]> git.saurik.com Git - apple/xnu.git/blame - bsd/net/zlib.c
xnu-201.14.tar.gz
[apple/xnu.git] / bsd / net / zlib.c
CommitLineData
1c79356b
A
1/*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22/*
23 * This file is derived from various .h and .c files from the zlib-1.0.4
24 * distribution by Jean-loup Gailly and Mark Adler, with some additions
25 * by Paul Mackerras to aid in implementing Deflate compression and
26 * decompression for PPP packets. See zlib.h for conditions of
27 * distribution and use.
28 *
29 * Changes that have been made include:
30 * - added Z_PACKET_FLUSH (see zlib.h for details)
31 * - added inflateIncomp and deflateOutputPending
32 * - allow strm->next_out to be NULL, meaning discard the output
33 *
34 */
35
36/*
37 * ==FILEVERSION 971210==
38 *
39 * This marker is used by the Linux installation script to determine
40 * whether an up-to-date version of this file is already installed.
41 */
42
43#define NO_DUMMY_DECL
44#define NO_ZCFUNCS
45#define MY_ZCALLOC
46
47#if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
48#define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
49#endif
50
51
52/* +++ zutil.h */
53/* zutil.h -- internal interface and configuration of the compression library
54 * Copyright (C) 1995-1996 Jean-loup Gailly.
55 * For conditions of distribution and use, see copyright notice in zlib.h
56 */
57
58/* WARNING: this file should *not* be used by applications. It is
59 part of the implementation of the compression library and is
60 subject to change. Applications should only use zlib.h.
61 */
62
63/* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
64
65#ifndef _Z_UTIL_H
66#define _Z_UTIL_H
67
68
69#include <net/zlib.h>
70
71
72#if defined(KERNEL)
73/* Assume this is a *BSD or SVR4 kernel */
74//#include <sys/types.h>
75#include <sys/time.h>
76//#include <sys/systm.h>
77# define HAVE_MEMCPY
78# define memcpy(d, s, n) bcopy((s), (d), (n))
79# define memset(d, v, n) bzero((d), (n))
80# define memcmp bcmp
81
82#ifdef STDC
83//# include <string.h>
84//# include <stdlib.h>
85#endif
86
87#endif /* _KERNEL || KERNEL */
88
89#ifndef local
90# define local static
91#endif
92/* compile with -Dlocal if your debugger can't find static symbols */
93
94typedef unsigned char uch;
95typedef uch FAR uchf;
96typedef unsigned short ush;
97typedef ush FAR ushf;
98typedef unsigned long ulg;
99
100extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
101/* (size given to avoid silly warnings with Visual C++) */
102
103#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
104
105#define ERR_RETURN(strm,err) \
106 return (strm->msg = (char*)ERR_MSG(err), (err))
107/* To be used only when the state is known to be valid */
108
109 /* common constants */
110
111#ifndef DEF_WBITS
112# define DEF_WBITS MAX_WBITS
113#endif
114/* default windowBits for decompression. MAX_WBITS is for compression only */
115
116#if MAX_MEM_LEVEL >= 8
117# define DEF_MEM_LEVEL 8
118#else
119# define DEF_MEM_LEVEL MAX_MEM_LEVEL
120#endif
121/* default memLevel */
122
123#define STORED_BLOCK 0
124#define STATIC_TREES 1
125#define DYN_TREES 2
126/* The three kinds of block type */
127
128#define MIN_MATCH 3
129#define MAX_MATCH 258
130/* The minimum and maximum match lengths */
131
132#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
133
134 /* target dependencies */
135
136#ifdef MSDOS
137# define OS_CODE 0x00
138# ifdef __TURBOC__
139# include <alloc.h>
140# else /* MSC or DJGPP */
141# include <malloc.h>
142# endif
143#endif
144
145#ifdef OS2
146# define OS_CODE 0x06
147#endif
148
149#ifdef WIN32 /* Window 95 & Windows NT */
150# define OS_CODE 0x0b
151#endif
152
153#if defined(VAXC) || defined(VMS)
154# define OS_CODE 0x02
155# define FOPEN(name, mode) \
156 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
157#endif
158
159#ifdef AMIGA
160# define OS_CODE 0x01
161#endif
162
163#if defined(ATARI) || defined(atarist)
164# define OS_CODE 0x05
165#endif
166
167#ifdef MACOS
168# define OS_CODE 0x07
169#endif
170
171#ifdef __50SERIES /* Prime/PRIMOS */
172# define OS_CODE 0x0F
173#endif
174
175#ifdef TOPS20
176# define OS_CODE 0x0a
177#endif
178
179#if defined(_BEOS_) || defined(RISCOS)
180# define fdopen(fd,mode) NULL /* No fdopen() */
181#endif
182
183 /* Common defaults */
184
185#ifndef OS_CODE
186# define OS_CODE 0x03 /* assume Unix */
187#endif
188
189#ifndef FOPEN
190# define FOPEN(name, mode) fopen((name), (mode))
191#endif
192
193 /* functions */
194
195#ifdef HAVE_STRERROR
196 extern char *strerror OF((int));
197# define zstrerror(errnum) strerror(errnum)
198#else
199# define zstrerror(errnum) ""
200#endif
201
202#if defined(pyr)
203# define NO_MEMCPY
204#endif
205#if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
206 /* Use our own functions for small and medium model with MSC <= 5.0.
207 * You may have to use the same strategy for Borland C (untested).
208 */
209# define NO_MEMCPY
210#endif
211#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
212# define HAVE_MEMCPY
213#endif
214#ifdef HAVE_MEMCPY
215# ifdef SMALL_MEDIUM /* MSDOS small or medium model */
216# define zmemcpy _fmemcpy
217# define zmemcmp _fmemcmp
218# define zmemzero(dest, len) _fmemset(dest, 0, len)
219# else
220# define zmemcpy memcpy
221# define zmemcmp memcmp
222# define zmemzero(dest, len) memset(dest, 0, len)
223# endif
224#else
225 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
226 extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len));
227 extern void zmemzero OF((Bytef* dest, uInt len));
228#endif
229
230/* Diagnostic functions */
231#ifdef DEBUG_ZLIB
232# include <stdio.h>
233# ifndef verbose
234# define verbose 0
235# endif
236 extern void z_error OF((char *m));
237# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
238# define Trace(x) fprintf x
239# define Tracev(x) {if (verbose) fprintf x ;}
240# define Tracevv(x) {if (verbose>1) fprintf x ;}
241# define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
242# define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
243#else
244# define Assert(cond,msg)
245# define Trace(x)
246# define Tracev(x)
247# define Tracevv(x)
248# define Tracec(c,x)
249# define Tracecv(c,x)
250#endif
251
252
253typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
254
255voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
256void zcfree OF((voidpf opaque, voidpf ptr));
257
258#define ZALLOC(strm, items, size) \
259 (*((strm)->zalloc))((strm)->opaque, (items), (size))
260#define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
261#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
262
263#endif /* _Z_UTIL_H */
264/* --- zutil.h */
265
266/* +++ deflate.h */
267/* deflate.h -- internal compression state
268 * Copyright (C) 1995-1996 Jean-loup Gailly
269 * For conditions of distribution and use, see copyright notice in zlib.h
270 */
271
272/* WARNING: this file should *not* be used by applications. It is
273 part of the implementation of the compression library and is
274 subject to change. Applications should only use zlib.h.
275 */
276
277/* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
278
279#ifndef _DEFLATE_H
280#define _DEFLATE_H
281
282/* #include "zutil.h" */
283
284/* ===========================================================================
285 * Internal compression state.
286 */
287
288#define LENGTH_CODES 29
289/* number of length codes, not counting the special END_BLOCK code */
290
291#define LITERALS 256
292/* number of literal bytes 0..255 */
293
294#define L_CODES (LITERALS+1+LENGTH_CODES)
295/* number of Literal or Length codes, including the END_BLOCK code */
296
297#define D_CODES 30
298/* number of distance codes */
299
300#define BL_CODES 19
301/* number of codes used to transfer the bit lengths */
302
303#define HEAP_SIZE (2*L_CODES+1)
304/* maximum heap size */
305
306#define MAX_BITS 15
307/* All codes must not exceed MAX_BITS bits */
308
309#define INIT_STATE 42
310#define BUSY_STATE 113
311#define FINISH_STATE 666
312/* Stream status */
313
314
315/* Data structure describing a single value and its code string. */
316typedef struct ct_data_s {
317 union {
318 ush freq; /* frequency count */
319 ush code; /* bit string */
320 } fc;
321 union {
322 ush dad; /* father node in Huffman tree */
323 ush len; /* length of bit string */
324 } dl;
325} FAR ct_data;
326
327#define Freq fc.freq
328#define Code fc.code
329#define Dad dl.dad
330#define Len dl.len
331
332typedef struct static_tree_desc_s static_tree_desc;
333
334typedef struct tree_desc_s {
335 ct_data *dyn_tree; /* the dynamic tree */
336 int max_code; /* largest code with non zero frequency */
337 static_tree_desc *stat_desc; /* the corresponding static tree */
338} FAR tree_desc;
339
340typedef ush Pos;
341typedef Pos FAR Posf;
342typedef unsigned IPos;
343
344/* A Pos is an index in the character window. We use short instead of int to
345 * save space in the various tables. IPos is used only for parameter passing.
346 */
347
348typedef struct deflate_state {
349 z_streamp strm; /* pointer back to this zlib stream */
350 int status; /* as the name implies */
351 Bytef *pending_buf; /* output still pending */
352 ulg pending_buf_size; /* size of pending_buf */
353 Bytef *pending_out; /* next pending byte to output to the stream */
354 int pending; /* nb of bytes in the pending buffer */
355 int noheader; /* suppress zlib header and adler32 */
356 Byte data_type; /* UNKNOWN, BINARY or ASCII */
357 Byte method; /* STORED (for zip only) or DEFLATED */
358 int last_flush; /* value of flush param for previous deflate call */
359
360 /* used by deflate.c: */
361
362 uInt w_size; /* LZ77 window size (32K by default) */
363 uInt w_bits; /* log2(w_size) (8..16) */
364 uInt w_mask; /* w_size - 1 */
365
366 Bytef *window;
367 /* Sliding window. Input bytes are read into the second half of the window,
368 * and move to the first half later to keep a dictionary of at least wSize
369 * bytes. With this organization, matches are limited to a distance of
370 * wSize-MAX_MATCH bytes, but this ensures that IO is always
371 * performed with a length multiple of the block size. Also, it limits
372 * the window size to 64K, which is quite useful on MSDOS.
373 * To do: use the user input buffer as sliding window.
374 */
375
376 ulg window_size;
377 /* Actual size of window: 2*wSize, except when the user input buffer
378 * is directly used as sliding window.
379 */
380
381 Posf *prev;
382 /* Link to older string with same hash index. To limit the size of this
383 * array to 64K, this link is maintained only for the last 32K strings.
384 * An index in this array is thus a window index modulo 32K.
385 */
386
387 Posf *head; /* Heads of the hash chains or NIL. */
388
389 uInt ins_h; /* hash index of string to be inserted */
390 uInt hash_size; /* number of elements in hash table */
391 uInt hash_bits; /* log2(hash_size) */
392 uInt hash_mask; /* hash_size-1 */
393
394 uInt hash_shift;
395 /* Number of bits by which ins_h must be shifted at each input
396 * step. It must be such that after MIN_MATCH steps, the oldest
397 * byte no longer takes part in the hash key, that is:
398 * hash_shift * MIN_MATCH >= hash_bits
399 */
400
401 long block_start;
402 /* Window position at the beginning of the current output block. Gets
403 * negative when the window is moved backwards.
404 */
405
406 uInt match_length; /* length of best match */
407 IPos prev_match; /* previous match */
408 int match_available; /* set if previous match exists */
409 uInt strstart; /* start of string to insert */
410 uInt match_start; /* start of matching string */
411 uInt lookahead; /* number of valid bytes ahead in window */
412
413 uInt prev_length;
414 /* Length of the best match at previous step. Matches not greater than this
415 * are discarded. This is used in the lazy match evaluation.
416 */
417
418 uInt max_chain_length;
419 /* To speed up deflation, hash chains are never searched beyond this
420 * length. A higher limit improves compression ratio but degrades the
421 * speed.
422 */
423
424 uInt max_lazy_match;
425 /* Attempt to find a better match only when the current match is strictly
426 * smaller than this value. This mechanism is used only for compression
427 * levels >= 4.
428 */
429# define max_insert_length max_lazy_match
430 /* Insert new strings in the hash table only if the match length is not
431 * greater than this length. This saves time but degrades compression.
432 * max_insert_length is used only for compression levels <= 3.
433 */
434
435 int level; /* compression level (1..9) */
436 int strategy; /* favor or force Huffman coding*/
437
438 uInt good_match;
439 /* Use a faster search when the previous match is longer than this */
440
441 int nice_match; /* Stop searching when current match exceeds this */
442
443 /* used by trees.c: */
444 /* Didn't use ct_data typedef below to supress compiler warning */
445 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
446 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
447 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
448
449 struct tree_desc_s l_desc; /* desc. for literal tree */
450 struct tree_desc_s d_desc; /* desc. for distance tree */
451 struct tree_desc_s bl_desc; /* desc. for bit length tree */
452
453 ush bl_count[MAX_BITS+1];
454 /* number of codes at each bit length for an optimal tree */
455
456 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
457 int heap_len; /* number of elements in the heap */
458 int heap_max; /* element of largest frequency */
459 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
460 * The same heap array is used to build all trees.
461 */
462
463 uch depth[2*L_CODES+1];
464 /* Depth of each subtree used as tie breaker for trees of equal frequency
465 */
466
467 uchf *l_buf; /* buffer for literals or lengths */
468
469 uInt lit_bufsize;
470 /* Size of match buffer for literals/lengths. There are 4 reasons for
471 * limiting lit_bufsize to 64K:
472 * - frequencies can be kept in 16 bit counters
473 * - if compression is not successful for the first block, all input
474 * data is still in the window so we can still emit a stored block even
475 * when input comes from standard input. (This can also be done for
476 * all blocks if lit_bufsize is not greater than 32K.)
477 * - if compression is not successful for a file smaller than 64K, we can
478 * even emit a stored file instead of a stored block (saving 5 bytes).
479 * This is applicable only for zip (not gzip or zlib).
480 * - creating new Huffman trees less frequently may not provide fast
481 * adaptation to changes in the input data statistics. (Take for
482 * example a binary file with poorly compressible code followed by
483 * a highly compressible string table.) Smaller buffer sizes give
484 * fast adaptation but have of course the overhead of transmitting
485 * trees more frequently.
486 * - I can't count above 4
487 */
488
489 uInt last_lit; /* running index in l_buf */
490
491 ushf *d_buf;
492 /* Buffer for distances. To simplify the code, d_buf and l_buf have
493 * the same number of elements. To use different lengths, an extra flag
494 * array would be necessary.
495 */
496
497 ulg opt_len; /* bit length of current block with optimal trees */
498 ulg static_len; /* bit length of current block with static trees */
499 ulg compressed_len; /* total bit length of compressed file */
500 uInt matches; /* number of string matches in current block */
501 int last_eob_len; /* bit length of EOB code for last block */
502
503#ifdef DEBUG_ZLIB
504 ulg bits_sent; /* bit length of the compressed data */
505#endif
506
507 ush bi_buf;
508 /* Output buffer. bits are inserted starting at the bottom (least
509 * significant bits).
510 */
511 int bi_valid;
512 /* Number of valid bits in bi_buf. All bits above the last valid bit
513 * are always zero.
514 */
515
516} FAR deflate_state;
517
518/* Output a byte on the stream.
519 * IN assertion: there is enough room in pending_buf.
520 */
521#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
522
523
524#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
525/* Minimum amount of lookahead, except at the end of the input file.
526 * See deflate.c for comments about the MIN_MATCH+1.
527 */
528
529#define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
530/* In order to simplify the code, particularly on 16 bit machines, match
531 * distances are limited to MAX_DIST instead of WSIZE.
532 */
533
534 /* in trees.c */
535void _tr_init OF((deflate_state *s));
536int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
537ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
538 int eof));
539void _tr_align OF((deflate_state *s));
540void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
541 int eof));
542void _tr_stored_type_only OF((deflate_state *));
543
544#endif
545/* --- deflate.h */
546
547/* +++ deflate.c */
548/* deflate.c -- compress data using the deflation algorithm
549 * Copyright (C) 1995-1996 Jean-loup Gailly.
550 * For conditions of distribution and use, see copyright notice in zlib.h
551 */
552
553/*
554 * ALGORITHM
555 *
556 * The "deflation" process depends on being able to identify portions
557 * of the input text which are identical to earlier input (within a
558 * sliding window trailing behind the input currently being processed).
559 *
560 * The most straightforward technique turns out to be the fastest for
561 * most input files: try all possible matches and select the longest.
562 * The key feature of this algorithm is that insertions into the string
563 * dictionary are very simple and thus fast, and deletions are avoided
564 * completely. Insertions are performed at each input character, whereas
565 * string matches are performed only when the previous match ends. So it
566 * is preferable to spend more time in matches to allow very fast string
567 * insertions and avoid deletions. The matching algorithm for small
568 * strings is inspired from that of Rabin & Karp. A brute force approach
569 * is used to find longer strings when a small match has been found.
570 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
571 * (by Leonid Broukhis).
572 * A previous version of this file used a more sophisticated algorithm
573 * (by Fiala and Greene) which is guaranteed to run in linear amortized
574 * time, but has a larger average cost, uses more memory and is patented.
575 * However the F&G algorithm may be faster for some highly redundant
576 * files if the parameter max_chain_length (described below) is too large.
577 *
578 * ACKNOWLEDGEMENTS
579 *
580 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
581 * I found it in 'freeze' written by Leonid Broukhis.
582 * Thanks to many people for bug reports and testing.
583 *
584 * REFERENCES
585 *
586 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
587 * Available in ftp://ds.internic.net/rfc/rfc1951.txt
588 *
589 * A description of the Rabin and Karp algorithm is given in the book
590 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
591 *
592 * Fiala,E.R., and Greene,D.H.
