags &= ~M_PKTHDR; | |
4901 | } | |
4902 | } | |
4903 | space = &m->m_dat[MLEN] - (m->m_data + m->m_len); | |
4904 | do { | |
2d21ac55 A |
4905 | count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len); |
4906 | bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len, | |
4907 | (unsigned)count); | |
1c79356b A |
4908 | len -= count; |
4909 | m->m_len += count; | |
4910 | n->m_len -= count; | |
4911 | space -= count; | |
4912 | if (n->m_len) | |
4913 | n->m_data += count; | |
4914 | else | |
4915 | n = m_free(n); | |
4916 | } while (len > 0 && n); | |
4917 | if (len > 0) { | |
4918 | (void) m_free(m); | |
4919 | goto bad; | |
4920 | } | |
4921 | m->m_next = n; | |
4922 | return (m); | |
4923 | bad: | |
4924 | m_freem(n); | |
4925 | MPFail++; | |
4926 | return (0); | |
4927 | } | |
4928 | ||
6d2010ae A |
4929 | /* |
4930 | * Like m_pullup(), except a new mbuf is always allocated, and we allow | |
4931 | * the amount of empty space before the data in the new mbuf to be specified | |
4932 | * (in the event that the caller expects to prepend later). | |
4933 | */ | |
4934 | __private_extern__ int MSFail = 0; | |
4935 | ||
4936 | __private_extern__ struct mbuf * | |
4937 | m_copyup(struct mbuf *n, int len, int dstoff) | |
4938 | { | |
4939 | struct mbuf *m; | |
4940 | int count, space; | |
4941 | ||
4942 | if (len > (MHLEN - dstoff)) | |
4943 | goto bad; | |
4944 | MGET(m, M_DONTWAIT, n->m_type); | |
4945 | if (m == NULL) | |
4946 | goto bad; | |
4947 | m->m_len = 0; | |
4948 | if (n->m_flags & M_PKTHDR) { | |
4949 | m_copy_pkthdr(m, n); | |
4950 | n->m_flags &= ~M_PKTHDR; | |
4951 | } | |
4952 | m->m_data += dstoff; | |
4953 | space = &m->m_dat[MLEN] - (m->m_data + m->m_len); | |
4954 | do { | |
4955 | count = min(min(max(len, max_protohdr), space), n->m_len); | |
4956 | memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), | |
4957 | (unsigned)count); | |
4958 | len -= count; | |
4959 | m->m_len += count; | |
4960 | n->m_len -= count; | |
4961 | space -= count; | |
4962 | if (n->m_len) | |
4963 | n->m_data += count; | |
4964 | else | |
4965 | n = m_free(n); | |
4966 | } while (len > 0 && n); | |
4967 | if (len > 0) { | |
4968 | (void) m_free(m); | |
4969 | goto bad; | |
4970 | } | |
4971 | m->m_next = n; | |
4972 | return (m); | |
4973 | bad: | |
4974 | m_freem(n); | |
4975 | MSFail++; | |
4976 | return (NULL); | |
4977 | } | |
4978 | ||
1c79356b A |
4979 | /* |
4980 | * Partition an mbuf chain in two pieces, returning the tail -- | |
4981 | * all but the first len0 bytes. In case of failure, it returns NULL and | |
4982 | * attempts to restore the chain to its original state. | |
4983 | */ | |
4984 | struct mbuf * | |
2d21ac55 | 4985 | m_split(struct mbuf *m0, int len0, int wait) |
b0d623f7 A |
4986 | { |
4987 | return (m_split0(m0, len0, wait, 1)); | |
4988 | } | |
4989 | ||
4990 | static struct mbuf * | |
4991 | m_split0(struct mbuf *m0, int len0, int wait, int copyhdr) | |
1c79356b | 4992 | { |
91447636 | 4993 | struct mbuf *m, *n; |
1c79356b A |
4994 | unsigned len = len0, remain; |
4995 | ||
4996 | for (m = m0; m && len > m->m_len; m = m->m_next) | |
4997 | len -= m->m_len; | |
2d21ac55 A |
4998 | if (m == NULL) |
4999 | return (NULL); | |
1c79356b | 5000 | remain = m->m_len - len; |
b0d623f7 | 5001 | if (copyhdr && (m0->m_flags & M_PKTHDR)) { |
2d21ac55 A |
5002 | _MGETHDR(n, wait, m0->m_type); |
5003 | if (n == NULL) | |
5004 | return (NULL); | |
1c79356b A |
5005 | n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; |
5006 | n->m_pkthdr.len = m0->m_pkthdr.len - len0; | |
5007 | m0->m_pkthdr.len = len0; | |
5008 | if (m->m_flags & M_EXT) | |
5009 | goto extpacket; | |
5010 | if (remain > MHLEN) { | |
5011 | /* m can't be the lead packet */ | |
5012 | MH_ALIGN(n, 0); | |
5013 | n->m_next = m_split(m, len, wait); | |
2d21ac55 | 5014 | if (n->m_next == NULL) { |
1c79356b | 5015 | (void) m_free(n); |
2d21ac55 | 5016 | return (NULL); |
1c79356b A |
5017 | } else |
5018 | return (n); | |
5019 | } else | |
5020 | MH_ALIGN(n, remain); | |
5021 | } else if (remain == 0) { | |
5022 | n = m->m_next; | |
2d21ac55 | 5023 | m->m_next = NULL; |
1c79356b A |
5024 | return (n); |
5025 | } else { | |
2d21ac55 A |
5026 | _MGET(n, wait, m->m_type); |
5027 | if (n == NULL) | |
5028 | return (NULL); | |
1c79356b A |
5029 | M_ALIGN(n, remain); |
5030 | } | |
5031 | extpacket: | |
5032 | if (m->m_flags & M_EXT) { | |
5033 | n->m_flags |= M_EXT; | |
0b4e3aa0 | 5034 | n->m_ext = m->m_ext; |
2d21ac55 | 5035 | m_incref(m); |
1c79356b A |
5036 | n->m_data = m->m_data + len; |
5037 | } else { | |
2d21ac55 | 5038 | bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), remain); |
1c79356b A |
5039 | } |
5040 | n->m_len = remain; | |
5041 | m->m_len = len; | |
5042 | n->m_next = m->m_next; | |
2d21ac55 | 5043 | m->m_next = NULL; |
1c79356b A |
5044 | return (n); |
5045 | } | |
2d21ac55 | 5046 | |
1c79356b A |
5047 | /* |
5048 | * Routine to copy from device local memory into mbufs. | |
5049 | */ | |
5050 | struct mbuf * | |
2d21ac55 A |
5051 | m_devget(char *buf, int totlen, int off0, struct ifnet *ifp, |
5052 | void (*copy)(const void *, void *, size_t)) | |
1c79356b | 5053 | { |
91447636 | 5054 | struct mbuf *m; |
2d21ac55 | 5055 | struct mbuf *top = NULL, **mp = ⊤ |
91447636 A |
5056 | int off = off0, len; |
5057 | char *cp; | |
1c79356b A |
5058 | char *epkt; |
5059 | ||
5060 | cp = buf; | |
5061 | epkt = cp + totlen; | |
5062 | if (off) { | |
5063 | /* | |
5064 | * If 'off' is non-zero, packet is trailer-encapsulated, | |
5065 | * so we have to skip the type and length fields. | |
5066 | */ | |
2d21ac55 A |
5067 | cp += off + 2 * sizeof (u_int16_t); |
5068 | totlen -= 2 * sizeof (u_int16_t); | |
1c79356b | 5069 | } |
2d21ac55 A |
5070 | _MGETHDR(m, M_DONTWAIT, MT_DATA); |
5071 | if (m == NULL) | |
5072 | return (NULL); | |
1c79356b A |
5073 | m->m_pkthdr.rcvif = ifp; |
5074 | m->m_pkthdr.len = totlen; | |
5075 | m->m_len = MHLEN; | |
5076 | ||
5077 | while (totlen > 0) { | |
2d21ac55 A |
5078 | if (top != NULL) { |
5079 | _MGET(m, M_DONTWAIT, MT_DATA); | |
5080 | if (m == NULL) { | |
1c79356b | 5081 | m_freem(top); |
2d21ac55 | 5082 | return (NULL); |
1c79356b A |
5083 | } |
5084 | m->m_len = MLEN; | |
5085 | } | |
2d21ac55 | 5086 | len = MIN(totlen, epkt - cp); |
1c79356b A |
5087 | if (len >= MINCLSIZE) { |
5088 | MCLGET(m, M_DONTWAIT); | |
2d21ac55 A |
5089 | if (m->m_flags & M_EXT) { |
5090 | m->m_len = len = MIN(len, m_maxsize(MC_CL)); | |
5091 | } else { | |
5092 | /* give up when it's out of cluster mbufs */ | |
5093 | if (top != NULL) | |
5094 | m_freem(top); | |
1c79356b | 5095 | m_freem(m); |
2d21ac55 | 5096 | return (NULL); |
1c79356b A |
5097 | } |
5098 | } else { | |
5099 | /* | |
5100 | * Place initial small packet/header at end of mbuf. | |
5101 | */ | |
5102 | if (len < m->m_len) { | |
2d21ac55 A |
5103 | if (top == NULL && |
5104 | len + max_linkhdr <= m->m_len) | |
1c79356b A |
5105 | m->m_data += max_linkhdr; |
5106 | m->m_len = len; | |
2d21ac55 | 5107 | } else { |
1c79356b | 5108 | len = m->m_len; |
2d21ac55 | 5109 | } |
1c79356b A |
5110 | } |
5111 | if (copy) | |
2d21ac55 | 5112 | copy(cp, MTOD(m, caddr_t), (unsigned)len); |
1c79356b | 5113 | else |
2d21ac55 | 5114 | bcopy(cp, MTOD(m, caddr_t), (unsigned)len); |
1c79356b A |
5115 | cp += len; |
5116 | *mp = m; | |
5117 | mp = &m->m_next; | |
5118 | totlen -= len; | |
5119 | if (cp == epkt) | |
5120 | cp = buf; | |
5121 | } | |
5122 | return (top); | |
5123 | } | |
5124 | ||
6d2010ae A |
5125 | #ifndef MBUF_GROWTH_NORMAL_THRESH |
5126 | #define MBUF_GROWTH_NORMAL_THRESH 25 | |
5127 | #endif | |
b0d623f7 | 5128 | |
1c79356b | 5129 | /* |
2d21ac55 | 5130 | * Cluster freelist allocation check. |
1c79356b A |
5131 | */ |
5132 | static int | |
91447636 | 5133 | m_howmany(int num, size_t bufsize) |
1c79356b | 5134 | { |
2d21ac55 | 5135 | int i = 0, j = 0; |
6d2010ae A |
5136 | u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters; |
5137 | u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree; | |
5138 | u_int32_t sumclusters, freeclusters; | |
5139 | u_int32_t percent_pool, percent_kmem; | |
5140 | u_int32_t mb_growth, mb_growth_thresh; | |
5141 | ||
5142 | VERIFY(bufsize == m_maxsize(MC_BIGCL) || | |
5143 | bufsize == m_maxsize(MC_16KCL)); | |
2d21ac55 A |
5144 | |
5145 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
5146 | ||
6d2010ae A |
5147 | /* Numbers in 2K cluster units */ |
5148 | m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT; | |
2d21ac55 | 5149 | m_clusters = m_total(MC_CL); |
6d2010ae | 5150 | m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT; |
2d21ac55 | 5151 | m_16kclusters = m_total(MC_16KCL); |
6d2010ae A |
5152 | sumclusters = m_mbclusters + m_clusters + m_bigclusters; |
5153 | ||
5154 | m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT; | |
2d21ac55 | 5155 | m_clfree = m_infree(MC_CL); |
6d2010ae | 5156 | m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT; |
2d21ac55 | 5157 | m_16kclfree = m_infree(MC_16KCL); |
6d2010ae | 5158 | freeclusters = m_mbfree + m_clfree + m_bigclfree; |
2d21ac55 | 5159 | |
91447636 | 5160 | /* Bail if we've maxed out the mbuf memory map */ |
6d2010ae | 5161 | if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) || |
2d21ac55 | 5162 | (njcl > 0 && bufsize == m_maxsize(MC_16KCL) && |
6d2010ae | 5163 | (m_16kclusters << NCLPJCLSHIFT) >= njcl)) { |
2d21ac55 A |
5164 | return (0); |
5165 | } | |
5166 | ||
6d2010ae | 5167 | if (bufsize == m_maxsize(MC_BIGCL)) { |
2d21ac55 | 5168 | /* Under minimum */ |
6d2010ae A |
5169 | if (m_bigclusters < m_minlimit(MC_BIGCL)) |
5170 | return (m_minlimit(MC_BIGCL) - m_bigclusters); | |
5171 | ||
5172 | percent_pool = | |
5173 | ((sumclusters - freeclusters) * 100) / sumclusters; | |
5174 | percent_kmem = (sumclusters * 100) / nclusters; | |
5175 | ||
5176 | /* | |
5177 | * If a light/normal user, grow conservatively (75%) | |
5178 | * If a heavy user, grow aggressively (50%) | |
5179 | */ | |
5180 | if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH) | |
