]> git.saurik.com Git - apple/xnu.git/blame - iokit/Kernel/IOMemoryDescriptor.cpp
xnu-792.18.15.tar.gz
[apple/xnu.git] / iokit / Kernel / IOMemoryDescriptor.cpp
CommitLineData
1c79356b 1/*
91447636 2 * Copyright (c) 1998-2004 Apple Computer, Inc. All rights reserved.
1c79356b 3 *
8f6c56a5 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
8f6c56a5
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
8ad349bb 24 * limitations under the License.
8f6c56a5
A
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * Copyright (c) 1998 Apple Computer, Inc. All rights reserved.
30 *
31 * HISTORY
32 *
33 */
55e303ae
A
34// 45678901234567890123456789012345678901234567890123456789012345678901234567890
35#include <sys/cdefs.h>
1c79356b
A
36
37#include <IOKit/assert.h>
38#include <IOKit/system.h>
39#include <IOKit/IOLib.h>
40#include <IOKit/IOMemoryDescriptor.h>
55e303ae
A
41#include <IOKit/IOMapper.h>
42#include <IOKit/IOKitKeysPrivate.h>
1c79356b
A
43
44#include <IOKit/IOKitDebug.h>
45
91447636 46#include "IOKitKernelInternal.h"
89b3af67 47#include "IOCopyMapper.h"
91447636 48
1c79356b 49#include <libkern/c++/OSContainers.h>
9bccf70c
A
50#include <libkern/c++/OSDictionary.h>
51#include <libkern/c++/OSArray.h>
52#include <libkern/c++/OSSymbol.h>
53#include <libkern/c++/OSNumber.h>
91447636
A
54
55#include <sys/uio.h>
1c79356b
A
56
57__BEGIN_DECLS
58#include <vm/pmap.h>
91447636
A
59#include <vm/vm_pageout.h>
60#include <vm/vm_shared_memory_server.h>
55e303ae 61#include <mach/memory_object_types.h>
0b4e3aa0 62#include <device/device_port.h>
55e303ae 63
91447636
A
64#include <mach/vm_prot.h>
65#include <vm/vm_fault.h>
91447636 66
55e303ae 67extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va);
1c79356b 68void ipc_port_release_send(ipc_port_t port);
55e303ae
A
69
70/* Copy between a physical page and a virtual address in the given vm_map */
71kern_return_t copypv(addr64_t source, addr64_t sink, unsigned int size, int which);
0b4e3aa0
A
72
73memory_object_t
74device_pager_setup(
75 memory_object_t pager,
76 int device_handle,
77 vm_size_t size,
78 int flags);
9bccf70c
A
79void
80device_pager_deallocate(
81 memory_object_t);
0b4e3aa0
A
82kern_return_t
83device_pager_populate_object(
84 memory_object_t pager,
85 vm_object_offset_t offset,
55e303ae 86 ppnum_t phys_addr,
0b4e3aa0 87 vm_size_t size);
55e303ae
A
88kern_return_t
89memory_object_iopl_request(
90 ipc_port_t port,
91 memory_object_offset_t offset,
92 vm_size_t *upl_size,
93 upl_t *upl_ptr,
94 upl_page_info_array_t user_page_list,
95 unsigned int *page_list_count,
96 int *flags);
0b4e3aa0 97
55e303ae 98unsigned int IOTranslateCacheBits(struct phys_entry *pp);
1c79356b 99
55e303ae 100__END_DECLS
1c79356b 101
55e303ae 102#define kIOMaximumMappedIOByteCount (512*1024*1024)
1c79356b 103
89b3af67
A
104static IOMapper * gIOSystemMapper = NULL;
105
106IOCopyMapper * gIOCopyMapper = NULL;
107
55e303ae 108static ppnum_t gIOMaximumMappedIOPageCount = atop_32(kIOMaximumMappedIOByteCount);
de355530 109
89b3af67
A
110ppnum_t gIOLastPage;
111
55e303ae 112/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
de355530 113
55e303ae 114OSDefineMetaClassAndAbstractStructors( IOMemoryDescriptor, OSObject )
de355530 115
55e303ae 116#define super IOMemoryDescriptor
de355530 117
55e303ae 118OSDefineMetaClassAndStructors(IOGeneralMemoryDescriptor, IOMemoryDescriptor)
de355530 119
1c79356b
A
120/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
121
9bccf70c
A
122static IORecursiveLock * gIOMemoryLock;
123
124#define LOCK IORecursiveLockLock( gIOMemoryLock)
125#define UNLOCK IORecursiveLockUnlock( gIOMemoryLock)
126#define SLEEP IORecursiveLockSleep( gIOMemoryLock, (void *)this, THREAD_UNINT)
127#define WAKEUP \
128 IORecursiveLockWakeup( gIOMemoryLock, (void *)this, /* one-thread */ false)
129
89b3af67
A
130#if 0
131#define DEBG(fmt, args...) { kprintf(fmt, ## args); }
132#else
133#define DEBG(fmt, args...) {}
134#endif
135
9bccf70c
A
136/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
137
91447636
A
138class _IOMemoryMap : public IOMemoryMap
139{
140 OSDeclareDefaultStructors(_IOMemoryMap)
141public:
142 IOMemoryDescriptor * memory;
143 IOMemoryMap * superMap;
144 IOByteCount offset;
145 IOByteCount length;
146 IOVirtualAddress logical;
147 task_t addressTask;
148 vm_map_t addressMap;
149 IOOptionBits options;
150 upl_t redirUPL;
151 ipc_port_t redirEntry;
152 IOMemoryDescriptor * owner;
153
154protected:
155 virtual void taggedRelease(const void *tag = 0) const;
156 virtual void free();
157
158public:
159
160 // IOMemoryMap methods
161 virtual IOVirtualAddress getVirtualAddress();
162 virtual IOByteCount getLength();
163 virtual task_t getAddressTask();
164 virtual IOMemoryDescriptor * getMemoryDescriptor();
165 virtual IOOptionBits getMapOptions();
166
167 virtual IOReturn unmap();
168 virtual void taskDied();
169
170 virtual IOReturn redirect(IOMemoryDescriptor * newBackingMemory,
171 IOOptionBits options,
172 IOByteCount offset = 0);
173
174 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
175 IOByteCount * length);
176
177 // for IOMemoryDescriptor use
178 _IOMemoryMap * copyCompatible(
179 IOMemoryDescriptor * owner,
180 task_t intoTask,
181 IOVirtualAddress toAddress,
182 IOOptionBits options,
183 IOByteCount offset,
184 IOByteCount length );
185
186 bool initCompatible(
187 IOMemoryDescriptor * memory,
188 IOMemoryMap * superMap,
189 IOByteCount offset,
190 IOByteCount length );
191
192 bool initWithDescriptor(
193 IOMemoryDescriptor * memory,
194 task_t intoTask,
195 IOVirtualAddress toAddress,
196 IOOptionBits options,
197 IOByteCount offset,
198 IOByteCount length );
199
200 IOReturn redirect(
201 task_t intoTask, bool redirect );
202};
203
204/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
205
206// Some data structures and accessor macros used by the initWithOptions
207// Function
208
209enum ioPLBlockFlags {
210 kIOPLOnDevice = 0x00000001,
211 kIOPLExternUPL = 0x00000002,
212};
213
214struct typePersMDData
215{
216 const IOGeneralMemoryDescriptor *fMD;
217 ipc_port_t fMemEntry;
218};
219
220struct ioPLBlock {
221 upl_t fIOPL;
222 vm_address_t fIOMDOffset; // The offset of this iopl in descriptor
223 vm_offset_t fPageInfo; // Pointer to page list or index into it
224 ppnum_t fMappedBase; // Page number of first page in this iopl
225 unsigned int fPageOffset; // Offset within first page of iopl
226 unsigned int fFlags; // Flags
227};
228
229struct ioGMDData {
230 IOMapper *fMapper;
231 unsigned int fPageCnt;
232 upl_page_info_t fPageList[];
233 ioPLBlock fBlocks[];
234};
235
236#define getDataP(osd) ((ioGMDData *) (osd)->getBytesNoCopy())
237#define getIOPLList(d) ((ioPLBlock *) &(d->fPageList[d->fPageCnt]))
238#define getNumIOPL(osd, d) \
239 (((osd)->getLength() - ((char *) getIOPLList(d) - (char *) d)) / sizeof(ioPLBlock))
240#define getPageList(d) (&(d->fPageList[0]))
241#define computeDataSize(p, u) \
242 (sizeof(ioGMDData) + p * sizeof(upl_page_info_t) + u * sizeof(ioPLBlock))
243
244
245/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
246
55e303ae 247#define next_page(a) ( trunc_page_32(a) + PAGE_SIZE )
0b4e3aa0
A
248
249
250extern "C" {
251
252kern_return_t device_data_action(
253 int device_handle,
254 ipc_port_t device_pager,
255 vm_prot_t protection,
256 vm_object_offset_t offset,
257 vm_size_t size)
258{
9bccf70c
A
259 struct ExpansionData {
260 void * devicePager;
261 unsigned int pagerContig:1;
262 unsigned int unused:31;
263 IOMemoryDescriptor * memory;
264 };
265 kern_return_t kr;
266 ExpansionData * ref = (ExpansionData *) device_handle;
267 IOMemoryDescriptor * memDesc;
0b4e3aa0 268
9bccf70c
A
269 LOCK;
270 memDesc = ref->memory;
271 if( memDesc)
91447636
A
272 {
273 memDesc->retain();
9bccf70c
A
274 kr = memDesc->handleFault( device_pager, 0, 0,
275 offset, size, kIOMapDefaultCache /*?*/);
91447636
A
276 memDesc->release();
277 }
9bccf70c
A
278 else
279 kr = KERN_ABORTED;
280 UNLOCK;
0b4e3aa0 281
9bccf70c 282 return( kr );
0b4e3aa0
A
283}
284
285kern_return_t device_close(
286 int device_handle)
287{
9bccf70c
A
288 struct ExpansionData {
289 void * devicePager;
290 unsigned int pagerContig:1;
291 unsigned int unused:31;
292 IOMemoryDescriptor * memory;
293 };
294 ExpansionData * ref = (ExpansionData *) device_handle;
0b4e3aa0 295
9bccf70c 296 IODelete( ref, ExpansionData, 1 );
0b4e3aa0
A
297
298 return( kIOReturnSuccess );
299}
91447636 300}; // end extern "C"
0b4e3aa0 301
91447636
A
302// Note this inline function uses C++ reference arguments to return values
303// This means that pointers are not passed and NULLs don't have to be
304// checked for as a NULL reference is illegal.
305static inline void
89b3af67 306getAddrLenForInd(addr64_t &addr, IOPhysicalLength &len, // Output variables
91447636
A
307 UInt32 type, IOGeneralMemoryDescriptor::Ranges r, UInt32 ind)
308{
89b3af67
A
309 assert(kIOMemoryTypeUIO == type
310 || kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type
311 || kIOMemoryTypePhysical == type || kIOMemoryTypePhysical64 == type);
91447636
A
312 if (kIOMemoryTypeUIO == type) {
313 user_size_t us;
314 uio_getiov((uio_t) r.uio, ind, &addr, &us); len = us;
315 }
89b3af67
A
316 else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) {
317 IOAddressRange cur = r.v64[ind];
318 addr = cur.address;
319 len = cur.length;
320 }
91447636
A
321 else {
322 IOVirtualRange cur = r.v[ind];
323 addr = cur.address;
324 len = cur.length;
325 }
0b4e3aa0
A
326}
327
1c79356b
A
328/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
329
330/*
331 * withAddress:
332 *
333 * Create a new IOMemoryDescriptor. The buffer is a virtual address
334 * relative to the specified task. If no task is supplied, the kernel
335 * task is implied.
336 */
337IOMemoryDescriptor *
338IOMemoryDescriptor::withAddress(void * address,
55e303ae
A
339 IOByteCount length,
340 IODirection direction)
341{
342 return IOMemoryDescriptor::
343 withAddress((vm_address_t) address, length, direction, kernel_task);
344}
345
346IOMemoryDescriptor *
347IOMemoryDescriptor::withAddress(vm_address_t address,
348 IOByteCount length,
349 IODirection direction,
350 task_t task)
1c79356b 351{
89b3af67
A
352#if TEST_V64
353 if (task)
354 {
355 IOOptionBits options = (IOOptionBits) direction;
356 if (task == kernel_task)
357 options |= kIOMemoryAutoPrepare;
358 return (IOMemoryDescriptor::withAddressRange(address, length, options, task));
359 }
360#endif
1c79356b
A
361 IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
362 if (that)
363 {
55e303ae 364 if (that->initWithAddress(address, length, direction, task))
1c79356b
A
365 return that;
366
367 that->release();
368 }
369 return 0;
370}
371
372IOMemoryDescriptor *
55e303ae
A
373IOMemoryDescriptor::withPhysicalAddress(
374 IOPhysicalAddress address,
375 IOByteCount length,
376 IODirection direction )
377{
89b3af67
A
378#if TEST_P64
379 return (IOMemoryDescriptor::withAddressRange(address, length, (IOOptionBits) direction, NULL));
380#endif
55e303ae
A
381 IOGeneralMemoryDescriptor *self = new IOGeneralMemoryDescriptor;
382 if (self
383 && !self->initWithPhysicalAddress(address, length, direction)) {
384 self->release();
385 return 0;
386 }
387
388 return self;
389}
390
391IOMemoryDescriptor *
392IOMemoryDescriptor::withRanges( IOVirtualRange * ranges,
393 UInt32 withCount,
394 IODirection direction,
395 task_t task,
396 bool asReference)
1c79356b
A
397{
398 IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
399 if (that)
400 {
55e303ae 401 if (that->initWithRanges(ranges, withCount, direction, task, asReference))
1c79356b
A
402 return that;
403
404 that->release();
405 }
406 return 0;
407}
408
89b3af67
A
409IOMemoryDescriptor *
410IOMemoryDescriptor::withAddressRange(mach_vm_address_t address,
411 mach_vm_size_t length,
412 IOOptionBits options,
413 task_t task)
414{
415 IOAddressRange range = { address, length };
416 return (IOMemoryDescriptor::withAddressRanges(&range, 1, options, task));
417}
418
419IOMemoryDescriptor *
420IOMemoryDescriptor::withAddressRanges(IOAddressRange * ranges,
421 UInt32 rangeCount,
422 IOOptionBits options,
423 task_t task)
424{
425 IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
426 if (that)
427 {
428 if (task)
429 options |= kIOMemoryTypeVirtual64;
430 else
431 options |= kIOMemoryTypePhysical64;
432
433 if (that->initWithOptions(ranges, rangeCount, 0, task, options, /* mapper */ 0))
434 return that;
435
436 that->release();
437 }
438
439 return 0;
440}
441
1c79356b
A
442
443/*
444 * withRanges:
445 *
446 * Create a new IOMemoryDescriptor. The buffer is made up of several
447 * virtual address ranges, from a given task.
448 *
449 * Passing the ranges as a reference will avoid an extra allocation.
450 */
451IOMemoryDescriptor *
55e303ae
A
452IOMemoryDescriptor::withOptions(void * buffers,
453 UInt32 count,
454 UInt32 offset,
455 task_t task,
456 IOOptionBits opts,
457 IOMapper * mapper)
1c79356b 458{
55e303ae 459 IOGeneralMemoryDescriptor *self = new IOGeneralMemoryDescriptor;
d7e50217 460
55e303ae
A
461 if (self
462 && !self->initWithOptions(buffers, count, offset, task, opts, mapper))
463 {
464 self->release();
465 return 0;
de355530 466 }
55e303ae
A
467
468 return self;
469}
470
471// Can't leave abstract but this should never be used directly,
472bool IOMemoryDescriptor::initWithOptions(void * buffers,
473 UInt32 count,
474 UInt32 offset,
475 task_t task,
476 IOOptionBits options,
477 IOMapper * mapper)
478{
479 // @@@ gvdl: Should I panic?