593 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
594 *
595 */
596
597/* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
598
599/* #include "deflate.h" */
600
601char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
602/*
603 If you use the zlib library in a product, an acknowledgment is welcome
604 in the documentation of your product. If for some reason you cannot
605 include such an acknowledgment, I would appreciate that you keep this
606 copyright string in the executable of your product.
607 */
608
609/* ===========================================================================
610 * Function prototypes.
611 */
612typedef enum {
613 need_more, /* block not completed, need more input or more output */
614 block_done, /* block flush performed */
615 finish_started, /* finish started, need only more output at next deflate */
616 finish_done /* finish done, accept no more input or output */
617} block_state;
618
619typedef block_state (*compress_func) OF((deflate_state *s, int flush));
620/* Compression function. Returns the block state after the call. */
621
622local void fill_window OF((deflate_state *s));
623local block_state deflate_stored OF((deflate_state *s, int flush));
624local block_state deflate_fast OF((deflate_state *s, int flush));
625local block_state deflate_slow OF((deflate_state *s, int flush));
626local void lm_init OF((deflate_state *s));
627local void putShortMSB OF((deflate_state *s, uInt b));
628local void flush_pending OF((z_streamp strm));
629local int read_buf OF((z_streamp strm, charf *buf, unsigned size));
630#ifdef ASMV
631 void match_init OF((void)); /* asm code initialization */
632 uInt longest_match OF((deflate_state *s, IPos cur_match));
633#else
634local uInt longest_match OF((deflate_state *s, IPos cur_match));
635#endif
636
637#ifdef DEBUG_ZLIB
638local void check_match OF((deflate_state *s, IPos start, IPos match,
639 int length));
640#endif
641
642/* ===========================================================================
643 * Local data
644 */
645
646#define NIL 0
647/* Tail of hash chains */
648
649#ifndef TOO_FAR
650# define TOO_FAR 4096
651#endif
652/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
653
654#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
655/* Minimum amount of lookahead, except at the end of the input file.
656 * See deflate.c for comments about the MIN_MATCH+1.
657 */
658
659/* Values for max_lazy_match, good_match and max_chain_length, depending on
660 * the desired pack level (0..9). The values given below have been tuned to
661 * exclude worst case performance for pathological files. Better values may be
662 * found for specific files.
663 */
664typedef struct config_s {
665 ush good_length; /* reduce lazy search above this match length */
666 ush max_lazy; /* do not perform lazy search above this match length */
667 ush nice_length; /* quit search above this match length */
668 ush max_chain;
669 compress_func func;
670} config;
671
672local config configuration_table[10] = {
673/* good lazy nice chain */
674/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
675/* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
676/* 2 */ {4, 5, 16, 8, deflate_fast},
677/* 3 */ {4, 6, 32, 32, deflate_fast},
678
679/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
680/* 5 */ {8, 16, 32, 32, deflate_slow},
681/* 6 */ {8, 16, 128, 128, deflate_slow},
682/* 7 */ {8, 32, 128, 256, deflate_slow},
683/* 8 */ {32, 128, 258, 1024, deflate_slow},
684/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
685
686/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
687 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
688 * meaning.
689 */
690
691#define EQUAL 0
692/* result of memcmp for equal strings */
693
694#ifndef NO_DUMMY_DECL
695struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
696#endif
697
698/* ===========================================================================
699 * Update a hash value with the given input byte
700 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
701 * input characters, so that a running hash key can be computed from the
702 * previous key instead of complete recalculation each time.
703 */
704#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
705
706
707/* ===========================================================================
708 * Insert string str in the dictionary and set match_head to the previous head
709 * of the hash chain (the most recent string with same hash key). Return
710 * the previous length of the hash chain.
711 * IN assertion: all calls to to INSERT_STRING are made with consecutive
712 * input characters and the first MIN_MATCH bytes of str are valid
713 * (except for the last MIN_MATCH-1 bytes of the input file).
714 */
715#define INSERT_STRING(s, str, match_head) \
716 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
717 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
718 s->head[s->ins_h] = (Pos)(str))
719
720/* ===========================================================================
721 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
722 * prev[] will be initialized on the fly.
723 */
724#define CLEAR_HASH(s) \
725 s->head[s->hash_size-1] = NIL; \
726 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
727
728/* ========================================================================= */
729int deflateInit_(strm, level, version, stream_size)
730 z_streamp strm;
731 int level;
732 const char *version;
733 int stream_size;
734{
735 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
736 Z_DEFAULT_STRATEGY, version, stream_size);
737 /* To do: ignore strm->next_in if we use it as window */
738}
739
740/* ========================================================================= */
741int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
742 version, stream_size)
743 z_streamp strm;
744 int level;
745 int method;
746 int windowBits;
747 int memLevel;
748 int strategy;
749 const char *version;
750 int stream_size;
751{
752 deflate_state *s;
753 int noheader = 0;
754 static char* my_version = ZLIB_VERSION;
755
756 ushf *overlay;
757 /* We overlay pending_buf and d_buf+l_buf. This works since the average
758 * output size for (length,distance) codes is <= 24 bits.
759 */
760
761 if (version == Z_NULL || version[0] != my_version[0] ||
762 stream_size != sizeof(z_stream)) {
763 return Z_VERSION_ERROR;
764 }
765 if (strm == Z_NULL) return Z_STREAM_ERROR;
766
767 strm->msg = Z_NULL;
768#ifndef NO_ZCFUNCS
769 if (strm->zalloc == Z_NULL) {
770 strm->zalloc = zcalloc;
771 strm->opaque = (voidpf)0;
772 }
773 if (strm->zfree == Z_NULL) strm->zfree = zcfree;
774#endif
775
776 if (level == Z_DEFAULT_COMPRESSION) level = 6;
777
778 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
779 noheader = 1;
780 windowBits = -windowBits;
781 }
782 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
783 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
784 strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
785 return Z_STREAM_ERROR;
786 }
787 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
788 if (s == Z_NULL) return Z_MEM_ERROR;
789 strm->state = (struct internal_state FAR *)s;
790 s->strm = strm;
791
792 s->noheader = noheader;
793 s->w_bits = windowBits;
794 s->w_size = 1 << s->w_bits;
795 s->w_mask = s->w_size - 1;
796
797 s->hash_bits = memLevel + 7;
798 s->hash_size = 1 << s->hash_bits;
799 s->hash_mask = s->hash_size - 1;
800 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
801
802 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
803 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
804 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
805
806 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
807
808 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
809 s->pending_buf = (uchf *) overlay;
810 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
811
812 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
813 s->pending_buf == Z_NULL) {
814 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
815 deflateEnd (strm);
816 return Z_MEM_ERROR;
817 }
818 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
819 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
820
821 s->level = level;
822 s->strategy = strategy;
823 s->method = (Byte)method;
824
825 return deflateReset(strm);
826}
827
828/* ========================================================================= */
829int deflateSetDictionary (strm, dictionary, dictLength)
830 z_streamp strm;
831 const Bytef *dictionary;
832 uInt dictLength;
833{
834 deflate_state *s;
835 uInt length = dictLength;
836 uInt n;
837 IPos hash_head = 0;
838
839 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
840 return Z_STREAM_ERROR;
841
842 s = (deflate_state *) strm->state;
843 if (s->status != INIT_STATE) return Z_STREAM_ERROR;
844
845 strm->adler = adler32(strm->adler, dictionary, dictLength);
846
847 if (length < MIN_MATCH) return Z_OK;
848 if (length > MAX_DIST(s)) {
849 length = MAX_DIST(s);
850#ifndef USE_DICT_HEAD
851 dictionary += dictLength - length; /* use the tail of the dictionary */
852#endif
853 }
854 zmemcpy((charf *)s->window, dictionary, length);
855 s->strstart = length;
856 s->block_start = (long)length;
857
858 /* Insert all strings in the hash table (except for the last two bytes).
859 * s->lookahead stays null, so s->ins_h will be recomputed at the next
860 * call of fill_window.
861 */
862 s->ins_h = s->window[0];
863 UPDATE_HASH(s, s->ins_h, s->window[1]);
864 for (n = 0; n <= length - MIN_MATCH; n++) {
865 INSERT_STRING(s, n, hash_head);
866 }
867 if (hash_head) hash_head = 0; /* to make compiler happy */
868 return Z_OK;
869}
870
871/* ========================================================================= */
872int deflateReset (strm)
873 z_streamp strm;
874{
875 deflate_state *s;
876
877 if (strm == Z_NULL || strm->state == Z_NULL ||
878 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
879
880 strm->total_in = strm->total_out = 0;
881 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
882 strm->data_type = Z_UNKNOWN;
883
884 s = (deflate_state *)strm->state;
885 s->pending = 0;
886 s->pending_out = s->pending_buf;
887
888 if (s->noheader < 0) {
889 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
890 }
891 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
892 strm->adler = 1;
893 s->last_flush = Z_NO_FLUSH;
894
895 _tr_init(s);
896 lm_init(s);
897
898 return Z_OK;
899}
900
901/* ========================================================================= */
902int deflateParams(strm, level, strategy)
903 z_streamp strm;
904 int level;
905 int strategy;
906{
907 deflate_state *s;
908 compress_func func;
909 int err = Z_OK;
910
911 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
912 s = (deflate_state *) strm->state;
913
914 if (level == Z_DEFAULT_COMPRESSION) {
915 level = 6;
916 }
917 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
918 return Z_STREAM_ERROR;
919 }
920 func = configuration_table[s->level].func;
921
922 if (func != configuration_table[level].func && strm->total_in != 0) {
923 /* Flush the last buffer: */
924 err = deflate(strm, Z_PARTIAL_FLUSH);
925 }
926 if (s->level != level) {
927 s->level = level;
928 s->max_lazy_match = configuration_table[level].max_lazy;
929 s->good_match = configuration_table[level].good_length;
930 s->nice_match = configuration_table[level].nice_length;
931 s->max_chain_length = configuration_table[level].max_chain;
932 }
933 s->strategy = strategy;
934 return err;
935}
936
937/* =========================================================================
938 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
939 * IN assertion: the stream state is correct and there is enough room in
940 * pending_buf.
941 */
942local void putShortMSB (s, b)
943 deflate_state *s;
944 uInt b;
945{
946 put_byte(s, (Byte)(b >> 8));
947 put_byte(s, (Byte)(b & 0xff));
948}
949
950/* =========================================================================
951 * Flush as much pending output as possible. All deflate() output goes
952 * through this function so some applications may wish to modify it
953 * to avoid allocating a large strm->next_out buffer and copying into it.
954 * (See also read_buf()).
955 */
956local void flush_pending(strm)
957 z_streamp strm;
958{
959 deflate_state *s = (deflate_state *) strm->state;
960 unsigned len = s->pending;
961
962 if (len > strm->avail_out) len = strm->avail_out;
963 if (len == 0) return;
964
965 if (strm->next_out != Z_NULL) {
966 zmemcpy(strm->next_out, s->pending_out, len);
967 strm->next_out += len;
968 }
969 s->pending_out += len;
970 strm->total_out += len;
971 strm->avail_out -= len;
972 s->pending -= len;
973 if (s->pending == 0) {
974 s->pending_out = s->pending_buf;
975 }
976}
977
978/* ========================================================================= */
979int deflate (strm, flush)
980 z_streamp strm;
981 int flush;
982{
983 int old_flush; /* value of flush param for previous deflate call */
984 deflate_state *s;
985
986 if (strm == Z_NULL || strm->state == Z_NULL ||
987 flush > Z_FINISH || flush < 0) {
988 return Z_STREAM_ERROR;
989 }
990 s = (deflate_state *) strm->state;
991
992 if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
993 (s->status == FINISH_STATE && flush != Z_FINISH)) {
994 ERR_RETURN(strm, Z_STREAM_ERROR);
995 }
996 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
997
998 s->strm = strm; /* just in case */
999 old_flush = s->last_flush;
1000 s->last_flush = flush;
1001
1002 /* Write the zlib header */
1003 if (s->status == INIT_STATE) {
1004
1005 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1006 uInt level_flags = (s->level-1) >> 1;
1007
1008 if (level_flags > 3) level_flags = 3;
1009 header |= (level_flags << 6);
1010 if (s->strstart != 0) header |= PRESET_DICT;
1011 header += 31 - (header % 31);
1012
1013 s->status = BUSY_STATE;
1014 putShortMSB(s, header);
1015
1016 /* Save the adler32 of the preset dictionary: */
1017 if (s->strstart != 0) {
1018 putShortMSB(s, (uInt)(strm->adler >> 16));
1019 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1020 }
1021 strm->adler = 1L;
1022 }
1023
1024 /* Flush as much pending output as possible */
1025 if (s->pending != 0) {
1026 flush_pending(strm);
1027 if (strm->avail_out == 0) {
1028 /* Since avail_out is 0, deflate will be called again with
1029 * more output space, but possibly with both pending and
1030 * avail_in equal to zero. There won't be anything to do,
1031 * but this is not an error situation so make sure we
1032 * return OK instead of BUF_ERROR at next call of deflate:
1033 */
1034 s->last_flush = -1;
1035 return Z_OK;
1036 }
1037
1038 /* Make sure there is something to do and avoid duplicate consecutive
1039 * flushes. For repeated and useless calls with Z_FINISH, we keep
1040 * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1041 */
1042 } else if (strm->avail_in == 0 && flush <= old_flush &&
1043 flush != Z_FINISH) {
1044 ERR_RETURN(strm, Z_BUF_ERROR);
1045 }
1046
1047 /* User must not provide more input after the first FINISH: */
1048 if (s->status == FINISH_STATE && strm->avail_in != 0) {
1049 ERR_RETURN(strm, Z_BUF_ERROR);
1050 }
1051
1052 /* Start a new block or continue the current one.
1053 */
1054 if (strm->avail_in != 0 || s->lookahead != 0 ||
1055 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1056 block_state bstate;
1057
1058 bstate = (*(configuration_table[s->level].func))(s, flush);
1059
1060 if (bstate == finish_started || bstate == finish_done) {
1061 s->status = FINISH_STATE;
1062 }
1063 if (bstate == need_more || bstate == finish_started) {
1064 if (strm->avail_out == 0) {
1065 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1066 }
1067 return Z_OK;
1068 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1069 * of deflate should use the same flush parameter to make sure
1070 * that the flush is complete. So we don't have to output an
1071 * empty block here, this will be done at next call. This also
1072 * ensures that for a very small output buffer, we emit at most
1073 * one empty block.
1074 */
1075 }
1076 if (bstate == block_done) {
1077 if (flush == Z_PARTIAL_FLUSH) {
1078 _tr_align(s);
1079 } else if (flush == Z_PACKET_FLUSH) {
1080 /* Output just the 3-bit `stored' block type value,
1081 but not a zero length. */
1082 _tr_stored_type_only(s);
1083 } else { /* FULL_FLUSH or SYNC_FLUSH */
1084 _tr_stored_block(s, (char*)0, 0L, 0);
1085 /* For a full flush, this empty block will be recognized
1086 * as a special marker by inflate_sync().
1087 */
1088 if (flush == Z_FULL_FLUSH) {
1089 CLEAR_HASH(s); /* forget history */
1090 }
1091 }
1092 flush_pending(strm);
1093 if (strm->avail_out == 0) {
1094 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1095 return Z_OK;
1096 }
1097 }
1098 }
1099 Assert(strm->avail_out > 0, "bug2");
1100
1101 if (flush != Z_FINISH) return Z_OK;
1102 if (s->noheader) return Z_STREAM_END;
1103
1104 /* Write the zlib trailer (adler32) */
1105 putShortMSB(s, (uInt)(strm->adler >> 16));
1106 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1107 flush_pending(strm);
1108 /* If avail_out is zero, the application will call deflate again
1109 * to flush the rest.
1110 */
1111 s->noheader = -1; /* write the trailer only once! */
1112 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1113}
1114
1115/* ========================================================================= */
1116int deflateEnd (strm)
1117 z_streamp strm;
1118{
1119 int status;
1120 deflate_state *s;
1121
1122 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1123 s = (deflate_state *) strm->state;
1124
1125 status = s->status;
1126 if (status != INIT_STATE && status != BUSY_STATE &&
1127 status != FINISH_STATE) {
1128 return Z_STREAM_ERROR;
1129 }
1130
1131 /* Deallocate in reverse order of allocations: */
1132 TRY_FREE(strm, s->pending_buf);
1133 TRY_FREE(strm, s->head);
1134 TRY_FREE(strm, s->prev);
1135 TRY_FREE(strm, s->window);
1136
1137 ZFREE(strm, s);
1138 strm->state = Z_NULL;
1139
1140 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1141}
1142
1143/* =========================================================================
1144 * Copy the source state to the destination state.
1145 */
1146int deflateCopy (dest, source)
1147 z_streamp dest;
1148 z_streamp source;
1149{
1150 deflate_state *ds;
1151 deflate_state *ss;
1152 ushf *overlay;
1153
1154 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1155 return Z_STREAM_ERROR;
1156 ss = (deflate_state *) source->state;
1157
1158 zmemcpy(dest, source, sizeof(*dest));
1159
1160 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1161 if (ds == Z_NULL) return Z_MEM_ERROR;
1162 dest->state = (struct internal_state FAR *) ds;
1163 zmemcpy(ds, ss, sizeof(*ds));
1164 ds->strm = dest;
1165
1166 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1167 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1168 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1169 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1170 ds->pending_buf = (uchf *) overlay;
1171
1172 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1173 ds->pending_buf == Z_NULL) {
1174 deflateEnd (dest);
1175 return Z_MEM_ERROR;
1176 }
1177 /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1178 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1179 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1180 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1181 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1182
1183 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1184 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1185 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1186
1187 ds->l_desc.dyn_tree = ds->dyn_ltree;
1188 ds->d_desc.dyn_tree = ds->dyn_dtree;
1189 ds->bl_desc.dyn_tree = ds->bl_tree;
1190
1191 return Z_OK;
1192}
1193
1194/* ===========================================================================
1195 * Return the number of bytes of output which are immediately available
1196 * for output from the decompressor.
