]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | * Default Pager. | |
59 | * Memory Object Management. | |
60 | */ | |
61 | ||
62 | #include "default_pager_internal.h" | |
91447636 A |
63 | #include <default_pager/default_pager_object_server.h> |
64 | #include <mach/memory_object_default_server.h> | |
65 | #include <mach/memory_object_control.h> | |
0b4e3aa0 | 66 | #include <mach/memory_object_types.h> |
1c79356b | 67 | #include <mach/memory_object_server.h> |
91447636 A |
68 | #include <mach/upl.h> |
69 | #include <mach/vm_map.h> | |
0b4e3aa0 A |
70 | #include <vm/memory_object.h> |
71 | #include <vm/vm_pageout.h> | |
91447636 A |
72 | #include <vm/vm_map.h> |
73 | #include <vm/vm_protos.h> | |
1c79356b | 74 | |
91447636 | 75 | /* forward declaration */ |
b0d623f7 | 76 | vstruct_t vs_object_create(dp_size_t size); |
1c79356b A |
77 | |
78 | /* | |
79 | * List of all vstructs. A specific vstruct is | |
80 | * found directly via its port, this list is | |
81 | * only used for monitoring purposes by the | |
82 | * default_pager_object* calls and by ps_delete | |
83 | * when abstract memory objects must be scanned | |
84 | * to remove any live storage on a segment which | |
85 | * is to be removed. | |
86 | */ | |
87 | struct vstruct_list_head vstruct_list; | |
88 | ||
0b4e3aa0 | 89 | __private_extern__ void |
1c79356b A |
90 | vstruct_list_insert( |
91 | vstruct_t vs) | |
92 | { | |
93 | VSL_LOCK(); | |
94 | queue_enter(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links); | |
95 | vstruct_list.vsl_count++; | |
96 | VSL_UNLOCK(); | |
97 | } | |
98 | ||
1c79356b | 99 | |
0b4e3aa0 | 100 | __private_extern__ void |
1c79356b A |
101 | vstruct_list_delete( |
102 | vstruct_t vs) | |
103 | { | |
104 | queue_remove(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links); | |
105 | vstruct_list.vsl_count--; | |
106 | } | |
107 | ||
108 | /* | |
109 | * We use the sequence numbers on requests to regulate | |
110 | * our parallelism. In general, we allow multiple reads and writes | |
111 | * to proceed in parallel, with the exception that reads must | |
112 | * wait for previous writes to finish. (Because the kernel might | |
113 | * generate a data-request for a page on the heels of a data-write | |
114 | * for the same page, and we must avoid returning stale data.) | |
115 | * terminate requests wait for proceeding reads and writes to finish. | |
116 | */ | |
117 | ||
0b4e3aa0 A |
118 | static unsigned int default_pager_total = 0; /* debugging */ |
119 | static unsigned int default_pager_wait_seqno = 0; /* debugging */ | |
120 | static unsigned int default_pager_wait_read = 0; /* debugging */ | |
121 | static unsigned int default_pager_wait_write = 0; /* debugging */ | |
1c79356b | 122 | |
0b4e3aa0 | 123 | __private_extern__ void |
1c79356b A |
124 | vs_async_wait( |
125 | vstruct_t vs) | |
126 | { | |
1c79356b A |
127 | |
128 | ASSERT(vs->vs_async_pending >= 0); | |
129 | while (vs->vs_async_pending > 0) { | |
130 | vs->vs_waiting_async = TRUE; | |
0b4e3aa0 | 131 | assert_wait(&vs->vs_async_pending, THREAD_UNINT); |
1c79356b | 132 | VS_UNLOCK(vs); |
9bccf70c | 133 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
134 | VS_LOCK(vs); |
135 | } | |
136 | ASSERT(vs->vs_async_pending == 0); | |
137 | } | |
138 | ||
1c79356b | 139 | |
0b4e3aa0 | 140 | #if PARALLEL |
1c79356b A |
141 | /* |
142 | * Waits for correct sequence number. Leaves pager locked. | |
0b4e3aa0 A |
143 | * |
144 | * JMM - Sequence numbers guarantee ordering of requests generated | |
145 | * by a single thread if the receiver is multithreaded and | |
146 | * the interfaces are asynchronous (i.e. sender can generate | |
147 | * more than one request before the first is received in the | |
148 | * pager). Normally, IPC would generate these number in that | |
149 | * case. But we are trying to avoid using IPC for the in-kernel | |
150 | * scenario. Since these are actually invoked synchronously | |
151 | * anyway (in-kernel), we can just fake the sequence number | |
152 | * generation here (thus avoiding the dependence on IPC). | |
1c79356b | 153 | */ |
0b4e3aa0 | 154 | __private_extern__ void |
1c79356b | 155 | vs_lock( |
0b4e3aa0 | 156 | vstruct_t vs) |
1c79356b | 157 | { |
0b4e3aa0 A |
158 | mach_port_seqno_t seqno; |
159 | ||
1c79356b A |
160 | default_pager_total++; |
161 | VS_LOCK(vs); | |
162 | ||
163 | seqno = vs->vs_next_seqno++; | |
164 | ||
165 | while (vs->vs_seqno != seqno) { | |
166 | default_pager_wait_seqno++; | |
167 | vs->vs_waiting_seqno = TRUE; | |
0b4e3aa0 | 168 | assert_wait(&vs->vs_seqno, THREAD_UNINT); |
1c79356b | 169 | VS_UNLOCK(vs); |
9bccf70c | 170 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
171 | VS_LOCK(vs); |
172 | } | |
173 | } | |
174 | ||
175 | /* | |
176 | * Increments sequence number and unlocks pager. | |
177 | */ | |
0b4e3aa0 | 178 | __private_extern__ void |
1c79356b A |
179 | vs_unlock(vstruct_t vs) |
180 | { | |
1c79356b | 181 | vs->vs_seqno++; |
0b4e3aa0 A |