5181 | mb_growth = MB_GROWTH_NORMAL; | |
5182 | else | |
5183 | mb_growth = MB_GROWTH_AGGRESSIVE; | |
5184 | ||
5185 | if (percent_kmem < 5) { | |
5186 | /* For initial allocations */ | |
5187 | i = num; | |
5188 | } else { | |
5189 | /* Return if >= MBIGCL_LOWAT clusters available */ | |
5190 | if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT && | |
5191 | m_total(MC_BIGCL) >= | |
5192 | MBIGCL_LOWAT + m_minlimit(MC_BIGCL)) | |
2d21ac55 | 5193 | return (0); |
6d2010ae A |
5194 | |
5195 | /* Ensure at least num clusters are accessible */ | |
5196 | if (num >= m_infree(MC_BIGCL)) | |
5197 | i = num - m_infree(MC_BIGCL); | |
5198 | if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL)) | |
5199 | j = num - (m_total(MC_BIGCL) - | |
5200 | m_minlimit(MC_BIGCL)); | |
5201 | ||
2d21ac55 | 5202 | i = MAX(i, j); |
6d2010ae A |
5203 | |
5204 | /* | |
5205 | * Grow pool if percent_pool > 75 (normal growth) | |
5206 | * or percent_pool > 50 (aggressive growth). | |
5207 | */ | |
5208 | mb_growth_thresh = 100 - (100 / (1 << mb_growth)); | |
5209 | if (percent_pool > mb_growth_thresh) | |
5210 | j = ((sumclusters + num) >> mb_growth) - | |
5211 | freeclusters; | |
2d21ac55 | 5212 | i = MAX(i, j); |
2d21ac55 | 5213 | } |
6d2010ae A |
5214 | |
5215 | /* Check to ensure we didn't go over limits */ | |
5216 | if (i + m_bigclusters >= m_maxlimit(MC_BIGCL)) | |
5217 | i = m_maxlimit(MC_BIGCL) - m_bigclusters; | |
5218 | if ((i << 1) + sumclusters >= nclusters) | |
5219 | i = (nclusters - sumclusters) >> 1; | |
2d21ac55 | 5220 | VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL)); |
6d2010ae A |
5221 | VERIFY(sumclusters + (i << 1) <= nclusters); |
5222 | ||
5223 | } else { /* 16K CL */ | |
2d21ac55 A |
5224 | VERIFY(njcl > 0); |
5225 | /* Under minimum */ | |
5226 | if (m_16kclusters < MIN16KCL) | |
5227 | return (MIN16KCL - m_16kclusters); | |
6d2010ae A |
5228 | if (m_16kclfree >= M16KCL_LOWAT) |
5229 | return (0); | |
5230 | ||
5231 | /* Ensure at least num clusters are available */ | |
5232 | if (num >= m_16kclfree) | |
5233 | i = num - m_16kclfree; | |
5234 | ||
5235 | /* Always grow 16KCL pool aggressively */ | |
5236 | if (((m_16kclusters + num) >> 1) > m_16kclfree) | |
5237 | j = ((m_16kclusters + num) >> 1) - m_16kclfree; | |
5238 | i = MAX(i, j); | |
5239 | ||
5240 | /* Check to ensure we don't go over limit */ | |
5241 | if (i + m_16kclusters >= m_maxlimit(MC_16KCL)) | |
5242 | i = m_maxlimit(MC_16KCL) - m_16kclusters; | |
2d21ac55 | 5243 | VERIFY((m_total(MC_16KCL) + i) <= m_maxlimit(MC_16KCL)); |
91447636 | 5244 | } |
2d21ac55 | 5245 | return (i); |
1c79356b | 5246 | } |
b0d623f7 A |
5247 | /* |
5248 | * Return the number of bytes in the mbuf chain, m. | |
6d2010ae A |
5249 | */ |
5250 | unsigned int | |
b0d623f7 A |
5251 | m_length(struct mbuf *m) |
5252 | { | |
5253 | struct mbuf *m0; | |
5254 | unsigned int pktlen; | |
5255 | ||
5256 | if (m->m_flags & M_PKTHDR) | |
5257 | return (m->m_pkthdr.len); | |
5258 | ||
5259 | pktlen = 0; | |
5260 | for (m0 = m; m0 != NULL; m0 = m0->m_next) | |
5261 | pktlen += m0->m_len; | |
5262 | return (pktlen); | |
5263 | } | |
5264 | ||
1c79356b A |
5265 | /* |
5266 | * Copy data from a buffer back into the indicated mbuf chain, | |
5267 | * starting "off" bytes from the beginning, extending the mbuf | |
5268 | * chain if necessary. | |
5269 | */ | |
5270 | void | |
b0d623f7 | 5271 | m_copyback(struct mbuf *m0, int off, int len, const void *cp) |
1c79356b | 5272 | { |
b0d623f7 A |
5273 | #if DEBUG |
5274 | struct mbuf *origm = m0; | |
5275 | int error; | |
5276 | #endif /* DEBUG */ | |
1c79356b | 5277 | |
2d21ac55 | 5278 | if (m0 == NULL) |
1c79356b | 5279 | return; |
b0d623f7 A |
5280 | |
5281 | #if DEBUG | |
5282 | error = | |
5283 | #endif /* DEBUG */ | |
5284 | m_copyback0(&m0, off, len, cp, | |
5285 | M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT); | |
5286 | ||
5287 | #if DEBUG | |
5288 | if (error != 0 || (m0 != NULL && origm != m0)) | |
5289 | panic("m_copyback"); | |
5290 | #endif /* DEBUG */ | |
5291 | } | |
5292 | ||
5293 | struct mbuf * | |
5294 | m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how) | |
5295 | { | |
5296 | int error; | |
5297 | ||
5298 | /* don't support chain expansion */ | |
5299 | VERIFY(off + len <= m_length(m0)); | |
5300 | ||
5301 | error = m_copyback0(&m0, off, len, cp, | |
5302 | M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how); | |
5303 | if (error) { | |
5304 | /* | |
5305 | * no way to recover from partial success. | |
5306 | * just free the chain. | |
5307 | */ | |
5308 | m_freem(m0); | |
5309 | return (NULL); | |
5310 | } | |
5311 | return (m0); | |
5312 | } | |
5313 | ||
5314 | /* | |
5315 | * m_makewritable: ensure the specified range writable. | |
5316 | */ | |
5317 | int | |
5318 | m_makewritable(struct mbuf **mp, int off, int len, int how) | |
5319 | { | |
5320 | int error; | |
5321 | #if DEBUG | |
5322 | struct mbuf *n; | |
5323 | int origlen, reslen; | |
5324 | ||
5325 | origlen = m_length(*mp); | |
5326 | #endif /* DEBUG */ | |
5327 | ||
5328 | #if 0 /* M_COPYALL is large enough */ | |
5329 | if (len == M_COPYALL) | |
5330 | len = m_length(*mp) - off; /* XXX */ | |
5331 | #endif | |
5332 | ||
5333 | error = m_copyback0(mp, off, len, NULL, | |
5334 | M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how); | |
5335 | ||
5336 | #if DEBUG | |
5337 | reslen = 0; | |
5338 | for (n = *mp; n; n = n->m_next) | |
5339 | reslen += n->m_len; | |
5340 | if (origlen != reslen) | |
5341 | panic("m_makewritable: length changed"); | |
5342 | if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len) | |
5343 | panic("m_makewritable: inconsist"); | |
5344 | #endif /* DEBUG */ | |
5345 | ||
5346 | return (error); | |
5347 | } | |
5348 | ||
5349 | static int | |
5350 | m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags, | |
5351 | int how) | |
5352 | { | |
5353 | int mlen; | |
5354 | struct mbuf *m, *n; | |
5355 | struct mbuf **mp; | |
5356 | int totlen = 0; | |
5357 | const char *cp = vp; | |
5358 | ||
5359 | VERIFY(mp0 != NULL); | |
5360 | VERIFY(*mp0 != NULL); | |
5361 | VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL); | |
5362 | VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL); | |
5363 | ||
5364 | /* | |
5365 | * we don't bother to update "totlen" in the case of M_COPYBACK0_COW, | |
5366 | * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive. | |
5367 | */ | |
5368 | ||
5369 | VERIFY((~flags & (M_COPYBACK0_EXTEND|M_COPYBACK0_COW)) != 0); | |
5370 | ||
5371 | mp = mp0; | |
5372 | m = *mp; | |
1c79356b A |
5373 | while (off > (mlen = m->m_len)) { |
5374 | off -= mlen; | |
5375 | totlen += mlen; | |
2d21ac55 | 5376 | if (m->m_next == NULL) { |
b0d623f7 A |
5377 | int tspace; |
5378 | extend: | |
5379 | if (!(flags & M_COPYBACK0_EXTEND)) | |
1c79356b | 5380 | goto out; |
b0d623f7 A |
5381 | |
5382 | /* | |
5383 | * try to make some space at the end of "m". | |
5384 | */ | |
5385 | ||
5386 | mlen = m->m_len; | |
5387 | if (off + len >= MINCLSIZE && | |
5388 | !(m->m_flags & M_EXT) && m->m_len == 0) { | |
5389 | MCLGET(m, how); | |
5390 | } | |
5391 | tspace = M_TRAILINGSPACE(m); | |
5392 | if (tspace > 0) { | |
5393 | tspace = MIN(tspace, off + len); | |
5394 | VERIFY(tspace > 0); | |
5395 | bzero(mtod(m, char *) + m->m_len, | |
5396 | MIN(off, tspace)); | |
5397 | m->m_len += tspace; | |
5398 | off += mlen; | |
5399 | totlen -= mlen; | |
5400 | continue; | |
5401 | } | |
5402 | ||
5403 | /* | |
5404 | * need to allocate an mbuf. | |
5405 | */ | |
5406 | ||
5407 | if (off + len >= MINCLSIZE) { | |
5408 | n = m_getcl(how, m->m_type, 0); | |
5409 | } else { | |
5410 | n = _M_GET(how, m->m_type); | |
5411 | } | |
5412 | if (n == NULL) { | |
5413 | goto out; | |
5414 | } | |
5415 | n->m_len = 0; | |
5416 | n->m_len = MIN(M_TRAILINGSPACE(n), off + len); | |
5417 | bzero(mtod(n, char *), MIN(n->m_len, off)); | |
1c79356b A |
5418 | m->m_next = n; |
5419 | } | |
b0d623f7 | 5420 | mp = &m->m_next; |
1c79356b A |
5421 | m = m->m_next; |
5422 | } | |
5423 | while (len > 0) { | |
b0d623f7 A |
5424 | mlen = m->m_len - off; |
5425 | if (mlen != 0 && m_mclhasreference(m)) { | |
5426 | char *datap; | |
5427 | int eatlen; | |
5428 | ||
5429 | /* | |
5430 | * this mbuf is read-only. | |
5431 | * allocate a new writable mbuf and try again. | |
5432 | */ | |
5433 | ||
39236c6e | 5434 | #if DIAGNOSTIC |
b0d623f7 A |
5435 | if (!(flags & M_COPYBACK0_COW)) |
5436 | panic("m_copyback0: read-only"); | |
39236c6e | 5437 | #endif /* DIAGNOSTIC */ |
b0d623f7 A |
5438 | |
5439 | /* | |
5440 | * if we're going to write into the middle of | |
5441 | * a mbuf, split it first. | |
5442 | */ | |
5443 | if (off > 0 && len < mlen) { | |
5444 | n = m_split0(m, off, how, 0); | |
5445 | if (n == NULL) | |
5446 | goto enobufs; | |
5447 | m->m_next = n; | |
5448 | mp = &m->m_next; | |
5449 | m = n; | |
5450 | off = 0; | |
5451 | continue; | |
5452 | } | |
5453 | ||
5454 | /* | |
5455 | * XXX TODO coalesce into the trailingspace of | |
5456 | * the previous mbuf when possible. | |
5457 | */ | |
5458 | ||
5459 | /* | |
5460 | * allocate a new mbuf. copy packet header if needed. | |
5461 | */ | |
5462 | n = _M_GET(how, m->m_type); | |
5463 | if (n == NULL) | |
5464 | goto enobufs; | |
5465 | if (off == 0 && (m->m_flags & M_PKTHDR)) { | |
5466 | M_COPY_PKTHDR(n, m); | |
5467 | n->m_len = MHLEN; | |
5468 | } else { | |
5469 | if (len >= MINCLSIZE) | |
5470 | MCLGET(n, M_DONTWAIT); | |
5471 | n->m_len = | |
5472 | (n->m_flags & M_EXT) ? MCLBYTES : MLEN; | |
5473 | } | |
5474 | if (n->m_len > len) | |
5475 | n->m_len = len; | |
5476 | ||
5477 | /* | |
5478 | * free the region which has been overwritten. | |
5479 | * copying data from old mbufs if requested. | |
5480 | */ | |
5481 | if (flags & M_COPYBACK0_PRESERVE) | |
5482 | datap = mtod(n, char *); | |
5483 | else | |
5484 | datap = NULL; | |
5485 | eatlen = n->m_len; | |
5486 | VERIFY(off == 0 || eatlen >= mlen); | |
5487 | if (off > 0) { | |
5488 | VERIFY(len >= mlen); | |
5489 | m->m_len = off; | |
5490 | m->m_next = n; | |
