]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
5d5c5d0d | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1993 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
91447636 A |
65 | #include <sys/proc_internal.h> |
66 | #include <sys/buf_internal.h> | |
67 | #include <sys/mount_internal.h> | |
68 | #include <sys/vnode_internal.h> | |
1c79356b A |
69 | #include <sys/trace.h> |
70 | #include <sys/malloc.h> | |
55e303ae A |
71 | #include <sys/time.h> |
72 | #include <sys/kernel.h> | |
1c79356b | 73 | #include <sys/resourcevar.h> |
91447636 | 74 | #include <sys/uio_internal.h> |
1c79356b | 75 | #include <libkern/libkern.h> |
55e303ae | 76 | #include <machine/machine_routines.h> |
1c79356b | 77 | |
91447636 | 78 | #include <sys/ubc_internal.h> |
2d21ac55 | 79 | #include <vm/vnode_pager.h> |
1c79356b | 80 | |
55e303ae A |
81 | #include <mach/mach_types.h> |
82 | #include <mach/memory_object_types.h> | |
91447636 A |
83 | #include <mach/vm_map.h> |
84 | #include <mach/upl.h> | |
6d2010ae | 85 | #include <kern/task.h> |
91447636 A |
86 | |
87 | #include <vm/vm_kern.h> | |
88 | #include <vm/vm_map.h> | |
89 | #include <vm/vm_pageout.h> | |
55e303ae | 90 | |
1c79356b | 91 | #include <sys/kdebug.h> |
b0d623f7 A |
92 | #include <libkern/OSAtomic.h> |
93 | ||
6d2010ae A |
94 | #include <sys/sdt.h> |
95 | ||
b0d623f7 A |
96 | #if 0 |
97 | #undef KERNEL_DEBUG | |
98 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
99 | #endif | |
100 | ||
1c79356b | 101 | |
2d21ac55 | 102 | #define CL_READ 0x01 |
b0d623f7 | 103 | #define CL_WRITE 0x02 |
cf7d32b8 A |
104 | #define CL_ASYNC 0x04 |
105 | #define CL_COMMIT 0x08 | |
2d21ac55 A |
106 | #define CL_PAGEOUT 0x10 |
107 | #define CL_AGE 0x20 | |
108 | #define CL_NOZERO 0x40 | |
109 | #define CL_PAGEIN 0x80 | |
110 | #define CL_DEV_MEMORY 0x100 | |
111 | #define CL_PRESERVE 0x200 | |
112 | #define CL_THROTTLE 0x400 | |
113 | #define CL_KEEPCACHED 0x800 | |
114 | #define CL_DIRECT_IO 0x1000 | |
115 | #define CL_PASSIVE 0x2000 | |
b0d623f7 | 116 | #define CL_IOSTREAMING 0x4000 |
6d2010ae A |
117 | #define CL_CLOSE 0x8000 |
118 | #define CL_ENCRYPTED 0x10000 | |
b0d623f7 A |
119 | |
120 | #define MAX_VECTOR_UPL_ELEMENTS 8 | |
121 | #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE) * PAGE_SIZE | |
b4c24cb9 | 122 | |
b0d623f7 A |
123 | extern upl_t vector_upl_create(vm_offset_t); |
124 | extern boolean_t vector_upl_is_valid(upl_t); | |
125 | extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t); | |
126 | extern void vector_upl_set_pagelist(upl_t); | |
127 | extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); | |
d7e50217 | 128 | |
b4c24cb9 | 129 | struct clios { |
6d2010ae | 130 | lck_mtx_t io_mtxp; |
d7e50217 A |
131 | u_int io_completed; /* amount of io that has currently completed */ |
132 | u_int io_issued; /* amount of io that was successfully issued */ | |
133 | int io_error; /* error code of first error encountered */ | |
134 | int io_wanted; /* someone is sleeping waiting for a change in state */ | |
b4c24cb9 A |
135 | }; |
136 | ||
91447636 A |
137 | static lck_grp_t *cl_mtx_grp; |
138 | static lck_attr_t *cl_mtx_attr; | |
139 | static lck_grp_attr_t *cl_mtx_grp_attr; | |
060df5ea | 140 | static lck_mtx_t *cl_transaction_mtxp; |
91447636 A |
141 | |
142 | ||
2d21ac55 A |
143 | #define IO_UNKNOWN 0 |
144 | #define IO_DIRECT 1 | |
145 | #define IO_CONTIG 2 | |
146 | #define IO_COPY 3 | |
147 | ||
148 | #define PUSH_DELAY 0x01 | |
149 | #define PUSH_ALL 0x02 | |
150 | #define PUSH_SYNC 0x04 | |
151 | ||
152 | ||
153 | static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset); | |
154 | static void cluster_wait_IO(buf_t cbp_head, int async); | |
155 | static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); | |
156 | ||
157 | static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); | |
158 | ||
91447636 | 159 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
2d21ac55 A |
160 | int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); |
161 | static int cluster_iodone(buf_t bp, void *callback_arg); | |
162 | static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags); | |
b0d623f7 | 163 | static int cluster_hard_throttle_on(vnode_t vp, uint32_t); |
91447636 | 164 | |
6d2010ae A |
165 | static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); |
166 | ||
2d21ac55 A |
167 | static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg); |
168 | ||
b0d623f7 | 169 | static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); |
2d21ac55 A |
170 | static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); |
171 | ||
172 | static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, | |
173 | int (*)(buf_t, void *), void *callback_arg); | |
174 | static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
175 | int flags, int (*)(buf_t, void *), void *callback_arg); | |
176 | static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, | |
177 | int (*)(buf_t, void *), void *callback_arg, int flags); | |
1c79356b | 178 | |
2d21ac55 A |
179 | static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, |
180 | off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg); | |
181 | static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, | |
182 | int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg); | |
183 | static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, | |
184 | int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 185 | |
2d21ac55 | 186 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); |
91447636 | 187 | |
2d21ac55 A |
188 | static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); |
189 | static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag); | |
91447636 | 190 | |
2d21ac55 | 191 | static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg); |
55e303ae | 192 | |
6d2010ae | 193 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 A |
194 | |
195 | static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg); | |
6d2010ae | 196 | static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg); |
b0d623f7 | 197 | static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg); |
2d21ac55 A |
198 | |
199 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); | |
55e303ae A |
200 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); |
201 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); | |
202 | ||
9bccf70c | 203 | |
2d21ac55 A |
204 | /* |
205 | * limit the internal I/O size so that we | |
206 | * can represent it in a 32 bit int | |
207 | */ | |
b0d623f7 A |
208 | #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) |
209 | #define MAX_IO_CONTIG_SIZE (MAX_UPL_SIZE * PAGE_SIZE) | |
210 | #define MAX_VECTS 16 | |
2d21ac55 A |
211 | #define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE) |
212 | ||
6d2010ae A |
213 | #define WRITE_THROTTLE 6 |
214 | #define WRITE_THROTTLE_SSD 2 | |
215 | #define WRITE_BEHIND 1 | |
216 | #define WRITE_BEHIND_SSD 1 | |
217 | #define PREFETCH 3 | |
218 | #define PREFETCH_SSD 2 | |
219 | ||
b0d623f7 A |
220 | #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * base) |
221 | #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) | |
6d2010ae | 222 | #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, (is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)) |
cf7d32b8 | 223 | |
6d2010ae A |
224 | int ignore_is_ssd = 0; |
225 | int speculative_reads_disabled = 0; | |
226 | uint32_t speculative_prefetch_max = (MAX_UPL_SIZE * 3); | |
2d21ac55 | 227 | |
1c79356b A |
228 | /* |
229 | * throttle the number of async writes that | |
230 | * can be outstanding on a single vnode | |
231 | * before we issue a synchronous write | |
232 | */ | |
91447636 | 233 | #define HARD_THROTTLE_MAXCNT 0 |
b0d623f7 | 234 | #define HARD_THROTTLE_MAXSIZE (32 * 1024) |
55e303ae A |
235 | |
236 | int hard_throttle_on_root = 0; | |
237 | struct timeval priority_IO_timestamp_for_root; | |
238 | ||
239 | ||
91447636 A |
240 | void |
241 | cluster_init(void) { | |
2d21ac55 | 242 | /* |
91447636 A |
243 | * allocate lock group attribute and group |
244 | */ | |
2d21ac55 | 245 | cl_mtx_grp_attr = lck_grp_attr_alloc_init(); |
91447636 A |
246 | cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr); |
247 | ||
248 | /* | |
249 | * allocate the lock attribute | |
250 | */ | |
251 | cl_mtx_attr = lck_attr_alloc_init(); | |
91447636 | 252 | |
060df5ea A |
253 | cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr); |
254 | ||
255 | if (cl_transaction_mtxp == NULL) | |
256 | panic("cluster_init: failed to allocate cl_transaction_mtxp"); | |
91447636 A |
257 | } |
258 | ||
259 | ||
cf7d32b8 A |
260 | uint32_t |
261 | cluster_max_io_size(mount_t mp, int type) | |
262 | { | |
b0d623f7 A |
263 | uint32_t max_io_size; |
264 | uint32_t segcnt; | |
265 | uint32_t maxcnt; | |
266 | ||
267 | switch(type) { | |
268 | ||
269 | case CL_READ: | |
270 | segcnt = mp->mnt_segreadcnt; | |
271 | maxcnt = mp->mnt_maxreadcnt; | |
272 | break; | |
273 | case CL_WRITE: | |
274 | segcnt = mp->mnt_segwritecnt; | |
275 | maxcnt = mp->mnt_maxwritecnt; | |
276 | break; | |
277 | default: | |
278 | segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt); | |
279 | maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt); | |
280 | break; | |
281 | } | |
cf7d32b8 A |
282 | if (segcnt > MAX_UPL_SIZE) { |
283 | /* | |
284 | * don't allow a size beyond the max UPL size we can create | |
285 | */ | |
286 | segcnt = MAX_UPL_SIZE; | |
287 | } | |
288 | max_io_size = min((segcnt * PAGE_SIZE), maxcnt); | |
289 | ||
290 | if (max_io_size < (MAX_UPL_TRANSFER * PAGE_SIZE)) { | |
291 | /* | |
292 | * don't allow a size smaller than the old fixed limit | |
293 | */ | |
294 | max_io_size = (MAX_UPL_TRANSFER * PAGE_SIZE); | |
295 | } else { | |
296 | /* | |
297 | * make sure the size specified is a multiple of PAGE_SIZE | |
298 | */ | |
299 | max_io_size &= ~PAGE_MASK; | |
300 | } | |
301 | return (max_io_size); | |
302 | } | |
303 | ||
304 | ||
305 | ||
91447636 A |
306 | |
307 | #define CLW_ALLOCATE 0x01 | |
308 | #define CLW_RETURNLOCKED 0x02 | |
2d21ac55 A |
309 | #define CLW_IONOCACHE 0x04 |
310 | #define CLW_IOPASSIVE 0x08 | |
311 | ||
91447636 A |
312 | /* |
313 | * if the read ahead context doesn't yet exist, | |
314 | * allocate and initialize it... | |
315 | * the vnode lock serializes multiple callers | |
316 | * during the actual assignment... first one | |
317 | * to grab the lock wins... the other callers | |
318 | * will release the now unnecessary storage | |
319 | * | |
320 | * once the context is present, try to grab (but don't block on) | |
321 | * the lock associated with it... if someone | |
322 | * else currently owns it, than the read | |
323 | * will run without read-ahead. this allows | |
324 | * multiple readers to run in parallel and | |
325 | * since there's only 1 read ahead context, | |
326 | * there's no real loss in only allowing 1 | |
327 | * reader to have read-ahead enabled. | |
328 | */ | |
329 | static struct cl_readahead * | |
330 | cluster_get_rap(vnode_t vp) | |
331 | { | |
332 | struct ubc_info *ubc; | |
333 | struct cl_readahead *rap; | |
334 | ||
335 | ubc = vp->v_ubcinfo; | |
336 | ||
337 | if ((rap = ubc->cl_rahead) == NULL) { | |
338 | MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK); | |
339 | ||
340 | bzero(rap, sizeof *rap); | |
341 | rap->cl_lastr = -1; | |
342 | lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr); | |
343 | ||
344 | vnode_lock(vp); | |
345 | ||
346 | if (ubc->cl_rahead == NULL) | |
347 | ubc->cl_rahead = rap; | |
348 | else { | |
349 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
350 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
2d21ac55 | 351 | rap = ubc->cl_rahead; |
91447636 A |
352 | } |
353 | vnode_unlock(vp); | |
354 | } | |
355 | if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE) | |
356 | return(rap); | |
357 | ||
358 | return ((struct cl_readahead *)NULL); | |
359 | } | |
360 | ||
361 | ||
362 | /* | |
363 | * if the write behind context doesn't yet exist, | |
364 | * and CLW_ALLOCATE is specified, allocate and initialize it... | |
365 | * the vnode lock serializes multiple callers | |
366 | * during the actual assignment... first one | |
367 | * to grab the lock wins... the other callers | |
368 | * will release the now unnecessary storage | |
369 | * | |
370 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) | |
371 | * the lock associated with the write behind context before | |
372 | * returning | |
373 | */ | |
374 | ||
375 | static struct cl_writebehind * | |
376 | cluster_get_wbp(vnode_t vp, int flags) | |
377 | { | |
378 | struct ubc_info *ubc; | |
379 | struct cl_writebehind *wbp; | |
380 | ||
381 | ubc = vp->v_ubcinfo; | |
382 | ||
383 | if ((wbp = ubc->cl_wbehind) == NULL) { | |
384 | ||
385 | if ( !(flags & CLW_ALLOCATE)) | |
386 | return ((struct cl_writebehind *)NULL); | |
387 | ||
388 | MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK); | |
389 | ||
390 | bzero(wbp, sizeof *wbp); | |
391 | lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr); | |
392 | ||
393 | vnode_lock(vp); | |
394 | ||
395 | if (ubc->cl_wbehind == NULL) | |
396 | ubc->cl_wbehind = wbp; | |
397 | else { | |
398 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
399 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
2d21ac55 | 400 | wbp = ubc->cl_wbehind; |
91447636 A |
401 | } |
402 | vnode_unlock(vp); | |
403 | } | |
404 | if (flags & CLW_RETURNLOCKED) | |
405 | lck_mtx_lock(&wbp->cl_lockw); | |
406 | ||
407 | return (wbp); | |
408 | } | |
409 | ||
410 | ||
2d21ac55 A |
411 | static void |
412 | cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg) | |
413 | { | |
414 | struct cl_writebehind *wbp; | |
415 | ||
416 | if ((wbp = cluster_get_wbp(vp, 0)) != NULL) { | |
417 | ||
418 | if (wbp->cl_number) { | |
419 | lck_mtx_lock(&wbp->cl_lockw); | |
420 | ||
6d2010ae | 421 | cluster_try_push(wbp, vp, newEOF, PUSH_ALL | PUSH_SYNC, 0, callback, callback_arg); |
2d21ac55 A |
422 | |
423 | lck_mtx_unlock(&wbp->cl_lockw); | |
424 | } | |
425 | } | |
426 | } | |
427 | ||
428 | ||
55e303ae | 429 | static int |
b0d623f7 | 430 | cluster_hard_throttle_on(vnode_t vp, uint32_t hard_throttle) |
55e303ae | 431 | { |
b0d623f7 A |
432 | struct uthread *ut; |
433 | ||
434 | if (hard_throttle) { | |
435 | static struct timeval hard_throttle_maxelapsed = { 0, 200000 }; | |
55e303ae | 436 | |
b0d623f7 A |
437 | if (vp->v_mount->mnt_kern_flag & MNTK_ROOTDEV) { |
438 | struct timeval elapsed; | |
55e303ae | 439 | |
b0d623f7 A |
440 | if (hard_throttle_on_root) |
441 | return(1); | |
55e303ae | 442 | |
b0d623f7 A |
443 | microuptime(&elapsed); |
444 | timevalsub(&elapsed, &priority_IO_timestamp_for_root); | |
55e303ae | 445 | |
b0d623f7 A |
446 | if (timevalcmp(&elapsed, &hard_throttle_maxelapsed, <)) |
447 | return(1); | |
448 | } | |
55e303ae | 449 | } |
593a1d5f | 450 | if (throttle_get_io_policy(&ut) == IOPOL_THROTTLE) { |
b0d623f7 | 451 | if (throttle_io_will_be_throttled(-1, vp->v_mount)) { |
593a1d5f A |
452 | return(1); |
453 | } | |
454 | } | |
55e303ae A |
455 | return(0); |
456 | } | |
457 | ||
1c79356b | 458 | |
6d2010ae A |
459 | static void |
460 | cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) | |
461 | { | |
462 | ||
463 | lck_mtx_lock(&iostate->io_mtxp); | |
464 | ||
465 | while ((iostate->io_issued - iostate->io_completed) > target) { | |
466 | ||
467 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, | |
468 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
469 | ||
470 | iostate->io_wanted = 1; | |
471 | msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL); | |
472 | ||
473 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, | |
474 | iostate->io_issued, iostate->io_completed, target, 0, 0); | |
475 | } | |
476 | lck_mtx_unlock(&iostate->io_mtxp); | |
477 | } | |
478 | ||
479 | ||
1c79356b | 480 | static int |
2d21ac55 A |
481 | cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags) |
482 | { | |
483 | int upl_abort_code = 0; | |
484 | int page_in = 0; | |
485 | int page_out = 0; | |
486 | ||
6d2010ae | 487 | if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) |
2d21ac55 A |
488 | /* |
489 | * direct write of any flavor, or a direct read that wasn't aligned | |
490 | */ | |
491 | ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); | |
492 | else { | |
493 | if (io_flags & B_PAGEIO) { | |
494 | if (io_flags & B_READ) | |
495 | page_in = 1; | |
496 | else | |
497 | page_out = 1; | |
498 | } | |
499 | if (io_flags & B_CACHE) | |
500 | /* | |
501 | * leave pages in the cache unchanged on error | |
502 | */ | |
503 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
504 | else if (page_out && (error != ENXIO)) | |
505 | /* | |
506 | * transient error... leave pages unchanged | |
507 | */ | |
508 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; | |
509 | else if (page_in) | |
510 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; | |
511 | else | |
512 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
513 | ||
514 | ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); | |
515 | } | |
516 | return (upl_abort_code); | |
517 | } | |
518 | ||
519 | ||
520 | static int | |
521 | cluster_iodone(buf_t bp, void *callback_arg) | |
1c79356b | 522 | { |
91447636 A |
523 | int b_flags; |
524 | int error; | |
525 | int total_size; | |
526 | int total_resid; | |
527 | int upl_offset; | |
528 | int zero_offset; | |
2d21ac55 A |
529 | int pg_offset = 0; |
530 | int commit_size = 0; | |
531 | int upl_flags = 0; | |
532 | int transaction_size = 0; | |
91447636 A |
533 | upl_t upl; |
534 | buf_t cbp; | |
535 | buf_t cbp_head; | |
536 | buf_t cbp_next; | |
537 | buf_t real_bp; | |
538 | struct clios *iostate; | |
2d21ac55 | 539 | boolean_t transaction_complete = FALSE; |
91447636 A |
540 | |
541 | cbp_head = (buf_t)(bp->b_trans_head); | |
1c79356b A |
542 | |
543 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, | |
b0d623f7 | 544 | cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
1c79356b | 545 | |
060df5ea | 546 | if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { |
6d2010ae | 547 | boolean_t need_wakeup = FALSE; |
060df5ea A |
548 | |
549 | lck_mtx_lock_spin(cl_transaction_mtxp); | |
550 | ||
551 | bp->b_flags |= B_TDONE; | |
552 | ||
6d2010ae A |
553 | if (bp->b_flags & B_TWANTED) { |
554 | CLR(bp->b_flags, B_TWANTED); | |
555 | need_wakeup = TRUE; | |
556 | } | |
060df5ea | 557 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
6d2010ae | 558 | /* |
060df5ea A |
559 | * all I/O requests that are part of this transaction |
560 | * have to complete before we can process it | |
561 | */ | |
6d2010ae | 562 | if ( !(cbp->b_flags & B_TDONE)) { |
1c79356b | 563 | |
6d2010ae | 564 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
060df5ea A |
565 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); |
566 | ||
567 | lck_mtx_unlock(cl_transaction_mtxp); | |
6d2010ae A |
568 | |
569 | if (need_wakeup == TRUE) | |
570 | wakeup(bp); | |
571 | ||
060df5ea A |
572 | return 0; |
573 | } | |
574 | if (cbp->b_flags & B_EOT) | |
6d2010ae | 575 | transaction_complete = TRUE; |
060df5ea A |
576 | } |
577 | lck_mtx_unlock(cl_transaction_mtxp); | |
578 | ||
6d2010ae A |
579 | if (need_wakeup == TRUE) |
580 | wakeup(bp); | |
581 | ||
060df5ea | 582 | if (transaction_complete == FALSE) { |
6d2010ae | 583 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
060df5ea | 584 | cbp_head, 0, 0, 0, 0); |
2d21ac55 | 585 | return 0; |
1c79356b A |
586 | } |
587 | } | |
588 | error = 0; | |
589 | total_size = 0; | |
590 | total_resid = 0; | |
591 | ||
592 | cbp = cbp_head; | |
593 | upl_offset = cbp->b_uploffset; | |
91447636 | 594 | upl = cbp->b_upl; |
1c79356b A |
595 | b_flags = cbp->b_flags; |
596 | real_bp = cbp->b_real_bp; | |
9bccf70c | 597 | zero_offset= cbp->b_validend; |
b4c24cb9 | 598 | iostate = (struct clios *)cbp->b_iostate; |
1c79356b | 599 | |
91447636 A |
600 | if (real_bp) |
601 | real_bp->b_dev = cbp->b_dev; | |
602 | ||
1c79356b | 603 | while (cbp) { |
1c79356b A |
604 | if ((cbp->b_flags & B_ERROR) && error == 0) |
605 | error = cbp->b_error; | |
606 | ||
607 | total_resid += cbp->b_resid; | |
608 | total_size += cbp->b_bcount; | |
609 | ||
610 | cbp_next = cbp->b_trans_next; | |
611 | ||
2d21ac55 A |
612 | if (cbp_next == NULL) |
613 | /* | |
614 | * compute the overall size of the transaction | |
615 | * in case we created one that has 'holes' in it | |
616 | * 'total_size' represents the amount of I/O we | |
617 | * did, not the span of the transaction w/r to the UPL | |
618 | */ | |
619 | transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; | |
620 | ||
621 | if (cbp != cbp_head) | |
622 | free_io_buf(cbp); | |
1c79356b A |
623 | |
624 | cbp = cbp_next; | |
625 | } | |
2d21ac55 A |
626 | if (error == 0 && total_resid) |
627 | error = EIO; | |
628 | ||
629 | if (error == 0) { | |
630 | int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); | |
631 | ||
632 | if (cliodone_func != NULL) { | |
633 | cbp_head->b_bcount = transaction_size; | |
634 | ||
635 | error = (*cliodone_func)(cbp_head, callback_arg); | |
636 | } | |
637 | } | |
b4c24cb9 A |
638 | if (zero_offset) |
639 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); | |
640 | ||
2d21ac55 A |
641 | free_io_buf(cbp_head); |
642 | ||
b4c24cb9 | 643 | if (iostate) { |
91447636 A |
644 | int need_wakeup = 0; |
645 | ||
d7e50217 A |
646 | /* |
647 | * someone has issued multiple I/Os asynchrounsly | |
648 | * and is waiting for them to complete (streaming) | |
649 | */ | |
6d2010ae | 650 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 651 | |
d7e50217 A |
652 | if (error && iostate->io_error == 0) |
653 | iostate->io_error = error; | |
9bccf70c | 654 | |
b4c24cb9 A |
655 | iostate->io_completed += total_size; |
656 | ||
657 | if (iostate->io_wanted) { | |
d7e50217 A |
658 | /* |
659 | * someone is waiting for the state of | |
660 | * this io stream to change | |
661 | */ | |
b4c24cb9 | 662 | iostate->io_wanted = 0; |
91447636 | 663 | need_wakeup = 1; |
b4c24cb9 | 664 | } |
6d2010ae | 665 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 A |
666 | |
667 | if (need_wakeup) | |
668 | wakeup((caddr_t)&iostate->io_wanted); | |
b4c24cb9 | 669 | } |
1c79356b A |
670 | |
671 | if (b_flags & B_COMMIT_UPL) { | |
91447636 | 672 | |
2d21ac55 A |
673 | pg_offset = upl_offset & PAGE_MASK; |
674 | commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
1c79356b | 675 | |
2d21ac55 A |
676 | if (error) |
677 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags); | |
678 | else { | |
679 | upl_flags = UPL_COMMIT_FREE_ON_EMPTY; | |
1c79356b | 680 | |
91447636 | 681 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) |
2d21ac55 | 682 | upl_flags |= UPL_COMMIT_SET_DIRTY; |
55e303ae | 683 | |
1c79356b | 684 | if (b_flags & B_AGE) |
2d21ac55 | 685 | upl_flags |= UPL_COMMIT_INACTIVATE; |
1c79356b | 686 | |
2d21ac55 | 687 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); |
1c79356b | 688 | } |
91447636 | 689 | } |
6d2010ae | 690 | if (real_bp) { |
2d21ac55 A |
691 | if (error) { |
692 | real_bp->b_flags |= B_ERROR; | |
693 | real_bp->b_error = error; | |
694 | } | |
695 | real_bp->b_resid = total_resid; | |
696 | ||
697 | buf_biodone(real_bp); | |
698 | } | |
699 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, | |
b0d623f7 | 700 | upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); |
1c79356b A |
701 | |
702 | return (error); | |
703 | } | |
704 | ||
705 | ||
b0d623f7 A |
706 | uint32_t |
707 | cluster_hard_throttle_limit(vnode_t vp, uint32_t *limit, uint32_t hard_throttle) | |
708 | { | |
709 | if (cluster_hard_throttle_on(vp, hard_throttle)) { | |
710 | *limit = HARD_THROTTLE_MAXSIZE; | |
711 | return 1; | |
712 | } | |
713 | return 0; | |
714 | } | |
715 | ||
716 | ||
91447636 | 717 | void |
b0d623f7 | 718 | cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) |
1c79356b | 719 | { |
1c79356b | 720 | |
55e303ae | 721 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, |
b0d623f7 | 722 | upl_offset, size, bp, 0, 0); |
9bccf70c | 723 | |
91447636 | 724 | if (bp == NULL || bp->b_datap == 0) { |
2d21ac55 A |
725 | upl_page_info_t *pl; |
726 | addr64_t zero_addr; | |
9bccf70c | 727 | |
55e303ae A |
728 | pl = ubc_upl_pageinfo(upl); |
729 | ||
2d21ac55 A |
730 | if (upl_device_page(pl) == TRUE) { |
731 | zero_addr = ((addr64_t)upl_phys_page(pl, 0) << 12) + upl_offset; | |
732 | ||
733 | bzero_phys_nc(zero_addr, size); | |
734 | } else { | |
735 | while (size) { | |
736 | int page_offset; | |
737 | int page_index; | |
738 | int zero_cnt; | |
55e303ae | 739 | |
2d21ac55 A |
740 | page_index = upl_offset / PAGE_SIZE; |
741 | page_offset = upl_offset & PAGE_MASK; | |
55e303ae | 742 | |
2d21ac55 A |
743 | zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << 12) + page_offset; |
744 | zero_cnt = min(PAGE_SIZE - page_offset, size); | |
55e303ae | 745 | |
2d21ac55 | 746 | bzero_phys(zero_addr, zero_cnt); |
55e303ae | 747 | |
2d21ac55 A |
748 | size -= zero_cnt; |
749 | upl_offset += zero_cnt; | |
750 | } | |
55e303ae | 751 | } |
1c79356b | 752 | } else |
91447636 | 753 | bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size); |
1c79356b | 754 | |
55e303ae A |
755 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, |
756 | upl_offset, size, 0, 0, 0); | |
1c79356b A |
757 | } |
758 | ||
91447636 | 759 | |
2d21ac55 A |
760 | static void |
761 | cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset) | |
762 | { | |
763 | cbp_head->b_validend = zero_offset; | |
764 | cbp_tail->b_flags |= B_EOT; | |
765 | } | |
766 | ||
767 | static void | |
768 | cluster_wait_IO(buf_t cbp_head, int async) | |
769 | { | |
770 | buf_t cbp; | |
771 | ||
772 | if (async) { | |
773 | /* | |
774 | * async callback completion will not normally | |
775 | * generate a wakeup upon I/O completion... | |
6d2010ae | 776 | * by setting B_TWANTED, we will force a wakeup |
2d21ac55 | 777 | * to occur as any outstanding I/Os complete... |
6d2010ae A |
778 | * I/Os already completed will have B_TDONE already |
779 | * set and we won't cause us to block | |
2d21ac55 A |
780 | * note that we're actually waiting for the bp to have |
781 | * completed the callback function... only then | |
782 | * can we safely take back ownership of the bp | |
2d21ac55 | 783 | */ |
6d2010ae | 784 | lck_mtx_lock_spin(cl_transaction_mtxp); |
2d21ac55 A |
785 | |
786 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) | |
6d2010ae | 787 | cbp->b_flags |= B_TWANTED; |
2d21ac55 | 788 | |
6d2010ae | 789 | lck_mtx_unlock(cl_transaction_mtxp); |
2d21ac55 A |
790 | } |
791 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { | |
6d2010ae A |
792 | |
793 | if (async) { | |
794 | while (!ISSET(cbp->b_flags, B_TDONE)) { | |
795 | ||
796 | lck_mtx_lock_spin(cl_transaction_mtxp); | |
797 | ||
798 | if (!ISSET(cbp->b_flags, B_TDONE)) { | |
799 | DTRACE_IO1(wait__start, buf_t, cbp); | |
800 | (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL); | |
801 | DTRACE_IO1(wait__done, buf_t, cbp); | |
802 | } else | |
803 | lck_mtx_unlock(cl_transaction_mtxp); | |
804 | } | |
805 | } else | |
2d21ac55 A |
806 | buf_biowait(cbp); |
807 | } | |
808 | } | |
809 | ||
810 | static void | |
811 | cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) | |
812 | { | |
813 | buf_t cbp; | |
814 | int error; | |
815 | ||
816 | /* | |
817 | * cluster_complete_transaction will | |
818 | * only be called if we've issued a complete chain in synchronous mode | |
819 | * or, we've already done a cluster_wait_IO on an incomplete chain | |
820 | */ | |
821 | if (needwait) { | |
822 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
823 | buf_biowait(cbp); | |
824 | } | |
060df5ea A |
825 | /* |
826 | * we've already waited on all of the I/Os in this transaction, | |
827 | * so mark all of the buf_t's in this transaction as B_TDONE | |
828 | * so that cluster_iodone sees the transaction as completed | |
829 | */ | |
830 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) | |
6d2010ae | 831 | cbp->b_flags |= B_TDONE; |
060df5ea | 832 | |
2d21ac55 A |
833 | error = cluster_iodone(*cbp_head, callback_arg); |
834 | ||
835 | if ( !(flags & CL_ASYNC) && error && *retval == 0) { | |
836 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) | |
837 | *retval = error; | |
838 | } | |
839 | *cbp_head = (buf_t)NULL; | |
840 | } | |
841 | ||
842 | ||
1c79356b | 843 | static int |
91447636 | 844 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
2d21ac55 | 845 | int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 846 | { |
91447636 A |
847 | buf_t cbp; |
848 | u_int size; | |
849 | u_int io_size; | |
850 | int io_flags; | |
851 | int bmap_flags; | |
852 | int error = 0; | |
853 | int retval = 0; | |
854 | buf_t cbp_head = NULL; | |
855 | buf_t cbp_tail = NULL; | |
856 | int trans_count = 0; | |
2d21ac55 | 857 | int max_trans_count; |
91447636 A |
858 | u_int pg_count; |
859 | int pg_offset; | |
860 | u_int max_iosize; | |
861 | u_int max_vectors; | |
862 | int priv; | |
863 | int zero_offset = 0; | |
864 | int async_throttle = 0; | |
865 | mount_t mp; | |
2d21ac55 A |
866 | vm_offset_t upl_end_offset; |
867 | boolean_t need_EOT = FALSE; | |
868 | ||
869 | /* | |
870 | * we currently don't support buffers larger than a page | |
871 | */ | |
872 | if (real_bp && non_rounded_size > PAGE_SIZE) | |
873 | panic("%s(): Called with real buffer of size %d bytes which " | |
874 | "is greater than the maximum allowed size of " | |
875 | "%d bytes (the system PAGE_SIZE).\n", | |
876 | __FUNCTION__, non_rounded_size, PAGE_SIZE); | |
91447636 A |
877 | |
878 | mp = vp->v_mount; | |
879 | ||
2d21ac55 A |
880 | /* |
881 | * we don't want to do any funny rounding of the size for IO requests | |
882 | * coming through the DIRECT or CONTIGUOUS paths... those pages don't | |
883 | * belong to us... we can't extend (nor do we need to) the I/O to fill | |
884 | * out a page | |
885 | */ | |
886 | if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { | |
