]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
1c79356b A |
31 | /* |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: kern/kalloc.c | |
60 | * Author: Avadis Tevanian, Jr. | |
61 | * Date: 1985 | |
62 | * | |
63 | * General kernel memory allocator. This allocator is designed | |
64 | * to be used by the kernel to manage dynamic memory fast. | |
65 | */ | |
66 | ||
67 | #include <zone_debug.h> | |
68 | ||
69 | #include <mach/boolean.h> | |
70 | #include <mach/machine/vm_types.h> | |
71 | #include <mach/vm_param.h> | |
72 | #include <kern/misc_protos.h> | |
73 | #include <kern/zalloc.h> | |
74 | #include <kern/kalloc.h> | |
75 | #include <kern/lock.h> | |
76 | #include <vm/vm_kern.h> | |
77 | #include <vm/vm_object.h> | |
78 | #include <vm/vm_map.h> | |
91447636 | 79 | #include <libkern/OSMalloc.h> |
1c79356b A |
80 | |
81 | #ifdef MACH_BSD | |
82 | zone_t kalloc_zone(vm_size_t); | |
83 | #endif | |
84 | ||
2d21ac55 A |
85 | #define KALLOC_MAP_SIZE_MIN (16 * 1024 * 1024) |
86 | #define KALLOC_MAP_SIZE_MAX (128 * 1024 * 1024) | |
1c79356b | 87 | vm_map_t kalloc_map; |
1c79356b A |
88 | vm_size_t kalloc_max; |
89 | vm_size_t kalloc_max_prerounded; | |
0c530ab8 | 90 | vm_size_t kalloc_kernmap_size; /* size of kallocs that can come from kernel map */ |
1c79356b A |
91 | |
92 | unsigned int kalloc_large_inuse; | |
93 | vm_size_t kalloc_large_total; | |
94 | vm_size_t kalloc_large_max; | |
b0d623f7 A |
95 | volatile vm_size_t kalloc_largest_allocated = 0; |
96 | ||
97 | vm_offset_t kalloc_map_min; | |
98 | vm_offset_t kalloc_map_max; | |
1c79356b A |
99 | |
100 | /* | |
101 | * All allocations of size less than kalloc_max are rounded to the | |
102 | * next highest power of 2. This allocator is built on top of | |
103 | * the zone allocator. A zone is created for each potential size | |
104 | * that we are willing to get in small blocks. | |
105 | * | |
106 | * We assume that kalloc_max is not greater than 64K; | |
107 | * thus 16 is a safe array size for k_zone and k_zone_name. | |
108 | * | |
109 | * Note that kalloc_max is somewhat confusingly named. | |
110 | * It represents the first power of two for which no zone exists. | |
111 | * kalloc_max_prerounded is the smallest allocation size, before | |
112 | * rounding, for which no zone exists. | |
0c530ab8 A |
113 | * Also if the allocation size is more than kalloc_kernmap_size |
114 | * then allocate from kernel map rather than kalloc_map. | |
1c79356b A |
115 | */ |
116 | ||
117 | int first_k_zone = -1; | |
118 | struct zone *k_zone[16]; | |
91447636 | 119 | static const char *k_zone_name[16] = { |
1c79356b A |
120 | "kalloc.1", "kalloc.2", |
121 | "kalloc.4", "kalloc.8", | |
122 | "kalloc.16", "kalloc.32", | |
123 | "kalloc.64", "kalloc.128", | |
124 | "kalloc.256", "kalloc.512", | |
125 | "kalloc.1024", "kalloc.2048", | |
126 | "kalloc.4096", "kalloc.8192", | |
127 | "kalloc.16384", "kalloc.32768" | |
128 | }; | |
129 | ||
130 | /* | |
131 | * Max number of elements per zone. zinit rounds things up correctly | |
132 | * Doing things this way permits each zone to have a different maximum size | |
133 | * based on need, rather than just guessing; it also | |