480 panic("IOMD::initWithOptions called\n");
1c79356b
A
481 return 0;
482}
483
484IOMemoryDescriptor *
485IOMemoryDescriptor::withPhysicalRanges( IOPhysicalRange * ranges,
486 UInt32 withCount,
55e303ae
A
487 IODirection direction,
488 bool asReference)
1c79356b
A
489{
490 IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
491 if (that)
492 {
55e303ae 493 if (that->initWithPhysicalRanges(ranges, withCount, direction, asReference))
1c79356b
A
494 return that;
495
496 that->release();
497 }
498 return 0;
499}
500
501IOMemoryDescriptor *
502IOMemoryDescriptor::withSubRange(IOMemoryDescriptor * of,
503 IOByteCount offset,
504 IOByteCount length,
55e303ae 505 IODirection direction)
1c79356b 506{
55e303ae 507 IOSubMemoryDescriptor *self = new IOSubMemoryDescriptor;
1c79356b 508
55e303ae
A
509 if (self && !self->initSubRange(of, offset, length, direction)) {
510 self->release();
511 self = 0;
1c79356b 512 }
55e303ae 513 return self;
1c79356b
A
514}
515
89b3af67
A
516IOMemoryDescriptor *
517IOMemoryDescriptor::withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD)
91447636
A
518{
519 IOGeneralMemoryDescriptor *origGenMD =
520 OSDynamicCast(IOGeneralMemoryDescriptor, originalMD);
521
522 if (origGenMD)
523 return IOGeneralMemoryDescriptor::
524 withPersistentMemoryDescriptor(origGenMD);
525 else
526 return 0;
527}
528
89b3af67
A
529IOMemoryDescriptor *
530IOGeneralMemoryDescriptor::withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD)
91447636
A
531{
532 ipc_port_t sharedMem = (ipc_port_t) originalMD->createNamedEntry();
533
534 if (!sharedMem)
535 return 0;
536
537 if (sharedMem == originalMD->_memEntry) {
538 originalMD->retain(); // Add a new reference to ourselves
539 ipc_port_release_send(sharedMem); // Remove extra send right
540 return originalMD;
541 }
542
543 IOGeneralMemoryDescriptor * self = new IOGeneralMemoryDescriptor;
544 typePersMDData initData = { originalMD, sharedMem };
545
546 if (self
547 && !self->initWithOptions(&initData, 1, 0, 0, kIOMemoryTypePersistentMD, 0)) {
548 self->release();
549 self = 0;
550 }
551 return self;
552}
553
554void *IOGeneralMemoryDescriptor::createNamedEntry()
555{
556 kern_return_t error;
557 ipc_port_t sharedMem;
558
559 IOOptionBits type = _flags & kIOMemoryTypeMask;
560
561 user_addr_t range0Addr;
562 IOByteCount range0Len;
563 getAddrLenForInd(range0Addr, range0Len, type, _ranges, 0);
564 range0Addr = trunc_page_64(range0Addr);
565
566 vm_size_t size = ptoa_32(_pages);
567 vm_address_t kernelPage = (vm_address_t) range0Addr;
568
569 vm_map_t theMap = ((_task == kernel_task)
570 && (kIOMemoryBufferPageable & _flags))
571 ? IOPageableMapForAddress(kernelPage)
572 : get_task_map(_task);
573
574 memory_object_size_t actualSize = size;
575 vm_prot_t prot = VM_PROT_READ | VM_PROT_WRITE;
576 if (_memEntry)
577 prot |= MAP_MEM_NAMED_REUSE;
578
579 error = mach_make_memory_entry_64(theMap,
580 &actualSize, range0Addr, prot, &sharedMem, (ipc_port_t) _memEntry);
581
582 if (KERN_SUCCESS == error) {
583 if (actualSize == size) {
584 return sharedMem;
585 } else {
586#if IOASSERT
587 IOLog("IOGMD::mach_make_memory_entry_64 (%08llx) size (%08lx:%08x)\n",
588 (UInt64)range0Addr, (UInt32)actualSize, size);
589#endif
590 ipc_port_release_send( sharedMem );
591 }
592 }
593
594 return MACH_PORT_NULL;
595}
596
1c79356b
A
597/*
598 * initWithAddress:
599 *
600 * Initialize an IOMemoryDescriptor. The buffer is a virtual address
601 * relative to the specified task. If no task is supplied, the kernel
602 * task is implied.
603 *
604 * An IOMemoryDescriptor can be re-used by calling initWithAddress or
605 * initWithRanges again on an existing instance -- note this behavior
606 * is not commonly supported in other I/O Kit classes, although it is
607 * supported here.
608 */
609bool
610IOGeneralMemoryDescriptor::initWithAddress(void * address,
611 IOByteCount withLength,
612 IODirection withDirection)
613{
614 _singleRange.v.address = (vm_address_t) address;
615 _singleRange.v.length = withLength;
616
617 return initWithRanges(&_singleRange.v, 1, withDirection, kernel_task, true);
618}
619
620bool
621IOGeneralMemoryDescriptor::initWithAddress(vm_address_t address,
622 IOByteCount withLength,
623 IODirection withDirection,
624 task_t withTask)
625{
626 _singleRange.v.address = address;
627 _singleRange.v.length = withLength;
628
629 return initWithRanges(&_singleRange.v, 1, withDirection, withTask, true);
630}
631
632bool
633IOGeneralMemoryDescriptor::initWithPhysicalAddress(
634 IOPhysicalAddress address,
635 IOByteCount withLength,
636 IODirection withDirection )
637{
638 _singleRange.p.address = address;
639 _singleRange.p.length = withLength;
640
641 return initWithPhysicalRanges( &_singleRange.p, 1, withDirection, true);
642}
643
55e303ae
A
644bool
645IOGeneralMemoryDescriptor::initWithPhysicalRanges(
646 IOPhysicalRange * ranges,
647 UInt32 count,
648 IODirection direction,
649 bool reference)
650{
651 IOOptionBits mdOpts = direction | kIOMemoryTypePhysical;
652
653 if (reference)
654 mdOpts |= kIOMemoryAsReference;
655
656 return initWithOptions(ranges, count, 0, 0, mdOpts, /* mapper */ 0);
657}
658
659bool
660IOGeneralMemoryDescriptor::initWithRanges(
661 IOVirtualRange * ranges,
662 UInt32 count,
663 IODirection direction,
664 task_t task,
665 bool reference)
666{
667 IOOptionBits mdOpts = direction;
668
669 if (reference)
670 mdOpts |= kIOMemoryAsReference;
671
672 if (task) {
673 mdOpts |= kIOMemoryTypeVirtual;
91447636
A
674
675 // Auto-prepare if this is a kernel memory descriptor as very few
676 // clients bother to prepare() kernel memory.
677 // But it was not enforced so what are you going to do?
55e303ae
A
678 if (task == kernel_task)
679 mdOpts |= kIOMemoryAutoPrepare;
680 }
681 else
682 mdOpts |= kIOMemoryTypePhysical;
55e303ae
A
683
684 return initWithOptions(ranges, count, 0, task, mdOpts, /* mapper */ 0);
685}
686
1c79356b 687/*
55e303ae 688 * initWithOptions:
1c79356b 689 *
55e303ae 690 * IOMemoryDescriptor. The buffer is made up of several virtual address ranges,
91447636
A
691 * from a given task, several physical ranges, an UPL from the ubc
692 * system or a uio (may be 64bit) from the BSD subsystem.
1c79356b
A
693 *
694 * Passing the ranges as a reference will avoid an extra allocation.
695 *
55e303ae
A
696 * An IOMemoryDescriptor can be re-used by calling initWithOptions again on an
697 * existing instance -- note this behavior is not commonly supported in other
698 * I/O Kit classes, although it is supported here.
1c79356b 699 */
55e303ae 700
1c79356b 701bool
55e303ae
A
702IOGeneralMemoryDescriptor::initWithOptions(void * buffers,
703 UInt32 count,
704 UInt32 offset,
705 task_t task,
706 IOOptionBits options,
707 IOMapper * mapper)
708{
91447636
A
709 IOOptionBits type = options & kIOMemoryTypeMask;
710
711 // Grab the original MD's configuation data to initialse the
712 // arguments to this function.
713 if (kIOMemoryTypePersistentMD == type) {
714
715 typePersMDData *initData = (typePersMDData *) buffers;
716 const IOGeneralMemoryDescriptor *orig = initData->fMD;
717 ioGMDData *dataP = getDataP(orig->_memoryEntries);
718
719 // Only accept persistent memory descriptors with valid dataP data.
720 assert(orig->_rangesCount == 1);
721 if ( !(orig->_flags & kIOMemoryPersistent) || !dataP)
722 return false;
723
724 _memEntry = initData->fMemEntry; // Grab the new named entry
725 options = orig->_flags | kIOMemoryAsReference;
726 _singleRange = orig->_singleRange; // Initialise our range
727 buffers = &_singleRange;
728 count = 1;
55e303ae 729
91447636
A
730 // Now grab the original task and whatever mapper was previously used
731 task = orig->_task;
732 mapper = dataP->fMapper;
733
734 // We are ready to go through the original initialisation now
735 }
736
737 switch (type) {
738 case kIOMemoryTypeUIO:
55e303ae 739 case kIOMemoryTypeVirtual:
89b3af67 740 case kIOMemoryTypeVirtual64:
55e303ae
A
741 assert(task);
742 if (!task)
743 return false;
744 else
745 break;
746
747 case kIOMemoryTypePhysical: // Neither Physical nor UPL should have a task
89b3af67 748 case kIOMemoryTypePhysical64:
55e303ae 749 mapper = kIOMapperNone;
91447636 750
55e303ae
A
751 case kIOMemoryTypeUPL:
752 assert(!task);
753 break;
754 default:
55e303ae
A
755 return false; /* bad argument */
756 }
757
758 assert(buffers);
759 assert(count);
1c79356b
A
760
761 /*
762 * We can check the _initialized instance variable before having ever set
763 * it to an initial value because I/O Kit guarantees that all our instance
764 * variables are zeroed on an object's allocation.
765 */
766
55e303ae 767 if (_initialized) {
1c79356b
A
768 /*
769 * An existing memory descriptor is being retargeted to point to
770 * somewhere else. Clean up our present state.
771 */
772
1c79356b
A
773 while (_wireCount)
774 complete();
1c79356b 775 if (_ranges.v && _rangesIsAllocated)
89b3af67
A
776 {
777 if (kIOMemoryTypeUIO == type)
778 uio_free((uio_t) _ranges.v);
779 else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type))
780 IODelete(_ranges.v64, IOAddressRange, _rangesCount);
781 else
782 IODelete(_ranges.v, IOVirtualRange, _rangesCount);
783 }
91447636
A
784 if (_memEntry)
785 { ipc_port_release_send((ipc_port_t) _memEntry); _memEntry = 0; }
1c79356b 786 }
55e303ae
A
787 else {
788 if (!super::init())
789 return false;
790 _initialized = true;
791 }
d7e50217 792
55e303ae
A
793 // Grab the appropriate mapper
794 if (mapper == kIOMapperNone)
795 mapper = 0; // No Mapper
89b3af67 796 else if (mapper == kIOMapperSystem) {
55e303ae
A
797 IOMapper::checkForSystemMapper();
798 gIOSystemMapper = mapper = IOMapper::gSystem;
799 }
1c79356b 800
91447636
A
801 // Remove the dynamic internal use flags from the initial setting
802 options &= ~(kIOMemoryPreparedReadOnly);
55e303ae
A
803 _flags = options;
804 _task = task;
805
806 // DEPRECATED variable initialisation
807 _direction = (IODirection) (_flags & kIOMemoryDirectionMask);
89b3af67
A
808
809 __iomd_reservedA = 0;
810 __iomd_reservedB = 0;
811 __iomd_reservedC = 0;
812
813 _highestPage = 0;
1c79356b 814
91447636 815 if (kIOMemoryTypeUPL == type) {
1c79356b 816
55e303ae
A
817 ioGMDData *dataP;
818 unsigned int dataSize = computeDataSize(/* pages */ 0, /* upls */ 1);
d7e50217 819
55e303ae
A
820 if (!_memoryEntries) {
821 _memoryEntries = OSData::withCapacity(dataSize);
822 if (!_memoryEntries)
823 return false;
824 }
825 else if (!_memoryEntries->initWithCapacity(dataSize))
826 return false;
827
828 _memoryEntries->appendBytes(0, sizeof(ioGMDData));
829 dataP = getDataP(_memoryEntries);
830 dataP->fMapper = mapper;
831 dataP->fPageCnt = 0;
832
89b3af67 833 // _wireCount++; // UPLs start out life wired
55e303ae
A
834
835 _length = count;
836 _pages += atop_32(offset + count + PAGE_MASK) - atop_32(offset);
837
838 ioPLBlock iopl;
839 upl_page_info_t *pageList = UPL_GET_INTERNAL_PAGE_LIST((upl_t) buffers);
840
841 iopl.fIOPL = (upl_t) buffers;
842 // Set the flag kIOPLOnDevice convieniently equal to 1
843 iopl.fFlags = pageList->device | kIOPLExternUPL;
844 iopl.fIOMDOffset = 0;
89b3af67
A
845
846 _highestPage = upl_get_highest_page(iopl.fIOPL);
847
55e303ae 848 if (!pageList->device) {
55e303ae
A
849 // Pre-compute the offset into the UPL's page list
850 pageList = &pageList[atop_32(offset)];
851 offset &= PAGE_MASK;
852 if (mapper) {
853 iopl.fMappedBase = mapper->iovmAlloc(_pages);
854 mapper->iovmInsert(iopl.fMappedBase, 0, pageList, _pages);
855 }
856 else
857 iopl.fMappedBase = 0;
858 }
859 else
860 iopl.fMappedBase = 0;
861 iopl.fPageInfo = (vm_address_t) pageList;
862 iopl.fPageOffset = offset;
863
864 _memoryEntries->appendBytes(&iopl, sizeof(iopl));
d7e50217 865 }
91447636 866 else {
89b3af67
A
867 // kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO
868 // kIOMemoryTypePhysical | kIOMemoryTypePhysical64
91447636
A
869
870 // Initialize the memory descriptor
871 if (options & kIOMemoryAsReference) {
872 _rangesIsAllocated = false;
873
874 // Hack assignment to get the buffer arg into _ranges.
875 // I'd prefer to do _ranges = (Ranges) buffers, but that doesn't
876 // work, C++ sigh.
877 // This also initialises the uio & physical ranges.
878 _ranges.v = (IOVirtualRange *) buffers;
879 }
880 else {
8f6c56a5 881 _rangesIsAllocated = true;
89b3af67
A
882 switch (_flags & kIOMemoryTypeMask)
883 {
884 case kIOMemoryTypeUIO:
885 _ranges.v = (IOVirtualRange *) uio_duplicate((uio_t) buffers);
886 break;
887
888 case kIOMemoryTypeVirtual64:
889 case kIOMemoryTypePhysical64:
890 _ranges.v64 = IONew(IOAddressRange, count);
891 if (!_ranges.v64)
892 return false;
893 bcopy(buffers, _ranges.v, count * sizeof(IOAddressRange));
894 break;
895 case kIOMemoryTypeVirtual:
896 _ranges.v = IONew(IOVirtualRange, count);
897 if (!_ranges.v)
898 return false;
899 bcopy(buffers, _ranges.v, count * sizeof(IOVirtualRange));
900 break;
901 }
91447636
A
902 }
903
904 // Find starting address within the vector of ranges
905 Ranges vec = _ranges;
906 UInt32 length = 0;
907 UInt32 pages = 0;
908 for (unsigned ind = 0; ind < count; ind++) {
909 user_addr_t addr;
910 UInt32 len;
911
912 // addr & len are returned by this function
913 getAddrLenForInd(addr, len, type, vec, ind);
914 pages += (atop_64(addr + len + PAGE_MASK) - atop_64(addr));
915 len += length;
89b3af67 916 assert(len >= length); // Check for 32 bit wrap around
91447636 917 length = len;
89b3af67
A
918
919 if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
920 {
921 ppnum_t highPage = atop_64(addr + len - 1);
922 if (highPage > _highestPage)
923 _highestPage = highPage;
924 }
91447636
A
925 }
926 _length = length;
927 _pages = pages;
928 _rangesCount = count;
55e303ae
A
929
930 // Auto-prepare memory at creation time.
931 // Implied completion when descriptor is free-ed
89b3af67 932 if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
91447636 933 _wireCount++; // Physical MDs are, by definition, wired
89b3af67 934 else { /* kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO */
55e303ae 935 ioGMDData *dataP;
91447636 936 unsigned dataSize = computeDataSize(_pages, /* upls */ count * 2);
55e303ae
A
937
938 if (!_memoryEntries) {
939 _memoryEntries = OSData::withCapacity(dataSize);
940 if (!_memoryEntries)
91447636 941 return false;
55e303ae
A
942 }
943 else if (!_memoryEntries->initWithCapacity(dataSize))
944 return false;
945
946 _memoryEntries->appendBytes(0, sizeof(ioGMDData));
947 dataP = getDataP(_memoryEntries);
948 dataP->fMapper = mapper;
949 dataP->fPageCnt = _pages;
950
91447636
A
951 if ( (kIOMemoryPersistent & _flags) && !_memEntry)
952 _memEntry = createNamedEntry();
55e303ae
A
953
954 if ((_flags & kIOMemoryAutoPrepare)
955 && prepare() != kIOReturnSuccess)
956 return false;
957 }
958 }
959
960 return true;
de355530
A
961}
962
1c79356b
A
963/*
964 * free
965 *
966 * Free resources.