91447636 A |
887 | /* |
888 | * round the requested size up so that this I/O ends on a | |
889 | * page boundary in case this is a 'write'... if the filesystem | |
890 | * has blocks allocated to back the page beyond the EOF, we want to | |
891 | * make sure to write out the zero's that are sitting beyond the EOF | |
892 | * so that in case the filesystem doesn't explicitly zero this area | |
893 | * if a hole is created via a lseek/write beyond the current EOF, | |
894 | * it will return zeros when it's read back from the disk. If the | |
895 | * physical allocation doesn't extend for the whole page, we'll | |
896 | * only write/read from the disk up to the end of this allocation | |
897 | * via the extent info returned from the VNOP_BLOCKMAP call. | |
898 | */ | |
899 | pg_offset = upl_offset & PAGE_MASK; | |
55e303ae | 900 | |
91447636 A |
901 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; |
902 | } else { | |
903 | /* | |
904 | * anyone advertising a blocksize of 1 byte probably | |
905 | * can't deal with us rounding up the request size | |
906 | * AFP is one such filesystem/device | |
907 | */ | |
908 | size = non_rounded_size; | |
909 | } | |
2d21ac55 A |
910 | upl_end_offset = upl_offset + size; |
911 | ||
912 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); | |
913 | ||
914 | /* | |
915 | * Set the maximum transaction size to the maximum desired number of | |
916 | * buffers. | |
917 | */ | |
918 | max_trans_count = 8; | |
919 | if (flags & CL_DEV_MEMORY) | |
920 | max_trans_count = 16; | |
55e303ae | 921 | |
0b4e3aa0 | 922 | if (flags & CL_READ) { |
2d21ac55 | 923 | io_flags = B_READ; |
91447636 | 924 | bmap_flags = VNODE_READ; |
0b4e3aa0 | 925 | |
91447636 A |
926 | max_iosize = mp->mnt_maxreadcnt; |
927 | max_vectors = mp->mnt_segreadcnt; | |
0b4e3aa0 | 928 | } else { |
2d21ac55 | 929 | io_flags = B_WRITE; |
91447636 | 930 | bmap_flags = VNODE_WRITE; |
1c79356b | 931 | |
91447636 A |
932 | max_iosize = mp->mnt_maxwritecnt; |
933 | max_vectors = mp->mnt_segwritecnt; | |
0b4e3aa0 | 934 | } |
91447636 A |
935 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); |
936 | ||
55e303ae | 937 | /* |
91447636 A |
938 | * make sure the maximum iosize is a |
939 | * multiple of the page size | |
55e303ae A |
940 | */ |
941 | max_iosize &= ~PAGE_MASK; | |
942 | ||
2d21ac55 A |
943 | /* |
944 | * Ensure the maximum iosize is sensible. | |
945 | */ | |
946 | if (!max_iosize) | |
947 | max_iosize = PAGE_SIZE; | |
948 | ||
55e303ae | 949 | if (flags & CL_THROTTLE) { |
b0d623f7 | 950 | if ( !(flags & CL_PAGEOUT) && cluster_hard_throttle_on(vp, 1)) { |
55e303ae A |
951 | if (max_iosize > HARD_THROTTLE_MAXSIZE) |
952 | max_iosize = HARD_THROTTLE_MAXSIZE; | |
953 | async_throttle = HARD_THROTTLE_MAXCNT; | |
2d21ac55 A |
954 | } else { |
955 | if ( (flags & CL_DEV_MEMORY) ) | |
b0d623f7 | 956 | async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); |
2d21ac55 A |
957 | else { |
958 | u_int max_cluster; | |
cf7d32b8 | 959 | u_int max_cluster_size; |
6d2010ae A |
960 | u_int scale; |
961 | ||
b0d623f7 | 962 | max_cluster_size = MAX_CLUSTER_SIZE(vp); |
b0d623f7 | 963 | |
cf7d32b8 | 964 | if (max_iosize > max_cluster_size) |
b0d623f7 | 965 | max_cluster = max_cluster_size; |
2d21ac55 A |
966 | else |
967 | max_cluster = max_iosize; | |
968 | ||
969 | if (size < max_cluster) | |
970 | max_cluster = size; | |
6d2010ae A |
971 | |
972 | if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) | |
973 | scale = WRITE_THROTTLE_SSD; | |
974 | else | |
975 | scale = WRITE_THROTTLE; | |
2d21ac55 | 976 | |
6d2010ae A |
977 | if (flags & CL_CLOSE) |
978 | scale += MAX_CLUSTERS; | |
979 | ||
980 | async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1); | |
2d21ac55 A |
981 | } |
982 | } | |
55e303ae | 983 | } |
1c79356b A |
984 | if (flags & CL_AGE) |
985 | io_flags |= B_AGE; | |
91447636 A |
986 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) |
987 | io_flags |= B_PAGEIO; | |
b0d623f7 A |
988 | if (flags & (CL_IOSTREAMING)) |
989 | io_flags |= B_IOSTREAMING; | |
b4c24cb9 A |
990 | if (flags & CL_COMMIT) |
991 | io_flags |= B_COMMIT_UPL; | |
6d2010ae | 992 | if (flags & CL_DIRECT_IO) |
b4c24cb9 | 993 | io_flags |= B_PHYS; |
6d2010ae A |
994 | if (flags & (CL_PRESERVE | CL_KEEPCACHED)) |
995 | io_flags |= B_CACHE; | |
2d21ac55 A |
996 | if (flags & CL_PASSIVE) |
997 | io_flags |= B_PASSIVE; | |
6d2010ae A |
998 | if (flags & CL_ENCRYPTED) |
999 | io_flags |= B_ENCRYPTED_IO; | |
2d21ac55 A |
1000 | if (vp->v_flag & VSYSTEM) |
1001 | io_flags |= B_META; | |
1c79356b | 1002 | |
9bccf70c | 1003 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { |
1c79356b A |
1004 | /* |
1005 | * then we are going to end up | |
1006 | * with a page that we can't complete (the file size wasn't a multiple | |
1007 | * of PAGE_SIZE and we're trying to read to the end of the file | |
1008 | * so we'll go ahead and zero out the portion of the page we can't | |
1009 | * read in from the file | |
1010 | */ | |
9bccf70c | 1011 | zero_offset = upl_offset + non_rounded_size; |
1c79356b A |
1012 | } |
1013 | while (size) { | |
91447636 A |
1014 | daddr64_t blkno; |
1015 | daddr64_t lblkno; | |
2d21ac55 | 1016 | u_int io_size_wanted; |
b0d623f7 | 1017 | size_t io_size_tmp; |
1c79356b | 1018 | |
0b4e3aa0 A |
1019 | if (size > max_iosize) |
1020 | io_size = max_iosize; | |
1c79356b A |
1021 | else |
1022 | io_size = size; | |
2d21ac55 A |
1023 | |
1024 | io_size_wanted = io_size; | |
b0d623f7 | 1025 | io_size_tmp = (size_t)io_size; |
91447636 | 1026 | |
b0d623f7 | 1027 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) |
1c79356b | 1028 | break; |
2d21ac55 | 1029 | |
b0d623f7 | 1030 | if (io_size_tmp > io_size_wanted) |
2d21ac55 | 1031 | io_size = io_size_wanted; |
b0d623f7 A |
1032 | else |
1033 | io_size = (u_int)io_size_tmp; | |
2d21ac55 | 1034 | |
91447636 A |
1035 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) |
1036 | real_bp->b_blkno = blkno; | |
1c79356b A |
1037 | |
1038 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, | |
2d21ac55 | 1039 | (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0); |
1c79356b | 1040 | |
91447636 A |
1041 | if (io_size == 0) { |
1042 | /* | |
1043 | * vnop_blockmap didn't return an error... however, it did | |
1044 | * return an extent size of 0 which means we can't | |
1045 | * make forward progress on this I/O... a hole in the | |
1046 | * file would be returned as a blkno of -1 with a non-zero io_size | |
1047 | * a real extent is returned with a blkno != -1 and a non-zero io_size | |
1048 | */ | |
1049 | error = EINVAL; | |
1050 | break; | |
1051 | } | |
1052 | if ( !(flags & CL_READ) && blkno == -1) { | |
2d21ac55 A |
1053 | off_t e_offset; |
1054 | int pageout_flags; | |
91447636 | 1055 | |
6d2010ae | 1056 | if (upl_get_internal_vectorupl(upl)) |
b0d623f7 | 1057 | panic("Vector UPLs should not take this code-path\n"); |
91447636 A |
1058 | /* |
1059 | * we're writing into a 'hole' | |
1060 | */ | |
0b4e3aa0 | 1061 | if (flags & CL_PAGEOUT) { |
91447636 A |
1062 | /* |
1063 | * if we got here via cluster_pageout | |
1064 | * then just error the request and return | |
1065 | * the 'hole' should already have been covered | |
1066 | */ | |
0b4e3aa0 A |
1067 | error = EINVAL; |
1068 | break; | |
91447636 | 1069 | } |
91447636 A |
1070 | /* |
1071 | * we can get here if the cluster code happens to | |
1072 | * pick up a page that was dirtied via mmap vs | |
1073 | * a 'write' and the page targets a 'hole'... | |
1074 | * i.e. the writes to the cluster were sparse | |
1075 | * and the file was being written for the first time | |
1076 | * | |
1077 | * we can also get here if the filesystem supports | |
1078 | * 'holes' that are less than PAGE_SIZE.... because | |
1079 | * we can't know if the range in the page that covers | |
1080 | * the 'hole' has been dirtied via an mmap or not, | |
1081 | * we have to assume the worst and try to push the | |
1082 | * entire page to storage. | |
1083 | * | |
1084 | * Try paging out the page individually before | |
1085 | * giving up entirely and dumping it (the pageout | |
1086 | * path will insure that the zero extent accounting | |
1087 | * has been taken care of before we get back into cluster_io) | |
2d21ac55 A |
1088 | * |
1089 | * go direct to vnode_pageout so that we don't have to | |
1090 | * unbusy the page from the UPL... we used to do this | |
1091 | * so that we could call ubc_sync_range, but that results | |
1092 | * in a potential deadlock if someone else races us to acquire | |
1093 | * that page and wins and in addition needs one of the pages | |
1094 | * we're continuing to hold in the UPL | |
0b4e3aa0 | 1095 | */ |
2d21ac55 | 1096 | pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; |
91447636 | 1097 | |
2d21ac55 A |
1098 | if ( !(flags & CL_ASYNC)) |
1099 | pageout_flags |= UPL_IOSYNC; | |
1100 | if ( !(flags & CL_COMMIT)) | |
1101 | pageout_flags |= UPL_NOCOMMIT; | |
1102 | ||
1103 | if (cbp_head) { | |
1104 | buf_t last_cbp; | |
1105 | ||
1106 | /* | |
1107 | * first we have to wait for the the current outstanding I/Os | |
1108 | * to complete... EOT hasn't been set yet on this transaction | |
1109 | * so the pages won't be released just because all of the current | |
1110 | * I/O linked to this transaction has completed... | |
1111 | */ | |
1112 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
1113 | ||
1114 | /* | |
1115 | * we've got a transcation that | |
1116 | * includes the page we're about to push out through vnode_pageout... | |
1117 | * find the last bp in the list which will be the one that | |
1118 | * includes the head of this page and round it's iosize down | |
1119 | * to a page boundary... | |
1120 | */ | |
1121 | for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) | |
1122 | last_cbp = cbp; | |
1123 | ||
1124 | cbp->b_bcount &= ~PAGE_MASK; | |
1125 | ||
1126 | if (cbp->b_bcount == 0) { | |
1127 | /* | |
1128 | * this buf no longer has any I/O associated with it | |
1129 | */ | |
1130 | free_io_buf(cbp); | |
1131 | ||
1132 | if (cbp == cbp_head) { | |
1133 | /* | |
1134 | * the buf we just freed was the only buf in | |
1135 | * this transaction... so there's no I/O to do | |
1136 | */ | |
1137 | cbp_head = NULL; | |
1138 | } else { | |
1139 | /* | |
1140 | * remove the buf we just freed from | |
1141 | * the transaction list | |
1142 | */ | |
1143 | last_cbp->b_trans_next = NULL; | |
1144 | cbp_tail = last_cbp; | |
1145 | } | |
1146 | } | |
1147 | if (cbp_head) { | |
1148 | /* | |
1149 | * there was more to the current transaction | |
1150 | * than just the page we are pushing out via vnode_pageout... | |
1151 | * mark it as finished and complete it... we've already | |
1152 | * waited for the I/Os to complete above in the call to cluster_wait_IO | |
1153 | */ | |
1154 | cluster_EOT(cbp_head, cbp_tail, 0); | |
91447636 | 1155 | |
2d21ac55 A |
1156 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); |
1157 | ||
1158 | trans_count = 0; | |
1159 | } | |
1160 | } | |
1161 | if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { | |
91447636 | 1162 | error = EINVAL; |
91447636 | 1163 | } |
2d21ac55 | 1164 | e_offset = round_page_64(f_offset + 1); |
91447636 A |
1165 | io_size = e_offset - f_offset; |
1166 | ||
1167 | f_offset += io_size; | |
1168 | upl_offset += io_size; | |
1169 | ||
1170 | if (size >= io_size) | |
1171 | size -= io_size; | |
1172 | else | |
1173 | size = 0; | |
1174 | /* | |
1175 | * keep track of how much of the original request | |
1176 | * that we've actually completed... non_rounded_size | |
1177 | * may go negative due to us rounding the request | |
1178 | * to a page size multiple (i.e. size > non_rounded_size) | |
1179 | */ | |
1180 | non_rounded_size -= io_size; | |
1181 | ||
1182 | if (non_rounded_size <= 0) { | |
1183 | /* | |
1184 | * we've transferred all of the data in the original | |
1185 | * request, but we were unable to complete the tail | |
1186 | * of the last page because the file didn't have | |
1187 | * an allocation to back that portion... this is ok. | |
1188 | */ | |
1189 | size = 0; | |
1190 | } | |
6d2010ae A |
1191 | if (error) { |
1192 | if (size == 0) | |
1193 | flags &= ~CL_COMMIT; | |
1194 | break; | |
1195 | } | |
0b4e3aa0 | 1196 | continue; |
1c79356b | 1197 | } |
91447636 | 1198 | lblkno = (daddr64_t)(f_offset / PAGE_SIZE_64); |
1c79356b A |
1199 | /* |
1200 | * we have now figured out how much I/O we can do - this is in 'io_size' | |
1c79356b A |
1201 | * pg_offset is the starting point in the first page for the I/O |
1202 | * pg_count is the number of full and partial pages that 'io_size' encompasses | |
1203 | */ | |
1c79356b | 1204 | pg_offset = upl_offset & PAGE_MASK; |
1c79356b | 1205 | |
0b4e3aa0 | 1206 | if (flags & CL_DEV_MEMORY) { |
0b4e3aa0 A |
1207 | /* |
1208 | * treat physical requests as one 'giant' page | |
1209 | */ | |
1210 | pg_count = 1; | |
55e303ae A |
1211 | } else |
1212 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1213 | ||
91447636 | 1214 | if ((flags & CL_READ) && blkno == -1) { |
2d21ac55 | 1215 | vm_offset_t commit_offset; |
9bccf70c | 1216 | int bytes_to_zero; |
2d21ac55 | 1217 | int complete_transaction_now = 0; |
9bccf70c | 1218 | |
1c79356b A |
1219 | /* |
1220 | * if we're reading and blkno == -1, then we've got a | |
1221 | * 'hole' in the file that we need to deal with by zeroing | |
1222 | * out the affected area in the upl | |
1223 | */ | |
2d21ac55 | 1224 | if (io_size >= (u_int)non_rounded_size) { |
9bccf70c A |
1225 | /* |
1226 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE | |
1227 | * than 'zero_offset' will be non-zero | |
91447636 | 1228 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof |
9bccf70c A |
1229 | * (indicated by the io_size finishing off the I/O request for this UPL) |
1230 | * than we're not going to issue an I/O for the | |
1231 | * last page in this upl... we need to zero both the hole and the tail | |
1232 | * of the page beyond the EOF, since the delayed zero-fill won't kick in | |
1233 | */ | |
2d21ac55 A |
1234 | bytes_to_zero = non_rounded_size; |
1235 | if (!(flags & CL_NOZERO)) | |
1236 | bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset; | |
1c79356b | 1237 | |
9bccf70c A |
1238 | zero_offset = 0; |
1239 | } else | |
1240 | bytes_to_zero = io_size; | |
1c79356b | 1241 | |
2d21ac55 A |
1242 | pg_count = 0; |
1243 | ||
1244 | cluster_zero(upl, upl_offset, bytes_to_zero, real_bp); | |
9bccf70c | 1245 | |
2d21ac55 A |
1246 | if (cbp_head) { |
1247 | int pg_resid; | |
1248 | ||
9bccf70c A |
1249 | /* |
1250 | * if there is a current I/O chain pending | |
1251 | * then the first page of the group we just zero'd | |
1252 | * will be handled by the I/O completion if the zero | |
1253 | * fill started in the middle of the page | |
1254 | */ | |
2d21ac55 A |
1255 | commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1256 | ||
1257 | pg_resid = commit_offset - upl_offset; | |
1258 | ||
1259 | if (bytes_to_zero >= pg_resid) { | |
1260 | /* | |
1261 | * the last page of the current I/O | |
1262 | * has been completed... | |
1263 | * compute the number of fully zero'd | |
1264 | * pages that are beyond it | |
1265 | * plus the last page if its partial | |
1266 | * and we have no more I/O to issue... | |
1267 | * otherwise a partial page is left | |
1268 | * to begin the next I/O | |
1269 | */ | |
1270 | if ((int)io_size >= non_rounded_size) | |
1271 | pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1272 | else | |
1273 | pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; | |
1274 | ||
1275 | complete_transaction_now = 1; | |
1276 | } | |
1277 | } else { | |
9bccf70c | 1278 | /* |
2d21ac55 A |
1279 | * no pending I/O to deal with |
1280 | * so, commit all of the fully zero'd pages | |
1281 | * plus the last page if its partial | |
1282 | * and we have no more I/O to issue... | |
1283 | * otherwise a partial page is left | |
1284 | * to begin the next I/O | |
9bccf70c | 1285 | */ |
2d21ac55 A |
1286 | if ((int)io_size >= non_rounded_size) |
1287 | pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; | |
1c79356b | 1288 | else |
2d21ac55 | 1289 | pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; |
9bccf70c | 1290 | |
2d21ac55 A |
1291 | commit_offset = upl_offset & ~PAGE_MASK; |
1292 | } | |
1293 | if ( (flags & CL_COMMIT) && pg_count) { | |
1294 | ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE, | |
1295 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); | |
1c79356b A |
1296 | } |
1297 | upl_offset += io_size; | |
1298 | f_offset += io_size; | |
1299 | size -= io_size; | |
2d21ac55 | 1300 | |
91447636 A |
1301 | /* |
1302 | * keep track of how much of the original request | |
1303 | * that we've actually completed... non_rounded_size | |
1304 | * may go negative due to us rounding the request | |
1305 | * to a page size multiple (i.e. size > non_rounded_size) | |
1306 | */ | |
1307 | non_rounded_size -= io_size; | |
1c79356b | 1308 | |
91447636 A |
1309 | if (non_rounded_size <= 0) { |
1310 | /* | |
1311 | * we've transferred all of the data in the original | |
1312 | * request, but we were unable to complete the tail | |
1313 | * of the last page because the file didn't have | |
1314 | * an allocation to back that portion... this is ok. | |
1315 | */ | |
1316 | size = 0; | |
1317 | } | |
2d21ac55 A |
1318 | if (cbp_head && (complete_transaction_now || size == 0)) { |
1319 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
9bccf70c | 1320 | |
2d21ac55 A |
1321 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); |
1322 | ||
1323 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0); | |
1324 | ||
1325 | trans_count = 0; | |
1326 | } | |
1327 | continue; | |
1c79356b | 1328 | } |
55e303ae | 1329 | if (pg_count > max_vectors) { |
91447636 | 1330 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { |
55e303ae A |
1331 | io_size = PAGE_SIZE - pg_offset; |
1332 | pg_count = 1; | |
91447636 A |
1333 | } else { |
1334 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; | |
55e303ae | 1335 | pg_count = max_vectors; |
91447636 | 1336 | } |
1c79356b | 1337 | } |
2d21ac55 A |
1338 | /* |
1339 | * If the transaction is going to reach the maximum number of | |
1340 | * desired elements, truncate the i/o to the nearest page so | |
1341 | * that the actual i/o is initiated after this buffer is | |
1342 | * created and added to the i/o chain. | |
1343 | * | |
1344 | * I/O directed to physically contiguous memory | |
1345 | * doesn't have a requirement to make sure we 'fill' a page | |
1346 | */ | |
1347 | if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && | |
1348 | ((upl_offset + io_size) & PAGE_MASK)) { | |
1349 | vm_offset_t aligned_ofs; | |
1350 | ||
1351 | aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; | |
1352 | /* | |
1353 | * If the io_size does not actually finish off even a | |
1354 | * single page we have to keep adding buffers to the | |
1355 | * transaction despite having reached the desired limit. | |
1356 | * | |
1357 | * Eventually we get here with the page being finished | |
1358 | * off (and exceeded) and then we truncate the size of | |
1359 | * this i/o request so that it is page aligned so that | |
1360 | * we can finally issue the i/o on the transaction. | |
1361 | */ | |
1362 | if (aligned_ofs > upl_offset) { | |
1363 | io_size = aligned_ofs - upl_offset; | |
1364 | pg_count--; | |
1365 | } | |
1366 | } | |
1c79356b | 1367 | |
91447636 | 1368 | if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) |
55e303ae A |
1369 | /* |
1370 | * if we're not targeting a virtual device i.e. a disk image | |
1371 | * it's safe to dip into the reserve pool since real devices | |
1372 | * can complete this I/O request without requiring additional | |
1373 | * bufs from the alloc_io_buf pool | |
1374 | */ | |
1375 | priv = 1; | |
1376 | else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT)) | |
1377 | /* | |
1378 | * Throttle the speculative IO | |
1379 | */ | |
0b4e3aa0 A |
1380 | priv = 0; |
1381 | else | |
1382 | priv = 1; | |
1383 | ||
1384 | cbp = alloc_io_buf(vp, priv); | |
1c79356b | 1385 | |
55e303ae | 1386 | if (flags & CL_PAGEOUT) { |
91447636 A |
1387 | u_int i; |
1388 | ||
55e303ae | 1389 | for (i = 0; i < pg_count; i++) { |
91447636 A |
1390 | if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY) |
1391 | panic("BUSY bp found in cluster_io"); | |
1c79356b | 1392 | } |
1c79356b | 1393 | } |
b4c24cb9 | 1394 | if (flags & CL_ASYNC) { |
2d21ac55 | 1395 | if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg)) |
91447636 | 1396 | panic("buf_setcallback failed\n"); |
b4c24cb9 | 1397 | } |
2d21ac55 | 1398 | cbp->b_cliodone = (void *)callback; |
1c79356b A |
1399 | cbp->b_flags |= io_flags; |
1400 | ||
1401 | cbp->b_lblkno = lblkno; | |
1402 | cbp->b_blkno = blkno; | |
1403 | cbp->b_bcount = io_size; | |
1c79356b | 1404 | |
91447636 A |
1405 | if (buf_setupl(cbp, upl, upl_offset)) |
1406 | panic("buf_setupl failed\n"); | |
1407 | ||
1408 | cbp->b_trans_next = (buf_t)NULL; | |
1409 | ||
1410 | if ((cbp->b_iostate = (void *)iostate)) | |
d7e50217 A |
1411 | /* |
1412 | * caller wants to track the state of this | |
1413 | * io... bump the amount issued against this stream | |
1414 | */ | |
b4c24cb9 A |
1415 | iostate->io_issued += io_size; |
1416 | ||
91447636 | 1417 | if (flags & CL_READ) { |
1c79356b | 1418 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, |
91447636 A |
1419 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1420 | } | |
1421 | else { | |
1c79356b | 1422 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, |
91447636 A |
1423 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
1424 | } | |
1c79356b A |
1425 | |
1426 | if (cbp_head) { | |
1427 | cbp_tail->b_trans_next = cbp; | |
1428 | cbp_tail = cbp; | |
1429 | } else { | |
1430 | cbp_head = cbp; | |
1431 | cbp_tail = cbp; | |
2d21ac55 | 1432 | |
6d2010ae | 1433 | if ( (cbp_head->b_real_bp = real_bp) ) |
2d21ac55 | 1434 | real_bp = (buf_t)NULL; |
1c79356b | 1435 | } |
2d21ac55 A |
1436 | *(buf_t *)(&cbp->b_trans_head) = cbp_head; |
1437 | ||
91447636 | 1438 | trans_count++; |
1c79356b A |
1439 | |
1440 | upl_offset += io_size; | |
1441 | f_offset += io_size; | |
1442 | size -= io_size; | |
91447636 A |
1443 | /* |
1444 | * keep track of how much of the original request | |
1445 | * that we've actually completed... non_rounded_size | |
1446 | * may go negative due to us rounding the request | |
1447 | * to a page size multiple (i.e. size > non_rounded_size) | |
1448 | */ | |
1449 | non_rounded_size -= io_size; | |
1c79356b | 1450 | |
91447636 A |
1451 | if (non_rounded_size <= 0) { |
1452 | /* | |
1453 | * we've transferred all of the data in the original | |
1454 | * request, but we were unable to complete the tail | |
1455 | * of the last page because the file didn't have | |
1456 | * an allocation to back that portion... this is ok. | |
1457 | */ | |
1458 | size = 0; | |
1459 | } | |
2d21ac55 A |
1460 | if (size == 0) { |
1461 | /* | |
1462 | * we have no more I/O to issue, so go | |
1463 | * finish the final transaction | |
1464 | */ | |
1465 | need_EOT = TRUE; | |
1466 | } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && | |
1467 | ((flags & CL_ASYNC) || trans_count > max_trans_count) ) { | |
1c79356b | 1468 | /* |
2d21ac55 A |
1469 | * I/O directed to physically contiguous memory... |
1470 | * which doesn't have a requirement to make sure we 'fill' a page | |
1471 | * or... | |
1c79356b A |
1472 | * the current I/O we've prepared fully |
1473 | * completes the last page in this request | |
2d21ac55 A |
1474 | * and ... |
1475 | * it's either an ASYNC request or | |
9bccf70c | 1476 | * we've already accumulated more than 8 I/O's into |
2d21ac55 A |
1477 | * this transaction so mark it as complete so that |
1478 | * it can finish asynchronously or via the cluster_complete_transaction | |
1479 | * below if the request is synchronous | |
1c79356b | 1480 | */ |
2d21ac55 A |
1481 | need_EOT = TRUE; |
1482 | } | |
1483 | if (need_EOT == TRUE) | |
1484 | cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0); | |
1c79356b | 1485 | |
2d21ac55 A |
1486 | if (flags & CL_THROTTLE) |
1487 | (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io"); | |
1c79356b | 1488 | |
2d21ac55 A |
1489 | if ( !(io_flags & B_READ)) |
1490 | vnode_startwrite(vp); | |
9bccf70c | 1491 | |
2d21ac55 A |
1492 | (void) VNOP_STRATEGY(cbp); |
1493 | ||
1494 | if (need_EOT == TRUE) { | |
1495 | if ( !(flags & CL_ASYNC)) | |
1496 | cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1); | |
9bccf70c | 1497 | |
2d21ac55 | 1498 | need_EOT = FALSE; |
91447636 | 1499 | trans_count = 0; |
2d21ac55 | 1500 | cbp_head = NULL; |
1c79356b | 1501 | } |
2d21ac55 | 1502 | } |
1c79356b | 1503 | if (error) { |
0b4e3aa0 A |
1504 | int abort_size; |
1505 | ||
b4c24cb9 A |
1506 | io_size = 0; |
1507 | ||
2d21ac55 A |
1508 | if (cbp_head) { |
1509 | /* | |
1510 | * first wait until all of the outstanding I/O | |
1511 | * for this partial transaction has completed | |
1512 | */ | |
1513 | cluster_wait_IO(cbp_head, (flags & CL_ASYNC)); | |
0b4e3aa0 | 1514 | |
2d21ac55 A |
1515 | /* |
1516 | * Rewind the upl offset to the beginning of the | |
1517 | * transaction. | |
1518 | */ | |
1519 | upl_offset = cbp_head->b_uploffset; | |
1520 | ||
1521 | for (cbp = cbp_head; cbp;) { | |
1522 | buf_t cbp_next; | |
1523 | ||
1524 | size += cbp->b_bcount; | |
1525 | io_size += cbp->b_bcount; | |
1526 | ||
1527 | cbp_next = cbp->b_trans_next; | |
1528 | free_io_buf(cbp); | |
1529 | cbp = cbp_next; | |
1530 | } | |
1c79356b | 1531 | } |
b4c24cb9 | 1532 | if (iostate) { |
91447636 A |
1533 | int need_wakeup = 0; |
1534 | ||
d7e50217 A |
1535 | /* |
1536 | * update the error condition for this stream | |
1537 | * since we never really issued the io | |
1538 | * just go ahead and adjust it back | |
1539 | */ | |
6d2010ae | 1540 | lck_mtx_lock_spin(&iostate->io_mtxp); |
91447636 | 1541 | |
d7e50217 | 1542 | if (iostate->io_error == 0) |
b4c24cb9 | 1543 | iostate->io_error = error; |
b4c24cb9 A |
1544 | iostate->io_issued -= io_size; |
1545 | ||
1546 | if (iostate->io_wanted) { | |
d7e50217 A |
1547 | /* |
1548 | * someone is waiting for the state of | |
1549 | * this io stream to change | |
1550 | */ | |
b4c24cb9 | 1551 | iostate->io_wanted = 0; |
2d21ac55 | 1552 | need_wakeup = 1; |
b4c24cb9 | 1553 | } |
6d2010ae | 1554 | lck_mtx_unlock(&iostate->io_mtxp); |
91447636 A |
1555 | |
1556 | if (need_wakeup) | |
1557 | wakeup((caddr_t)&iostate->io_wanted); | |
b4c24cb9 | 1558 | } |
1c79356b | 1559 | if (flags & CL_COMMIT) { |
2d21ac55 | 1560 | int upl_flags; |
1c79356b | 1561 | |
2d21ac55 A |
1562 | pg_offset = upl_offset & PAGE_MASK; |
1563 | abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK; | |
1564 | ||
1565 | upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags); | |
1566 | ||
1c79356b | 1567 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, |
b0d623f7 | 1568 | upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); |
1c79356b A |
1569 | } |
1570 | if (retval == 0) | |
1571 | retval = error; | |
2d21ac55 A |
1572 | } else if (cbp_head) |
1573 | panic("%s(): cbp_head is not NULL.\n", __FUNCTION__); | |
1574 | ||
1575 | if (real_bp) { | |
1576 | /* | |
1577 | * can get here if we either encountered an error | |
1578 | * or we completely zero-filled the request and | |
1579 | * no I/O was issued | |
1580 | */ | |
1581 | if (error) { | |
1582 | real_bp->b_flags |= B_ERROR; | |
1583 | real_bp->b_error = error; | |
1584 | } | |
1585 | buf_biodone(real_bp); | |
1c79356b | 1586 | } |
2d21ac55 | 1587 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); |
1c79356b A |
1588 | |
1589 | return (retval); | |
1590 | } | |
1591 | ||
b0d623f7 A |
1592 | #define reset_vector_run_state() \ |
1593 | issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; | |
1594 | ||
1595 | static int | |
1596 | vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, | |
1597 | int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) | |
1598 | { | |
1599 | vector_upl_set_pagelist(vector_upl); | |
1600 | ||
1601 | if(io_flag & CL_READ) { | |
1602 | if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0)) | |
1603 | io_flag &= ~CL_PRESERVE; /*don't zero fill*/ | |
1604 | else | |
1605 | io_flag |= CL_PRESERVE; /*zero fill*/ | |
1606 | } | |
1607 | return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg)); | |
1608 | ||
1609 | } | |
1c79356b A |
1610 | |
1611 | static int | |
2d21ac55 | 1612 | cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
1c79356b | 1613 | { |
55e303ae | 1614 | int pages_in_prefetch; |
1c79356b A |
1615 | |
1616 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, | |
1617 | (int)f_offset, size, (int)filesize, 0, 0); | |
1618 | ||
1619 | if (f_offset >= filesize) { | |
1620 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
1621 | (int)f_offset, 0, 0, 0, 0); | |
1622 | return(0); | |
1623 | } | |
9bccf70c A |
1624 | if ((off_t)size > (filesize - f_offset)) |
1625 | size = filesize - f_offset; | |
55e303ae | 1626 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; |
1c79356b | 1627 | |
2d21ac55 | 1628 | advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); |
1c79356b A |
1629 | |
1630 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, | |
55e303ae | 1631 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); |
1c79356b | 1632 | |
55e303ae | 1633 | return (pages_in_prefetch); |
1c79356b A |
1634 | } |
1635 | ||
1636 | ||
1637 | ||
1638 | static void | |
2d21ac55 A |
1639 | cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, |
1640 | int bflag) | |
1c79356b | 1641 | { |
91447636 A |
1642 | daddr64_t r_addr; |
1643 | off_t f_offset; | |
1644 | int size_of_prefetch; | |
b0d623f7 | 1645 | u_int max_prefetch; |
91447636 | 1646 | |
1c79356b A |
1647 | |
1648 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, | |
91447636 | 1649 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); |
1c79356b | 1650 | |