134 | * means its patchable in case you're wrong! | |
135 | */ | |
136 | unsigned long k_zone_max[16] = { | |
137 | 1024, /* 1 Byte */ | |
138 | 1024, /* 2 Byte */ | |
139 | 1024, /* 4 Byte */ | |
140 | 1024, /* 8 Byte */ | |
141 | 1024, /* 16 Byte */ | |
142 | 4096, /* 32 Byte */ | |
143 | 4096, /* 64 Byte */ | |
144 | 4096, /* 128 Byte */ | |
145 | 4096, /* 256 Byte */ | |
146 | 1024, /* 512 Byte */ | |
147 | 1024, /* 1024 Byte */ | |
148 | 1024, /* 2048 Byte */ | |
149 | 1024, /* 4096 Byte */ | |
150 | 4096, /* 8192 Byte */ | |
151 | 64, /* 16384 Byte */ | |
152 | 64, /* 32768 Byte */ | |
153 | }; | |
154 | ||
91447636 A |
155 | /* forward declarations */ |
156 | void * kalloc_canblock( | |
157 | vm_size_t size, | |
158 | boolean_t canblock); | |
159 | ||
160 | ||
161 | /* OSMalloc local data declarations */ | |
162 | static | |
163 | queue_head_t OSMalloc_tag_list; | |
164 | ||
165 | decl_simple_lock_data(static,OSMalloc_tag_lock) | |
166 | ||
167 | /* OSMalloc forward declarations */ | |
168 | void OSMalloc_init(void); | |
169 | void OSMalloc_Tagref(OSMallocTag tag); | |
170 | void OSMalloc_Tagrele(OSMallocTag tag); | |
171 | ||
1c79356b A |
172 | /* |
173 | * Initialize the memory allocator. This should be called only | |
174 | * once on a system wide basis (i.e. first processor to get here | |
175 | * does the initialization). | |
176 | * | |
177 | * This initializes all of the zones. | |
178 | */ | |
179 | ||
180 | void | |
181 | kalloc_init( | |
182 | void) | |
183 | { | |
184 | kern_return_t retval; | |
185 | vm_offset_t min; | |
2d21ac55 | 186 | vm_size_t size, kalloc_map_size; |
1c79356b A |
187 | register int i; |
188 | ||
2d21ac55 A |
189 | /* |
190 | * Scale the kalloc_map_size to physical memory size: stay below | |
b0d623f7 | 191 | * 1/8th the total zone map size, or 128 MB (for a 32-bit kernel). |
2d21ac55 | 192 | */ |
b0d623f7 A |
193 | kalloc_map_size = (vm_size_t)(sane_size >> 5); |
194 | #if !__LP64__ | |
2d21ac55 A |
195 | if (kalloc_map_size > KALLOC_MAP_SIZE_MAX) |
196 | kalloc_map_size = KALLOC_MAP_SIZE_MAX; | |
b0d623f7 | 197 | #endif /* !__LP64__ */ |
2d21ac55 A |
198 | if (kalloc_map_size < KALLOC_MAP_SIZE_MIN) |
199 | kalloc_map_size = KALLOC_MAP_SIZE_MIN; | |
200 | ||
1c79356b | 201 | retval = kmem_suballoc(kernel_map, &min, kalloc_map_size, |
b0d623f7 A |
202 | FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT, |
203 | &kalloc_map); | |
91447636 | 204 | |
1c79356b A |
205 | if (retval != KERN_SUCCESS) |
206 | panic("kalloc_init: kmem_suballoc failed"); | |
207 | ||
b0d623f7 A |
208 | kalloc_map_min = min; |
209 | kalloc_map_max = min + kalloc_map_size - 1; | |
210 | ||
1c79356b A |
211 | /* |
212 | * Ensure that zones up to size 8192 bytes exist. | |
213 | * This is desirable because messages are allocated | |
214 | * with kalloc, and messages up through size 8192 are common. | |
215 | */ | |
216 | ||
217 | if (PAGE_SIZE < 16*1024) | |
218 | kalloc_max = 16*1024; | |
219 | else | |
220 | kalloc_max = PAGE_SIZE; | |
221 | kalloc_max_prerounded = kalloc_max / 2 + 1; | |
0c530ab8 A |
222 | /* size it to be more than 16 times kalloc_max (256k) for allocations from kernel map */ |
223 | kalloc_kernmap_size = (kalloc_max * 16) + 1; | |