182 | if (vs->vs_waiting_seqno) { |
183 | vs->vs_waiting_seqno = FALSE; | |
184 | VS_UNLOCK(vs); | |
185 | thread_wakeup(&vs->vs_seqno); | |
186 | return; | |
187 | } | |
1c79356b | 188 | VS_UNLOCK(vs); |
1c79356b A |
189 | } |
190 | ||
191 | /* | |
192 | * Start a read - one more reader. Pager must be locked. | |
193 | */ | |
0b4e3aa0 | 194 | __private_extern__ void |
1c79356b A |
195 | vs_start_read( |
196 | vstruct_t vs) | |
197 | { | |
198 | vs->vs_readers++; | |
199 | } | |
200 | ||
201 | /* | |
202 | * Wait for readers. Unlocks and relocks pager if wait needed. | |
203 | */ | |
0b4e3aa0 | 204 | __private_extern__ void |
1c79356b A |
205 | vs_wait_for_readers( |
206 | vstruct_t vs) | |
207 | { | |
208 | while (vs->vs_readers != 0) { | |
209 | default_pager_wait_read++; | |
210 | vs->vs_waiting_read = TRUE; | |
0b4e3aa0 | 211 | assert_wait(&vs->vs_readers, THREAD_UNINT); |
1c79356b | 212 | VS_UNLOCK(vs); |
9bccf70c | 213 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
214 | VS_LOCK(vs); |
215 | } | |
216 | } | |
217 | ||
218 | /* | |
219 | * Finish a read. Pager is unlocked and returns unlocked. | |
220 | */ | |
0b4e3aa0 | 221 | __private_extern__ void |
1c79356b A |
222 | vs_finish_read( |
223 | vstruct_t vs) | |
224 | { | |
225 | VS_LOCK(vs); | |
0b4e3aa0 | 226 | if (--vs->vs_readers == 0 && vs->vs_waiting_read) { |
1c79356b A |
227 | vs->vs_waiting_read = FALSE; |
228 | VS_UNLOCK(vs); | |
0b4e3aa0 A |
229 | thread_wakeup(&vs->vs_readers); |
230 | return; | |
231 | } | |
232 | VS_UNLOCK(vs); | |
1c79356b A |
233 | } |
234 | ||
235 | /* | |
236 | * Start a write - one more writer. Pager must be locked. | |
237 | */ | |
0b4e3aa0 | 238 | __private_extern__ void |
1c79356b A |
239 | vs_start_write( |
240 | vstruct_t vs) | |
241 | { | |
242 | vs->vs_writers++; | |
243 | } | |
244 | ||
245 | /* | |
246 | * Wait for writers. Unlocks and relocks pager if wait needed. | |
247 | */ | |
0b4e3aa0 | 248 | __private_extern__ void |
1c79356b A |
249 | vs_wait_for_writers( |
250 | vstruct_t vs) | |
251 | { | |
252 | while (vs->vs_writers != 0) { | |
253 | default_pager_wait_write++; | |
254 | vs->vs_waiting_write = TRUE; | |
0b4e3aa0 | 255 | assert_wait(&vs->vs_writers, THREAD_UNINT); |
1c79356b | 256 | VS_UNLOCK(vs); |
9bccf70c | 257 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
258 | VS_LOCK(vs); |
259 | } | |
260 | vs_async_wait(vs); | |
261 | } | |
262 | ||
263 | /* This is to be used for the transfer from segment code ONLY */ | |
264 | /* The transfer code holds off vs destruction by keeping the */ | |
265 | /* vs_async_wait count non-zero. It will not ocnflict with */ | |
266 | /* other writers on an async basis because it only writes on */ | |
267 | /* a cluster basis into fresh (as of sync time) cluster locations */ | |
0b4e3aa0 A |
268 | |
269 | __private_extern__ void | |
1c79356b A |
270 | vs_wait_for_sync_writers( |
271 | vstruct_t vs) | |
272 | { | |
273 | while (vs->vs_writers != 0) { | |
274 | default_pager_wait_write++; | |
275 | vs->vs_waiting_write = TRUE; | |
0b4e3aa0 | 276 | assert_wait(&vs->vs_writers, THREAD_UNINT); |
1c79356b | 277 | VS_UNLOCK(vs); |
9bccf70c | 278 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
279 | VS_LOCK(vs); |
280 | } | |
281 | } | |
282 | ||
283 | ||
284 | /* | |
285 | * Finish a write. Pager is unlocked and returns unlocked. | |
286 | */ | |
0b4e3aa0 | 287 | __private_extern__ void |
1c79356b A |
288 | vs_finish_write( |
289 | vstruct_t vs) | |
290 | { | |
291 | VS_LOCK(vs); | |
0b4e3aa0 | 292 | if (--vs->vs_writers == 0 && vs->vs_waiting_write) { |
1c79356b A |
293 | vs->vs_waiting_write = FALSE; |
294 | VS_UNLOCK(vs); | |
0b4e3aa0 A |
295 | thread_wakeup(&vs->vs_writers); |
296 | return; | |
1c79356b | 297 | } |
0b4e3aa0 | 298 | VS_UNLOCK(vs); |
1c79356b | 299 | } |
1c79356b A |
300 | #endif /* PARALLEL */ |
301 | ||
1c79356b A |
302 | vstruct_t |
303 | vs_object_create( | |
b0d623f7 | 304 | dp_size_t size) |
1c79356b A |
305 | { |
306 | vstruct_t vs; | |
1c79356b A |
307 | |
308 | /* | |
309 | * Allocate a vstruct. If there are any problems, then report them | |
310 | * to the console. | |
311 | */ | |
312 | vs = ps_vstruct_create(size); | |
313 | if (vs == VSTRUCT_NULL) { | |
314 | dprintf(("vs_object_create: unable to allocate %s\n", | |
315 | "-- either run swapon command or reboot")); | |
316 | return VSTRUCT_NULL; | |
317 | } | |
318 | ||
319 | return vs; | |
320 | } | |
321 | ||
0b4e3aa0 | 322 | #if 0 |
1c79356b A |
323 | void default_pager_add(vstruct_t, boolean_t); /* forward */ |
324 | ||
325 | void | |
326 | default_pager_add( | |
327 | vstruct_t vs, | |
328 | boolean_t internal) | |
329 | { | |
0b4e3aa0 A |
330 | memory_object_t mem_obj = vs->vs_mem_obj; |
331 | mach_port_t pset; | |
1c79356b | 332 | mach_port_mscount_t sync; |
0b4e3aa0 | 333 | mach_port_t previous; |
1c79356b A |
334 | kern_return_t kr; |
335 | static char here[] = "default_pager_add"; | |
336 | ||
337 | /* | |
338 | * The port currently has a make-send count of zero, | |