1197 */
1198int deflateOutputPending (strm)
1199 z_streamp strm;
1200{
1201 if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1202
1203 return ((deflate_state *)(strm->state))->pending;
1204}
1205
1206/* ===========================================================================
1207 * Read a new buffer from the current input stream, update the adler32
1208 * and total number of bytes read. All deflate() input goes through
1209 * this function so some applications may wish to modify it to avoid
1210 * allocating a large strm->next_in buffer and copying from it.
1211 * (See also flush_pending()).
1212 */
1213local int read_buf(strm, buf, size)
1214 z_streamp strm;
1215 charf *buf;
1216 unsigned size;
1217{
1218 unsigned len = strm->avail_in;
1219
1220 if (len > size) len = size;
1221 if (len == 0) return 0;
1222
1223 strm->avail_in -= len;
1224
1225 if (!((deflate_state *)(strm->state))->noheader) {
1226 strm->adler = adler32(strm->adler, strm->next_in, len);
1227 }
1228 zmemcpy(buf, strm->next_in, len);
1229 strm->next_in += len;
1230 strm->total_in += len;
1231
1232 return (int)len;
1233}
1234
1235/* ===========================================================================
1236 * Initialize the "longest match" routines for a new zlib stream
1237 */
1238local void lm_init (s)
1239 deflate_state *s;
1240{
1241 s->window_size = (ulg)2L*s->w_size;
1242
1243 CLEAR_HASH(s);
1244
1245 /* Set the default configuration parameters:
1246 */
1247 s->max_lazy_match = configuration_table[s->level].max_lazy;
1248 s->good_match = configuration_table[s->level].good_length;
1249 s->nice_match = configuration_table[s->level].nice_length;
1250 s->max_chain_length = configuration_table[s->level].max_chain;
1251
1252 s->strstart = 0;
1253 s->block_start = 0L;
1254 s->lookahead = 0;
1255 s->match_length = s->prev_length = MIN_MATCH-1;
1256 s->match_available = 0;
1257 s->ins_h = 0;
1258#ifdef ASMV
1259 match_init(); /* initialize the asm code */
1260#endif
1261}
1262
1263/* ===========================================================================
1264 * Set match_start to the longest match starting at the given string and
1265 * return its length. Matches shorter or equal to prev_length are discarded,
1266 * in which case the result is equal to prev_length and match_start is
1267 * garbage.
1268 * IN assertions: cur_match is the head of the hash chain for the current
1269 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1270 * OUT assertion: the match length is not greater than s->lookahead.
1271 */
1272#ifndef ASMV
1273/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1274 * match.S. The code will be functionally equivalent.
1275 */
1276local uInt longest_match(s, cur_match)
1277 deflate_state *s;
1278 IPos cur_match; /* current match */
1279{
1280 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1281 register Bytef *scan = s->window + s->strstart; /* current string */
1282 register Bytef *match; /* matched string */
1283 register int len; /* length of current match */
1284 int best_len = s->prev_length; /* best match length so far */
1285 int nice_match = s->nice_match; /* stop if match long enough */
1286 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1287 s->strstart - (IPos)MAX_DIST(s) : NIL;
1288 /* Stop when cur_match becomes <= limit. To simplify the code,
1289 * we prevent matches with the string of window index 0.
1290 */
1291 Posf *prev = s->prev;
1292 uInt wmask = s->w_mask;
1293
1294#ifdef UNALIGNED_OK
1295 /* Compare two bytes at a time. Note: this is not always beneficial.
1296 * Try with and without -DUNALIGNED_OK to check.
1297 */
1298 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1299 register ush scan_start = *(ushf*)scan;
1300 register ush scan_end = *(ushf*)(scan+best_len-1);
1301#else
1302 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1303 register Byte scan_end1 = scan[best_len-1];
1304 register Byte scan_end = scan[best_len];
1305#endif
1306
1307 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1308 * It is easy to get rid of this optimization if necessary.
1309 */
1310 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1311
1312 /* Do not waste too much time if we already have a good match: */
1313 if (s->prev_length >= s->good_match) {
1314 chain_length >>= 2;
1315 }
1316 /* Do not look for matches beyond the end of the input. This is necessary
1317 * to make deflate deterministic.
1318 */
1319 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1320
1321 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1322
1323 do {
1324 Assert(cur_match < s->strstart, "no future");
1325 match = s->window + cur_match;
1326
1327 /* Skip to next match if the match length cannot increase
1328 * or if the match length is less than 2:
1329 */
1330#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1331 /* This code assumes sizeof(unsigned short) == 2. Do not use
1332 * UNALIGNED_OK if your compiler uses a different size.
1333 */
1334 if (*(ushf*)(match+best_len-1) != scan_end ||
1335 *(ushf*)match != scan_start) continue;
1336
1337 /* It is not necessary to compare scan[2] and match[2] since they are
1338 * always equal when the other bytes match, given that the hash keys
1339 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1340 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1341 * lookahead only every 4th comparison; the 128th check will be made
1342 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1343 * necessary to put more guard bytes at the end of the window, or
1344 * to check more often for insufficient lookahead.
1345 */
1346 Assert(scan[2] == match[2], "scan[2]?");
1347 scan++, match++;
1348 do {
1349 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1350 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1351 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1352 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1353 scan < strend);
1354 /* The funny "do {}" generates better code on most compilers */
1355
1356 /* Here, scan <= window+strstart+257 */
1357 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1358 if (*scan == *match) scan++;
1359
1360 len = (MAX_MATCH - 1) - (int)(strend-scan);
1361 scan = strend - (MAX_MATCH-1);
1362
1363#else /* UNALIGNED_OK */
1364
1365 if (match[best_len] != scan_end ||
1366 match[best_len-1] != scan_end1 ||
1367 *match != *scan ||
1368 *++match != scan[1]) continue;
1369
1370 /* The check at best_len-1 can be removed because it will be made
1371 * again later. (This heuristic is not always a win.)
1372 * It is not necessary to compare scan[2] and match[2] since they
1373 * are always equal when the other bytes match, given that
1374 * the hash keys are equal and that HASH_BITS >= 8.
1375 */
1376 scan += 2, match++;
1377 Assert(*scan == *match, "match[2]?");
1378
1379 /* We check for insufficient lookahead only every 8th comparison;
1380 * the 256th check will be made at strstart+258.
1381 */
1382 do {
1383 } while (*++scan == *++match && *++scan == *++match &&
1384 *++scan == *++match && *++scan == *++match &&
1385 *++scan == *++match && *++scan == *++match &&
1386 *++scan == *++match && *++scan == *++match &&
1387 scan < strend);
1388
1389 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1390
1391 len = MAX_MATCH - (int)(strend - scan);
1392 scan = strend - MAX_MATCH;
1393
1394#endif /* UNALIGNED_OK */
1395
1396 if (len > best_len) {
1397 s->match_start = cur_match;
1398 best_len = len;
1399 if (len >= nice_match) break;
1400#ifdef UNALIGNED_OK
1401 scan_end = *(ushf*)(scan+best_len-1);
1402#else
1403 scan_end1 = scan[best_len-1];
1404 scan_end = scan[best_len];
1405#endif
1406 }
1407 } while ((cur_match = prev[cur_match & wmask]) > limit
1408 && --chain_length != 0);
1409
1410 if ((uInt)best_len <= s->lookahead) return best_len;
1411 return s->lookahead;
1412}
1413#endif /* ASMV */
1414
1415#ifdef DEBUG_ZLIB
1416/* ===========================================================================
1417 * Check that the match at match_start is indeed a match.
1418 */
1419local void check_match(s, start, match, length)
1420 deflate_state *s;
1421 IPos start, match;
1422 int length;
1423{
1424 /* check that the match is indeed a match */
1425 if (zmemcmp((charf *)s->window + match,
1426 (charf *)s->window + start, length) != EQUAL) {
1427 fprintf(stderr, " start %u, match %u, length %d\n",
1428 start, match, length);
1429 do {
1430 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1431 } while (--length != 0);
1432 z_error("invalid match");
1433 }
1434 if (z_verbose > 1) {
1435 fprintf(stderr,"\\[%d,%d]", start-match, length);
1436 do { putc(s->window[start++], stderr); } while (--length != 0);
1437 }
1438}
1439#else
1440# define check_match(s, start, match, length)
1441#endif
1442
1443/* ===========================================================================
1444 * Fill the window when the lookahead becomes insufficient.
1445 * Updates strstart and lookahead.
1446 *
1447 * IN assertion: lookahead < MIN_LOOKAHEAD
1448 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1449 * At least one byte has been read, or avail_in == 0; reads are
1450 * performed for at least two bytes (required for the zip translate_eol
1451 * option -- not supported here).
1452 */
1453local void fill_window(s)
1454 deflate_state *s;
1455{
1456 register unsigned n, m;
1457 register Posf *p;
1458 unsigned more; /* Amount of free space at the end of the window. */
1459 uInt wsize = s->w_size;
1460
1461 do {
1462 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1463
1464 /* Deal with !@#$% 64K limit: */
1465 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1466 more = wsize;
1467
1468 } else if (more == (unsigned)(-1)) {
1469 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1470 * and lookahead == 1 (input done one byte at time)
1471 */
1472 more--;
1473
1474 /* If the window is almost full and there is insufficient lookahead,
1475 * move the upper half to the lower one to make room in the upper half.
1476 */
1477 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1478
1479 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1480 (unsigned)wsize);
1481 s->match_start -= wsize;
1482 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1483 s->block_start -= (long) wsize;
1484
1485 /* Slide the hash table (could be avoided with 32 bit values
1486 at the expense of memory usage). We slide even when level == 0
1487 to keep the hash table consistent if we switch back to level > 0
1488 later. (Using level 0 permanently is not an optimal usage of
1489 zlib, so we don't care about this pathological case.)
1490 */
1491 n = s->hash_size;
1492 p = &s->head[n];
1493 do {
1494 m = *--p;
1495 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1496 } while (--n);
1497
1498 n = wsize;
1499 p = &s->prev[n];
1500 do {
1501 m = *--p;
1502 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1503 /* If n is not on any hash chain, prev[n] is garbage but
1504 * its value will never be used.
1505 */
1506 } while (--n);
1507 more += wsize;
1508 }
1509 if (s->strm->avail_in == 0) return;
1510
1511 /* If there was no sliding:
1512 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1513 * more == window_size - lookahead - strstart
1514 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1515 * => more >= window_size - 2*WSIZE + 2
1516 * In the BIG_MEM or MMAP case (not yet supported),
1517 * window_size == input_size + MIN_LOOKAHEAD &&
1518 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1519 * Otherwise, window_size == 2*WSIZE so more >= 2.
1520 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1521 */
1522 Assert(more >= 2, "more < 2");
1523
1524 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1525 more);
1526 s->lookahead += n;
1527
1528 /* Initialize the hash value now that we have some input: */
1529 if (s->lookahead >= MIN_MATCH) {
1530 s->ins_h = s->window[s->strstart];
1531 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1532#if MIN_MATCH != 3
1533 Call UPDATE_HASH() MIN_MATCH-3 more times
1534#endif
1535 }
1536 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1537 * but this is not important since only literal bytes will be emitted.
1538 */
1539
1540 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1541}
1542
1543/* ===========================================================================
1544 * Flush the current block, with given end-of-file flag.
1545 * IN assertion: strstart is set to the end of the current match.
1546 */
1547#define FLUSH_BLOCK_ONLY(s, eof) { \
1548 _tr_flush_block(s, (s->block_start >= 0L ? \
1549 (charf *)&s->window[(unsigned)s->block_start] : \
1550 (charf *)Z_NULL), \
1551 (ulg)((long)s->strstart - s->block_start), \
1552 (eof)); \
1553 s->block_start = s->strstart; \
1554 flush_pending(s->strm); \
1555 Tracev((stderr,"[FLUSH]")); \
1556}
1557
1558/* Same but force premature exit if necessary. */
1559#define FLUSH_BLOCK(s, eof) { \
1560 FLUSH_BLOCK_ONLY(s, eof); \
1561 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1562}
1563
1564/* ===========================================================================
1565 * Copy without compression as much as possible from the input stream, return
1566 * the current block state.
1567 * This function does not insert new strings in the dictionary since
1568 * uncompressible data is probably not useful. This function is used
1569 * only for the level=0 compression option.
1570 * NOTE: this function should be optimized to avoid extra copying from
1571 * window to pending_buf.
1572 */
1573local block_state deflate_stored(s, flush)
1574 deflate_state *s;
1575 int flush;
1576{
1577 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1578 * to pending_buf_size, and each stored block has a 5 byte header:
1579 */
1580 ulg max_block_size = 0xffff;
1581 ulg max_start;
1582
1583 if (max_block_size > s->pending_buf_size - 5) {
1584 max_block_size = s->pending_buf_size - 5;
1585 }
1586
1587 /* Copy as much as possible from input to output: */
1588 for (;;) {
1589 /* Fill the window as much as possible: */
1590 if (s->lookahead <= 1) {
1591
1592 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1593 s->block_start >= (long)s->w_size, "slide too late");
1594
1595 fill_window(s);
1596 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1597
1598 if (s->lookahead == 0) break; /* flush the current block */
1599 }
1600 Assert(s->block_start >= 0L, "block gone");
1601
1602 s->strstart += s->lookahead;
1603 s->lookahead = 0;
1604
1605 /* Emit a stored block if pending_buf will be full: */
1606 max_start = s->block_start + max_block_size;
1607 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1608 /* strstart == 0 is possible when wraparound on 16-bit machine */
1609 s->lookahead = (uInt)(s->strstart - max_start);
1610 s->strstart = (uInt)max_start;
1611 FLUSH_BLOCK(s, 0);
1612 }
1613 /* Flush if we may have to slide, otherwise block_start may become
1614 * negative and the data will be gone:
1615 */
1616 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1617 FLUSH_BLOCK(s, 0);
1618 }
1619 }
1620 FLUSH_BLOCK(s, flush == Z_FINISH);
1621 return flush == Z_FINISH ? finish_done : block_done;
1622}
1623
1624/* ===========================================================================
1625 * Compress as much as possible from the input stream, return the current
1626 * block state.
1627 * This function does not perform lazy evaluation of matches and inserts
1628 * new strings in the dictionary only for unmatched strings or for short
1629 * matches. It is used only for the fast compression options.
1630 */
1631local block_state deflate_fast(s, flush)
1632 deflate_state *s;
1633 int flush;
1634{
1635 IPos hash_head = NIL; /* head of the hash chain */
1636 int bflush; /* set if current block must be flushed */
1637
1638 for (;;) {
1639 /* Make sure that we always have enough lookahead, except
1640 * at the end of the input file. We need MAX_MATCH bytes
1641 * for the next match, plus MIN_MATCH bytes to insert the
1642 * string following the next match.
1643 */
1644 if (s->lookahead < MIN_LOOKAHEAD) {
1645 fill_window(s);
1646 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1647 return need_more;
1648 }
1649 if (s->lookahead == 0) break; /* flush the current block */
1650 }
1651
1652 /* Insert the string window[strstart .. strstart+2] in the
1653 * dictionary, and set hash_head to the head of the hash chain:
1654 */
1655 if (s->lookahead >= MIN_MATCH) {
1656 INSERT_STRING(s, s->strstart, hash_head);
1657 }
1658
1659 /* Find the longest match, discarding those <= prev_length.
1660 * At this point we have always match_length < MIN_MATCH
1661 */
1662 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1663 /* To simplify the code, we prevent matches with the string
1664 * of window index 0 (in particular we have to avoid a match
1665 * of the string with itself at the start of the input file).
1666 */
1667 if (s->strategy != Z_HUFFMAN_ONLY) {
1668 s->match_length = longest_match (s, hash_head);
1669 }
1670 /* longest_match() sets match_start */
1671 }
1672 if (s->match_length >= MIN_MATCH) {
1673 check_match(s, s->strstart, s->match_start, s->match_length);
1674
1675 bflush = _tr_tally(s, s->strstart - s->match_start,
1676 s->match_length - MIN_MATCH);
1677
1678 s->lookahead -= s->match_length;
1679
1680 /* Insert new strings in the hash table only if the match length
1681 * is not too large. This saves time but degrades compression.
1682 */
1683 if (s->match_length <= s->max_insert_length &&
1684 s->lookahead >= MIN_MATCH) {
1685 s->match_length--; /* string at strstart already in hash table */
1686 do {
1687 s->strstart++;
1688 INSERT_STRING(s, s->strstart, hash_head);
1689 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1690 * always MIN_MATCH bytes ahead.
1691 */
1692 } while (--s->match_length != 0);
1693 s->strstart++;
1694 } else {
1695 s->strstart += s->match_length;
1696 s->match_length = 0;
1697 s->ins_h = s->window[s->strstart];
1698 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1699#if MIN_MATCH != 3
1700 Call UPDATE_HASH() MIN_MATCH-3 more times
1701#endif
1702 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1703 * matter since it will be recomputed at next deflate call.
1704 */
1705 }
1706 } else {
1707 /* No match, output a literal byte */
1708 Tracevv((stderr,"%c", s->window[s->strstart]));
1709 bflush = _tr_tally (s, 0, s->window[s->strstart]);
1710 s->lookahead--;
1711 s->strstart++;
1712 }
1713 if (bflush) FLUSH_BLOCK(s, 0);
1714 }
1715 FLUSH_BLOCK(s, flush == Z_FINISH);
1716 return flush == Z_FINISH ? finish_done : block_done;
1717}
1718
1719/* ===========================================================================
1720 * Same as above, but achieves better compression. We use a lazy
1721 * evaluation for matches: a match is finally adopted only if there is
1722 * no better match at the next window position.
1723 */
1724local block_state deflate_slow(s, flush)
1725 deflate_state *s;
1726 int flush;
1727{
1728 IPos hash_head = NIL; /* head of hash chain */
1729 int bflush; /* set if current block must be flushed */
1730
1731 /* Process the input block. */
1732 for (;;) {
1733 /* Make sure that we always have enough lookahead, except
1734 * at the end of the input file. We need MAX_MATCH bytes
1735 * for the next match, plus MIN_MATCH bytes to insert the
1736 * string following the next match.