b0d623f7 | 224 | kalloc_largest_allocated = kalloc_kernmap_size; |
1c79356b A |
225 | |
226 | /* | |
227 | * Allocate a zone for each size we are going to handle. | |
228 | * We specify non-paged memory. | |
229 | */ | |
230 | for (i = 0, size = 1; size < kalloc_max; i++, size <<= 1) { | |
231 | if (size < KALLOC_MINSIZE) { | |
2d21ac55 | 232 | k_zone[i] = NULL; |
1c79356b A |
233 | continue; |
234 | } | |
235 | if (size == KALLOC_MINSIZE) { | |
236 | first_k_zone = i; | |
237 | } | |
238 | k_zone[i] = zinit(size, k_zone_max[i] * size, size, | |
239 | k_zone_name[i]); | |
240 | } | |
91447636 | 241 | OSMalloc_init(); |
1c79356b A |
242 | } |
243 | ||
91447636 | 244 | void * |
1c79356b A |
245 | kalloc_canblock( |
246 | vm_size_t size, | |
247 | boolean_t canblock) | |
248 | { | |
249 | register int zindex; | |
250 | register vm_size_t allocsize; | |
0c530ab8 | 251 | vm_map_t alloc_map = VM_MAP_NULL; |
1c79356b A |
252 | |
253 | /* | |
254 | * If size is too large for a zone, then use kmem_alloc. | |
b0d623f7 | 255 | * (We use kmem_alloc instead of kmem_alloc_kobject so that |
1c79356b A |
256 | * krealloc can use kmem_realloc.) |
257 | */ | |
258 | ||
259 | if (size >= kalloc_max_prerounded) { | |
91447636 | 260 | void *addr; |
1c79356b A |
261 | |
262 | /* kmem_alloc could block so we return if noblock */ | |
263 | if (!canblock) { | |
2d21ac55 | 264 | return(NULL); |
1c79356b | 265 | } |
0c530ab8 | 266 | |
2d21ac55 | 267 | if (size >= kalloc_kernmap_size) { |
b0d623f7 | 268 | volatile vm_offset_t prev_largest; |
2d21ac55 | 269 | alloc_map = kernel_map; |
b0d623f7 A |
270 | /* Thread-safe version of the workaround for 4740071 |
271 | * (a double FREE()) | |
272 | */ | |
273 | do { | |
274 | prev_largest = kalloc_largest_allocated; | |
275 | } while ((size > prev_largest) && !OSCompareAndSwap((UInt32)prev_largest, (UInt32)size, (volatile UInt32 *) &kalloc_largest_allocated)); | |
0c530ab8 A |
276 | } else |
277 | alloc_map = kalloc_map; | |
278 | ||
b0d623f7 A |
279 | if (kmem_alloc(alloc_map, (vm_offset_t *)&addr, size) != KERN_SUCCESS) { |
280 | if (alloc_map != kernel_map) { | |
281 | if (kmem_alloc(kernel_map, (vm_offset_t *)&addr, size) != KERN_SUCCESS) | |
282 | addr = NULL; | |
283 | } | |
284 | else | |
285 | addr = NULL; | |
286 | } | |
1c79356b | 287 | |
b0d623f7 | 288 | if (addr != NULL) { |
1c79356b A |
289 | kalloc_large_inuse++; |
290 | kalloc_large_total += size; | |
291 | ||
292 | if (kalloc_large_total > kalloc_large_max) | |
293 | kalloc_large_max = kalloc_large_total; | |
294 | } | |
295 | return(addr); | |
296 | } | |
297 | ||
298 | /* compute the size of the block that we will actually allocate */ | |
299 | ||
300 | allocsize = KALLOC_MINSIZE; | |
301 | zindex = first_k_zone; | |
302 | while (allocsize < size) { | |
303 | allocsize <<= 1; | |
304 | zindex++; | |
305 | } | |
306 | ||
307 | /* allocate from the appropriate zone */ | |
1c79356b A |
308 | assert(allocsize < kalloc_max); |
309 | return(zalloc_canblock(k_zone[zindex], canblock)); | |
310 | } | |
311 | ||
91447636 | 312 | void * |
1c79356b A |
313 | kalloc( |
314 | vm_size_t size) | |
315 | { | |
91447636 | 316 | return( kalloc_canblock(size, TRUE) ); |
1c79356b A |