5491 | if (datap) { | |
5492 | m_copydata(m, off, mlen, datap); | |
5493 | datap += mlen; | |
5494 | } | |
5495 | eatlen -= mlen; | |
5496 | mp = &m->m_next; | |
5497 | m = m->m_next; | |
5498 | } | |
5499 | while (m != NULL && m_mclhasreference(m) && | |
5500 | n->m_type == m->m_type && eatlen > 0) { | |
5501 | mlen = MIN(eatlen, m->m_len); | |
5502 | if (datap) { | |
5503 | m_copydata(m, 0, mlen, datap); | |
5504 | datap += mlen; | |
5505 | } | |
5506 | m->m_data += mlen; | |
5507 | m->m_len -= mlen; | |
5508 | eatlen -= mlen; | |
5509 | if (m->m_len == 0) | |
5510 | *mp = m = m_free(m); | |
5511 | } | |
5512 | if (eatlen > 0) | |
5513 | n->m_len -= eatlen; | |
5514 | n->m_next = m; | |
5515 | *mp = m = n; | |
5516 | continue; | |
5517 | } | |
5518 | mlen = MIN(mlen, len); | |
5519 | if (flags & M_COPYBACK0_COPYBACK) { | |
5520 | bcopy(cp, mtod(m, caddr_t) + off, (unsigned)mlen); | |
5521 | cp += mlen; | |
5522 | } | |
1c79356b A |
5523 | len -= mlen; |
5524 | mlen += off; | |
5525 | off = 0; | |
5526 | totlen += mlen; | |
5527 | if (len == 0) | |
5528 | break; | |
2d21ac55 | 5529 | if (m->m_next == NULL) { |
b0d623f7 | 5530 | goto extend; |
1c79356b | 5531 | } |
b0d623f7 | 5532 | mp = &m->m_next; |
1c79356b A |
5533 | m = m->m_next; |
5534 | } | |
2d21ac55 | 5535 | out: |
b0d623f7 A |
5536 | if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) { |
5537 | VERIFY(flags & M_COPYBACK0_EXTEND); | |
1c79356b | 5538 | m->m_pkthdr.len = totlen; |
b0d623f7 A |
5539 | } |
5540 | ||
5541 | return (0); | |
5542 | ||
5543 | enobufs: | |
5544 | return (ENOBUFS); | |
1c79356b A |
5545 | } |
5546 | ||
39236c6e | 5547 | uint64_t |
2d21ac55 A |
5548 | mcl_to_paddr(char *addr) |
5549 | { | |
b0d623f7 | 5550 | vm_offset_t base_phys; |
1c79356b | 5551 | |
2d21ac55 | 5552 | if (!MBUF_IN_MAP(addr)) |
39236c6e A |
5553 | return (0); |
5554 | base_phys = mcl_paddr[atop_64(addr - (char *)mbutl)]; | |
1c79356b A |
5555 | |
5556 | if (base_phys == 0) | |
39236c6e A |
5557 | return (0); |
5558 | return ((uint64_t)(ptoa_64(base_phys) | ((uint64_t)addr & PAGE_MASK))); | |
1c79356b A |
5559 | } |
5560 | ||
5561 | /* | |
5562 | * Dup the mbuf chain passed in. The whole thing. No cute additional cruft. | |
5563 | * And really copy the thing. That way, we don't "precompute" checksums | |
2d21ac55 A |
5564 | * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for |
5565 | * small packets, don't dup into a cluster. That way received packets | |
5566 | * don't take up too much room in the sockbuf (cf. sbspace()). | |
1c79356b A |
5567 | */ |
5568 | int MDFail; | |
5569 | ||
5570 | struct mbuf * | |
91447636 | 5571 | m_dup(struct mbuf *m, int how) |
2d21ac55 | 5572 | { |
91447636 | 5573 | struct mbuf *n, **np; |
1c79356b A |
5574 | struct mbuf *top; |
5575 | int copyhdr = 0; | |
5576 | ||
5577 | np = ⊤ | |
2d21ac55 | 5578 | top = NULL; |
1c79356b A |
5579 | if (m->m_flags & M_PKTHDR) |
5580 | copyhdr = 1; | |
5581 | ||
5582 | /* | |
5583 | * Quick check: if we have one mbuf and its data fits in an | |
5584 | * mbuf with packet header, just copy and go. | |
5585 | */ | |
2d21ac55 A |
5586 | if (m->m_next == NULL) { |
5587 | /* Then just move the data into an mbuf and be done... */ | |
5588 | if (copyhdr) { | |
5589 | if (m->m_pkthdr.len <= MHLEN && m->m_len <= MHLEN) { | |
5590 | if ((n = _M_GETHDR(how, m->m_type)) == NULL) | |
5591 | return (NULL); | |
1c79356b | 5592 | n->m_len = m->m_len; |
3a60a9f5 A |
5593 | m_dup_pkthdr(n, m, how); |
5594 | bcopy(m->m_data, n->m_data, m->m_len); | |
2d21ac55 | 5595 | return (n); |
1c79356b | 5596 | } |
2d21ac55 A |
5597 | } else if (m->m_len <= MLEN) { |
5598 | if ((n = _M_GET(how, m->m_type)) == NULL) | |
5599 | return (NULL); | |
1c79356b A |
5600 | bcopy(m->m_data, n->m_data, m->m_len); |
5601 | n->m_len = m->m_len; | |
2d21ac55 | 5602 | return (n); |
1c79356b A |
5603 | } |
5604 | } | |
2d21ac55 | 5605 | while (m != NULL) { |
1c79356b A |
5606 | #if BLUE_DEBUG |
5607 | kprintf("<%x: %x, %x, %x\n", m, m->m_flags, m->m_len, | |
2d21ac55 | 5608 | m->m_data); |
1c79356b A |
5609 | #endif |
5610 | if (copyhdr) | |
2d21ac55 | 5611 | n = _M_GETHDR(how, m->m_type); |
1c79356b | 5612 | else |
2d21ac55 A |
5613 | n = _M_GET(how, m->m_type); |
5614 | if (n == NULL) | |
1c79356b | 5615 | goto nospace; |
2d21ac55 A |
5616 | if (m->m_flags & M_EXT) { |
5617 | if (m->m_len <= m_maxsize(MC_CL)) | |
5618 | MCLGET(n, how); | |
5619 | else if (m->m_len <= m_maxsize(MC_BIGCL)) | |
5620 | n = m_mbigget(n, how); | |
5621 | else if (m->m_len <= m_maxsize(MC_16KCL) && njcl > 0) | |
5622 | n = m_m16kget(n, how); | |
5623 | if (!(n->m_flags & M_EXT)) { | |
5624 | (void) m_free(n); | |
1c79356b | 5625 | goto nospace; |
2d21ac55 | 5626 | } |
1c79356b A |
5627 | } |
5628 | *np = n; | |
2d21ac55 A |
5629 | if (copyhdr) { |
5630 | /* Don't use M_COPY_PKTHDR: preserve m_data */ | |
3a60a9f5 | 5631 | m_dup_pkthdr(n, m, how); |
1c79356b | 5632 | copyhdr = 0; |
2d21ac55 | 5633 | if (!(n->m_flags & M_EXT)) |
1c79356b A |
5634 | n->m_data = n->m_pktdat; |
5635 | } | |
5636 | n->m_len = m->m_len; | |
5637 | /* | |
5638 | * Get the dup on the same bdry as the original | |
5639 | * Assume that the two mbufs have the same offset to data area | |
2d21ac55 | 5640 | * (up to word boundaries) |
1c79356b | 5641 | */ |
2d21ac55 | 5642 | bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), (unsigned)n->m_len); |
1c79356b A |
5643 | m = m->m_next; |
5644 | np = &n->m_next; | |
5645 | #if BLUE_DEBUG | |
5646 | kprintf(">%x: %x, %x, %x\n", n, n->m_flags, n->m_len, | |
2d21ac55 | 5647 | n->m_data); |
1c79356b A |
5648 | #endif |
5649 | } | |
5650 | ||
2d21ac55 | 5651 | if (top == NULL) |
1c79356b A |
5652 | MDFail++; |
5653 | return (top); | |
2d21ac55 A |
5654 | |
5655 | nospace: | |
1c79356b A |
5656 | m_freem(top); |
5657 | MDFail++; | |
2d21ac55 | 5658 | return (NULL); |
1c79356b A |
5659 | } |
5660 | ||
2d21ac55 A |
5661 | #define MBUF_MULTIPAGES(m) \ |
5662 | (((m)->m_flags & M_EXT) && \ | |
5663 | ((IS_P2ALIGNED((m)->m_data, NBPG) && (m)->m_len > NBPG) || \ | |
5664 | (!IS_P2ALIGNED((m)->m_data, NBPG) && \ | |
5665 | P2ROUNDUP((m)->m_data, NBPG) < ((uintptr_t)(m)->m_data + (m)->m_len)))) | |
5666 | ||
5667 | static struct mbuf * | |
5668 | m_expand(struct mbuf *m, struct mbuf **last) | |
9bccf70c | 5669 | { |
2d21ac55 A |
5670 | struct mbuf *top = NULL; |
5671 | struct mbuf **nm = ⊤ | |
5672 | uintptr_t data0, data; | |
5673 | unsigned int len0, len; | |
5674 | ||
5675 | VERIFY(MBUF_MULTIPAGES(m)); | |
5676 | VERIFY(m->m_next == NULL); | |
5677 | data0 = (uintptr_t)m->m_data; | |
5678 | len0 = m->m_len; | |
5679 | *last = top; | |
5680 | ||
5681 | for (;;) { | |
5682 | struct mbuf *n; | |
5683 | ||
5684 | data = data0; | |
5685 | if (IS_P2ALIGNED(data, NBPG) && len0 > NBPG) | |
5686 | len = NBPG; | |
5687 | else if (!IS_P2ALIGNED(data, NBPG) && | |
5688 | P2ROUNDUP(data, NBPG) < (data + len0)) | |
5689 | len = P2ROUNDUP(data, NBPG) - data; | |
5690 | else | |
5691 | len = len0; | |
5692 | ||
5693 | VERIFY(len > 0); | |
5694 | VERIFY(m->m_flags & M_EXT); | |
5695 | m->m_data = (void *)data; | |
5696 | m->m_len = len; | |
5697 | ||
5698 | *nm = *last = m; | |
5699 | nm = &m->m_next; | |
5700 | m->m_next = NULL; | |
5701 | ||
5702 | data0 += len; | |
5703 | len0 -= len; | |
5704 | if (len0 == 0) | |
5705 | break; | |
5706 | ||
5707 | n = _M_RETRY(M_DONTWAIT, MT_DATA); | |
5708 | if (n == NULL) { | |
5709 | m_freem(top); | |
5710 | top = *last = NULL; | |
5711 | break; | |
5712 | } | |
5713 | ||
5714 | n->m_ext = m->m_ext; | |
5715 | m_incref(m); | |
5716 | n->m_flags |= M_EXT; | |
5717 | m = n; | |
5718 | } | |
5719 | return (top); | |
9bccf70c A |
5720 | } |
5721 | ||
2d21ac55 A |
5722 | struct mbuf * |
5723 | m_normalize(struct mbuf *m) | |
9bccf70c | 5724 | { |
2d21ac55 A |
5725 | struct mbuf *top = NULL; |
5726 | struct mbuf **nm = ⊤ | |
5727 | boolean_t expanded = FALSE; | |
5728 | ||
5729 | while (m != NULL) { | |
5730 | struct mbuf *n; | |
5731 | ||
5732 | n = m->m_next; | |
5733 | m->m_next = NULL; | |
5734 | ||
5735 | /* Does the data cross one or more page boundaries? */ | |
5736 | if (MBUF_MULTIPAGES(m)) { | |
5737 | struct mbuf *last; | |
5738 | if ((m = m_expand(m, &last)) == NULL) { | |
5739 | m_freem(n); | |
5740 | m_freem(top); | |
5741 | top = NULL; | |
5742 | break; | |
5743 | } | |
5744 | *nm = m; | |
5745 | nm = &last->m_next; | |
5746 | expanded = TRUE; | |
5747 | } else { | |
5748 | *nm = m; | |
5749 | nm = &m->m_next; | |
5750 | } | |
5751 | m = n; | |
5752 | } | |
5753 | if (expanded) | |
5754 | atomic_add_32(&mb_normalized, 1); | |
5755 | return (top); | |
9bccf70c A |
5756 | } |
5757 | ||
6d2010ae A |
5758 | /* |
5759 | * Append the specified data to the indicated mbuf chain, | |
5760 | * Extend the mbuf chain if the new data does not fit in | |
5761 | * existing space. | |
5762 | * | |
5763 | * Return 1 if able to complete the job; otherwise 0. | |
5764 | */ | |
5765 | int | |
5766 | m_append(struct mbuf *m0, int len, caddr_t cp) | |
5767 | { | |
5768 | struct mbuf *m, *n; | |
5769 | int remainder, space; | |
5770 | ||
5771 | for (m = m0; m->m_next != NULL; m = m->m_next) | |
5772 | ; | |
5773 | remainder = len; | |
5774 | space = M_TRAILINGSPACE(m); | |
5775 | if (space > 0) { | |
5776 | /* | |
5777 | * Copy into available space. | |
5778 | */ | |
5779 | if (space > remainder) | |
5780 | space = remainder; | |
5781 | bcopy(cp, mtod(m, caddr_t) + m->m_len, space); | |
5782 | m->m_len += space; | |
5783 | cp += space, remainder -= space; | |
5784 | } | |
5785 | while (remainder > 0) { | |
5786 | /* | |
5787 | * Allocate a new mbuf; could check space | |
5788 | * and allocate a cluster instead. | |
5789 | */ | |
5790 | n = m_get(M_WAITOK, m->m_type); | |
5791 | if (n == NULL) | |
5792 | break; | |
5793 | n->m_len = min(MLEN, remainder); | |
5794 | bcopy(cp, mtod(n, caddr_t), n->m_len); | |
5795 | cp += n->m_len; | |
5796 | remainder -= n->m_len; | |
5797 | m->m_next = n; | |
5798 | m = n; | |
5799 | } | |
5800 | if (m0->m_flags & M_PKTHDR) | |
5801 | m0->m_pkthdr.len += len - remainder; | |