91447636 | 1651 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { |
1c79356b | 1652 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
91447636 | 1653 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); |
1c79356b A |
1654 | return; |
1655 | } | |
2d21ac55 | 1656 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { |
91447636 A |
1657 | rap->cl_ralen = 0; |
1658 | rap->cl_maxra = 0; | |
1c79356b A |
1659 | |
1660 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1661 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); |
1c79356b A |
1662 | |
1663 | return; | |
1664 | } | |
6d2010ae | 1665 | max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD)); |
cf7d32b8 | 1666 | |
6d2010ae A |
1667 | if ((max_prefetch / PAGE_SIZE) > speculative_prefetch_max) |
1668 | max_prefetch = (speculative_prefetch_max * PAGE_SIZE); | |
1669 | ||
1670 | if (max_prefetch <= PAGE_SIZE) { | |
1671 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
1672 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); | |
1673 | return; | |
1674 | } | |
91447636 | 1675 | if (extent->e_addr < rap->cl_maxra) { |
cf7d32b8 | 1676 | if ((rap->cl_maxra - extent->e_addr) > ((max_prefetch / PAGE_SIZE) / 4)) { |
1c79356b A |
1677 | |
1678 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1679 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); |
1c79356b A |
1680 | return; |
1681 | } | |
1682 | } | |
91447636 A |
1683 | r_addr = max(extent->e_addr, rap->cl_maxra) + 1; |
1684 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); | |
1c79356b | 1685 | |
55e303ae A |
1686 | size_of_prefetch = 0; |
1687 | ||
1688 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); | |
1689 | ||
1690 | if (size_of_prefetch) { | |
1691 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, | |
91447636 | 1692 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); |
55e303ae A |
1693 | return; |
1694 | } | |
9bccf70c | 1695 | if (f_offset < filesize) { |
91447636 | 1696 | daddr64_t read_size; |
55e303ae | 1697 | |
cf7d32b8 | 1698 | rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1; |
55e303ae | 1699 | |
91447636 A |
1700 | read_size = (extent->e_addr + 1) - extent->b_addr; |
1701 | ||
1702 | if (read_size > rap->cl_ralen) { | |
cf7d32b8 A |
1703 | if (read_size > max_prefetch / PAGE_SIZE) |
1704 | rap->cl_ralen = max_prefetch / PAGE_SIZE; | |
91447636 A |
1705 | else |
1706 | rap->cl_ralen = read_size; | |
1707 | } | |
2d21ac55 | 1708 | size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); |
1c79356b | 1709 | |
9bccf70c | 1710 | if (size_of_prefetch) |
91447636 | 1711 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; |
9bccf70c | 1712 | } |
1c79356b | 1713 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
91447636 | 1714 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); |
1c79356b A |
1715 | } |
1716 | ||
2d21ac55 | 1717 | |
9bccf70c | 1718 | int |
b0d623f7 | 1719 | cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
91447636 | 1720 | int size, off_t filesize, int flags) |
2d21ac55 A |
1721 | { |
1722 | return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
1723 | ||
1724 | } | |
1725 | ||
1726 | ||
1727 | int | |
b0d623f7 | 1728 | cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
2d21ac55 | 1729 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
1730 | { |
1731 | int io_size; | |
55e303ae | 1732 | int rounded_size; |
1c79356b | 1733 | off_t max_size; |
55e303ae A |
1734 | int local_flags; |
1735 | ||
6d2010ae | 1736 | local_flags = CL_PAGEOUT | CL_THROTTLE; |
1c79356b A |
1737 | |
1738 | if ((flags & UPL_IOSYNC) == 0) | |
1739 | local_flags |= CL_ASYNC; | |
1740 | if ((flags & UPL_NOCOMMIT) == 0) | |
1741 | local_flags |= CL_COMMIT; | |
91447636 A |
1742 | if ((flags & UPL_KEEPCACHED)) |
1743 | local_flags |= CL_KEEPCACHED; | |
6d2010ae A |
1744 | if (flags & UPL_PAGING_ENCRYPTED) |
1745 | local_flags |= CL_ENCRYPTED; | |
1c79356b | 1746 | |
1c79356b A |
1747 | |
1748 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, | |
1749 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
1750 | ||
1751 | /* | |
1752 | * If they didn't specify any I/O, then we are done... | |
1753 | * we can't issue an abort because we don't know how | |
1754 | * big the upl really is | |
1755 | */ | |
1756 | if (size <= 0) | |
1757 | return (EINVAL); | |
1758 | ||
1759 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { | |
1760 | if (local_flags & CL_COMMIT) | |
9bccf70c | 1761 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
1762 | return (EROFS); |
1763 | } | |
1764 | /* | |
1765 | * can't page-in from a negative offset | |
1766 | * or if we're starting beyond the EOF | |
1767 | * or if the file offset isn't page aligned | |
1768 | * or the size requested isn't a multiple of PAGE_SIZE | |
1769 | */ | |
1770 | if (f_offset < 0 || f_offset >= filesize || | |
1771 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { | |
0b4e3aa0 A |
1772 | if (local_flags & CL_COMMIT) |
1773 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
1774 | return (EINVAL); |
1775 | } | |
1776 | max_size = filesize - f_offset; | |
1777 | ||
1778 | if (size < max_size) | |
1779 | io_size = size; | |
1780 | else | |
9bccf70c | 1781 | io_size = max_size; |
1c79356b | 1782 | |
55e303ae | 1783 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 1784 | |
55e303ae | 1785 | if (size > rounded_size) { |
0b4e3aa0 | 1786 | if (local_flags & CL_COMMIT) |
55e303ae | 1787 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, |
1c79356b A |
1788 | UPL_ABORT_FREE_ON_EMPTY); |
1789 | } | |
91447636 | 1790 | return (cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2d21ac55 | 1791 | local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg)); |
1c79356b A |
1792 | } |
1793 | ||
2d21ac55 | 1794 | |
9bccf70c | 1795 | int |
b0d623f7 | 1796 | cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
91447636 | 1797 | int size, off_t filesize, int flags) |
2d21ac55 A |
1798 | { |
1799 | return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); | |
1800 | } | |
1801 | ||
1802 | ||
1803 | int | |
b0d623f7 | 1804 | cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
2d21ac55 | 1805 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
1806 | { |
1807 | u_int io_size; | |
9bccf70c | 1808 | int rounded_size; |
1c79356b A |
1809 | off_t max_size; |
1810 | int retval; | |
1811 | int local_flags = 0; | |
1c79356b | 1812 | |
9bccf70c A |
1813 | if (upl == NULL || size < 0) |
1814 | panic("cluster_pagein: NULL upl passed in"); | |
1c79356b | 1815 | |
9bccf70c A |
1816 | if ((flags & UPL_IOSYNC) == 0) |
1817 | local_flags |= CL_ASYNC; | |
1c79356b | 1818 | if ((flags & UPL_NOCOMMIT) == 0) |
9bccf70c | 1819 | local_flags |= CL_COMMIT; |
b0d623f7 A |
1820 | if (flags & UPL_IOSTREAMING) |
1821 | local_flags |= CL_IOSTREAMING; | |
6d2010ae A |
1822 | if (flags & UPL_PAGING_ENCRYPTED) |
1823 | local_flags |= CL_ENCRYPTED; | |
9bccf70c | 1824 | |
1c79356b A |
1825 | |
1826 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, | |
1827 | (int)f_offset, size, (int)filesize, local_flags, 0); | |
1828 | ||
1829 | /* | |
1830 | * can't page-in from a negative offset | |
1831 | * or if we're starting beyond the EOF | |
1832 | * or if the file offset isn't page aligned | |
1833 | * or the size requested isn't a multiple of PAGE_SIZE | |
1834 | */ | |
1835 | if (f_offset < 0 || f_offset >= filesize || | |
9bccf70c A |
1836 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { |
1837 | if (local_flags & CL_COMMIT) | |
1838 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); | |
1c79356b A |
1839 | return (EINVAL); |
1840 | } | |
1841 | max_size = filesize - f_offset; | |
1842 | ||
1843 | if (size < max_size) | |
1844 | io_size = size; | |
1845 | else | |
9bccf70c | 1846 | io_size = max_size; |
1c79356b | 1847 | |
9bccf70c | 1848 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
1c79356b | 1849 | |
9bccf70c A |
1850 | if (size > rounded_size && (local_flags & CL_COMMIT)) |
1851 | ubc_upl_abort_range(upl, upl_offset + rounded_size, | |
55e303ae | 1852 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); |
9bccf70c | 1853 | |
91447636 | 1854 | retval = cluster_io(vp, upl, upl_offset, f_offset, io_size, |
2d21ac55 | 1855 | local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 1856 | |
1c79356b A |
1857 | return (retval); |
1858 | } | |
1859 | ||
2d21ac55 | 1860 | |
9bccf70c | 1861 | int |
91447636 | 1862 | cluster_bp(buf_t bp) |
2d21ac55 A |
1863 | { |
1864 | return cluster_bp_ext(bp, NULL, NULL); | |
1865 | } | |
1866 | ||
1867 | ||
1868 | int | |
1869 | cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
1870 | { |
1871 | off_t f_offset; | |
1872 | int flags; | |
1873 | ||
9bccf70c | 1874 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, |
b0d623f7 | 1875 | bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
9bccf70c | 1876 | |
1c79356b | 1877 | if (bp->b_flags & B_READ) |
9bccf70c | 1878 | flags = CL_ASYNC | CL_READ; |
1c79356b | 1879 | else |
9bccf70c | 1880 | flags = CL_ASYNC; |
2d21ac55 A |
1881 | if (bp->b_flags & B_PASSIVE) |
1882 | flags |= CL_PASSIVE; | |
1c79356b A |
1883 | |
1884 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); | |
1885 | ||
2d21ac55 | 1886 | return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg)); |
1c79356b A |
1887 | } |
1888 | ||
2d21ac55 A |
1889 | |
1890 | ||
9bccf70c | 1891 | int |
91447636 | 1892 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) |
1c79356b | 1893 | { |
2d21ac55 A |
1894 | return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); |
1895 | } | |
1896 | ||
1897 | ||
1898 | int | |
1899 | cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, | |
1900 | int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
1901 | { | |
1902 | user_ssize_t cur_resid; | |
1903 | int retval = 0; | |
1904 | int flags; | |
1905 | int zflags; | |
1906 | int bflag; | |
1907 | int write_type = IO_COPY; | |
1908 | u_int32_t write_length; | |
1c79356b | 1909 | |
91447636 A |
1910 | flags = xflags; |
1911 | ||
2d21ac55 | 1912 | if (flags & IO_PASSIVE) |
b0d623f7 | 1913 | bflag = CL_PASSIVE; |
2d21ac55 | 1914 | else |
b0d623f7 | 1915 | bflag = 0; |
2d21ac55 | 1916 | |
91447636 A |
1917 | if (vp->v_flag & VNOCACHE_DATA) |
1918 | flags |= IO_NOCACHE; | |
1919 | ||
2d21ac55 | 1920 | if (uio == NULL) { |
91447636 | 1921 | /* |
2d21ac55 A |
1922 | * no user data... |
1923 | * this call is being made to zero-fill some range in the file | |
91447636 | 1924 | */ |
2d21ac55 | 1925 | retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); |
91447636 | 1926 | |
2d21ac55 | 1927 | return(retval); |
91447636 | 1928 | } |
2d21ac55 A |
1929 | /* |
1930 | * do a write through the cache if one of the following is true.... | |
6d2010ae | 1931 | * NOCACHE is not true or NODIRECT is true |
2d21ac55 A |
1932 | * the uio request doesn't target USERSPACE |
1933 | * otherwise, find out if we want the direct or contig variant for | |
1934 | * the first vector in the uio request | |
1935 | */ | |
6d2010ae | 1936 | if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ) |
2d21ac55 A |
1937 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); |
1938 | ||
1939 | if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) | |
1940 | /* | |
1941 | * must go through the cached variant in this case | |
0b4e3aa0 | 1942 | */ |
2d21ac55 | 1943 | write_type = IO_COPY; |
0b4e3aa0 | 1944 | |
2d21ac55 A |
1945 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) { |
1946 | ||
1947 | switch (write_type) { | |
91447636 | 1948 | |
2d21ac55 | 1949 | case IO_COPY: |
91447636 | 1950 | /* |
2d21ac55 A |
1951 | * make sure the uio_resid isn't too big... |
1952 | * internally, we want to handle all of the I/O in | |
1953 | * chunk sizes that fit in a 32 bit int | |
91447636 | 1954 | */ |
2d21ac55 | 1955 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { |
91447636 | 1956 | /* |
2d21ac55 A |
1957 | * we're going to have to call cluster_write_copy |
1958 | * more than once... | |
1959 | * | |
1960 | * only want the last call to cluster_write_copy to | |
1961 | * have the IO_TAILZEROFILL flag set and only the | |
1962 | * first call should have IO_HEADZEROFILL | |
91447636 | 1963 | */ |
2d21ac55 A |
1964 | zflags = flags & ~IO_TAILZEROFILL; |
1965 | flags &= ~IO_HEADZEROFILL; | |
91447636 | 1966 | |
2d21ac55 A |
1967 | write_length = MAX_IO_REQUEST_SIZE; |
1968 | } else { | |
1969 | /* | |
1970 | * last call to cluster_write_copy | |
91447636 | 1971 | */ |
2d21ac55 A |
1972 | zflags = flags; |
1973 | ||
1974 | write_length = (u_int32_t)cur_resid; | |
1975 | } | |
1976 | retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg); | |
1977 | break; | |
91447636 | 1978 | |
2d21ac55 A |
1979 | case IO_CONTIG: |
1980 | zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); | |
91447636 | 1981 | |
2d21ac55 A |
1982 | if (flags & IO_HEADZEROFILL) { |
1983 | /* | |
1984 | * only do this once per request | |
91447636 | 1985 | */ |
2d21ac55 | 1986 | flags &= ~IO_HEADZEROFILL; |
91447636 | 1987 | |
2d21ac55 A |
1988 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset, |
1989 | headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
1990 | if (retval) | |
1991 | break; | |
91447636 | 1992 | } |
2d21ac55 A |
1993 | retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag); |
1994 | ||
1995 | if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) { | |
1996 | /* | |
1997 | * we're done with the data from the user specified buffer(s) | |
1998 | * and we've been requested to zero fill at the tail | |
1999 | * treat this as an IO_HEADZEROFILL which doesn't require a uio | |
2000 | * by rearranging the args and passing in IO_HEADZEROFILL | |
91447636 | 2001 | */ |
2d21ac55 A |
2002 | retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset, |
2003 | (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); | |
2004 | } | |
2005 | break; | |
91447636 | 2006 | |
2d21ac55 A |
2007 | case IO_DIRECT: |
2008 | /* | |
2009 | * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL | |
2010 | */ | |
2011 | retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg); | |
2012 | break; | |
91447636 | 2013 | |
2d21ac55 A |
2014 | case IO_UNKNOWN: |
2015 | retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE); | |
2016 | break; | |
2017 | } | |
b0d623f7 A |
2018 | /* |
2019 | * in case we end up calling cluster_write_copy (from cluster_write_direct) | |
2020 | * multiple times to service a multi-vector request that is not aligned properly | |
2021 | * we need to update the oldEOF so that we | |
2022 | * don't zero-fill the head of a page if we've successfully written | |
2023 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2024 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2025 | * want that to happen for the very first page of the cluster_write, | |
2026 | * NOT the first page of each vector making up a multi-vector write. | |
2027 | */ | |
2028 | if (uio->uio_offset > oldEOF) | |
2029 | oldEOF = uio->uio_offset; | |
2d21ac55 A |
2030 | } |
2031 | return (retval); | |
1c79356b A |
2032 | } |
2033 | ||
b4c24cb9 | 2034 | |
9bccf70c | 2035 | static int |
2d21ac55 A |
2036 | cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, |
2037 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2038 | { |
2039 | upl_t upl; | |
2040 | upl_page_info_t *pl; | |
1c79356b | 2041 | vm_offset_t upl_offset; |
b0d623f7 | 2042 | vm_offset_t vector_upl_offset = 0; |
2d21ac55 A |
2043 | u_int32_t io_req_size; |
2044 | u_int32_t offset_in_file; | |
2045 | u_int32_t offset_in_iovbase; | |
b0d623f7 A |
2046 | u_int32_t io_size; |
2047 | int io_flag = 0; | |
2048 | upl_size_t upl_size, vector_upl_size = 0; | |
2d21ac55 A |
2049 | vm_size_t upl_needed_size; |
2050 | mach_msg_type_number_t pages_in_pl; | |
1c79356b A |
2051 | int upl_flags; |
2052 | kern_return_t kret; | |
2d21ac55 | 2053 | mach_msg_type_number_t i; |
1c79356b | 2054 | int force_data_sync; |
2d21ac55 A |
2055 | int retval = 0; |
2056 | int first_IO = 1; | |
d7e50217 | 2057 | struct clios iostate; |
2d21ac55 A |
2058 | user_addr_t iov_base; |
2059 | u_int32_t mem_alignment_mask; | |
2060 | u_int32_t devblocksize; | |
b0d623f7 | 2061 | u_int32_t max_upl_size; |
cf7d32b8 | 2062 | |
b0d623f7 A |
2063 | u_int32_t vector_upl_iosize = 0; |
2064 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
2065 | off_t v_upl_uio_offset = 0; | |
2066 | int vector_upl_index=0; | |
2067 | upl_t vector_upl = NULL; | |
cf7d32b8 | 2068 | |
1c79356b A |
2069 | |
2070 | /* | |
2071 | * When we enter this routine, we know | |
1c79356b A |
2072 | * -- the resid will not exceed iov_len |
2073 | */ | |
2d21ac55 A |
2074 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, |
2075 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
91447636 | 2076 | |
b0d623f7 A |
2077 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE); |
2078 | ||
2079 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; | |
2080 | ||
2081 | if (flags & IO_PASSIVE) | |
2082 | io_flag |= CL_PASSIVE; | |
2083 | ||
d7e50217 A |
2084 | iostate.io_completed = 0; |
2085 | iostate.io_issued = 0; | |
2086 | iostate.io_error = 0; | |
2087 | iostate.io_wanted = 0; | |
2088 | ||
6d2010ae A |
2089 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2090 | ||
2d21ac55 A |
2091 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
2092 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; | |
2093 | ||
2094 | if (devblocksize == 1) { | |
2095 | /* | |
2096 | * the AFP client advertises a devblocksize of 1 | |
2097 | * however, its BLOCKMAP routine maps to physical | |
2098 | * blocks that are PAGE_SIZE in size... | |
2099 | * therefore we can't ask for I/Os that aren't page aligned | |
2100 | * or aren't multiples of PAGE_SIZE in size | |
2101 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
2102 | * the old behavior we had before the mem_alignment_mask | |
2103 | * changes went in... | |
2104 | */ | |
2105 | devblocksize = PAGE_SIZE; | |
2106 | } | |
2107 | ||
2108 | next_dwrite: | |
2109 | io_req_size = *write_length; | |
2110 | iov_base = uio_curriovbase(uio); | |
cc9f6e38 | 2111 | |
2d21ac55 A |
2112 | offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; |
2113 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
1c79356b | 2114 | |
2d21ac55 A |
2115 | if (offset_in_file || offset_in_iovbase) { |
2116 | /* | |
2117 | * one of the 2 important offsets is misaligned | |
2118 | * so fire an I/O through the cache for this entire vector | |
2119 | */ | |
2120 | goto wait_for_dwrites; | |
2121 | } | |
2122 | if (iov_base & (devblocksize - 1)) { | |
2123 | /* | |
2124 | * the offset in memory must be on a device block boundary | |
2125 | * so that we can guarantee that we can generate an | |
2126 | * I/O that ends on a page boundary in cluster_io | |
2127 | */ | |
2128 | goto wait_for_dwrites; | |
2129 | } | |
1c79356b | 2130 | |
2d21ac55 A |
2131 | while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { |
2132 | ||
2133 | if (first_IO) { | |
2134 | cluster_syncup(vp, newEOF, callback, callback_arg); | |
2135 | first_IO = 0; | |
2136 | } | |
2137 | io_size = io_req_size & ~PAGE_MASK; | |
cc9f6e38 A |
2138 | iov_base = uio_curriovbase(uio); |
2139 | ||
cf7d32b8 A |
2140 | if (io_size > max_upl_size) |
2141 | io_size = max_upl_size; | |
2d21ac55 | 2142 | |
b0d623f7 A |
2143 | if(useVectorUPL && (iov_base & PAGE_MASK)) { |
2144 | /* | |
2145 | * We have an iov_base that's not page-aligned. | |
2146 | * Issue all I/O's that have been collected within | |
2147 | * this Vectored UPL. | |
2148 | */ | |
2149 | if(vector_upl_index) { | |
2150 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2151 | reset_vector_run_state(); | |
2152 | } | |
2153 | ||
2154 | /* | |
2155 | * After this point, if we are using the Vector UPL path and the base is | |
2156 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
2157 | */ | |
2158 | } | |
2159 | ||
2d21ac55 | 2160 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
d7e50217 A |
2161 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; |
2162 | ||
2163 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, | |
cc9f6e38 | 2164 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
d7e50217 A |
2165 | |
2166 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { | |
2167 | pages_in_pl = 0; | |
2168 | upl_size = upl_needed_size; | |
2169 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | | |
55e303ae | 2170 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
d7e50217 A |
2171 | |
2172 | kret = vm_map_get_upl(current_map(), | |
cc9f6e38 | 2173 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
d7e50217 A |
2174 | &upl_size, |
2175 | &upl, | |
2176 | NULL, | |
2177 | &pages_in_pl, | |
2178 | &upl_flags, | |
2179 | force_data_sync); | |
2180 | ||
2181 | if (kret != KERN_SUCCESS) { | |
2182 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2183 | 0, 0, 0, kret, 0); | |
d7e50217 | 2184 | /* |
2d21ac55 | 2185 | * failed to get pagelist |
d7e50217 A |
2186 | * |
2187 | * we may have already spun some portion of this request | |
2188 | * off as async requests... we need to wait for the I/O | |
2189 | * to complete before returning | |
2190 | */ | |
2d21ac55 | 2191 | goto wait_for_dwrites; |
d7e50217 A |
2192 | } |
2193 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
2194 | pages_in_pl = upl_size / PAGE_SIZE; | |
1c79356b | 2195 | |
d7e50217 A |
2196 | for (i = 0; i < pages_in_pl; i++) { |
2197 | if (!upl_valid_page(pl, i)) | |
2198 | break; | |
2199 | } | |
2200 | if (i == pages_in_pl) | |
2201 | break; | |
1c79356b | 2202 | |
d7e50217 A |
2203 | /* |
2204 | * didn't get all the pages back that we | |
2205 | * needed... release this upl and try again | |
2206 | */ | |
2d21ac55 | 2207 | ubc_upl_abort(upl, 0); |
1c79356b | 2208 | } |
d7e50217 A |
2209 | if (force_data_sync >= 3) { |
2210 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, | |
2211 | i, pages_in_pl, upl_size, kret, 0); | |
d7e50217 A |
2212 | /* |
2213 | * for some reason, we couldn't acquire a hold on all | |
2214 | * the pages needed in the user's address space | |
2215 | * | |
2216 | * we may have already spun some portion of this request | |
2217 | * off as async requests... we need to wait for the I/O | |
2218 | * to complete before returning | |
2219 | */ | |
2d21ac55 | 2220 | goto wait_for_dwrites; |
1c79356b | 2221 | } |
0b4e3aa0 | 2222 | |
d7e50217 A |
2223 | /* |
2224 | * Consider the possibility that upl_size wasn't satisfied. | |
2225 | */ | |
2d21ac55 A |
2226 | if (upl_size < upl_needed_size) { |
2227 | if (upl_size && upl_offset == 0) | |
2228 | io_size = upl_size; | |
2229 | else | |
2230 | io_size = 0; | |
2231 | } | |
d7e50217 | 2232 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
cc9f6e38 | 2233 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); |
1c79356b | 2234 | |
d7e50217 | 2235 | if (io_size == 0) { |
2d21ac55 | 2236 | ubc_upl_abort(upl, 0); |
d7e50217 A |
2237 | /* |
2238 | * we may have already spun some portion of this request | |
2239 | * off as async requests... we need to wait for the I/O | |
2240 | * to complete before returning | |
2241 | */ | |
2d21ac55 | 2242 | goto wait_for_dwrites; |
d7e50217 | 2243 | } |
b0d623f7 A |
2244 | |
2245 | if(useVectorUPL) { | |
2246 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
2247 | if(end_off) | |
2248 | issueVectorUPL = 1; | |
2249 | /* | |
2250 | * After this point, if we are using a vector UPL, then | |
2251 | * either all the UPL elements end on a page boundary OR | |
2252 | * this UPL is the last element because it does not end | |
2253 | * on a page boundary. | |
2254 | */ | |
2255 | } | |
2d21ac55 | 2256 | |
d7e50217 A |
2257 | /* |
2258 | * Now look for pages already in the cache | |
2259 | * and throw them away. | |
55e303ae A |
2260 | * uio->uio_offset is page aligned within the file |
2261 | * io_size is a multiple of PAGE_SIZE | |
d7e50217 | 2262 | */ |
55e303ae | 2263 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + io_size, UPL_ROP_DUMP, NULL); |
1c79356b | 2264 | |
d7e50217 A |
2265 | /* |
2266 | * we want push out these writes asynchronously so that we can overlap | |
2267 | * the preparation of the next I/O | |
2268 | * if there are already too many outstanding writes | |
2269 | * wait until some complete before issuing the next | |
2270 | */ | |
6d2010ae A |
2271 | if (iostate.io_issued > iostate.io_completed) |
2272 | cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct"); | |
cf7d32b8 | 2273 | |
d7e50217 A |
2274 | if (iostate.io_error) { |
2275 | /* | |
2276 | * one of the earlier writes we issued ran into a hard error | |
2277 | * don't issue any more writes, cleanup the UPL | |
2278 | * that was just created but not used, then | |
2279 | * go wait for all writes that are part of this stream | |
2280 | * to complete before returning the error to the caller | |
2281 | */ | |
2d21ac55 | 2282 | ubc_upl_abort(upl, 0); |
1c79356b | 2283 | |
2d21ac55 | 2284 | goto wait_for_dwrites; |
d7e50217 | 2285 | } |
1c79356b | 2286 | |
d7e50217 A |
2287 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, |
2288 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); | |
1c79356b | 2289 | |
b0d623f7 A |
2290 | if(!useVectorUPL) |
2291 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, | |
2d21ac55 | 2292 | io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
7b1edb79 | 2293 | |
b0d623f7 A |
2294 | else { |
2295 | if(!vector_upl_index) { | |
2296 | vector_upl = vector_upl_create(upl_offset); | |
2297 | v_upl_uio_offset = uio->uio_offset; | |
2298 | vector_upl_offset = upl_offset; | |
2299 | } | |
2300 | ||
2301 | vector_upl_set_subupl(vector_upl,upl,upl_size); | |
2302 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
2303 | vector_upl_index++; | |
2304 | vector_upl_iosize += io_size; | |
2305 | vector_upl_size += upl_size; | |
2306 | ||
2307 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= MAX_VECTOR_UPL_SIZE) { | |
2308 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
2309 | reset_vector_run_state(); | |
2310 | } | |
2311 | } | |
2312 | ||
2d21ac55 A |
2313 | /* |
2314 | * update the uio structure to | |
2315 | * reflect the I/O that we just issued | |
2316 | */ | |
cc9f6e38 | 2317 | uio_update(uio, (user_size_t)io_size); |
1c79356b | 2318 | |
b0d623f7 A |
2319 | /* |
2320 | * in case we end up calling through to cluster_write_copy to finish | |
2321 | * the tail of this request, we need to update the oldEOF so that we | |
2322 | * don't zero-fill the head of a page if we've successfully written | |
2323 | * data to that area... 'cluster_write_copy' will zero-fill the head of a | |
2324 | * page that is beyond the oldEOF if the write is unaligned... we only | |
2325 | * want that to happen for the very first page of the cluster_write, | |
2326 | * NOT the first page of each vector making up a multi-vector write. | |
2327 | */ | |
2328 | if (uio->uio_offset > oldEOF) | |
2329 | oldEOF = uio->uio_offset; | |
2330 | ||
2d21ac55 A |
2331 | io_req_size -= io_size; |
2332 | ||
d7e50217 | 2333 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, |
2d21ac55 | 2334 | (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
2335 | |
2336 | } /* end while */ | |
2337 | ||
2d21ac55 | 2338 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { |
91447636 | 2339 | |
2d21ac55 A |
2340 | retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE); |
2341 | ||
2342 | if (retval == 0 && *write_type == IO_DIRECT) { | |
2343 | ||
2344 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, | |
2345 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); | |
2346 | ||
2347 | goto next_dwrite; | |
2348 | } | |
2349 | } | |
2350 | ||
2351 | wait_for_dwrites: | |
b0d623f7 | 2352 | |
6d2010ae | 2353 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { |
b0d623f7 A |
2354 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); |
2355 | reset_vector_run_state(); | |
2356 | } | |
2357 | ||
2358 | if (iostate.io_issued > iostate.io_completed) { | |
2d21ac55 A |
2359 | /* |
2360 | * make sure all async writes issued as part of this stream | |
2361 | * have completed before we return | |
2362 | */ | |
6d2010ae | 2363 | cluster_iostate_wait(&iostate, 0, "cluster_write_direct"); |
2d21ac55 | 2364 | } |
d7e50217 | 2365 | if (iostate.io_error) |
2d21ac55 A |
2366 | retval = iostate.io_error; |
2367 | ||
6d2010ae A |
2368 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2369 | ||
2d21ac55 A |
2370 | if (io_req_size && retval == 0) { |
2371 | /* | |
2372 | * we couldn't handle the tail of this request in DIRECT mode | |
2373 | * so fire it through the copy path | |
2374 | * | |
2375 | * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set | |
2376 | * so we can just pass 0 in for the headOff and tailOff | |
2377 | */ | |
b0d623f7 A |
2378 | if (uio->uio_offset > oldEOF) |
2379 | oldEOF = uio->uio_offset; | |
2380 | ||
2d21ac55 | 2381 | retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg); |
1c79356b | 2382 | |
2d21ac55 A |
2383 | *write_type = IO_UNKNOWN; |
2384 | } | |
1c79356b | 2385 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, |
2d21ac55 | 2386 | (int)uio->uio_offset, io_req_size, retval, 4, 0); |
1c79356b | 2387 | |
2d21ac55 | 2388 | return (retval); |
1c79356b A |
2389 | } |
2390 | ||
b4c24cb9 | 2391 | |
9bccf70c | 2392 | static int |
2d21ac55 A |
2393 | cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, |
2394 | int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
0b4e3aa0 | 2395 | { |
b4c24cb9 | 2396 | upl_page_info_t *pl; |
2d21ac55 A |
2397 | addr64_t src_paddr = 0; |
2398 | upl_t upl[MAX_VECTS]; | |
0b4e3aa0 | 2399 | vm_offset_t upl_offset; |
2d21ac55 A |
2400 | u_int32_t tail_size = 0; |
2401 | u_int32_t io_size; | |
2402 | u_int32_t xsize; | |
b0d623f7 | 2403 | upl_size_t upl_size; |
2d21ac55 A |
2404 | vm_size_t upl_needed_size; |
2405 | mach_msg_type_number_t pages_in_pl; | |
0b4e3aa0 A |
2406 | int upl_flags; |
2407 | kern_return_t kret; | |
2d21ac55 | 2408 | struct clios iostate; |