317 | } |
318 | ||
91447636 | 319 | void * |
1c79356b A |
320 | kalloc_noblock( |
321 | vm_size_t size) | |
322 | { | |
91447636 | 323 | return( kalloc_canblock(size, FALSE) ); |
1c79356b A |
324 | } |
325 | ||
326 | ||
327 | void | |
328 | krealloc( | |
91447636 | 329 | void **addrp, |
1c79356b A |
330 | vm_size_t old_size, |
331 | vm_size_t new_size, | |
332 | simple_lock_t lock) | |
333 | { | |
334 | register int zindex; | |
335 | register vm_size_t allocsize; | |
91447636 | 336 | void *naddr; |
0c530ab8 | 337 | vm_map_t alloc_map = VM_MAP_NULL; |
1c79356b A |
338 | |
339 | /* can only be used for increasing allocation size */ | |
340 | ||
341 | assert(new_size > old_size); | |
342 | ||
343 | /* if old_size is zero, then we are simply allocating */ | |
344 | ||
345 | if (old_size == 0) { | |
346 | simple_unlock(lock); | |
347 | naddr = kalloc(new_size); | |
348 | simple_lock(lock); | |
349 | *addrp = naddr; | |
350 | return; | |
351 | } | |
352 | ||
353 | /* if old block was kmem_alloc'd, then use kmem_realloc if necessary */ | |
354 | ||
355 | if (old_size >= kalloc_max_prerounded) { | |
0c530ab8 A |
356 | if (old_size >= kalloc_kernmap_size) |
357 | alloc_map = kernel_map; | |
358 | else | |
359 | alloc_map = kalloc_map; | |
360 | ||
91447636 A |
361 | old_size = round_page(old_size); |
362 | new_size = round_page(new_size); | |
1c79356b A |
363 | if (new_size > old_size) { |
364 | ||
0c530ab8 | 365 | if (KERN_SUCCESS != kmem_realloc(alloc_map, |
91447636 | 366 | (vm_offset_t)*addrp, old_size, |
2d21ac55 | 367 | (vm_offset_t *)&naddr, new_size)) |
1c79356b | 368 | panic("krealloc: kmem_realloc"); |
1c79356b A |
369 | |
370 | simple_lock(lock); | |
91447636 | 371 | *addrp = (void *) naddr; |
1c79356b A |
372 | |
373 | /* kmem_realloc() doesn't free old page range. */ | |
0c530ab8 | 374 | kmem_free(alloc_map, (vm_offset_t)*addrp, old_size); |
1c79356b A |
375 | |
376 | kalloc_large_total += (new_size - old_size); | |
377 | ||
378 | if (kalloc_large_total > kalloc_large_max) | |
91447636 A |
379 | kalloc_large_max = kalloc_large_total; |
380 | ||
1c79356b A |
381 | } |
382 | return; | |
383 | } | |
384 | ||
385 | /* compute the size of the block that we actually allocated */ | |
386 | ||
387 | allocsize = KALLOC_MINSIZE; | |
388 | zindex = first_k_zone; | |
389 | while (allocsize < old_size) { | |
390 | allocsize <<= 1; | |
391 | zindex++; | |
392 | } | |
393 | ||
394 | /* if new size fits in old block, then return */ | |
395 | ||
396 | if (new_size <= allocsize) { | |
397 | return; | |
398 | } | |
399 | ||
400 | /* if new size does not fit in zone, kmem_alloc it, else zalloc it */ | |
401 | ||
402 | simple_unlock(lock); | |
403 | if (new_size >= kalloc_max_prerounded) { | |
0c530ab8 A |
404 | if (new_size >= kalloc_kernmap_size) |
405 | alloc_map = kernel_map; | |
406 | else | |
407 | alloc_map = kalloc_map; | |
408 | if (KERN_SUCCESS != kmem_alloc(alloc_map, | |
91447636 | 409 | (vm_offset_t *)&naddr, new_size)) { |
1c79356b A |
410 | panic("krealloc: kmem_alloc"); |
411 | simple_lock(lock); | |
91447636 | 412 | *addrp = NULL; |
1c79356b A |
413 | return; |
414 | } | |
415 | kalloc_large_inuse++; | |
416 | kalloc_large_total += new_size; | |