339 | * because either we just created the port or we just | |
340 | * received the port in a memory_object_create request. | |
341 | */ | |
342 | ||
343 | if (internal) { | |
344 | /* possibly generate an immediate no-senders notification */ | |
345 | sync = 0; | |
346 | pset = default_pager_internal_set; | |
347 | } else { | |
348 | /* delay notification till send right is created */ | |
349 | sync = 1; | |
350 | pset = default_pager_external_set; | |
351 | } | |
352 | ||
353 | ipc_port_make_sonce(mem_obj); | |
354 | ip_lock(mem_obj); /* unlocked in nsrequest below */ | |
355 | ipc_port_nsrequest(mem_obj, sync, mem_obj, &previous); | |
356 | } | |
357 | ||
0b4e3aa0 | 358 | #endif |
1c79356b | 359 | |
0c530ab8 A |
360 | const struct memory_object_pager_ops default_pager_ops = { |
361 | dp_memory_object_reference, | |
362 | dp_memory_object_deallocate, | |
363 | dp_memory_object_init, | |
364 | dp_memory_object_terminate, | |
365 | dp_memory_object_data_request, | |
366 | dp_memory_object_data_return, | |
367 | dp_memory_object_data_initialize, | |
368 | dp_memory_object_data_unlock, | |
369 | dp_memory_object_synchronize, | |
593a1d5f A |
370 | dp_memory_object_map, |
371 | dp_memory_object_last_unmap, | |
0c530ab8 A |
372 | "default pager" |
373 | }; | |
374 | ||
1c79356b A |
375 | kern_return_t |
376 | dp_memory_object_init( | |
0b4e3aa0 A |
377 | memory_object_t mem_obj, |
378 | memory_object_control_t control, | |
b0d623f7 | 379 | __unused memory_object_cluster_size_t pager_page_size) |
1c79356b | 380 | { |
1c79356b | 381 | vstruct_t vs; |
1c79356b A |
382 | |
383 | assert(pager_page_size == vm_page_size); | |
384 | ||
0b4e3aa0 A |
385 | memory_object_control_reference(control); |
386 | ||
1c79356b | 387 | vs_lookup(mem_obj, vs); |
0b4e3aa0 | 388 | vs_lock(vs); |
1c79356b | 389 | |
0b4e3aa0 | 390 | if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL) |
1c79356b A |
391 | Panic("bad request"); |
392 | ||
0b4e3aa0 | 393 | vs->vs_control = control; |
1c79356b A |
394 | vs_unlock(vs); |
395 | ||
396 | return KERN_SUCCESS; | |
397 | } | |
398 | ||
399 | kern_return_t | |
400 | dp_memory_object_synchronize( | |
0b4e3aa0 A |
401 | memory_object_t mem_obj, |
402 | memory_object_offset_t offset, | |
b0d623f7 | 403 | memory_object_size_t length, |
91447636 | 404 | __unused vm_sync_t flags) |
1c79356b | 405 | { |
1c79356b | 406 | vstruct_t vs; |
1c79356b A |
407 | |
408 | vs_lookup(mem_obj, vs); | |
0b4e3aa0 | 409 | vs_lock(vs); |
1c79356b A |
410 | vs_unlock(vs); |
411 | ||
0b4e3aa0 | 412 | memory_object_synchronize_completed(vs->vs_control, offset, length); |
1c79356b A |
413 | |
414 | return KERN_SUCCESS; | |
415 | } | |
416 | ||
0b4e3aa0 | 417 | kern_return_t |
593a1d5f A |
418 | dp_memory_object_map( |
419 | __unused memory_object_t mem_obj, | |
420 | __unused vm_prot_t prot) | |
0b4e3aa0 | 421 | { |
593a1d5f A |
422 | panic("dp_memory_object_map"); |
423 | return KERN_FAILURE; | |
424 | } | |
0b4e3aa0 | 425 | |
593a1d5f A |
426 | kern_return_t |
427 | dp_memory_object_last_unmap( | |
428 | __unused memory_object_t mem_obj) | |
429 | { | |
430 | panic("dp_memory_object_last_unmap"); | |
0b4e3aa0 A |
431 | return KERN_FAILURE; |
432 | } | |
433 | ||
1c79356b A |
434 | kern_return_t |
435 | dp_memory_object_terminate( | |
0b4e3aa0 | 436 | memory_object_t mem_obj) |
1c79356b | 437 | { |
0b4e3aa0 | 438 | memory_object_control_t control; |
1c79356b | 439 | vstruct_t vs; |
1c79356b A |
440 | |
441 | /* | |
442 | * control port is a receive right, not a send right. | |
443 | */ | |
444 | ||
445 | vs_lookup(mem_obj, vs); | |
0b4e3aa0 | 446 | vs_lock(vs); |
1c79356b A |
447 | |
448 | /* | |
449 | * Wait for read and write requests to terminate. | |
450 | */ | |
451 | ||
452 | vs_wait_for_readers(vs); | |
453 | vs_wait_for_writers(vs); | |
454 | ||
455 | /* | |
456 | * After memory_object_terminate both memory_object_init | |
457 | * and a no-senders notification are possible, so we need | |
0b4e3aa0 A |
458 | * to clean up our reference to the memory_object_control |
459 | * to prepare for a new init. | |
1c79356b A |
460 | */ |
461 | ||
0b4e3aa0 A |
462 | control = vs->vs_control; |
463 | vs->vs_control = MEMORY_OBJECT_CONTROL_NULL; | |
1c79356b A |
464 | |
465 | /* a bit of special case ugliness here. Wakeup any waiting reads */ | |
466 | /* these data requests had to be removed from the seqno traffic */ | |
467 | /* based on a performance bottleneck with large memory objects */ | |
468 | /* the problem will right itself with the new component based */ | |
469 | /* synchronous interface. The new async will be able to return */ | |
470 | /* failure during its sync phase. In the mean time ... */ | |
471 | ||
0b4e3aa0 A |
472 | thread_wakeup(&vs->vs_writers); |
473 | thread_wakeup(&vs->vs_async_pending); | |
1c79356b A |
474 | |
475 | vs_unlock(vs); | |
476 | ||
477 | /* | |
0b4e3aa0 | 478 | * Now we deallocate our reference on the control. |
1c79356b | 479 | */ |