1737 */
1738 if (s->lookahead < MIN_LOOKAHEAD) {
1739 fill_window(s);
1740 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1741 return need_more;
1742 }
1743 if (s->lookahead == 0) break; /* flush the current block */
1744 }
1745
1746 /* Insert the string window[strstart .. strstart+2] in the
1747 * dictionary, and set hash_head to the head of the hash chain:
1748 */
1749 if (s->lookahead >= MIN_MATCH) {
1750 INSERT_STRING(s, s->strstart, hash_head);
1751 }
1752
1753 /* Find the longest match, discarding those <= prev_length.
1754 */
1755 s->prev_length = s->match_length, s->prev_match = s->match_start;
1756 s->match_length = MIN_MATCH-1;
1757
1758 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1759 s->strstart - hash_head <= MAX_DIST(s)) {
1760 /* To simplify the code, we prevent matches with the string
1761 * of window index 0 (in particular we have to avoid a match
1762 * of the string with itself at the start of the input file).
1763 */
1764 if (s->strategy != Z_HUFFMAN_ONLY) {
1765 s->match_length = longest_match (s, hash_head);
1766 }
1767 /* longest_match() sets match_start */
1768
1769 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1770 (s->match_length == MIN_MATCH &&
1771 s->strstart - s->match_start > TOO_FAR))) {
1772
1773 /* If prev_match is also MIN_MATCH, match_start is garbage
1774 * but we will ignore the current match anyway.
1775 */
1776 s->match_length = MIN_MATCH-1;
1777 }
1778 }
1779 /* If there was a match at the previous step and the current
1780 * match is not better, output the previous match:
1781 */
1782 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1783 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1784 /* Do not insert strings in hash table beyond this. */
1785
1786 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1787
1788 bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1789 s->prev_length - MIN_MATCH);
1790
1791 /* Insert in hash table all strings up to the end of the match.
1792 * strstart-1 and strstart are already inserted. If there is not
1793 * enough lookahead, the last two strings are not inserted in
1794 * the hash table.
1795 */
1796 s->lookahead -= s->prev_length-1;
1797 s->prev_length -= 2;
1798 do {
1799 if (++s->strstart <= max_insert) {
1800 INSERT_STRING(s, s->strstart, hash_head);
1801 }
1802 } while (--s->prev_length != 0);
1803 s->match_available = 0;
1804 s->match_length = MIN_MATCH-1;
1805 s->strstart++;
1806
1807 if (bflush) FLUSH_BLOCK(s, 0);
1808
1809 } else if (s->match_available) {
1810 /* If there was no match at the previous position, output a
1811 * single literal. If there was a match but the current match
1812 * is longer, truncate the previous match to a single literal.
1813 */
1814 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1815 if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1816 FLUSH_BLOCK_ONLY(s, 0);
1817 }
1818 s->strstart++;
1819 s->lookahead--;
1820 if (s->strm->avail_out == 0) return need_more;
1821 } else {
1822 /* There is no previous match to compare with, wait for
1823 * the next step to decide.
1824 */
1825 s->match_available = 1;
1826 s->strstart++;
1827 s->lookahead--;
1828 }
1829 }
1830 Assert (flush != Z_NO_FLUSH, "no flush?");
1831 if (s->match_available) {
1832 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1833 _tr_tally (s, 0, s->window[s->strstart-1]);
1834 s->match_available = 0;
1835 }
1836 FLUSH_BLOCK(s, flush == Z_FINISH);
1837 return flush == Z_FINISH ? finish_done : block_done;
1838}
1839/* --- deflate.c */
1840
1841/* +++ trees.c */
1842/* trees.c -- output deflated data using Huffman coding
1843 * Copyright (C) 1995-1996 Jean-loup Gailly
1844 * For conditions of distribution and use, see copyright notice in zlib.h
1845 */
1846
1847/*
1848 * ALGORITHM
1849 *
1850 * The "deflation" process uses several Huffman trees. The more
1851 * common source values are represented by shorter bit sequences.
1852 *
1853 * Each code tree is stored in a compressed form which is itself
1854 * a Huffman encoding of the lengths of all the code strings (in
1855 * ascending order by source values). The actual code strings are
1856 * reconstructed from the lengths in the inflate process, as described
1857 * in the deflate specification.
1858 *
1859 * REFERENCES
1860 *
1861 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1862 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1863 *
1864 * Storer, James A.
1865 * Data Compression: Methods and Theory, pp. 49-50.
1866 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1867 *
1868 * Sedgewick, R.
1869 * Algorithms, p290.
1870 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1871 */
1872
1873/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1874
1875/* #include "deflate.h" */
1876
1877#ifdef DEBUG_ZLIB
1878# include <ctype.h>
1879#endif
1880
1881/* ===========================================================================
1882 * Constants
1883 */
1884
1885#define MAX_BL_BITS 7
1886/* Bit length codes must not exceed MAX_BL_BITS bits */
1887
1888#define END_BLOCK 256
1889/* end of block literal code */
1890
1891#define REP_3_6 16
1892/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1893
1894#define REPZ_3_10 17
1895/* repeat a zero length 3-10 times (3 bits of repeat count) */
1896
1897#define REPZ_11_138 18
1898/* repeat a zero length 11-138 times (7 bits of repeat count) */
1899
1900local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1901 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1902
1903local int extra_dbits[D_CODES] /* extra bits for each distance code */
1904 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1905
1906local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1907 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1908
1909local uch bl_order[BL_CODES]
1910 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1911/* The lengths of the bit length codes are sent in order of decreasing
1912 * probability, to avoid transmitting the lengths for unused bit length codes.
1913 */
1914
1915#define Buf_size (8 * 2*sizeof(char))
1916/* Number of bits used within bi_buf. (bi_buf might be implemented on
1917 * more than 16 bits on some systems.)
1918 */
1919
1920/* ===========================================================================
1921 * Local data. These are initialized only once.
1922 */
1923
1924local ct_data static_ltree[L_CODES+2];
1925/* The static literal tree. Since the bit lengths are imposed, there is no
1926 * need for the L_CODES extra codes used during heap construction. However
1927 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1928 * below).
1929 */
1930
1931local ct_data static_dtree[D_CODES];
1932/* The static distance tree. (Actually a trivial tree since all codes use
1933 * 5 bits.)
1934 */
1935
1936local uch dist_code[512];
1937/* distance codes. The first 256 values correspond to the distances
1938 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1939 * the 15 bit distances.
1940 */
1941
1942local uch length_code[MAX_MATCH-MIN_MATCH+1];
1943/* length code for each normalized match length (0 == MIN_MATCH) */
1944
1945local int base_length[LENGTH_CODES];
1946/* First normalized length for each code (0 = MIN_MATCH) */
1947
1948local int base_dist[D_CODES];
1949/* First normalized distance for each code (0 = distance of 1) */
1950
1951struct static_tree_desc_s {
1952 ct_data *static_tree; /* static tree or NULL */
1953 intf *extra_bits; /* extra bits for each code or NULL */
1954 int extra_base; /* base index for extra_bits */
1955 int elems; /* max number of elements in the tree */
1956 int max_length; /* max bit length for the codes */
1957};
1958
1959local static_tree_desc static_l_desc =
1960{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1961
1962local static_tree_desc static_d_desc =
1963{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1964
1965local static_tree_desc static_bl_desc =
1966{(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1967
1968/* ===========================================================================
1969 * Local (static) routines in this file.
1970 */
1971
1972local void tr_static_init OF((void));
1973local void init_block OF((deflate_state *s));
1974local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1975local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1976local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1977local void build_tree OF((deflate_state *s, tree_desc *desc));
1978local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1979local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1980local int build_bl_tree OF((deflate_state *s));
1981local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1982 int blcodes));
1983local void compress_block OF((deflate_state *s, ct_data *ltree,
1984 ct_data *dtree));
1985local void set_data_type OF((deflate_state *s));
1986local unsigned bi_reverse OF((unsigned value, int length));
1987local void bi_windup OF((deflate_state *s));
1988local void bi_flush OF((deflate_state *s));
1989local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1990 int header));
1991
1992#ifndef DEBUG_ZLIB
1993# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1994 /* Send a code of the given tree. c and tree must not have side effects */
1995
1996#else /* DEBUG_ZLIB */
1997# define send_code(s, c, tree) \
1998 { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1999 send_bits(s, tree[c].Code, tree[c].Len); }
2000#endif
2001
2002#define d_code(dist) \
2003 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
2004/* Mapping from a distance to a distance code. dist is the distance - 1 and
2005 * must not have side effects. dist_code[256] and dist_code[257] are never
2006 * used.
2007 */
2008
2009/* ===========================================================================
2010 * Output a short LSB first on the stream.
2011 * IN assertion: there is enough room in pendingBuf.
2012 */
2013#define put_short(s, w) { \
2014 put_byte(s, (uch)((w) & 0xff)); \
2015 put_byte(s, (uch)((ush)(w) >> 8)); \
2016}
2017
2018/* ===========================================================================
2019 * Send a value on a given number of bits.
2020 * IN assertion: length <= 16 and value fits in length bits.
2021 */
2022#ifdef DEBUG_ZLIB
2023local void send_bits OF((deflate_state *s, int value, int length));
2024
2025local void send_bits(s, value, length)
2026 deflate_state *s;
2027 int value; /* value to send */
2028 int length; /* number of bits */
2029{
2030 Tracevv((stderr," l %2d v %4x ", length, value));
2031 Assert(length > 0 && length <= 15, "invalid length");
2032 s->bits_sent += (ulg)length;
2033
2034 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2035 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2036 * unused bits in value.
2037 */
2038 if (s->bi_valid > (int)Buf_size - length) {
2039 s->bi_buf |= (value << s->bi_valid);
2040 put_short(s, s->bi_buf);
2041 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2042 s->bi_valid += length - Buf_size;
2043 } else {
2044 s->bi_buf |= value << s->bi_valid;
2045 s->bi_valid += length;
2046 }
2047}
2048#else /* !DEBUG_ZLIB */
2049
2050#define send_bits(s, value, length) \
2051{ int len = length;\
2052 if (s->bi_valid > (int)Buf_size - len) {\
2053 int val = value;\
2054 s->bi_buf |= (val << s->bi_valid);\
2055 put_short(s, s->bi_buf);\
2056 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2057 s->bi_valid += len - Buf_size;\
2058 } else {\
2059 s->bi_buf |= (value) << s->bi_valid;\
2060 s->bi_valid += len;\
2061 }\
2062}
2063#endif /* DEBUG_ZLIB */
2064
2065
2066#define MAX(a,b) (a >= b ? a : b)
2067/* the arguments must not have side effects */
2068
2069/* ===========================================================================
2070 * Initialize the various 'constant' tables. In a multi-threaded environment,
2071 * this function may be called by two threads concurrently, but this is
2072 * harmless since both invocations do exactly the same thing.
2073 */
2074local void tr_static_init()
2075{
2076 static int static_init_done = 0;
2077 int n; /* iterates over tree elements */
2078 int bits; /* bit counter */
2079 int length; /* length value */
2080 int code; /* code value */
2081 int dist; /* distance index */
2082 ush bl_count[MAX_BITS+1];
2083 /* number of codes at each bit length for an optimal tree */
2084
2085 if (static_init_done) return;
2086
2087 /* Initialize the mapping length (0..255) -> length code (0..28) */
2088 length = 0;
2089 for (code = 0; code < LENGTH_CODES-1; code++) {
2090 base_length[code] = length;
2091 for (n = 0; n < (1<<extra_lbits[code]); n++) {
2092 length_code[length++] = (uch)code;
2093 }
2094 }
2095 Assert (length == 256, "tr_static_init: length != 256");
2096 /* Note that the length 255 (match length 258) can be represented
2097 * in two different ways: code 284 + 5 bits or code 285, so we
2098 * overwrite length_code[255] to use the best encoding:
2099 */
2100 length_code[length-1] = (uch)code;
2101
2102 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2103 dist = 0;
2104 for (code = 0 ; code < 16; code++) {
2105 base_dist[code] = dist;
2106 for (n = 0; n < (1<<extra_dbits[code]); n++) {
2107 dist_code[dist++] = (uch)code;
2108 }
2109 }
2110 Assert (dist == 256, "tr_static_init: dist != 256");
2111 dist >>= 7; /* from now on, all distances are divided by 128 */
2112 for ( ; code < D_CODES; code++) {
2113 base_dist[code] = dist << 7;
2114 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2115 dist_code[256 + dist++] = (uch)code;
2116 }
2117 }
2118 Assert (dist == 256, "tr_static_init: 256+dist != 512");
2119
2120 /* Construct the codes of the static literal tree */
2121 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2122 n = 0;
2123 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2124 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2125 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2126 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2127 /* Codes 286 and 287 do not exist, but we must include them in the
2128 * tree construction to get a canonical Huffman tree (longest code
2129 * all ones)
2130 */
2131 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2132
2133 /* The static distance tree is trivial: */
2134 for (n = 0; n < D_CODES; n++) {
2135 static_dtree[n].Len = 5;
2136 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2137 }
2138 static_init_done = 1;
2139}
2140
2141/* ===========================================================================
2142 * Initialize the tree data structures for a new zlib stream.
2143 */
2144void _tr_init(s)
2145 deflate_state *s;
2146{
2147 tr_static_init();
2148
2149 s->compressed_len = 0L;
2150
2151 s->l_desc.dyn_tree = s->dyn_ltree;
2152 s->l_desc.stat_desc = &static_l_desc;
2153
2154 s->d_desc.dyn_tree = s->dyn_dtree;
2155 s->d_desc.stat_desc = &static_d_desc;
2156
2157 s->bl_desc.dyn_tree = s->bl_tree;
2158 s->bl_desc.stat_desc = &static_bl_desc;
2159
2160 s->bi_buf = 0;
2161 s->bi_valid = 0;
2162 s->last_eob_len = 8; /* enough lookahead for inflate */
2163#ifdef DEBUG_ZLIB
2164 s->bits_sent = 0L;
2165#endif
2166
2167 /* Initialize the first block of the first file: */
2168 init_block(s);
2169}
2170
2171/* ===========================================================================
2172 * Initialize a new block.
2173 */
2174local void init_block(s)
2175 deflate_state *s;
2176{
2177 int n; /* iterates over tree elements */
2178
2179 /* Initialize the trees. */
2180 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2181 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2182 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2183
2184 s->dyn_ltree[END_BLOCK].Freq = 1;
2185 s->opt_len = s->static_len = 0L;
2186 s->last_lit = s->matches = 0;
2187}
2188
2189#define SMALLEST 1
2190/* Index within the heap array of least frequent node in the Huffman tree */
2191
2192
2193/* ===========================================================================
2194 * Remove the smallest element from the heap and recreate the heap with
2195 * one less element. Updates heap and heap_len.
2196 */
2197#define pqremove(s, tree, top) \
2198{\
2199 top = s->heap[SMALLEST]; \
2200 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2201 pqdownheap(s, tree, SMALLEST); \
2202}
2203
2204/* ===========================================================================
2205 * Compares to subtrees, using the tree depth as tie breaker when
2206 * the subtrees have equal frequency. This minimizes the worst case length.
2207 */
2208#define smaller(tree, n, m, depth) \
2209 (tree[n].Freq < tree[m].Freq || \
2210 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2211
2212/* ===========================================================================
2213 * Restore the heap property by moving down the tree starting at node k,
2214 * exchanging a node with the smallest of its two sons if necessary, stopping
2215 * when the heap property is re-established (each father smaller than its
2216 * two sons).
2217 */
2218local void pqdownheap(s, tree, k)
2219 deflate_state *s;
2220 ct_data *tree; /* the tree to restore */
2221 int k; /* node to move down */
2222{
2223 int v = s->heap[k];
2224 int j = k << 1; /* left son of k */
2225 while (j <= s->heap_len) {
2226 /* Set j to the smallest of the two sons: */
2227 if (j < s->heap_len &&
2228 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2229 j++;
2230 }
2231 /* Exit if v is smaller than both sons */
2232 if (smaller(tree, v, s->heap[j], s->depth)) break;
2233
2234 /* Exchange v with the smallest son */
2235 s->heap[k] = s->heap[j]; k = j;
2236
2237 /* And continue down the tree, setting j to the left son of k */
2238 j <<= 1;
2239 }
2240 s->heap[k] = v;
2241}
2242
2243/* ===========================================================================
2244 * Compute the optimal bit lengths for a tree and update the total bit length
2245 * for the current block.
2246 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2247 * above are the tree nodes sorted by increasing frequency.
2248 * OUT assertions: the field len is set to the optimal bit length, the
2249 * array bl_count contains the frequencies for each bit length.
2250 * The length opt_len is updated; static_len is also updated if stree is
2251 * not null.
2252 */
2253local void gen_bitlen(s, desc)
2254 deflate_state *s;
2255 tree_desc *desc; /* the tree descriptor */
2256{
2257 ct_data *tree = desc->dyn_tree;
2258 int max_code = desc->max_code;
2259 ct_data *stree = desc->stat_desc->static_tree;
2260 intf *extra = desc->stat_desc->extra_bits;
2261 int base = desc->stat_desc->extra_base;
2262 int max_length = desc->stat_desc->max_length;
2263 int h; /* heap index */
2264 int n, m; /* iterate over the tree elements */
2265 int bits; /* bit length */
2266 int xbits; /* extra bits */
2267 ush f; /* frequency */
2268 int overflow = 0; /* number of elements with bit length too large */
2269
2270 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2271
2272 /* In a first pass, compute the optimal bit lengths (which may
2273 * overflow in the case of the bit length tree).
2274 */
2275 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2276
2277 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2278 n = s->heap[h];
2279 bits = tree[tree[n].Dad].Len + 1;
2280 if (bits > max_length) bits = max_length, overflow++;
2281 tree[n].Len = (ush)bits;
2282 /* We overwrite tree[n].Dad which is no longer needed */
2283
2284 if (n > max_code) continue; /* not a leaf node */
2285
2286 s->bl_count[bits]++;
2287 xbits = 0;
2288 if (n >= base) xbits = extra[n-base];
2289 f = tree[n].Freq;
2290 s->opt_len += (ulg)f * (bits + xbits);
2291 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2292 }
2293 if (overflow == 0) return;
2294
2295 Trace((stderr,"\nbit length overflow\n"));
2296 /* This happens for example on obj2 and pic of the Calgary corpus */
2297
2298 /* Find the first bit length which could increase: */
2299 do {
2300 bits = max_length-1;
2301 while (s->bl_count[bits] == 0) bits--;
2302 s->bl_count[bits]--; /* move one leaf down the tree */
2303 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2304 s->bl_count[max_length]--;
2305 /* The brother of the overflow item also moves one step up,
2306 * but this does not affect bl_count[max_length]
2307 */
2308 overflow -= 2;
2309 } while (overflow > 0);
2310
2311 /* Now recompute all bit lengths, scanning in increasing frequency.