967 */
968void IOGeneralMemoryDescriptor::free()
969{
9bccf70c
A
970 LOCK;
971 if( reserved)
972 reserved->memory = 0;
973 UNLOCK;
974
1c79356b
A
975 while (_wireCount)
976 complete();
55e303ae
A
977 if (_memoryEntries)
978 _memoryEntries->release();
979
1c79356b 980 if (_ranges.v && _rangesIsAllocated)
89b3af67
A
981 {
982 IOOptionBits type = _flags & kIOMemoryTypeMask;
983 if (kIOMemoryTypeUIO == type)
984 uio_free((uio_t) _ranges.v);
985 else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type))
986 IODelete(_ranges.v64, IOAddressRange, _rangesCount);
987 else
988 IODelete(_ranges.v, IOVirtualRange, _rangesCount);
989 }
9bccf70c 990
55e303ae
A
991 if (reserved && reserved->devicePager)
992 device_pager_deallocate( (memory_object_t) reserved->devicePager );
9bccf70c 993
55e303ae
A
994 // memEntry holds a ref on the device pager which owns reserved
995 // (ExpansionData) so no reserved access after this point
996 if (_memEntry)
1c79356b 997 ipc_port_release_send( (ipc_port_t) _memEntry );
55e303ae 998
1c79356b
A
999 super::free();
1000}
1001
0b4e3aa0
A
1002/* DEPRECATED */ void IOGeneralMemoryDescriptor::unmapFromKernel()
1003/* DEPRECATED */ {
55e303ae 1004 panic("IOGMD::unmapFromKernel deprecated");
0b4e3aa0
A
1005/* DEPRECATED */ }
1006/* DEPRECATED */
1007/* DEPRECATED */ void IOGeneralMemoryDescriptor::mapIntoKernel(unsigned rangeIndex)
1008/* DEPRECATED */ {
55e303ae 1009 panic("IOGMD::mapIntoKernel deprecated");
0b4e3aa0 1010/* DEPRECATED */ }
1c79356b
A
1011
1012/*
1013 * getDirection:
1014 *
1015 * Get the direction of the transfer.
1016 */
1017IODirection IOMemoryDescriptor::getDirection() const
1018{
1019 return _direction;
1020}
1021
1022/*
1023 * getLength:
1024 *
1025 * Get the length of the transfer (over all ranges).
1026 */
1027IOByteCount IOMemoryDescriptor::getLength() const
1028{
1029 return _length;
1030}
1031
55e303ae 1032void IOMemoryDescriptor::setTag( IOOptionBits tag )
1c79356b
A
1033{
1034 _tag = tag;
1035}
1036
1037IOOptionBits IOMemoryDescriptor::getTag( void )
1038{
1039 return( _tag);
1040}
1041
55e303ae 1042// @@@ gvdl: who is using this API? Seems like a wierd thing to implement.
89b3af67
A
1043IOPhysicalAddress
1044IOMemoryDescriptor::getSourceSegment( IOByteCount offset, IOByteCount * length )
0b4e3aa0 1045{
89b3af67 1046 addr64_t physAddr = 0;
1c79356b 1047
9bccf70c 1048 if( prepare() == kIOReturnSuccess) {
89b3af67 1049 physAddr = getPhysicalSegment64( offset, length );
9bccf70c
A
1050 complete();
1051 }
0b4e3aa0 1052
89b3af67 1053 return( (IOPhysicalAddress) physAddr ); // truncated but only page offset is used
0b4e3aa0
A
1054}
1055
55e303ae
A
1056IOByteCount IOMemoryDescriptor::readBytes
1057 (IOByteCount offset, void *bytes, IOByteCount length)
1c79356b 1058{
55e303ae
A
1059 addr64_t dstAddr = (addr64_t) (UInt32) bytes;
1060 IOByteCount remaining;
1c79356b 1061
55e303ae
A
1062 // Assert that this entire I/O is withing the available range
1063 assert(offset < _length);
1064 assert(offset + length <= _length);
1065 if (offset >= _length) {
1066IOLog("IOGMD(%p): rB = o%lx, l%lx\n", this, offset, length); // @@@ gvdl
1067 return 0;
1068 }
1c79356b 1069
55e303ae
A
1070 remaining = length = min(length, _length - offset);
1071 while (remaining) { // (process another target segment?)
1072 addr64_t srcAddr64;
1073 IOByteCount srcLen;
1c79356b 1074
55e303ae
A
1075 srcAddr64 = getPhysicalSegment64(offset, &srcLen);
1076 if (!srcAddr64)
1077 break;
1c79356b 1078
55e303ae
A
1079 // Clip segment length to remaining
1080 if (srcLen > remaining)
1081 srcLen = remaining;
1c79356b 1082
55e303ae
A
1083 copypv(srcAddr64, dstAddr, srcLen,
1084 cppvPsrc | cppvNoRefSrc | cppvFsnk | cppvKmap);
1c79356b 1085
55e303ae
A
1086 dstAddr += srcLen;
1087 offset += srcLen;
1088 remaining -= srcLen;
1089 }
1c79356b 1090
55e303ae 1091 assert(!remaining);
1c79356b 1092
55e303ae
A
1093 return length - remaining;
1094}
0b4e3aa0 1095
55e303ae
A
1096IOByteCount IOMemoryDescriptor::writeBytes
1097 (IOByteCount offset, const void *bytes, IOByteCount length)
1098{
1099 addr64_t srcAddr = (addr64_t) (UInt32) bytes;
1100 IOByteCount remaining;
0b4e3aa0 1101
55e303ae
A
1102 // Assert that this entire I/O is withing the available range
1103 assert(offset < _length);
1104 assert(offset + length <= _length);
0b4e3aa0 1105
55e303ae 1106 assert( !(kIOMemoryPreparedReadOnly & _flags) );
0b4e3aa0 1107
55e303ae
A
1108 if ( (kIOMemoryPreparedReadOnly & _flags) || offset >= _length) {
1109IOLog("IOGMD(%p): wB = o%lx, l%lx\n", this, offset, length); // @@@ gvdl
1110 return 0;
1111 }
0b4e3aa0 1112
55e303ae
A
1113 remaining = length = min(length, _length - offset);
1114 while (remaining) { // (process another target segment?)
1115 addr64_t dstAddr64;
1116 IOByteCount dstLen;
0b4e3aa0 1117
55e303ae
A
1118 dstAddr64 = getPhysicalSegment64(offset, &dstLen);
1119 if (!dstAddr64)
1120 break;
0b4e3aa0 1121
55e303ae
A
1122 // Clip segment length to remaining
1123 if (dstLen > remaining)
1124 dstLen = remaining;
0b4e3aa0 1125
55e303ae
A
1126 copypv(srcAddr, (addr64_t) dstAddr64, dstLen,
1127 cppvPsnk | cppvFsnk | cppvNoRefSrc | cppvNoModSnk | cppvKmap);
0b4e3aa0 1128
55e303ae
A
1129 srcAddr += dstLen;
1130 offset += dstLen;
1131 remaining -= dstLen;
1c79356b 1132 }
1c79356b 1133
55e303ae
A
1134 assert(!remaining);
1135
1136 return length - remaining;
1c79356b
A
1137}
1138
55e303ae
A
1139// osfmk/device/iokit_rpc.c
1140extern "C" unsigned int IODefaultCacheBits(addr64_t pa);
1c79356b 1141
55e303ae
A
1142/* DEPRECATED */ void IOGeneralMemoryDescriptor::setPosition(IOByteCount position)
1143/* DEPRECATED */ {
1144 panic("IOGMD::setPosition deprecated");
1145/* DEPRECATED */ }
de355530 1146
89b3af67 1147IOReturn IOGeneralMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const
55e303ae 1148{
89b3af67 1149 if (kIOMDGetCharacteristics == op) {
5d5c5d0d 1150
89b3af67
A
1151 if (dataSize < sizeof(IOMDDMACharacteristics))
1152 return kIOReturnUnderrun;
5d5c5d0d 1153
89b3af67
A
1154 IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData;
1155 data->fLength = _length;
1156 data->fSGCount = _rangesCount;
1157 data->fPages = _pages;
1158 data->fDirection = _direction;
1159 if (!_wireCount)
1160 data->fIsPrepared = false;
1161 else {
1162 data->fIsPrepared = true;
1163 data->fHighestPage = _highestPage;
1164 if (_memoryEntries) {
1165 ioGMDData *gmdData = getDataP(_memoryEntries);
1166 ioPLBlock *ioplList = getIOPLList(gmdData);
1167 UInt count = getNumIOPL(_memoryEntries, gmdData);
1168
1169 data->fIsMapped = (gmdData->fMapper && _pages && (count > 0)
1170 && ioplList[0].fMappedBase);
1171 if (count == 1)
1172 data->fPageAlign = (ioplList[0].fPageOffset & PAGE_MASK) | ~PAGE_MASK;
1173 }
1174 else
1175 data->fIsMapped = false;
1176 }
5d5c5d0d 1177
89b3af67
A
1178 return kIOReturnSuccess;
1179 }
1180 else if (!(kIOMDWalkSegments & op))
1181 return kIOReturnBadArgument;
1182
1183 // Get the next segment
1184 struct InternalState {
1185 IOMDDMAWalkSegmentArgs fIO;
1186 UInt fOffset2Index;
1187 UInt fIndex;
1188 UInt fNextOffset;
1189 } *isP;
1190
1191 // Find the next segment
1192 if (dataSize < sizeof(*isP))
1193 return kIOReturnUnderrun;
1194
1195 isP = (InternalState *) vData;
1196 UInt offset = isP->fIO.fOffset;
1197 bool mapped = isP->fIO.fMapped;
1198
1199 if (offset >= _length)
1200 return (offset == _length)? kIOReturnOverrun : kIOReturnInternalError;
1201
1202 // Validate the previous offset
1203 UInt ind, off2Ind = isP->fOffset2Index;
1204 if ((kIOMDFirstSegment != op)
1205 && offset
1206 && (offset == isP->fNextOffset || off2Ind <= offset))
1207 ind = isP->fIndex;
1208 else
1209 ind = off2Ind = 0; // Start from beginning
5d5c5d0d 1210
89b3af67
A
1211 UInt length;
1212 UInt64 address;
1213 if ( (_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) {
5d5c5d0d 1214
89b3af67
A
1215 // Physical address based memory descriptor
1216 const IOPhysicalRange *physP = (IOPhysicalRange *) &_ranges.p[0];
5d5c5d0d 1217
89b3af67
A
1218 // Find the range after the one that contains the offset
1219 UInt len;
1220 for (len = 0; off2Ind <= offset; ind++) {
1221 len = physP[ind].length;
1222 off2Ind += len;
1223 }
5d5c5d0d 1224
89b3af67
A
1225 // Calculate length within range and starting address
1226 length = off2Ind - offset;
1227 address = physP[ind - 1].address + len - length;
c0fea474 1228
89b3af67
A
1229 // see how far we can coalesce ranges
1230 while (ind < _rangesCount && address + length == physP[ind].address) {
1231 len = physP[ind].length;
1232 length += len;
1233 off2Ind += len;
1234 ind++;
1235 }
5d5c5d0d 1236
89b3af67
A
1237 // correct contiguous check overshoot
1238 ind--;
1239 off2Ind -= len;
1240 }
1241 else if ( (_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64) {
5d5c5d0d 1242
89b3af67
A
1243 // Physical address based memory descriptor
1244 const IOAddressRange *physP = (IOAddressRange *) &_ranges.v64[0];
5d5c5d0d 1245
89b3af67
A
1246 // Find the range after the one that contains the offset
1247 mach_vm_size_t len;
1248 for (len = 0; off2Ind <= offset; ind++) {
1249 len = physP[ind].length;
1250 off2Ind += len;
1251 }
c0fea474 1252
89b3af67
A
1253 // Calculate length within range and starting address
1254 length = off2Ind - offset;
1255 address = physP[ind - 1].address + len - length;
c0fea474 1256
89b3af67
A
1257 // see how far we can coalesce ranges
1258 while (ind < _rangesCount && address + length == physP[ind].address) {
1259 len = physP[ind].length;
1260 length += len;
1261 off2Ind += len;
1262 ind++;
1263 }
1264
1265 // correct contiguous check overshoot
1266 ind--;
1267 off2Ind -= len;
1268 }
1269 else do {
1270 if (!_wireCount)
1271 panic("IOGMD: not wired for the IODMACommand");
5d5c5d0d 1272
89b3af67 1273 assert(_memoryEntries);
5d5c5d0d 1274
89b3af67
A
1275 ioGMDData * dataP = getDataP(_memoryEntries);
1276 const ioPLBlock *ioplList = getIOPLList(dataP);
1277 UInt numIOPLs = getNumIOPL(_memoryEntries, dataP);
1278 upl_page_info_t *pageList = getPageList(dataP);
5d5c5d0d 1279
89b3af67 1280 assert(numIOPLs > 0);
5d5c5d0d 1281
89b3af67
A
1282 // Scan through iopl info blocks looking for block containing offset
1283 while (ind < numIOPLs && offset >= ioplList[ind].fIOMDOffset)
1284 ind++;
5d5c5d0d 1285
89b3af67
A
1286 // Go back to actual range as search goes past it
1287 ioPLBlock ioplInfo = ioplList[ind - 1];
1288 off2Ind = ioplInfo.fIOMDOffset;
1289
1290 if (ind < numIOPLs)
1291 length = ioplList[ind].fIOMDOffset;
1292 else
1293 length = _length;
1294 length -= offset; // Remainder within iopl
1295
1296 // Subtract offset till this iopl in total list
1297 offset -= off2Ind;
1298
1299 // If a mapped address is requested and this is a pre-mapped IOPL
1300 // then just need to compute an offset relative to the mapped base.
1301 if (mapped && ioplInfo.fMappedBase) {
1302 offset += (ioplInfo.fPageOffset & PAGE_MASK);
1303 address = ptoa_64(ioplInfo.fMappedBase) + offset;
1304 continue; // Done leave do/while(false) now
1305 }
1306
1307 // The offset is rebased into the current iopl.
1308 // Now add the iopl 1st page offset.
1309 offset += ioplInfo.fPageOffset;
1310
1311 // For external UPLs the fPageInfo field points directly to
1312 // the upl's upl_page_info_t array.
1313 if (ioplInfo.fFlags & kIOPLExternUPL)
1314 pageList = (upl_page_info_t *) ioplInfo.fPageInfo;
1315 else
1316 pageList = &pageList[ioplInfo.fPageInfo];
1317
1318 // Check for direct device non-paged memory
1319 if ( ioplInfo.fFlags & kIOPLOnDevice ) {
1320 address = ptoa_64(pageList->phys_addr) + offset;
1321 continue; // Done leave do/while(false) now
1322 }
5d5c5d0d 1323
89b3af67
A
1324 // Now we need compute the index into the pageList
1325 UInt pageInd = atop_32(offset);
1326 offset &= PAGE_MASK;
1327
1328 // Compute the starting address of this segment
1329 IOPhysicalAddress pageAddr = pageList[pageInd].phys_addr;
1330 address = ptoa_64(pageAddr) + offset;
1331
1332 // length is currently set to the length of the remainider of the iopl.
1333 // We need to check that the remainder of the iopl is contiguous.
1334 // This is indicated by pageList[ind].phys_addr being sequential.
1335 IOByteCount contigLength = PAGE_SIZE - offset;
1336 while (contigLength < length
1337 && ++pageAddr == pageList[++pageInd].phys_addr)
1338 {
1339 contigLength += PAGE_SIZE;
1340 }
1341
1342 if (contigLength < length)
1343 length = contigLength;
1344
1345
1346 assert(address);
1347 assert(length);
1348
1349 } while (false);
1350
1351 // Update return values and state
1352 isP->fIO.fIOVMAddr = address;
1353 isP->fIO.fLength = length;
1354 isP->fIndex = ind;
1355 isP->fOffset2Index = off2Ind;
1356 isP->fNextOffset = isP->fIO.fOffset + length;
1357
1358 return kIOReturnSuccess;
1359}
1360
1361addr64_t
1362IOGeneralMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment)
1363{
1364 IOReturn ret;
1365 IOByteCount length = 0;
1366 addr64_t address = 0;
5d5c5d0d 1367
89b3af67
A
1368 if (offset < _length) // (within bounds?)