0b4e3aa0 | 480 | memory_object_control_deallocate(control); |
1c79356b A |
481 | return KERN_SUCCESS; |
482 | } | |
483 | ||
484 | void | |
0b4e3aa0 A |
485 | dp_memory_object_reference( |
486 | memory_object_t mem_obj) | |
487 | { | |
488 | vstruct_t vs; | |
489 | ||
490 | vs_lookup_safe(mem_obj, vs); | |
491 | if (vs == VSTRUCT_NULL) | |
492 | return; | |
493 | ||
494 | VS_LOCK(vs); | |
495 | assert(vs->vs_references > 0); | |
496 | vs->vs_references++; | |
497 | VS_UNLOCK(vs); | |
498 | } | |
499 | ||
0b4e3aa0 A |
500 | void |
501 | dp_memory_object_deallocate( | |
502 | memory_object_t mem_obj) | |
1c79356b A |
503 | { |
504 | vstruct_t vs; | |
0b4e3aa0 | 505 | mach_port_seqno_t seqno; |
1c79356b A |
506 | |
507 | /* | |
0b4e3aa0 | 508 | * Because we don't give out multiple first references |
1c79356b | 509 | * for a memory object, there can't be a race |
0b4e3aa0 A |
510 | * between getting a deallocate call and creating |
511 | * a new reference for the object. | |
1c79356b A |
512 | */ |
513 | ||
0b4e3aa0 A |
514 | vs_lookup_safe(mem_obj, vs); |
515 | if (vs == VSTRUCT_NULL) | |
516 | return; | |
517 | ||
518 | VS_LOCK(vs); | |
519 | if (--vs->vs_references > 0) { | |
520 | VS_UNLOCK(vs); | |
521 | return; | |
522 | } | |
523 | ||
524 | seqno = vs->vs_next_seqno++; | |
525 | while (vs->vs_seqno != seqno) { | |
526 | default_pager_wait_seqno++; | |
527 | vs->vs_waiting_seqno = TRUE; | |
528 | assert_wait(&vs->vs_seqno, THREAD_UNINT); | |
529 | VS_UNLOCK(vs); | |
9bccf70c | 530 | thread_block(THREAD_CONTINUE_NULL); |
0b4e3aa0 A |
531 | VS_LOCK(vs); |
532 | } | |
533 | ||
1c79356b A |
534 | vs_async_wait(vs); /* wait for pending async IO */ |
535 | ||
536 | /* do not delete the vs structure until the referencing pointers */ | |
537 | /* in the vstruct list have been expunged */ | |
538 | ||
539 | /* get VSL_LOCK out of order by using TRY mechanism */ | |
540 | while(!VSL_LOCK_TRY()) { | |
541 | VS_UNLOCK(vs); | |
542 | VSL_LOCK(); | |
543 | VSL_UNLOCK(); | |
544 | VS_LOCK(vs); | |
545 | vs_async_wait(vs); /* wait for pending async IO */ | |
546 | } | |
0b4e3aa0 A |
547 | |
548 | ||
1c79356b | 549 | /* |
0b4e3aa0 | 550 | * We shouldn't get a deallocation call |
1c79356b A |
551 | * when the kernel has the object cached. |
552 | */ | |
0b4e3aa0 | 553 | if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL) |
1c79356b A |
554 | Panic("bad request"); |
555 | ||
556 | /* | |
557 | * Unlock the pager (though there should be no one | |
558 | * waiting for it). | |
559 | */ | |
560 | VS_UNLOCK(vs); | |
561 | ||
0b4e3aa0 A |
562 | /* Lock out paging segment removal for the duration of this */ |
563 | /* call. We are vulnerable to losing a paging segment we rely */ | |
564 | /* on as soon as we remove ourselves from the VSL and unlock */ | |
565 | ||
566 | /* Keep our thread from blocking on attempt to trigger backing */ | |
567 | /* store release */ | |
568 | backing_store_release_trigger_disable += 1; | |
569 | ||
1c79356b A |
570 | /* |
571 | * Remove the memory object port association, and then | |
572 | * the destroy the port itself. We must remove the object | |
573 | * from the port list before deallocating the pager, | |
574 | * because of default_pager_objects. | |
575 | */ | |
576 | vstruct_list_delete(vs); | |
0b4e3aa0 A |
577 | VSL_UNLOCK(); |
578 | ||
1c79356b A |
579 | ps_vstruct_dealloc(vs); |
580 | ||
0b4e3aa0 A |
581 | VSL_LOCK(); |
582 | backing_store_release_trigger_disable -= 1; | |
583 | if(backing_store_release_trigger_disable == 0) { | |
9bccf70c | 584 | thread_wakeup((event_t)&backing_store_release_trigger_disable); |
1c79356b A |
585 | } |
586 | VSL_UNLOCK(); | |
587 | } | |
588 | ||
589 | kern_return_t | |
590 | dp_memory_object_data_request( | |
0b4e3aa0 A |
591 | memory_object_t mem_obj, |
592 | memory_object_offset_t offset, | |
b0d623f7 | 593 | memory_object_cluster_size_t length, |
2d21ac55 A |
594 | __unused vm_prot_t protection_required, |
595 | memory_object_fault_info_t fault_info) | |
1c79356b | 596 | { |
1c79356b | 597 | vstruct_t vs; |
b0d623f7 | 598 | kern_return_t kr = KERN_SUCCESS; |
1c79356b A |
599 | |
600 | GSTAT(global_stats.gs_pagein_calls++); | |
601 | ||
602 | ||
603 | /* CDY at this moment vs_lookup panics when presented with the wrong */ | |
604 | /* port. As we are expanding this pager to support user interfaces */ | |
605 | /* this should be changed to return kern_failure */ | |
606 | vs_lookup(mem_obj, vs); | |
0b4e3aa0 | 607 | vs_lock(vs); |
1c79356b A |
608 | |
609 | /* We are going to relax the strict sequencing here for performance */ | |
610 | /* reasons. We can do this because we know that the read and */ | |
611 | /* write threads are different and we rely on synchronization */ | |
612 | /* of read and write requests at the cache memory_object level */ | |
613 | /* break out wait_for_writers, all of this goes away when */ | |
614 | /* we get real control of seqno with the new component interface */ | |
0b4e3aa0 | 615 | |