417 | ||
418 | if (kalloc_large_total > kalloc_large_max) | |
419 | kalloc_large_max = kalloc_large_total; | |
420 | } else { | |
421 | register int new_zindex; | |
422 | ||
423 | allocsize <<= 1; | |
424 | new_zindex = zindex + 1; | |
425 | while (allocsize < new_size) { | |
426 | allocsize <<= 1; | |
427 | new_zindex++; | |
428 | } | |
429 | naddr = zalloc(k_zone[new_zindex]); | |
430 | } | |
431 | simple_lock(lock); | |
432 | ||
433 | /* copy existing data */ | |
434 | ||
435 | bcopy((const char *)*addrp, (char *)naddr, old_size); | |
436 | ||
437 | /* free old block, and return */ | |
438 | ||
439 | zfree(k_zone[zindex], *addrp); | |
440 | ||
441 | /* set up new address */ | |
442 | ||
91447636 | 443 | *addrp = (void *) naddr; |
1c79356b A |
444 | } |
445 | ||
446 | ||
91447636 | 447 | void * |
1c79356b A |
448 | kget( |
449 | vm_size_t size) | |
450 | { | |
451 | register int zindex; | |
452 | register vm_size_t allocsize; | |
453 | ||
454 | /* size must not be too large for a zone */ | |
455 | ||
456 | if (size >= kalloc_max_prerounded) { | |
457 | /* This will never work, so we might as well panic */ | |
458 | panic("kget"); | |
459 | } | |
460 | ||
461 | /* compute the size of the block that we will actually allocate */ | |
462 | ||
463 | allocsize = KALLOC_MINSIZE; | |
464 | zindex = first_k_zone; | |
465 | while (allocsize < size) { | |
466 | allocsize <<= 1; | |
467 | zindex++; | |
468 | } | |
469 | ||
470 | /* allocate from the appropriate zone */ | |
471 | ||
472 | assert(allocsize < kalloc_max); | |
473 | return(zget(k_zone[zindex])); | |
474 | } | |
475 | ||
b0d623f7 A |
476 | volatile SInt32 kfree_nop_count = 0; |
477 | ||
1c79356b A |
478 | void |
479 | kfree( | |
91447636 | 480 | void *data, |
1c79356b A |
481 | vm_size_t size) |
482 | { | |
483 | register int zindex; | |
484 | register vm_size_t freesize; | |
b0d623f7 | 485 | vm_map_t alloc_map = kernel_map; |
1c79356b A |
486 | |
487 | /* if size was too large for a zone, then use kmem_free */ | |
488 | ||
489 | if (size >= kalloc_max_prerounded) { | |
b0d623f7 A |
490 | if ((((vm_offset_t) data) >= kalloc_map_min) && (((vm_offset_t) data) <= kalloc_map_max)) |
491 | alloc_map = kalloc_map; | |
492 | if (size > kalloc_largest_allocated) { | |
0c530ab8 A |
493 | /* |
494 | * work around double FREEs of small MALLOCs | |
2d21ac55 | 495 | * this use to end up being a nop |
0c530ab8 A |
496 | * since the pointer being freed from an |
497 | * alloc backed by the zalloc world could | |
498 | * never show up in the kalloc_map... however, | |
499 | * the kernel_map is a different issue... since it | |
500 | * was released back into the zalloc pool, a pointer | |
501 | * would have gotten written over the 'size' that | |
502 | * the MALLOC was retaining in the first 4 bytes of | |
503 | * the underlying allocation... that pointer ends up | |
504 | * looking like a really big size on the 2nd FREE and | |
505 | * pushes the kfree into the kernel_map... we | |
506 | * end up removing a ton of virutal space before we panic | |
507 | * this check causes us to ignore the kfree for a size | |
508 | * that must be 'bogus'... note that it might not be due | |