0b4e3aa0 | 2409 | int error = 0; |
2d21ac55 A |
2410 | int cur_upl = 0; |
2411 | int num_upl = 0; | |
2412 | int n; | |
cc9f6e38 | 2413 | user_addr_t iov_base; |
2d21ac55 A |
2414 | u_int32_t devblocksize; |
2415 | u_int32_t mem_alignment_mask; | |
0b4e3aa0 A |
2416 | |
2417 | /* | |
2418 | * When we enter this routine, we know | |
2d21ac55 A |
2419 | * -- the io_req_size will not exceed iov_len |
2420 | * -- the target address is physically contiguous | |
0b4e3aa0 | 2421 | */ |
2d21ac55 | 2422 | cluster_syncup(vp, newEOF, callback, callback_arg); |
0b4e3aa0 | 2423 | |
2d21ac55 A |
2424 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
2425 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 2426 | |
2d21ac55 A |
2427 | iostate.io_completed = 0; |
2428 | iostate.io_issued = 0; | |
2429 | iostate.io_error = 0; | |
2430 | iostate.io_wanted = 0; | |
2431 | ||
6d2010ae A |
2432 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
2433 | ||
2d21ac55 A |
2434 | next_cwrite: |
2435 | io_size = *write_length; | |
91447636 | 2436 | |
cc9f6e38 A |
2437 | iov_base = uio_curriovbase(uio); |
2438 | ||
2d21ac55 | 2439 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
0b4e3aa0 A |
2440 | upl_needed_size = upl_offset + io_size; |
2441 | ||
2442 | pages_in_pl = 0; | |
2443 | upl_size = upl_needed_size; | |
9bccf70c | 2444 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | |
55e303ae | 2445 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
0b4e3aa0 A |
2446 | |
2447 | kret = vm_map_get_upl(current_map(), | |
cc9f6e38 | 2448 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
2d21ac55 | 2449 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); |
0b4e3aa0 | 2450 | |
b4c24cb9 A |
2451 | if (kret != KERN_SUCCESS) { |
2452 | /* | |
2d21ac55 | 2453 | * failed to get pagelist |
b4c24cb9 | 2454 | */ |
2d21ac55 A |
2455 | error = EINVAL; |
2456 | goto wait_for_cwrites; | |
b4c24cb9 | 2457 | } |
2d21ac55 A |
2458 | num_upl++; |
2459 | ||
0b4e3aa0 A |
2460 | /* |
2461 | * Consider the possibility that upl_size wasn't satisfied. | |
0b4e3aa0 | 2462 | */ |
b4c24cb9 | 2463 | if (upl_size < upl_needed_size) { |
2d21ac55 A |
2464 | /* |
2465 | * This is a failure in the physical memory case. | |
2466 | */ | |
2467 | error = EINVAL; | |
2468 | goto wait_for_cwrites; | |
b4c24cb9 | 2469 | } |
2d21ac55 | 2470 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
0b4e3aa0 | 2471 | |
cc9f6e38 | 2472 | src_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; |
0b4e3aa0 | 2473 | |
b4c24cb9 | 2474 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
2d21ac55 | 2475 | u_int32_t head_size; |
0b4e3aa0 | 2476 | |
2d21ac55 | 2477 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
0b4e3aa0 | 2478 | |
b4c24cb9 A |
2479 | if (head_size > io_size) |
2480 | head_size = io_size; | |
2481 | ||
2d21ac55 | 2482 | error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg); |
b4c24cb9 | 2483 | |
2d21ac55 A |
2484 | if (error) |
2485 | goto wait_for_cwrites; | |
b4c24cb9 | 2486 | |
b4c24cb9 A |
2487 | upl_offset += head_size; |
2488 | src_paddr += head_size; | |
2489 | io_size -= head_size; | |
2d21ac55 A |
2490 | |
2491 | iov_base += head_size; | |
2492 | } | |
2493 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
2494 | /* | |
2495 | * request doesn't set up on a memory boundary | |
2496 | * the underlying DMA engine can handle... | |
2497 | * return an error instead of going through | |
2498 | * the slow copy path since the intent of this | |
2499 | * path is direct I/O from device memory | |
2500 | */ | |
2501 | error = EINVAL; | |
2502 | goto wait_for_cwrites; | |
0b4e3aa0 | 2503 | } |
2d21ac55 | 2504 | |
b4c24cb9 A |
2505 | tail_size = io_size & (devblocksize - 1); |
2506 | io_size -= tail_size; | |
2507 | ||
2d21ac55 A |
2508 | while (io_size && error == 0) { |
2509 | ||
2510 | if (io_size > MAX_IO_CONTIG_SIZE) | |
2511 | xsize = MAX_IO_CONTIG_SIZE; | |
2512 | else | |
2513 | xsize = io_size; | |
2514 | /* | |
2515 | * request asynchronously so that we can overlap | |
2516 | * the preparation of the next I/O... we'll do | |
2517 | * the commit after all the I/O has completed | |
2518 | * since its all issued against the same UPL | |
2519 | * if there are already too many outstanding writes | |
2520 | * wait until some have completed before issuing the next | |
b4c24cb9 | 2521 | */ |
6d2010ae A |
2522 | if (iostate.io_issued > iostate.io_completed) |
2523 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig"); | |
2d21ac55 | 2524 | |
2d21ac55 A |
2525 | if (iostate.io_error) { |
2526 | /* | |
2527 | * one of the earlier writes we issued ran into a hard error | |
2528 | * don't issue any more writes... | |
2529 | * go wait for all writes that are part of this stream | |
2530 | * to complete before returning the error to the caller | |
2531 | */ | |
2532 | goto wait_for_cwrites; | |
2533 | } | |
b4c24cb9 | 2534 | /* |
2d21ac55 | 2535 | * issue an asynchronous write to cluster_io |
b4c24cb9 | 2536 | */ |
2d21ac55 A |
2537 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, |
2538 | xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg); | |
cc9f6e38 | 2539 | |
2d21ac55 A |
2540 | if (error == 0) { |
2541 | /* | |
2542 | * The cluster_io write completed successfully, | |
2543 | * update the uio structure | |
2544 | */ | |
2545 | uio_update(uio, (user_size_t)xsize); | |
b4c24cb9 | 2546 | |
2d21ac55 A |
2547 | upl_offset += xsize; |
2548 | src_paddr += xsize; | |
2549 | io_size -= xsize; | |
2550 | } | |
b4c24cb9 | 2551 | } |
cf7d32b8 | 2552 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { |
2d21ac55 A |
2553 | |
2554 | error = cluster_io_type(uio, write_type, write_length, 0); | |
2555 | ||
2556 | if (error == 0 && *write_type == IO_CONTIG) { | |
2557 | cur_upl++; | |
2558 | goto next_cwrite; | |
2559 | } | |
2560 | } else | |
2561 | *write_type = IO_UNKNOWN; | |
2562 | ||
2563 | wait_for_cwrites: | |
b4c24cb9 | 2564 | /* |
2d21ac55 A |
2565 | * make sure all async writes that are part of this stream |
2566 | * have completed before we proceed | |
2567 | */ | |
6d2010ae A |
2568 | if (iostate.io_issued > iostate.io_completed) |
2569 | cluster_iostate_wait(&iostate, 0, "cluster_write_contig"); | |
cf7d32b8 | 2570 | |
2d21ac55 A |
2571 | if (iostate.io_error) |
2572 | error = iostate.io_error; | |
2573 | ||
6d2010ae A |
2574 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
2575 | ||
2d21ac55 A |
2576 | if (error == 0 && tail_size) |
2577 | error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg); | |
2578 | ||
2579 | for (n = 0; n < num_upl; n++) | |
2580 | /* | |
2581 | * just release our hold on each physically contiguous | |
2582 | * region without changing any state | |
2583 | */ | |
2584 | ubc_upl_abort(upl[n], 0); | |
0b4e3aa0 A |
2585 | |
2586 | return (error); | |
2587 | } | |
2588 | ||
b4c24cb9 | 2589 | |
b0d623f7 A |
2590 | /* |
2591 | * need to avoid a race between an msync of a range of pages dirtied via mmap | |
2592 | * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's | |
2593 | * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd | |
2594 | * | |
2595 | * we should never force-zero-fill pages that are already valid in the cache... | |
2596 | * the entire page contains valid data (either from disk, zero-filled or dirtied | |
2597 | * via an mmap) so we can only do damage by trying to zero-fill | |
2598 | * | |
2599 | */ | |
2600 | static int | |
2601 | cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) | |
2602 | { | |
2603 | int zero_pg_index; | |
2604 | boolean_t need_cluster_zero = TRUE; | |
2605 | ||
2606 | if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { | |
2607 | ||
2608 | bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); | |
2609 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); | |
2610 | ||
2611 | if (upl_valid_page(pl, zero_pg_index)) { | |
2612 | /* | |
2613 | * never force zero valid pages - dirty or clean | |
2614 | * we'll leave these in the UPL for cluster_write_copy to deal with | |
2615 | */ | |
2616 | need_cluster_zero = FALSE; | |
2617 | } | |
2618 | } | |
2619 | if (need_cluster_zero == TRUE) | |
2620 | cluster_zero(upl, io_offset, bytes_to_zero, NULL); | |
2621 | ||
2622 | return (bytes_to_zero); | |
2623 | } | |
2624 | ||
2625 | ||
9bccf70c | 2626 | static int |
2d21ac55 A |
2627 | cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, |
2628 | off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
2629 | { |
2630 | upl_page_info_t *pl; | |
2631 | upl_t upl; | |
91447636 | 2632 | vm_offset_t upl_offset = 0; |
2d21ac55 | 2633 | vm_size_t upl_size; |
1c79356b A |
2634 | off_t upl_f_offset; |
2635 | int pages_in_upl; | |
2636 | int start_offset; | |
2637 | int xfer_resid; | |
2638 | int io_size; | |
1c79356b A |
2639 | int io_offset; |
2640 | int bytes_to_zero; | |
2641 | int bytes_to_move; | |
2642 | kern_return_t kret; | |
2643 | int retval = 0; | |
91447636 | 2644 | int io_resid; |
1c79356b A |
2645 | long long total_size; |
2646 | long long zero_cnt; | |
2647 | off_t zero_off; | |
2648 | long long zero_cnt1; | |
2649 | off_t zero_off1; | |
6d2010ae A |
2650 | off_t write_off = 0; |
2651 | int write_cnt = 0; | |
2652 | boolean_t first_pass = FALSE; | |
91447636 | 2653 | struct cl_extent cl; |
91447636 | 2654 | struct cl_writebehind *wbp; |
2d21ac55 | 2655 | int bflag; |
b0d623f7 A |
2656 | u_int max_cluster_pgcount; |
2657 | u_int max_io_size; | |
1c79356b A |
2658 | |
2659 | if (uio) { | |
2660 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2d21ac55 | 2661 | (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); |
1c79356b | 2662 | |
2d21ac55 | 2663 | io_resid = io_req_size; |
1c79356b A |
2664 | } else { |
2665 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, | |
2666 | 0, 0, (int)oldEOF, (int)newEOF, 0); | |
2667 | ||
91447636 | 2668 | io_resid = 0; |
1c79356b | 2669 | } |
b0d623f7 A |
2670 | if (flags & IO_PASSIVE) |
2671 | bflag = CL_PASSIVE; | |
2672 | else | |
2673 | bflag = 0; | |
2674 | ||
1c79356b A |
2675 | zero_cnt = 0; |
2676 | zero_cnt1 = 0; | |
91447636 A |
2677 | zero_off = 0; |
2678 | zero_off1 = 0; | |
1c79356b | 2679 | |
cf7d32b8 A |
2680 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; |
2681 | max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE); | |
2682 | ||
1c79356b A |
2683 | if (flags & IO_HEADZEROFILL) { |
2684 | /* | |
2685 | * some filesystems (HFS is one) don't support unallocated holes within a file... | |
2686 | * so we zero fill the intervening space between the old EOF and the offset | |
2687 | * where the next chunk of real data begins.... ftruncate will also use this | |
2688 | * routine to zero fill to the new EOF when growing a file... in this case, the | |
2689 | * uio structure will not be provided | |
2690 | */ | |
2691 | if (uio) { | |
2692 | if (headOff < uio->uio_offset) { | |
2693 | zero_cnt = uio->uio_offset - headOff; | |
2694 | zero_off = headOff; | |
2695 | } | |
2696 | } else if (headOff < newEOF) { | |
2697 | zero_cnt = newEOF - headOff; | |
2698 | zero_off = headOff; | |
2699 | } | |
b0d623f7 A |
2700 | } else { |
2701 | if (uio && uio->uio_offset > oldEOF) { | |
2702 | zero_off = uio->uio_offset & ~PAGE_MASK_64; | |
2703 | ||
2704 | if (zero_off >= oldEOF) { | |
2705 | zero_cnt = uio->uio_offset - zero_off; | |
2706 | ||
2707 | flags |= IO_HEADZEROFILL; | |
2708 | } | |
2709 | } | |
1c79356b A |
2710 | } |
2711 | if (flags & IO_TAILZEROFILL) { | |
2712 | if (uio) { | |
2d21ac55 | 2713 | zero_off1 = uio->uio_offset + io_req_size; |
1c79356b A |
2714 | |
2715 | if (zero_off1 < tailOff) | |
2716 | zero_cnt1 = tailOff - zero_off1; | |
2717 | } | |
b0d623f7 A |
2718 | } else { |
2719 | if (uio && newEOF > oldEOF) { | |
2720 | zero_off1 = uio->uio_offset + io_req_size; | |
2721 | ||
2722 | if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { | |
2723 | zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); | |
2724 | ||
2725 | flags |= IO_TAILZEROFILL; | |
2726 | } | |
2727 | } | |
1c79356b | 2728 | } |
55e303ae | 2729 | if (zero_cnt == 0 && uio == (struct uio *) 0) { |
91447636 A |
2730 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, |
2731 | retval, 0, 0, 0, 0); | |
2732 | return (0); | |
55e303ae | 2733 | } |
6d2010ae A |
2734 | if (uio) { |
2735 | write_off = uio->uio_offset; | |
2736 | write_cnt = uio_resid(uio); | |
2737 | /* | |
2738 | * delay updating the sequential write info | |
2739 | * in the control block until we've obtained | |
2740 | * the lock for it | |
2741 | */ | |
2742 | first_pass = TRUE; | |
2743 | } | |
91447636 | 2744 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { |
1c79356b A |
2745 | /* |
2746 | * for this iteration of the loop, figure out where our starting point is | |
2747 | */ | |
2748 | if (zero_cnt) { | |
2749 | start_offset = (int)(zero_off & PAGE_MASK_64); | |
2750 | upl_f_offset = zero_off - start_offset; | |
91447636 | 2751 | } else if (io_resid) { |
1c79356b A |
2752 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
2753 | upl_f_offset = uio->uio_offset - start_offset; | |
2754 | } else { | |
2755 | start_offset = (int)(zero_off1 & PAGE_MASK_64); | |
2756 | upl_f_offset = zero_off1 - start_offset; | |
2757 | } | |
2758 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, | |
2759 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); | |
2760 | ||
cf7d32b8 A |
2761 | if (total_size > max_io_size) |
2762 | total_size = max_io_size; | |
1c79356b | 2763 | |
91447636 | 2764 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); |
55e303ae | 2765 | |
2d21ac55 | 2766 | if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { |
55e303ae | 2767 | /* |
91447636 | 2768 | * assumption... total_size <= io_resid |
55e303ae A |
2769 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set |
2770 | */ | |
cf7d32b8 | 2771 | if ((start_offset + total_size) > max_io_size) |
b7266188 | 2772 | total_size = max_io_size - start_offset; |
55e303ae A |
2773 | xfer_resid = total_size; |
2774 | ||
2d21ac55 | 2775 | retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1); |
b0d623f7 | 2776 | |
55e303ae A |
2777 | if (retval) |
2778 | break; | |
2779 | ||
2d21ac55 | 2780 | io_resid -= (total_size - xfer_resid); |
55e303ae A |
2781 | total_size = xfer_resid; |
2782 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
2783 | upl_f_offset = uio->uio_offset - start_offset; | |
2784 | ||
2785 | if (total_size == 0) { | |
2786 | if (start_offset) { | |
2787 | /* | |
2788 | * the write did not finish on a page boundary | |
2789 | * which will leave upl_f_offset pointing to the | |
2790 | * beginning of the last page written instead of | |
2791 | * the page beyond it... bump it in this case | |
2792 | * so that the cluster code records the last page | |
2793 | * written as dirty | |
2794 | */ | |
2795 | upl_f_offset += PAGE_SIZE_64; | |
2796 | } | |
2797 | upl_size = 0; | |
2798 | ||
2799 | goto check_cluster; | |
2800 | } | |
2801 | } | |
1c79356b A |
2802 | /* |
2803 | * compute the size of the upl needed to encompass | |
2804 | * the requested write... limit each call to cluster_io | |
0b4e3aa0 A |
2805 | * to the maximum UPL size... cluster_io will clip if |
2806 | * this exceeds the maximum io_size for the device, | |
2807 | * make sure to account for | |
1c79356b A |
2808 | * a starting offset that's not page aligned |
2809 | */ | |
2810 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
2811 | ||
cf7d32b8 A |
2812 | if (upl_size > max_io_size) |
2813 | upl_size = max_io_size; | |
1c79356b A |
2814 | |
2815 | pages_in_upl = upl_size / PAGE_SIZE; | |
2816 | io_size = upl_size - start_offset; | |
2817 | ||
2818 | if ((long long)io_size > total_size) | |
2819 | io_size = total_size; | |
2820 | ||
55e303ae A |
2821 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); |
2822 | ||
1c79356b | 2823 | |
91447636 A |
2824 | /* |
2825 | * Gather the pages from the buffer cache. | |
2826 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know | |
2827 | * that we intend to modify these pages. | |
2828 | */ | |
0b4e3aa0 | 2829 | kret = ubc_create_upl(vp, |
91447636 A |
2830 | upl_f_offset, |
2831 | upl_size, | |
2832 | &upl, | |
2833 | &pl, | |
b0d623f7 | 2834 | UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY)); |
1c79356b | 2835 | if (kret != KERN_SUCCESS) |
2d21ac55 | 2836 | panic("cluster_write_copy: failed to get pagelist"); |
1c79356b | 2837 | |
55e303ae | 2838 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, |
b0d623f7 | 2839 | upl, (int)upl_f_offset, start_offset, 0, 0); |
1c79356b | 2840 | |
b0d623f7 | 2841 | if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) { |
0b4e3aa0 | 2842 | int read_size; |
1c79356b | 2843 | |
0b4e3aa0 | 2844 | /* |
1c79356b A |
2845 | * we're starting in the middle of the first page of the upl |
2846 | * and the page isn't currently valid, so we're going to have | |
2847 | * to read it in first... this is a synchronous operation | |
2848 | */ | |
2849 | read_size = PAGE_SIZE; | |
2850 | ||
b0d623f7 A |
2851 | if ((upl_f_offset + read_size) > oldEOF) |
2852 | read_size = oldEOF - upl_f_offset; | |
9bccf70c | 2853 | |
91447636 | 2854 | retval = cluster_io(vp, upl, 0, upl_f_offset, read_size, |
2d21ac55 | 2855 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 2856 | if (retval) { |
0b4e3aa0 | 2857 | /* |
1c79356b A |
2858 | * we had an error during the read which causes us to abort |
2859 | * the current cluster_write request... before we do, we need | |
2860 | * to release the rest of the pages in the upl without modifying | |
2861 | * there state and mark the failed page in error | |
2862 | */ | |
935ed37a | 2863 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); |
91447636 A |
2864 | |
2865 | if (upl_size > PAGE_SIZE) | |
2866 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
2867 | |
2868 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 2869 | upl, 0, 0, retval, 0); |
1c79356b A |
2870 | break; |
2871 | } | |
2872 | } | |
2873 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { | |
2874 | /* | |
2875 | * the last offset we're writing to in this upl does not end on a page | |
2876 | * boundary... if it's not beyond the old EOF, then we'll also need to | |
2877 | * pre-read this page in if it isn't already valid | |
2878 | */ | |
2879 | upl_offset = upl_size - PAGE_SIZE; | |
2880 | ||
2881 | if ((upl_f_offset + start_offset + io_size) < oldEOF && | |
2882 | !upl_valid_page(pl, upl_offset / PAGE_SIZE)) { | |
2883 | int read_size; | |
2884 | ||
2885 | read_size = PAGE_SIZE; | |
2886 | ||
b0d623f7 A |
2887 | if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) |
2888 | read_size = oldEOF - (upl_f_offset + upl_offset); | |
9bccf70c | 2889 | |
91447636 | 2890 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size, |
2d21ac55 | 2891 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 2892 | if (retval) { |
0b4e3aa0 | 2893 | /* |
1c79356b | 2894 | * we had an error during the read which causes us to abort |
0b4e3aa0 A |
2895 | * the current cluster_write request... before we do, we |
2896 | * need to release the rest of the pages in the upl without | |
2897 | * modifying there state and mark the failed page in error | |
1c79356b | 2898 | */ |
935ed37a | 2899 | ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY); |
91447636 A |
2900 | |
2901 | if (upl_size > PAGE_SIZE) | |
2902 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b A |
2903 | |
2904 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 2905 | upl, 0, 0, retval, 0); |
1c79356b A |
2906 | break; |
2907 | } | |
2908 | } | |
2909 | } | |
1c79356b A |
2910 | xfer_resid = io_size; |
2911 | io_offset = start_offset; | |
2912 | ||
2913 | while (zero_cnt && xfer_resid) { | |
2914 | ||
2915 | if (zero_cnt < (long long)xfer_resid) | |
2916 | bytes_to_zero = zero_cnt; | |
2917 | else | |
2918 | bytes_to_zero = xfer_resid; | |
2919 | ||
b0d623f7 | 2920 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); |
9bccf70c | 2921 | |
1c79356b A |
2922 | xfer_resid -= bytes_to_zero; |
2923 | zero_cnt -= bytes_to_zero; | |
2924 | zero_off += bytes_to_zero; | |
2925 | io_offset += bytes_to_zero; | |
2926 | } | |
91447636 | 2927 | if (xfer_resid && io_resid) { |
2d21ac55 A |
2928 | u_int32_t io_requested; |
2929 | ||
91447636 | 2930 | bytes_to_move = min(io_resid, xfer_resid); |
2d21ac55 | 2931 | io_requested = bytes_to_move; |
1c79356b | 2932 | |
2d21ac55 | 2933 | retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); |
9bccf70c | 2934 | |
1c79356b | 2935 | if (retval) { |
9bccf70c | 2936 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
1c79356b A |
2937 | |
2938 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, | |
b0d623f7 | 2939 | upl, 0, 0, retval, 0); |
1c79356b | 2940 | } else { |
2d21ac55 | 2941 | io_resid -= bytes_to_move; |
1c79356b A |
2942 | xfer_resid -= bytes_to_move; |
2943 | io_offset += bytes_to_move; | |
2944 | } | |
2945 | } | |
2946 | while (xfer_resid && zero_cnt1 && retval == 0) { | |
2947 | ||
2948 | if (zero_cnt1 < (long long)xfer_resid) | |
2949 | bytes_to_zero = zero_cnt1; | |
2950 | else | |
2951 | bytes_to_zero = xfer_resid; | |
2952 | ||
b0d623f7 A |
2953 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero); |
2954 | ||
1c79356b A |
2955 | xfer_resid -= bytes_to_zero; |
2956 | zero_cnt1 -= bytes_to_zero; | |
2957 | zero_off1 += bytes_to_zero; | |
2958 | io_offset += bytes_to_zero; | |
2959 | } | |
1c79356b | 2960 | if (retval == 0) { |
9bccf70c | 2961 | int cl_index; |
2d21ac55 | 2962 | int ret_cluster_try_push; |
1c79356b A |
2963 | |
2964 | io_size += start_offset; | |
2965 | ||
2d21ac55 | 2966 | if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { |
1c79356b A |
2967 | /* |
2968 | * if we're extending the file with this write | |
2969 | * we'll zero fill the rest of the page so that | |
2970 | * if the file gets extended again in such a way as to leave a | |
2971 | * hole starting at this EOF, we'll have zero's in the correct spot | |
2972 | */ | |
55e303ae | 2973 | cluster_zero(upl, io_size, upl_size - io_size, NULL); |
1c79356b | 2974 | } |
935ed37a A |
2975 | /* |
2976 | * release the upl now if we hold one since... | |
2977 | * 1) pages in it may be present in the sparse cluster map | |
2978 | * and may span 2 separate buckets there... if they do and | |
2979 | * we happen to have to flush a bucket to make room and it intersects | |
2980 | * this upl, a deadlock may result on page BUSY | |
2981 | * 2) we're delaying the I/O... from this point forward we're just updating | |
2982 | * the cluster state... no need to hold the pages, so commit them | |
2983 | * 3) IO_SYNC is set... | |
2984 | * because we had to ask for a UPL that provides currenty non-present pages, the | |
2985 | * UPL has been automatically set to clear the dirty flags (both software and hardware) | |
2986 | * upon committing it... this is not the behavior we want since it's possible for | |
2987 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. | |
2988 | * we'll pick these pages back up later with the correct behavior specified. | |
2989 | * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush | |
2990 | * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages | |
2991 | * we hold since the flushing context is holding the cluster lock. | |
2992 | */ | |
2993 | ubc_upl_commit_range(upl, 0, upl_size, | |
2994 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); | |
2995 | check_cluster: | |
2996 | /* | |
2997 | * calculate the last logical block number | |
2998 | * that this delayed I/O encompassed | |
2999 | */ | |
3000 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); | |
3001 | ||
b0d623f7 | 3002 | if (flags & IO_SYNC) { |
9bccf70c A |
3003 | /* |
3004 | * if the IO_SYNC flag is set than we need to | |
3005 | * bypass any clusters and immediately issue | |
3006 | * the I/O | |
3007 | */ | |
3008 | goto issue_io; | |
b0d623f7 | 3009 | } |
91447636 A |
3010 | /* |
3011 | * take the lock to protect our accesses | |
3012 | * of the writebehind and sparse cluster state | |
3013 | */ | |
3014 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); | |
3015 | ||
91447636 | 3016 | if (wbp->cl_scmap) { |
55e303ae | 3017 | |
91447636 | 3018 | if ( !(flags & IO_NOCACHE)) { |
55e303ae A |
3019 | /* |
3020 | * we've fallen into the sparse | |
3021 | * cluster method of delaying dirty pages | |
55e303ae | 3022 | */ |
b0d623f7 | 3023 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); |
91447636 A |
3024 | |
3025 | lck_mtx_unlock(&wbp->cl_lockw); | |
55e303ae A |
3026 | |
3027 | continue; | |
3028 | } | |
3029 | /* | |
3030 | * must have done cached writes that fell into | |
3031 | * the sparse cluster mechanism... we've switched | |
3032 | * to uncached writes on the file, so go ahead | |
3033 | * and push whatever's in the sparse map | |
3034 | * and switch back to normal clustering | |
55e303ae | 3035 | */ |
91447636 | 3036 | wbp->cl_number = 0; |
935ed37a | 3037 | |
6d2010ae | 3038 | sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg); |
55e303ae A |
3039 | /* |
3040 | * no clusters of either type present at this point | |
3041 | * so just go directly to start_new_cluster since | |
3042 | * we know we need to delay this I/O since we've | |
3043 | * already released the pages back into the cache | |
3044 | * to avoid the deadlock with sparse_cluster_push | |
3045 | */ | |
3046 | goto start_new_cluster; | |
6d2010ae A |
3047 | } |
3048 | if (first_pass) { | |
3049 | if (write_off == wbp->cl_last_write) | |
3050 | wbp->cl_seq_written += write_cnt; | |
3051 | else | |
3052 | wbp->cl_seq_written = write_cnt; | |
3053 | ||
3054 | wbp->cl_last_write = write_off + write_cnt; | |
3055 | ||
3056 | first_pass = FALSE; | |
3057 | } | |
91447636 | 3058 | if (wbp->cl_number == 0) |
9bccf70c A |
3059 | /* |
3060 | * no clusters currently present | |
3061 | */ | |
3062 | goto start_new_cluster; | |
1c79356b | 3063 | |
91447636 | 3064 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
1c79356b | 3065 | /* |
55e303ae A |
3066 | * check each cluster that we currently hold |
3067 | * try to merge some or all of this write into | |
3068 | * one or more of the existing clusters... if | |
3069 | * any portion of the write remains, start a | |
3070 | * new cluster | |
1c79356b | 3071 | */ |
91447636 | 3072 | if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) { |
9bccf70c A |
3073 | /* |
3074 | * the current write starts at or after the current cluster | |
3075 | */ | |
cf7d32b8 | 3076 | if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
1c79356b A |
3077 | /* |
3078 | * we have a write that fits entirely | |
3079 | * within the existing cluster limits | |
3080 | */ | |
91447636 | 3081 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) |
1c79356b | 3082 | /* |
9bccf70c | 3083 | * update our idea of where the cluster ends |
1c79356b | 3084 | */ |
91447636 | 3085 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; |
9bccf70c | 3086 | break; |
1c79356b | 3087 | } |
cf7d32b8 | 3088 | if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
1c79356b A |
3089 | /* |
3090 | * we have a write that starts in the middle of the current cluster | |
55e303ae A |
3091 | * but extends beyond the cluster's limit... we know this because |
3092 | * of the previous checks | |
3093 | * we'll extend the current cluster to the max | |
91447636 | 3094 | * and update the b_addr for the current write to reflect that |
55e303ae A |
3095 | * the head of it was absorbed into this cluster... |
3096 | * note that we'll always have a leftover tail in this case since | |
3097 | * full absorbtion would have occurred in the clause above | |
1c79356b | 3098 | */ |
cf7d32b8 | 3099 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; |
55e303ae | 3100 | |
91447636 | 3101 | cl.b_addr = wbp->cl_clusters[cl_index].e_addr; |
1c79356b A |
3102 | } |
3103 | /* | |
55e303ae A |
3104 | * we come here for the case where the current write starts |
3105 | * beyond the limit of the existing cluster or we have a leftover | |
3106 | * tail after a partial absorbtion | |
9bccf70c A |
3107 | * |
3108 | * in either case, we'll check the remaining clusters before | |
3109 | * starting a new one | |
1c79356b | 3110 | */ |
9bccf70c | 3111 | } else { |
1c79356b | 3112 | /* |
55e303ae | 3113 | * the current write starts in front of the cluster we're currently considering |
1c79356b | 3114 | */ |
cf7d32b8 | 3115 | if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) { |
1c79356b | 3116 | /* |
55e303ae A |
3117 | * we can just merge the new request into |
3118 | * this cluster and leave it in the cache | |
3119 | * since the resulting cluster is still | |
3120 | * less than the maximum allowable size | |
1c79356b | 3121 | */ |
91447636 | 3122 | wbp->cl_clusters[cl_index].b_addr = cl.b_addr; |
1c79356b | 3123 | |
91447636 | 3124 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) { |
9bccf70c A |
3125 | /* |
3126 | * the current write completely | |
55e303ae | 3127 | * envelops the existing cluster and since |
cf7d32b8 | 3128 | * each write is limited to at most max_cluster_pgcount pages |
55e303ae A |
3129 | * we can just use the start and last blocknos of the write |
3130 | * to generate the cluster limits | |
9bccf70c | 3131 | */ |
91447636 | 3132 | wbp->cl_clusters[cl_index].e_addr = cl.e_addr; |
9bccf70c A |
3133 | } |
3134 | break; | |
1c79356b | 3135 | } |
9bccf70c | 3136 | |
1c79356b | 3137 | /* |
9bccf70c A |
3138 | * if we were to combine this write with the current cluster |
3139 | * we would exceed the cluster size limit.... so, | |
3140 | * let's see if there's any overlap of the new I/O with | |
55e303ae A |
3141 | * the cluster we're currently considering... in fact, we'll |
3142 | * stretch the cluster out to it's full limit and see if we | |
3143 | * get an intersection with the current write | |
9bccf70c | 3144 | * |
1c79356b | 3145 | */ |
cf7d32b8 | 3146 | if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { |
1c79356b | 3147 | /* |
55e303ae A |
3148 | * the current write extends into the proposed cluster |