1369 {
1370 IOMDDMAWalkSegmentState _state;
1371 IOMDDMAWalkSegmentArgs * state = (IOMDDMAWalkSegmentArgs *) &_state;
1372
1373 state->fOffset = offset;
1374 state->fLength = _length - offset;
1375 state->fMapped = false;
1376
1377 ret = dmaCommandOperation(kIOMDFirstSegment, _state, sizeof(_state));
1378
1379 if ((kIOReturnSuccess != ret) && (kIOReturnOverrun != ret))
1380 DEBG("getPhysicalSegment64 dmaCommandOperation(%lx), %p, offset %qx, addr %qx, len %qx\n",
1381 ret, this, state->fOffset,
1382 state->fIOVMAddr, state->fLength);
1383 if (kIOReturnSuccess == ret)
1384 {
1385 address = state->fIOVMAddr;
1386 length = state->fLength;
1387 }
5d5c5d0d
A
1388 if (!address)
1389 length = 0;
1390 }
1391
5d5c5d0d
A
1392 if (lengthOfSegment)
1393 *lengthOfSegment = length;
1394
89b3af67
A
1395 return (address);
1396}
1397
1398IOPhysicalAddress
1399IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment)
1400{
1401 IOReturn ret;
1402 IOByteCount length = 0;
1403 addr64_t address = 0;
1404
1405// assert(offset <= _length);
1406
1407 if (offset < _length) // (within bounds?)
1408 {
1409 IOMDDMAWalkSegmentState _state;
1410 IOMDDMAWalkSegmentArgs * state = (IOMDDMAWalkSegmentArgs *) &_state;
1411
1412 state->fOffset = offset;
1413 state->fLength = _length - offset;
1414 state->fMapped = true;
1415
1416 ret = dmaCommandOperation(
1417 kIOMDFirstSegment, _state, sizeof(_state));
1418
1419 if ((kIOReturnSuccess != ret) && (kIOReturnOverrun != ret))
1420 DEBG("getPhysicalSegment dmaCommandOperation(%lx), %p, offset %qx, addr %qx, len %qx\n",
1421 ret, this, state->fOffset,
1422 state->fIOVMAddr, state->fLength);
1423 if (kIOReturnSuccess == ret)
1424 {
1425 address = state->fIOVMAddr;
1426 length = state->fLength;
1427 }
1428
1429 if (!address)
1430 length = 0;
1431 }
1432
1433 if ((address + length) > 0x100000000ULL)
1434 {
1435 panic("getPhysicalSegment() out of 32b range 0x%qx, len 0x%x, class %s",
1436 address, length, (getMetaClass())->getClassName());
1437 }
1438
1439 if (lengthOfSegment)
1440 *lengthOfSegment = length;
1441
1442 return ((IOPhysicalAddress) address);
55e303ae 1443}
de355530 1444
89b3af67
A
1445addr64_t
1446IOMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment)
55e303ae
A
1447{
1448 IOPhysicalAddress phys32;
1449 IOByteCount length;
1450 addr64_t phys64;
89b3af67 1451 IOMapper * mapper = 0;
0b4e3aa0 1452
55e303ae
A
1453 phys32 = getPhysicalSegment(offset, lengthOfSegment);
1454 if (!phys32)
1455 return 0;
0b4e3aa0 1456
55e303ae 1457 if (gIOSystemMapper)
89b3af67
A
1458 mapper = gIOSystemMapper;
1459
1460 if (mapper)
1c79356b 1461 {
55e303ae
A
1462 IOByteCount origLen;
1463
89b3af67 1464 phys64 = mapper->mapAddr(phys32);
55e303ae
A
1465 origLen = *lengthOfSegment;
1466 length = page_size - (phys64 & (page_size - 1));
1467 while ((length < origLen)
89b3af67 1468 && ((phys64 + length) == mapper->mapAddr(phys32 + length)))
55e303ae
A
1469 length += page_size;
1470 if (length > origLen)
1471 length = origLen;
1472
1473 *lengthOfSegment = length;
0b4e3aa0 1474 }
55e303ae
A
1475 else
1476 phys64 = (addr64_t) phys32;
1c79356b 1477
55e303ae 1478 return phys64;
0b4e3aa0
A
1479}
1480
89b3af67
A
1481IOPhysicalAddress
1482IOGeneralMemoryDescriptor::getSourceSegment(IOByteCount offset, IOByteCount *lengthOfSegment)
1c79356b 1483{
0b4e3aa0
A
1484 IOPhysicalAddress address = 0;
1485 IOPhysicalLength length = 0;
91447636 1486 IOOptionBits type = _flags & kIOMemoryTypeMask;
1c79356b 1487
0b4e3aa0 1488 assert(offset <= _length);
1c79356b 1489
91447636 1490 if ( type == kIOMemoryTypeUPL)
55e303ae 1491 return super::getSourceSegment( offset, lengthOfSegment );
91447636 1492 else if ( offset < _length ) // (within bounds?)
1c79356b 1493 {
0b4e3aa0 1494 unsigned rangesIndex = 0;
91447636
A
1495 Ranges vec = _ranges;
1496 user_addr_t addr;
1497
1498 // Find starting address within the vector of ranges
1499 for (;;) {
1500 getAddrLenForInd(addr, length, type, vec, rangesIndex);
1501 if (offset < length)
1502 break;
1503 offset -= length; // (make offset relative)
1504 rangesIndex++;
1505 }
1506
1507 // Now that we have the starting range,
1508 // lets find the last contiguous range
1509 addr += offset;
1510 length -= offset;
1511
1512 for ( ++rangesIndex; rangesIndex < _rangesCount; rangesIndex++ ) {
1513 user_addr_t newAddr;
1514 IOPhysicalLength newLen;
1515
1516 getAddrLenForInd(newAddr, newLen, type, vec, rangesIndex);
1517 if (addr + length != newAddr)
1518 break;
1519 length += newLen;
1520 }
1521 if (addr)
1522 address = (IOPhysicalAddress) addr; // Truncate address to 32bit
1523 else
1524 length = 0;
1c79356b 1525 }
0b4e3aa0
A
1526
1527 if ( lengthOfSegment ) *lengthOfSegment = length;
1528
1529 return address;
1530}
1531
1532/* DEPRECATED */ /* USE INSTEAD: map(), readBytes(), writeBytes() */
1533/* DEPRECATED */ void * IOGeneralMemoryDescriptor::getVirtualSegment(IOByteCount offset,
1534/* DEPRECATED */ IOByteCount * lengthOfSegment)
1535/* DEPRECATED */ {
55e303ae
A
1536 if (_task == kernel_task)
1537 return (void *) getSourceSegment(offset, lengthOfSegment);
1538 else
1539 panic("IOGMD::getVirtualSegment deprecated");
1540
1541 return 0;
0b4e3aa0
A
1542/* DEPRECATED */ }
1543/* DEPRECATED */ /* USE INSTEAD: map(), readBytes(), writeBytes() */
1c79356b 1544
91447636
A
1545
1546
89b3af67
A
1547IOReturn
1548IOMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const
1549{
1550 if (kIOMDGetCharacteristics == op) {
1551 if (dataSize < sizeof(IOMDDMACharacteristics))
1552 return kIOReturnUnderrun;
1553
1554 IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData;
1555 data->fLength = getLength();
1556 data->fSGCount = 0;
1557 data->fDirection = _direction;
1558 if (IOMapper::gSystem)
1559 data->fIsMapped = true;
1560 data->fIsPrepared = true; // Assume prepared - fails safe
1561 }
1562 else if (kIOMDWalkSegments & op) {
1563 if (dataSize < sizeof(IOMDDMAWalkSegmentArgs))
1564 return kIOReturnUnderrun;
1565
1566 IOMDDMAWalkSegmentArgs *data = (IOMDDMAWalkSegmentArgs *) vData;
1567 IOByteCount offset = (IOByteCount) data->fOffset;
1568
1569 IOPhysicalLength length;
1570 IOMemoryDescriptor *ncmd = const_cast<IOMemoryDescriptor *>(this);
1571 if (data->fMapped && IOMapper::gSystem)
1572 data->fIOVMAddr = ncmd->getPhysicalSegment(offset, &length);
1573 else
1574 data->fIOVMAddr = ncmd->getPhysicalSegment64(offset, &length);
1575 data->fLength = length;
1576 }
1577 else
1578 return kIOReturnBadArgument;
1579
1580 return kIOReturnSuccess;
1581}
1582
91447636
A
1583IOReturn IOMemoryDescriptor::setPurgeable( IOOptionBits newState,
1584 IOOptionBits * oldState )
1585{
1586 IOReturn err = kIOReturnSuccess;
1587 vm_purgable_t control;
1588 int state;
1589
1590 do
1591 {
1592 if (!_memEntry)
1593 {
1594 err = kIOReturnNotReady;
1595 break;
1596 }
1597
1598 control = VM_PURGABLE_SET_STATE;
1599 switch (newState)
1600 {
1601 case kIOMemoryPurgeableKeepCurrent:
1602 control = VM_PURGABLE_GET_STATE;
1603 break;
1604
1605 case kIOMemoryPurgeableNonVolatile:
1606 state = VM_PURGABLE_NONVOLATILE;
1607 break;
1608 case kIOMemoryPurgeableVolatile:
1609 state = VM_PURGABLE_VOLATILE;
1610 break;
1611 case kIOMemoryPurgeableEmpty:
1612 state = VM_PURGABLE_EMPTY;
1613 break;
1614 default:
1615 err = kIOReturnBadArgument;
1616 break;
1617 }
1618
1619 if (kIOReturnSuccess != err)
1620 break;
1621
1622 err = mach_memory_entry_purgable_control((ipc_port_t) _memEntry, control, &state);
1623
1624 if (oldState)
1625 {
1626 if (kIOReturnSuccess == err)
1627 {
1628 switch (state)
1629 {
1630 case VM_PURGABLE_NONVOLATILE:
1631 state = kIOMemoryPurgeableNonVolatile;
1632 break;
1633 case VM_PURGABLE_VOLATILE:
1634 state = kIOMemoryPurgeableVolatile;
1635 break;
1636 case VM_PURGABLE_EMPTY:
1637 state = kIOMemoryPurgeableEmpty;
1638 break;
1639 default:
1640 state = kIOMemoryPurgeableNonVolatile;
1641 err = kIOReturnNotReady;
1642 break;
1643 }
1644 *oldState = state;
1645 }
1646 }
1647 }
1648 while (false);
1649
1650 return (err);
1651}
1652
1653extern "C" void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count);
1654extern "C" void dcache_incoherent_io_store64(addr64_t pa, unsigned int count);
1655
1656IOReturn IOMemoryDescriptor::performOperation( IOOptionBits options,
1657 IOByteCount offset, IOByteCount length )
1658{
1659 IOByteCount remaining;
1660 void (*func)(addr64_t pa, unsigned int count) = 0;
1661
1662 switch (options)
1663 {
1664 case kIOMemoryIncoherentIOFlush:
1665 func = &dcache_incoherent_io_flush64;
1666 break;
1667 case kIOMemoryIncoherentIOStore:
1668 func = &dcache_incoherent_io_store64;
1669 break;
1670 }
1671
1672 if (!func)
1673 return (kIOReturnUnsupported);
1674
1675 remaining = length = min(length, getLength() - offset);
1676 while (remaining)
1677 // (process another target segment?)
1678 {
1679 addr64_t dstAddr64;
1680 IOByteCount dstLen;
1681
1682 dstAddr64 = getPhysicalSegment64(offset, &dstLen);
1683 if (!dstAddr64)
1684 break;
1685
1686 // Clip segment length to remaining
1687 if (dstLen > remaining)
1688 dstLen = remaining;
1689
1690 (*func)(dstAddr64, dstLen);
1691
1692 offset += dstLen;
1693 remaining -= dstLen;
1694 }
1695
1696 return (remaining ? kIOReturnUnderrun : kIOReturnSuccess);
1697}
1698
55e303ae
A
1699#ifdef __ppc__
1700extern vm_offset_t static_memory_end;
1701#define io_kernel_static_end static_memory_end
1702#else
1703extern vm_offset_t first_avail;
1704#define io_kernel_static_end first_avail
1705#endif
1706
1707static kern_return_t
1708io_get_kernel_static_upl(
91447636 1709 vm_map_t /* map */,
55e303ae
A
1710 vm_address_t offset,
1711 vm_size_t *upl_size,
1712 upl_t *upl,
1713 upl_page_info_array_t page_list,
89b3af67
A
1714 unsigned int *count,
1715 ppnum_t *highest_page)
1c79356b 1716{
55e303ae
A
1717 unsigned int pageCount, page;
1718 ppnum_t phys;
89b3af67 1719 ppnum_t highestPage = 0;
1c79356b 1720
55e303ae
A
1721 pageCount = atop_32(*upl_size);
1722 if (pageCount > *count)
1723 pageCount = *count;
1c79356b 1724
55e303ae 1725 *upl = NULL;
1c79356b 1726
55e303ae
A
1727 for (page = 0; page < pageCount; page++)
1728 {
1729 phys = pmap_find_phys(kernel_pmap, ((addr64_t)offset) + ptoa_64(page));
1730 if (!phys)
1731 break;
1732 page_list[page].phys_addr = phys;
1733 page_list[page].pageout = 0;
1734 page_list[page].absent = 0;
1735 page_list[page].dirty = 0;
1736 page_list[page].precious = 0;
1737 page_list[page].device = 0;
89b3af67
A
1738 if (phys > highestPage)
1739 highestPage = page;
55e303ae 1740 }
0b4e3aa0 1741
89b3af67
A
1742 *highest_page = highestPage;
1743
55e303ae
A
1744 return ((page >= pageCount) ? kIOReturnSuccess : kIOReturnVMError);
1745}
0b4e3aa0 1746
55e303ae
A
1747IOReturn IOGeneralMemoryDescriptor::wireVirtual(IODirection forDirection)
1748{
91447636 1749 IOOptionBits type = _flags & kIOMemoryTypeMask;
55e303ae
A
1750 IOReturn error = kIOReturnNoMemory;
1751 ioGMDData *dataP;
1752 ppnum_t mapBase = 0;
1753 IOMapper *mapper;
1754 ipc_port_t sharedMem = (ipc_port_t) _memEntry;
1c79356b 1755
55e303ae 1756 assert(!_wireCount);
89b3af67 1757 assert(kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type);
1c79356b 1758
55e303ae
A
1759 if (_pages >= gIOMaximumMappedIOPageCount)
1760 return kIOReturnNoResources;
0b4e3aa0 1761
55e303ae
A
1762 dataP = getDataP(_memoryEntries);
1763 mapper = dataP->fMapper;
1764 if (mapper && _pages)
1765 mapBase = mapper->iovmAlloc(_pages);
d7e50217 1766
55e303ae
A
1767 // Note that appendBytes(NULL) zeros the data up to the
1768 // desired length.
1769 _memoryEntries->appendBytes(0, dataP->fPageCnt * sizeof(upl_page_info_t));
1770 dataP = 0; // May no longer be valid so lets not get tempted.