509 | * to the above scenario, but it would still be wrong and | |
510 | * cause serious damage. | |
511 | */ | |
b0d623f7 A |
512 | |
513 | OSAddAtomic(1, &kfree_nop_count); | |
0c530ab8 | 514 | return; |
b0d623f7 | 515 | } |
0c530ab8 | 516 | kmem_free(alloc_map, (vm_offset_t)data, size); |
1c79356b A |
517 | |
518 | kalloc_large_total -= size; | |
519 | kalloc_large_inuse--; | |
520 | ||
521 | return; | |
522 | } | |
523 | ||
524 | /* compute the size of the block that we actually allocated from */ | |
525 | ||
526 | freesize = KALLOC_MINSIZE; | |
527 | zindex = first_k_zone; | |
528 | while (freesize < size) { | |
529 | freesize <<= 1; | |
530 | zindex++; | |
531 | } | |
532 | ||
533 | /* free to the appropriate zone */ | |
534 | ||
535 | assert(freesize < kalloc_max); | |
536 | zfree(k_zone[zindex], data); | |
537 | } | |
538 | ||
539 | #ifdef MACH_BSD | |
540 | zone_t | |
541 | kalloc_zone( | |
542 | vm_size_t size) | |
543 | { | |
544 | register int zindex = 0; | |
545 | register vm_size_t allocsize; | |
546 | ||
547 | /* compute the size of the block that we will actually allocate */ | |
548 | ||
549 | allocsize = size; | |
550 | if (size <= kalloc_max) { | |
551 | allocsize = KALLOC_MINSIZE; | |
552 | zindex = first_k_zone; | |
553 | while (allocsize < size) { | |
554 | allocsize <<= 1; | |
555 | zindex++; | |
556 | } | |
557 | return (k_zone[zindex]); | |
558 | } | |
559 | return (ZONE_NULL); | |
560 | } | |
561 | #endif | |
562 | ||
563 | ||
91447636 | 564 | void |
1c79356b A |
565 | kalloc_fake_zone_info(int *count, vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size, |
566 | vm_size_t *alloc_size, int *collectable, int *exhaustable) | |
567 | { | |
91447636 | 568 | *count = kalloc_large_inuse; |
1c79356b A |
569 | *cur_size = kalloc_large_total; |
570 | *max_size = kalloc_large_max; | |
571 | *elem_size = kalloc_large_total / kalloc_large_inuse; | |
572 | *alloc_size = kalloc_large_total / kalloc_large_inuse; | |
573 | *collectable = 0; | |
574 | *exhaustable = 0; | |
575 | } | |
576 | ||
91447636 A |
577 | |
578 | void | |
579 | OSMalloc_init( | |
580 | void) | |
581 | { | |
582 | queue_init(&OSMalloc_tag_list); | |
583 | simple_lock_init(&OSMalloc_tag_lock, 0); | |
584 | } | |
585 | ||
586 | OSMallocTag | |
587 | OSMalloc_Tagalloc( | |
588 | const char *str, | |
589 | uint32_t flags) | |
590 | { | |
591 | OSMallocTag OSMTag; | |
592 | ||
593 | OSMTag = (OSMallocTag)kalloc(sizeof(*OSMTag)); | |
594 | ||
595 | bzero((void *)OSMTag, sizeof(*OSMTag)); | |
596 | ||
597 | if (flags & OSMT_PAGEABLE) | |
598 | OSMTag->OSMT_attr = OSMT_ATTR_PAGEABLE; | |
599 | ||
600 | OSMTag->OSMT_refcnt = 1; | |
601 | ||
602 | strncpy(OSMTag->OSMT_name, str, OSMT_MAX_NAME); | |
603 | ||
604 | simple_lock(&OSMalloc_tag_lock); | |
605 | enqueue_tail(&OSMalloc_tag_list, (queue_entry_t)OSMTag); | |
606 | simple_unlock(&OSMalloc_tag_lock); | |
607 | OSMTag->OSMT_state = OSMT_VALID; | |
608 | return(OSMTag); | |
609 | } | |
610 | ||
611 | void | |
612 | OSMalloc_Tagref( | |
613 | OSMallocTag tag) | |
614 | { | |
615 | if (!((tag->OSMT_state & OSMT_VALID_MASK) == OSMT_VALID)) | |
616 | panic("OSMalloc_Tagref(): bad state 0x%08X\n",tag->OSMT_state); | |
617 | ||