3149 | * clip the length of the current write after first combining it's | |
3150 | * tail with the newly shaped cluster | |
1c79356b | 3151 | */ |
cf7d32b8 | 3152 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; |
55e303ae | 3153 | |
91447636 | 3154 | cl.e_addr = wbp->cl_clusters[cl_index].b_addr; |
55e303ae | 3155 | } |
9bccf70c A |
3156 | /* |
3157 | * if we get here, there was no way to merge | |
55e303ae A |
3158 | * any portion of this write with this cluster |
3159 | * or we could only merge part of it which | |
3160 | * will leave a tail... | |
9bccf70c A |
3161 | * we'll check the remaining clusters before starting a new one |
3162 | */ | |
1c79356b | 3163 | } |
9bccf70c | 3164 | } |
91447636 | 3165 | if (cl_index < wbp->cl_number) |
9bccf70c | 3166 | /* |
55e303ae A |
3167 | * we found an existing cluster(s) that we |
3168 | * could entirely merge this I/O into | |
9bccf70c A |
3169 | */ |
3170 | goto delay_io; | |
3171 | ||
6d2010ae A |
3172 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && |
3173 | wbp->cl_number == MAX_CLUSTERS && | |
3174 | wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { | |
3175 | uint32_t n; | |
3176 | ||
3177 | if (vp->v_mount->mnt_kern_flag & MNTK_SSD) | |
3178 | n = WRITE_BEHIND_SSD; | |
3179 | else | |
3180 | n = WRITE_BEHIND; | |
3181 | ||
3182 | while (n--) | |
3183 | cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg); | |
3184 | } | |
3185 | if (wbp->cl_number < MAX_CLUSTERS) { | |
9bccf70c A |
3186 | /* |
3187 | * we didn't find an existing cluster to | |
3188 | * merge into, but there's room to start | |
1c79356b A |
3189 | * a new one |
3190 | */ | |
9bccf70c | 3191 | goto start_new_cluster; |
6d2010ae | 3192 | } |
9bccf70c A |
3193 | /* |
3194 | * no exisitng cluster to merge with and no | |
3195 | * room to start a new one... we'll try | |
55e303ae A |
3196 | * pushing one of the existing ones... if none of |
3197 | * them are able to be pushed, we'll switch | |
3198 | * to the sparse cluster mechanism | |
91447636 | 3199 | * cluster_try_push updates cl_number to the |
55e303ae A |
3200 | * number of remaining clusters... and |
3201 | * returns the number of currently unused clusters | |
9bccf70c | 3202 | */ |
2d21ac55 A |
3203 | ret_cluster_try_push = 0; |
3204 | ||
3205 | /* | |
3206 | * if writes are not deferred, call cluster push immediately | |
3207 | */ | |
91447636 | 3208 | if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) { |
91447636 | 3209 | |
6d2010ae | 3210 | ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg); |
91447636 | 3211 | } |
9bccf70c | 3212 | |
2d21ac55 A |
3213 | /* |
3214 | * execute following regardless of writes being deferred or not | |
3215 | */ | |
91447636 | 3216 | if (ret_cluster_try_push == 0) { |
55e303ae A |
3217 | /* |
3218 | * no more room in the normal cluster mechanism | |
3219 | * so let's switch to the more expansive but expensive | |
3220 | * sparse mechanism.... | |
55e303ae | 3221 | */ |
2d21ac55 | 3222 | sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg); |
b0d623f7 | 3223 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg); |
91447636 A |
3224 | |
3225 | lck_mtx_unlock(&wbp->cl_lockw); | |
55e303ae A |
3226 | |
3227 | continue; | |
9bccf70c A |
3228 | } |
3229 | start_new_cluster: | |
91447636 A |
3230 | wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr; |
3231 | wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr; | |
9bccf70c | 3232 | |
2d21ac55 A |
3233 | wbp->cl_clusters[wbp->cl_number].io_flags = 0; |
3234 | ||
91447636 | 3235 | if (flags & IO_NOCACHE) |
2d21ac55 A |
3236 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; |
3237 | ||
3238 | if (bflag & CL_PASSIVE) | |
3239 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; | |
3240 | ||
91447636 | 3241 | wbp->cl_number++; |
55e303ae | 3242 | delay_io: |
91447636 A |
3243 | lck_mtx_unlock(&wbp->cl_lockw); |
3244 | ||
9bccf70c A |
3245 | continue; |
3246 | issue_io: | |
3247 | /* | |
935ed37a | 3248 | * we don't hold the lock at this point |
91447636 | 3249 | * |
935ed37a | 3250 | * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set |
91447636 | 3251 | * so that we correctly deal with a change in state of the hardware modify bit... |
2d21ac55 A |
3252 | * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force |
3253 | * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also | |
91447636 | 3254 | * responsible for generating the correct sized I/O(s) |
9bccf70c | 3255 | */ |
2d21ac55 | 3256 | retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg); |
1c79356b A |
3257 | } |
3258 | } | |
2d21ac55 | 3259 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); |
1c79356b A |
3260 | |
3261 | return (retval); | |
3262 | } | |
3263 | ||
2d21ac55 A |
3264 | |
3265 | ||
9bccf70c | 3266 | int |
91447636 | 3267 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) |
1c79356b | 3268 | { |
2d21ac55 A |
3269 | return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); |
3270 | } | |
3271 | ||
3272 | ||
3273 | int | |
3274 | cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) | |
3275 | { | |
3276 | int retval = 0; | |
3277 | int flags; | |
3278 | user_ssize_t cur_resid; | |
3279 | u_int32_t io_size; | |
3280 | u_int32_t read_length = 0; | |
3281 | int read_type = IO_COPY; | |
1c79356b | 3282 | |
91447636 | 3283 | flags = xflags; |
1c79356b | 3284 | |
91447636 A |
3285 | if (vp->v_flag & VNOCACHE_DATA) |
3286 | flags |= IO_NOCACHE; | |
2d21ac55 | 3287 | if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) |
91447636 A |
3288 | flags |= IO_RAOFF; |
3289 | ||
2d21ac55 A |
3290 | /* |
3291 | * do a read through the cache if one of the following is true.... | |
3292 | * NOCACHE is not true | |
3293 | * the uio request doesn't target USERSPACE | |
3294 | * otherwise, find out if we want the direct or contig variant for | |
3295 | * the first vector in the uio request | |
3296 | */ | |
3297 | if ( (flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ) | |
3298 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
cc9f6e38 | 3299 | |
2d21ac55 | 3300 | while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) { |
91447636 | 3301 | |
2d21ac55 A |
3302 | switch (read_type) { |
3303 | ||
3304 | case IO_COPY: | |
91447636 | 3305 | /* |
2d21ac55 A |
3306 | * make sure the uio_resid isn't too big... |
3307 | * internally, we want to handle all of the I/O in | |
3308 | * chunk sizes that fit in a 32 bit int | |
91447636 | 3309 | */ |
2d21ac55 A |
3310 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) |
3311 | io_size = MAX_IO_REQUEST_SIZE; | |
3312 | else | |
3313 | io_size = (u_int32_t)cur_resid; | |
91447636 | 3314 | |
2d21ac55 A |
3315 | retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg); |
3316 | break; | |
1c79356b | 3317 | |
2d21ac55 A |
3318 | case IO_DIRECT: |
3319 | retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg); | |
3320 | break; | |
91447636 | 3321 | |
2d21ac55 A |
3322 | case IO_CONTIG: |
3323 | retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags); | |
3324 | break; | |
3325 | ||
3326 | case IO_UNKNOWN: | |
3327 | retval = cluster_io_type(uio, &read_type, &read_length, 0); | |
3328 | break; | |
3329 | } | |
3330 | } | |
3331 | return (retval); | |
3332 | } | |
91447636 | 3333 | |
91447636 | 3334 | |
91447636 | 3335 | |
2d21ac55 | 3336 | static void |
b0d623f7 | 3337 | cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) |
2d21ac55 A |
3338 | { |
3339 | int range; | |
3340 | int abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
1c79356b | 3341 | |
2d21ac55 | 3342 | if ((range = last_pg - start_pg)) { |
b0d623f7 | 3343 | if (take_reference) |
2d21ac55 A |
3344 | abort_flags |= UPL_ABORT_REFERENCE; |
3345 | ||
3346 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); | |
3347 | } | |
1c79356b A |
3348 | } |
3349 | ||
2d21ac55 | 3350 | |
9bccf70c | 3351 | static int |
2d21ac55 | 3352 | cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b A |
3353 | { |
3354 | upl_page_info_t *pl; | |
3355 | upl_t upl; | |
3356 | vm_offset_t upl_offset; | |
b0d623f7 | 3357 | u_int32_t upl_size; |
1c79356b A |
3358 | off_t upl_f_offset; |
3359 | int start_offset; | |
3360 | int start_pg; | |
3361 | int last_pg; | |
91447636 | 3362 | int uio_last = 0; |
1c79356b A |
3363 | int pages_in_upl; |
3364 | off_t max_size; | |
55e303ae A |
3365 | off_t last_ioread_offset; |
3366 | off_t last_request_offset; | |
1c79356b | 3367 | kern_return_t kret; |
1c79356b A |
3368 | int error = 0; |
3369 | int retval = 0; | |
2d21ac55 A |
3370 | u_int32_t size_of_prefetch; |
3371 | u_int32_t xsize; | |
3372 | u_int32_t io_size; | |
cf7d32b8 | 3373 | u_int32_t max_rd_size; |
b0d623f7 A |
3374 | u_int32_t max_io_size; |
3375 | u_int32_t max_prefetch; | |
55e303ae A |
3376 | u_int rd_ahead_enabled = 1; |
3377 | u_int prefetch_enabled = 1; | |
91447636 A |
3378 | struct cl_readahead * rap; |
3379 | struct clios iostate; | |
3380 | struct cl_extent extent; | |
2d21ac55 A |
3381 | int bflag; |
3382 | int take_reference = 1; | |
6d2010ae | 3383 | #if CONFIG_EMBEDDED |
2d21ac55 | 3384 | struct uthread *ut; |
6d2010ae | 3385 | #endif /* CONFIG_EMBEDDED */ |
2d21ac55 | 3386 | int policy = IOPOL_DEFAULT; |
6d2010ae | 3387 | boolean_t iolock_inited = FALSE; |
b0d623f7 A |
3388 | |
3389 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, | |
3390 | (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); | |
3391 | ||
6d2010ae A |
3392 | #if !CONFIG_EMBEDDED |
3393 | policy = proc_get_task_selfdiskacc(); | |
3394 | #else /* !CONFIG_EMBEDDED */ | |
2d21ac55 A |
3395 | policy = current_proc()->p_iopol_disk; |
3396 | ||
3397 | ut = get_bsdthread_info(current_thread()); | |
3398 | ||
3399 | if (ut->uu_iopol_disk != IOPOL_DEFAULT) | |
3400 | policy = ut->uu_iopol_disk; | |
6d2010ae | 3401 | #endif /* !CONFIG_EMBEDDED */ |
2d21ac55 | 3402 | |
b0d623f7 | 3403 | if (policy == IOPOL_THROTTLE || (flags & IO_NOCACHE)) |
2d21ac55 A |
3404 | take_reference = 0; |
3405 | ||
3406 | if (flags & IO_PASSIVE) | |
cf7d32b8 | 3407 | bflag = CL_PASSIVE; |
2d21ac55 | 3408 | else |
b0d623f7 | 3409 | bflag = 0; |
cf7d32b8 | 3410 | |
b0d623f7 | 3411 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
6d2010ae | 3412 | max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD)); |
b0d623f7 | 3413 | max_rd_size = max_prefetch; |
55e303ae | 3414 | |
2d21ac55 | 3415 | last_request_offset = uio->uio_offset + io_req_size; |
55e303ae | 3416 | |
b0d623f7 A |
3417 | if (last_request_offset > filesize) |
3418 | last_request_offset = filesize; | |
3419 | ||
2d21ac55 | 3420 | if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { |
55e303ae | 3421 | rd_ahead_enabled = 0; |
91447636 A |
3422 | rap = NULL; |
3423 | } else { | |
b0d623f7 | 3424 | if (cluster_hard_throttle_on(vp, 1)) { |
91447636 A |
3425 | rd_ahead_enabled = 0; |
3426 | prefetch_enabled = 0; | |
55e303ae | 3427 | |
91447636 | 3428 | max_rd_size = HARD_THROTTLE_MAXSIZE; |
b0d623f7 A |
3429 | } else if (policy == IOPOL_THROTTLE) { |
3430 | rd_ahead_enabled = 0; | |
3431 | prefetch_enabled = 0; | |
91447636 A |
3432 | } |
3433 | if ((rap = cluster_get_rap(vp)) == NULL) | |
3434 | rd_ahead_enabled = 0; | |
b0d623f7 A |
3435 | else { |
3436 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; | |
3437 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; | |
3438 | } | |
55e303ae | 3439 | } |
91447636 | 3440 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { |
55e303ae A |
3441 | /* |
3442 | * determine if we already have a read-ahead in the pipe courtesy of the | |
3443 | * last read systemcall that was issued... | |
3444 | * if so, pick up it's extent to determine where we should start | |
3445 | * with respect to any read-ahead that might be necessary to | |
3446 | * garner all the data needed to complete this read systemcall | |
3447 | */ | |
91447636 | 3448 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; |
1c79356b | 3449 | |
55e303ae A |
3450 | if (last_ioread_offset < uio->uio_offset) |
3451 | last_ioread_offset = (off_t)0; | |
3452 | else if (last_ioread_offset > last_request_offset) | |
3453 | last_ioread_offset = last_request_offset; | |
3454 | } else | |
3455 | last_ioread_offset = (off_t)0; | |
1c79356b | 3456 | |
2d21ac55 | 3457 | while (io_req_size && uio->uio_offset < filesize && retval == 0) { |
b0d623f7 A |
3458 | |
3459 | max_size = filesize - uio->uio_offset; | |
1c79356b | 3460 | |
2d21ac55 A |
3461 | if ((off_t)(io_req_size) < max_size) |
3462 | io_size = io_req_size; | |
1c79356b A |
3463 | else |
3464 | io_size = max_size; | |
9bccf70c | 3465 | |
91447636 | 3466 | if (!(flags & IO_NOCACHE)) { |
1c79356b | 3467 | |
55e303ae | 3468 | while (io_size) { |
2d21ac55 A |
3469 | u_int32_t io_resid; |
3470 | u_int32_t io_requested; | |
1c79356b | 3471 | |
55e303ae A |
3472 | /* |
3473 | * if we keep finding the pages we need already in the cache, then | |
2d21ac55 | 3474 | * don't bother to call cluster_read_prefetch since it costs CPU cycles |
55e303ae A |
3475 | * to determine that we have all the pages we need... once we miss in |
3476 | * the cache and have issued an I/O, than we'll assume that we're likely | |
3477 | * to continue to miss in the cache and it's to our advantage to try and prefetch | |
3478 | */ | |
3479 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) { | |
3480 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { | |
3481 | /* | |
3482 | * we've already issued I/O for this request and | |
3483 | * there's still work to do and | |
3484 | * our prefetch stream is running dry, so issue a | |
3485 | * pre-fetch I/O... the I/O latency will overlap | |
3486 | * with the copying of the data | |
3487 | */ | |
3488 | if (size_of_prefetch > max_rd_size) | |
3489 | size_of_prefetch = max_rd_size; | |
1c79356b | 3490 | |
2d21ac55 | 3491 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); |
1c79356b | 3492 | |
55e303ae A |
3493 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); |
3494 | ||
3495 | if (last_ioread_offset > last_request_offset) | |
3496 | last_ioread_offset = last_request_offset; | |
3497 | } | |
3498 | } | |
3499 | /* | |
3500 | * limit the size of the copy we're about to do so that | |
3501 | * we can notice that our I/O pipe is running dry and | |
3502 | * get the next I/O issued before it does go dry | |
3503 | */ | |
cf7d32b8 A |
3504 | if (last_ioread_offset && io_size > (max_io_size / 4)) |
3505 | io_resid = (max_io_size / 4); | |
55e303ae A |
3506 | else |
3507 | io_resid = io_size; | |
1c79356b | 3508 | |
55e303ae | 3509 | io_requested = io_resid; |
1c79356b | 3510 | |
6d2010ae | 3511 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference); |
2d21ac55 A |
3512 | |
3513 | xsize = io_requested - io_resid; | |
1c79356b | 3514 | |
2d21ac55 A |
3515 | io_size -= xsize; |
3516 | io_req_size -= xsize; | |
1c79356b | 3517 | |
55e303ae A |
3518 | if (retval || io_resid) |
3519 | /* | |
3520 | * if we run into a real error or | |
3521 | * a page that is not in the cache | |
3522 | * we need to leave streaming mode | |
3523 | */ | |
3524 | break; | |
3525 | ||
b0d623f7 | 3526 | if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { |
55e303ae A |
3527 | /* |
3528 | * we're already finished the I/O for this read request | |
3529 | * let's see if we should do a read-ahead | |
3530 | */ | |
2d21ac55 | 3531 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
55e303ae | 3532 | } |
1c79356b | 3533 | } |
1c79356b A |
3534 | if (retval) |
3535 | break; | |
1c79356b | 3536 | if (io_size == 0) { |
91447636 A |
3537 | if (rap != NULL) { |
3538 | if (extent.e_addr < rap->cl_lastr) | |
3539 | rap->cl_maxra = 0; | |
3540 | rap->cl_lastr = extent.e_addr; | |
3541 | } | |
1c79356b A |
3542 | break; |
3543 | } | |
b0d623f7 A |
3544 | /* |
3545 | * recompute max_size since cluster_copy_ubc_data_internal | |
3546 | * may have advanced uio->uio_offset | |
3547 | */ | |
3548 | max_size = filesize - uio->uio_offset; | |
1c79356b | 3549 | } |
b0d623f7 A |
3550 | /* |
3551 | * compute the size of the upl needed to encompass | |
3552 | * the requested read... limit each call to cluster_io | |
3553 | * to the maximum UPL size... cluster_io will clip if | |
3554 | * this exceeds the maximum io_size for the device, | |
3555 | * make sure to account for | |
3556 | * a starting offset that's not page aligned | |
3557 | */ | |
3558 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
3559 | upl_f_offset = uio->uio_offset - (off_t)start_offset; | |
3560 | ||
55e303ae A |
3561 | if (io_size > max_rd_size) |
3562 | io_size = max_rd_size; | |
3563 | ||
1c79356b | 3564 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
55e303ae | 3565 | |
2d21ac55 | 3566 | if (flags & IO_NOCACHE) { |
cf7d32b8 A |
3567 | if (upl_size > max_io_size) |
3568 | upl_size = max_io_size; | |
2d21ac55 | 3569 | } else { |
cf7d32b8 A |
3570 | if (upl_size > max_io_size / 4) |
3571 | upl_size = max_io_size / 4; | |
2d21ac55 | 3572 | } |
1c79356b A |
3573 | pages_in_upl = upl_size / PAGE_SIZE; |
3574 | ||
3575 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, | |
b0d623f7 | 3576 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b | 3577 | |
0b4e3aa0 | 3578 | kret = ubc_create_upl(vp, |
91447636 A |
3579 | upl_f_offset, |
3580 | upl_size, | |
3581 | &upl, | |
3582 | &pl, | |
2d21ac55 | 3583 | UPL_FILE_IO | UPL_SET_LITE); |
1c79356b | 3584 | if (kret != KERN_SUCCESS) |
2d21ac55 | 3585 | panic("cluster_read_copy: failed to get pagelist"); |
1c79356b | 3586 | |
1c79356b | 3587 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, |
b0d623f7 | 3588 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
1c79356b A |
3589 | |
3590 | /* | |
3591 | * scan from the beginning of the upl looking for the first | |
3592 | * non-valid page.... this will become the first page in | |
3593 | * the request we're going to make to 'cluster_io'... if all | |
3594 | * of the pages are valid, we won't call through to 'cluster_io' | |
3595 | */ | |
3596 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { | |
3597 | if (!upl_valid_page(pl, start_pg)) | |
3598 | break; | |
3599 | } | |
3600 | ||
3601 | /* | |
3602 | * scan from the starting invalid page looking for a valid | |
3603 | * page before the end of the upl is reached, if we | |
3604 | * find one, then it will be the last page of the request to | |
3605 | * 'cluster_io' | |
3606 | */ | |
3607 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { | |
3608 | if (upl_valid_page(pl, last_pg)) | |
3609 | break; | |
3610 | } | |
55e303ae A |
3611 | iostate.io_completed = 0; |
3612 | iostate.io_issued = 0; | |
3613 | iostate.io_error = 0; | |
3614 | iostate.io_wanted = 0; | |
1c79356b A |
3615 | |
3616 | if (start_pg < last_pg) { | |
3617 | /* | |
3618 | * we found a range of 'invalid' pages that must be filled | |
3619 | * if the last page in this range is the last page of the file | |
3620 | * we may have to clip the size of it to keep from reading past | |
3621 | * the end of the last physical block associated with the file | |
3622 | */ | |
6d2010ae A |
3623 | if (iolock_inited == FALSE) { |
3624 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); | |
3625 | ||
3626 | iolock_inited = TRUE; | |
3627 | } | |
1c79356b A |
3628 | upl_offset = start_pg * PAGE_SIZE; |
3629 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
3630 | ||
b0d623f7 | 3631 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) |
1c79356b | 3632 | io_size = filesize - (upl_f_offset + upl_offset); |
9bccf70c | 3633 | |
1c79356b | 3634 | /* |
55e303ae | 3635 | * issue an asynchronous read to cluster_io |
1c79356b A |
3636 | */ |
3637 | ||
3638 | error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, | |
2d21ac55 | 3639 | io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg); |
6d2010ae A |
3640 | |
3641 | if (rap) { | |
3642 | if (extent.e_addr < rap->cl_maxra) { | |
3643 | /* | |
3644 | * we've just issued a read for a block that should have been | |
3645 | * in the cache courtesy of the read-ahead engine... something | |
3646 | * has gone wrong with the pipeline, so reset the read-ahead | |
3647 | * logic which will cause us to restart from scratch | |
3648 | */ | |
3649 | rap->cl_maxra = 0; | |
3650 | } | |
3651 | } | |
1c79356b A |
3652 | } |
3653 | if (error == 0) { | |
3654 | /* | |
3655 | * if the read completed successfully, or there was no I/O request | |
55e303ae A |
3656 | * issued, than copy the data into user land via 'cluster_upl_copy_data' |
3657 | * we'll first add on any 'valid' | |
1c79356b A |
3658 | * pages that were present in the upl when we acquired it. |
3659 | */ | |
3660 | u_int val_size; | |
1c79356b A |
3661 | |
3662 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { | |
3663 | if (!upl_valid_page(pl, uio_last)) | |
3664 | break; | |
3665 | } | |
2d21ac55 A |
3666 | if (uio_last < pages_in_upl) { |
3667 | /* | |
3668 | * there were some invalid pages beyond the valid pages | |
3669 | * that we didn't issue an I/O for, just release them | |
3670 | * unchanged now, so that any prefetch/readahed can | |
3671 | * include them | |
3672 | */ | |
3673 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, | |
3674 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
3675 | } | |
3676 | ||
1c79356b | 3677 | /* |
2d21ac55 | 3678 | * compute size to transfer this round, if io_req_size is |
55e303ae | 3679 | * still non-zero after this attempt, we'll loop around and |
1c79356b A |
3680 | * set up for another I/O. |
3681 | */ | |
3682 | val_size = (uio_last * PAGE_SIZE) - start_offset; | |
3683 | ||
55e303ae | 3684 | if (val_size > max_size) |
1c79356b A |
3685 | val_size = max_size; |
3686 | ||
2d21ac55 A |
3687 | if (val_size > io_req_size) |
3688 | val_size = io_req_size; | |
1c79356b | 3689 | |
2d21ac55 | 3690 | if ((uio->uio_offset + val_size) > last_ioread_offset) |
55e303ae | 3691 | last_ioread_offset = uio->uio_offset + val_size; |
1c79356b | 3692 | |
55e303ae | 3693 | if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) { |
1c79356b | 3694 | |
2d21ac55 A |
3695 | if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { |
3696 | /* | |
3697 | * if there's still I/O left to do for this request, and... | |
3698 | * we're not in hard throttle mode, and... | |
3699 | * we're close to using up the previous prefetch, then issue a | |
3700 | * new pre-fetch I/O... the I/O latency will overlap | |
3701 | * with the copying of the data | |
3702 | */ | |
3703 | if (size_of_prefetch > max_rd_size) | |
3704 | size_of_prefetch = max_rd_size; | |
3705 | ||
3706 | size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag); | |
3707 | ||
3708 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); | |
55e303ae | 3709 | |
2d21ac55 A |
3710 | if (last_ioread_offset > last_request_offset) |
3711 | last_ioread_offset = last_request_offset; | |
3712 | } | |
1c79356b | 3713 | |
55e303ae A |
3714 | } else if ((uio->uio_offset + val_size) == last_request_offset) { |
3715 | /* | |
3716 | * this transfer will finish this request, so... | |
3717 | * let's try to read ahead if we're in | |
3718 | * a sequential access pattern and we haven't | |
3719 | * explicitly disabled it | |
3720 | */ | |
3721 | if (rd_ahead_enabled) | |
2d21ac55 | 3722 | cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag); |
91447636 A |
3723 | |
3724 | if (rap != NULL) { | |
3725 | if (extent.e_addr < rap->cl_lastr) | |
3726 | rap->cl_maxra = 0; | |
3727 | rap->cl_lastr = extent.e_addr; | |
3728 | } | |
9bccf70c | 3729 | } |
6d2010ae A |
3730 | if (iostate.io_issued > iostate.io_completed) |
3731 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
cf7d32b8 | 3732 | |
55e303ae A |
3733 | if (iostate.io_error) |
3734 | error = iostate.io_error; | |
2d21ac55 A |
3735 | else { |
3736 | u_int32_t io_requested; | |
3737 | ||
3738 | io_requested = val_size; | |
3739 | ||
3740 | retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); | |
3741 | ||
3742 | io_req_size -= (val_size - io_requested); | |
3743 | } | |
6d2010ae A |
3744 | } else { |
3745 | if (iostate.io_issued > iostate.io_completed) | |
3746 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
1c79356b A |
3747 | } |
3748 | if (start_pg < last_pg) { | |
3749 | /* | |
3750 | * compute the range of pages that we actually issued an I/O for | |
3751 | * and either commit them as valid if the I/O succeeded | |
2d21ac55 A |
3752 | * or abort them if the I/O failed or we're not supposed to |
3753 | * keep them in the cache | |
1c79356b A |
3754 | */ |
3755 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
3756 | ||
b0d623f7 | 3757 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); |
1c79356b | 3758 | |
91447636 | 3759 | if (error || (flags & IO_NOCACHE)) |
0b4e3aa0 | 3760 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, |
2d21ac55 | 3761 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
b0d623f7 A |
3762 | else { |
3763 | int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; | |
3764 | ||
3765 | if (take_reference) | |
3766 | commit_flags |= UPL_COMMIT_INACTIVATE; | |
3767 | else | |
3768 | commit_flags |= UPL_COMMIT_SPECULATE; | |
1c79356b | 3769 | |
b0d623f7 A |
3770 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); |
3771 | } | |
3772 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); | |
1c79356b A |
3773 | } |
3774 | if ((last_pg - start_pg) < pages_in_upl) { | |
1c79356b A |
3775 | /* |
3776 | * the set of pages that we issued an I/O for did not encompass | |
3777 | * the entire upl... so just release these without modifying | |
55e303ae | 3778 | * their state |
1c79356b A |
3779 | */ |
3780 | if (error) | |
9bccf70c | 3781 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); |
1c79356b | 3782 | else { |
1c79356b | 3783 | |
2d21ac55 | 3784 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, |
b0d623f7 | 3785 | upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); |
2d21ac55 A |
3786 | |
3787 | /* | |
3788 | * handle any valid pages at the beginning of | |
3789 | * the upl... release these appropriately | |
3790 | */ | |
b0d623f7 | 3791 | cluster_read_upl_release(upl, 0, start_pg, take_reference); |
2d21ac55 A |
3792 | |
3793 | /* | |
3794 | * handle any valid pages immediately after the | |
3795 | * pages we issued I/O for... ... release these appropriately | |
3796 | */ | |
b0d623f7 | 3797 | cluster_read_upl_release(upl, last_pg, uio_last, take_reference); |
2d21ac55 | 3798 | |
b0d623f7 | 3799 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); |
1c79356b A |
3800 | } |
3801 | } | |
3802 | if (retval == 0) | |
3803 | retval = error; | |
91447636 | 3804 | |
2d21ac55 | 3805 | if (io_req_size) { |
b0d623f7 | 3806 | if (cluster_hard_throttle_on(vp, 1)) { |
91447636 A |
3807 | rd_ahead_enabled = 0; |
3808 | prefetch_enabled = 0; | |
3809 | ||
3810 | max_rd_size = HARD_THROTTLE_MAXSIZE; | |
3811 | } else { | |
2d21ac55 A |
3812 | if (max_rd_size == HARD_THROTTLE_MAXSIZE) { |
3813 | /* | |
3814 | * coming out of throttled state | |
3815 | */ | |
b0d623f7 A |
3816 | if (policy != IOPOL_THROTTLE) { |
3817 | if (rap != NULL) | |
3818 | rd_ahead_enabled = 1; | |
3819 | prefetch_enabled = 1; | |
3820 | } | |
cf7d32b8 | 3821 | max_rd_size = max_prefetch; |
2d21ac55 A |
3822 | last_ioread_offset = 0; |
3823 | } | |
91447636 A |
3824 | } |
3825 | } | |
3826 | } | |
6d2010ae A |
3827 | if (iolock_inited == TRUE) { |
3828 | if (iostate.io_issued > iostate.io_completed) { | |
3829 | /* | |
3830 | * cluster_io returned an error after it | |
3831 | * had already issued some I/O. we need | |
3832 | * to wait for that I/O to complete before | |
3833 | * we can destroy the iostate mutex... | |
3834 | * 'retval' already contains the early error | |
3835 | * so no need to pick it up from iostate.io_error | |
3836 | */ | |
3837 | cluster_iostate_wait(&iostate, 0, "cluster_read_copy"); | |
3838 | } | |
3839 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); | |
3840 | } | |
91447636 A |
3841 | if (rap != NULL) { |
3842 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
2d21ac55 | 3843 | (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); |
91447636 A |
3844 | |
3845 | lck_mtx_unlock(&rap->cl_lockr); | |
3846 | } else { | |
3847 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, | |
2d21ac55 | 3848 | (int)uio->uio_offset, io_req_size, 0, retval, 0); |
1c79356b A |
3849 | } |
3850 | ||
3851 | return (retval); | |
3852 | } | |
3853 | ||
b4c24cb9 | 3854 | |
9bccf70c | 3855 | static int |
2d21ac55 A |
3856 | cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
3857 | int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
1c79356b A |
3858 | { |
3859 | upl_t upl; | |
3860 | upl_page_info_t *pl; | |
2d21ac55 | 3861 | off_t max_io_size; |
b0d623f7 A |
3862 | vm_offset_t upl_offset, vector_upl_offset = 0; |
3863 | upl_size_t upl_size, vector_upl_size = 0; | |
2d21ac55 A |
3864 | vm_size_t upl_needed_size; |
3865 | unsigned int pages_in_pl; | |
1c79356b A |
3866 | int upl_flags; |
3867 | kern_return_t kret; | |
2d21ac55 | 3868 | unsigned int i; |
1c79356b | 3869 | int force_data_sync; |
1c79356b | 3870 | int retval = 0; |
91447636 | 3871 | int no_zero_fill = 0; |
2d21ac55 A |
3872 | int io_flag = 0; |
3873 | int misaligned = 0; | |
d7e50217 | 3874 | struct clios iostate; |
2d21ac55 A |
3875 | user_addr_t iov_base; |
3876 | u_int32_t io_req_size; | |
3877 | u_int32_t offset_in_file; | |
3878 | u_int32_t offset_in_iovbase; | |
3879 | u_int32_t io_size; | |
3880 | u_int32_t io_min; | |
3881 | u_int32_t xsize; | |
3882 | u_int32_t devblocksize; | |
3883 | u_int32_t mem_alignment_mask; | |
b0d623f7 A |
3884 | u_int32_t max_upl_size; |
3885 | u_int32_t max_rd_size; | |
3886 | u_int32_t max_rd_ahead; | |
6d2010ae | 3887 | boolean_t strict_uncached_IO = FALSE; |
cf7d32b8 | 3888 | |
b0d623f7 A |
3889 | u_int32_t vector_upl_iosize = 0; |
3890 | int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1); | |
3891 | off_t v_upl_uio_offset = 0; | |
3892 | int vector_upl_index=0; | |
3893 | upl_t vector_upl = NULL; | |
cf7d32b8 | 3894 | |
b0d623f7 A |