5802 | return (remainder == 0); | |
5803 | } | |
5804 | ||
5805 | struct mbuf * | |
5806 | m_last(struct mbuf *m) | |
5807 | { | |
5808 | while (m->m_next != NULL) | |
5809 | m = m->m_next; | |
5810 | return (m); | |
5811 | } | |
5812 | ||
316670eb A |
5813 | unsigned int |
5814 | m_fixhdr(struct mbuf *m0) | |
5815 | { | |
5816 | u_int len; | |
5817 | ||
39236c6e A |
5818 | VERIFY(m0->m_flags & M_PKTHDR); |
5819 | ||
316670eb A |
5820 | len = m_length2(m0, NULL); |
5821 | m0->m_pkthdr.len = len; | |
5822 | return (len); | |
5823 | } | |
5824 | ||
5825 | unsigned int | |
5826 | m_length2(struct mbuf *m0, struct mbuf **last) | |
5827 | { | |
5828 | struct mbuf *m; | |
5829 | u_int len; | |
5830 | ||
5831 | len = 0; | |
5832 | for (m = m0; m != NULL; m = m->m_next) { | |
5833 | len += m->m_len; | |
5834 | if (m->m_next == NULL) | |
5835 | break; | |
5836 | } | |
5837 | if (last != NULL) | |
5838 | *last = m; | |
5839 | return (len); | |
5840 | } | |
5841 | ||
5842 | /* | |
5843 | * Defragment a mbuf chain, returning the shortest possible chain of mbufs | |
5844 | * and clusters. If allocation fails and this cannot be completed, NULL will | |
5845 | * be returned, but the passed in chain will be unchanged. Upon success, | |
5846 | * the original chain will be freed, and the new chain will be returned. | |
5847 | * | |
5848 | * If a non-packet header is passed in, the original mbuf (chain?) will | |
5849 | * be returned unharmed. | |
5850 | * | |
5851 | * If offset is specfied, the first mbuf in the chain will have a leading | |
5852 | * space of the amount stated by the "off" parameter. | |
5853 | * | |
5854 | * This routine requires that the m_pkthdr.header field of the original | |
5855 | * mbuf chain is cleared by the caller. | |
5856 | */ | |
5857 | struct mbuf * | |
5858 | m_defrag_offset(struct mbuf *m0, u_int32_t off, int how) | |
5859 | { | |
5860 | struct mbuf *m_new = NULL, *m_final = NULL; | |
5861 | int progress = 0, length, pktlen; | |
5862 | ||
5863 | if (!(m0->m_flags & M_PKTHDR)) | |
5864 | return (m0); | |
5865 | ||
5866 | VERIFY(off < MHLEN); | |
5867 | m_fixhdr(m0); /* Needed sanity check */ | |
5868 | ||
5869 | pktlen = m0->m_pkthdr.len + off; | |
5870 | if (pktlen > MHLEN) | |
5871 | m_final = m_getcl(how, MT_DATA, M_PKTHDR); | |
5872 | else | |
5873 | m_final = m_gethdr(how, MT_DATA); | |
5874 | ||
5875 | if (m_final == NULL) | |
5876 | goto nospace; | |
5877 | ||
5878 | if (off > 0) { | |
5879 | pktlen -= off; | |
316670eb A |
5880 | m_final->m_data += off; |
5881 | } | |
5882 | ||
5883 | /* | |
5884 | * Caller must have handled the contents pointed to by this | |
5885 | * pointer before coming here, as otherwise it will point to | |
5886 | * the original mbuf which will get freed upon success. | |
5887 | */ | |
39236c6e | 5888 | VERIFY(m0->m_pkthdr.pkt_hdr == NULL); |
316670eb A |
5889 | |
5890 | if (m_dup_pkthdr(m_final, m0, how) == 0) | |
5891 | goto nospace; | |
5892 | ||
5893 | m_new = m_final; | |
5894 | ||
5895 | while (progress < pktlen) { | |
5896 | length = pktlen - progress; | |
5897 | if (length > MCLBYTES) | |
5898 | length = MCLBYTES; | |
39236c6e | 5899 | length -= ((m_new == m_final) ? off : 0); |
316670eb A |
5900 | |
5901 | if (m_new == NULL) { | |
5902 | if (length > MLEN) | |
5903 | m_new = m_getcl(how, MT_DATA, 0); | |
5904 | else | |
5905 | m_new = m_get(how, MT_DATA); | |
5906 | if (m_new == NULL) | |
5907 | goto nospace; | |
5908 | } | |
5909 | ||
5910 | m_copydata(m0, progress, length, mtod(m_new, caddr_t)); | |
5911 | progress += length; | |
5912 | m_new->m_len = length; | |
5913 | if (m_new != m_final) | |
5914 | m_cat(m_final, m_new); | |
5915 | m_new = NULL; | |
5916 | } | |
5917 | m_freem(m0); | |
5918 | m0 = m_final; | |
5919 | return (m0); | |
5920 | nospace: | |
5921 | if (m_final) | |
5922 | m_freem(m_final); | |
5923 | return (NULL); | |
5924 | } | |
5925 | ||
5926 | struct mbuf * | |
5927 | m_defrag(struct mbuf *m0, int how) | |
5928 | { | |
5929 | return (m_defrag_offset(m0, 0, how)); | |
5930 | } | |
5931 | ||
9bccf70c A |
5932 | void |
5933 | m_mchtype(struct mbuf *m, int t) | |
5934 | { | |
2d21ac55 A |
5935 | mtype_stat_inc(t); |
5936 | mtype_stat_dec(m->m_type); | |
5937 | (m)->m_type = t; | |
9bccf70c A |
5938 | } |
5939 | ||
2d21ac55 A |
5940 | void * |
5941 | m_mtod(struct mbuf *m) | |
9bccf70c | 5942 | { |
2d21ac55 | 5943 | return (MTOD(m, void *)); |
9bccf70c A |
5944 | } |
5945 | ||
2d21ac55 A |
5946 | struct mbuf * |
5947 | m_dtom(void *x) | |
9bccf70c | 5948 | { |
b0d623f7 | 5949 | return ((struct mbuf *)((uintptr_t)(x) & ~(MSIZE-1))); |
9bccf70c A |
5950 | } |
5951 | ||
2d21ac55 A |
5952 | void |
5953 | m_mcheck(struct mbuf *m) | |
9bccf70c | 5954 | { |
2d21ac55 | 5955 | _MCHECK(m); |
9bccf70c A |
5956 | } |
5957 | ||
6d2010ae A |
5958 | /* |
5959 | * Return a pointer to mbuf/offset of location in mbuf chain. | |
5960 | */ | |
5961 | struct mbuf * | |
5962 | m_getptr(struct mbuf *m, int loc, int *off) | |
5963 | { | |
5964 | ||
5965 | while (loc >= 0) { | |
5966 | /* Normal end of search. */ | |
5967 | if (m->m_len > loc) { | |
5968 | *off = loc; | |
5969 | return (m); | |
5970 | } else { | |
5971 | loc -= m->m_len; | |
5972 | if (m->m_next == NULL) { | |
5973 | if (loc == 0) { | |
5974 | /* Point at the end of valid data. */ | |
5975 | *off = m->m_len; | |
5976 | return (m); | |
5977 | } | |
5978 | return (NULL); | |
5979 | } | |
5980 | m = m->m_next; | |
5981 | } | |
5982 | } | |
5983 | return (NULL); | |
5984 | } | |
5985 | ||
2d21ac55 A |
5986 | /* |
5987 | * Inform the corresponding mcache(s) that there's a waiter below. | |
5988 | */ | |
5989 | static void | |
5990 | mbuf_waiter_inc(mbuf_class_t class, boolean_t comp) | |
9bccf70c | 5991 | { |
2d21ac55 A |
5992 | mcache_waiter_inc(m_cache(class)); |
5993 | if (comp) { | |
5994 | if (class == MC_CL) { | |
5995 | mcache_waiter_inc(m_cache(MC_MBUF_CL)); | |
5996 | } else if (class == MC_BIGCL) { | |
5997 | mcache_waiter_inc(m_cache(MC_MBUF_BIGCL)); | |
5998 | } else if (class == MC_16KCL) { | |
5999 | mcache_waiter_inc(m_cache(MC_MBUF_16KCL)); | |
6000 | } else { | |
6001 | mcache_waiter_inc(m_cache(MC_MBUF_CL)); | |
6002 | mcache_waiter_inc(m_cache(MC_MBUF_BIGCL)); | |
6003 | } | |
6004 | } | |
9bccf70c A |
6005 | } |
6006 | ||
2d21ac55 A |
6007 | /* |
6008 | * Inform the corresponding mcache(s) that there's no more waiter below. | |
6009 | */ | |
6010 | static void | |
6011 | mbuf_waiter_dec(mbuf_class_t class, boolean_t comp) | |
6012 | { | |
6013 | mcache_waiter_dec(m_cache(class)); | |
6014 | if (comp) { | |
6015 | if (class == MC_CL) { | |
6016 | mcache_waiter_dec(m_cache(MC_MBUF_CL)); | |
6017 | } else if (class == MC_BIGCL) { | |
6018 | mcache_waiter_dec(m_cache(MC_MBUF_BIGCL)); | |
6019 | } else if (class == MC_16KCL) { | |
6020 | mcache_waiter_dec(m_cache(MC_MBUF_16KCL)); | |
6021 | } else { | |
6022 | mcache_waiter_dec(m_cache(MC_MBUF_CL)); | |
6023 | mcache_waiter_dec(m_cache(MC_MBUF_BIGCL)); | |
6024 | } | |
6025 | } | |
6026 | } | |
9bccf70c | 6027 | |
6d2010ae A |
6028 | /* |
6029 | * Called during slab (blocking and non-blocking) allocation. If there | |
6030 | * is at least one waiter, and the time since the first waiter is blocked | |
6031 | * is greater than the watchdog timeout, panic the system. | |
6032 | */ | |
6033 | static void | |
6034 | mbuf_watchdog(void) | |
6035 | { | |
6036 | struct timeval now; | |
6037 | unsigned int since; | |
6038 | ||
6039 | if (mb_waiters == 0 || !mb_watchdog) | |
6040 | return; | |
6041 | ||
6042 | microuptime(&now); | |
6043 | since = now.tv_sec - mb_wdtstart.tv_sec; | |
6044 | if (since >= MB_WDT_MAXTIME) { | |
6045 | panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__, | |
6046 | mb_waiters, since, mbuf_dump()); | |
6047 | /* NOTREACHED */ | |
6048 | } | |
6049 | } | |
6050 | ||
2d21ac55 A |
6051 | /* |
6052 | * Called during blocking allocation. Returns TRUE if one or more objects | |
6053 | * are available at the per-CPU caches layer and that allocation should be | |
6054 | * retried at that level. | |
6055 | */ | |
6056 | static boolean_t | |
6057 | mbuf_sleep(mbuf_class_t class, unsigned int num, int wait) | |
9bccf70c | 6058 | { |
2d21ac55 A |
6059 | boolean_t mcache_retry = FALSE; |
6060 | ||
6061 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
6062 | ||
6063 | /* Check if there's anything at the cache layer */ | |
6064 | if (mbuf_cached_above(class, wait)) { | |
6065 | mcache_retry = TRUE; | |
6066 | goto done; | |
6067 | } | |
6068 | ||
6069 | /* Nothing? Then try hard to get it from somewhere */ | |
6070 | m_reclaim(class, num, (wait & MCR_COMP)); | |
6071 | ||
6072 | /* We tried hard and got something? */ | |
6073 | if (m_infree(class) > 0) { | |
6074 | mbstat.m_wait++; | |
6075 | goto done; | |
6076 | } else if (mbuf_cached_above(class, wait)) { | |
6077 | mbstat.m_wait++; | |
6078 | mcache_retry = TRUE; | |
6079 | goto done; | |
6080 | } else if (wait & MCR_TRYHARD) { | |
6081 | mcache_retry = TRUE; | |
6082 | goto done; | |
6083 | } | |
6084 | ||
6085 | /* | |
6086 | * There's really nothing for us right now; inform the | |
6087 | * cache(s) that there is a waiter below and go to sleep. | |
6088 | */ | |
6089 | mbuf_waiter_inc(class, (wait & MCR_COMP)); | |
6090 | ||
6091 | VERIFY(!(wait & MCR_NOSLEEP)); | |
6d2010ae A |
6092 | |
6093 | /* | |
6094 | * If this is the first waiter, arm the watchdog timer. Otherwise | |
6095 | * check if we need to panic the system due to watchdog timeout. | |
6096 | */ | |
6097 | if (mb_waiters == 0) | |
6098 | microuptime(&mb_wdtstart); | |
6099 | else | |
6100 | mbuf_watchdog(); | |
6101 | ||
2d21ac55 A |
6102 | mb_waiters++; |
6103 | (void) msleep(mb_waitchan, mbuf_mlock, (PZERO-1), m_cname(class), NULL); | |
6104 | ||
6105 | /* We are now up; stop getting notified until next round */ | |
6106 | mbuf_waiter_dec(class, (wait & MCR_COMP)); | |
6107 | ||
6108 | /* We waited and got something */ | |
6109 | if (m_infree(class) > 0) { | |
6110 | mbstat.m_wait++; | |
6111 | goto done; | |