2312 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2313 * lengths instead of fixing only the wrong ones. This idea is taken
2314 * from 'ar' written by Haruhiko Okumura.)
2315 */
2316 for (bits = max_length; bits != 0; bits--) {
2317 n = s->bl_count[bits];
2318 while (n != 0) {
2319 m = s->heap[--h];
2320 if (m > max_code) continue;
2321 if (tree[m].Len != (unsigned) bits) {
2322 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2323 s->opt_len += ((long)bits - (long)tree[m].Len)
2324 *(long)tree[m].Freq;
2325 tree[m].Len = (ush)bits;
2326 }
2327 n--;
2328 }
2329 }
2330}
2331
2332/* ===========================================================================
2333 * Generate the codes for a given tree and bit counts (which need not be
2334 * optimal).
2335 * IN assertion: the array bl_count contains the bit length statistics for
2336 * the given tree and the field len is set for all tree elements.
2337 * OUT assertion: the field code is set for all tree elements of non
2338 * zero code length.
2339 */
2340local void gen_codes (tree, max_code, bl_count)
2341 ct_data *tree; /* the tree to decorate */
2342 int max_code; /* largest code with non zero frequency */
2343 ushf *bl_count; /* number of codes at each bit length */
2344{
2345 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2346 ush code = 0; /* running code value */
2347 int bits; /* bit index */
2348 int n; /* code index */
2349
2350 /* The distribution counts are first used to generate the code values
2351 * without bit reversal.
2352 */
2353 for (bits = 1; bits <= MAX_BITS; bits++) {
2354 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2355 }
2356 /* Check that the bit counts in bl_count are consistent. The last code
2357 * must be all ones.
2358 */
2359 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2360 "inconsistent bit counts");
2361 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2362
2363 for (n = 0; n <= max_code; n++) {
2364 int len = tree[n].Len;
2365 if (len == 0) continue;
2366 /* Now reverse the bits */
2367 tree[n].Code = bi_reverse(next_code[len]++, len);
2368
2369 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2370 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2371 }
2372}
2373
2374/* ===========================================================================
2375 * Construct one Huffman tree and assigns the code bit strings and lengths.
2376 * Update the total bit length for the current block.
2377 * IN assertion: the field freq is set for all tree elements.
2378 * OUT assertions: the fields len and code are set to the optimal bit length
2379 * and corresponding code. The length opt_len is updated; static_len is
2380 * also updated if stree is not null. The field max_code is set.
2381 */
2382local void build_tree(s, desc)
2383 deflate_state *s;
2384 tree_desc *desc; /* the tree descriptor */
2385{
2386 ct_data *tree = desc->dyn_tree;
2387 ct_data *stree = desc->stat_desc->static_tree;
2388 int elems = desc->stat_desc->elems;
2389 int n, m; /* iterate over heap elements */
2390 int max_code = -1; /* largest code with non zero frequency */
2391 int node; /* new node being created */
2392
2393 /* Construct the initial heap, with least frequent element in
2394 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2395 * heap[0] is not used.
2396 */
2397 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2398
2399 for (n = 0; n < elems; n++) {
2400 if (tree[n].Freq != 0) {
2401 s->heap[++(s->heap_len)] = max_code = n;
2402 s->depth[n] = 0;
2403 } else {
2404 tree[n].Len = 0;
2405 }
2406 }
2407
2408 /* The pkzip format requires that at least one distance code exists,
2409 * and that at least one bit should be sent even if there is only one
2410 * possible code. So to avoid special checks later on we force at least
2411 * two codes of non zero frequency.
2412 */
2413 while (s->heap_len < 2) {
2414 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2415 tree[node].Freq = 1;
2416 s->depth[node] = 0;
2417 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2418 /* node is 0 or 1 so it does not have extra bits */
2419 }
2420 desc->max_code = max_code;
2421
2422 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2423 * establish sub-heaps of increasing lengths:
2424 */
2425 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2426
2427 /* Construct the Huffman tree by repeatedly combining the least two
2428 * frequent nodes.
2429 */
2430 node = elems; /* next internal node of the tree */
2431 do {
2432 pqremove(s, tree, n); /* n = node of least frequency */
2433 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2434
2435 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2436 s->heap[--(s->heap_max)] = m;
2437
2438 /* Create a new node father of n and m */
2439 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2440 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2441 tree[n].Dad = tree[m].Dad = (ush)node;
2442#ifdef DUMP_BL_TREE
2443 if (tree == s->bl_tree) {
2444 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2445 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2446 }
2447#endif
2448 /* and insert the new node in the heap */
2449 s->heap[SMALLEST] = node++;
2450 pqdownheap(s, tree, SMALLEST);
2451
2452 } while (s->heap_len >= 2);
2453
2454 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2455
2456 /* At this point, the fields freq and dad are set. We can now
2457 * generate the bit lengths.
2458 */
2459 gen_bitlen(s, (tree_desc *)desc);
2460
2461 /* The field len is now set, we can generate the bit codes */
2462 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2463}
2464
2465/* ===========================================================================
2466 * Scan a literal or distance tree to determine the frequencies of the codes
2467 * in the bit length tree.
2468 */
2469local void scan_tree (s, tree, max_code)
2470 deflate_state *s;
2471 ct_data *tree; /* the tree to be scanned */
2472 int max_code; /* and its largest code of non zero frequency */
2473{
2474 int n; /* iterates over all tree elements */
2475 int prevlen = -1; /* last emitted length */
2476 int curlen; /* length of current code */
2477 int nextlen = tree[0].Len; /* length of next code */
2478 int count = 0; /* repeat count of the current code */
2479 int max_count = 7; /* max repeat count */
2480 int min_count = 4; /* min repeat count */
2481
2482 if (nextlen == 0) max_count = 138, min_count = 3;
2483 tree[max_code+1].Len = (ush)0xffff; /* guard */
2484
2485 for (n = 0; n <= max_code; n++) {
2486 curlen = nextlen; nextlen = tree[n+1].Len;
2487 if (++count < max_count && curlen == nextlen) {
2488 continue;
2489 } else if (count < min_count) {
2490 s->bl_tree[curlen].Freq += count;
2491 } else if (curlen != 0) {
2492 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2493 s->bl_tree[REP_3_6].Freq++;
2494 } else if (count <= 10) {
2495 s->bl_tree[REPZ_3_10].Freq++;
2496 } else {
2497 s->bl_tree[REPZ_11_138].Freq++;
2498 }
2499 count = 0; prevlen = curlen;
2500 if (nextlen == 0) {
2501 max_count = 138, min_count = 3;
2502 } else if (curlen == nextlen) {
2503 max_count = 6, min_count = 3;
2504 } else {
2505 max_count = 7, min_count = 4;
2506 }
2507 }
2508}
2509
2510/* ===========================================================================
2511 * Send a literal or distance tree in compressed form, using the codes in
2512 * bl_tree.
2513 */
2514local void send_tree (s, tree, max_code)
2515 deflate_state *s;
2516 ct_data *tree; /* the tree to be scanned */
2517 int max_code; /* and its largest code of non zero frequency */
2518{
2519 int n; /* iterates over all tree elements */
2520 int prevlen = -1; /* last emitted length */
2521 int curlen; /* length of current code */
2522 int nextlen = tree[0].Len; /* length of next code */
2523 int count = 0; /* repeat count of the current code */
2524 int max_count = 7; /* max repeat count */
2525 int min_count = 4; /* min repeat count */
2526
2527 /* tree[max_code+1].Len = -1; */ /* guard already set */
2528 if (nextlen == 0) max_count = 138, min_count = 3;
2529
2530 for (n = 0; n <= max_code; n++) {
2531 curlen = nextlen; nextlen = tree[n+1].Len;
2532 if (++count < max_count && curlen == nextlen) {
2533 continue;
2534 } else if (count < min_count) {
2535 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2536
2537 } else if (curlen != 0) {
2538 if (curlen != prevlen) {
2539 send_code(s, curlen, s->bl_tree); count--;
2540 }
2541 Assert(count >= 3 && count <= 6, " 3_6?");
2542 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2543
2544 } else if (count <= 10) {
2545 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2546
2547 } else {
2548 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2549 }
2550 count = 0; prevlen = curlen;
2551 if (nextlen == 0) {
2552 max_count = 138, min_count = 3;
2553 } else if (curlen == nextlen) {
2554 max_count = 6, min_count = 3;
2555 } else {
2556 max_count = 7, min_count = 4;
2557 }
2558 }
2559}
2560
2561/* ===========================================================================
2562 * Construct the Huffman tree for the bit lengths and return the index in
2563 * bl_order of the last bit length code to send.
2564 */
2565local int build_bl_tree(s)
2566 deflate_state *s;
2567{
2568 int max_blindex; /* index of last bit length code of non zero freq */
2569
2570 /* Determine the bit length frequencies for literal and distance trees */
2571 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2572 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2573
2574 /* Build the bit length tree: */
2575 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2576 /* opt_len now includes the length of the tree representations, except
2577 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2578 */
2579
2580 /* Determine the number of bit length codes to send. The pkzip format
2581 * requires that at least 4 bit length codes be sent. (appnote.txt says
2582 * 3 but the actual value used is 4.)
2583 */
2584 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2585 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2586 }
2587 /* Update opt_len to include the bit length tree and counts */
2588 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2589 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2590 s->opt_len, s->static_len));
2591
2592 return max_blindex;
2593}
2594
2595/* ===========================================================================
2596 * Send the header for a block using dynamic Huffman trees: the counts, the
2597 * lengths of the bit length codes, the literal tree and the distance tree.
2598 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2599 */
2600local void send_all_trees(s, lcodes, dcodes, blcodes)
2601 deflate_state *s;
2602 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2603{
2604 int rank; /* index in bl_order */
2605
2606 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2607 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2608 "too many codes");
2609 Tracev((stderr, "\nbl counts: "));
2610 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2611 send_bits(s, dcodes-1, 5);
2612 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2613 for (rank = 0; rank < blcodes; rank++) {
2614 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2615 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2616 }
2617 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2618
2619 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2620 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2621
2622 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2623 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2624}
2625
2626/* ===========================================================================
2627 * Send a stored block
2628 */
2629void _tr_stored_block(s, buf, stored_len, eof)
2630 deflate_state *s;
2631 charf *buf; /* input block */
2632 ulg stored_len; /* length of input block */
2633 int eof; /* true if this is the last block for a file */
2634{
2635 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2636 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2637 s->compressed_len += (stored_len + 4) << 3;
2638
2639 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2640}
2641
2642/* Send just the `stored block' type code without any length bytes or data.
2643 */
2644void _tr_stored_type_only(s)
2645 deflate_state *s;
2646{
2647 send_bits(s, (STORED_BLOCK << 1), 3);
2648 bi_windup(s);
2649 s->compressed_len = (s->compressed_len + 3) & ~7L;
2650}
2651
2652
2653/* ===========================================================================
2654 * Send one empty static block to give enough lookahead for inflate.
2655 * This takes 10 bits, of which 7 may remain in the bit buffer.
2656 * The current inflate code requires 9 bits of lookahead. If the
2657 * last two codes for the previous block (real code plus EOB) were coded
2658 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2659 * the last real code. In this case we send two empty static blocks instead
2660 * of one. (There are no problems if the previous block is stored or fixed.)
2661 * To simplify the code, we assume the worst case of last real code encoded
2662 * on one bit only.
2663 */
2664void _tr_align(s)
2665 deflate_state *s;
2666{
2667 send_bits(s, STATIC_TREES<<1, 3);
2668 send_code(s, END_BLOCK, static_ltree);
2669 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2670 bi_flush(s);
2671 /* Of the 10 bits for the empty block, we have already sent
2672 * (10 - bi_valid) bits. The lookahead for the last real code (before
2673 * the EOB of the previous block) was thus at least one plus the length
2674 * of the EOB plus what we have just sent of the empty static block.
2675 */
2676 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2677 send_bits(s, STATIC_TREES<<1, 3);
2678 send_code(s, END_BLOCK, static_ltree);
2679 s->compressed_len += 10L;
2680 bi_flush(s);
2681 }
2682 s->last_eob_len = 7;
2683}
2684
2685/* ===========================================================================
2686 * Determine the best encoding for the current block: dynamic trees, static
2687 * trees or store, and output the encoded block to the zip file. This function
2688 * returns the total compressed length for the file so far.
2689 */
2690ulg _tr_flush_block(s, buf, stored_len, eof)
2691 deflate_state *s;
2692 charf *buf; /* input block, or NULL if too old */
2693 ulg stored_len; /* length of input block */
2694 int eof; /* true if this is the last block for a file */
2695{
2696 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2697 int max_blindex = 0; /* index of last bit length code of non zero freq */
2698
2699 /* Build the Huffman trees unless a stored block is forced */
2700 if (s->level > 0) {
2701
2702 /* Check if the file is ascii or binary */
2703 if (s->data_type == Z_UNKNOWN) set_data_type(s);
2704
2705 /* Construct the literal and distance trees */
2706 build_tree(s, (tree_desc *)(&(s->l_desc)));
2707 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2708 s->static_len));
2709
2710 build_tree(s, (tree_desc *)(&(s->d_desc)));
2711 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2712 s->static_len));
2713 /* At this point, opt_len and static_len are the total bit lengths of
2714 * the compressed block data, excluding the tree representations.
2715 */
2716
2717 /* Build the bit length tree for the above two trees, and get the index
2718 * in bl_order of the last bit length code to send.
2719 */
2720 max_blindex = build_bl_tree(s);
2721
2722 /* Determine the best encoding. Compute first the block length in bytes*/
2723 opt_lenb = (s->opt_len+3+7)>>3;
2724 static_lenb = (s->static_len+3+7)>>3;
2725
2726 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2727 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2728 s->last_lit));
2729
2730 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2731
2732 } else {
2733 Assert(buf != (char*)0, "lost buf");
2734 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2735 }
2736
2737 /* If compression failed and this is the first and last block,
2738 * and if the .zip file can be seeked (to rewrite the local header),
2739 * the whole file is transformed into a stored file:
2740 */
2741#ifdef STORED_FILE_OK
2742# ifdef FORCE_STORED_FILE
2743 if (eof && s->compressed_len == 0L) { /* force stored file */
2744# else
2745 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2746# endif
2747 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2748 if (buf == (charf*)0) error ("block vanished");
2749
2750 copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2751 s->compressed_len = stored_len << 3;
2752 s->method = STORED;
2753 } else
2754#endif /* STORED_FILE_OK */
2755
2756#ifdef FORCE_STORED
2757 if (buf != (char*)0) { /* force stored block */
2758#else
2759 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2760 /* 4: two words for the lengths */
2761#endif
2762 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2763 * Otherwise we can't have processed more than WSIZE input bytes since
2764 * the last block flush, because compression would have been
2765 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2766 * transform a block into a stored block.
2767 */
2768 _tr_stored_block(s, buf, stored_len, eof);
2769
2770#ifdef FORCE_STATIC
2771 } else if (static_lenb >= 0) { /* force static trees */
2772#else
2773 } else if (static_lenb == opt_lenb) {
2774#endif
2775 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2776 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2777 s->compressed_len += 3 + s->static_len;
2778 } else {
2779 send_bits(s, (DYN_TREES<<1)+eof, 3);
2780 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2781 max_blindex+1);
2782 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2783 s->compressed_len += 3 + s->opt_len;
2784 }
2785 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2786 init_block(s);
2787
2788 if (eof) {
2789 bi_windup(s);
2790 s->compressed_len += 7; /* align on byte boundary */
2791 }
2792 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2793 s->compressed_len-7*eof));
2794
2795 return s->compressed_len >> 3;
2796}
2797
2798/* ===========================================================================
2799 * Save the match info and tally the frequency counts. Return true if
2800 * the current block must be flushed.
2801 */
2802int _tr_tally (s, dist, lc)
2803 deflate_state *s;
2804 unsigned dist; /* distance of matched string */
2805 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2806{
2807 s->d_buf[s->last_lit] = (ush)dist;
2808 s->l_buf[s->last_lit++] = (uch)lc;
2809 if (dist == 0) {
2810 /* lc is the unmatched char */
2811 s->dyn_ltree[lc].Freq++;
2812 } else {
2813 s->matches++;
2814 /* Here, lc is the match length - MIN_MATCH */
2815 dist--; /* dist = match distance - 1 */
2816 Assert((ush)dist < (ush)MAX_DIST(s) &&
2817 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2818 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
2819
2820 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2821 s->dyn_dtree[d_code(dist)].Freq++;
2822 }
2823
2824 /* Try to guess if it is profitable to stop the current block here */
2825 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2826 /* Compute an upper bound for the compressed length */
2827 ulg out_length = (ulg)s->last_lit*8L;
2828 ulg in_length = (ulg)((long)s->strstart - s->block_start);
2829 int dcode;
2830 for (dcode = 0; dcode < D_CODES; dcode++) {
2831 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2832 (5L+extra_dbits[dcode]);
2833 }
2834 out_length >>= 3;
2835 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2836 s->last_lit, in_length, out_length,
2837 100L - out_length*100L/in_length));
2838 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2839 }
2840 return (s->last_lit == s->lit_bufsize-1);
2841 /* We avoid equality with lit_bufsize because of wraparound at 64K
2842 * on 16 bit machines and because stored blocks are restricted to
2843 * 64K-1 bytes.