3895 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, |
3896 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
cf7d32b8 | 3897 | |
b0d623f7 | 3898 | max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ); |
2d21ac55 | 3899 | |
b0d623f7 A |
3900 | max_rd_size = max_upl_size; |
3901 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); | |
1c79356b | 3902 | |
b0d623f7 | 3903 | io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; |
6d2010ae | 3904 | |
b0d623f7 A |
3905 | if (flags & IO_PASSIVE) |
3906 | io_flag |= CL_PASSIVE; | |
1c79356b | 3907 | |
d7e50217 A |
3908 | iostate.io_completed = 0; |
3909 | iostate.io_issued = 0; | |
3910 | iostate.io_error = 0; | |
3911 | iostate.io_wanted = 0; | |
3912 | ||
6d2010ae A |
3913 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
3914 | ||
2d21ac55 A |
3915 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
3916 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
3917 | ||
3918 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
3919 | (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); | |
3920 | ||
3921 | if (devblocksize == 1) { | |
3922 | /* | |
3923 | * the AFP client advertises a devblocksize of 1 | |
3924 | * however, its BLOCKMAP routine maps to physical | |
3925 | * blocks that are PAGE_SIZE in size... | |
3926 | * therefore we can't ask for I/Os that aren't page aligned | |
3927 | * or aren't multiples of PAGE_SIZE in size | |
3928 | * by setting devblocksize to PAGE_SIZE, we re-instate | |
3929 | * the old behavior we had before the mem_alignment_mask | |
3930 | * changes went in... | |
3931 | */ | |
3932 | devblocksize = PAGE_SIZE; | |
3933 | } | |
6d2010ae A |
3934 | |
3935 | strict_uncached_IO = ubc_strict_uncached_IO(vp); | |
3936 | ||
2d21ac55 A |
3937 | next_dread: |
3938 | io_req_size = *read_length; | |
3939 | iov_base = uio_curriovbase(uio); | |
3940 | ||
3941 | max_io_size = filesize - uio->uio_offset; | |
3942 | ||
3943 | if ((off_t)io_req_size > max_io_size) | |
3944 | io_req_size = max_io_size; | |
3945 | ||
3946 | offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); | |
3947 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; | |
3948 | ||
3949 | if (offset_in_file || offset_in_iovbase) { | |
3950 | /* | |
3951 | * one of the 2 important offsets is misaligned | |
3952 | * so fire an I/O through the cache for this entire vector | |
3953 | */ | |
3954 | misaligned = 1; | |
3955 | } | |
3956 | if (iov_base & (devblocksize - 1)) { | |
3957 | /* | |
3958 | * the offset in memory must be on a device block boundary | |
3959 | * so that we can guarantee that we can generate an | |
3960 | * I/O that ends on a page boundary in cluster_io | |
3961 | */ | |
3962 | misaligned = 1; | |
3963 | } | |
3964 | /* | |
3965 | * When we get to this point, we know... | |
3966 | * -- the offset into the file is on a devblocksize boundary | |
3967 | */ | |
3968 | ||
3969 | while (io_req_size && retval == 0) { | |
3970 | u_int32_t io_start; | |
1c79356b | 3971 | |
b0d623f7 | 3972 | if (cluster_hard_throttle_on(vp, 1)) { |
91447636 A |
3973 | max_rd_size = HARD_THROTTLE_MAXSIZE; |
3974 | max_rd_ahead = HARD_THROTTLE_MAXSIZE - 1; | |
3975 | } else { | |
cf7d32b8 | 3976 | max_rd_size = max_upl_size; |
b0d623f7 | 3977 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); |
91447636 | 3978 | } |
2d21ac55 | 3979 | io_start = io_size = io_req_size; |
1c79356b | 3980 | |
d7e50217 A |
3981 | /* |
3982 | * First look for pages already in the cache | |
3983 | * and move them to user space. | |
2d21ac55 A |
3984 | * |
3985 | * cluster_copy_ubc_data returns the resid | |
3986 | * in io_size | |
d7e50217 | 3987 | */ |
6d2010ae A |
3988 | if (strict_uncached_IO == FALSE) { |
3989 | retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0); | |
3990 | } | |
2d21ac55 A |
3991 | /* |
3992 | * calculate the number of bytes actually copied | |
3993 | * starting size - residual | |
3994 | */ | |
3995 | xsize = io_start - io_size; | |
3996 | ||
3997 | io_req_size -= xsize; | |
3998 | ||
b0d623f7 A |
3999 | if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { |
4000 | /* | |
4001 | * We found something in the cache or we have an iov_base that's not | |
4002 | * page-aligned. | |
4003 | * | |
4004 | * Issue all I/O's that have been collected within this Vectored UPL. | |
4005 | */ | |
4006 | if(vector_upl_index) { | |
4007 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4008 | reset_vector_run_state(); | |
4009 | } | |
4010 | ||
4011 | if(xsize) | |
4012 | useVectorUPL = 0; | |
4013 | ||
4014 | /* | |
4015 | * After this point, if we are using the Vector UPL path and the base is | |
4016 | * not page-aligned then the UPL with that base will be the first in the vector UPL. | |
4017 | */ | |
4018 | } | |
4019 | ||
2d21ac55 A |
4020 | /* |
4021 | * check to see if we are finished with this request... | |
4022 | */ | |
4023 | if (io_req_size == 0 || misaligned) { | |
4024 | /* | |
4025 | * see if there's another uio vector to | |
4026 | * process that's of type IO_DIRECT | |
4027 | * | |
4028 | * break out of while loop to get there | |
d7e50217 | 4029 | */ |
2d21ac55 | 4030 | break; |
0b4e3aa0 | 4031 | } |
d7e50217 | 4032 | /* |
2d21ac55 | 4033 | * assume the request ends on a device block boundary |
d7e50217 | 4034 | */ |
2d21ac55 A |
4035 | io_min = devblocksize; |
4036 | ||
4037 | /* | |
4038 | * we can handle I/O's in multiples of the device block size | |
4039 | * however, if io_size isn't a multiple of devblocksize we | |
4040 | * want to clip it back to the nearest page boundary since | |
4041 | * we are going to have to go through cluster_read_copy to | |
4042 | * deal with the 'overhang'... by clipping it to a PAGE_SIZE | |
4043 | * multiple, we avoid asking the drive for the same physical | |
4044 | * blocks twice.. once for the partial page at the end of the | |
4045 | * request and a 2nd time for the page we read into the cache | |
4046 | * (which overlaps the end of the direct read) in order to | |
4047 | * get at the overhang bytes | |
4048 | */ | |
4049 | if (io_size & (devblocksize - 1)) { | |
4050 | /* | |
4051 | * request does NOT end on a device block boundary | |
4052 | * so clip it back to a PAGE_SIZE boundary | |
4053 | */ | |
4054 | io_size &= ~PAGE_MASK; | |
4055 | io_min = PAGE_SIZE; | |
4056 | } | |
4057 | if (retval || io_size < io_min) { | |
4058 | /* | |
4059 | * either an error or we only have the tail left to | |
4060 | * complete via the copy path... | |
d7e50217 A |
4061 | * we may have already spun some portion of this request |
4062 | * off as async requests... we need to wait for the I/O | |
4063 | * to complete before returning | |
4064 | */ | |
2d21ac55 | 4065 | goto wait_for_dreads; |
d7e50217 | 4066 | } |
55e303ae | 4067 | |
6d2010ae | 4068 | if (strict_uncached_IO == FALSE) { |
1c79356b | 4069 | |
6d2010ae A |
4070 | if ((xsize = io_size) > max_rd_size) |
4071 | xsize = max_rd_size; | |
55e303ae | 4072 | |
6d2010ae A |
4073 | io_size = 0; |
4074 | ||
4075 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); | |
4076 | ||
4077 | if (io_size == 0) { | |
4078 | /* | |
4079 | * a page must have just come into the cache | |
4080 | * since the first page in this range is no | |
4081 | * longer absent, go back and re-evaluate | |
4082 | */ | |
4083 | continue; | |
4084 | } | |
2d21ac55 | 4085 | } |
6d2010ae | 4086 | |
cc9f6e38 | 4087 | iov_base = uio_curriovbase(uio); |
1c79356b | 4088 | |
2d21ac55 | 4089 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
d7e50217 | 4090 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK; |
1c79356b | 4091 | |
d7e50217 | 4092 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, |
cc9f6e38 | 4093 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
1c79356b | 4094 | |
0b4c1975 | 4095 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) |
91447636 | 4096 | no_zero_fill = 1; |
0b4c1975 | 4097 | else |
91447636 | 4098 | no_zero_fill = 0; |
0b4c1975 | 4099 | |
d7e50217 A |
4100 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
4101 | pages_in_pl = 0; | |
4102 | upl_size = upl_needed_size; | |
55e303ae | 4103 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
1c79356b | 4104 | |
91447636 A |
4105 | if (no_zero_fill) |
4106 | upl_flags |= UPL_NOZEROFILL; | |
4107 | if (force_data_sync) | |
4108 | upl_flags |= UPL_FORCE_DATA_SYNC; | |
4109 | ||
91447636 | 4110 | kret = vm_map_create_upl(current_map(), |
cc9f6e38 | 4111 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
91447636 | 4112 | &upl_size, &upl, NULL, &pages_in_pl, &upl_flags); |
1c79356b | 4113 | |
d7e50217 A |
4114 | if (kret != KERN_SUCCESS) { |
4115 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4116 | (int)upl_offset, upl_size, io_size, kret, 0); | |
d7e50217 | 4117 | /* |
2d21ac55 | 4118 | * failed to get pagelist |
d7e50217 A |
4119 | * |
4120 | * we may have already spun some portion of this request | |
4121 | * off as async requests... we need to wait for the I/O | |
4122 | * to complete before returning | |
4123 | */ | |
2d21ac55 | 4124 | goto wait_for_dreads; |
d7e50217 A |
4125 | } |
4126 | pages_in_pl = upl_size / PAGE_SIZE; | |
4127 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); | |
1c79356b | 4128 | |
d7e50217 | 4129 | for (i = 0; i < pages_in_pl; i++) { |
0b4c1975 | 4130 | if (!upl_page_present(pl, i)) |
d7e50217 A |
4131 | break; |
4132 | } | |
4133 | if (i == pages_in_pl) | |
4134 | break; | |
0b4e3aa0 | 4135 | |
0b4c1975 | 4136 | ubc_upl_abort(upl, 0); |
1c79356b | 4137 | } |
d7e50217 A |
4138 | if (force_data_sync >= 3) { |
4139 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4140 | (int)upl_offset, upl_size, io_size, kret, 0); | |
1c79356b | 4141 | |
2d21ac55 | 4142 | goto wait_for_dreads; |
d7e50217 A |
4143 | } |
4144 | /* | |
4145 | * Consider the possibility that upl_size wasn't satisfied. | |
4146 | */ | |
2d21ac55 A |
4147 | if (upl_size < upl_needed_size) { |
4148 | if (upl_size && upl_offset == 0) | |
4149 | io_size = upl_size; | |
4150 | else | |
4151 | io_size = 0; | |
4152 | } | |
d7e50217 | 4153 | if (io_size == 0) { |
0b4c1975 | 4154 | ubc_upl_abort(upl, 0); |
2d21ac55 | 4155 | goto wait_for_dreads; |
d7e50217 A |
4156 | } |
4157 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, | |
4158 | (int)upl_offset, upl_size, io_size, kret, 0); | |
1c79356b | 4159 | |
b0d623f7 A |
4160 | if(useVectorUPL) { |
4161 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); | |
4162 | if(end_off) | |
4163 | issueVectorUPL = 1; | |
4164 | /* | |
4165 | * After this point, if we are using a vector UPL, then | |
4166 | * either all the UPL elements end on a page boundary OR | |
4167 | * this UPL is the last element because it does not end | |
4168 | * on a page boundary. | |
4169 | */ | |
4170 | } | |
4171 | ||
d7e50217 A |
4172 | /* |
4173 | * request asynchronously so that we can overlap | |
4174 | * the preparation of the next I/O | |
4175 | * if there are already too many outstanding reads | |
4176 | * wait until some have completed before issuing the next read | |
4177 | */ | |
6d2010ae A |
4178 | if (iostate.io_issued > iostate.io_completed) |
4179 | cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct"); | |
91447636 | 4180 | |
d7e50217 A |
4181 | if (iostate.io_error) { |
4182 | /* | |
4183 | * one of the earlier reads we issued ran into a hard error | |
4184 | * don't issue any more reads, cleanup the UPL | |
4185 | * that was just created but not used, then | |
4186 | * go wait for any other reads to complete before | |
4187 | * returning the error to the caller | |
4188 | */ | |
0b4c1975 | 4189 | ubc_upl_abort(upl, 0); |
1c79356b | 4190 | |
2d21ac55 | 4191 | goto wait_for_dreads; |
d7e50217 A |
4192 | } |
4193 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, | |
b0d623f7 | 4194 | upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); |
1c79356b | 4195 | |
2d21ac55 | 4196 | |
b0d623f7 A |
4197 | if(!useVectorUPL) { |
4198 | if (no_zero_fill) | |
4199 | io_flag &= ~CL_PRESERVE; | |
4200 | else | |
4201 | io_flag |= CL_PRESERVE; | |
4202 | ||
4203 | retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4204 | ||
4205 | } else { | |
1c79356b | 4206 | |
b0d623f7 A |
4207 | if(!vector_upl_index) { |
4208 | vector_upl = vector_upl_create(upl_offset); | |
4209 | v_upl_uio_offset = uio->uio_offset; | |
4210 | vector_upl_offset = upl_offset; | |
4211 | } | |
4212 | ||
4213 | vector_upl_set_subupl(vector_upl,upl, upl_size); | |
4214 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); | |
4215 | vector_upl_index++; | |
4216 | vector_upl_size += upl_size; | |
4217 | vector_upl_iosize += io_size; | |
4218 | ||
4219 | if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= MAX_VECTOR_UPL_SIZE) { | |
4220 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4221 | reset_vector_run_state(); | |
4222 | } | |
4223 | } | |
d7e50217 A |
4224 | /* |
4225 | * update the uio structure | |
4226 | */ | |
cc9f6e38 | 4227 | uio_update(uio, (user_size_t)io_size); |
1c79356b | 4228 | |
2d21ac55 A |
4229 | io_req_size -= io_size; |
4230 | ||
d7e50217 | 4231 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, |
b0d623f7 | 4232 | upl, (int)uio->uio_offset, io_req_size, retval, 0); |
1c79356b A |
4233 | |
4234 | } /* end while */ | |
4235 | ||
2d21ac55 | 4236 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { |
91447636 | 4237 | |
2d21ac55 A |
4238 | retval = cluster_io_type(uio, read_type, read_length, 0); |
4239 | ||
4240 | if (retval == 0 && *read_type == IO_DIRECT) { | |
4241 | ||
4242 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, | |
4243 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); | |
4244 | ||
4245 | goto next_dread; | |
4246 | } | |
4247 | } | |
4248 | ||
4249 | wait_for_dreads: | |
b0d623f7 A |
4250 | |
4251 | if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { | |
4252 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg); | |
4253 | reset_vector_run_state(); | |
4254 | } | |
4255 | /* | |
4256 | * make sure all async reads that are part of this stream | |
4257 | * have completed before we return | |
4258 | */ | |
6d2010ae A |
4259 | if (iostate.io_issued > iostate.io_completed) |
4260 | cluster_iostate_wait(&iostate, 0, "cluster_read_direct"); | |
b0d623f7 | 4261 | |
d7e50217 | 4262 | if (iostate.io_error) |
2d21ac55 A |
4263 | retval = iostate.io_error; |
4264 | ||
6d2010ae A |
4265 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4266 | ||
2d21ac55 A |
4267 | if (io_req_size && retval == 0) { |
4268 | /* | |
4269 | * we couldn't handle the tail of this request in DIRECT mode | |
4270 | * so fire it through the copy path | |
4271 | */ | |
4272 | retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); | |
1c79356b | 4273 | |
2d21ac55 A |
4274 | *read_type = IO_UNKNOWN; |
4275 | } | |
1c79356b | 4276 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, |
2d21ac55 | 4277 | (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); |
1c79356b A |
4278 | |
4279 | return (retval); | |
4280 | } | |
4281 | ||
4282 | ||
9bccf70c | 4283 | static int |
2d21ac55 A |
4284 | cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
4285 | int (*callback)(buf_t, void *), void *callback_arg, int flags) | |
0b4e3aa0 | 4286 | { |
b4c24cb9 | 4287 | upl_page_info_t *pl; |
2d21ac55 | 4288 | upl_t upl[MAX_VECTS]; |
0b4e3aa0 | 4289 | vm_offset_t upl_offset; |
2d21ac55 | 4290 | addr64_t dst_paddr = 0; |
cc9f6e38 | 4291 | user_addr_t iov_base; |
2d21ac55 | 4292 | off_t max_size; |
b0d623f7 | 4293 | upl_size_t upl_size; |
2d21ac55 A |
4294 | vm_size_t upl_needed_size; |
4295 | mach_msg_type_number_t pages_in_pl; | |
0b4e3aa0 A |
4296 | int upl_flags; |
4297 | kern_return_t kret; | |
b4c24cb9 | 4298 | struct clios iostate; |
2d21ac55 A |
4299 | int error= 0; |
4300 | int cur_upl = 0; | |
4301 | int num_upl = 0; | |
4302 | int n; | |
4303 | u_int32_t xsize; | |
4304 | u_int32_t io_size; | |
4305 | u_int32_t devblocksize; | |
4306 | u_int32_t mem_alignment_mask; | |
4307 | u_int32_t tail_size = 0; | |
4308 | int bflag; | |
4309 | ||
4310 | if (flags & IO_PASSIVE) | |
b0d623f7 | 4311 | bflag = CL_PASSIVE; |
2d21ac55 | 4312 | else |
b0d623f7 | 4313 | bflag = 0; |
0b4e3aa0 A |
4314 | |
4315 | /* | |
4316 | * When we enter this routine, we know | |
2d21ac55 A |
4317 | * -- the read_length will not exceed the current iov_len |
4318 | * -- the target address is physically contiguous for read_length | |
0b4e3aa0 | 4319 | */ |
2d21ac55 | 4320 | cluster_syncup(vp, filesize, callback, callback_arg); |
0b4e3aa0 | 4321 | |
2d21ac55 A |
4322 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
4323 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; | |
91447636 | 4324 | |
2d21ac55 A |
4325 | iostate.io_completed = 0; |
4326 | iostate.io_issued = 0; | |
4327 | iostate.io_error = 0; | |
4328 | iostate.io_wanted = 0; | |
4329 | ||
6d2010ae A |
4330 | lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr); |
4331 | ||
2d21ac55 A |
4332 | next_cread: |
4333 | io_size = *read_length; | |
0b4e3aa0 A |
4334 | |
4335 | max_size = filesize - uio->uio_offset; | |
4336 | ||
2d21ac55 | 4337 | if (io_size > max_size) |
b4c24cb9 | 4338 | io_size = max_size; |
0b4e3aa0 | 4339 | |
2d21ac55 A |
4340 | iov_base = uio_curriovbase(uio); |
4341 | ||
4342 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); | |
0b4e3aa0 A |
4343 | upl_needed_size = upl_offset + io_size; |
4344 | ||
4345 | pages_in_pl = 0; | |
4346 | upl_size = upl_needed_size; | |
55e303ae | 4347 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
0b4e3aa0 | 4348 | |
2d21ac55 A |
4349 | |
4350 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, | |
4351 | (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); | |
4352 | ||
0b4e3aa0 | 4353 | kret = vm_map_get_upl(current_map(), |
cc9f6e38 | 4354 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
2d21ac55 A |
4355 | &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0); |
4356 | ||
4357 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, | |
4358 | (int)upl_offset, upl_size, io_size, kret, 0); | |
0b4e3aa0 | 4359 | |
b4c24cb9 A |
4360 | if (kret != KERN_SUCCESS) { |
4361 | /* | |
2d21ac55 | 4362 | * failed to get pagelist |
b4c24cb9 | 4363 | */ |
2d21ac55 A |
4364 | error = EINVAL; |
4365 | goto wait_for_creads; | |
b4c24cb9 | 4366 | } |
2d21ac55 A |
4367 | num_upl++; |
4368 | ||
b4c24cb9 A |
4369 | if (upl_size < upl_needed_size) { |
4370 | /* | |
4371 | * The upl_size wasn't satisfied. | |
4372 | */ | |
2d21ac55 A |
4373 | error = EINVAL; |
4374 | goto wait_for_creads; | |
b4c24cb9 | 4375 | } |
2d21ac55 | 4376 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
b4c24cb9 | 4377 | |
cc9f6e38 | 4378 | dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)upl_offset; |
0b4e3aa0 | 4379 | |
b4c24cb9 | 4380 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
2d21ac55 | 4381 | u_int32_t head_size; |
b4c24cb9 | 4382 | |
2d21ac55 | 4383 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
b4c24cb9 A |
4384 | |
4385 | if (head_size > io_size) | |
4386 | head_size = io_size; | |
4387 | ||
2d21ac55 | 4388 | error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg); |
b4c24cb9 | 4389 | |
2d21ac55 A |
4390 | if (error) |
4391 | goto wait_for_creads; | |
b4c24cb9 | 4392 | |
b4c24cb9 A |
4393 | upl_offset += head_size; |
4394 | dst_paddr += head_size; | |
4395 | io_size -= head_size; | |
2d21ac55 A |
4396 | |
4397 | iov_base += head_size; | |
4398 | } | |
4399 | if ((u_int32_t)iov_base & mem_alignment_mask) { | |
4400 | /* | |
4401 | * request doesn't set up on a memory boundary | |
4402 | * the underlying DMA engine can handle... | |
4403 | * return an error instead of going through | |
4404 | * the slow copy path since the intent of this | |
4405 | * path is direct I/O to device memory | |
4406 | */ | |
4407 | error = EINVAL; | |
4408 | goto wait_for_creads; | |
b4c24cb9 | 4409 | } |
2d21ac55 | 4410 | |
b4c24cb9 | 4411 | tail_size = io_size & (devblocksize - 1); |
b4c24cb9 | 4412 | |
2d21ac55 | 4413 | io_size -= tail_size; |
b4c24cb9 A |
4414 | |
4415 | while (io_size && error == 0) { | |
b4c24cb9 | 4416 | |
2d21ac55 A |
4417 | if (io_size > MAX_IO_CONTIG_SIZE) |
4418 | xsize = MAX_IO_CONTIG_SIZE; | |
b4c24cb9 A |
4419 | else |
4420 | xsize = io_size; | |
4421 | /* | |
4422 | * request asynchronously so that we can overlap | |
4423 | * the preparation of the next I/O... we'll do | |
4424 | * the commit after all the I/O has completed | |
4425 | * since its all issued against the same UPL | |
4426 | * if there are already too many outstanding reads | |
d7e50217 | 4427 | * wait until some have completed before issuing the next |
b4c24cb9 | 4428 | */ |
6d2010ae A |
4429 | if (iostate.io_issued > iostate.io_completed) |
4430 | cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig"); | |
cf7d32b8 | 4431 | |
2d21ac55 A |
4432 | if (iostate.io_error) { |
4433 | /* | |
4434 | * one of the earlier reads we issued ran into a hard error | |
4435 | * don't issue any more reads... | |
4436 | * go wait for any other reads to complete before | |
4437 | * returning the error to the caller | |
4438 | */ | |
4439 | goto wait_for_creads; | |
4440 | } | |
4441 | error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize, | |
4442 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, | |
4443 | (buf_t)NULL, &iostate, callback, callback_arg); | |
b4c24cb9 A |
4444 | /* |
4445 | * The cluster_io read was issued successfully, | |
4446 | * update the uio structure | |
4447 | */ | |
4448 | if (error == 0) { | |
cc9f6e38 A |
4449 | uio_update(uio, (user_size_t)xsize); |
4450 | ||
4451 | dst_paddr += xsize; | |
4452 | upl_offset += xsize; | |
4453 | io_size -= xsize; | |
b4c24cb9 A |
4454 | } |
4455 | } | |
2d21ac55 A |
4456 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { |
4457 | ||
4458 | error = cluster_io_type(uio, read_type, read_length, 0); | |
4459 | ||
4460 | if (error == 0 && *read_type == IO_CONTIG) { | |
4461 | cur_upl++; | |
4462 | goto next_cread; | |
4463 | } | |
4464 | } else | |
4465 | *read_type = IO_UNKNOWN; | |
4466 | ||
4467 | wait_for_creads: | |
0b4e3aa0 | 4468 | /* |
d7e50217 A |
4469 | * make sure all async reads that are part of this stream |
4470 | * have completed before we proceed | |
0b4e3aa0 | 4471 | */ |
6d2010ae A |
4472 | if (iostate.io_issued > iostate.io_completed) |
4473 | cluster_iostate_wait(&iostate, 0, "cluster_read_contig"); | |
91447636 A |
4474 | |
4475 | if (iostate.io_error) | |
b4c24cb9 | 4476 | error = iostate.io_error; |
91447636 | 4477 | |
6d2010ae A |
4478 | lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp); |
4479 | ||
b4c24cb9 | 4480 | if (error == 0 && tail_size) |
2d21ac55 | 4481 | error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg); |
0b4e3aa0 | 4482 | |
2d21ac55 A |
4483 | for (n = 0; n < num_upl; n++) |
4484 | /* | |
4485 | * just release our hold on each physically contiguous | |
4486 | * region without changing any state | |
4487 | */ | |
4488 | ubc_upl_abort(upl[n], 0); | |
0b4e3aa0 A |
4489 | |
4490 | return (error); | |
4491 | } | |
1c79356b | 4492 | |
b4c24cb9 | 4493 | |
2d21ac55 A |
4494 | static int |
4495 | cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) | |
4496 | { | |
4497 | user_size_t iov_len; | |
4498 | user_addr_t iov_base = 0; | |
4499 | upl_t upl; | |
b0d623f7 | 4500 | upl_size_t upl_size; |
2d21ac55 A |
4501 | int upl_flags; |
4502 | int retval = 0; | |
4503 | ||
4504 | /* | |
4505 | * skip over any emtpy vectors | |
4506 | */ | |
4507 | uio_update(uio, (user_size_t)0); | |
4508 | ||
4509 | iov_len = uio_curriovlen(uio); | |
4510 | ||
b0d623f7 | 4511 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); |
2d21ac55 A |
4512 | |
4513 | if (iov_len) { | |
4514 | iov_base = uio_curriovbase(uio); | |
4515 | /* | |
4516 | * make sure the size of the vector isn't too big... | |
4517 | * internally, we want to handle all of the I/O in | |
4518 | * chunk sizes that fit in a 32 bit int | |
4519 | */ | |
4520 | if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) | |
4521 | upl_size = MAX_IO_REQUEST_SIZE; | |
4522 | else | |
4523 | upl_size = (u_int32_t)iov_len; | |
4524 | ||
4525 | upl_flags = UPL_QUERY_OBJECT_TYPE; | |
4526 | ||
4527 | if ((vm_map_get_upl(current_map(), | |
4528 | (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), | |
4529 | &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) { | |
4530 | /* | |
4531 | * the user app must have passed in an invalid address | |
4532 | */ | |
4533 | retval = EFAULT; | |
4534 | } | |
4535 | if (upl_size == 0) | |
4536 | retval = EFAULT; | |
4537 | ||
4538 | *io_length = upl_size; | |
4539 | ||
4540 | if (upl_flags & UPL_PHYS_CONTIG) | |
4541 | *io_type = IO_CONTIG; | |
4542 | else if (iov_len >= min_length) | |
4543 | *io_type = IO_DIRECT; | |
4544 | else | |
4545 | *io_type = IO_COPY; | |
4546 | } else { | |
4547 | /* | |
4548 | * nothing left to do for this uio | |
4549 | */ | |
4550 | *io_length = 0; | |
4551 | *io_type = IO_UNKNOWN; | |
4552 | } | |
b0d623f7 | 4553 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); |
2d21ac55 A |
4554 | |
4555 | return (retval); | |
4556 | } | |
4557 | ||
4558 | ||
1c79356b A |
4559 | /* |
4560 | * generate advisory I/O's in the largest chunks possible | |
4561 | * the completed pages will be released into the VM cache | |
4562 | */ | |
9bccf70c | 4563 | int |
91447636 | 4564 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) |
2d21ac55 A |
4565 | { |
4566 | return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); | |
4567 | } | |
4568 | ||
4569 | int | |
4570 | advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) | |
1c79356b | 4571 | { |
1c79356b A |
4572 | upl_page_info_t *pl; |
4573 | upl_t upl; | |
4574 | vm_offset_t upl_offset; | |
b0d623f7 | 4575 | int upl_size; |
1c79356b A |
4576 | off_t upl_f_offset; |
4577 | int start_offset; | |
4578 | int start_pg; | |
4579 | int last_pg; | |
4580 | int pages_in_upl; | |
4581 | off_t max_size; | |
4582 | int io_size; | |
4583 | kern_return_t kret; | |
4584 | int retval = 0; | |
9bccf70c | 4585 | int issued_io; |
55e303ae | 4586 | int skip_range; |
b0d623f7 A |
4587 | uint32_t max_io_size; |
4588 | ||
4589 | ||
91447636 | 4590 | if ( !UBCINFOEXISTS(vp)) |
1c79356b A |
4591 | return(EINVAL); |
4592 | ||
ca66cea6 A |
4593 | if (resid < 0) |
4594 | return(EINVAL); | |
4595 | ||
cf7d32b8 | 4596 | max_io_size = cluster_max_io_size(vp->v_mount, CL_READ); |
b0d623f7 | 4597 | |
1c79356b | 4598 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, |
b0d623f7 | 4599 | (int)f_offset, resid, (int)filesize, 0, 0); |
1c79356b A |
4600 | |
4601 | while (resid && f_offset < filesize && retval == 0) { | |
4602 | /* | |
4603 | * compute the size of the upl needed to encompass | |
4604 | * the requested read... limit each call to cluster_io | |
0b4e3aa0 A |
4605 | * to the maximum UPL size... cluster_io will clip if |
4606 | * this exceeds the maximum io_size for the device, | |
4607 | * make sure to account for | |
1c79356b A |
4608 | * a starting offset that's not page aligned |
4609 | */ | |
4610 | start_offset = (int)(f_offset & PAGE_MASK_64); | |
4611 | upl_f_offset = f_offset - (off_t)start_offset; | |
4612 | max_size = filesize - f_offset; | |
4613 | ||
4614 | if (resid < max_size) | |
4615 | io_size = resid; | |
4616 | else | |
4617 | io_size = max_size; | |
4618 | ||
4619 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; | |
cf7d32b8 A |
4620 | if ((uint32_t)upl_size > max_io_size) |
4621 | upl_size = max_io_size; | |
55e303ae A |
4622 | |
4623 | skip_range = 0; | |
4624 | /* | |
4625 | * return the number of contiguously present pages in the cache | |
4626 | * starting at upl_f_offset within the file | |
4627 | */ | |
4628 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); | |
4629 | ||
4630 | if (skip_range) { | |
4631 | /* | |
4632 | * skip over pages already present in the cache | |
4633 | */ | |
4634 | io_size = skip_range - start_offset; | |
4635 | ||
4636 | f_offset += io_size; | |
4637 | resid -= io_size; | |
4638 | ||
4639 | if (skip_range == upl_size) | |
4640 | continue; | |
4641 | /* | |
4642 | * have to issue some real I/O | |
4643 | * at this point, we know it's starting on a page boundary | |
4644 | * because we've skipped over at least the first page in the request | |
4645 | */ | |
4646 | start_offset = 0; | |
4647 | upl_f_offset += skip_range; | |
4648 | upl_size -= skip_range; | |
4649 | } | |
1c79356b A |
4650 | pages_in_upl = upl_size / PAGE_SIZE; |
4651 | ||
55e303ae | 4652 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, |
b0d623f7 | 4653 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
55e303ae | 4654 | |
0b4e3aa0 | 4655 | kret = ubc_create_upl(vp, |
91447636 A |
4656 | upl_f_offset, |
4657 | upl_size, | |
4658 | &upl, | |
4659 | &pl, | |
4660 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE); | |
1c79356b | 4661 | if (kret != KERN_SUCCESS) |
9bccf70c A |
4662 | return(retval); |
4663 | issued_io = 0; | |
1c79356b A |
4664 | |
4665 | /* | |
9bccf70c A |
4666 | * before we start marching forward, we must make sure we end on |
4667 | * a present page, otherwise we will be working with a freed | |
4668 | * upl | |
1c79356b | 4669 | */ |
9bccf70c A |
4670 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { |
4671 | if (upl_page_present(pl, last_pg)) | |
4672 | break; | |
1c79356b | 4673 | } |
9bccf70c | 4674 | pages_in_upl = last_pg + 1; |
1c79356b | 4675 | |
1c79356b | 4676 | |
55e303ae | 4677 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, |
b0d623f7 | 4678 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
9bccf70c A |
4679 | |
4680 | ||
4681 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
1c79356b | 4682 | /* |
9bccf70c A |
4683 | * scan from the beginning of the upl looking for the first |
4684 | * page that is present.... this will become the first page in | |
4685 | * the request we're going to make to 'cluster_io'... if all | |
4686 | * of the pages are absent, we won't call through to 'cluster_io' | |
1c79356b | 4687 | */ |
9bccf70c A |