6112 | } else if (mbuf_cached_above(class, wait)) { | |
6113 | mbstat.m_wait++; | |
6114 | mcache_retry = TRUE; | |
6115 | } | |
6116 | done: | |
6117 | return (mcache_retry); | |
9bccf70c A |
6118 | } |
6119 | ||
91447636 | 6120 | static void |
2d21ac55 | 6121 | mbuf_worker_thread(void) |
1c79356b | 6122 | { |
2d21ac55 A |
6123 | int mbuf_expand; |
6124 | ||
91447636 | 6125 | while (1) { |
2d21ac55 A |
6126 | lck_mtx_lock(mbuf_mlock); |
6127 | ||
6128 | mbuf_expand = 0; | |
91447636 A |
6129 | if (mbuf_expand_mcl) { |
6130 | int n; | |
2d21ac55 A |
6131 | |
6132 | /* Adjust to current number of cluster in use */ | |
6133 | n = mbuf_expand_mcl - | |
6134 | (m_total(MC_CL) - m_infree(MC_CL)); | |
6135 | if ((n + m_total(MC_CL)) > m_maxlimit(MC_CL)) | |
6136 | n = m_maxlimit(MC_CL) - m_total(MC_CL); | |
91447636 | 6137 | mbuf_expand_mcl = 0; |
2d21ac55 A |
6138 | |
6139 | if (n > 0 && freelist_populate(MC_CL, n, M_WAIT) > 0) | |
6140 | mbuf_expand++; | |
91447636 A |
6141 | } |
6142 | if (mbuf_expand_big) { | |
6143 | int n; | |
2d21ac55 A |
6144 | |
6145 | /* Adjust to current number of 4 KB cluster in use */ | |
6146 | n = mbuf_expand_big - | |
6147 | (m_total(MC_BIGCL) - m_infree(MC_BIGCL)); | |
6148 | if ((n + m_total(MC_BIGCL)) > m_maxlimit(MC_BIGCL)) | |
6149 | n = m_maxlimit(MC_BIGCL) - m_total(MC_BIGCL); | |
91447636 | 6150 | mbuf_expand_big = 0; |
2d21ac55 A |
6151 | |
6152 | if (n > 0 && freelist_populate(MC_BIGCL, n, M_WAIT) > 0) | |
6153 | mbuf_expand++; | |
6154 | } | |
6155 | if (mbuf_expand_16k) { | |
6156 | int n; | |
6157 | ||
6158 | /* Adjust to current number of 16 KB cluster in use */ | |
6159 | n = mbuf_expand_16k - | |
6160 | (m_total(MC_16KCL) - m_infree(MC_16KCL)); | |
6161 | if ((n + m_total(MC_16KCL)) > m_maxlimit(MC_16KCL)) | |
6162 | n = m_maxlimit(MC_16KCL) - m_total(MC_16KCL); | |
6163 | mbuf_expand_16k = 0; | |
6164 | ||
6165 | if (n > 0) | |
6166 | (void) freelist_populate(MC_16KCL, n, M_WAIT); | |
6167 | } | |
6168 | ||
6169 | /* | |
6170 | * Because we can run out of memory before filling the mbuf | |
6171 | * map, we should not allocate more clusters than they are | |
6172 | * mbufs -- otherwise we could have a large number of useless | |
6173 | * clusters allocated. | |
91447636 | 6174 | */ |
2d21ac55 A |
6175 | if (mbuf_expand) { |
6176 | while (m_total(MC_MBUF) < | |
6177 | (m_total(MC_BIGCL) + m_total(MC_CL))) { | |
6178 | if (freelist_populate(MC_MBUF, 1, M_WAIT) == 0) | |
6179 | break; | |
6180 | } | |
91447636 | 6181 | } |
2d21ac55 A |
6182 | |
6183 | lck_mtx_unlock(mbuf_mlock); | |
6184 | ||
6185 | assert_wait(&mbuf_worker_run, THREAD_UNINT); | |
6186 | (void) thread_block((thread_continue_t)mbuf_worker_thread); | |
91447636 | 6187 | } |
1c79356b A |
6188 | } |
6189 | ||
91447636 | 6190 | static void |
2d21ac55 | 6191 | mbuf_worker_thread_init(void) |
55e303ae | 6192 | { |
2d21ac55 A |
6193 | mbuf_worker_ready++; |
6194 | mbuf_worker_thread(); | |
55e303ae | 6195 | } |
1c79356b | 6196 | |
2d21ac55 A |
6197 | static mcl_slab_t * |
6198 | slab_get(void *buf) | |
6199 | { | |
6200 | mcl_slabg_t *slg; | |
6201 | unsigned int ix, k; | |
6202 | ||
6203 | lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED); | |
6204 | ||
6205 | VERIFY(MBUF_IN_MAP(buf)); | |
6206 | ix = ((char *)buf - (char *)mbutl) >> MBSHIFT; | |
6207 | VERIFY(ix < maxslabgrp); | |
6208 | ||
6209 | if ((slg = slabstbl[ix]) == NULL) { | |
6210 | /* | |
6211 | * In the current implementation, we never shrink the memory | |
6212 | * pool (hence the cluster map); if we attempt to reallocate | |
6213 | * a cluster group when it's already allocated, panic since | |
6214 | * this is a sign of a memory corruption (slabstbl[ix] got | |
6215 | * nullified). This also means that there shouldn't be any | |
6216 | * hole in the kernel sub-map for the mbuf pool. | |
6217 | */ | |
6218 | ++slabgrp; | |
6219 | VERIFY(ix < slabgrp); | |
6220 | /* | |
6221 | * Slabs expansion can only be done single threaded; when | |
6222 | * we get here, it must be as a result of m_clalloc() which | |
6223 | * is serialized and therefore mb_clalloc_busy must be set. | |
6224 | */ | |
6225 | VERIFY(mb_clalloc_busy); | |
6226 | lck_mtx_unlock(mbuf_mlock); | |
6227 | ||
6228 | /* This is a new buffer; create the slabs group for it */ | |
6229 | MALLOC(slg, mcl_slabg_t *, sizeof (*slg), M_TEMP, | |
6230 | M_WAITOK | M_ZERO); | |
6231 | VERIFY(slg != NULL); | |
6232 | ||
6233 | lck_mtx_lock(mbuf_mlock); | |
6234 | /* | |
6235 | * No other thread could have gone into m_clalloc() after | |
6236 | * we dropped the lock above, so verify that it's true. | |
6237 | */ | |
6238 | VERIFY(mb_clalloc_busy); | |
6239 | ||
6240 | slabstbl[ix] = slg; | |
6241 | ||
6242 | /* Chain each slab in the group to its forward neighbor */ | |
6243 | for (k = 1; k < NSLABSPMB; k++) | |
6244 | slg->slg_slab[k - 1].sl_next = &slg->slg_slab[k]; | |
6245 | VERIFY(slg->slg_slab[NSLABSPMB - 1].sl_next == NULL); | |
6246 | ||
6247 | /* And chain the last slab in the previous group to this */ | |
6248 | if (ix > 0) { | |
6249 | VERIFY(slabstbl[ix - 1]-> | |
6250 | slg_slab[NSLABSPMB - 1].sl_next == NULL); | |
6251 | slabstbl[ix - 1]->slg_slab[NSLABSPMB - 1].sl_next = | |
6252 | &slg->slg_slab[0]; | |
6253 | } | |
6254 | } | |
6255 | ||
6d2010ae | 6256 | ix = MTOBG(buf) % NSLABSPMB; |
2d21ac55 A |
6257 | VERIFY(ix < NSLABSPMB); |
6258 | ||
6259 | return (&slg->slg_slab[ix]); | |
6260 | } | |
6261 | ||
6262 | static void | |
6263 | slab_init(mcl_slab_t *sp, mbuf_class_t class, u_int32_t flags, | |
6264 | void *base, void *head, unsigned int len, int refcnt, int chunks) | |
6265 | { | |
6266 | sp->sl_class = class; | |
6267 | sp->sl_flags = flags; | |
6268 | sp->sl_base = base; | |
6269 | sp->sl_head = head; | |
6270 | sp->sl_len = len; | |
6271 | sp->sl_refcnt = refcnt; | |
6272 | sp->sl_chunks = chunks; | |
6273 | slab_detach(sp); | |
6274 | } | |
6275 | ||
6276 | static void | |
6277 | slab_insert(mcl_slab_t *sp, mbuf_class_t class) | |
6278 | { | |
6279 | VERIFY(slab_is_detached(sp)); | |
6280 | m_slab_cnt(class)++; | |
6281 | TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link); | |
6282 | sp->sl_flags &= ~SLF_DETACHED; | |
6d2010ae | 6283 | if (class == MC_16KCL) { |
2d21ac55 | 6284 | int k; |
6d2010ae | 6285 | for (k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
6286 | sp = sp->sl_next; |
6287 | /* Next slab must already be present */ | |
6288 | VERIFY(sp != NULL); | |
6289 | VERIFY(slab_is_detached(sp)); | |
6290 | sp->sl_flags &= ~SLF_DETACHED; | |
6291 | } | |
6292 | } | |
6293 | } | |
6294 | ||
6295 | static void | |
6296 | slab_remove(mcl_slab_t *sp, mbuf_class_t class) | |
6297 | { | |
6298 | VERIFY(!slab_is_detached(sp)); | |
6299 | VERIFY(m_slab_cnt(class) > 0); | |
6300 | m_slab_cnt(class)--; | |
6301 | TAILQ_REMOVE(&m_slablist(class), sp, sl_link); | |
6302 | slab_detach(sp); | |
6d2010ae | 6303 | if (class == MC_16KCL) { |
2d21ac55 | 6304 | int k; |
6d2010ae | 6305 | for (k = 1; k < NSLABSP16KB; k++) { |
2d21ac55 A |
6306 | sp = sp->sl_next; |
6307 | /* Next slab must already be present */ | |
6308 | VERIFY(sp != NULL); | |
6309 | VERIFY(!slab_is_detached(sp)); | |
6310 | slab_detach(sp); | |
6311 | } | |
6312 | } | |
6313 | } | |
6314 | ||
6315 | static boolean_t | |
6316 | slab_inrange(mcl_slab_t *sp, void *buf) | |
6317 | { | |
6318 | return ((uintptr_t)buf >= (uintptr_t)sp->sl_base && | |
6319 | (uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len)); | |
6320 | } | |
6321 | ||
b0d623f7 | 6322 | #undef panic |
2d21ac55 A |
6323 | |
6324 | static void | |
6325 | slab_nextptr_panic(mcl_slab_t *sp, void *addr) | |
6326 | { | |
6327 | int i; | |
6328 | unsigned int chunk_len = sp->sl_len / sp->sl_chunks; | |
6329 | uintptr_t buf = (uintptr_t)sp->sl_base; | |
6330 | ||
6331 | for (i = 0; i < sp->sl_chunks; i++, buf += chunk_len) { | |
6332 | void *next = ((mcache_obj_t *)buf)->obj_next; | |
6333 | if (next != addr) | |
6334 | continue; | |
6d2010ae | 6335 | if (!mclverify) { |
2d21ac55 A |
6336 | if (next != NULL && !MBUF_IN_MAP(next)) { |
6337 | mcache_t *cp = m_cache(sp->sl_class); | |
6338 | panic("%s: %s buffer %p in slab %p modified " | |
6339 | "after free at offset 0: %p out of range " | |
6340 | "[%p-%p)\n", __func__, cp->mc_name, | |
6341 | (void *)buf, sp, next, mbutl, embutl); | |
6342 | /* NOTREACHED */ | |
6343 | } | |
6344 | } else { | |
6345 | mcache_audit_t *mca = mcl_audit_buf2mca(sp->sl_class, | |
6346 | (mcache_obj_t *)buf); | |
6347 | mcl_audit_verify_nextptr(next, mca); | |
6348 | } | |
6349 | } | |
6350 | } | |
6351 | ||
6352 | static void | |
6353 | slab_detach(mcl_slab_t *sp) | |
6354 | { | |
6355 | sp->sl_link.tqe_next = (mcl_slab_t *)-1; | |
6356 | sp->sl_link.tqe_prev = (mcl_slab_t **)-1; | |
6357 | sp->sl_flags |= SLF_DETACHED; | |
6358 | } | |
6359 | ||
6360 | static boolean_t | |
6361 | slab_is_detached(mcl_slab_t *sp) | |
6362 | { | |
6363 | return ((intptr_t)sp->sl_link.tqe_next == -1 && | |
6364 | (intptr_t)sp->sl_link.tqe_prev == -1 && | |
6365 | (sp->sl_flags & SLF_DETACHED)); | |
6366 | } | |
6367 | ||
6368 | static void | |
6369 | mcl_audit_init(void *buf, mcache_audit_t **mca_list, | |
6370 | mcache_obj_t **con_list, size_t con_size, unsigned int num) | |
6371 | { | |
6372 | mcache_audit_t *mca, *mca_tail; | |
6373 | mcache_obj_t *con = NULL; | |
6374 | boolean_t save_contents = (con_list != NULL); | |
6375 | unsigned int i, ix; | |
6376 | ||
6d2010ae | 6377 | ASSERT(num <= NMBPBG); |
2d21ac55 A |
6378 | ASSERT(con_list == NULL || con_size != 0); |
6379 | ||
6d2010ae A |
6380 | ix = MTOBG(buf); |
6381 | VERIFY(ix < maxclaudit); | |
6382 | ||
2d21ac55 | 6383 | /* Make sure we haven't been here before */ |
6d2010ae | 6384 | for (i = 0; i < NMBPBG; i++) |
2d21ac55 A |
6385 | VERIFY(mclaudit[ix].cl_audit[i] == NULL); |
6386 | ||
6387 | mca = mca_tail = *mca_list; | |
6388 | if (save_contents) | |
6389 | con = *con_list; | |
6390 | ||
6391 | for (i = 0; i < num; i++) { | |
6392 | mcache_audit_t *next; | |
6393 | ||
6394 | next = mca->mca_next; | |
6395 | bzero(mca, sizeof (*mca)); | |