1c79356b A |
616 | if (vs->vs_writers != 0) { |
617 | /* you can't hold on to the seqno and go */ | |
618 | /* to sleep like that */ | |
619 | vs_unlock(vs); /* bump internal count of seqno */ | |
620 | VS_LOCK(vs); | |
621 | while (vs->vs_writers != 0) { | |
622 | default_pager_wait_write++; | |
623 | vs->vs_waiting_write = TRUE; | |
0b4e3aa0 | 624 | assert_wait(&vs->vs_writers, THREAD_UNINT); |
1c79356b | 625 | VS_UNLOCK(vs); |
9bccf70c | 626 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
627 | VS_LOCK(vs); |
628 | vs_async_wait(vs); | |
629 | } | |
0b4e3aa0 | 630 | if(vs->vs_control == MEMORY_OBJECT_CONTROL_NULL) { |
1c79356b A |
631 | VS_UNLOCK(vs); |
632 | return KERN_FAILURE; | |
633 | } | |
634 | vs_start_read(vs); | |
635 | VS_UNLOCK(vs); | |
636 | } else { | |
637 | vs_start_read(vs); | |
638 | vs_unlock(vs); | |
639 | } | |
640 | ||
641 | /* | |
642 | * Request must be on a page boundary and a multiple of pages. | |
643 | */ | |
644 | if ((offset & vm_page_mask) != 0 || (length & vm_page_mask) != 0) | |
645 | Panic("bad alignment"); | |
646 | ||
b0d623f7 A |
647 | assert((dp_offset_t) offset == offset); |
648 | kr = pvs_cluster_read(vs, (dp_offset_t) offset, length, fault_info); | |
649 | ||
650 | /* Regular data requests have a non-zero length and always return KERN_SUCCESS. | |
651 | Their actual success is determined by the fact that they provide a page or not, | |
652 | i.e whether we call upl_commit() or upl_abort(). A length of 0 means that the | |
653 | caller is only asking if the pager has a copy of that page or not. The answer to | |
654 | that question is provided by the return value. KERN_SUCCESS means that the pager | |
655 | does have that page. | |
656 | */ | |
657 | if(length) { | |
658 | kr = KERN_SUCCESS; | |
659 | } | |
660 | ||
1c79356b A |
661 | vs_finish_read(vs); |
662 | ||
b0d623f7 | 663 | return kr; |
1c79356b A |
664 | } |
665 | ||
666 | /* | |
667 | * memory_object_data_initialize: check whether we already have each page, and | |
668 | * write it if we do not. The implementation is far from optimized, and | |
669 | * also assumes that the default_pager is single-threaded. | |
670 | */ | |
671 | /* It is questionable whether or not a pager should decide what is relevant */ | |
672 | /* and what is not in data sent from the kernel. Data initialize has been */ | |
673 | /* changed to copy back all data sent to it in preparation for its eventual */ | |
674 | /* merge with data return. It is the kernel that should decide what pages */ | |
675 | /* to write back. As of the writing of this note, this is indeed the case */ | |
676 | /* the kernel writes back one page at a time through this interface */ | |
677 | ||
678 | kern_return_t | |
679 | dp_memory_object_data_initialize( | |
0b4e3aa0 A |
680 | memory_object_t mem_obj, |
681 | memory_object_offset_t offset, | |
b0d623f7 | 682 | memory_object_cluster_size_t size) |
1c79356b | 683 | { |
1c79356b | 684 | vstruct_t vs; |
1c79356b | 685 | |
91447636 A |
686 | DP_DEBUG(DEBUG_MO_EXTERNAL, |
687 | ("mem_obj=0x%x,offset=0x%x,cnt=0x%x\n", | |
688 | (int)mem_obj, (int)offset, (int)size)); | |
55e303ae | 689 | GSTAT(global_stats.gs_pages_init += atop_32(size)); |
1c79356b A |
690 | |
691 | vs_lookup(mem_obj, vs); | |
0b4e3aa0 | 692 | vs_lock(vs); |
1c79356b A |
693 | vs_start_write(vs); |
694 | vs_unlock(vs); | |
695 | ||
696 | /* | |
697 | * Write the data via clustered writes. vs_cluster_write will | |
698 | * loop if the address range specified crosses cluster | |
699 | * boundaries. | |
700 | */ | |
b0d623f7 A |
701 | assert((upl_offset_t) offset == offset); |
702 | vs_cluster_write(vs, 0, (upl_offset_t)offset, size, FALSE, 0); | |
1c79356b A |
703 | |
704 | vs_finish_write(vs); | |
705 | ||
706 | return KERN_SUCCESS; | |
707 | } | |
708 | ||
1c79356b A |
709 | kern_return_t |
710 | dp_memory_object_data_unlock( | |
91447636 A |
711 | __unused memory_object_t mem_obj, |
712 | __unused memory_object_offset_t offset, | |
b0d623f7 | 713 | __unused memory_object_size_t size, |
91447636 | 714 | __unused vm_prot_t desired_access) |
1c79356b | 715 | { |
0b4e3aa0 | 716 | Panic("dp_memory_object_data_unlock: illegal"); |
1c79356b A |
717 | return KERN_FAILURE; |
718 | } | |
719 | ||
720 | ||
91447636 | 721 | /*ARGSUSED8*/ |
1c79356b A |
722 | kern_return_t |
723 | dp_memory_object_data_return( | |
0b4e3aa0 A |
724 | memory_object_t mem_obj, |
725 | memory_object_offset_t offset, | |
b0d623f7 | 726 | memory_object_cluster_size_t size, |
91447636 A |
727 | __unused memory_object_offset_t *resid_offset, |
728 | __unused int *io_error, | |
729 | __unused boolean_t dirty, | |
730 | __unused boolean_t kernel_copy, | |
731 | __unused int upl_flags) | |
1c79356b | 732 | { |
1c79356b | 733 | vstruct_t vs; |
1c79356b | 734 | |
91447636 A |
735 | DP_DEBUG(DEBUG_MO_EXTERNAL, |
736 | ("mem_obj=0x%x,offset=0x%x,size=0x%x\n", | |
737 | (int)mem_obj, (int)offset, (int)size)); | |
1c79356b A |
738 | GSTAT(global_stats.gs_pageout_calls++); |