2844 */
2845}
2846
2847/* ===========================================================================
2848 * Send the block data compressed using the given Huffman trees
2849 */
2850local void compress_block(s, ltree, dtree)
2851 deflate_state *s;
2852 ct_data *ltree; /* literal tree */
2853 ct_data *dtree; /* distance tree */
2854{
2855 unsigned dist; /* distance of matched string */
2856 int lc; /* match length or unmatched char (if dist == 0) */
2857 unsigned lx = 0; /* running index in l_buf */
2858 unsigned code; /* the code to send */
2859 int extra; /* number of extra bits to send */
2860
2861 if (s->last_lit != 0) do {
2862 dist = s->d_buf[lx];
2863 lc = s->l_buf[lx++];
2864 if (dist == 0) {
2865 send_code(s, lc, ltree); /* send a literal byte */
2866 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2867 } else {
2868 /* Here, lc is the match length - MIN_MATCH */
2869 code = length_code[lc];
2870 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2871 extra = extra_lbits[code];
2872 if (extra != 0) {
2873 lc -= base_length[code];
2874 send_bits(s, lc, extra); /* send the extra length bits */
2875 }
2876 dist--; /* dist is now the match distance - 1 */
2877 code = d_code(dist);
2878 Assert (code < D_CODES, "bad d_code");
2879
2880 send_code(s, code, dtree); /* send the distance code */
2881 extra = extra_dbits[code];
2882 if (extra != 0) {
2883 dist -= base_dist[code];
2884 send_bits(s, dist, extra); /* send the extra distance bits */
2885 }
2886 } /* literal or match pair ? */
2887
2888 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2889 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2890
2891 } while (lx < s->last_lit);
2892
2893 send_code(s, END_BLOCK, ltree);
2894 s->last_eob_len = ltree[END_BLOCK].Len;
2895}
2896
2897/* ===========================================================================
2898 * Set the data type to ASCII or BINARY, using a crude approximation:
2899 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2900 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2901 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2902 */
2903local void set_data_type(s)
2904 deflate_state *s;
2905{
2906 int n = 0;
2907 unsigned ascii_freq = 0;
2908 unsigned bin_freq = 0;
2909 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2910 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2911 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2912 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2913}
2914
2915/* ===========================================================================
2916 * Reverse the first len bits of a code, using straightforward code (a faster
2917 * method would use a table)
2918 * IN assertion: 1 <= len <= 15
2919 */
2920local unsigned bi_reverse(code, len)
2921 unsigned code; /* the value to invert */
2922 int len; /* its bit length */
2923{
2924 register unsigned res = 0;
2925 do {
2926 res |= code & 1;
2927 code >>= 1, res <<= 1;
2928 } while (--len > 0);
2929 return res >> 1;
2930}
2931
2932/* ===========================================================================
2933 * Flush the bit buffer, keeping at most 7 bits in it.
2934 */
2935local void bi_flush(s)
2936 deflate_state *s;
2937{
2938 if (s->bi_valid == 16) {
2939 put_short(s, s->bi_buf);
2940 s->bi_buf = 0;
2941 s->bi_valid = 0;
2942 } else if (s->bi_valid >= 8) {
2943 put_byte(s, (Byte)s->bi_buf);
2944 s->bi_buf >>= 8;
2945 s->bi_valid -= 8;
2946 }
2947}
2948
2949/* ===========================================================================
2950 * Flush the bit buffer and align the output on a byte boundary
2951 */
2952local void bi_windup(s)
2953 deflate_state *s;
2954{
2955 if (s->bi_valid > 8) {
2956 put_short(s, s->bi_buf);
2957 } else if (s->bi_valid > 0) {
2958 put_byte(s, (Byte)s->bi_buf);
2959 }
2960 s->bi_buf = 0;
2961 s->bi_valid = 0;
2962#ifdef DEBUG_ZLIB
2963 s->bits_sent = (s->bits_sent+7) & ~7;
2964#endif
2965}
2966
2967/* ===========================================================================
2968 * Copy a stored block, storing first the length and its
2969 * one's complement if requested.
2970 */
2971local void copy_block(s, buf, len, header)
2972 deflate_state *s;
2973 charf *buf; /* the input data */
2974 unsigned len; /* its length */
2975 int header; /* true if block header must be written */
2976{
2977 bi_windup(s); /* align on byte boundary */
2978 s->last_eob_len = 8; /* enough lookahead for inflate */
2979
2980 if (header) {
2981 put_short(s, (ush)len);
2982 put_short(s, (ush)~len);
2983#ifdef DEBUG_ZLIB
2984 s->bits_sent += 2*16;
2985#endif
2986 }
2987#ifdef DEBUG_ZLIB
2988 s->bits_sent += (ulg)len<<3;
2989#endif
2990 /* bundle up the put_byte(s, *buf++) calls */
2991 zmemcpy(&s->pending_buf[s->pending], buf, len);
2992 s->pending += len;
2993}
2994/* --- trees.c */
2995
2996/* +++ inflate.c */
2997/* inflate.c -- zlib interface to inflate modules
2998 * Copyright (C) 1995-1996 Mark Adler
2999 * For conditions of distribution and use, see copyright notice in zlib.h
3000 */
3001
3002/* #include "zutil.h" */
3003
3004/* +++ infblock.h */
3005/* infblock.h -- header to use infblock.c
3006 * Copyright (C) 1995-1996 Mark Adler
3007 * For conditions of distribution and use, see copyright notice in zlib.h
3008 */
3009
3010/* WARNING: this file should *not* be used by applications. It is
3011 part of the implementation of the compression library and is
3012 subject to change. Applications should only use zlib.h.
3013 */
3014
3015struct inflate_blocks_state;
3016typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3017
3018extern inflate_blocks_statef * inflate_blocks_new OF((
3019 z_streamp z,
3020 check_func c, /* check function */
3021 uInt w)); /* window size */
3022
3023extern int inflate_blocks OF((
3024 inflate_blocks_statef *,
3025 z_streamp ,
3026 int)); /* initial return code */
3027
3028extern void inflate_blocks_reset OF((
3029 inflate_blocks_statef *,
3030 z_streamp ,
3031 uLongf *)); /* check value on output */
3032
3033extern int inflate_blocks_free OF((
3034 inflate_blocks_statef *,
3035 z_streamp ,
3036 uLongf *)); /* check value on output */
3037
3038extern void inflate_set_dictionary OF((
3039 inflate_blocks_statef *s,
3040 const Bytef *d, /* dictionary */
3041 uInt n)); /* dictionary length */
3042
3043extern int inflate_addhistory OF((
3044 inflate_blocks_statef *,
3045 z_streamp));
3046
3047extern int inflate_packet_flush OF((
3048 inflate_blocks_statef *));
3049/* --- infblock.h */
3050
3051#ifndef NO_DUMMY_DECL
3052struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3053#endif
3054
3055/* inflate private state */
3056struct internal_state {
3057
3058 /* mode */
3059 enum {
3060 METHOD, /* waiting for method byte */
3061 FLAG, /* waiting for flag byte */
3062 DICT4, /* four dictionary check bytes to go */
3063 DICT3, /* three dictionary check bytes to go */
3064 DICT2, /* two dictionary check bytes to go */
3065 DICT1, /* one dictionary check byte to go */
3066 DICT0, /* waiting for inflateSetDictionary */
3067 BLOCKS, /* decompressing blocks */
3068 CHECK4, /* four check bytes to go */
3069 CHECK3, /* three check bytes to go */
3070 CHECK2, /* two check bytes to go */
3071 CHECK1, /* one check byte to go */
3072 DONE, /* finished check, done */
3073 BAD} /* got an error--stay here */
3074 mode; /* current inflate mode */
3075
3076 /* mode dependent information */
3077 union {
3078 uInt method; /* if FLAGS, method byte */
3079 struct {
3080 uLong was; /* computed check value */
3081 uLong need; /* stream check value */
3082 } check; /* if CHECK, check values to compare */
3083 uInt marker; /* if BAD, inflateSync's marker bytes count */
3084 } sub; /* submode */
3085
3086 /* mode independent information */
3087 int nowrap; /* flag for no wrapper */
3088 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3089 inflate_blocks_statef
3090 *blocks; /* current inflate_blocks state */
3091
3092};
3093
3094
3095int inflateReset(z)
3096z_streamp z;
3097{
3098 uLong c;
3099
3100 if (z == Z_NULL || z->state == Z_NULL)
3101 return Z_STREAM_ERROR;
3102 z->total_in = z->total_out = 0;
3103 z->msg = Z_NULL;
3104 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3105 inflate_blocks_reset(z->state->blocks, z, &c);
3106 Trace((stderr, "inflate: reset\n"));
3107 return Z_OK;
3108}
3109
3110
3111int inflateEnd(z)
3112z_streamp z;
3113{
3114 uLong c;
3115
3116 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3117 return Z_STREAM_ERROR;
3118 if (z->state->blocks != Z_NULL)
3119 inflate_blocks_free(z->state->blocks, z, &c);
3120 ZFREE(z, z->state);
3121 z->state = Z_NULL;
3122 Trace((stderr, "inflate: end\n"));
3123 return Z_OK;
3124}
3125
3126
3127int inflateInit2_(z, w, version, stream_size)
3128z_streamp z;
3129int w;
3130const char *version;
3131int stream_size;
3132{
3133 if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3134 stream_size != sizeof(z_stream))
3135 return Z_VERSION_ERROR;
3136
3137 /* initialize state */
3138 if (z == Z_NULL)
3139 return Z_STREAM_ERROR;
3140 z->msg = Z_NULL;
3141#ifndef NO_ZCFUNCS
3142 if (z->zalloc == Z_NULL)
3143 {
3144 z->zalloc = zcalloc;
3145 z->opaque = (voidpf)0;
3146 }
3147 if (z->zfree == Z_NULL) z->zfree = zcfree;
3148#endif
3149 if ((z->state = (struct internal_state FAR *)
3150 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3151 return Z_MEM_ERROR;
3152 z->state->blocks = Z_NULL;
3153
3154 /* handle undocumented nowrap option (no zlib header or check) */
3155 z->state->nowrap = 0;
3156 if (w < 0)
3157 {
3158 w = - w;
3159 z->state->nowrap = 1;
3160 }
3161
3162 /* set window size */
3163 if (w < 8 || w > 15)
3164 {
3165 inflateEnd(z);
3166 return Z_STREAM_ERROR;
3167 }
3168 z->state->wbits = (uInt)w;
3169
3170 /* create inflate_blocks state */
3171 if ((z->state->blocks =
3172 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3173 == Z_NULL)
3174 {
3175 inflateEnd(z);
3176 return Z_MEM_ERROR;
3177 }
3178 Trace((stderr, "inflate: allocated\n"));
3179
3180 /* reset state */
3181 inflateReset(z);
3182 return Z_OK;
3183}
3184
3185
3186int inflateInit_(z, version, stream_size)
3187z_streamp z;
3188const char *version;
3189int stream_size;
3190{
3191 return inflateInit2_(z, DEF_WBITS, version, stream_size);
3192}
3193
3194
3195#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3196#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3197
3198int inflate(z, f)
3199z_streamp z;
3200int f;
3201{
3202 int r;
3203 uInt b;
3204
3205 if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3206 return Z_STREAM_ERROR;
3207 r = Z_BUF_ERROR;
3208 while (1) switch (z->state->mode)
3209 {
3210 case METHOD:
3211 NEEDBYTE
3212 if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3213 {
3214 z->state->mode = BAD;
3215 z->msg = (char*)"unknown compression method";
3216 z->state->sub.marker = 5; /* can't try inflateSync */
3217 break;
3218 }
3219 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3220 {
3221 z->state->mode = BAD;
3222 z->msg = (char*)"invalid window size";
3223 z->state->sub.marker = 5; /* can't try inflateSync */
3224 break;
3225 }
3226 z->state->mode = FLAG;
3227 case FLAG:
3228 NEEDBYTE
3229 b = NEXTBYTE;
3230 if (((z->state->sub.method << 8) + b) % 31)
3231 {
3232 z->state->mode = BAD;
3233 z->msg = (char*)"incorrect header check";
3234 z->state->sub.marker = 5; /* can't try inflateSync */
3235 break;
3236 }
3237 Trace((stderr, "inflate: zlib header ok\n"));
3238 if (!(b & PRESET_DICT))
3239 {
3240 z->state->mode = BLOCKS;
3241 break;
3242 }
3243 z->state->mode = DICT4;
3244 case DICT4:
3245 NEEDBYTE
3246 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3247 z->state->mode = DICT3;
3248 case DICT3:
3249 NEEDBYTE
3250 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3251 z->state->mode = DICT2;
3252 case DICT2:
3253 NEEDBYTE
3254 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3255 z->state->mode = DICT1;
3256 case DICT1:
3257 NEEDBYTE
3258 z->state->sub.check.need += (uLong)NEXTBYTE;
3259 z->adler = z->state->sub.check.need;
3260 z->state->mode = DICT0;
3261 return Z_NEED_DICT;
3262 case DICT0:
3263 z->state->mode = BAD;
3264 z->msg = (char*)"need dictionary";
3265 z->state->sub.marker = 0; /* can try inflateSync */
3266 return Z_STREAM_ERROR;
3267 case BLOCKS:
3268 r = inflate_blocks(z->state->blocks, z, r);
3269 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3270 r = inflate_packet_flush(z->state->blocks);
3271 if (r == Z_DATA_ERROR)
3272 {
3273 z->state->mode = BAD;
3274 z->state->sub.marker = 0; /* can try inflateSync */
3275 break;
3276 }
3277 if (r != Z_STREAM_END)
3278 return r;
3279 r = Z_OK;
3280 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3281 if (z->state->nowrap)
3282 {
3283 z->state->mode = DONE;
3284 break;
3285 }
3286 z->state->mode = CHECK4;
3287 case CHECK4:
3288 NEEDBYTE
3289 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3290 z->state->mode = CHECK3;
3291 case CHECK3:
3292 NEEDBYTE
3293 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3294 z->state->mode = CHECK2;
3295 case CHECK2:
3296 NEEDBYTE
3297 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3298 z->state->mode = CHECK1;
3299 case CHECK1:
3300 NEEDBYTE
3301 z->state->sub.check.need += (uLong)NEXTBYTE;
3302
3303 if (z->state->sub.check.was != z->state->sub.check.need)
3304 {
3305 z->state->mode = BAD;
3306 z->msg = (char*)"incorrect data check";
3307 z->state->sub.marker = 5; /* can't try inflateSync */
3308 break;
3309 }
3310 Trace((stderr, "inflate: zlib check ok\n"));
3311 z->state->mode = DONE;
3312 case DONE:
3313 return Z_STREAM_END;
3314 case BAD:
3315 return Z_DATA_ERROR;
3316 default:
3317 return Z_STREAM_ERROR;
3318 }
3319
3320 empty:
3321 if (f != Z_PACKET_FLUSH)
3322 return r;
3323 z->state->mode = BAD;
3324 z->msg = (char *)"need more for packet flush";
3325 z->state->sub.marker = 0; /* can try inflateSync */
3326 return Z_DATA_ERROR;
3327}
3328
3329
3330int inflateSetDictionary(z, dictionary, dictLength)
3331z_streamp z;
3332const Bytef *dictionary;
3333uInt dictLength;
3334{
3335 uInt length = dictLength;
3336
3337 if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3338 return Z_STREAM_ERROR;
3339
3340 if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3341 z->adler = 1L;
3342
3343 if (length >= ((uInt)1<<z->state->wbits))
3344 {
3345 length = (1<<z->state->wbits)-1;
3346 dictionary += dictLength - length;
3347 }
3348 inflate_set_dictionary(z->state->blocks, dictionary, length);
3349 z->state->mode = BLOCKS;
3350 return Z_OK;
3351}
3352
3353/*
3354 * This subroutine adds the data at next_in/avail_in to the output history
3355 * without performing any output. The output buffer must be "caught up";
3356 * i.e. no pending output (hence s->read equals s->write), and the state must
3357 * be BLOCKS (i.e. we should be willing to see the start of a series of
3358 * BLOCKS). On exit, the output will also be caught up, and the checksum
3359 * will have been updated if need be.
3360 */
3361
3362int inflateIncomp(z)
3363z_stream *z;
3364{
3365 if (z->state->mode != BLOCKS)
3366 return Z_DATA_ERROR;
3367 return inflate_addhistory(z->state->blocks, z);
3368}
3369
3370
3371int inflateSync(z)
3372z_streamp z;
3373{
3374 uInt n; /* number of bytes to look at */
3375 Bytef *p; /* pointer to bytes */
3376 uInt m; /* number of marker bytes found in a row */
3377 uLong r, w; /* temporaries to save total_in and total_out */
3378
3379 /* set up */
3380 if (z == Z_NULL || z->state == Z_NULL)
3381 return Z_STREAM_ERROR;
3382 if (z->state->mode != BAD)
3383 {
3384 z->state->mode = BAD;
3385 z->state->sub.marker = 0;
3386 }
3387 if ((n = z->avail_in) == 0)
3388 return Z_BUF_ERROR;
3389 p = z->next_in;
3390 m = z->state->sub.marker;
3391
3392 /* search */
3393 while (n && m < 4)
3394 {
3395 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3396 m++;
3397 else if (*p)
3398 m = 0;
3399 else
3400 m = 4 - m;
3401 p++, n--;
3402 }
3403
3404 /* restore */
3405 z->total_in += p - z->next_in;
3406 z->next_in = p;
3407 z->avail_in = n;
3408 z->state->sub.marker = m;
3409
3410 /* return no joy or set up to restart on a new block */
3411 if (m != 4)
3412 return Z_DATA_ERROR;
3413 r = z->total_in; w = z->total_out;
3414 inflateReset(z);
3415 z->total_in = r; z->total_out = w;
3416 z->state->mode = BLOCKS;
3417 return Z_OK;
3418}
3419
3420#undef NEEDBYTE
3421#undef NEXTBYTE
3422/* --- inflate.c */
3423
3424/* +++ infblock.c */
3425/* infblock.c -- interpret and process block types to last block
3426 * Copyright (C) 1995-1996 Mark Adler
3427 * For conditions of distribution and use, see copyright notice in zlib.h
3428 */
3429
3430/* #include "zutil.h" */
3431/* #include "infblock.h" */
3432
3433/* +++ inftrees.h */
3434/* inftrees.h -- header to use inftrees.c
3435 * Copyright (C) 1995-1996 Mark Adler
3436 * For conditions of distribution and use, see copyright notice in zlib.h
3437 */
3438
3439/* WARNING: this file should *not* be used by applications. It is
3440 part of the implementation of the compression library and is
3441 subject to change. Applications should only use zlib.h.