6396 | mca->mca_next = next; | |
6397 | mclaudit[ix].cl_audit[i] = mca; | |
6398 | ||
6399 | /* Attach the contents buffer if requested */ | |
6400 | if (save_contents) { | |
39236c6e A |
6401 | mcl_saved_contents_t *msc = |
6402 | (mcl_saved_contents_t *)(void *)con; | |
6403 | ||
6404 | VERIFY(msc != NULL); | |
6405 | VERIFY(IS_P2ALIGNED(msc, sizeof (u_int64_t))); | |
6406 | VERIFY(con_size == sizeof (*msc)); | |
2d21ac55 | 6407 | mca->mca_contents_size = con_size; |
39236c6e | 6408 | mca->mca_contents = msc; |
2d21ac55 A |
6409 | con = con->obj_next; |
6410 | bzero(mca->mca_contents, mca->mca_contents_size); | |
6411 | } | |
6412 | ||
6413 | mca_tail = mca; | |
6414 | mca = mca->mca_next; | |
6415 | } | |
91447636 | 6416 | |
2d21ac55 A |
6417 | if (save_contents) |
6418 | *con_list = con; | |
6419 | ||
6420 | *mca_list = mca_tail->mca_next; | |
6421 | mca_tail->mca_next = NULL; | |
6422 | } | |
6423 | ||
6424 | /* | |
6d2010ae | 6425 | * Given an address of a buffer (mbuf/2KB/4KB/16KB), return |
2d21ac55 A |
6426 | * the corresponding audit structure for that buffer. |
6427 | */ | |
6428 | static mcache_audit_t * | |
6429 | mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *o) | |
6430 | { | |
6431 | mcache_audit_t *mca = NULL; | |
6d2010ae | 6432 | int ix = MTOBG(o); |
2d21ac55 | 6433 | |
6d2010ae | 6434 | VERIFY(ix < maxclaudit); |
2d21ac55 A |
6435 | VERIFY(IS_P2ALIGNED(o, MIN(m_maxsize(class), NBPG))); |
6436 | ||
6437 | switch (class) { | |
6438 | case MC_MBUF: | |
6439 | /* | |
6d2010ae | 6440 | * For the mbuf case, find the index of the page |
2d21ac55 | 6441 | * used by the mbuf and use that index to locate the |
6d2010ae A |
6442 | * base address of the page. Then find out the |
6443 | * mbuf index relative to the page base and use | |
2d21ac55 A |
6444 | * it to locate the audit structure. |
6445 | */ | |
6d2010ae A |
6446 | VERIFY(MCLIDX(BGTOM(ix), o) < (int)NMBPBG); |
6447 | mca = mclaudit[ix].cl_audit[MCLIDX(BGTOM(ix), o)]; | |
2d21ac55 A |
6448 | break; |
6449 | ||
6450 | case MC_CL: | |
6d2010ae A |
6451 | /* |
6452 | * Same thing as above, but for 2KB clusters in a page. | |
6453 | */ | |
6454 | VERIFY(CLBGIDX(BGTOM(ix), o) < (int)NCLPBG); | |
6455 | mca = mclaudit[ix].cl_audit[CLBGIDX(BGTOM(ix), o)]; | |
6456 | break; | |
6457 | ||
2d21ac55 A |
6458 | case MC_BIGCL: |
6459 | case MC_16KCL: | |
6460 | /* | |
6461 | * Same as above, but only return the first element. | |
6462 | */ | |
6463 | mca = mclaudit[ix].cl_audit[0]; | |
6464 | break; | |
6465 | ||
6466 | default: | |
6467 | VERIFY(0); | |
6468 | /* NOTREACHED */ | |
6469 | } | |
6470 | ||
6471 | return (mca); | |
6472 | } | |
6473 | ||
6474 | static void | |
6475 | mcl_audit_mbuf(mcache_audit_t *mca, void *addr, boolean_t composite, | |
6476 | boolean_t alloc) | |
6477 | { | |
6478 | struct mbuf *m = addr; | |
6479 | mcache_obj_t *next = ((mcache_obj_t *)m)->obj_next; | |
6480 | ||
6481 | VERIFY(mca->mca_contents != NULL && | |
6482 | mca->mca_contents_size == AUDIT_CONTENTS_SIZE); | |
6483 | ||
6d2010ae A |
6484 | if (mclverify) |
6485 | mcl_audit_verify_nextptr(next, mca); | |
2d21ac55 A |
6486 | |
6487 | if (!alloc) { | |
6488 | /* Save constructed mbuf fields */ | |
6489 | mcl_audit_save_mbuf(m, mca); | |
6d2010ae A |
6490 | if (mclverify) { |
6491 | mcache_set_pattern(MCACHE_FREE_PATTERN, m, | |
6492 | m_maxsize(MC_MBUF)); | |
6493 | } | |
2d21ac55 A |
6494 | ((mcache_obj_t *)m)->obj_next = next; |
6495 | return; | |
6496 | } | |
6497 | ||
6498 | /* Check if the buffer has been corrupted while in freelist */ | |
6d2010ae A |
6499 | if (mclverify) { |
6500 | mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF)); | |
6501 | } | |
2d21ac55 A |
6502 | /* Restore constructed mbuf fields */ |
6503 | mcl_audit_restore_mbuf(m, mca, composite); | |
6504 | } | |
6505 | ||
6506 | static void | |
6507 | mcl_audit_restore_mbuf(struct mbuf *m, mcache_audit_t *mca, boolean_t composite) | |
6508 | { | |
39236c6e | 6509 | struct mbuf *ms = MCA_SAVED_MBUF_PTR(mca); |
2d21ac55 A |
6510 | |
6511 | if (composite) { | |
6512 | struct mbuf *next = m->m_next; | |
6513 | VERIFY(ms->m_flags == M_EXT && MEXT_RFA(ms) != NULL && | |
6514 | MBUF_IS_COMPOSITE(ms)); | |
39236c6e | 6515 | VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
2d21ac55 A |
6516 | /* |
6517 | * We could have hand-picked the mbuf fields and restore | |
6518 | * them individually, but that will be a maintenance | |
6519 | * headache. Instead, restore everything that was saved; | |
6520 | * the mbuf layer will recheck and reinitialize anyway. | |
6521 | */ | |
39236c6e | 6522 | bcopy(ms, m, MCA_SAVED_MBUF_SIZE); |
2d21ac55 A |
6523 | m->m_next = next; |
6524 | } else { | |
6525 | /* | |
6526 | * For a regular mbuf (no cluster attached) there's nothing | |
6527 | * to restore other than the type field, which is expected | |
6528 | * to be MT_FREE. | |
6529 | */ | |
6530 | m->m_type = ms->m_type; | |
6531 | } | |
6532 | _MCHECK(m); | |
6533 | } | |
6534 | ||
6535 | static void | |
6536 | mcl_audit_save_mbuf(struct mbuf *m, mcache_audit_t *mca) | |
6537 | { | |
39236c6e | 6538 | VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
2d21ac55 | 6539 | _MCHECK(m); |
39236c6e | 6540 | bcopy(m, MCA_SAVED_MBUF_PTR(mca), MCA_SAVED_MBUF_SIZE); |
2d21ac55 A |
6541 | } |
6542 | ||
6543 | static void | |
6544 | mcl_audit_cluster(mcache_audit_t *mca, void *addr, size_t size, boolean_t alloc, | |
6545 | boolean_t save_next) | |
6546 | { | |
6547 | mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next; | |
6548 | ||
6549 | if (!alloc) { | |
6d2010ae A |
6550 | if (mclverify) { |
6551 | mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size); | |
6552 | } | |
2d21ac55 A |
6553 | if (save_next) { |
6554 | mcl_audit_verify_nextptr(next, mca); | |
6555 | ((mcache_obj_t *)addr)->obj_next = next; | |
6556 | } | |
6d2010ae | 6557 | } else if (mclverify) { |
2d21ac55 A |
6558 | /* Check if the buffer has been corrupted while in freelist */ |
6559 | mcl_audit_verify_nextptr(next, mca); | |
6560 | mcache_audit_free_verify_set(mca, addr, 0, size); | |
6561 | } | |
6562 | } | |
6563 | ||
39236c6e A |
6564 | static void |
6565 | mcl_audit_scratch(mcache_audit_t *mca) | |
6566 | { | |
6567 | void *stack[MCACHE_STACK_DEPTH + 1]; | |
6568 | mcl_scratch_audit_t *msa; | |
6569 | struct timeval now; | |
6570 | ||
6571 | VERIFY(mca->mca_contents != NULL); | |
6572 | msa = MCA_SAVED_SCRATCH_PTR(mca); | |
6573 | ||
6574 | msa->msa_pthread = msa->msa_thread; | |
6575 | msa->msa_thread = current_thread(); | |
6576 | bcopy(msa->msa_stack, msa->msa_pstack, sizeof (msa->msa_pstack)); | |
6577 | msa->msa_pdepth = msa->msa_depth; | |
6578 | bzero(stack, sizeof (stack)); | |
6579 | msa->msa_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1; | |
6580 | bcopy(&stack[1], msa->msa_stack, sizeof (mca->mca_pstack)); | |
6581 | ||
6582 | msa->msa_ptstamp = msa->msa_tstamp; | |
6583 | microuptime(&now); | |
6584 | /* tstamp is in ms relative to base_ts */ | |
6585 | msa->msa_tstamp = ((now.tv_usec - mb_start.tv_usec) / 1000); | |
6586 | if ((now.tv_sec - mb_start.tv_sec) > 0) | |
6587 | msa->msa_tstamp += ((now.tv_sec - mb_start.tv_sec) * 1000); | |
6588 | } | |
6589 | ||
2d21ac55 A |
6590 | static void |
6591 | mcl_audit_mcheck_panic(struct mbuf *m) | |
6592 | { | |
6593 | mcache_audit_t *mca; | |
6594 | ||
6595 | MRANGE(m); | |
6596 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
6597 | ||
6598 | panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s\n", | |
6599 | m, (u_int16_t)m->m_type, MT_FREE, mcache_dump_mca(mca)); | |
6600 | /* NOTREACHED */ | |
6601 | } | |
6602 | ||
6603 | static void | |
6604 | mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca) | |
6605 | { | |
6d2010ae A |
6606 | if (next != NULL && !MBUF_IN_MAP(next) && |
6607 | (next != (void *)MCACHE_FREE_PATTERN || !mclverify)) { | |
2d21ac55 A |
6608 | panic("mcl_audit: buffer %p modified after free at offset 0: " |
6609 | "%p out of range [%p-%p)\n%s\n", | |
6610 | mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(mca)); | |
6611 | /* NOTREACHED */ | |
6612 | } | |
6613 | } | |
6614 | ||
6d2010ae A |
6615 | /* This function turns on mbuf leak detection */ |
6616 | static void | |
6617 | mleak_activate(void) | |
6618 | { | |
6619 | mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR; | |
6620 | PE_parse_boot_argn("mleak_sample_factor", | |
6621 | &mleak_table.mleak_sample_factor, | |
6622 | sizeof (mleak_table.mleak_sample_factor)); | |
6623 | ||
6624 | if (mleak_table.mleak_sample_factor == 0) | |
6625 | mclfindleak = 0; | |
6626 | ||
6627 | if (mclfindleak == 0) | |
6628 | return; | |
6629 | ||
6630 | vm_size_t alloc_size = | |
6631 | mleak_alloc_buckets * sizeof (struct mallocation); | |
6632 | vm_size_t trace_size = mleak_trace_buckets * sizeof (struct mtrace); | |
6633 | ||
6634 | MALLOC(mleak_allocations, struct mallocation *, alloc_size, | |
6635 | M_TEMP, M_WAITOK | M_ZERO); | |
6636 | VERIFY(mleak_allocations != NULL); | |
6637 | ||
6638 | MALLOC(mleak_traces, struct mtrace *, trace_size, | |
6639 | M_TEMP, M_WAITOK | M_ZERO); | |
6640 | VERIFY(mleak_traces != NULL); | |
6641 | ||
6642 | MALLOC(mleak_stat, mleak_stat_t *, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES), | |
6643 | M_TEMP, M_WAITOK | M_ZERO); | |
6644 | VERIFY(mleak_stat != NULL); | |
6645 | mleak_stat->ml_cnt = MLEAK_NUM_TRACES; | |
6646 | #ifdef __LP64__ | |
6647 | mleak_stat->ml_isaddr64 = 1; | |
6648 | #endif /* __LP64__ */ | |
6649 | } | |
6650 | ||
6651 | static void | |
6652 | mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc) | |
6653 | { | |
6654 | int temp; | |
6655 | ||
6656 | if (mclfindleak == 0) | |
6657 | return; | |
6658 | ||
6659 | if (!alloc) | |
6660 | return (mleak_free(addr)); | |
6661 | ||
6662 | temp = atomic_add_32_ov(&mleak_table.mleak_capture, 1); | |
6663 | ||
6664 | if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) { | |
6665 | uintptr_t bt[MLEAK_STACK_DEPTH]; | |
6666 | int logged = fastbacktrace(bt, MLEAK_STACK_DEPTH); | |
6667 | mleak_log(bt, addr, logged, num); | |