de355530 1771
55e303ae
A
1772 if (forDirection == kIODirectionNone)
1773 forDirection = _direction;
1774
1775 int uplFlags; // This Mem Desc's default flags for upl creation
89b3af67 1776 switch (kIODirectionOutIn & forDirection)
55e303ae
A
1777 {
1778 case kIODirectionOut:
1779 // Pages do not need to be marked as dirty on commit
1780 uplFlags = UPL_COPYOUT_FROM;
1781 _flags |= kIOMemoryPreparedReadOnly;
1782 break;
1783
1784 case kIODirectionIn:
1785 default:
1786 uplFlags = 0; // i.e. ~UPL_COPYOUT_FROM
1787 break;
1788 }
1789 uplFlags |= UPL_SET_IO_WIRE | UPL_SET_LITE;
1790
89b3af67
A
1791#ifdef UPL_NEED_32BIT_ADDR
1792 if (kIODirectionPrepareToPhys32 & forDirection)
1793 uplFlags |= UPL_NEED_32BIT_ADDR;
1794#endif
1795
91447636 1796 // Find the appropriate vm_map for the given task
55e303ae
A
1797 vm_map_t curMap;
1798 if (_task == kernel_task && (kIOMemoryBufferPageable & _flags))
1799 curMap = 0;
1800 else
1801 { curMap = get_task_map(_task); }
1802
91447636
A
1803 // Iterate over the vector of virtual ranges
1804 Ranges vec = _ranges;
1805 unsigned int pageIndex = 0;
1806 IOByteCount mdOffset = 0;
89b3af67 1807 ppnum_t highestPage = 0;
55e303ae
A
1808 for (UInt range = 0; range < _rangesCount; range++) {
1809 ioPLBlock iopl;
91447636 1810 user_addr_t startPage;
55e303ae 1811 IOByteCount numBytes;
89b3af67 1812 ppnum_t highPage = 0;
55e303ae 1813
91447636
A
1814 // Get the startPage address and length of vec[range]
1815 getAddrLenForInd(startPage, numBytes, type, vec, range);
1816 iopl.fPageOffset = (short) startPage & PAGE_MASK;
1817 numBytes += iopl.fPageOffset;
1818 startPage = trunc_page_64(startPage);
1819
55e303ae
A
1820 if (mapper)
1821 iopl.fMappedBase = mapBase + pageIndex;
1822 else
1823 iopl.fMappedBase = 0;
55e303ae 1824
91447636 1825 // Iterate over the current range, creating UPLs
55e303ae
A
1826 while (numBytes) {
1827 dataP = getDataP(_memoryEntries);
91447636
A
1828 vm_address_t kernelStart = (vm_address_t) startPage;
1829 vm_map_t theMap;
1830 if (curMap)
1831 theMap = curMap;
1832 else if (!sharedMem) {
1833 assert(_task == kernel_task);
1834 theMap = IOPageableMapForAddress(kernelStart);
1835 }
1836 else
1837 theMap = NULL;
1838
55e303ae
A
1839 upl_page_info_array_t pageInfo = getPageList(dataP);
1840 int ioplFlags = uplFlags;
1841 upl_page_list_ptr_t baseInfo = &pageInfo[pageIndex];
1842
1843 vm_size_t ioplSize = round_page_32(numBytes);
1844 unsigned int numPageInfo = atop_32(ioplSize);
1845
91447636 1846 if (theMap == kernel_map && kernelStart < io_kernel_static_end) {
55e303ae 1847 error = io_get_kernel_static_upl(theMap,
91447636
A
1848 kernelStart,
1849 &ioplSize,
1850 &iopl.fIOPL,
1851 baseInfo,
89b3af67
A
1852 &numPageInfo,
1853 &highPage);
91447636
A
1854 }
1855 else if (sharedMem) {
55e303ae 1856 error = memory_object_iopl_request(sharedMem,
91447636
A
1857 ptoa_32(pageIndex),
1858 &ioplSize,
1859 &iopl.fIOPL,
1860 baseInfo,
1861 &numPageInfo,
1862 &ioplFlags);
1863 }
1864 else {
1865 assert(theMap);
1866 error = vm_map_create_upl(theMap,
1867 startPage,
1868 &ioplSize,
1869 &iopl.fIOPL,
1870 baseInfo,
1871 &numPageInfo,
1872 &ioplFlags);
de355530
A
1873 }
1874
55e303ae
A
1875 assert(ioplSize);
1876 if (error != KERN_SUCCESS)
1877 goto abortExit;
1878
89b3af67
A
1879 if (iopl.fIOPL)
1880 highPage = upl_get_highest_page(iopl.fIOPL);
1881 if (highPage > highestPage)
1882 highestPage = highPage;
1883
55e303ae
A
1884 error = kIOReturnNoMemory;
1885
1886 if (baseInfo->device) {
1887 numPageInfo = 1;
1888 iopl.fFlags = kIOPLOnDevice;
1889 // Don't translate device memory at all
1890 if (mapper && mapBase) {
1891 mapper->iovmFree(mapBase, _pages);
1892 mapBase = 0;
1893 iopl.fMappedBase = 0;
1894 }
1895 }
1896 else {
1897 iopl.fFlags = 0;
89b3af67 1898 if (mapper)
55e303ae
A
1899 mapper->iovmInsert(mapBase, pageIndex,
1900 baseInfo, numPageInfo);
1901 }
1902
1903 iopl.fIOMDOffset = mdOffset;
1904 iopl.fPageInfo = pageIndex;
1905
1906 if ((_flags & kIOMemoryAutoPrepare) && iopl.fIOPL)
1907 {
91447636
A
1908 upl_commit(iopl.fIOPL, 0, 0);
1909 upl_deallocate(iopl.fIOPL);
55e303ae 1910 iopl.fIOPL = 0;
de355530 1911 }
55e303ae
A
1912
1913 if (!_memoryEntries->appendBytes(&iopl, sizeof(iopl))) {
1914 // Clean up partial created and unsaved iopl
91447636
A
1915 if (iopl.fIOPL) {
1916 upl_abort(iopl.fIOPL, 0);
1917 upl_deallocate(iopl.fIOPL);
1918 }
55e303ae
A
1919 goto abortExit;
1920 }
1921
1922 // Check for a multiple iopl's in one virtual range
1923 pageIndex += numPageInfo;
1924 mdOffset -= iopl.fPageOffset;
1925 if (ioplSize < numBytes) {
1926 numBytes -= ioplSize;
1927 startPage += ioplSize;
1928 mdOffset += ioplSize;
1929 iopl.fPageOffset = 0;
1930 if (mapper)
1931 iopl.fMappedBase = mapBase + pageIndex;
1932 }
1933 else {
1934 mdOffset += numBytes;
1935 break;
1936 }
1c79356b
A
1937 }
1938 }
55e303ae 1939
89b3af67
A
1940 _highestPage = highestPage;
1941
1c79356b
A
1942 return kIOReturnSuccess;
1943
1944abortExit:
55e303ae
A
1945 {
1946 dataP = getDataP(_memoryEntries);
91447636 1947 UInt done = getNumIOPL(_memoryEntries, dataP);
55e303ae
A
1948 ioPLBlock *ioplList = getIOPLList(dataP);
1949
1950 for (UInt range = 0; range < done; range++)
1951 {
91447636
A
1952 if (ioplList[range].fIOPL) {
1953 upl_abort(ioplList[range].fIOPL, 0);
1954 upl_deallocate(ioplList[range].fIOPL);
1955 }
55e303ae 1956 }
91447636 1957 (void) _memoryEntries->initWithBytes(dataP, sizeof(ioGMDData)); // == setLength()
1c79356b 1958
55e303ae
A
1959 if (mapper && mapBase)
1960 mapper->iovmFree(mapBase, _pages);
1c79356b
A
1961 }
1962
55e303ae
A
1963 return error;
1964}
d7e50217 1965
55e303ae
A
1966/*
1967 * prepare
1968 *
1969 * Prepare the memory for an I/O transfer. This involves paging in
1970 * the memory, if necessary, and wiring it down for the duration of
1971 * the transfer. The complete() method completes the processing of
1972 * the memory after the I/O transfer finishes. This method needn't
1973 * called for non-pageable memory.
1974 */
1975IOReturn IOGeneralMemoryDescriptor::prepare(IODirection forDirection)
1976{
91447636
A
1977 IOReturn error = kIOReturnSuccess;
1978 IOOptionBits type = _flags & kIOMemoryTypeMask;
55e303ae 1979
91447636 1980 if (!_wireCount
89b3af67 1981 && (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) ) {
55e303ae
A
1982 error = wireVirtual(forDirection);
1983 if (error)
1984 return error;
de355530
A
1985 }
1986
55e303ae
A
1987 _wireCount++;
1988
1989 return kIOReturnSuccess;
1c79356b
A
1990}
1991
1992/*
1993 * complete
1994 *
1995 * Complete processing of the memory after an I/O transfer finishes.
1996 * This method should not be called unless a prepare was previously
1997 * issued; the prepare() and complete() must occur in pairs, before
1998 * before and after an I/O transfer involving pageable memory.
1999 */
2000
55e303ae 2001IOReturn IOGeneralMemoryDescriptor::complete(IODirection /* forDirection */)
1c79356b
A
2002{
2003 assert(_wireCount);
2004
55e303ae 2005 if (!_wireCount)
1c79356b
A
2006 return kIOReturnSuccess;
2007
2008 _wireCount--;
55e303ae 2009 if (!_wireCount) {
91447636
A
2010 IOOptionBits type = _flags & kIOMemoryTypeMask;
2011
89b3af67 2012 if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) {
55e303ae
A
2013 /* kIOMemoryTypePhysical */
2014 // DO NOTHING
d7e50217 2015 }
55e303ae
A
2016 else {
2017 ioGMDData * dataP = getDataP(_memoryEntries);
2018 ioPLBlock *ioplList = getIOPLList(dataP);
91447636 2019 UInt count = getNumIOPL(_memoryEntries, dataP);
55e303ae
A
2020
2021 if (dataP->fMapper && _pages && ioplList[0].fMappedBase)
2022 dataP->fMapper->iovmFree(ioplList[0].fMappedBase, _pages);
2023
2024 // Only complete iopls that we created which are for TypeVirtual
89b3af67 2025 if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) {
55e303ae 2026 for (UInt ind = 0; ind < count; ind++)
91447636
A
2027 if (ioplList[ind].fIOPL) {
2028 upl_commit(ioplList[ind].fIOPL, 0, 0);
2029 upl_deallocate(ioplList[ind].fIOPL);
2030 }
55e303ae 2031 }
de355530 2032
55e303ae
A
2033 (void) _memoryEntries->initWithBytes(dataP, sizeof(ioGMDData)); // == setLength()
2034 }
1c79356b
A
2035 }
2036 return kIOReturnSuccess;
2037}
2038
2039IOReturn IOGeneralMemoryDescriptor::doMap(
2040 vm_map_t addressMap,
2041 IOVirtualAddress * atAddress,
2042 IOOptionBits options,
55e303ae
A
2043 IOByteCount sourceOffset,
2044 IOByteCount length )
1c79356b
A
2045{
2046 kern_return_t kr;
0b4e3aa0 2047 ipc_port_t sharedMem = (ipc_port_t) _memEntry;
1c79356b 2048
91447636
A
2049 IOOptionBits type = _flags & kIOMemoryTypeMask;
2050 Ranges vec = _ranges;
2051
2052 user_addr_t range0Addr = 0;
2053 IOByteCount range0Len = 0;
2054
2055 if (vec.v)
2056 getAddrLenForInd(range0Addr, range0Len, type, vec, 0);
2057
1c79356b 2058 // mapping source == dest? (could be much better)
91447636
A
2059 if( _task
2060 && (addressMap == get_task_map(_task)) && (options & kIOMapAnywhere)
2061 && (1 == _rangesCount) && (0 == sourceOffset)
2062 && range0Addr && (length <= range0Len) ) {
2063 if (sizeof(user_addr_t) > 4 && ((UInt64) range0Addr) >> 32)
2064 return kIOReturnOverrun; // Doesn't fit in 32bit return field
2065 else {
2066 *atAddress = range0Addr;
1c79356b 2067 return( kIOReturnSuccess );
91447636 2068 }
1c79356b
A
2069 }
2070
0b4e3aa0 2071 if( 0 == sharedMem) {
1c79356b 2072
91447636 2073 vm_size_t size = ptoa_32(_pages);
1c79356b 2074
0b4e3aa0 2075 if( _task) {
89b3af67 2076
91447636
A
2077 memory_object_size_t actualSize = size;
2078 kr = mach_make_memory_entry_64(get_task_map(_task),
2079 &actualSize, range0Addr,
0b4e3aa0
A
2080 VM_PROT_READ | VM_PROT_WRITE, &sharedMem,
2081 NULL );
2082
55e303ae 2083 if( (KERN_SUCCESS == kr) && (actualSize != round_page_32(size))) {
0b4e3aa0 2084#if IOASSERT
91447636
A
2085 IOLog("mach_make_memory_entry_64 (%08llx) size (%08lx:%08x)\n",
2086 range0Addr, (UInt32) actualSize, size);
0b4e3aa0
A
2087#endif
2088 kr = kIOReturnVMError;
2089 ipc_port_release_send( sharedMem );
1c79356b
A
2090 }
2091
0b4e3aa0 2092 if( KERN_SUCCESS != kr)
0b4e3aa0 2093 sharedMem = MACH_PORT_NULL;
1c79356b 2094
89b3af67 2095 } else do { // _task == 0, must be physical
0b4e3aa0 2096
55e303ae
A
2097 memory_object_t pager;
2098 unsigned int flags = 0;
2099 addr64_t pa;
9bccf70c
A
2100 IOPhysicalLength segLen;
2101
55e303ae 2102 pa = getPhysicalSegment64( sourceOffset, &segLen );
0b4e3aa0
A
2103
2104 if( !reserved) {
2105 reserved = IONew( ExpansionData, 1 );
2106 if( !reserved)
2107 continue;
2108 }
2109 reserved->pagerContig = (1 == _rangesCount);
9bccf70c
A
2110 reserved->memory = this;
2111
55e303ae
A
2112 /*What cache mode do we need*/
2113 switch(options & kIOMapCacheMask ) {
9bccf70c
A
2114
2115 case kIOMapDefaultCache:
2116 default:
55e303ae
A
2117 flags = IODefaultCacheBits(pa);
2118 break;
9bccf70c
A
2119
2120 case kIOMapInhibitCache:
55e303ae
A
2121 flags = DEVICE_PAGER_CACHE_INHIB |
2122 DEVICE_PAGER_COHERENT | DEVICE_PAGER_GUARDED;
2123 break;
9bccf70c
A
2124
2125 case kIOMapWriteThruCache:
55e303ae
A
2126 flags = DEVICE_PAGER_WRITE_THROUGH |
2127 DEVICE_PAGER_COHERENT | DEVICE_PAGER_GUARDED;
2128 break;
9bccf70c
A
2129
2130 case kIOMapCopybackCache:
55e303ae
A
2131 flags = DEVICE_PAGER_COHERENT;
2132 break;
2133
2134 case kIOMapWriteCombineCache:
2135 flags = DEVICE_PAGER_CACHE_INHIB |
2136 DEVICE_PAGER_COHERENT;
2137 break;
9bccf70c
A
2138 }
2139
2140 flags |= reserved->pagerContig ? DEVICE_PAGER_CONTIGUOUS : 0;
9bccf70c
A
2141
2142 pager = device_pager_setup( (memory_object_t) 0, (int) reserved,
2143 size, flags);
0b4e3aa0
A
2144 assert( pager );
2145
2146 if( pager) {
0b4e3aa0
A
2147 kr = mach_memory_object_memory_entry_64( (host_t) 1, false /*internal*/,
2148 size, VM_PROT_READ | VM_PROT_WRITE, pager, &sharedMem );
2149
2150 assert( KERN_SUCCESS == kr );
2151 if( KERN_SUCCESS != kr) {
9bccf70c 2152 device_pager_deallocate( pager );
0b4e3aa0
A
2153 pager = MACH_PORT_NULL;
2154 sharedMem = MACH_PORT_NULL;
2155 }
2156 }
9bccf70c
A
2157 if( pager && sharedMem)
2158 reserved->devicePager = pager;
2159 else {
2160 IODelete( reserved, ExpansionData, 1 );
2161 reserved = 0;
2162 }
1c79356b 2163
1c79356b
A
2164 } while( false );
2165
0b4e3aa0
A
2166 _memEntry = (void *) sharedMem;
2167 }
2168
91447636 2169
9bccf70c
A
2170 if( 0 == sharedMem)
2171 kr = kIOReturnVMError;
2172 else
9bccf70c 2173 kr = super::doMap( addressMap, atAddress,
1c79356b 2174 options, sourceOffset, length );
0b4e3aa0 2175
1c79356b
A
2176 return( kr );
2177}
2178
2179IOReturn IOGeneralMemoryDescriptor::doUnmap(
2180 vm_map_t addressMap,
2181 IOVirtualAddress logical,
2182 IOByteCount length )
2183{
2184 // could be much better
91447636
A
2185 if( _task && (addressMap == get_task_map(_task)) && (1 == _rangesCount)) {
2186
2187 IOOptionBits type = _flags & kIOMemoryTypeMask;
2188 user_addr_t range0Addr;
2189 IOByteCount range0Len;
2190
2191 getAddrLenForInd(range0Addr, range0Len, type, _ranges, 0);
2192 if (logical == range0Addr && length <= range0Len)
1c79356b 2193 return( kIOReturnSuccess );
91447636 2194 }
1c79356b
A
2195
2196 return( super::doUnmap( addressMap, logical, length ));
2197}
2198
2199/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2200
9bccf70c 2201OSDefineMetaClassAndAbstractStructors( IOMemoryMap, OSObject )
1c79356b 2202
9bccf70c
A
2203/* inline function implementation */
2204IOPhysicalAddress IOMemoryMap::getPhysicalAddress()
2205 { return( getPhysicalSegment( 0, 0 )); }
1c79356b 2206
1c79356b
A
2207
2208#undef super
2209#define super IOMemoryMap
2210
2211OSDefineMetaClassAndStructors(_IOMemoryMap, IOMemoryMap)
2212
2213/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2214
9bccf70c 2215bool _IOMemoryMap::initCompatible(
1c79356b
A
2216 IOMemoryDescriptor * _memory,
2217 IOMemoryMap * _superMap,
2218 IOByteCount _offset,
2219 IOByteCount _length )
2220{
2221
2222 if( !super::init())
2223 return( false);
2224
2225 if( (_offset + _length) > _superMap->getLength())
2226 return( false);
2227
2228 _memory->retain();
2229 memory = _memory;
2230 _superMap->retain();
2231 superMap = _superMap;
2232
2233 offset = _offset;
2234 if( _length)
2235 length = _length;
2236 else
2237 length = _memory->getLength();
2238
2239 options = superMap->getMapOptions();
2240 logical = superMap->getVirtualAddress() + offset;
2241
2242 return( true );
2243}
2244
9bccf70c 2245bool _IOMemoryMap::initWithDescriptor(
1c79356b
A
2246 IOMemoryDescriptor * _memory,
2247 task_t intoTask,
2248 IOVirtualAddress toAddress,
2249 IOOptionBits _options,
2250 IOByteCount _offset,
2251 IOByteCount _length )
2252{
91447636
A
2253 bool ok;
2254 bool redir = ((kIOMapUnique|kIOMapReference) == ((kIOMapUnique|kIOMapReference) & _options));
1c79356b 2255
91447636 2256 if ((!_memory) || (!intoTask))
1c79356b
A
2257 return( false);
2258
2259 if( (_offset + _length) > _memory->getLength())
2260 return( false);
2261
91447636
A
2262 if (!redir)
2263 {
2264 if (!super::init())
2265 return(false);
2266 addressMap = get_task_map(intoTask);
2267 if( !addressMap)
2268 return( false);
2269 vm_map_reference(addressMap);
2270 addressTask = intoTask;
2271 logical = toAddress;
2272 options = _options;
2273 }
1c79356b
A
2274
2275 _memory->retain();
1c79356b
A
2276
2277 offset = _offset;
2278 if( _length)
2279 length = _length;
2280 else
2281 length = _memory->getLength();
2282
1c79356b
A
2283 if( options & kIOMapStatic)
2284 ok = true;
2285 else
91447636
A
2286 ok = (kIOReturnSuccess == _memory->doMap( addressMap, &toAddress,