4688 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
4689 | if (upl_page_present(pl, start_pg)) | |
4690 | break; | |
1c79356b | 4691 | } |
1c79356b | 4692 | |
1c79356b | 4693 | /* |
9bccf70c A |
4694 | * scan from the starting present page looking for an absent |
4695 | * page before the end of the upl is reached, if we | |
4696 | * find one, then it will terminate the range of pages being | |
4697 | * presented to 'cluster_io' | |
1c79356b | 4698 | */ |
9bccf70c A |
4699 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
4700 | if (!upl_page_present(pl, last_pg)) | |
4701 | break; | |
4702 | } | |
4703 | ||
4704 | if (last_pg > start_pg) { | |
4705 | /* | |
4706 | * we found a range of pages that must be filled | |
4707 | * if the last page in this range is the last page of the file | |
4708 | * we may have to clip the size of it to keep from reading past | |
4709 | * the end of the last physical block associated with the file | |
4710 | */ | |
4711 | upl_offset = start_pg * PAGE_SIZE; | |
4712 | io_size = (last_pg - start_pg) * PAGE_SIZE; | |
4713 | ||
b0d623f7 | 4714 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) |
9bccf70c A |
4715 | io_size = filesize - (upl_f_offset + upl_offset); |
4716 | ||
4717 | /* | |
4718 | * issue an asynchronous read to cluster_io | |
4719 | */ | |
91447636 | 4720 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
2d21ac55 | 4721 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 4722 | |
9bccf70c A |
4723 | issued_io = 1; |
4724 | } | |
1c79356b | 4725 | } |
9bccf70c A |
4726 | if (issued_io == 0) |
4727 | ubc_upl_abort(upl, 0); | |
4728 | ||
4729 | io_size = upl_size - start_offset; | |
1c79356b A |
4730 | |
4731 | if (io_size > resid) | |
4732 | io_size = resid; | |
4733 | f_offset += io_size; | |
4734 | resid -= io_size; | |
4735 | } | |
9bccf70c | 4736 | |
1c79356b A |
4737 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, |
4738 | (int)f_offset, resid, retval, 0, 0); | |
4739 | ||
4740 | return(retval); | |
4741 | } | |
4742 | ||
4743 | ||
9bccf70c | 4744 | int |
91447636 | 4745 | cluster_push(vnode_t vp, int flags) |
2d21ac55 A |
4746 | { |
4747 | return cluster_push_ext(vp, flags, NULL, NULL); | |
4748 | } | |
4749 | ||
4750 | ||
4751 | int | |
4752 | cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) | |
9bccf70c | 4753 | { |
91447636 | 4754 | int retval; |
b0d623f7 | 4755 | int my_sparse_wait = 0; |
91447636 | 4756 | struct cl_writebehind *wbp; |
9bccf70c | 4757 | |
91447636 | 4758 | if ( !UBCINFOEXISTS(vp)) { |
b0d623f7 | 4759 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0); |
91447636 A |
4760 | return (0); |
4761 | } | |
4762 | /* return if deferred write is set */ | |
4763 | if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { | |
4764 | return (0); | |
4765 | } | |
4766 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { | |
b0d623f7 | 4767 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0); |
91447636 A |
4768 | return (0); |
4769 | } | |
4770 | if (wbp->cl_number == 0 && wbp->cl_scmap == NULL) { | |
4771 | lck_mtx_unlock(&wbp->cl_lockw); | |
9bccf70c | 4772 | |
b0d623f7 | 4773 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0); |
91447636 A |
4774 | return(0); |
4775 | } | |
9bccf70c | 4776 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, |
b0d623f7 A |
4777 | wbp->cl_scmap, wbp->cl_number, flags, 0, 0); |
4778 | ||
4779 | /* | |
4780 | * if we have an fsync in progress, we don't want to allow any additional | |
4781 | * sync/fsync/close(s) to occur until it finishes. | |
4782 | * note that its possible for writes to continue to occur to this file | |
4783 | * while we're waiting and also once the fsync starts to clean if we're | |
4784 | * in the sparse map case | |
4785 | */ | |
4786 | while (wbp->cl_sparse_wait) { | |
4787 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0); | |
4788 | ||
4789 | msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
4790 | ||
4791 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0); | |
4792 | } | |
4793 | if (flags & IO_SYNC) { | |
4794 | my_sparse_wait = 1; | |
4795 | wbp->cl_sparse_wait = 1; | |
9bccf70c | 4796 | |
b0d623f7 A |
4797 | /* |
4798 | * this is an fsync (or equivalent)... we must wait for any existing async | |
4799 | * cleaning operations to complete before we evaulate the current state | |
4800 | * and finish cleaning... this insures that all writes issued before this | |
4801 | * fsync actually get cleaned to the disk before this fsync returns | |
4802 | */ | |
4803 | while (wbp->cl_sparse_pushes) { | |
4804 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0); | |
4805 | ||
4806 | msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL); | |
4807 | ||
4808 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0); | |
4809 | } | |
4810 | } | |
91447636 | 4811 | if (wbp->cl_scmap) { |
b0d623f7 A |
4812 | void *scmap; |
4813 | ||
4814 | if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { | |
4815 | ||
4816 | scmap = wbp->cl_scmap; | |
4817 | wbp->cl_scmap = NULL; | |
4818 | ||
4819 | wbp->cl_sparse_pushes++; | |
4820 | ||
4821 | lck_mtx_unlock(&wbp->cl_lockw); | |
4822 | ||
6d2010ae | 4823 | sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg); |
b0d623f7 A |
4824 | |
4825 | lck_mtx_lock(&wbp->cl_lockw); | |
9bccf70c | 4826 | |
b0d623f7 A |
4827 | wbp->cl_sparse_pushes--; |
4828 | ||
4829 | if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) | |
4830 | wakeup((caddr_t)&wbp->cl_sparse_pushes); | |
4831 | } else { | |
6d2010ae | 4832 | sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg); |
b0d623f7 | 4833 | } |
55e303ae | 4834 | retval = 1; |
b0d623f7 | 4835 | } else { |
6d2010ae | 4836 | retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags | IO_PASSIVE, callback, callback_arg); |
b0d623f7 | 4837 | } |
91447636 A |
4838 | lck_mtx_unlock(&wbp->cl_lockw); |
4839 | ||
4840 | if (flags & IO_SYNC) | |
2d21ac55 | 4841 | (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push"); |
9bccf70c | 4842 | |
b0d623f7 A |
4843 | if (my_sparse_wait) { |
4844 | /* | |
4845 | * I'm the owner of the serialization token | |
4846 | * clear it and wakeup anyone that is waiting | |
4847 | * for me to finish | |
4848 | */ | |
4849 | lck_mtx_lock(&wbp->cl_lockw); | |
4850 | ||
4851 | wbp->cl_sparse_wait = 0; | |
4852 | wakeup((caddr_t)&wbp->cl_sparse_wait); | |
4853 | ||
4854 | lck_mtx_unlock(&wbp->cl_lockw); | |
4855 | } | |
55e303ae | 4856 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, |
b0d623f7 | 4857 | wbp->cl_scmap, wbp->cl_number, retval, 0, 0); |
9bccf70c | 4858 | |
55e303ae A |
4859 | return (retval); |
4860 | } | |
9bccf70c | 4861 | |
9bccf70c | 4862 | |
91447636 A |
4863 | __private_extern__ void |
4864 | cluster_release(struct ubc_info *ubc) | |
55e303ae | 4865 | { |
91447636 A |
4866 | struct cl_writebehind *wbp; |
4867 | struct cl_readahead *rap; | |
4868 | ||
4869 | if ((wbp = ubc->cl_wbehind)) { | |
9bccf70c | 4870 | |
b0d623f7 | 4871 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); |
91447636 A |
4872 | |
4873 | if (wbp->cl_scmap) | |
4874 | vfs_drt_control(&(wbp->cl_scmap), 0); | |
4875 | } else { | |
b0d623f7 | 4876 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); |
91447636 | 4877 | } |
9bccf70c | 4878 | |
91447636 | 4879 | rap = ubc->cl_rahead; |
55e303ae | 4880 | |
91447636 A |
4881 | if (wbp != NULL) { |
4882 | lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp); | |
4883 | FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND); | |
4884 | } | |
4885 | if ((rap = ubc->cl_rahead)) { | |
4886 | lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp); | |
4887 | FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD); | |
55e303ae | 4888 | } |
91447636 A |
4889 | ubc->cl_rahead = NULL; |
4890 | ubc->cl_wbehind = NULL; | |
4891 | ||
b0d623f7 | 4892 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); |
91447636 A |
4893 | } |
4894 | ||
4895 | ||
9bccf70c | 4896 | static int |
6d2010ae | 4897 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) |
9bccf70c A |
4898 | { |
4899 | int cl_index; | |
4900 | int cl_index1; | |
4901 | int min_index; | |
4902 | int cl_len; | |
55e303ae | 4903 | int cl_pushed = 0; |
91447636 | 4904 | struct cl_wextent l_clusters[MAX_CLUSTERS]; |
b0d623f7 A |
4905 | u_int max_cluster_pgcount; |
4906 | ||
4907 | ||
4908 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; | |
9bccf70c | 4909 | /* |
91447636 A |
4910 | * the write behind context exists and has |
4911 | * already been locked... | |
2d21ac55 A |
4912 | */ |
4913 | if (wbp->cl_number == 0) | |
4914 | /* | |
4915 | * no clusters to push | |
4916 | * return number of empty slots | |
4917 | */ | |
4918 | return (MAX_CLUSTERS); | |
4919 | ||
4920 | /* | |
9bccf70c | 4921 | * make a local 'sorted' copy of the clusters |
91447636 | 4922 | * and clear wbp->cl_number so that new clusters can |
9bccf70c A |
4923 | * be developed |
4924 | */ | |
91447636 A |
4925 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
4926 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { | |
4927 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) | |
9bccf70c A |
4928 | continue; |
4929 | if (min_index == -1) | |
4930 | min_index = cl_index1; | |
91447636 | 4931 | else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) |
9bccf70c A |
4932 | min_index = cl_index1; |
4933 | } | |
4934 | if (min_index == -1) | |
4935 | break; | |
b0d623f7 | 4936 | |
91447636 A |
4937 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; |
4938 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; | |
2d21ac55 | 4939 | l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; |
9bccf70c | 4940 | |
91447636 | 4941 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; |
9bccf70c | 4942 | } |
91447636 A |
4943 | wbp->cl_number = 0; |
4944 | ||
4945 | cl_len = cl_index; | |
9bccf70c | 4946 | |
2d21ac55 | 4947 | if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) { |
55e303ae A |
4948 | int i; |
4949 | ||
4950 | /* | |
4951 | * determine if we appear to be writing the file sequentially | |
4952 | * if not, by returning without having pushed any clusters | |
4953 | * we will cause this vnode to be pushed into the sparse cluster mechanism | |
4954 | * used for managing more random I/O patterns | |
4955 | * | |
4956 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... | |
2d21ac55 | 4957 | * that's why we're in try_push with PUSH_DELAY... |
55e303ae A |
4958 | * |
4959 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster | |
4960 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above | |
91447636 A |
4961 | * so we can just make a simple pass through, up to, but not including the last one... |
4962 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they | |
55e303ae A |
4963 | * are sequential |
4964 | * | |
4965 | * we let the last one be partial as long as it was adjacent to the previous one... | |
4966 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out | |
4967 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... | |
4968 | */ | |
4969 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { | |
cf7d32b8 | 4970 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) |
55e303ae | 4971 | goto dont_try; |
91447636 | 4972 | if (l_clusters[i].e_addr != l_clusters[i+1].b_addr) |
55e303ae A |
4973 | goto dont_try; |
4974 | } | |
4975 | } | |
4976 | for (cl_index = 0; cl_index < cl_len; cl_index++) { | |
2d21ac55 A |
4977 | int flags; |
4978 | struct cl_extent cl; | |
91447636 | 4979 | |
6d2010ae A |
4980 | flags = io_flags & (IO_PASSIVE|IO_CLOSE); |
4981 | ||
9bccf70c | 4982 | /* |
91447636 | 4983 | * try to push each cluster in turn... |
9bccf70c | 4984 | */ |
2d21ac55 | 4985 | if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) |
6d2010ae | 4986 | flags |= IO_NOCACHE; |
2d21ac55 | 4987 | |
6d2010ae | 4988 | if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) |
2d21ac55 A |
4989 | flags |= IO_PASSIVE; |
4990 | ||
4991 | if (push_flag & PUSH_SYNC) | |
4992 | flags |= IO_SYNC; | |
4993 | ||
91447636 A |
4994 | cl.b_addr = l_clusters[cl_index].b_addr; |
4995 | cl.e_addr = l_clusters[cl_index].e_addr; | |
9bccf70c | 4996 | |
2d21ac55 | 4997 | cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg); |
9bccf70c | 4998 | |
91447636 A |
4999 | l_clusters[cl_index].b_addr = 0; |
5000 | l_clusters[cl_index].e_addr = 0; | |
5001 | ||
5002 | cl_pushed++; | |
5003 | ||
2d21ac55 | 5004 | if ( !(push_flag & PUSH_ALL) ) |
91447636 | 5005 | break; |
9bccf70c | 5006 | } |
55e303ae | 5007 | dont_try: |
9bccf70c A |
5008 | if (cl_len > cl_pushed) { |
5009 | /* | |
5010 | * we didn't push all of the clusters, so | |
5011 | * lets try to merge them back in to the vnode | |
5012 | */ | |
91447636 | 5013 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { |
9bccf70c A |
5014 | /* |
5015 | * we picked up some new clusters while we were trying to | |
91447636 A |
5016 | * push the old ones... this can happen because I've dropped |
5017 | * the vnode lock... the sum of the | |
9bccf70c | 5018 | * leftovers plus the new cluster count exceeds our ability |
55e303ae | 5019 | * to represent them, so switch to the sparse cluster mechanism |
91447636 A |
5020 | * |
5021 | * collect the active public clusters... | |
9bccf70c | 5022 | */ |
2d21ac55 | 5023 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); |
55e303ae A |
5024 | |
5025 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { | |
91447636 | 5026 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) |
9bccf70c | 5027 | continue; |
91447636 A |
5028 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
5029 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
2d21ac55 | 5030 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5031 | |
55e303ae | 5032 | cl_index1++; |
9bccf70c | 5033 | } |
55e303ae A |
5034 | /* |
5035 | * update the cluster count | |
5036 | */ | |
91447636 | 5037 | wbp->cl_number = cl_index1; |
55e303ae A |
5038 | |
5039 | /* | |
5040 | * and collect the original clusters that were moved into the | |
5041 | * local storage for sorting purposes | |
5042 | */ | |
2d21ac55 | 5043 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg); |
55e303ae | 5044 | |
9bccf70c A |
5045 | } else { |
5046 | /* | |
5047 | * we've got room to merge the leftovers back in | |
5048 | * just append them starting at the next 'hole' | |
91447636 | 5049 | * represented by wbp->cl_number |
9bccf70c | 5050 | */ |
91447636 A |
5051 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { |
5052 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) | |
9bccf70c A |
5053 | continue; |
5054 | ||
91447636 A |
5055 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
5056 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; | |
2d21ac55 | 5057 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
9bccf70c | 5058 | |
9bccf70c A |
5059 | cl_index1++; |
5060 | } | |
5061 | /* | |
5062 | * update the cluster count | |
5063 | */ | |
91447636 | 5064 | wbp->cl_number = cl_index1; |
9bccf70c A |
5065 | } |
5066 | } | |
2d21ac55 | 5067 | return (MAX_CLUSTERS - wbp->cl_number); |
9bccf70c A |
5068 | } |
5069 | ||
5070 | ||
5071 | ||
5072 | static int | |
2d21ac55 | 5073 | cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
1c79356b | 5074 | { |
1c79356b A |
5075 | upl_page_info_t *pl; |
5076 | upl_t upl; | |
5077 | vm_offset_t upl_offset; | |
5078 | int upl_size; | |
5079 | off_t upl_f_offset; | |
5080 | int pages_in_upl; | |
5081 | int start_pg; | |
5082 | int last_pg; | |
5083 | int io_size; | |
5084 | int io_flags; | |
55e303ae | 5085 | int upl_flags; |
2d21ac55 | 5086 | int bflag; |
1c79356b | 5087 | int size; |
91447636 A |
5088 | int error = 0; |
5089 | int retval; | |
1c79356b A |
5090 | kern_return_t kret; |
5091 | ||
2d21ac55 | 5092 | if (flags & IO_PASSIVE) |
6d2010ae | 5093 | bflag = CL_PASSIVE; |
2d21ac55 | 5094 | else |
6d2010ae | 5095 | bflag = 0; |
1c79356b | 5096 | |
9bccf70c | 5097 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, |
91447636 | 5098 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); |
9bccf70c | 5099 | |
91447636 | 5100 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { |
9bccf70c | 5101 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); |
1c79356b | 5102 | |
91447636 | 5103 | return (0); |
9bccf70c | 5104 | } |
1c79356b | 5105 | upl_size = pages_in_upl * PAGE_SIZE; |
91447636 | 5106 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
1c79356b | 5107 | |
9bccf70c A |
5108 | if (upl_f_offset + upl_size >= EOF) { |
5109 | ||
5110 | if (upl_f_offset >= EOF) { | |
5111 | /* | |
5112 | * must have truncated the file and missed | |
5113 | * clearing a dangling cluster (i.e. it's completely | |
5114 | * beyond the new EOF | |
5115 | */ | |
5116 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); | |
5117 | ||
91447636 | 5118 | return(0); |
9bccf70c A |
5119 | } |
5120 | size = EOF - upl_f_offset; | |
1c79356b | 5121 | |
55e303ae | 5122 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
9bccf70c | 5123 | pages_in_upl = upl_size / PAGE_SIZE; |
55e303ae | 5124 | } else |
9bccf70c | 5125 | size = upl_size; |
55e303ae A |
5126 | |
5127 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); | |
5128 | ||
91447636 A |
5129 | /* |
5130 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior | |
5131 | * | |
5132 | * - only pages that are currently dirty are returned... these are the ones we need to clean | |
5133 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set | |
5134 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page | |
5135 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if | |
5136 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state | |
5137 | * | |
5138 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) | |
5139 | */ | |
5140 | ||
5141 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) | |
55e303ae A |
5142 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; |
5143 | else | |
5144 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; | |
5145 | ||
0b4e3aa0 A |
5146 | kret = ubc_create_upl(vp, |
5147 | upl_f_offset, | |
5148 | upl_size, | |
5149 | &upl, | |
9bccf70c | 5150 | &pl, |
55e303ae | 5151 | upl_flags); |
1c79356b A |
5152 | if (kret != KERN_SUCCESS) |
5153 | panic("cluster_push: failed to get pagelist"); | |
5154 | ||
b0d623f7 | 5155 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); |
9bccf70c | 5156 | |
55e303ae A |
5157 | /* |
5158 | * since we only asked for the dirty pages back | |
5159 | * it's possible that we may only get a few or even none, so... | |
5160 | * before we start marching forward, we must make sure we know | |
5161 | * where the last present page is in the UPL, otherwise we could | |
5162 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics | |
5163 | * employed by commit_range and abort_range. | |
5164 | */ | |
5165 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { | |
5166 | if (upl_page_present(pl, last_pg)) | |
5167 | break; | |
9bccf70c | 5168 | } |
55e303ae | 5169 | pages_in_upl = last_pg + 1; |
1c79356b | 5170 | |
55e303ae A |
5171 | if (pages_in_upl == 0) { |
5172 | ubc_upl_abort(upl, 0); | |
1c79356b | 5173 | |
55e303ae | 5174 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); |
91447636 | 5175 | return(0); |
55e303ae A |
5176 | } |
5177 | ||
5178 | for (last_pg = 0; last_pg < pages_in_upl; ) { | |
5179 | /* | |
5180 | * find the next dirty page in the UPL | |
5181 | * this will become the first page in the | |
5182 | * next I/O to generate | |
5183 | */ | |
1c79356b | 5184 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
55e303ae | 5185 | if (upl_dirty_page(pl, start_pg)) |
1c79356b | 5186 | break; |
55e303ae A |
5187 | if (upl_page_present(pl, start_pg)) |
5188 | /* | |
5189 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages | |
5190 | * just release these unchanged since we're not going | |
5191 | * to steal them or change their state | |
5192 | */ | |
5193 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); | |
1c79356b | 5194 | } |
55e303ae A |
5195 | if (start_pg >= pages_in_upl) |
5196 | /* | |
5197 | * done... no more dirty pages to push | |
5198 | */ | |
5199 | break; | |
5200 | if (start_pg > last_pg) | |
5201 | /* | |
5202 | * skipped over some non-dirty pages | |
5203 | */ | |
5204 | size -= ((start_pg - last_pg) * PAGE_SIZE); | |
1c79356b | 5205 | |
55e303ae A |
5206 | /* |
5207 | * find a range of dirty pages to write | |
5208 | */ | |
1c79356b | 5209 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
55e303ae | 5210 | if (!upl_dirty_page(pl, last_pg)) |
1c79356b A |
5211 | break; |
5212 | } | |
5213 | upl_offset = start_pg * PAGE_SIZE; | |
5214 | ||
5215 | io_size = min(size, (last_pg - start_pg) * PAGE_SIZE); | |
5216 | ||
2d21ac55 | 5217 | io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; |
91447636 A |
5218 | |
5219 | if ( !(flags & IO_SYNC)) | |
5220 | io_flags |= CL_ASYNC; | |
5221 | ||
6d2010ae A |
5222 | if (flags & IO_CLOSE) |
5223 | io_flags |= CL_CLOSE; | |
5224 | ||
91447636 | 5225 | retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size, |
2d21ac55 | 5226 | io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
1c79356b | 5227 | |
91447636 A |
5228 | if (error == 0 && retval) |
5229 | error = retval; | |
1c79356b A |
5230 | |
5231 | size -= io_size; | |
5232 | } | |
9bccf70c A |
5233 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0); |
5234 | ||
91447636 | 5235 | return(error); |
1c79356b | 5236 | } |
b4c24cb9 A |
5237 | |
5238 | ||
91447636 A |
5239 | /* |
5240 | * sparse_cluster_switch is called with the write behind lock held | |
5241 | */ | |
5242 | static void | |
2d21ac55 | 5243 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) |
b4c24cb9 | 5244 | { |
91447636 | 5245 | int cl_index; |
b4c24cb9 | 5246 | |
b0d623f7 | 5247 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0); |
91447636 A |
5248 | |
5249 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { | |
5250 | int flags; | |
5251 | struct cl_extent cl; | |
5252 | ||
5253 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { | |
b4c24cb9 | 5254 | |
2d21ac55 | 5255 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { |
91447636 A |
5256 | if (flags & UPL_POP_DIRTY) { |
5257 | cl.e_addr = cl.b_addr + 1; | |
b4c24cb9 | 5258 | |
b0d623f7 | 5259 | sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg); |
91447636 | 5260 | } |
55e303ae A |
5261 | } |
5262 | } | |
5263 | } | |
91447636 A |
5264 | wbp->cl_number = 0; |
5265 | ||
b0d623f7 | 5266 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0); |
55e303ae A |
5267 | } |
5268 | ||
5269 | ||
91447636 | 5270 | /* |
b0d623f7 A |
5271 | * sparse_cluster_push must be called with the write-behind lock held if the scmap is |
5272 | * still associated with the write-behind context... however, if the scmap has been disassociated | |
5273 | * from the write-behind context (the cluster_push case), the wb lock is not held | |
91447636 A |
5274 | */ |
5275 | static void | |
6d2010ae | 5276 | sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5277 | { |
91447636 A |
5278 | struct cl_extent cl; |
5279 | off_t offset; | |
5280 | u_int length; | |
55e303ae | 5281 | |
b0d623f7 | 5282 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0); |
55e303ae | 5283 | |
2d21ac55 | 5284 | if (push_flag & PUSH_ALL) |
b0d623f7 | 5285 | vfs_drt_control(scmap, 1); |
55e303ae A |
5286 | |
5287 | for (;;) { | |
b0d623f7 | 5288 | if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS) |
55e303ae | 5289 | break; |
55e303ae | 5290 | |
91447636 A |
5291 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); |
5292 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); | |
5293 | ||
6d2010ae | 5294 | cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg); |
2d21ac55 | 5295 | |
2d21ac55 | 5296 | if ( !(push_flag & PUSH_ALL) ) |
55e303ae A |
5297 | break; |
5298 | } | |
b0d623f7 | 5299 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0); |
55e303ae A |
5300 | } |
5301 | ||
5302 | ||
91447636 A |
5303 | /* |
5304 | * sparse_cluster_add is called with the write behind lock held | |
5305 | */ | |
5306 | static void | |
b0d623f7 | 5307 | sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5308 | { |
91447636 A |
5309 | u_int new_dirty; |
5310 | u_int length; | |
5311 | off_t offset; | |
55e303ae | 5312 | |
b0d623f7 | 5313 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); |
55e303ae | 5314 | |
91447636 A |
5315 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
5316 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; | |
55e303ae | 5317 | |
b0d623f7 | 5318 | while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) { |
55e303ae A |
5319 | /* |
5320 | * no room left in the map | |
5321 | * only a partial update was done | |
5322 | * push out some pages and try again | |
5323 | */ | |
6d2010ae | 5324 | sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg); |
55e303ae A |
5325 | |
5326 | offset += (new_dirty * PAGE_SIZE_64); | |
5327 | length -= (new_dirty * PAGE_SIZE); | |
5328 | } | |
b0d623f7 | 5329 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0); |
55e303ae A |
5330 | } |
5331 | ||
5332 | ||
5333 | static int | |
2d21ac55 | 5334 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
55e303ae | 5335 | { |
55e303ae A |
5336 | upl_page_info_t *pl; |
5337 | upl_t upl; | |
5338 | addr64_t ubc_paddr; | |
5339 | kern_return_t kret; | |
5340 | int error = 0; | |
91447636 A |
5341 | int did_read = 0; |
5342 | int abort_flags; | |
5343 | int upl_flags; | |
2d21ac55 A |
5344 | int bflag; |
5345 | ||
5346 | if (flags & IO_PASSIVE) | |
6d2010ae | 5347 | bflag = CL_PASSIVE; |
2d21ac55 | 5348 | else |
6d2010ae | 5349 | bflag = 0; |
55e303ae | 5350 | |
91447636 | 5351 | upl_flags = UPL_SET_LITE; |
2d21ac55 A |
5352 | |
5353 | if ( !(flags & CL_READ) ) { | |
91447636 A |
5354 | /* |
5355 | * "write" operation: let the UPL subsystem know | |
5356 | * that we intend to modify the buffer cache pages | |
5357 | * we're gathering. | |
5358 | */ | |
5359 | upl_flags |= UPL_WILL_MODIFY; | |
2d21ac55 A |
5360 | } else { |
5361 | /* | |
5362 | * indicate that there is no need to pull the | |
5363 | * mapping for this page... we're only going | |
5364 | * to read from it, not modify it. | |
5365 | */ | |
5366 | upl_flags |= UPL_FILE_IO; | |
91447636 | 5367 | } |
55e303ae A |
5368 | kret = ubc_create_upl(vp, |
5369 | uio->uio_offset & ~PAGE_MASK_64, | |
5370 | PAGE_SIZE, | |
5371 | &upl, | |
5372 | &pl, | |
91447636 | 5373 | upl_flags); |
55e303ae A |
5374 | |
5375 | if (kret != KERN_SUCCESS) | |
5376 | return(EINVAL); | |
5377 | ||
5378 | if (!upl_valid_page(pl, 0)) { | |
5379 | /* | |
5380 | * issue a synchronous read to cluster_io | |
5381 | */ | |
91447636 | 5382 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
2d21ac55 | 5383 | CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
55e303ae | 5384 | if (error) { |
b4c24cb9 A |
5385 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
5386 | ||
5387 | return(error); | |
5388 | } | |
91447636 | 5389 | did_read = 1; |
b4c24cb9 | 5390 | } |
55e303ae | 5391 | ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << 12) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); |
b4c24cb9 | 5392 | |
55e303ae A |
5393 | /* |
5394 | * NOTE: There is no prototype for the following in BSD. It, and the definitions | |
5395 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in | |
5396 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no | |
5397 | * way to do so without exporting them to kexts as well. | |
5398 | */ | |
de355530 | 5399 | if (flags & CL_READ) |
55e303ae A |
5400 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ |
5401 | copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */ | |
de355530 | 5402 | else |
4a249263 A |
5403 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ |
5404 | copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */ | |
55e303ae A |
5405 | |
5406 | if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) { | |
5407 | /* | |
5408 | * issue a synchronous write to cluster_io | |
5409 | */ | |
91447636 | 5410 | error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
2d21ac55 | 5411 | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg); |
de355530 | 5412 | } |
2d21ac55 | 5413 | if (error == 0) |
cc9f6e38 A |
5414 | uio_update(uio, (user_size_t)xsize); |
5415 | ||
91447636 A |
5416 | if (did_read) |
5417 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; | |
5418 | else | |
5419 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; | |
5420 | ||
5421 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); | |
55e303ae A |
5422 | |
5423 | return (error); | |
5424 | } | |
5425 | ||
5426 | ||
5427 | ||
5428 | int | |
2d21ac55 | 5429 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) |
55e303ae A |
5430 | { |
5431 | int pg_offset; | |
5432 | int pg_index; | |
5433 | int csize; | |
5434 | int segflg; | |
5435 | int retval = 0; | |
2d21ac55 | 5436 | int xsize; |
55e303ae | 5437 | upl_page_info_t *pl; |
55e303ae | 5438 | |
2d21ac55 A |
5439 | xsize = *io_resid; |
5440 | ||
55e303ae | 5441 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, |
2d21ac55 | 5442 | (int)uio->uio_offset, upl_offset, xsize, 0, 0); |
55e303ae A |
5443 | |
5444 | segflg = uio->uio_segflg; | |
5445 | ||
5446 | switch(segflg) { | |
5447 | ||
91447636 A |
5448 | case UIO_USERSPACE32: |
5449 | case UIO_USERISPACE32: | |
5450 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
5451 | break; | |
5452 | ||
55e303ae A |
5453 | case UIO_USERSPACE: |
5454 | case UIO_USERISPACE: | |
5455 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
5456 | break; | |
5457 | ||
91447636 A |
5458 | case UIO_USERSPACE64: |
5459 | case UIO_USERISPACE64: | |
5460 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
5461 | break; | |
5462 | ||
55e303ae A |
5463 | case UIO_SYSSPACE: |
5464 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
5465 | break; | |
91447636 | 5466 | |
55e303ae A |
5467 | } |
5468 | pl = ubc_upl_pageinfo(upl); | |