2d21ac55 | 618 | (void)hw_atomic_add(&tag->OSMT_refcnt, 1); |
91447636 A |
619 | } |
620 | ||
621 | void | |
622 | OSMalloc_Tagrele( | |
623 | OSMallocTag tag) | |
624 | { | |
625 | if (!((tag->OSMT_state & OSMT_VALID_MASK) == OSMT_VALID)) | |
626 | panic("OSMalloc_Tagref(): bad state 0x%08X\n",tag->OSMT_state); | |
627 | ||
2d21ac55 | 628 | if (hw_atomic_sub(&tag->OSMT_refcnt, 1) == 0) { |
91447636 A |
629 | if (hw_compare_and_store(OSMT_VALID|OSMT_RELEASED, OSMT_VALID|OSMT_RELEASED, &tag->OSMT_state)) { |
630 | simple_lock(&OSMalloc_tag_lock); | |
631 | (void)remque((queue_entry_t)tag); | |
632 | simple_unlock(&OSMalloc_tag_lock); | |
633 | kfree((void*)tag, sizeof(*tag)); | |
634 | } else | |
635 | panic("OSMalloc_Tagrele(): refcnt 0\n"); | |
636 | } | |
637 | } | |
638 | ||
639 | void | |
640 | OSMalloc_Tagfree( | |
641 | OSMallocTag tag) | |
642 | { | |
643 | if (!hw_compare_and_store(OSMT_VALID, OSMT_VALID|OSMT_RELEASED, &tag->OSMT_state)) | |
644 | panic("OSMalloc_Tagfree(): bad state 0x%08X\n", tag->OSMT_state); | |
645 | ||
2d21ac55 | 646 | if (hw_atomic_sub(&tag->OSMT_refcnt, 1) == 0) { |
91447636 A |
647 | simple_lock(&OSMalloc_tag_lock); |
648 | (void)remque((queue_entry_t)tag); | |
649 | simple_unlock(&OSMalloc_tag_lock); | |
650 | kfree((void*)tag, sizeof(*tag)); | |
651 | } | |
652 | } | |
653 | ||
654 | void * | |
655 | OSMalloc( | |
656 | uint32_t size, | |
657 | OSMallocTag tag) | |
658 | { | |
659 | void *addr=NULL; | |
660 | kern_return_t kr; | |
661 | ||
662 | OSMalloc_Tagref(tag); | |
663 | if ((tag->OSMT_attr & OSMT_PAGEABLE) | |
664 | && (size & ~PAGE_MASK)) { | |
665 | ||
666 | if ((kr = kmem_alloc_pageable(kernel_map, (vm_offset_t *)&addr, size)) != KERN_SUCCESS) | |
2d21ac55 | 667 | addr = NULL; |
91447636 A |
668 | } else |
669 | addr = kalloc((vm_size_t)size); | |
670 | ||
2d21ac55 A |
671 | if (!addr) |
672 | OSMalloc_Tagrele(tag); | |
673 | ||
91447636 A |
674 | return(addr); |
675 | } | |
676 | ||
677 | void * | |
678 | OSMalloc_nowait( | |
679 | uint32_t size, | |
680 | OSMallocTag tag) | |
681 | { | |
682 | void *addr=NULL; | |
683 | ||
684 | if (tag->OSMT_attr & OSMT_PAGEABLE) | |
685 | return(NULL); | |
686 | ||
687 | OSMalloc_Tagref(tag); | |
688 | /* XXX: use non-blocking kalloc for now */ | |
689 | addr = kalloc_noblock((vm_size_t)size); | |
690 | if (addr == NULL) | |
691 | OSMalloc_Tagrele(tag); | |
692 | ||
693 | return(addr); | |
694 | } | |
695 | ||
696 | void * | |
697 | OSMalloc_noblock( | |
698 | uint32_t size, | |
699 | OSMallocTag tag) | |
700 | { | |
701 | void *addr=NULL; | |
702 | ||
703 | if (tag->OSMT_attr & OSMT_PAGEABLE) | |
704 | return(NULL); | |
705 | ||
706 | OSMalloc_Tagref(tag); | |
707 | addr = kalloc_noblock((vm_size_t)size); | |
708 | if (addr == NULL) | |
709 | OSMalloc_Tagrele(tag); | |
710 | ||
711 | return(addr); | |
712 | } | |
713 | ||
714 | void | |
715 | OSFree( | |
716 | void *addr, | |
717 | uint32_t size, | |
718 | OSMallocTag tag) | |
719 | { | |
720 | if ((tag->OSMT_attr & OSMT_PAGEABLE) | |
721 | && (size & ~PAGE_MASK)) { | |
722 | kmem_free(kernel_map, (vm_offset_t)addr, size); | |
723 | } else | |
724 | kfree((void*)addr, size); | |
725 | ||
726 | OSMalloc_Tagrele(tag); | |
727 | } |