6668 | } | |
6669 | } | |
6670 | ||
6671 | /* | |
6672 | * This function records the allocation in the mleak_allocations table | |
6673 | * and the backtrace in the mleak_traces table; if allocation slot is in use, | |
6674 | * replace old allocation with new one if the trace slot is in use, return | |
6675 | * (or increment refcount if same trace). | |
6676 | */ | |
6677 | static boolean_t | |
6678 | mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num) | |
6679 | { | |
6680 | struct mallocation *allocation; | |
6681 | struct mtrace *trace; | |
6682 | uint32_t trace_index; | |
6d2010ae A |
6683 | |
6684 | /* Quit if someone else modifying the tables */ | |
6685 | if (!lck_mtx_try_lock_spin(mleak_lock)) { | |
6686 | mleak_table.total_conflicts++; | |
6687 | return (FALSE); | |
6688 | } | |
6689 | ||
6690 | allocation = &mleak_allocations[hashaddr((uintptr_t)addr, | |
6691 | mleak_alloc_buckets)]; | |
6692 | trace_index = hashbacktrace(bt, depth, mleak_trace_buckets); | |
6693 | trace = &mleak_traces[trace_index]; | |
6694 | ||
6695 | VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]); | |
6696 | VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]); | |
6697 | ||
6698 | allocation->hitcount++; | |
6699 | trace->hitcount++; | |
6700 | ||
6701 | /* | |
6702 | * If the allocation bucket we want is occupied | |
6703 | * and the occupier has the same trace, just bail. | |
6704 | */ | |
6705 | if (allocation->element != NULL && | |
6706 | trace_index == allocation->trace_index) { | |
6707 | mleak_table.alloc_collisions++; | |
6708 | lck_mtx_unlock(mleak_lock); | |
6709 | return (TRUE); | |
6710 | } | |
6711 | ||
6712 | /* | |
6713 | * Store the backtrace in the traces array; | |
6714 | * Size of zero = trace bucket is free. | |
6715 | */ | |
6716 | if (trace->allocs > 0 && | |
6717 | bcmp(trace->addr, bt, (depth * sizeof (uintptr_t))) != 0) { | |
6718 | /* Different, unique trace, but the same hash! Bail out. */ | |
6719 | trace->collisions++; | |
6720 | mleak_table.trace_collisions++; | |
6721 | lck_mtx_unlock(mleak_lock); | |
6722 | return (TRUE); | |
6723 | } else if (trace->allocs > 0) { | |
6724 | /* Same trace, already added, so increment refcount */ | |
6725 | trace->allocs++; | |
6726 | } else { | |
6727 | /* Found an unused trace bucket, so record the trace here */ | |
6728 | if (trace->depth != 0) { | |
6729 | /* this slot previously used but not currently in use */ | |
6730 | mleak_table.trace_overwrites++; | |
6731 | } | |
6732 | mleak_table.trace_recorded++; | |
6733 | trace->allocs = 1; | |
6734 | memcpy(trace->addr, bt, (depth * sizeof (uintptr_t))); | |
6735 | trace->depth = depth; | |
6736 | trace->collisions = 0; | |
6737 | } | |
6738 | ||
6739 | /* Step 2: Store the allocation record in the allocations array */ | |
6740 | if (allocation->element != NULL) { | |
6741 | /* | |
6742 | * Replace an existing allocation. No need to preserve | |
6743 | * because only a subset of the allocations are being | |
6744 | * recorded anyway. | |
6745 | */ | |
6746 | mleak_table.alloc_collisions++; | |
6747 | } else if (allocation->trace_index != 0) { | |
6748 | mleak_table.alloc_overwrites++; | |
6749 | } | |
6750 | allocation->element = addr; | |
6751 | allocation->trace_index = trace_index; | |
6752 | allocation->count = num; | |
6753 | mleak_table.alloc_recorded++; | |
6754 | mleak_table.outstanding_allocs++; | |
6755 | ||
6d2010ae A |
6756 | lck_mtx_unlock(mleak_lock); |
6757 | return (TRUE); | |
6758 | } | |
6759 | ||
6760 | static void | |
6761 | mleak_free(mcache_obj_t *addr) | |
6762 | { | |
6763 | while (addr != NULL) { | |
6764 | struct mallocation *allocation = &mleak_allocations | |
6765 | [hashaddr((uintptr_t)addr, mleak_alloc_buckets)]; | |
6766 | ||
6767 | if (allocation->element == addr && | |
6768 | allocation->trace_index < mleak_trace_buckets) { | |
6769 | lck_mtx_lock_spin(mleak_lock); | |
6770 | if (allocation->element == addr && | |
6771 | allocation->trace_index < mleak_trace_buckets) { | |
6772 | struct mtrace *trace; | |
6773 | trace = &mleak_traces[allocation->trace_index]; | |
6774 | /* allocs = 0 means trace bucket is unused */ | |
6775 | if (trace->allocs > 0) | |
6776 | trace->allocs--; | |
6777 | if (trace->allocs == 0) | |
6778 | trace->depth = 0; | |
6779 | /* NULL element means alloc bucket is unused */ | |
6780 | allocation->element = NULL; | |
6781 | mleak_table.outstanding_allocs--; | |
6782 | } | |
6783 | lck_mtx_unlock(mleak_lock); | |
6784 | } | |
6785 | addr = addr->obj_next; | |
6786 | } | |
6787 | } | |
6788 | ||
316670eb A |
6789 | static void |
6790 | mleak_sort_traces() | |
6791 | { | |
6792 | int i, j, k; | |
6793 | struct mtrace *swap; | |
6794 | ||
6795 | for(i = 0; i < MLEAK_NUM_TRACES; i++) | |
6796 | mleak_top_trace[i] = NULL; | |
6797 | ||
6798 | for(i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++) | |
6799 | { | |
6800 | if (mleak_traces[i].allocs <= 0) | |
6801 | continue; | |
6802 | ||
6803 | mleak_top_trace[j] = &mleak_traces[i]; | |
6804 | for (k = j; k > 0; k--) { | |
6805 | if (mleak_top_trace[k]->allocs <= | |
6806 | mleak_top_trace[k-1]->allocs) | |
6807 | break; | |
6808 | ||
6809 | swap = mleak_top_trace[k-1]; | |
6810 | mleak_top_trace[k-1] = mleak_top_trace[k]; | |
6811 | mleak_top_trace[k] = swap; | |
6812 | } | |
6813 | j++; | |
6814 | } | |
6815 | ||
6816 | j--; | |
6817 | for(; i < mleak_trace_buckets; i++) { | |
6818 | if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs) | |
6819 | continue; | |
6820 | ||
6821 | mleak_top_trace[j] = &mleak_traces[i]; | |
6822 | ||
6823 | for (k = j; k > 0; k--) { | |
6824 | if (mleak_top_trace[k]->allocs <= | |
6825 | mleak_top_trace[k-1]->allocs) | |
6826 | break; | |
6827 | ||
6828 | swap = mleak_top_trace[k-1]; | |
6829 | mleak_top_trace[k-1] = mleak_top_trace[k]; | |
6830 | mleak_top_trace[k] = swap; | |
6831 | } | |
6832 | } | |
6833 | } | |
6834 | ||
6835 | static void | |
6836 | mleak_update_stats() | |
6837 | { | |
6838 | mleak_trace_stat_t *mltr; | |
6839 | int i; | |
6840 | ||
6841 | VERIFY(mleak_stat != NULL); | |
6842 | #ifdef __LP64__ | |
6843 | VERIFY(mleak_stat->ml_isaddr64); | |
6844 | #else | |
6845 | VERIFY(!mleak_stat->ml_isaddr64); | |
6846 | #endif /* !__LP64__ */ | |
6847 | VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES); | |
6848 | ||
6849 | mleak_sort_traces(); | |
6850 | ||
6851 | mltr = &mleak_stat->ml_trace[0]; | |
6852 | bzero(mltr, sizeof (*mltr) * MLEAK_NUM_TRACES); | |
6853 | for (i = 0; i < MLEAK_NUM_TRACES; i++) { | |
6854 | int j; | |
6855 | ||
6856 | if (mleak_top_trace[i] == NULL || | |
6857 | mleak_top_trace[i]->allocs == 0) | |
6858 | continue; | |
6859 | ||
6860 | mltr->mltr_collisions = mleak_top_trace[i]->collisions; | |
6861 | mltr->mltr_hitcount = mleak_top_trace[i]->hitcount; | |
6862 | mltr->mltr_allocs = mleak_top_trace[i]->allocs; | |
6863 | mltr->mltr_depth = mleak_top_trace[i]->depth; | |
6864 | ||
6865 | VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH); | |
6866 | for (j = 0; j < mltr->mltr_depth; j++) | |
6867 | mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j]; | |
6868 | ||
6869 | mltr++; | |
6870 | } | |
6871 | } | |
6872 | ||
6d2010ae A |
6873 | static struct mbtypes { |
6874 | int mt_type; | |
6875 | const char *mt_name; | |
6876 | } mbtypes[] = { | |
6877 | { MT_DATA, "data" }, | |
6878 | { MT_OOBDATA, "oob data" }, | |
6879 | { MT_CONTROL, "ancillary data" }, | |
6880 | { MT_HEADER, "packet headers" }, | |
6881 | { MT_SOCKET, "socket structures" }, | |
6882 | { MT_PCB, "protocol control blocks" }, | |
6883 | { MT_RTABLE, "routing table entries" }, | |
6884 | { MT_HTABLE, "IMP host table entries" }, | |
6885 | { MT_ATABLE, "address resolution tables" }, | |
6886 | { MT_FTABLE, "fragment reassembly queue headers" }, | |
6887 | { MT_SONAME, "socket names and addresses" }, | |
6888 | { MT_SOOPTS, "socket options" }, | |
6889 | { MT_RIGHTS, "access rights" }, | |
6890 | { MT_IFADDR, "interface addresses" }, | |
6891 | { MT_TAG, "packet tags" }, | |
6892 | { 0, NULL } | |
6893 | }; | |
6894 | ||
6895 | #define MBUF_DUMP_BUF_CHK() { \ | |
6896 | clen -= k; \ | |
6897 | if (clen < 1) \ | |
6898 | goto done; \ | |
6899 | c += k; \ | |
6900 | } | |
6901 | ||
6902 | static char * | |
6903 | mbuf_dump(void) | |
6904 | { | |
6905 | unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct; | |
6906 | u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0; | |
6907 | u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0; | |
6908 | u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0; | |
6909 | int nmbtypes = sizeof (mbstat.m_mtypes) / sizeof (short); | |
6910 | uint8_t seen[256]; | |
6911 | struct mbtypes *mp; | |
6912 | mb_class_stat_t *sp; | |
316670eb | 6913 | mleak_trace_stat_t *mltr; |
6d2010ae | 6914 | char *c = mbuf_dump_buf; |
316670eb | 6915 | int i, k, clen = MBUF_DUMP_BUF_SIZE; |
6d2010ae A |
6916 | |
6917 | mbuf_dump_buf[0] = '\0'; | |
6918 | ||
6919 | /* synchronize all statistics in the mbuf table */ | |
6920 | mbuf_stat_sync(); | |
6921 | mbuf_mtypes_sync(TRUE); | |
6922 | ||
6923 | sp = &mb_stat->mbs_class[0]; | |
6924 | for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) { | |
6925 | u_int32_t mem; | |
6926 | ||
6927 | if (m_class(i) == MC_MBUF) { | |
6928 | m_mbufs = sp->mbcl_active; | |
6929 | } else if (m_class(i) == MC_CL) { | |
6930 | m_clfree = sp->mbcl_total - sp->mbcl_active; | |
6931 | } else if (m_class(i) == MC_BIGCL) { | |
6932 | m_bigclfree = sp->mbcl_total - sp->mbcl_active; | |
6933 | } else if (njcl > 0 && m_class(i) == MC_16KCL) { | |
6934 | m_16kclfree = sp->mbcl_total - sp->mbcl_active; | |
6935 | m_16kclusters = sp->mbcl_total; | |
6936 | } else if (m_class(i) == MC_MBUF_CL) { | |
6937 | m_mbufclfree = sp->mbcl_total - sp->mbcl_active; | |
6938 | } else if (m_class(i) == MC_MBUF_BIGCL) { | |
6939 | m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active; | |
6940 | } else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) { | |
6941 | m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active; | |