5469 | ||
5470 | pg_index = upl_offset / PAGE_SIZE; | |
5471 | pg_offset = upl_offset & PAGE_MASK; | |
5472 | csize = min(PAGE_SIZE - pg_offset, xsize); | |
5473 | ||
5474 | while (xsize && retval == 0) { | |
5475 | addr64_t paddr; | |
5476 | ||
5477 | paddr = ((addr64_t)upl_phys_page(pl, pg_index) << 12) + pg_offset; | |
de355530 | 5478 | |
55e303ae A |
5479 | retval = uiomove64(paddr, csize, uio); |
5480 | ||
5481 | pg_index += 1; | |
5482 | pg_offset = 0; | |
5483 | xsize -= csize; | |
5484 | csize = min(PAGE_SIZE, xsize); | |
5485 | } | |
2d21ac55 A |
5486 | *io_resid = xsize; |
5487 | ||
55e303ae A |
5488 | uio->uio_segflg = segflg; |
5489 | ||
55e303ae | 5490 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
2d21ac55 | 5491 | (int)uio->uio_offset, xsize, retval, segflg, 0); |
55e303ae A |
5492 | |
5493 | return (retval); | |
5494 | } | |
5495 | ||
5496 | ||
5497 | int | |
91447636 | 5498 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) |
2d21ac55 A |
5499 | { |
5500 | ||
5501 | return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1)); | |
5502 | } | |
5503 | ||
5504 | ||
5505 | static int | |
5506 | cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) | |
55e303ae A |
5507 | { |
5508 | int segflg; | |
5509 | int io_size; | |
5510 | int xsize; | |
5511 | int start_offset; | |
55e303ae A |
5512 | int retval = 0; |
5513 | memory_object_control_t control; | |
55e303ae | 5514 | |
2d21ac55 | 5515 | io_size = *io_resid; |
55e303ae A |
5516 | |
5517 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, | |
6d2010ae | 5518 | (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); |
55e303ae A |
5519 | |
5520 | control = ubc_getobject(vp, UBC_FLAGS_NONE); | |
2d21ac55 | 5521 | |
55e303ae A |
5522 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
5523 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, | |
2d21ac55 | 5524 | (int)uio->uio_offset, io_size, retval, 3, 0); |
55e303ae A |
5525 | |
5526 | return(0); | |
5527 | } | |
55e303ae A |
5528 | segflg = uio->uio_segflg; |
5529 | ||
5530 | switch(segflg) { | |
5531 | ||
91447636 A |
5532 | case UIO_USERSPACE32: |
5533 | case UIO_USERISPACE32: | |
5534 | uio->uio_segflg = UIO_PHYS_USERSPACE32; | |
5535 | break; | |
5536 | ||
5537 | case UIO_USERSPACE64: | |
5538 | case UIO_USERISPACE64: | |
5539 | uio->uio_segflg = UIO_PHYS_USERSPACE64; | |
5540 | break; | |
5541 | ||
55e303ae A |
5542 | case UIO_USERSPACE: |
5543 | case UIO_USERISPACE: | |
5544 | uio->uio_segflg = UIO_PHYS_USERSPACE; | |
5545 | break; | |
5546 | ||
5547 | case UIO_SYSSPACE: | |
5548 | uio->uio_segflg = UIO_PHYS_SYSSPACE; | |
5549 | break; | |
5550 | } | |
55e303ae | 5551 | |
91447636 A |
5552 | if ( (io_size = *io_resid) ) { |
5553 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); | |
5554 | xsize = uio_resid(uio); | |
55e303ae | 5555 | |
2d21ac55 A |
5556 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, |
5557 | start_offset, io_size, mark_dirty, take_reference); | |
91447636 A |
5558 | xsize -= uio_resid(uio); |
5559 | io_size -= xsize; | |
55e303ae A |
5560 | } |
5561 | uio->uio_segflg = segflg; | |
5562 | *io_resid = io_size; | |
5563 | ||
55e303ae | 5564 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
2d21ac55 | 5565 | (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); |
55e303ae A |
5566 | |
5567 | return(retval); | |
5568 | } | |
5569 | ||
5570 | ||
5571 | int | |
91447636 | 5572 | is_file_clean(vnode_t vp, off_t filesize) |
55e303ae A |
5573 | { |
5574 | off_t f_offset; | |
5575 | int flags; | |
5576 | int total_dirty = 0; | |
5577 | ||
5578 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { | |
2d21ac55 | 5579 | if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { |
55e303ae A |
5580 | if (flags & UPL_POP_DIRTY) { |
5581 | total_dirty++; | |
5582 | } | |
5583 | } | |
5584 | } | |
5585 | if (total_dirty) | |
5586 | return(EINVAL); | |
5587 | ||
5588 | return (0); | |
5589 | } | |
5590 | ||
5591 | ||
5592 | ||
5593 | /* | |
5594 | * Dirty region tracking/clustering mechanism. | |
5595 | * | |
5596 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering | |
5597 | * dirty regions within a larger space (file). It is primarily intended to | |
5598 | * support clustering in large files with many dirty areas. | |
5599 | * | |
5600 | * The implementation assumes that the dirty regions are pages. | |
5601 | * | |
5602 | * To represent dirty pages within the file, we store bit vectors in a | |
5603 | * variable-size circular hash. | |
5604 | */ | |
5605 | ||
5606 | /* | |
5607 | * Bitvector size. This determines the number of pages we group in a | |
5608 | * single hashtable entry. Each hashtable entry is aligned to this | |
5609 | * size within the file. | |
5610 | */ | |
5611 | #define DRT_BITVECTOR_PAGES 256 | |
5612 | ||
5613 | /* | |
5614 | * File offset handling. | |
5615 | * | |
5616 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; | |
5617 | * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1) | |
5618 | */ | |
5619 | #define DRT_ADDRESS_MASK (~((1 << 20) - 1)) | |
5620 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) | |
5621 | ||
5622 | /* | |
5623 | * Hashtable address field handling. | |
5624 | * | |
5625 | * The low-order bits of the hashtable address are used to conserve | |
5626 | * space. | |
5627 | * | |
5628 | * DRT_HASH_COUNT_MASK must be large enough to store the range | |
5629 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value | |
5630 | * to indicate that the bucket is actually unoccupied. | |
5631 | */ | |
5632 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) | |
5633 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ | |
5634 | do { \ | |
5635 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
5636 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ | |
5637 | } while (0) | |
5638 | #define DRT_HASH_COUNT_MASK 0x1ff | |
5639 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) | |
5640 | #define DRT_HASH_SET_COUNT(scm, i, c) \ | |
5641 | do { \ | |
5642 | (scm)->scm_hashtable[(i)].dhe_control = \ | |
5643 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ | |
5644 | } while (0) | |
5645 | #define DRT_HASH_CLEAR(scm, i) \ | |
5646 | do { \ | |
5647 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ | |
5648 | } while (0) | |
5649 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) | |
5650 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) | |
5651 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ | |
5652 | do { \ | |
5653 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ | |
5654 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ | |
5655 | } while(0); | |
5656 | ||
5657 | ||
5658 | /* | |
5659 | * Hash table moduli. | |
5660 | * | |
5661 | * Since the hashtable entry's size is dependent on the size of | |
5662 | * the bitvector, and since the hashtable size is constrained to | |
5663 | * both being prime and fitting within the desired allocation | |
5664 | * size, these values need to be manually determined. | |
5665 | * | |
5666 | * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes. | |
5667 | * | |
5668 | * The small hashtable allocation is 1024 bytes, so the modulus is 23. | |
5669 | * The large hashtable allocation is 16384 bytes, so the modulus is 401. | |
5670 | */ | |
5671 | #define DRT_HASH_SMALL_MODULUS 23 | |
5672 | #define DRT_HASH_LARGE_MODULUS 401 | |
5673 | ||
b7266188 A |
5674 | /* |
5675 | * Physical memory required before the large hash modulus is permitted. | |
5676 | * | |
5677 | * On small memory systems, the large hash modulus can lead to phsyical | |
5678 | * memory starvation, so we avoid using it there. | |
5679 | */ | |
5680 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ | |
5681 | ||
55e303ae A |
5682 | #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */ |
5683 | #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */ | |
5684 | ||
5685 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ | |
5686 | ||
5687 | /* | |
5688 | * Hashtable bitvector handling. | |
5689 | * | |
5690 | * Bitvector fields are 32 bits long. | |
5691 | */ | |
5692 | ||
5693 | #define DRT_HASH_SET_BIT(scm, i, bit) \ | |
5694 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) | |
5695 | ||
5696 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ | |
5697 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) | |
5698 | ||
5699 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ | |
5700 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) | |
5701 | ||
5702 | #define DRT_BITVECTOR_CLEAR(scm, i) \ | |
5703 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
5704 | ||
5705 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ | |
5706 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ | |
5707 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ | |
5708 | (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) | |
5709 | ||
5710 | ||
5711 | ||
5712 | /* | |
5713 | * Hashtable entry. | |
5714 | */ | |
5715 | struct vfs_drt_hashentry { | |
5716 | u_int64_t dhe_control; | |
5717 | u_int32_t dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; | |
5718 | }; | |
5719 | ||
5720 | /* | |
5721 | * Dirty Region Tracking structure. | |
5722 | * | |
5723 | * The hashtable is allocated entirely inside the DRT structure. | |
5724 | * | |
5725 | * The hash is a simple circular prime modulus arrangement, the structure | |
5726 | * is resized from small to large if it overflows. | |
5727 | */ | |
5728 | ||
5729 | struct vfs_drt_clustermap { | |
5730 | u_int32_t scm_magic; /* sanity/detection */ | |
5731 | #define DRT_SCM_MAGIC 0x12020003 | |
5732 | u_int32_t scm_modulus; /* current ring size */ | |
5733 | u_int32_t scm_buckets; /* number of occupied buckets */ | |
5734 | u_int32_t scm_lastclean; /* last entry we cleaned */ | |
5735 | u_int32_t scm_iskips; /* number of slot skips */ | |
5736 | ||
5737 | struct vfs_drt_hashentry scm_hashtable[0]; | |
5738 | }; | |
5739 | ||
5740 | ||
5741 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) | |
5742 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) | |
5743 | ||
5744 | /* | |
5745 | * Debugging codes and arguments. | |
5746 | */ | |
5747 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ | |
5748 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ | |
5749 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ | |
5750 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ | |
5751 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, | |
5752 | * dirty */ | |
5753 | /* 0, setcount */ | |
5754 | /* 1 (clean, no map) */ | |
5755 | /* 2 (map alloc fail) */ | |
5756 | /* 3, resid (partial) */ | |
5757 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) | |
5758 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, | |
5759 | * lastclean, iskips */ | |
5760 | ||
5761 | ||
55e303ae A |
5762 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); |
5763 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); | |
5764 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, | |
5765 | u_int64_t offset, int *indexp); | |
5766 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, | |
5767 | u_int64_t offset, | |
5768 | int *indexp, | |
5769 | int recursed); | |
5770 | static kern_return_t vfs_drt_do_mark_pages( | |
5771 | void **cmapp, | |
5772 | u_int64_t offset, | |
5773 | u_int length, | |
2d21ac55 | 5774 | u_int *setcountp, |
55e303ae A |
5775 | int dirty); |
5776 | static void vfs_drt_trace( | |
5777 | struct vfs_drt_clustermap *cmap, | |
5778 | int code, | |
5779 | int arg1, | |
5780 | int arg2, | |
5781 | int arg3, | |
5782 | int arg4); | |
5783 | ||
5784 | ||
5785 | /* | |
5786 | * Allocate and initialise a sparse cluster map. | |
5787 | * | |
5788 | * Will allocate a new map, resize or compact an existing map. | |
5789 | * | |
5790 | * XXX we should probably have at least one intermediate map size, | |
5791 | * as the 1:16 ratio seems a bit drastic. | |
5792 | */ | |
5793 | static kern_return_t | |
5794 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) | |
5795 | { | |
5796 | struct vfs_drt_clustermap *cmap, *ocmap; | |
5797 | kern_return_t kret; | |
5798 | u_int64_t offset; | |
2d21ac55 A |
5799 | u_int32_t i; |
5800 | int nsize, active_buckets, index, copycount; | |
55e303ae A |
5801 | |
5802 | ocmap = NULL; | |
5803 | if (cmapp != NULL) | |
5804 | ocmap = *cmapp; | |
5805 | ||
5806 | /* | |
5807 | * Decide on the size of the new map. | |
5808 | */ | |
5809 | if (ocmap == NULL) { | |
5810 | nsize = DRT_HASH_SMALL_MODULUS; | |
5811 | } else { | |
5812 | /* count the number of active buckets in the old map */ | |
5813 | active_buckets = 0; | |
5814 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
5815 | if (!DRT_HASH_VACANT(ocmap, i) && | |
5816 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) | |
5817 | active_buckets++; | |
5818 | } | |
5819 | /* | |
5820 | * If we're currently using the small allocation, check to | |
5821 | * see whether we should grow to the large one. | |
5822 | */ | |
5823 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { | |
b7266188 A |
5824 | /* |
5825 | * If the ring is nearly full and we are allowed to | |
5826 | * use the large modulus, upgrade. | |
5827 | */ | |
5828 | if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && | |
5829 | (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { | |
55e303ae A |
5830 | nsize = DRT_HASH_LARGE_MODULUS; |
5831 | } else { | |
5832 | nsize = DRT_HASH_SMALL_MODULUS; | |
5833 | } | |
5834 | } else { | |
5835 | /* already using the large modulus */ | |
5836 | nsize = DRT_HASH_LARGE_MODULUS; | |
5837 | /* | |
5838 | * If the ring is completely full, there's | |
5839 | * nothing useful for us to do. Behave as | |
5840 | * though we had compacted into the new | |
5841 | * array and return. | |
5842 | */ | |
5843 | if (active_buckets >= DRT_HASH_LARGE_MODULUS) | |
5844 | return(KERN_SUCCESS); | |
5845 | } | |
5846 | } | |
5847 | ||
5848 | /* | |
5849 | * Allocate and initialise the new map. | |
5850 | */ | |
5851 | ||
5852 | kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap, | |
5853 | (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
5854 | if (kret != KERN_SUCCESS) | |
5855 | return(kret); | |
5856 | cmap->scm_magic = DRT_SCM_MAGIC; | |
5857 | cmap->scm_modulus = nsize; | |
5858 | cmap->scm_buckets = 0; | |
5859 | cmap->scm_lastclean = 0; | |
5860 | cmap->scm_iskips = 0; | |
5861 | for (i = 0; i < cmap->scm_modulus; i++) { | |
5862 | DRT_HASH_CLEAR(cmap, i); | |
5863 | DRT_HASH_VACATE(cmap, i); | |
5864 | DRT_BITVECTOR_CLEAR(cmap, i); | |
5865 | } | |
5866 | ||
5867 | /* | |
5868 | * If there's an old map, re-hash entries from it into the new map. | |
5869 | */ | |
5870 | copycount = 0; | |
5871 | if (ocmap != NULL) { | |
5872 | for (i = 0; i < ocmap->scm_modulus; i++) { | |
5873 | /* skip empty buckets */ | |
5874 | if (DRT_HASH_VACANT(ocmap, i) || | |
5875 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) | |
5876 | continue; | |
5877 | /* get new index */ | |
5878 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); | |
5879 | kret = vfs_drt_get_index(&cmap, offset, &index, 1); | |
5880 | if (kret != KERN_SUCCESS) { | |
5881 | /* XXX need to bail out gracefully here */ | |
5882 | panic("vfs_drt: new cluster map mysteriously too small"); | |
2d21ac55 | 5883 | index = 0; |
55e303ae A |
5884 | } |
5885 | /* copy */ | |
5886 | DRT_HASH_COPY(ocmap, i, cmap, index); | |
5887 | copycount++; | |
5888 | } | |
5889 | } | |
5890 | ||
5891 | /* log what we've done */ | |
5892 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0); | |
5893 | ||
5894 | /* | |
5895 | * It's important to ensure that *cmapp always points to | |
5896 | * a valid map, so we must overwrite it before freeing | |
5897 | * the old map. | |
5898 | */ | |
5899 | *cmapp = cmap; | |
5900 | if (ocmap != NULL) { | |
5901 | /* emit stats into trace buffer */ | |
5902 | vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA, | |
5903 | ocmap->scm_modulus, | |
5904 | ocmap->scm_buckets, | |
5905 | ocmap->scm_lastclean, | |
5906 | ocmap->scm_iskips); | |
5907 | ||
5908 | vfs_drt_free_map(ocmap); | |
5909 | } | |
5910 | return(KERN_SUCCESS); | |
5911 | } | |
5912 | ||
5913 | ||
5914 | /* | |
5915 | * Free a sparse cluster map. | |
5916 | */ | |
5917 | static kern_return_t | |
5918 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) | |
5919 | { | |
55e303ae A |
5920 | kmem_free(kernel_map, (vm_offset_t)cmap, |
5921 | (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION); | |
5922 | return(KERN_SUCCESS); | |
5923 | } | |
5924 | ||
5925 | ||
5926 | /* | |
5927 | * Find the hashtable slot currently occupied by an entry for the supplied offset. | |
5928 | */ | |
5929 | static kern_return_t | |
5930 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) | |
5931 | { | |
2d21ac55 A |
5932 | int index; |
5933 | u_int32_t i; | |
55e303ae A |
5934 | |
5935 | offset = DRT_ALIGN_ADDRESS(offset); | |
5936 | index = DRT_HASH(cmap, offset); | |
5937 | ||
5938 | /* traverse the hashtable */ | |
5939 | for (i = 0; i < cmap->scm_modulus; i++) { | |
5940 | ||
5941 | /* | |
5942 | * If the slot is vacant, we can stop. | |
5943 | */ | |
5944 | if (DRT_HASH_VACANT(cmap, index)) | |
5945 | break; | |
5946 | ||
5947 | /* | |
5948 | * If the address matches our offset, we have success. | |
5949 | */ | |
5950 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { | |
5951 | *indexp = index; | |
5952 | return(KERN_SUCCESS); | |
5953 | } | |
5954 | ||
5955 | /* | |
5956 | * Move to the next slot, try again. | |
5957 | */ | |
5958 | index = DRT_HASH_NEXT(cmap, index); | |
5959 | } | |
5960 | /* | |
5961 | * It's not there. | |
5962 | */ | |
5963 | return(KERN_FAILURE); | |
5964 | } | |
5965 | ||
5966 | /* | |
5967 | * Find the hashtable slot for the supplied offset. If we haven't allocated | |
5968 | * one yet, allocate one and populate the address field. Note that it will | |
5969 | * not have a nonzero page count and thus will still technically be free, so | |
5970 | * in the case where we are called to clean pages, the slot will remain free. | |
5971 | */ | |
5972 | static kern_return_t | |
5973 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) | |
5974 | { | |
5975 | struct vfs_drt_clustermap *cmap; | |
5976 | kern_return_t kret; | |
2d21ac55 A |
5977 | u_int32_t index; |
5978 | u_int32_t i; | |
55e303ae A |
5979 | |
5980 | cmap = *cmapp; | |
5981 | ||
5982 | /* look for an existing entry */ | |
5983 | kret = vfs_drt_search_index(cmap, offset, indexp); | |
5984 | if (kret == KERN_SUCCESS) | |
5985 | return(kret); | |
5986 | ||
5987 | /* need to allocate an entry */ | |
5988 | offset = DRT_ALIGN_ADDRESS(offset); | |
5989 | index = DRT_HASH(cmap, offset); | |
5990 | ||
5991 | /* scan from the index forwards looking for a vacant slot */ | |
5992 | for (i = 0; i < cmap->scm_modulus; i++) { | |
5993 | /* slot vacant? */ | |
5994 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) { | |
5995 | cmap->scm_buckets++; | |
5996 | if (index < cmap->scm_lastclean) | |
5997 | cmap->scm_lastclean = index; | |
5998 | DRT_HASH_SET_ADDRESS(cmap, index, offset); | |
5999 | DRT_HASH_SET_COUNT(cmap, index, 0); | |
6000 | DRT_BITVECTOR_CLEAR(cmap, index); | |
6001 | *indexp = index; | |
6002 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0); | |
6003 | return(KERN_SUCCESS); | |
6004 | } | |
6005 | cmap->scm_iskips += i; | |
6006 | index = DRT_HASH_NEXT(cmap, index); | |
6007 | } | |
6008 | ||
6009 | /* | |
6010 | * We haven't found a vacant slot, so the map is full. If we're not | |
6011 | * already recursed, try reallocating/compacting it. | |
6012 | */ | |
6013 | if (recursed) | |
6014 | return(KERN_FAILURE); | |
6015 | kret = vfs_drt_alloc_map(cmapp); | |
6016 | if (kret == KERN_SUCCESS) { | |
6017 | /* now try to insert again */ | |
6018 | kret = vfs_drt_get_index(cmapp, offset, indexp, 1); | |
6019 | } | |
6020 | return(kret); | |
6021 | } | |
6022 | ||
6023 | /* | |
6024 | * Implementation of set dirty/clean. | |
6025 | * | |
6026 | * In the 'clean' case, not finding a map is OK. | |
6027 | */ | |
6028 | static kern_return_t | |
6029 | vfs_drt_do_mark_pages( | |
6030 | void **private, | |
6031 | u_int64_t offset, | |
6032 | u_int length, | |
2d21ac55 | 6033 | u_int *setcountp, |
55e303ae A |
6034 | int dirty) |
6035 | { | |
6036 | struct vfs_drt_clustermap *cmap, **cmapp; | |
6037 | kern_return_t kret; | |
6038 | int i, index, pgoff, pgcount, setcount, ecount; | |
6039 | ||
6040 | cmapp = (struct vfs_drt_clustermap **)private; | |
6041 | cmap = *cmapp; | |
6042 | ||
6043 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0); | |
6044 | ||
6045 | if (setcountp != NULL) | |
6046 | *setcountp = 0; | |
6047 | ||
6048 | /* allocate a cluster map if we don't already have one */ | |
6049 | if (cmap == NULL) { | |
6050 | /* no cluster map, nothing to clean */ | |
6051 | if (!dirty) { | |
6052 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0); | |
6053 | return(KERN_SUCCESS); | |
6054 | } | |
6055 | kret = vfs_drt_alloc_map(cmapp); | |
6056 | if (kret != KERN_SUCCESS) { | |
6057 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0); | |
6058 | return(kret); | |
6059 | } | |
6060 | } | |
6061 | setcount = 0; | |
6062 | ||
6063 | /* | |
6064 | * Iterate over the length of the region. | |
6065 | */ | |
6066 | while (length > 0) { | |
6067 | /* | |
6068 | * Get the hashtable index for this offset. | |
6069 | * | |
6070 | * XXX this will add blank entries if we are clearing a range | |
6071 | * that hasn't been dirtied. | |
6072 | */ | |
6073 | kret = vfs_drt_get_index(cmapp, offset, &index, 0); | |
6074 | cmap = *cmapp; /* may have changed! */ | |
6075 | /* this may be a partial-success return */ | |
6076 | if (kret != KERN_SUCCESS) { | |
6077 | if (setcountp != NULL) | |
6078 | *setcountp = setcount; | |
6079 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0); | |
6080 | ||
6081 | return(kret); | |
6082 | } | |
6083 | ||
6084 | /* | |
6085 | * Work out how many pages we're modifying in this | |
6086 | * hashtable entry. | |
6087 | */ | |
6088 | pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE; | |
6089 | pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff)); | |
6090 | ||
6091 | /* | |
6092 | * Iterate over pages, dirty/clearing as we go. | |
6093 | */ | |
6094 | ecount = DRT_HASH_GET_COUNT(cmap, index); | |
6095 | for (i = 0; i < pgcount; i++) { | |
6096 | if (dirty) { | |
6097 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6098 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); | |
6099 | ecount++; | |
6100 | setcount++; | |
6101 | } | |
6102 | } else { | |
6103 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { | |
6104 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); | |
6105 | ecount--; | |
6106 | setcount++; | |
6107 | } | |
6108 | } | |
6109 | } | |
6110 | DRT_HASH_SET_COUNT(cmap, index, ecount); | |
91447636 | 6111 | |
55e303ae A |
6112 | offset += pgcount * PAGE_SIZE; |
6113 | length -= pgcount * PAGE_SIZE; | |
6114 | } | |
6115 | if (setcountp != NULL) | |
6116 | *setcountp = setcount; | |
6117 | ||
6118 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0); | |
6119 | ||
6120 | return(KERN_SUCCESS); | |
6121 | } | |
6122 | ||
6123 | /* | |
6124 | * Mark a set of pages as dirty/clean. | |
6125 | * | |
6126 | * This is a public interface. | |
6127 | * | |
6128 | * cmapp | |
6129 | * Pointer to storage suitable for holding a pointer. Note that | |
6130 | * this must either be NULL or a value set by this function. | |
6131 | * | |
6132 | * size | |
6133 | * Current file size in bytes. | |
6134 | * | |
6135 | * offset | |
6136 | * Offset of the first page to be marked as dirty, in bytes. Must be | |
6137 | * page-aligned. | |
6138 | * | |
6139 | * length | |
6140 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. | |
6141 | * | |
6142 | * setcountp | |
6143 | * Number of pages newly marked dirty by this call (optional). | |
6144 | * | |
6145 | * Returns KERN_SUCCESS if all the pages were successfully marked. | |
6146 | */ | |
6147 | static kern_return_t | |
2d21ac55 | 6148 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) |
55e303ae A |
6149 | { |
6150 | /* XXX size unused, drop from interface */ | |
6151 | return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1)); | |
6152 | } | |
6153 | ||
91447636 | 6154 | #if 0 |
55e303ae A |
6155 | static kern_return_t |
6156 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) | |
6157 | { | |
6158 | return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0)); | |
6159 | } | |
91447636 | 6160 | #endif |
55e303ae A |
6161 | |
6162 | /* | |
6163 | * Get a cluster of dirty pages. | |
6164 | * | |
6165 | * This is a public interface. | |
6166 | * | |
6167 | * cmapp | |
6168 | * Pointer to storage managed by drt_mark_pages. Note that this must | |
6169 | * be NULL or a value set by drt_mark_pages. | |
6170 | * | |
6171 | * offsetp | |
6172 | * Returns the byte offset into the file of the first page in the cluster. | |
6173 | * | |
6174 | * lengthp | |
6175 | * Returns the length in bytes of the cluster of dirty pages. | |
6176 | * | |
6177 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there | |
6178 | * are no dirty pages meeting the minmum size criteria. Private storage will | |
6179 | * be released if there are no more dirty pages left in the map | |
6180 | * | |
6181 | */ | |
6182 | static kern_return_t | |
6183 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) | |
6184 | { | |
6185 | struct vfs_drt_clustermap *cmap; | |
6186 | u_int64_t offset; | |
6187 | u_int length; | |
2d21ac55 A |
6188 | u_int32_t j; |
6189 | int index, i, fs, ls; | |
55e303ae A |
6190 | |
6191 | /* sanity */ | |
6192 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6193 | return(KERN_FAILURE); | |
6194 | cmap = *cmapp; | |
6195 | ||
6196 | /* walk the hashtable */ | |
6197 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { | |
6198 | index = DRT_HASH(cmap, offset); | |
6199 | ||
6200 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) | |
6201 | continue; | |
6202 | ||
6203 | /* scan the bitfield for a string of bits */ | |
6204 | fs = -1; | |
6205 | ||
6206 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6207 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { | |
6208 | fs = i; | |
6209 | break; | |
6210 | } | |
6211 | } | |
6212 | if (fs == -1) { | |
6213 | /* didn't find any bits set */ | |
6214 | panic("vfs_drt: entry summary count > 0 but no bits set in map"); | |
6215 | } | |
6216 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { | |
6217 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) | |
6218 | break; | |
6219 | } | |
6220 | ||
6221 | /* compute offset and length, mark pages clean */ | |
6222 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); | |
6223 | length = ls * PAGE_SIZE; | |
6224 | vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); | |
6225 | cmap->scm_lastclean = index; | |
6226 | ||
6227 | /* return successful */ | |
6228 | *offsetp = (off_t)offset; | |
6229 | *lengthp = length; | |
6230 | ||
6231 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0); | |
6232 | return(KERN_SUCCESS); | |
6233 | } | |
6234 | /* | |
6235 | * We didn't find anything... hashtable is empty | |
6236 | * emit stats into trace buffer and | |
6237 | * then free it | |
6238 | */ | |
6239 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6240 | cmap->scm_modulus, | |
6241 | cmap->scm_buckets, | |
6242 | cmap->scm_lastclean, | |
6243 | cmap->scm_iskips); | |
6244 | ||
6245 | vfs_drt_free_map(cmap); | |
6246 | *cmapp = NULL; | |
6247 | ||
6248 | return(KERN_FAILURE); | |
6249 | } | |
6250 | ||
6251 | ||
6252 | static kern_return_t | |
6253 | vfs_drt_control(void **cmapp, int op_type) | |
6254 | { | |
6255 | struct vfs_drt_clustermap *cmap; | |
6256 | ||
6257 | /* sanity */ | |
6258 | if ((cmapp == NULL) || (*cmapp == NULL)) | |
6259 | return(KERN_FAILURE); | |
6260 | cmap = *cmapp; | |
6261 | ||
6262 | switch (op_type) { | |
6263 | case 0: | |
6264 | /* emit stats into trace buffer */ | |
6265 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, | |
6266 | cmap->scm_modulus, | |
6267 | cmap->scm_buckets, | |
6268 | cmap->scm_lastclean, | |
6269 | cmap->scm_iskips); | |
6270 | ||
6271 | vfs_drt_free_map(cmap); | |
6272 | *cmapp = NULL; | |
6273 | break; | |
6274 | ||
6275 | case 1: | |
6276 | cmap->scm_lastclean = 0; | |
6277 | break; | |
6278 | } | |
6279 | return(KERN_SUCCESS); | |
6280 | } | |
6281 | ||
6282 | ||
6283 | ||
6284 | /* | |
6285 | * Emit a summary of the state of the clustermap into the trace buffer | |
6286 | * along with some caller-provided data. | |
6287 | */ | |
91447636 | 6288 | #if KDEBUG |
55e303ae | 6289 | static void |
91447636 | 6290 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) |
55e303ae A |
6291 | { |
6292 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); | |
6293 | } | |
91447636 A |
6294 | #else |
6295 | static void | |
6296 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, | |
6297 | __unused int arg1, __unused int arg2, __unused int arg3, | |
6298 | __unused int arg4) | |
6299 | { | |
6300 | } | |
6301 | #endif | |
55e303ae | 6302 | |
91447636 | 6303 | #if 0 |
55e303ae A |
6304 | /* |
6305 | * Perform basic sanity check on the hash entry summary count | |
6306 | * vs. the actual bits set in the entry. | |
6307 | */ | |
6308 | static void | |
6309 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) | |
6310 | { | |
6311 | int index, i; | |
6312 | int bits_on; | |
6313 | ||
6314 | for (index = 0; index < cmap->scm_modulus; index++) { | |
6315 | if (DRT_HASH_VACANT(cmap, index)) | |
6316 | continue; | |
6317 | ||
6318 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { | |
6319 | if (DRT_HASH_TEST_BIT(cmap, index, i)) | |
6320 | bits_on++; | |
6321 | } | |
6322 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) | |
6323 | panic("bits_on = %d, index = %d\n", bits_on, index); | |
6324 | } | |
b4c24cb9 | 6325 | } |
91447636 | 6326 | #endif |