739 | ||
740 | /* This routine is called by the pageout thread. The pageout thread */ | |
741 | /* cannot be blocked by read activities unless the read activities */ | |
742 | /* Therefore the grant of vs lock must be done on a try versus a */ | |
743 | /* blocking basis. The code below relies on the fact that the */ | |
744 | /* interface is synchronous. Should this interface be again async */ | |
745 | /* for some type of pager in the future the pages will have to be */ | |
746 | /* returned through a separate, asynchronous path. */ | |
747 | ||
748 | vs_lookup(mem_obj, vs); | |
749 | ||
750 | default_pager_total++; | |
751 | if(!VS_TRY_LOCK(vs)) { | |
752 | /* the call below will not be done by caller when we have */ | |
753 | /* a synchronous interface */ | |
754 | /* return KERN_LOCK_OWNED; */ | |
755 | upl_t upl; | |
0c530ab8 | 756 | unsigned int page_list_count = 0; |
0b4e3aa0 A |
757 | memory_object_super_upl_request(vs->vs_control, |
758 | (memory_object_offset_t)offset, | |
759 | size, size, | |
760 | &upl, NULL, &page_list_count, | |
761 | UPL_NOBLOCK | UPL_CLEAN_IN_PLACE | |
1c79356b | 762 | | UPL_NO_SYNC | UPL_COPYOUT_FROM); |
0b4e3aa0 A |
763 | upl_abort(upl,0); |
764 | upl_deallocate(upl); | |
1c79356b A |
765 | return KERN_SUCCESS; |
766 | } | |
767 | ||
d12e1678 A |
768 | if ((vs->vs_seqno != vs->vs_next_seqno++) |
769 | || (vs->vs_readers) | |
770 | || (vs->vs_xfer_pending)) { | |
0c530ab8 A |
771 | upl_t upl; |
772 | unsigned int page_list_count = 0; | |
0b4e3aa0 | 773 | |
1c79356b A |
774 | vs->vs_next_seqno--; |
775 | VS_UNLOCK(vs); | |
0b4e3aa0 | 776 | |
1c79356b A |
777 | /* the call below will not be done by caller when we have */ |
778 | /* a synchronous interface */ | |
779 | /* return KERN_LOCK_OWNED; */ | |
0b4e3aa0 A |
780 | memory_object_super_upl_request(vs->vs_control, |
781 | (memory_object_offset_t)offset, | |
782 | size, size, | |
783 | &upl, NULL, &page_list_count, | |
1c79356b A |
784 | UPL_NOBLOCK | UPL_CLEAN_IN_PLACE |
785 | | UPL_NO_SYNC | UPL_COPYOUT_FROM); | |
0b4e3aa0 A |
786 | upl_abort(upl,0); |
787 | upl_deallocate(upl); | |
1c79356b A |
788 | return KERN_SUCCESS; |
789 | } | |
790 | ||
0b4e3aa0 | 791 | if ((size % vm_page_size) != 0) |
1c79356b A |
792 | Panic("bad alignment"); |
793 | ||
794 | vs_start_write(vs); | |
795 | ||
796 | ||
797 | vs->vs_async_pending += 1; /* protect from backing store contraction */ | |
0b4e3aa0 | 798 | vs_unlock(vs); |
1c79356b A |
799 | |
800 | /* | |
801 | * Write the data via clustered writes. vs_cluster_write will | |
802 | * loop if the address range specified crosses cluster | |
803 | * boundaries. | |
804 | */ | |
b0d623f7 A |
805 | assert((upl_offset_t) offset == offset); |
806 | vs_cluster_write(vs, 0, (upl_offset_t) offset, size, FALSE, 0); | |
1c79356b A |
807 | |
808 | vs_finish_write(vs); | |
809 | ||
810 | /* temporary, need a finer lock based on cluster */ | |
811 | ||
812 | VS_LOCK(vs); | |
813 | vs->vs_async_pending -= 1; /* release vs_async_wait */ | |
0b4e3aa0 A |
814 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
815 | vs->vs_waiting_async = FALSE; | |
1c79356b | 816 | VS_UNLOCK(vs); |
0b4e3aa0 | 817 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
818 | } else { |
819 | VS_UNLOCK(vs); | |
820 | } | |
821 | ||
822 | ||
823 | return KERN_SUCCESS; | |
824 | } | |
825 | ||
0b4e3aa0 A |
826 | /* |
827 | * Routine: default_pager_memory_object_create | |
828 | * Purpose: | |
829 | * Handle requests for memory objects from the | |
830 | * kernel. | |
831 | * Notes: | |
832 | * Because we only give out the default memory | |
833 | * manager port to the kernel, we don't have to | |
834 | * be so paranoid about the contents. | |
835 | */ | |
1c79356b | 836 | kern_return_t |
0b4e3aa0 | 837 | default_pager_memory_object_create( |
91447636 | 838 | __unused memory_object_default_t dmm, |
0b4e3aa0 A |
839 | vm_size_t new_size, |
840 | memory_object_t *new_mem_obj) | |
1c79356b | 841 | { |
0b4e3aa0 | 842 | vstruct_t vs; |
1c79356b | 843 | |
0b4e3aa0 A |
844 | assert(dmm == default_pager_object); |
845 | ||
b0d623f7 A |
846 | if ((dp_size_t) new_size != new_size) { |
847 | /* 32-bit overflow */ | |
848 | return KERN_INVALID_ARGUMENT; | |
849 | } | |
850 | ||
851 | vs = vs_object_create((dp_size_t) new_size); | |
0b4e3aa0 A |
852 | if (vs == VSTRUCT_NULL) |
853 | return KERN_RESOURCE_SHORTAGE; | |
854 | ||
855 | vs->vs_next_seqno = 0; | |
856 | ||
857 | /* | |
858 | * Set up associations between this memory object | |
859 | * and this default_pager structure | |
860 | */ | |
861 | ||
0c530ab8 | 862 | vs->vs_pager_ops = &default_pager_ops; |
b0d623f7 | 863 | vs->vs_pager_header.io_bits = IKOT_MEMORY_OBJECT; |
0b4e3aa0 A |
864 | |
865 | /* | |
866 | * After this, other threads might receive requests | |
867 | * for this memory object or find it in the port list. | |
868 | */ | |
869 | ||
870 | vstruct_list_insert(vs); | |
871 | *new_mem_obj = vs_to_mem_obj(vs); | |