6942 | } | |
6943 | ||
6944 | mem = sp->mbcl_ctotal * sp->mbcl_size; | |
6945 | totmem += mem; | |
6946 | totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) * | |
6947 | sp->mbcl_size; | |
6948 | ||
6949 | } | |
6950 | ||
6951 | /* adjust free counts to include composite caches */ | |
6952 | m_clfree += m_mbufclfree; | |
6953 | m_bigclfree += m_mbufbigclfree; | |
6954 | m_16kclfree += m_mbuf16kclfree; | |
6955 | ||
6956 | totmbufs = 0; | |
6957 | for (mp = mbtypes; mp->mt_name != NULL; mp++) | |
6958 | totmbufs += mbstat.m_mtypes[mp->mt_type]; | |
6959 | if (totmbufs > m_mbufs) | |
6960 | totmbufs = m_mbufs; | |
6961 | k = snprintf(c, clen, "%lu/%u mbufs in use:\n", totmbufs, m_mbufs); | |
6962 | MBUF_DUMP_BUF_CHK(); | |
6963 | ||
6964 | bzero(&seen, sizeof (seen)); | |
6965 | for (mp = mbtypes; mp->mt_name != NULL; mp++) { | |
6966 | if (mbstat.m_mtypes[mp->mt_type] != 0) { | |
6967 | seen[mp->mt_type] = 1; | |
6968 | k = snprintf(c, clen, "\t%u mbufs allocated to %s\n", | |
6969 | mbstat.m_mtypes[mp->mt_type], mp->mt_name); | |
6970 | MBUF_DUMP_BUF_CHK(); | |
6971 | } | |
6972 | } | |
6973 | seen[MT_FREE] = 1; | |
6974 | for (i = 0; i < nmbtypes; i++) | |
6975 | if (!seen[i] && mbstat.m_mtypes[i] != 0) { | |
6976 | k = snprintf(c, clen, "\t%u mbufs allocated to " | |
6977 | "<mbuf type %d>\n", mbstat.m_mtypes[i], i); | |
6978 | MBUF_DUMP_BUF_CHK(); | |
6979 | } | |
6980 | if ((m_mbufs - totmbufs) > 0) { | |
6981 | k = snprintf(c, clen, "\t%lu mbufs allocated to caches\n", | |
6982 | m_mbufs - totmbufs); | |
6983 | MBUF_DUMP_BUF_CHK(); | |
6984 | } | |
6985 | k = snprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n" | |
6986 | "%u/%u mbuf 4KB clusters in use\n", | |
6987 | (unsigned int)(mbstat.m_clusters - m_clfree), | |
6988 | (unsigned int)mbstat.m_clusters, | |
6989 | (unsigned int)(mbstat.m_bigclusters - m_bigclfree), | |
6990 | (unsigned int)mbstat.m_bigclusters); | |
6991 | MBUF_DUMP_BUF_CHK(); | |
6992 | ||
6993 | if (njcl > 0) { | |
6994 | k = snprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n", | |
6995 | m_16kclusters - m_16kclfree, m_16kclusters, | |
6996 | njclbytes / 1024); | |
6997 | MBUF_DUMP_BUF_CHK(); | |
6998 | } | |
6999 | totused = totmem - totfree; | |
7000 | if (totmem == 0) { | |
7001 | totpct = 0; | |
7002 | } else if (totused < (ULONG_MAX / 100)) { | |
7003 | totpct = (totused * 100) / totmem; | |
7004 | } else { | |
7005 | u_long totmem1 = totmem / 100; | |
7006 | u_long totused1 = totused / 100; | |
7007 | totpct = (totused1 * 100) / totmem1; | |
7008 | } | |
7009 | k = snprintf(c, clen, "%lu KB allocated to network (approx. %lu%% " | |
7010 | "in use)\n", totmem / 1024, totpct); | |
7011 | MBUF_DUMP_BUF_CHK(); | |
7012 | ||
316670eb A |
7013 | /* mbuf leak detection statistics */ |
7014 | mleak_update_stats(); | |
7015 | ||
7016 | k = snprintf(c, clen, "\nmbuf leak detection table:\n"); | |
7017 | MBUF_DUMP_BUF_CHK(); | |
7018 | k = snprintf(c, clen, "\ttotal captured: %u (one per %u)\n", | |
7019 | mleak_table.mleak_capture / mleak_table.mleak_sample_factor, | |
7020 | mleak_table.mleak_sample_factor); | |
7021 | MBUF_DUMP_BUF_CHK(); | |
7022 | k = snprintf(c, clen, "\ttotal allocs outstanding: %llu\n", | |
7023 | mleak_table.outstanding_allocs); | |
7024 | MBUF_DUMP_BUF_CHK(); | |
7025 | k = snprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n", | |
7026 | mleak_table.alloc_recorded, mleak_table.trace_recorded); | |
7027 | MBUF_DUMP_BUF_CHK(); | |
7028 | k = snprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n", | |
7029 | mleak_table.alloc_collisions, mleak_table.trace_collisions); | |
7030 | MBUF_DUMP_BUF_CHK(); | |
7031 | k = snprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n", | |
7032 | mleak_table.alloc_overwrites, mleak_table.trace_overwrites); | |
7033 | MBUF_DUMP_BUF_CHK(); | |
7034 | k = snprintf(c, clen, "\tlock conflicts: %llu\n\n", | |
7035 | mleak_table.total_conflicts); | |
7036 | MBUF_DUMP_BUF_CHK(); | |
7037 | ||
7038 | k = snprintf(c, clen, "top %d outstanding traces:\n", | |
7039 | mleak_stat->ml_cnt); | |
7040 | MBUF_DUMP_BUF_CHK(); | |
7041 | for (i = 0; i < mleak_stat->ml_cnt; i++) { | |
7042 | mltr = &mleak_stat->ml_trace[i]; | |
7043 | k = snprintf(c, clen, "[%d] %llu outstanding alloc(s), " | |
7044 | "%llu hit(s), %llu collision(s)\n", (i + 1), | |
7045 | mltr->mltr_allocs, mltr->mltr_hitcount, | |
7046 | mltr->mltr_collisions); | |
7047 | MBUF_DUMP_BUF_CHK(); | |
7048 | } | |
7049 | ||
7050 | if (mleak_stat->ml_isaddr64) | |
7051 | k = snprintf(c, clen, MB_LEAK_HDR_64); | |
7052 | else | |
7053 | k = snprintf(c, clen, MB_LEAK_HDR_32); | |
7054 | MBUF_DUMP_BUF_CHK(); | |
7055 | ||
7056 | for (i = 0; i < MLEAK_STACK_DEPTH; i++) { | |
7057 | int j; | |
7058 | k = snprintf(c, clen, "%2d: ", (i + 1)); | |
7059 | MBUF_DUMP_BUF_CHK(); | |
7060 | for (j = 0; j < mleak_stat->ml_cnt; j++) { | |
7061 | mltr = &mleak_stat->ml_trace[j]; | |
7062 | if (i < mltr->mltr_depth) { | |
7063 | if (mleak_stat->ml_isaddr64) { | |
7064 | k = snprintf(c, clen, "0x%0llx ", | |
7065 | mltr->mltr_addr[i]); | |
7066 | } else { | |
7067 | k = snprintf(c, clen, | |
7068 | "0x%08x ", | |
7069 | (u_int32_t)mltr->mltr_addr[i]); | |
7070 | } | |
7071 | } else { | |
7072 | if (mleak_stat->ml_isaddr64) | |
7073 | k = snprintf(c, clen, | |
7074 | MB_LEAK_SPACING_64); | |
7075 | else | |
7076 | k = snprintf(c, clen, | |
7077 | MB_LEAK_SPACING_32); | |
7078 | } | |
7079 | MBUF_DUMP_BUF_CHK(); | |
7080 | } | |
7081 | k = snprintf(c, clen, "\n"); | |
7082 | MBUF_DUMP_BUF_CHK(); | |
7083 | } | |
6d2010ae A |
7084 | done: |
7085 | return (mbuf_dump_buf); | |
7086 | } | |
7087 | ||
7088 | #undef MBUF_DUMP_BUF_CHK | |
7089 | ||
39236c6e A |
7090 | /* |
7091 | * Convert between a regular and a packet header mbuf. Caller is responsible | |
7092 | * for setting or clearing M_PKTHDR; this routine does the rest of the work. | |
7093 | */ | |
7094 | int | |
7095 | m_reinit(struct mbuf *m, int hdr) | |
7096 | { | |
7097 | int ret = 0; | |
7098 | ||
7099 | if (hdr) { | |
7100 | VERIFY(!(m->m_flags & M_PKTHDR)); | |
7101 | if (!(m->m_flags & M_EXT) && | |
7102 | (m->m_data != m->m_dat || m->m_len > 0)) { | |
7103 | /* | |
7104 | * If there's no external cluster attached and the | |
7105 | * mbuf appears to contain user data, we cannot | |
7106 | * safely convert this to a packet header mbuf, | |
7107 | * as the packet header structure might overlap | |
7108 | * with the data. | |
7109 | */ | |
7110 | printf("%s: cannot set M_PKTHDR on altered mbuf %p, " | |
7111 | "m_data %p (expected %p), m_len %d (expected 0)\n", | |
7112 | __func__, m, m->m_data, m->m_dat, m->m_len); | |
7113 | ret = EBUSY; | |
7114 | } else { | |
7115 | VERIFY((m->m_flags & M_EXT) || m->m_data == m->m_dat); | |
7116 | m->m_flags |= M_PKTHDR; | |
7117 | MBUF_INIT_PKTHDR(m); | |
7118 | } | |
7119 | } else { | |
7120 | /* Check for scratch area overflow */ | |
7121 | m_redzone_verify(m); | |
7122 | /* Free the aux data and tags if there is any */ | |
7123 | m_tag_delete_chain(m, NULL); | |
7124 | m->m_flags &= ~M_PKTHDR; | |
7125 | } | |
7126 | ||
7127 | return (ret); | |
7128 | } | |
7129 | ||
7130 | void | |
7131 | m_scratch_init(struct mbuf *m) | |
7132 | { | |
7133 | VERIFY(m->m_flags & M_PKTHDR); | |
7134 | ||
7135 | bzero(&m->m_pkthdr.pkt_mpriv, sizeof (m->m_pkthdr.pkt_mpriv)); | |
7136 | } | |
7137 | ||
7138 | u_int32_t | |
7139 | m_scratch_get(struct mbuf *m, u_int8_t **p) | |
7140 | { | |
7141 | VERIFY(m->m_flags & M_PKTHDR); | |
7142 | ||
7143 | if (mcltrace) { | |
7144 | mcache_audit_t *mca; | |
7145 | ||
7146 | lck_mtx_lock(mbuf_mlock); | |
7147 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); | |
7148 | if (mca->mca_uflags & MB_SCVALID) | |
7149 | mcl_audit_scratch(mca); | |
7150 | lck_mtx_unlock(mbuf_mlock); | |
7151 | } | |
7152 | ||
7153 | *p = (u_int8_t *)&m->m_pkthdr.pkt_mpriv; | |
7154 | return (sizeof (m->m_pkthdr.pkt_mpriv)); | |
7155 | } | |
7156 | ||
7157 | static void | |
7158 | m_redzone_init(struct mbuf *m) | |
7159 | { | |
7160 | VERIFY(m->m_flags & M_PKTHDR); | |
7161 | /* | |
7162 | * Each mbuf has a unique red zone pattern, which is a XOR | |
7163 | * of the red zone cookie and the address of the mbuf. | |
7164 | */ | |
7165 | m->m_pkthdr.redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie; | |
7166 | } | |
7167 | ||
7168 | static void | |
7169 | m_redzone_verify(struct mbuf *m) | |
7170 | { | |
7171 | u_int32_t mb_redzone; | |
7172 | ||
7173 | VERIFY(m->m_flags & M_PKTHDR); | |
7174 | ||
7175 | mb_redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie; | |
7176 | if (m->m_pkthdr.redzone != mb_redzone) { | |
7177 | panic("mbuf %p redzone violation with value 0x%x " | |
7178 | "(instead of 0x%x, using cookie 0x%x)\n", | |
7179 | m, m->m_pkthdr.redzone, mb_redzone, mb_redzone_cookie); | |
7180 | /* NOTREACHED */ | |
7181 | } | |
7182 | } | |
7183 | ||
2d21ac55 | 7184 | SYSCTL_DECL(_kern_ipc); |
6d2010ae A |
7185 | SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, |
7186 | CTLFLAG_RD | CTLFLAG_LOCKED, | |
2d21ac55 | 7187 | 0, 0, mbstat_sysctl, "S,mbstat", ""); |
6d2010ae A |
7188 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat, |
7189 | CTLFLAG_RD | CTLFLAG_LOCKED, | |
2d21ac55 | 7190 | 0, 0, mb_stat_sysctl, "S,mb_stat", ""); |
6d2010ae A |
7191 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace, |
7192 | CTLFLAG_RD | CTLFLAG_LOCKED, | |
7193 | 0, 0, mleak_top_trace_sysctl, "S,mb_top_trace", ""); | |
7194 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table, | |
7195 | CTLFLAG_RD | CTLFLAG_LOCKED, | |
7196 | 0, 0, mleak_table_sysctl, "S,mleak_table", ""); | |
7197 | SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor, | |
7198 | CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, ""); | |
7199 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized, | |
7200 | CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, ""); | |
7201 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog, | |
7202 | CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, ""); |