3442 */
3443
3444/* Huffman code lookup table entry--this entry is four bytes for machines
3445 that have 16-bit pointers (e.g. PC's in the small or medium model). */
3446
3447typedef struct inflate_huft_s FAR inflate_huft;
3448
3449struct inflate_huft_s {
3450 union {
3451 struct {
3452 Byte Exop; /* number of extra bits or operation */
3453 Byte Bits; /* number of bits in this code or subcode */
3454 } what;
3455 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
3456 } word; /* 16-bit, 8 bytes for 32-bit machines) */
3457 union {
3458 uInt Base; /* literal, length base, or distance base */
3459 inflate_huft *Next; /* pointer to next level of table */
3460 } more;
3461};
3462
3463#ifdef DEBUG_ZLIB
3464 extern uInt inflate_hufts;
3465#endif
3466
3467extern int inflate_trees_bits OF((
3468 uIntf *, /* 19 code lengths */
3469 uIntf *, /* bits tree desired/actual depth */
3470 inflate_huft * FAR *, /* bits tree result */
3471 z_streamp )); /* for zalloc, zfree functions */
3472
3473extern int inflate_trees_dynamic OF((
3474 uInt, /* number of literal/length codes */
3475 uInt, /* number of distance codes */
3476 uIntf *, /* that many (total) code lengths */
3477 uIntf *, /* literal desired/actual bit depth */
3478 uIntf *, /* distance desired/actual bit depth */
3479 inflate_huft * FAR *, /* literal/length tree result */
3480 inflate_huft * FAR *, /* distance tree result */
3481 z_streamp )); /* for zalloc, zfree functions */
3482
3483extern int inflate_trees_fixed OF((
3484 uIntf *, /* literal desired/actual bit depth */
3485 uIntf *, /* distance desired/actual bit depth */
3486 inflate_huft * FAR *, /* literal/length tree result */
3487 inflate_huft * FAR *)); /* distance tree result */
3488
3489extern int inflate_trees_free OF((
3490 inflate_huft *, /* tables to free */
3491 z_streamp )); /* for zfree function */
3492
3493/* --- inftrees.h */
3494
3495/* +++ infcodes.h */
3496/* infcodes.h -- header to use infcodes.c
3497 * Copyright (C) 1995-1996 Mark Adler
3498 * For conditions of distribution and use, see copyright notice in zlib.h
3499 */
3500
3501/* WARNING: this file should *not* be used by applications. It is
3502 part of the implementation of the compression library and is
3503 subject to change. Applications should only use zlib.h.
3504 */
3505
3506struct inflate_codes_state;
3507typedef struct inflate_codes_state FAR inflate_codes_statef;
3508
3509extern inflate_codes_statef *inflate_codes_new OF((
3510 uInt, uInt,
3511 inflate_huft *, inflate_huft *,
3512 z_streamp ));
3513
3514extern int inflate_codes OF((
3515 inflate_blocks_statef *,
3516 z_streamp ,
3517 int));
3518
3519extern void inflate_codes_free OF((
3520 inflate_codes_statef *,
3521 z_streamp ));
3522
3523/* --- infcodes.h */
3524
3525/* +++ infutil.h */
3526/* infutil.h -- types and macros common to blocks and codes
3527 * Copyright (C) 1995-1996 Mark Adler
3528 * For conditions of distribution and use, see copyright notice in zlib.h
3529 */
3530
3531/* WARNING: this file should *not* be used by applications. It is
3532 part of the implementation of the compression library and is
3533 subject to change. Applications should only use zlib.h.
3534 */
3535
3536#ifndef _INFUTIL_H
3537#define _INFUTIL_H
3538
3539typedef enum {
3540 TYPE, /* get type bits (3, including end bit) */
3541 LENS, /* get lengths for stored */
3542 STORED, /* processing stored block */
3543 TABLE, /* get table lengths */
3544 BTREE, /* get bit lengths tree for a dynamic block */
3545 DTREE, /* get length, distance trees for a dynamic block */
3546 CODES, /* processing fixed or dynamic block */
3547 DRY, /* output remaining window bytes */
3548 DONEB, /* finished last block, done */
3549 BADB} /* got a data error--stuck here */
3550inflate_block_mode;
3551
3552/* inflate blocks semi-private state */
3553struct inflate_blocks_state {
3554
3555 /* mode */
3556 inflate_block_mode mode; /* current inflate_block mode */
3557
3558 /* mode dependent information */
3559 union {
3560 uInt left; /* if STORED, bytes left to copy */
3561 struct {
3562 uInt table; /* table lengths (14 bits) */
3563 uInt index; /* index into blens (or border) */
3564 uIntf *blens; /* bit lengths of codes */
3565 uInt bb; /* bit length tree depth */
3566 inflate_huft *tb; /* bit length decoding tree */
3567 } trees; /* if DTREE, decoding info for trees */
3568 struct {
3569 inflate_huft *tl;
3570 inflate_huft *td; /* trees to free */
3571 inflate_codes_statef
3572 *codes;
3573 } decode; /* if CODES, current state */
3574 } sub; /* submode */
3575 uInt last; /* true if this block is the last block */
3576
3577 /* mode independent information */
3578 uInt bitk; /* bits in bit buffer */
3579 uLong bitb; /* bit buffer */
3580 Bytef *window; /* sliding window */
3581 Bytef *end; /* one byte after sliding window */
3582 Bytef *read; /* window read pointer */
3583 Bytef *write; /* window write pointer */
3584 check_func checkfn; /* check function */
3585 uLong check; /* check on output */
3586
3587};
3588
3589
3590/* defines for inflate input/output */
3591/* update pointers and return */
3592#define UPDBITS {s->bitb=b;s->bitk=k;}
3593#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3594#define UPDOUT {s->write=q;}
3595#define UPDATE {UPDBITS UPDIN UPDOUT}
3596#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3597/* get bytes and bits */
3598#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3599#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3600#define NEXTBYTE (n--,*p++)
3601#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3602#define DUMPBITS(j) {b>>=(j);k-=(j);}
3603/* output bytes */
3604#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3605#define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3606#define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3607#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3608#define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3609#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3610/* load local pointers */
3611#define LOAD {LOADIN LOADOUT}
3612
3613/* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3614extern uInt inflate_mask[17];
3615
3616/* copy as much as possible from the sliding window to the output area */
3617extern int inflate_flush OF((
3618 inflate_blocks_statef *,
3619 z_streamp ,
3620 int));
3621
3622#ifndef NO_DUMMY_DECL
3623struct internal_state {int dummy;}; /* for buggy compilers */
3624#endif
3625
3626#endif
3627/* --- infutil.h */
3628
3629#ifndef NO_DUMMY_DECL
3630struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3631#endif
3632
3633/* Table for deflate from PKZIP's appnote.txt. */
3634local const uInt border[] = { /* Order of the bit length code lengths */
3635 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3636
3637/*
3638 Notes beyond the 1.93a appnote.txt:
3639
3640 1. Distance pointers never point before the beginning of the output
3641 stream.
3642 2. Distance pointers can point back across blocks, up to 32k away.
3643 3. There is an implied maximum of 7 bits for the bit length table and
3644 15 bits for the actual data.
3645 4. If only one code exists, then it is encoded using one bit. (Zero
3646 would be more efficient, but perhaps a little confusing.) If two
3647 codes exist, they are coded using one bit each (0 and 1).
3648 5. There is no way of sending zero distance codes--a dummy must be
3649 sent if there are none. (History: a pre 2.0 version of PKZIP would
3650 store blocks with no distance codes, but this was discovered to be
3651 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3652 zero distance codes, which is sent as one code of zero bits in
3653 length.
3654 6. There are up to 286 literal/length codes. Code 256 represents the
3655 end-of-block. Note however that the static length tree defines
3656 288 codes just to fill out the Huffman codes. Codes 286 and 287
3657 cannot be used though, since there is no length base or extra bits
3658 defined for them. Similarily, there are up to 30 distance codes.
3659 However, static trees define 32 codes (all 5 bits) to fill out the
3660 Huffman codes, but the last two had better not show up in the data.
3661 7. Unzip can check dynamic Huffman blocks for complete code sets.
3662 The exception is that a single code would not be complete (see #4).
3663 8. The five bits following the block type is really the number of
3664 literal codes sent minus 257.
3665 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3666 (1+6+6). Therefore, to output three times the length, you output
3667 three codes (1+1+1), whereas to output four times the same length,
3668 you only need two codes (1+3). Hmm.
3669 10. In the tree reconstruction algorithm, Code = Code + Increment
3670 only if BitLength(i) is not zero. (Pretty obvious.)
3671 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3672 12. Note: length code 284 can represent 227-258, but length code 285
3673 really is 258. The last length deserves its own, short code
3674 since it gets used a lot in very redundant files. The length
3675 258 is special since 258 - 3 (the min match length) is 255.
3676 13. The literal/length and distance code bit lengths are read as a
3677 single stream of lengths. It is possible (and advantageous) for
3678 a repeat code (16, 17, or 18) to go across the boundary between
3679 the two sets of lengths.
3680 */
3681
3682
3683void inflate_blocks_reset(s, z, c)
3684inflate_blocks_statef *s;
3685z_streamp z;
3686uLongf *c;
3687{
3688 if (s->checkfn != Z_NULL)
3689 *c = s->check;
3690 if (s->mode == BTREE || s->mode == DTREE)
3691 ZFREE(z, s->sub.trees.blens);
3692 if (s->mode == CODES)
3693 {
3694 inflate_codes_free(s->sub.decode.codes, z);
3695 inflate_trees_free(s->sub.decode.td, z);
3696 inflate_trees_free(s->sub.decode.tl, z);
3697 }
3698 s->mode = TYPE;
3699 s->bitk = 0;
3700 s->bitb = 0;
3701 s->read = s->write = s->window;
3702 if (s->checkfn != Z_NULL)
3703 z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3704 Trace((stderr, "inflate: blocks reset\n"));
3705}
3706
3707
3708inflate_blocks_statef *inflate_blocks_new(z, c, w)
3709z_streamp z;
3710check_func c;
3711uInt w;
3712{
3713 inflate_blocks_statef *s;
3714
3715 if ((s = (inflate_blocks_statef *)ZALLOC
3716 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3717 return s;
3718 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3719 {
3720 ZFREE(z, s);
3721 return Z_NULL;
3722 }
3723 s->end = s->window + w;
3724 s->checkfn = c;
3725 s->mode = TYPE;
3726 Trace((stderr, "inflate: blocks allocated\n"));
3727 inflate_blocks_reset(s, z, &s->check);
3728 return s;
3729}
3730
3731
3732#ifdef DEBUG_ZLIB
3733 extern uInt inflate_hufts;
3734#endif
3735int inflate_blocks(s, z, r)
3736inflate_blocks_statef *s;
3737z_streamp z;
3738int r;
3739{
3740 uInt t; /* temporary storage */
3741 uLong b; /* bit buffer */
3742 uInt k; /* bits in bit buffer */
3743 Bytef *p; /* input data pointer */
3744 uInt n; /* bytes available there */
3745 Bytef *q; /* output window write pointer */
3746 uInt m; /* bytes to end of window or read pointer */
3747
3748 /* copy input/output information to locals (UPDATE macro restores) */
3749 LOAD
3750
3751 /* process input based on current state */
3752 while (1) switch (s->mode)
3753 {
3754 case TYPE:
3755 NEEDBITS(3)
3756 t = (uInt)b & 7;
3757 s->last = t & 1;
3758 switch (t >> 1)
3759 {
3760 case 0: /* stored */
3761 Trace((stderr, "inflate: stored block%s\n",
3762 s->last ? " (last)" : ""));
3763 DUMPBITS(3)
3764 t = k & 7; /* go to byte boundary */
3765 DUMPBITS(t)
3766 s->mode = LENS; /* get length of stored block */
3767 break;
3768 case 1: /* fixed */
3769 Trace((stderr, "inflate: fixed codes block%s\n",
3770 s->last ? " (last)" : ""));
3771 {
3772 uInt bl, bd;
3773 inflate_huft *tl, *td;
3774
3775 inflate_trees_fixed(&bl, &bd, &tl, &td);
3776 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3777 if (s->sub.decode.codes == Z_NULL)
3778 {
3779 r = Z_MEM_ERROR;
3780 LEAVE
3781 }
3782 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3783 s->sub.decode.td = Z_NULL;
3784 }
3785 DUMPBITS(3)
3786 s->mode = CODES;
3787 break;
3788 case 2: /* dynamic */
3789 Trace((stderr, "inflate: dynamic codes block%s\n",
3790 s->last ? " (last)" : ""));
3791 DUMPBITS(3)
3792 s->mode = TABLE;
3793 break;
3794 case 3: /* illegal */
3795 DUMPBITS(3)
3796 s->mode = BADB;
3797 z->msg = (char*)"invalid block type";
3798 r = Z_DATA_ERROR;
3799 LEAVE
3800 }
3801 break;
3802 case LENS:
3803 NEEDBITS(32)
3804 if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3805 {
3806 s->mode = BADB;
3807 z->msg = (char*)"invalid stored block lengths";
3808 r = Z_DATA_ERROR;
3809 LEAVE
3810 }
3811 s->sub.left = (uInt)b & 0xffff;
3812 b = k = 0; /* dump bits */
3813 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3814 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3815 break;
3816 case STORED:
3817 if (n == 0)
3818 LEAVE
3819 NEEDOUT
3820 t = s->sub.left;
3821 if (t > n) t = n;
3822 if (t > m) t = m;
3823 zmemcpy(q, p, t);
3824 p += t; n -= t;
3825 q += t; m -= t;
3826 if ((s->sub.left -= t) != 0)
3827 break;
3828 Tracev((stderr, "inflate: stored end, %lu total out\n",
3829 z->total_out + (q >= s->read ? q - s->read :
3830 (s->end - s->read) + (q - s->window))));
3831 s->mode = s->last ? DRY : TYPE;
3832 break;
3833 case TABLE:
3834 NEEDBITS(14)
3835 s->sub.trees.table = t = (uInt)b & 0x3fff;
3836#ifndef PKZIP_BUG_WORKAROUND
3837 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3838 {
3839 s->mode = BADB;
3840 z->msg = (char*)"too many length or distance symbols";
3841 r = Z_DATA_ERROR;
3842 LEAVE
3843 }
3844#endif
3845 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3846 if (t < 19)
3847 t = 19;
3848 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3849 {
3850 r = Z_MEM_ERROR;
3851 LEAVE
3852 }
3853 DUMPBITS(14)
3854 s->sub.trees.index = 0;
3855 Tracev((stderr, "inflate: table sizes ok\n"));
3856 s->mode = BTREE;
3857 case BTREE:
3858 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3859 {
3860 NEEDBITS(3)
3861 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3862 DUMPBITS(3)
3863 }
3864 while (s->sub.trees.index < 19)
3865 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3866 s->sub.trees.bb = 7;
3867 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3868 &s->sub.trees.tb, z);
3869 if (t != Z_OK)
3870 {
3871 ZFREE(z, s->sub.trees.blens);
3872 r = t;
3873 if (r == Z_DATA_ERROR)
3874 s->mode = BADB;
3875 LEAVE
3876 }
3877 s->sub.trees.index = 0;
3878 Tracev((stderr, "inflate: bits tree ok\n"));
3879 s->mode = DTREE;
3880 case DTREE:
3881 while (t = s->sub.trees.table,
3882 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3883 {
3884 inflate_huft *h;
3885 uInt i, j, c;
3886
3887 t = s->sub.trees.bb;
3888 NEEDBITS(t)
3889 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3890 t = h->word.what.Bits;
3891 c = h->more.Base;
3892 if (c < 16)
3893 {
3894 DUMPBITS(t)
3895 s->sub.trees.blens[s->sub.trees.index++] = c;
3896 }
3897 else /* c == 16..18 */
3898 {
3899 i = c == 18 ? 7 : c - 14;
3900 j = c == 18 ? 11 : 3;
3901 NEEDBITS(t + i)
3902 DUMPBITS(t)
3903 j += (uInt)b & inflate_mask[i];
3904 DUMPBITS(i)
3905 i = s->sub.trees.index;
3906 t = s->sub.trees.table;
3907 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3908 (c == 16 && i < 1))
3909 {
3910 inflate_trees_free(s->sub.trees.tb, z);
3911 ZFREE(z, s->sub.trees.blens);
3912 s->mode = BADB;
3913 z->msg = (char*)"invalid bit length repeat";
3914 r = Z_DATA_ERROR;
3915 LEAVE
3916 }
3917 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3918 do {
3919 s->sub.trees.blens[i++] = c;
3920 } while (--j);
3921 s->sub.trees.index = i;
3922 }
3923 }
3924 inflate_trees_free(s->sub.trees.tb, z);
3925 s->sub.trees.tb = Z_NULL;
3926 {
3927 uInt bl, bd;
3928 inflate_huft *tl, *td;
3929 inflate_codes_statef *c;
3930
3931 bl = 9; /* must be <= 9 for lookahead assumptions */
3932 bd = 6; /* must be <= 9 for lookahead assumptions */
3933 t = s->sub.trees.table;
3934#ifdef DEBUG_ZLIB
3935 inflate_hufts = 0;
3936#endif
3937 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3938 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3939 ZFREE(z, s->sub.trees.blens);
3940 if (t != Z_OK)
3941 {
3942 if (t == (uInt)Z_DATA_ERROR)
3943 s->mode = BADB;
3944 r = t;
3945 LEAVE
3946 }
3947 Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n",
3948 inflate_hufts, sizeof(inflate_huft)));
3949 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3950 {
3951 inflate_trees_free(td, z);
3952 inflate_trees_free(tl, z);
3953 r = Z_MEM_ERROR;
3954 LEAVE
3955 }
3956 s->sub.decode.codes = c;
3957 s->sub.decode.tl = tl;
3958 s->sub.decode.td = td;
3959 }
3960 s->mode = CODES;
3961 case CODES:
3962 UPDATE
3963 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3964 return inflate_flush(s, z, r);
3965 r = Z_OK;
3966 inflate_codes_free(s->sub.decode.codes, z);
3967 inflate_trees_free(s->sub.decode.td, z);
3968 inflate_trees_free(s->sub.decode.tl, z);
3969 LOAD
3970 Tracev((stderr, "inflate: codes end, %lu total out\n",
3971 z->total_out + (q >= s->read ? q - s->read :
3972 (s->end - s->read) + (q - s->window))));
3973 if (!s->last)
3974 {
3975 s->mode = TYPE;
3976 break;
3977 }
3978 if (k > 7) /* return unused byte, if any */
3979 {
3980 Assert(k < 16, "inflate_codes grabbed too many bytes")
3981 k -= 8;
3982 n++;
3983 p--; /* can always return one */
3984 }
3985 s->mode = DRY;
3986 case DRY:
3987 FLUSH
3988 if (s->read != s->write)
3989 LEAVE
3990 s->mode = DONEB;
3991 case DONEB:
3992 r = Z_STREAM_END;
3993 LEAVE
3994 case BADB:
3995 r = Z_DATA_ERROR;
3996 LEAVE
3997 default:
3998 r = Z_STREAM_ERROR;
3999 LEAVE
4000 }
4001}
4002
4003
4004int inflate_blocks_free(s, z, c)
4005inflate_blocks_statef *s;
4006z_streamp z;
4007uLongf *c;
4008{
4009 inflate_blocks_reset(s, z, c);
4010 ZFREE(z, s->window);
4011 ZFREE(z, s);
4012 Trace((stderr, "inflate: blocks freed\n"));
4013 return Z_OK;
4014}
4015
4016
4017void inflate_set_dictionary(s, d, n)
4018inflate_blocks_statef *s;
4019const Bytef *d;
4020uInt n;
4021{
4022 zmemcpy((charf *)s->window, d, n);
4023 s->read = s->write = s->window + n;
4024}
4025
4026/*
4027 * This subroutine adds the data at next_in/avail_in to the output history
4028 * without performing any output. The output buffer must be "caught up";
4029 * i.e. no pending output (hence s->read equals s->write), and the state must
4030 * be BLOCKS (i.e. we should be willing to see the start of a series of
4031 * BLOCKS). On exit, the output will also be caught up, and the checksum
4032 * will have been updated if need be.