872 | return KERN_SUCCESS; | |
1c79356b A |
873 | } |
874 | ||
875 | /* | |
876 | * Create an external object. | |
877 | */ | |
878 | kern_return_t | |
879 | default_pager_object_create( | |
91447636 | 880 | default_pager_t default_pager, |
0b4e3aa0 A |
881 | vm_size_t size, |
882 | memory_object_t *mem_objp) | |
1c79356b A |
883 | { |
884 | vstruct_t vs; | |
1c79356b | 885 | |
91447636 | 886 | if (default_pager != default_pager_object) |
1c79356b A |
887 | return KERN_INVALID_ARGUMENT; |
888 | ||
b0d623f7 A |
889 | if ((dp_size_t) size != size) { |
890 | /* 32-bit overflow */ | |
891 | return KERN_INVALID_ARGUMENT; | |
892 | } | |
893 | ||
894 | vs = vs_object_create((dp_size_t) size); | |
0b4e3aa0 A |
895 | if (vs == VSTRUCT_NULL) |
896 | return KERN_RESOURCE_SHORTAGE; | |
1c79356b | 897 | |
1c79356b | 898 | /* |
0b4e3aa0 | 899 | * Set up associations between the default pager |
1c79356b A |
900 | * and this vstruct structure |
901 | */ | |
0c530ab8 | 902 | vs->vs_pager_ops = &default_pager_ops; |
1c79356b | 903 | vstruct_list_insert(vs); |
0b4e3aa0 | 904 | *mem_objp = vs_to_mem_obj(vs); |
1c79356b A |
905 | return KERN_SUCCESS; |
906 | } | |
907 | ||
908 | kern_return_t | |
909 | default_pager_objects( | |
91447636 | 910 | default_pager_t default_pager, |
1c79356b A |
911 | default_pager_object_array_t *objectsp, |
912 | mach_msg_type_number_t *ocountp, | |
91447636 | 913 | mach_port_array_t *portsp, |
1c79356b A |
914 | mach_msg_type_number_t *pcountp) |
915 | { | |
916 | vm_offset_t oaddr = 0; /* memory for objects */ | |
917 | vm_size_t osize = 0; /* current size */ | |
918 | default_pager_object_t * objects; | |
91447636 | 919 | unsigned int opotential = 0; |
1c79356b | 920 | |
91447636 | 921 | vm_map_copy_t pcopy = 0; /* copy handle for pagers */ |
1c79356b | 922 | vm_size_t psize = 0; /* current size */ |
0b4e3aa0 | 923 | memory_object_t * pagers; |
91447636 | 924 | unsigned int ppotential = 0; |
1c79356b A |
925 | |
926 | unsigned int actual; | |
927 | unsigned int num_objects; | |
928 | kern_return_t kr; | |
929 | vstruct_t entry; | |
1c79356b | 930 | |
91447636 A |
931 | if (default_pager != default_pager_object) |
932 | return KERN_INVALID_ARGUMENT; | |
1c79356b A |
933 | |
934 | /* | |
935 | * We will send no more than this many | |
936 | */ | |
937 | actual = vstruct_list.vsl_count; | |
1c79356b | 938 | |
91447636 A |
939 | /* |
940 | * Out out-of-line port arrays are simply kalloc'ed. | |
941 | */ | |
b0d623f7 A |
942 | psize = round_page(actual * sizeof (*pagers)); |
943 | ppotential = (unsigned int) (psize / sizeof (*pagers)); | |
91447636 A |
944 | pagers = (memory_object_t *)kalloc(psize); |
945 | if (0 == pagers) | |
946 | return KERN_RESOURCE_SHORTAGE; | |
947 | ||
948 | /* | |
949 | * returned out of line data must be allocated out | |
950 | * the ipc_kernel_map, wired down, filled in, and | |
951 | * then "copied in" as if it had been sent by a | |
952 | * user process. | |
953 | */ | |
b0d623f7 A |
954 | osize = round_page(actual * sizeof (*objects)); |
955 | opotential = (unsigned int) (osize / sizeof (*objects)); | |
91447636 A |
956 | kr = kmem_alloc(ipc_kernel_map, &oaddr, osize); |
957 | if (KERN_SUCCESS != kr) { | |
958 | kfree(pagers, psize); | |
959 | return KERN_RESOURCE_SHORTAGE; | |
1c79356b | 960 | } |
91447636 | 961 | objects = (default_pager_object_t *)oaddr; |
1c79356b | 962 | |
1c79356b A |
963 | |
964 | /* | |
965 | * Now scan the list. | |
966 | */ | |
967 | ||
968 | VSL_LOCK(); | |
969 | ||
970 | num_objects = 0; | |
971 | queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t, vs_links) { | |
972 | ||
91447636 A |
973 | memory_object_t pager; |
974 | vm_size_t size; | |
1c79356b A |
975 | |
976 | if ((num_objects >= opotential) || | |
977 | (num_objects >= ppotential)) { | |
978 | ||
979 | /* | |
980 | * This should be rare. In any case, | |
981 | * we will only miss recent objects, | |
982 | * because they are added at the end. | |
983 | */ | |
984 | break; | |
985 | } | |
986 | ||
987 | /* | |
988 | * Avoid interfering with normal operations | |
989 | */ | |
990 | if (!VS_MAP_TRY_LOCK(entry)) | |
991 | goto not_this_one; | |
992 | size = ps_vstruct_allocated_size(entry); | |
993 | VS_MAP_UNLOCK(entry); | |
994 | ||
995 | VS_LOCK(entry); | |
996 | ||
1c79356b | 997 | /* |
0b4e3aa0 A |
998 | * We need a reference for our caller. Adding this |
999 | * reference through the linked list could race with | |
1000 | * destruction of the object. If we find the object | |
1001 | * has no references, just give up on it. | |
1c79356b | 1002 | */ |
0b4e3aa0 A |
1003 | VS_LOCK(entry); |
1004 | if (entry->vs_references == 0) { | |
1c79356b | 1005 | VS_UNLOCK(entry); |
0b4e3aa0 | 1006 | goto not_this_one; |
1c79356b | 1007 | } |
91447636 A |
1008 | pager = vs_to_mem_obj(entry); |
1009 | dp_memory_object_reference(pager); | |
1c79356b A |
1010 | VS_UNLOCK(entry); |
1011 | ||
1012 | /* the arrays are wired, so no deadlock worries */ | |
1013 | ||