2287 _options, offset, length ));
2288 if (ok || redir)
2289 {
2290 if (memory)
2291 memory->release();
2292 memory = _memory;
2293 logical = toAddress;
2294 }
2295 else
2296 {
2297 _memory->release();
2298 if (!redir)
2299 {
2300 logical = 0;
2301 memory = 0;
2302 vm_map_deallocate(addressMap);
2303 addressMap = 0;
2304 }
1c79356b 2305 }
91447636 2306
1c79356b
A
2307 return( ok );
2308}
2309
91447636 2310/* LP64todo - these need to expand */
0b4e3aa0
A
2311struct IOMemoryDescriptorMapAllocRef
2312{
2313 ipc_port_t sharedMem;
2314 vm_size_t size;
2315 vm_offset_t mapped;
2316 IOByteCount sourceOffset;
2317 IOOptionBits options;
2318};
2319
2320static kern_return_t IOMemoryDescriptorMapAlloc(vm_map_t map, void * _ref)
2321{
2322 IOMemoryDescriptorMapAllocRef * ref = (IOMemoryDescriptorMapAllocRef *)_ref;
2323 IOReturn err;
2324
2325 do {
2326 if( ref->sharedMem) {
2327 vm_prot_t prot = VM_PROT_READ
2328 | ((ref->options & kIOMapReadOnly) ? 0 : VM_PROT_WRITE);
55e303ae
A
2329
2330 // set memory entry cache
2331 vm_prot_t memEntryCacheMode = prot | MAP_MEM_ONLY;
2332 switch (ref->options & kIOMapCacheMask)
2333 {
2334 case kIOMapInhibitCache:
2335 SET_MAP_MEM(MAP_MEM_IO, memEntryCacheMode);
2336 break;
2337
2338 case kIOMapWriteThruCache:
2339 SET_MAP_MEM(MAP_MEM_WTHRU, memEntryCacheMode);
2340 break;
2341
2342 case kIOMapWriteCombineCache:
2343 SET_MAP_MEM(MAP_MEM_WCOMB, memEntryCacheMode);
2344 break;
2345
2346 case kIOMapCopybackCache:
2347 SET_MAP_MEM(MAP_MEM_COPYBACK, memEntryCacheMode);
2348 break;
2349
2350 case kIOMapDefaultCache:
2351 default:
2352 SET_MAP_MEM(MAP_MEM_NOOP, memEntryCacheMode);
2353 break;
2354 }
2355
2356 vm_size_t unused = 0;
2357
2358 err = mach_make_memory_entry( NULL /*unused*/, &unused, 0 /*unused*/,
2359 memEntryCacheMode, NULL, ref->sharedMem );
2360 if (KERN_SUCCESS != err)
2361 IOLog("MAP_MEM_ONLY failed %d\n", err);
2362
0b4e3aa0
A
2363 err = vm_map( map,
2364 &ref->mapped,
2365 ref->size, 0 /* mask */,
2366 (( ref->options & kIOMapAnywhere ) ? VM_FLAGS_ANYWHERE : VM_FLAGS_FIXED)
2367 | VM_MAKE_TAG(VM_MEMORY_IOKIT),
2368 ref->sharedMem, ref->sourceOffset,
2369 false, // copy
2370 prot, // cur
2371 prot, // max
2372 VM_INHERIT_NONE);
55e303ae 2373
0b4e3aa0
A
2374 if( KERN_SUCCESS != err) {
2375 ref->mapped = 0;
2376 continue;
2377 }
2378
2379 } else {
2380
2381 err = vm_allocate( map, &ref->mapped, ref->size,
2382 ((ref->options & kIOMapAnywhere) ? VM_FLAGS_ANYWHERE : VM_FLAGS_FIXED)
2383 | VM_MAKE_TAG(VM_MEMORY_IOKIT) );
2384
2385 if( KERN_SUCCESS != err) {
2386 ref->mapped = 0;
2387 continue;
2388 }
2389
2390 // we have to make sure that these guys don't get copied if we fork.
2391 err = vm_inherit( map, ref->mapped, ref->size, VM_INHERIT_NONE);
2392 assert( KERN_SUCCESS == err );
2393 }
2394
2395 } while( false );
2396
2397 return( err );
2398}
2399
9bccf70c 2400
1c79356b
A
2401IOReturn IOMemoryDescriptor::doMap(
2402 vm_map_t addressMap,
2403 IOVirtualAddress * atAddress,
2404 IOOptionBits options,
55e303ae
A
2405 IOByteCount sourceOffset,
2406 IOByteCount length )
1c79356b
A
2407{
2408 IOReturn err = kIOReturnSuccess;
0b4e3aa0 2409 memory_object_t pager;
1c79356b
A
2410 vm_address_t logical;
2411 IOByteCount pageOffset;
0b4e3aa0
A
2412 IOPhysicalAddress sourceAddr;
2413 IOMemoryDescriptorMapAllocRef ref;
1c79356b 2414
0b4e3aa0
A
2415 ref.sharedMem = (ipc_port_t) _memEntry;
2416 ref.sourceOffset = sourceOffset;
2417 ref.options = options;
1c79356b 2418
0b4e3aa0 2419 do {
1c79356b 2420
0b4e3aa0
A
2421 if( 0 == length)
2422 length = getLength();
1c79356b 2423
91447636
A
2424 sourceAddr = getSourceSegment( sourceOffset, NULL );
2425 pageOffset = sourceAddr - trunc_page_32( sourceAddr );
1c79356b 2426
91447636 2427 ref.size = round_page_32( length + pageOffset );
0b4e3aa0 2428
91447636
A
2429 if ((kIOMapReference|kIOMapUnique) == ((kIOMapReference|kIOMapUnique) & options))
2430 {
2431 upl_t redirUPL2;
2432 vm_size_t size;
2433 int flags;
0b4e3aa0 2434
91447636
A
2435 _IOMemoryMap * mapping = (_IOMemoryMap *) *atAddress;
2436 ref.mapped = mapping->getVirtualAddress();
2437
2438 if (!_memEntry)
2439 {
2440 err = kIOReturnNotReadable;
2441 continue;
2442 }
2443
2444 size = length;
2445 flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL
2446 | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS;
2447
2448 if (KERN_SUCCESS != memory_object_iopl_request((ipc_port_t) _memEntry, 0, &size, &redirUPL2,
2449 NULL, NULL,
2450 &flags))
2451 redirUPL2 = NULL;
2452
2453 err = upl_transpose(redirUPL2, mapping->redirUPL);
2454 if (kIOReturnSuccess != err)
2455 {
2456 IOLog("upl_transpose(%x)\n", err);
2457 err = kIOReturnSuccess;
2458 }
2459
2460 if (redirUPL2)
2461 {
2462 upl_commit(redirUPL2, NULL, 0);
2463 upl_deallocate(redirUPL2);
2464 redirUPL2 = 0;
2465 }
2466 {
2467 // swap the memEntries since they now refer to different vm_objects
2468 void * me = _memEntry;
2469 _memEntry = mapping->memory->_memEntry;
2470 mapping->memory->_memEntry = me;
2471 }
2472 }
2473 else
2474 {
2475
2476 logical = *atAddress;
2477 if( options & kIOMapAnywhere)
2478 // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE
2479 ref.mapped = 0;
2480 else {
2481 ref.mapped = trunc_page_32( logical );
2482 if( (logical - ref.mapped) != pageOffset) {
2483 err = kIOReturnVMError;
2484 continue;
2485 }
2486 }
2487
2488 if( ref.sharedMem && (addressMap == kernel_map) && (kIOMemoryBufferPageable & _flags))
2489 err = IOIteratePageableMaps( ref.size, &IOMemoryDescriptorMapAlloc, &ref );
2490 else
2491 err = IOMemoryDescriptorMapAlloc( addressMap, &ref );
2492 }
0b4e3aa0
A
2493
2494 if( err != KERN_SUCCESS)
2495 continue;
2496
2497 if( reserved)
2498 pager = (memory_object_t) reserved->devicePager;
2499 else
2500 pager = MACH_PORT_NULL;
2501
2502 if( !ref.sharedMem || pager )
2503 err = handleFault( pager, addressMap, ref.mapped, sourceOffset, length, options );
2504
2505 } while( false );
2506
2507 if( err != KERN_SUCCESS) {
2508 if( ref.mapped)
2509 doUnmap( addressMap, ref.mapped, ref.size );
2510 *atAddress = NULL;
2511 } else
2512 *atAddress = ref.mapped + pageOffset;
2513
2514 return( err );
2515}
2516
2517enum {
2518 kIOMemoryRedirected = 0x00010000
2519};
2520
2521IOReturn IOMemoryDescriptor::handleFault(
2522 void * _pager,
2523 vm_map_t addressMap,
2524 IOVirtualAddress address,
2525 IOByteCount sourceOffset,
2526 IOByteCount length,
2527 IOOptionBits options )
2528{
2529 IOReturn err = kIOReturnSuccess;
2530 memory_object_t pager = (memory_object_t) _pager;
2531 vm_size_t size;
2532 vm_size_t bytes;
2533 vm_size_t page;
2534 IOByteCount pageOffset;
55e303ae 2535 IOByteCount pagerOffset;
0b4e3aa0 2536 IOPhysicalLength segLen;
55e303ae 2537 addr64_t physAddr;
0b4e3aa0
A
2538
2539 if( !addressMap) {
2540
0b4e3aa0 2541 if( kIOMemoryRedirected & _flags) {
1c79356b 2542#ifdef DEBUG
9bccf70c 2543 IOLog("sleep mem redirect %p, %lx\n", this, sourceOffset);
1c79356b 2544#endif
0b4e3aa0 2545 do {
9bccf70c 2546 SLEEP;
0b4e3aa0
A
2547 } while( kIOMemoryRedirected & _flags );
2548 }
1c79356b 2549
0b4e3aa0 2550 return( kIOReturnSuccess );
1c79356b
A
2551 }
2552
55e303ae 2553 physAddr = getPhysicalSegment64( sourceOffset, &segLen );
0b4e3aa0 2554 assert( physAddr );
55e303ae
A
2555 pageOffset = physAddr - trunc_page_64( physAddr );
2556 pagerOffset = sourceOffset;
0b4e3aa0
A
2557
2558 size = length + pageOffset;
2559 physAddr -= pageOffset;
1c79356b
A
2560
2561 segLen += pageOffset;
0b4e3aa0 2562 bytes = size;
1c79356b
A
2563 do {
2564 // in the middle of the loop only map whole pages
2565 if( segLen >= bytes)
2566 segLen = bytes;
55e303ae 2567 else if( segLen != trunc_page_32( segLen))
1c79356b 2568 err = kIOReturnVMError;
55e303ae 2569 if( physAddr != trunc_page_64( physAddr))
1c79356b 2570 err = kIOReturnBadArgument;
8f6c56a5
A
2571 if (kIOReturnSuccess != err)
2572 break;
1c79356b
A
2573
2574#ifdef DEBUG
2575 if( kIOLogMapping & gIOKitDebug)
55e303ae 2576 IOLog("_IOMemoryMap::map(%p) %08lx->%08qx:%08lx\n",
0b4e3aa0 2577 addressMap, address + pageOffset, physAddr + pageOffset,
1c79356b
A
2578 segLen - pageOffset);
2579#endif
2580
0b4e3aa0
A
2581 if( pager) {
2582 if( reserved && reserved->pagerContig) {
2583 IOPhysicalLength allLen;
55e303ae 2584 addr64_t allPhys;
0b4e3aa0 2585
55e303ae 2586 allPhys = getPhysicalSegment64( 0, &allLen );
0b4e3aa0 2587 assert( allPhys );
55e303ae 2588 err = device_pager_populate_object( pager, 0, allPhys >> PAGE_SHIFT, round_page_32(allLen) );
0b4e3aa0
A
2589
2590 } else {
2591
55e303ae 2592 for( page = 0;
0b4e3aa0
A
2593 (page < segLen) && (KERN_SUCCESS == err);
2594 page += page_size) {
55e303ae
A
2595 err = device_pager_populate_object(pager, pagerOffset,
2596 (ppnum_t)((physAddr + page) >> PAGE_SHIFT), page_size);
2597 pagerOffset += page_size;
0b4e3aa0
A
2598 }
2599 }
2600 assert( KERN_SUCCESS == err );
2601 if( err)
2602 break;
2603 }
89b3af67 2604
9bccf70c
A
2605 /* *** ALERT *** */
2606 /* *** Temporary Workaround *** */
2607
2608 /* This call to vm_fault causes an early pmap level resolution */
2609 /* of the mappings created above. Need for this is in absolute */
2610 /* violation of the basic tenet that the pmap layer is a cache. */
2611 /* Further, it implies a serious I/O architectural violation on */
2612 /* the part of some user of the mapping. As of this writing, */
2613 /* the call to vm_fault is needed because the NVIDIA driver */
2614 /* makes a call to pmap_extract. The NVIDIA driver needs to be */
2615 /* fixed as soon as possible. The NVIDIA driver should not */
2616 /* need to query for this info as it should know from the doMap */
2617 /* call where the physical memory is mapped. When a query is */
2618 /* necessary to find a physical mapping, it should be done */
2619 /* through an iokit call which includes the mapped memory */
2620 /* handle. This is required for machine architecture independence.*/
2621
2622 if(!(kIOMemoryRedirected & _flags)) {
91447636
A
2623 vm_fault(addressMap,
2624 (vm_map_offset_t)address,
2625 VM_PROT_READ|VM_PROT_WRITE,
2626 FALSE, THREAD_UNINT, NULL,
2627 (vm_map_offset_t)0);
9bccf70c
A
2628 }
2629
2630 /* *** Temporary Workaround *** */
2631 /* *** ALERT *** */
89b3af67 2632
1c79356b 2633 sourceOffset += segLen - pageOffset;
0b4e3aa0 2634 address += segLen;
1c79356b
A
2635 bytes -= segLen;
2636 pageOffset = 0;
2637
2638 } while( bytes
55e303ae 2639 && (physAddr = getPhysicalSegment64( sourceOffset, &segLen )));
1c79356b
A
2640
2641 if( bytes)
2642 err = kIOReturnBadArgument;
1c79356b
A
2643
2644 return( err );
2645}
2646
2647IOReturn IOMemoryDescriptor::doUnmap(
2648 vm_map_t addressMap,
2649 IOVirtualAddress logical,
2650 IOByteCount length )
2651{
2652 IOReturn err;
2653
2654#ifdef DEBUG
2655 if( kIOLogMapping & gIOKitDebug)
2656 kprintf("IOMemoryDescriptor::doUnmap(%x) %08x:%08x\n",
2657 addressMap, logical, length );
2658#endif
2659
90556fb8 2660 if( true /* && (addressMap == kernel_map) || (addressMap == get_task_map(current_task()))*/) {
0b4e3aa0 2661
55e303ae 2662 if( _memEntry && (addressMap == kernel_map) && (kIOMemoryBufferPageable & _flags))
0b4e3aa0
A
2663 addressMap = IOPageableMapForAddress( logical );
2664
1c79356b 2665 err = vm_deallocate( addressMap, logical, length );
0b4e3aa0
A
2666
2667 } else
1c79356b
A
2668 err = kIOReturnSuccess;
2669
2670 return( err );
2671}
2672
91447636 2673IOReturn IOMemoryDescriptor::redirect( task_t safeTask, bool doRedirect )
e3027f41 2674{
91447636 2675 IOReturn err = kIOReturnSuccess;
e3027f41
A
2676 _IOMemoryMap * mapping = 0;
2677 OSIterator * iter;
2678
2679 LOCK;
2680
91447636
A
2681 if( doRedirect)
2682 _flags |= kIOMemoryRedirected;
2683 else
2684 _flags &= ~kIOMemoryRedirected;
2685
e3027f41
A
2686 do {
2687 if( (iter = OSCollectionIterator::withCollection( _mappings))) {
91447636
A
2688 while( (mapping = (_IOMemoryMap *) iter->getNextObject()))
2689 mapping->redirect( safeTask, doRedirect );
e3027f41 2690
91447636
A
2691 iter->release();
2692 }
e3027f41
A
2693 } while( false );
2694
91447636
A
2695 if (!doRedirect)
2696 {
9bccf70c 2697 WAKEUP;
0b4e3aa0
A
2698 }
2699
e3027f41
A
2700 UNLOCK;
2701
2702 // temporary binary compatibility
2703 IOSubMemoryDescriptor * subMem;
2704 if( (subMem = OSDynamicCast( IOSubMemoryDescriptor, this)))
91447636 2705 err = subMem->redirect( safeTask, doRedirect );
e3027f41 2706 else
91447636 2707 err = kIOReturnSuccess;
e3027f41
A
2708
2709 return( err );
2710}
2711
91447636 2712IOReturn IOSubMemoryDescriptor::redirect( task_t safeTask, bool doRedirect )
e3027f41 2713{
91447636 2714 return( _parent->redirect( safeTask, doRedirect ));
e3027f41
A
2715}
2716
91447636 2717IOReturn _IOMemoryMap::redirect( task_t safeTask, bool doRedirect )
e3027f41
A
2718{
2719 IOReturn err = kIOReturnSuccess;
2720
2721 if( superMap) {
91447636 2722// err = ((_IOMemoryMap *)superMap)->redirect( safeTask, doRedirect );
e3027f41
A
2723 } else {
2724
2725 LOCK;
89b3af67
A
2726
2727 do
91447636 2728 {
89b3af67
A
2729 if (!logical)
2730 break;
2731 if (!addressMap)
2732 break;
2733
2734 if ((!safeTask || (get_task_map(safeTask) != addressMap))
2735 && (0 == (options & kIOMapStatic)))
2736 {
2737 IOUnmapPages( addressMap, logical, length );
2738 if(!doRedirect && safeTask
2739 && (((memory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
2740 || ((memory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)))
2741 {
2742 err = vm_deallocate( addressMap, logical, length );
2743 err = memory->doMap( addressMap, &logical,
2744 (options & ~kIOMapAnywhere) /*| kIOMapReserve*/,
2745 offset, length );
2746 } else
2747 err = kIOReturnSuccess;
e3027f41 2748#ifdef DEBUG
89b3af67 2749 IOLog("IOMemoryMap::redirect(%d, %p) %x:%lx from %p\n", doRedirect, this, logical, length, addressMap);
e3027f41 2750#endif
89b3af67
A
2751 }
2752 else if (kIOMapWriteCombineCache == (options & kIOMapCacheMask))
2753 {
2754 IOOptionBits newMode;
2755 newMode = (options & ~kIOMapCacheMask) | (doRedirect ? kIOMapInhibitCache : kIOMapWriteCombineCache);
2756 IOProtectCacheMode(addressMap, logical, length, newMode);
2757 }
2758 }
2759 while (false);
2760
2761 UNLOCK;
e3027f41
A
2762 }
2763
89b3af67
A
2764 if ((((memory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
2765 || ((memory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64))
91447636
A
2766 && safeTask
2767 && (doRedirect != (0 != (memory->_flags & kIOMemoryRedirected))))
2768 memory->redirect(safeTask, doRedirect);
2769
e3027f41
A
2770 return( err );
2771}
2772
1c79356b
A
2773IOReturn _IOMemoryMap::unmap( void )
2774{
2775 IOReturn err;
2776
2777 LOCK;
2778
2779 if( logical && addressMap && (0 == superMap)
2780 && (0 == (options & kIOMapStatic))) {
2781
2782 err = memory->doUnmap( addressMap, logical, length );
2783 vm_map_deallocate(addressMap);
2784 addressMap = 0;
2785
2786 } else
2787 err = kIOReturnSuccess;
2788
2789 logical = 0;
2790
2791 UNLOCK;
2792
2793 return( err );
2794}
2795
2796void _IOMemoryMap::taskDied( void )
2797{
2798 LOCK;
2799 if( addressMap) {
2800 vm_map_deallocate(addressMap);
2801 addressMap = 0;
2802 }
2803 addressTask = 0;
2804 logical = 0;
2805 UNLOCK;
2806}
2807
9bccf70c
A
2808// Overload the release mechanism. All mappings must be a member
2809// of a memory descriptors _mappings set. This means that we
2810// always have 2 references on a mapping. When either of these mappings
2811// are released we need to free ourselves.
55e303ae 2812void _IOMemoryMap::taggedRelease(const void *tag) const
9bccf70c 2813{
55e303ae 2814 LOCK;
9bccf70c 2815 super::taggedRelease(tag, 2);
55e303ae 2816 UNLOCK;
9bccf70c
A
2817}
2818
1c79356b
A
2819void _IOMemoryMap::free()
2820{
2821 unmap();
2822
2823 if( memory) {
2824 LOCK;
2825 memory->removeMapping( this);
2826 UNLOCK;
2827 memory->release();
2828 }
2829
91447636
A
2830 if (owner && (owner != memory))
2831 {
2832 LOCK;
2833 owner->removeMapping(this);
2834 UNLOCK;
2835 }
2836
1c79356b
A
2837 if( superMap)
2838 superMap->release();
2839
91447636
A
2840 if (redirUPL) {
2841 upl_commit(redirUPL, NULL, 0);
2842 upl_deallocate(redirUPL);
2843 }
2844
1c79356b
A
2845 super::free();
2846}
2847
2848IOByteCount _IOMemoryMap::getLength()
2849{
2850 return( length );
2851}
2852
2853IOVirtualAddress _IOMemoryMap::getVirtualAddress()
2854{
2855 return( logical);
2856}
2857
2858task_t _IOMemoryMap::getAddressTask()
2859{
2860 if( superMap)
2861 return( superMap->getAddressTask());
2862 else
2863 return( addressTask);
2864}
2865
2866IOOptionBits _IOMemoryMap::getMapOptions()
2867{
2868 return( options);
2869}
2870
2871IOMemoryDescriptor * _IOMemoryMap::getMemoryDescriptor()
2872{
2873 return( memory );
2874}
2875
9bccf70c 2876_IOMemoryMap * _IOMemoryMap::copyCompatible(
1c79356b
A
2877 IOMemoryDescriptor * owner,
2878 task_t task,
2879 IOVirtualAddress toAddress,
2880 IOOptionBits _options,
2881 IOByteCount _offset,
2882 IOByteCount _length )
2883{
2884 _IOMemoryMap * mapping;
2885
55e303ae 2886 if( (!task) || (!addressMap) || (addressMap != get_task_map(task)))
1c79356b 2887 return( 0 );
91447636
A
2888 if( options & kIOMapUnique)
2889 return( 0 );
9bccf70c
A
2890 if( (options ^ _options) & kIOMapReadOnly)
2891 return( 0 );
2892 if( (kIOMapDefaultCache != (_options & kIOMapCacheMask))
2893 && ((options ^ _options) & kIOMapCacheMask))
1c79356b
A
2894 return( 0 );
2895
2896 if( (0 == (_options & kIOMapAnywhere)) && (logical != toAddress))
2897 return( 0 );
2898
2899 if( _offset < offset)
2900 return( 0 );
2901
2902 _offset -= offset;
2903
2904 if( (_offset + _length) > length)
2905 return( 0 );
2906
2907 if( (length == _length) && (!_offset)) {
2908 retain();
2909 mapping = this;
2910
2911 } else {
2912 mapping = new _IOMemoryMap;
2913 if( mapping
9bccf70c 2914 && !mapping->initCompatible( owner, this, _offset, _length )) {
1c79356b
A
2915 mapping->release();
2916 mapping = 0;
2917 }
2918 }
2919
2920 return( mapping );
2921}
2922
89b3af67
A
2923IOPhysicalAddress
2924_IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length)
1c79356b
A
2925{
2926 IOPhysicalAddress address;
2927
2928 LOCK;
91447636 2929 address = memory->getPhysicalSegment( offset + _offset, _length );
1c79356b
A
2930 UNLOCK;
2931
2932 return( address );
2933}
2934
2935/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2936
2937#undef super
2938#define super OSObject
2939
2940/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2941
2942void IOMemoryDescriptor::initialize( void )
2943{
2944 if( 0 == gIOMemoryLock)
2945 gIOMemoryLock = IORecursiveLockAlloc();
55e303ae
A
2946
2947 IORegistryEntry::getRegistryRoot()->setProperty(kIOMaximumMappedIOByteCountKey,
2948 ptoa_64(gIOMaximumMappedIOPageCount), 64);
89b3af67
A
2949 if (!gIOCopyMapper)
2950 {
2951 IOMapper *
2952 mapper = new IOCopyMapper;
2953 if (mapper)
2954 {
2955 if (mapper->init() && mapper->start(NULL))
2956 gIOCopyMapper = (IOCopyMapper *) mapper;
2957 else
2958 mapper->release();
2959 }
2960 }
2961
2962 gIOLastPage = IOGetLastPageNumber();
1c79356b
A
2963}
2964
2965void IOMemoryDescriptor::free( void )
2966{
2967 if( _mappings)
2968 _mappings->release();
2969
2970 super::free();
2971}
2972
2973IOMemoryMap * IOMemoryDescriptor::setMapping(
2974 task_t intoTask,
2975 IOVirtualAddress mapAddress,
55e303ae 2976 IOOptionBits options )
1c79356b 2977{
91447636 2978 _IOMemoryMap * newMap;
1c79356b 2979
91447636 2980 newMap = new _IOMemoryMap;
1c79356b
A
2981
2982 LOCK;
2983
91447636
A
2984 if( newMap
2985 && !newMap->initWithDescriptor( this, intoTask, mapAddress,
1c79356b 2986 options | kIOMapStatic, 0, getLength() )) {
91447636
A
2987 newMap->release();
2988 newMap = 0;
1c79356b
A
2989 }
2990
91447636 2991 addMapping( newMap);
1c79356b
A
2992
2993 UNLOCK;
2994
91447636 2995 return( newMap);
1c79356b
A
2996}
2997
2998IOMemoryMap * IOMemoryDescriptor::map(
55e303ae 2999 IOOptionBits options )
1c79356b
A
3000{
3001
3002 return( makeMapping( this, kernel_task, 0,
3003 options | kIOMapAnywhere,
3004 0, getLength() ));
3005}
3006
3007IOMemoryMap * IOMemoryDescriptor::map(
3008 task_t intoTask,
3009 IOVirtualAddress toAddress,
3010 IOOptionBits options,
55e303ae
A
3011 IOByteCount offset,
3012 IOByteCount length )
1c79356b
A
3013{
3014 if( 0 == length)
3015 length = getLength();
3016
3017 return( makeMapping( this, intoTask, toAddress, options, offset, length ));
3018}
3019
91447636
A
3020IOReturn _IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory,
3021 IOOptionBits options,
3022 IOByteCount offset)
3023{
3024 IOReturn err = kIOReturnSuccess;
3025 IOMemoryDescriptor * physMem = 0;
3026
3027 LOCK;
3028
3029 if (logical && addressMap) do
3030 {
89b3af67
A
3031 if (((memory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
3032 || ((memory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64))
91447636
A
3033 {
3034 physMem = memory;
3035 physMem->retain();
3036 }
3037
3038 if (!redirUPL)
3039 {
3040 vm_size_t size = length;
3041 int flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL
3042 | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS;
3043 if (KERN_SUCCESS != memory_object_iopl_request((ipc_port_t) memory->_memEntry, 0, &size, &redirUPL,
3044 NULL, NULL,
3045 &flags))
3046 redirUPL = 0;
3047
3048 if (physMem)
3049 {
3050 IOUnmapPages( addressMap, logical, length );
3051 physMem->redirect(0, true);
3052 }
3053 }
3054
3055 if (newBackingMemory)
3056 {
3057 if (newBackingMemory != memory)
3058 {
3059 if (this != newBackingMemory->makeMapping(newBackingMemory, addressTask, (IOVirtualAddress) this,
3060 options | kIOMapUnique | kIOMapReference,
3061 offset, length))
3062 err = kIOReturnError;
3063 }
3064 if (redirUPL)
3065 {
3066 upl_commit(redirUPL, NULL, 0);
3067 upl_deallocate(redirUPL);
3068 redirUPL = 0;
3069 }
3070 if (physMem)
3071 physMem->redirect(0, false);
3072 }
3073 }
3074 while (false);
3075
3076 UNLOCK;
3077
3078 if (physMem)
3079 physMem->release();
3080
3081 return (err);
3082}
3083
1c79356b
A
3084IOMemoryMap * IOMemoryDescriptor::makeMapping(
3085 IOMemoryDescriptor * owner,
3086 task_t intoTask,
3087 IOVirtualAddress toAddress,
3088 IOOptionBits options,
3089 IOByteCount offset,
3090 IOByteCount length )
3091{
91447636 3092 IOMemoryDescriptor * mapDesc = 0;
1c79356b
A
3093 _IOMemoryMap * mapping = 0;
3094 OSIterator * iter;
3095
3096 LOCK;
3097
91447636
A
3098 do
3099 {
3100 if (kIOMapUnique & options)
3101 {
3102 IOPhysicalAddress phys;
3103 IOByteCount physLen;
1c79356b 3104
91447636
A
3105 if (owner != this)
3106 continue;
1c79356b 3107
89b3af67
A
3108 if (((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
3109 || ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64))
91447636
A
3110 {
3111 phys = getPhysicalSegment(offset, &physLen);
3112 if (!phys || (physLen < length))
3113 continue;
3114
3115 mapDesc = IOMemoryDescriptor::withPhysicalAddress(
3116 phys, length, _direction);
3117 if (!mapDesc)
3118 continue;
3119 offset = 0;
3120 }
3121 else
3122 {
3123 mapDesc = this;
3124 mapDesc->retain();
3125 }
3126
3127 if (kIOMapReference & options)
3128 {
3129 mapping = (_IOMemoryMap *) toAddress;
3130 mapping->retain();
3131
3132#if 1
3133 uint32_t pageOffset1 = mapDesc->getSourceSegment( offset, NULL );
3134 pageOffset1 -= trunc_page_32( pageOffset1 );
3135
3136 uint32_t pageOffset2 = mapping->getVirtualAddress();
3137 pageOffset2 -= trunc_page_32( pageOffset2 );
3138
3139 if (pageOffset1 != pageOffset2)
3140 IOLog("::redirect can't map offset %x to addr %x\n",
3141 pageOffset1, mapping->getVirtualAddress());
3142#endif
3143
3144
3145 if (!mapping->initWithDescriptor( mapDesc, intoTask, toAddress, options,
3146 offset, length ))
3147 {
3148#ifdef DEBUG
3149 IOLog("Didn't redirect map %08lx : %08lx\n", offset, length );
3150#endif
3151 }
3152
3153 if (mapping->owner)
3154 mapping->owner->removeMapping(mapping);
3155 continue;
3156 }
3157 }
3158 else
3159 {
3160 // look for an existing mapping
3161 if( (iter = OSCollectionIterator::withCollection( _mappings))) {
3162
3163 while( (mapping = (_IOMemoryMap *) iter->getNextObject())) {
3164
3165 if( (mapping = mapping->copyCompatible(
3166 owner, intoTask, toAddress,
3167 options | kIOMapReference,
3168 offset, length )))
3169 break;
3170 }
3171 iter->release();
3172 }
1c79356b
A
3173
3174
91447636
A
3175 if (mapping)
3176 mapping->retain();
1c79356b 3177
91447636
A
3178 if( mapping || (options & kIOMapReference))
3179 continue;
3180
3181 mapDesc = owner;
3182 mapDesc->retain();
3183 }
1c79356b
A
3184 owner = this;
3185
3186 mapping = new _IOMemoryMap;
3187 if( mapping
91447636 3188 && !mapping->initWithDescriptor( mapDesc, intoTask, toAddress, options,
1c79356b 3189 offset, length )) {
9bccf70c 3190#ifdef DEBUG
1c79356b 3191 IOLog("Didn't make map %08lx : %08lx\n", offset, length );
9bccf70c 3192#endif
1c79356b
A
3193 mapping->release();
3194 mapping = 0;
3195 }
3196
91447636
A
3197 if (mapping)
3198 mapping->retain();
3199
1c79356b
A
3200 } while( false );
3201
91447636
A
3202 if (mapping)
3203 {
3204 mapping->owner = owner;
3205 owner->addMapping( mapping);
3206 mapping->release();
3207 }
1c79356b
A
3208
3209 UNLOCK;
3210
91447636
A
3211 if (mapDesc)
3212 mapDesc->release();
3213
1c79356b
A
3214 return( mapping);
3215}
3216
3217void IOMemoryDescriptor::addMapping(
3218 IOMemoryMap * mapping )
3219{
3220 if( mapping) {
3221 if( 0 == _mappings)
3222 _mappings = OSSet::withCapacity(1);
9bccf70c
A
3223 if( _mappings )
3224 _mappings->setObject( mapping );
1c79356b
A
3225 }
3226}
3227
3228void IOMemoryDescriptor::removeMapping(
3229 IOMemoryMap * mapping )
3230{
9bccf70c 3231 if( _mappings)
1c79356b 3232 _mappings->removeObject( mapping);
1c79356b
A
3233}
3234
3235/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3236
3237#undef super
3238#define super IOMemoryDescriptor
3239
3240OSDefineMetaClassAndStructors(IOSubMemoryDescriptor, IOMemoryDescriptor)
3241
3242/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3243
3244bool IOSubMemoryDescriptor::initSubRange( IOMemoryDescriptor * parent,
3245 IOByteCount offset, IOByteCount length,
55e303ae 3246 IODirection direction )
1c79356b 3247{
1c79356b
A
3248 if( !parent)
3249 return( false);
3250
3251 if( (offset + length) > parent->getLength())
3252 return( false);
3253
55e303ae
A
3254 /*
3255 * We can check the _parent instance variable before having ever set it
3256 * to an initial value because I/O Kit guarantees that all our instance
3257 * variables are zeroed on an object's allocation.