1014 | objects[num_objects].dpo_object = (vm_offset_t) entry; | |
1015 | objects[num_objects].dpo_size = size; | |
0b4e3aa0 | 1016 | pagers [num_objects++] = pager; |
1c79356b A |
1017 | continue; |
1018 | ||
1019 | not_this_one: | |
1020 | /* | |
1021 | * Do not return garbage | |
1022 | */ | |
1023 | objects[num_objects].dpo_object = (vm_offset_t) 0; | |
1024 | objects[num_objects].dpo_size = 0; | |
0b4e3aa0 | 1025 | pagers[num_objects++] = MEMORY_OBJECT_NULL; |
1c79356b A |
1026 | |
1027 | } | |
1028 | ||
1029 | VSL_UNLOCK(); | |
1030 | ||
91447636 A |
1031 | /* clear out any excess allocation */ |
1032 | while (num_objects < opotential) { | |
1033 | objects[--opotential].dpo_object = (vm_offset_t) 0; | |
1034 | objects[opotential].dpo_size = 0; | |
1c79356b | 1035 | } |
91447636 A |
1036 | while (num_objects < ppotential) { |
1037 | pagers[--ppotential] = MEMORY_OBJECT_NULL; | |
1c79356b A |
1038 | } |
1039 | ||
91447636 A |
1040 | kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(oaddr), |
1041 | vm_map_round_page(oaddr + osize), FALSE); | |
1042 | assert(KERN_SUCCESS == kr); | |
1043 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)oaddr, | |
1044 | (vm_map_size_t)osize, TRUE, &pcopy); | |
1045 | assert(KERN_SUCCESS == kr); | |
1c79356b | 1046 | |
91447636 A |
1047 | *objectsp = (default_pager_object_array_t)objects; |
1048 | *ocountp = num_objects; | |
1049 | *portsp = (mach_port_array_t)pcopy; | |
1050 | *pcountp = num_objects; | |
1c79356b | 1051 | |
91447636 | 1052 | return KERN_SUCCESS; |
1c79356b A |
1053 | } |
1054 | ||
1055 | kern_return_t | |
1056 | default_pager_object_pages( | |
91447636 A |
1057 | default_pager_t default_pager, |
1058 | mach_port_t memory_object, | |
1c79356b A |
1059 | default_pager_page_array_t *pagesp, |
1060 | mach_msg_type_number_t *countp) | |
1061 | { | |
91447636 | 1062 | vm_offset_t addr = 0; /* memory for page offsets */ |
1c79356b | 1063 | vm_size_t size = 0; /* current memory size */ |
91447636 A |
1064 | vm_map_copy_t copy; |
1065 | default_pager_page_t * pages = 0; | |
1066 | unsigned int potential; | |
1067 | unsigned int actual; | |
1c79356b | 1068 | kern_return_t kr; |
91447636 | 1069 | memory_object_t object; |
1c79356b | 1070 | |
91447636 | 1071 | if (default_pager != default_pager_object) |
1c79356b | 1072 | return KERN_INVALID_ARGUMENT; |
0b4e3aa0 | 1073 | |
91447636 | 1074 | object = (memory_object_t) memory_object; |
1c79356b | 1075 | |
91447636 | 1076 | potential = 0; |
1c79356b A |
1077 | for (;;) { |
1078 | vstruct_t entry; | |
1079 | ||
1080 | VSL_LOCK(); | |
1081 | queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t, | |
1082 | vs_links) { | |
1083 | VS_LOCK(entry); | |
0b4e3aa0 | 1084 | if (vs_to_mem_obj(entry) == object) { |
1c79356b A |
1085 | VSL_UNLOCK(); |
1086 | goto found_object; | |
1087 | } | |
1088 | VS_UNLOCK(entry); | |
1089 | } | |
1090 | VSL_UNLOCK(); | |
1091 | ||
1092 | /* did not find the object */ | |
91447636 A |
1093 | if (0 != addr) |
1094 | kmem_free(ipc_kernel_map, addr, size); | |
1c79356b | 1095 | |
1c79356b A |
1096 | return KERN_INVALID_ARGUMENT; |
1097 | ||
1098 | found_object: | |
1099 | ||
1100 | if (!VS_MAP_TRY_LOCK(entry)) { | |
1101 | /* oh well bad luck */ | |
9bccf70c | 1102 | int wresult; |
1c79356b A |
1103 | |
1104 | VS_UNLOCK(entry); | |
1105 | ||
91447636 | 1106 | assert_wait_timeout((event_t)assert_wait_timeout, THREAD_UNINT, 1, 1000*NSEC_PER_USEC); |
9bccf70c A |
1107 | wresult = thread_block(THREAD_CONTINUE_NULL); |
1108 | assert(wresult == THREAD_TIMED_OUT); | |
1c79356b A |
1109 | continue; |
1110 | } | |
1111 | ||
1112 | actual = ps_vstruct_allocated_pages(entry, pages, potential); | |
1113 | VS_MAP_UNLOCK(entry); | |
1114 | VS_UNLOCK(entry); | |
1115 | ||
1116 | if (actual <= potential) | |
1117 | break; | |
1118 | ||
1119 | /* allocate more memory */ | |
91447636 A |
1120 | if (0 != addr) |
1121 | kmem_free(ipc_kernel_map, addr, size); | |
1122 | ||
b0d623f7 | 1123 | size = round_page(actual * sizeof (*pages)); |
91447636 A |
1124 | kr = kmem_alloc(ipc_kernel_map, &addr, size); |
1125 | if (KERN_SUCCESS != kr) | |
1126 | return KERN_RESOURCE_SHORTAGE; | |
1c79356b | 1127 | |
1c79356b | 1128 | pages = (default_pager_page_t *)addr; |
b0d623f7 | 1129 | potential = (unsigned int) (size / sizeof (*pages)); |
1c79356b A |
1130 | } |
1131 | ||
1132 | /* | |
91447636 | 1133 | * Clear unused memory. |
1c79356b | 1134 | */ |
91447636 A |
1135 | while (actual < potential) |
1136 | pages[--potential].dpp_offset = 0; | |
1137 | ||
1138 | kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(addr), | |
1139 | vm_map_round_page(addr + size), FALSE); | |
1140 | assert(KERN_SUCCESS == kr); | |
1141 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr, | |
1142 | (vm_map_size_t)size, TRUE, ©); | |
1143 | assert(KERN_SUCCESS == kr); | |
1144 | ||
1145 | ||
1146 | *pagesp = (default_pager_page_array_t)copy; | |
1147 | *countp = actual; | |
1c79356b A |
1148 | return KERN_SUCCESS; |
1149 | } |