3258 */
3259
3260 if( !_parent) {
3261 if( !super::init())
3262 return( false );
3263 } else {
3264 /*
3265 * An existing memory descriptor is being retargeted to
3266 * point to somewhere else. Clean up our present state.
3267 */
3268
3269 _parent->release();
3270 _parent = 0;
3271 }
3272
1c79356b
A
3273 parent->retain();
3274 _parent = parent;
3275 _start = offset;
3276 _length = length;
55e303ae 3277 _direction = direction;
1c79356b
A
3278 _tag = parent->getTag();
3279
3280 return( true );
3281}
3282
3283void IOSubMemoryDescriptor::free( void )
3284{
3285 if( _parent)
3286 _parent->release();
3287
3288 super::free();
3289}
3290
3291
89b3af67
A
3292IOReturn
3293IOSubMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const
3294{
3295 IOReturn rtn;
3296
3297 if (kIOMDGetCharacteristics == op) {
3298
3299 rtn = _parent->dmaCommandOperation(op, vData, dataSize);
3300 if (kIOReturnSuccess == rtn) {
3301 IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData;
3302 data->fLength = _length;
3303 data->fSGCount = 0; // XXX gvdl: need to compute and pages
3304 data->fPages = 0;
3305 data->fPageAlign = 0;
3306 }
3307
3308 return rtn;
3309 }
3310 else if (kIOMDWalkSegments & op) {
3311 if (dataSize < sizeof(IOMDDMAWalkSegmentArgs))
3312 return kIOReturnUnderrun;
3313
3314 IOMDDMAWalkSegmentArgs *data =
3315 reinterpret_cast<IOMDDMAWalkSegmentArgs *>(vData);
3316 UInt offset = data->fOffset;
3317 UInt remain = _length - offset;
3318 if ((int) remain <= 0)
3319 return (!remain)? kIOReturnOverrun : kIOReturnInternalError;
3320
3321 data->fOffset = offset + _start;
3322 rtn = _parent->dmaCommandOperation(op, vData, dataSize);
3323 if (data->fLength > remain)
3324 data->fLength = remain;
3325 data->fOffset = offset;
3326
3327 return rtn;
3328 }
3329 else
3330 return kIOReturnBadArgument;
3331}
3332
3333addr64_t
3334IOSubMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount * length)
3335{
3336 addr64_t address;
3337 IOByteCount actualLength;
3338
3339 assert(offset <= _length);
3340
3341 if( length)
3342 *length = 0;
3343
3344 if( offset >= _length)
3345 return( 0 );
3346
3347 address = _parent->getPhysicalSegment64( offset + _start, &actualLength );
3348
3349 if( address && length)
3350 *length = min( _length - offset, actualLength );
3351
3352 return( address );
3353}
3354
3355IOPhysicalAddress
3356IOSubMemoryDescriptor::getPhysicalSegment( IOByteCount offset, IOByteCount * length )
1c79356b
A
3357{
3358 IOPhysicalAddress address;
3359 IOByteCount actualLength;
3360
3361 assert(offset <= _length);
3362
3363 if( length)
3364 *length = 0;
3365
3366 if( offset >= _length)
3367 return( 0 );
3368
3369 address = _parent->getPhysicalSegment( offset + _start, &actualLength );
3370
3371 if( address && length)
3372 *length = min( _length - offset, actualLength );
3373
3374 return( address );
3375}
3376
91447636
A
3377
3378IOReturn IOSubMemoryDescriptor::doMap(
3379 vm_map_t addressMap,
3380 IOVirtualAddress * atAddress,
3381 IOOptionBits options,
3382 IOByteCount sourceOffset,
3383 IOByteCount length )
3384{
3385 if( sourceOffset >= _length)
3386 return( kIOReturnOverrun );
3387 return (_parent->doMap(addressMap, atAddress, options, sourceOffset + _start, length));
3388}
3389
89b3af67
A
3390IOPhysicalAddress
3391IOSubMemoryDescriptor::getSourceSegment( IOByteCount offset, IOByteCount * length )
0b4e3aa0
A
3392{
3393 IOPhysicalAddress address;
3394 IOByteCount actualLength;
3395
3396 assert(offset <= _length);
3397
3398 if( length)
3399 *length = 0;
3400
3401 if( offset >= _length)
3402 return( 0 );
3403
3404 address = _parent->getSourceSegment( offset + _start, &actualLength );
3405
3406 if( address && length)
3407 *length = min( _length - offset, actualLength );
3408
3409 return( address );
3410}
3411
1c79356b
A
3412void * IOSubMemoryDescriptor::getVirtualSegment(IOByteCount offset,
3413 IOByteCount * lengthOfSegment)
3414{
3415 return( 0 );
3416}
3417
3418IOByteCount IOSubMemoryDescriptor::readBytes(IOByteCount offset,
55e303ae 3419 void * bytes, IOByteCount length)
1c79356b
A
3420{
3421 IOByteCount byteCount;
3422
3423 assert(offset <= _length);
3424
3425 if( offset >= _length)
3426 return( 0 );
3427
3428 LOCK;
3429 byteCount = _parent->readBytes( _start + offset, bytes,
55e303ae 3430 min(length, _length - offset) );
1c79356b
A
3431 UNLOCK;
3432
3433 return( byteCount );
3434}
3435
3436IOByteCount IOSubMemoryDescriptor::writeBytes(IOByteCount offset,
55e303ae 3437 const void* bytes, IOByteCount length)
1c79356b
A
3438{
3439 IOByteCount byteCount;
3440
3441 assert(offset <= _length);
3442
3443 if( offset >= _length)
3444 return( 0 );
3445
3446 LOCK;
3447 byteCount = _parent->writeBytes( _start + offset, bytes,
55e303ae 3448 min(length, _length - offset) );
1c79356b
A
3449 UNLOCK;
3450
3451 return( byteCount );
3452}
3453
91447636
A
3454IOReturn IOSubMemoryDescriptor::setPurgeable( IOOptionBits newState,
3455 IOOptionBits * oldState )
3456{
3457 IOReturn err;
3458
3459 LOCK;
3460 err = _parent->setPurgeable( newState, oldState );
3461 UNLOCK;
3462
3463 return( err );
3464}
3465
3466IOReturn IOSubMemoryDescriptor::performOperation( IOOptionBits options,
3467 IOByteCount offset, IOByteCount length )
3468{
3469 IOReturn err;
3470
3471 assert(offset <= _length);
3472
3473 if( offset >= _length)
3474 return( kIOReturnOverrun );
3475
3476 LOCK;
3477 err = _parent->performOperation( options, _start + offset,
3478 min(length, _length - offset) );
3479 UNLOCK;
3480
3481 return( err );
3482}
3483
1c79356b 3484IOReturn IOSubMemoryDescriptor::prepare(
55e303ae 3485 IODirection forDirection)
1c79356b
A
3486{
3487 IOReturn err;
3488
3489 LOCK;
3490 err = _parent->prepare( forDirection);
3491 UNLOCK;
3492
3493 return( err );
3494}
3495
3496IOReturn IOSubMemoryDescriptor::complete(
55e303ae 3497 IODirection forDirection)
1c79356b
A
3498{
3499 IOReturn err;
3500
3501 LOCK;
3502 err = _parent->complete( forDirection);
3503 UNLOCK;
3504
3505 return( err );
3506}
3507
3508IOMemoryMap * IOSubMemoryDescriptor::makeMapping(
3509 IOMemoryDescriptor * owner,
3510 task_t intoTask,
3511 IOVirtualAddress toAddress,
3512 IOOptionBits options,
3513 IOByteCount offset,
3514 IOByteCount length )
3515{
91447636 3516 IOMemoryMap * mapping = 0;
1c79356b 3517
91447636
A
3518 if (!(kIOMapUnique & options))
3519 mapping = (IOMemoryMap *) _parent->makeMapping(
1c79356b
A
3520 _parent, intoTask,
3521 toAddress - (_start + offset),
3522 options | kIOMapReference,
3523 _start + offset, length );
3524
0b4e3aa0
A
3525 if( !mapping)
3526 mapping = (IOMemoryMap *) _parent->makeMapping(
3527 _parent, intoTask,
3528 toAddress,
3529 options, _start + offset, length );
3530
1c79356b
A
3531 if( !mapping)
3532 mapping = super::makeMapping( owner, intoTask, toAddress, options,
3533 offset, length );
3534
3535 return( mapping );
3536}
3537
3538/* ick */
3539
3540bool
3541IOSubMemoryDescriptor::initWithAddress(void * address,
55e303ae
A
3542 IOByteCount length,
3543 IODirection direction)
1c79356b
A
3544{
3545 return( false );
3546}
3547
3548bool
3549IOSubMemoryDescriptor::initWithAddress(vm_address_t address,
55e303ae
A
3550 IOByteCount length,
3551 IODirection direction,
3552 task_t task)
1c79356b
A
3553{
3554 return( false );
3555}
3556
3557bool
3558IOSubMemoryDescriptor::initWithPhysicalAddress(
3559 IOPhysicalAddress address,
55e303ae
A
3560 IOByteCount length,
3561 IODirection direction )
1c79356b
A
3562{
3563 return( false );
3564}
3565
3566bool
3567IOSubMemoryDescriptor::initWithRanges(
3568 IOVirtualRange * ranges,
3569 UInt32 withCount,
55e303ae
A
3570 IODirection direction,
3571 task_t task,
3572 bool asReference)
1c79356b
A
3573{
3574 return( false );
3575}
3576
3577bool
3578IOSubMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * ranges,
3579 UInt32 withCount,
55e303ae
A
3580 IODirection direction,
3581 bool asReference)
1c79356b
A
3582{
3583 return( false );
3584}
3585
3586/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3587
9bccf70c
A
3588bool IOGeneralMemoryDescriptor::serialize(OSSerialize * s) const
3589{
3590 OSSymbol const *keys[2];
3591 OSObject *values[2];
91447636
A
3592 struct SerData {
3593 user_addr_t address;
3594 user_size_t length;
3595 } *vcopy;
9bccf70c
A
3596 unsigned int index, nRanges;
3597 bool result;
3598
91447636
A
3599 IOOptionBits type = _flags & kIOMemoryTypeMask;
3600
9bccf70c
A
3601 if (s == NULL) return false;
3602 if (s->previouslySerialized(this)) return true;
3603
3604 // Pretend we are an array.
3605 if (!s->addXMLStartTag(this, "array")) return false;
3606
3607 nRanges = _rangesCount;
91447636 3608 vcopy = (SerData *) IOMalloc(sizeof(SerData) * nRanges);
9bccf70c
A
3609 if (vcopy == 0) return false;
3610
3611 keys[0] = OSSymbol::withCString("address");
3612 keys[1] = OSSymbol::withCString("length");
3613
3614 result = false;
3615 values[0] = values[1] = 0;
3616
3617 // From this point on we can go to bail.
3618
3619 // Copy the volatile data so we don't have to allocate memory
3620 // while the lock is held.
3621 LOCK;
3622 if (nRanges == _rangesCount) {
91447636 3623 Ranges vec = _ranges;
9bccf70c 3624 for (index = 0; index < nRanges; index++) {
91447636
A
3625 user_addr_t addr; IOByteCount len;
3626 getAddrLenForInd(addr, len, type, vec, index);
3627 vcopy[index].address = addr;
3628 vcopy[index].length = len;
9bccf70c
A
3629 }
3630 } else {
3631 // The descriptor changed out from under us. Give up.
3632 UNLOCK;
3633 result = false;
3634 goto bail;
3635 }
3636 UNLOCK;
3637
3638 for (index = 0; index < nRanges; index++)
3639 {
91447636
A
3640 user_addr_t addr = vcopy[index].address;
3641 IOByteCount len = (IOByteCount) vcopy[index].length;
3642 values[0] =
3643 OSNumber::withNumber(addr, (((UInt64) addr) >> 32)? 64 : 32);
9bccf70c
A
3644 if (values[0] == 0) {
3645 result = false;
3646 goto bail;
3647 }
91447636 3648 values[1] = OSNumber::withNumber(len, sizeof(len) * 8);
9bccf70c
A
3649 if (values[1] == 0) {
3650 result = false;
3651 goto bail;
3652 }
3653 OSDictionary *dict = OSDictionary::withObjects((const OSObject **)values, (const OSSymbol **)keys, 2);
3654 if (dict == 0) {
3655 result = false;
3656 goto bail;
3657 }
3658 values[0]->release();
3659 values[1]->release();
3660 values[0] = values[1] = 0;
3661
3662 result = dict->serialize(s);
3663 dict->release();
3664 if (!result) {
3665 goto bail;
3666 }
3667 }
3668 result = s->addXMLEndTag("array");
3669
3670 bail:
3671 if (values[0])
3672 values[0]->release();
3673 if (values[1])
3674 values[1]->release();
3675 if (keys[0])
3676 keys[0]->release();
3677 if (keys[1])
3678 keys[1]->release();
3679 if (vcopy)
3680 IOFree(vcopy, sizeof(IOVirtualRange) * nRanges);
3681 return result;
3682}
3683
3684bool IOSubMemoryDescriptor::serialize(OSSerialize * s) const
3685{
3686 if (!s) {
3687 return (false);
3688 }
3689 if (s->previouslySerialized(this)) return true;
3690
3691 // Pretend we are a dictionary.
3692 // We must duplicate the functionality of OSDictionary here
3693 // because otherwise object references will not work;
3694 // they are based on the value of the object passed to
3695 // previouslySerialized and addXMLStartTag.
3696
3697 if (!s->addXMLStartTag(this, "dict")) return false;
3698
3699 char const *keys[3] = {"offset", "length", "parent"};
3700
3701 OSObject *values[3];
3702 values[0] = OSNumber::withNumber(_start, sizeof(_start) * 8);
3703 if (values[0] == 0)
3704 return false;
3705 values[1] = OSNumber::withNumber(_length, sizeof(_length) * 8);
3706 if (values[1] == 0) {
3707 values[0]->release();
3708 return false;
3709 }
3710 values[2] = _parent;
3711
3712 bool result = true;
3713 for (int i=0; i<3; i++) {
3714 if (!s->addString("<key>") ||
3715 !s->addString(keys[i]) ||
3716 !s->addXMLEndTag("key") ||
3717 !values[i]->serialize(s)) {
3718 result = false;
3719 break;
3720 }
3721 }
3722 values[0]->release();
3723 values[1]->release();
3724 if (!result) {
3725 return false;
3726 }
3727
3728 return s->addXMLEndTag("dict");
3729}
3730
3731/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3732
0b4e3aa0 3733OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 0);
55e303ae
A
3734OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 1);
3735OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 2);
91447636
A
3736OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 3);
3737OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 4);
89b3af67 3738OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 5);
1c79356b
A
3739OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 6);
3740OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 7);
3741OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 8);
3742OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 9);
3743OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 10);
3744OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 11);
3745OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 12);
3746OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 13);
3747OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 14);
3748OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 15);
9bccf70c 3749
55e303ae 3750/* ex-inline function implementation */
89b3af67
A
3751IOPhysicalAddress
3752IOMemoryDescriptor::getPhysicalAddress()
9bccf70c 3753 { return( getPhysicalSegment( 0, 0 )); }
89b3af67
A
3754
3755
3756