4033 */
4034int inflate_addhistory(s, z)
4035inflate_blocks_statef *s;
4036z_stream *z;
4037{
4038 uLong b; /* bit buffer */ /* NOT USED HERE */
4039 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4040 uInt t; /* temporary storage */
4041 Bytef *p; /* input data pointer */
4042 uInt n; /* bytes available there */
4043 Bytef *q; /* output window write pointer */
4044 uInt m; /* bytes to end of window or read pointer */
4045
4046 if (s->read != s->write)
4047 return Z_STREAM_ERROR;
4048 if (s->mode != TYPE)
4049 return Z_DATA_ERROR;
4050
4051 /* we're ready to rock */
4052 LOAD
4053 /* while there is input ready, copy to output buffer, moving
4054 * pointers as needed.
4055 */
4056 while (n) {
4057 t = n; /* how many to do */
4058 /* is there room until end of buffer? */
4059 if (t > m) t = m;
4060 /* update check information */
4061 if (s->checkfn != Z_NULL)
4062 s->check = (*s->checkfn)(s->check, q, t);
4063 zmemcpy(q, p, t);
4064 q += t;
4065 p += t;
4066 n -= t;
4067 z->total_out += t;
4068 s->read = q; /* drag read pointer forward */
4069/* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4070 if (q == s->end) {
4071 s->read = q = s->window;
4072 m = WAVAIL;
4073 }
4074 }
4075 UPDATE
4076 return Z_OK;
4077}
4078
4079
4080/*
4081 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4082 * a `stored' block type value but not the (zero) length bytes.
4083 */
4084int inflate_packet_flush(s)
4085 inflate_blocks_statef *s;
4086{
4087 if (s->mode != LENS)
4088 return Z_DATA_ERROR;
4089 s->mode = TYPE;
4090 return Z_OK;
4091}
4092/* --- infblock.c */
4093
4094/* +++ inftrees.c */
4095/* inftrees.c -- generate Huffman trees for efficient decoding
4096 * Copyright (C) 1995-1996 Mark Adler
4097 * For conditions of distribution and use, see copyright notice in zlib.h
4098 */
4099
4100/* #include "zutil.h" */
4101/* #include "inftrees.h" */
4102
4103char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4104/*
4105 If you use the zlib library in a product, an acknowledgment is welcome
4106 in the documentation of your product. If for some reason you cannot
4107 include such an acknowledgment, I would appreciate that you keep this
4108 copyright string in the executable of your product.
4109 */
4110
4111#ifndef NO_DUMMY_DECL
4112struct internal_state {int dummy;}; /* for buggy compilers */
4113#endif
4114
4115/* simplify the use of the inflate_huft type with some defines */
4116#define base more.Base
4117#define next more.Next
4118#define exop word.what.Exop
4119#define bits word.what.Bits
4120
4121
4122local int huft_build OF((
4123 uIntf *, /* code lengths in bits */
4124 uInt, /* number of codes */
4125 uInt, /* number of "simple" codes */
4126 const uIntf *, /* list of base values for non-simple codes */
4127 const uIntf *, /* list of extra bits for non-simple codes */
4128 inflate_huft * FAR*,/* result: starting table */
4129 uIntf *, /* maximum lookup bits (returns actual) */
4130 z_streamp )); /* for zalloc function */
4131
4132local voidpf falloc OF((
4133 voidpf, /* opaque pointer (not used) */
4134 uInt, /* number of items */
4135 uInt)); /* size of item */
4136
4137/* Tables for deflate from PKZIP's appnote.txt. */
4138local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4139 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4140 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4141 /* see note #13 above about 258 */
4142local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4143 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4144 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4145local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4146 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4147 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4148 8193, 12289, 16385, 24577};
4149local const uInt cpdext[30] = { /* Extra bits for distance codes */
4150 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4151 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4152 12, 12, 13, 13};
4153
4154/*
4155 Huffman code decoding is performed using a multi-level table lookup.
4156 The fastest way to decode is to simply build a lookup table whose
4157 size is determined by the longest code. However, the time it takes
4158 to build this table can also be a factor if the data being decoded
4159 is not very long. The most common codes are necessarily the
4160 shortest codes, so those codes dominate the decoding time, and hence
4161 the speed. The idea is you can have a shorter table that decodes the
4162 shorter, more probable codes, and then point to subsidiary tables for
4163 the longer codes. The time it costs to decode the longer codes is
4164 then traded against the time it takes to make longer tables.
4165
4166 This results of this trade are in the variables lbits and dbits
4167 below. lbits is the number of bits the first level table for literal/
4168 length codes can decode in one step, and dbits is the same thing for
4169 the distance codes. Subsequent tables are also less than or equal to
4170 those sizes. These values may be adjusted either when all of the
4171 codes are shorter than that, in which case the longest code length in
4172 bits is used, or when the shortest code is *longer* than the requested
4173 table size, in which case the length of the shortest code in bits is
4174 used.
4175
4176 There are two different values for the two tables, since they code a
4177 different number of possibilities each. The literal/length table
4178 codes 286 possible values, or in a flat code, a little over eight
4179 bits. The distance table codes 30 possible values, or a little less
4180 than five bits, flat. The optimum values for speed end up being
4181 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4182 The optimum values may differ though from machine to machine, and
4183 possibly even between compilers. Your mileage may vary.
4184 */
4185
4186
4187/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4188#define BMAX 15 /* maximum bit length of any code */
4189#define N_MAX 288 /* maximum number of codes in any set */
4190
4191#ifdef DEBUG_ZLIB
4192 uInt inflate_hufts;
4193#endif
4194
4195local int huft_build(b, n, s, d, e, t, m, zs)
4196uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4197uInt n; /* number of codes (assumed <= N_MAX) */
4198uInt s; /* number of simple-valued codes (0..s-1) */
4199const uIntf *d; /* list of base values for non-simple codes */
4200const uIntf *e; /* list of extra bits for non-simple codes */
4201inflate_huft * FAR *t; /* result: starting table */
4202uIntf *m; /* maximum lookup bits, returns actual */
4203z_streamp zs; /* for zalloc function */
4204/* Given a list of code lengths and a maximum table size, make a set of
4205 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4206 if the given code set is incomplete (the tables are still built in this
4207 case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4208 lengths), or Z_MEM_ERROR if not enough memory. */
4209{
4210
4211 uInt a; /* counter for codes of length k */
4212 uInt c[BMAX+1]; /* bit length count table */
4213 uInt f; /* i repeats in table every f entries */
4214 int g; /* maximum code length */
4215 int h; /* table level */
4216 register uInt i; /* counter, current code */
4217 register uInt j; /* counter */
4218 register int k; /* number of bits in current code */
4219 int l; /* bits per table (returned in m) */
4220 register uIntf *p; /* pointer into c[], b[], or v[] */
4221 inflate_huft *q; /* points to current table */
4222 struct inflate_huft_s r; /* table entry for structure assignment */
4223 inflate_huft *u[BMAX]; /* table stack */
4224 uInt v[N_MAX]; /* values in order of bit length */
4225 register int w; /* bits before this table == (l * h) */
4226 uInt x[BMAX+1]; /* bit offsets, then code stack */
4227 uIntf *xp; /* pointer into x */
4228 int y; /* number of dummy codes added */
4229 uInt z; /* number of entries in current table */
4230
4231
4232 /* Generate counts for each bit length */
4233 p = c;
4234#define C0 *p++ = 0;
4235#define C2 C0 C0 C0 C0
4236#define C4 C2 C2 C2 C2
4237 C4 /* clear c[]--assume BMAX+1 is 16 */
4238 p = b; i = n;
4239 do {
4240 c[*p++]++; /* assume all entries <= BMAX */
4241 } while (--i);
4242 if (c[0] == n) /* null input--all zero length codes */
4243 {
4244 *t = (inflate_huft *)Z_NULL;
4245 *m = 0;
4246 return Z_OK;
4247 }
4248
4249
4250 /* Find minimum and maximum length, bound *m by those */
4251 l = *m;
4252 for (j = 1; j <= BMAX; j++)
4253 if (c[j])
4254 break;
4255 k = j; /* minimum code length */
4256 if ((uInt)l < j)
4257 l = j;
4258 for (i = BMAX; i; i--)
4259 if (c[i])
4260 break;
4261 g = i; /* maximum code length */
4262 if ((uInt)l > i)
4263 l = i;
4264 *m = l;
4265
4266
4267 /* Adjust last length count to fill out codes, if needed */
4268 for (y = 1 << j; j < i; j++, y <<= 1)
4269 if ((y -= c[j]) < 0)
4270 return Z_DATA_ERROR;
4271 if ((y -= c[i]) < 0)
4272 return Z_DATA_ERROR;
4273 c[i] += y;
4274
4275
4276 /* Generate starting offsets into the value table for each length */
4277 x[1] = j = 0;
4278 p = c + 1; xp = x + 2;
4279 while (--i) { /* note that i == g from above */
4280 *xp++ = (j += *p++);
4281 }
4282
4283
4284 /* Make a table of values in order of bit lengths */
4285 p = b; i = 0;
4286 do {
4287 if ((j = *p++) != 0)
4288 v[x[j]++] = i;
4289 } while (++i < n);
4290 n = x[g]; /* set n to length of v */
4291
4292
4293 /* Generate the Huffman codes and for each, make the table entries */
4294 x[0] = i = 0; /* first Huffman code is zero */
4295 p = v; /* grab values in bit order */
4296 h = -1; /* no tables yet--level -1 */
4297 w = -l; /* bits decoded == (l * h) */
4298 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4299 q = (inflate_huft *)Z_NULL; /* ditto */
4300 z = 0; /* ditto */
4301
4302 /* go through the bit lengths (k already is bits in shortest code) */
4303 for (; k <= g; k++)
4304 {
4305 a = c[k];
4306 while (a--)
4307 {
4308 /* here i is the Huffman code of length k bits for value *p */
4309 /* make tables up to required level */
4310 while (k > w + l)
4311 {
4312 h++;
4313 w += l; /* previous table always l bits */
4314
4315 /* compute minimum size table less than or equal to l bits */
4316 z = g - w;
4317 z = z > (uInt)l ? l : z; /* table size upper limit */
4318 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4319 { /* too few codes for k-w bit table */
4320 f -= a + 1; /* deduct codes from patterns left */
4321 xp = c + k;
4322 if (j < z)
4323 while (++j < z) /* try smaller tables up to z bits */
4324 {
4325 if ((f <<= 1) <= *++xp)
4326 break; /* enough codes to use up j bits */
4327 f -= *xp; /* else deduct codes from patterns */
4328 }
4329 }
4330 z = 1 << j; /* table entries for j-bit table */
4331
4332 /* allocate and link in new table */
4333 if ((q = (inflate_huft *)ZALLOC
4334 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4335 {
4336 if (h)
4337 inflate_trees_free(u[0], zs);
4338 return Z_MEM_ERROR; /* not enough memory */
4339 }
4340#ifdef DEBUG_ZLIB
4341 inflate_hufts += z + 1;
4342#endif
4343 *t = q + 1; /* link to list for huft_free() */
4344 *(t = &(q->next)) = Z_NULL;
4345 u[h] = ++q; /* table starts after link */
4346
4347 /* connect to last table, if there is one */
4348 if (h)
4349 {
4350 x[h] = i; /* save pattern for backing up */
4351 r.bits = (Byte)l; /* bits to dump before this table */
4352 r.exop = (Byte)j; /* bits in this table */
4353 r.next = q; /* pointer to this table */
4354 j = i >> (w - l); /* (get around Turbo C bug) */
4355 u[h-1][j] = r; /* connect to last table */
4356 }
4357 }
4358
4359 /* set up table entry in r */
4360 r.bits = (Byte)(k - w);
4361 if (p >= v + n)
4362 r.exop = 128 + 64; /* out of values--invalid code */
4363 else if (*p < s)
4364 {
4365 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4366 r.base = *p++; /* simple code is just the value */
4367 }
4368 else
4369 {
4370 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4371 r.base = d[*p++ - s];
4372 }
4373
4374 /* fill code-like entries with r */
4375 f = 1 << (k - w);
4376 for (j = i >> w; j < z; j += f)
4377 q[j] = r;
4378
4379 /* backwards increment the k-bit code i */
4380 for (j = 1 << (k - 1); i & j; j >>= 1)
4381 i ^= j;
4382 i ^= j;
4383
4384 /* backup over finished tables */
4385 while ((i & ((1 << w) - 1)) != x[h])
4386 {
4387 h--; /* don't need to update q */
4388 w -= l;
4389 }
4390 }
4391 }
4392
4393
4394 /* Return Z_BUF_ERROR if we were given an incomplete table */
4395 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4396}
4397
4398
4399int inflate_trees_bits(c, bb, tb, z)
4400uIntf *c; /* 19 code lengths */
4401uIntf *bb; /* bits tree desired/actual depth */
4402inflate_huft * FAR *tb; /* bits tree result */
4403z_streamp z; /* for zfree function */
4404{
4405 int r;
4406
4407 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4408 if (r == Z_DATA_ERROR)
4409 z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4410 else if (r == Z_BUF_ERROR || *bb == 0)
4411 {
4412 inflate_trees_free(*tb, z);
4413 z->msg = (char*)"incomplete dynamic bit lengths tree";
4414 r = Z_DATA_ERROR;
4415 }
4416 return r;
4417}
4418
4419
4420int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4421uInt nl; /* number of literal/length codes */
4422uInt nd; /* number of distance codes */
4423uIntf *c; /* that many (total) code lengths */
4424uIntf *bl; /* literal desired/actual bit depth */
4425uIntf *bd; /* distance desired/actual bit depth */
4426inflate_huft * FAR *tl; /* literal/length tree result */
4427inflate_huft * FAR *td; /* distance tree result */
4428z_streamp z; /* for zfree function */
4429{
4430 int r;
4431
4432 /* build literal/length tree */
4433 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4434 if (r != Z_OK || *bl == 0)
4435 {
4436 if (r == Z_DATA_ERROR)
4437 z->msg = (char*)"oversubscribed literal/length tree";
4438 else if (r != Z_MEM_ERROR)
4439 {
4440 inflate_trees_free(*tl, z);
4441 z->msg = (char*)"incomplete literal/length tree";
4442 r = Z_DATA_ERROR;
4443 }
4444 return r;
4445 }
4446
4447 /* build distance tree */
4448 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4449 if (r != Z_OK || (*bd == 0 && nl > 257))
4450 {
4451 if (r == Z_DATA_ERROR)
4452 z->msg = (char*)"oversubscribed distance tree";
4453 else if (r == Z_BUF_ERROR) {
4454#ifdef PKZIP_BUG_WORKAROUND
4455 r = Z_OK;
4456 }
4457#else
4458 inflate_trees_free(*td, z);
4459 z->msg = (char*)"incomplete distance tree";
4460 r = Z_DATA_ERROR;
4461 }
4462 else if (r != Z_MEM_ERROR)
4463 {
4464 z->msg = (char*)"empty distance tree with lengths";
4465 r = Z_DATA_ERROR;
4466 }
4467 inflate_trees_free(*tl, z);
4468 return r;
4469#endif
4470 }
4471
4472 /* done */
4473 return Z_OK;
4474}
4475
4476
4477/* build fixed tables only once--keep them here */
4478local int fixed_built = 0;
4479#define FIXEDH 530 /* number of hufts used by fixed tables */
4480local inflate_huft fixed_mem[FIXEDH];
4481local uInt fixed_bl;
4482local uInt fixed_bd;
4483local inflate_huft *fixed_tl;
4484local inflate_huft *fixed_td;
4485
4486
4487local voidpf falloc(q, n, s)
4488voidpf q; /* opaque pointer */
4489uInt n; /* number of items */
4490uInt s; /* size of item */
4491{
4492 Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4493 "inflate_trees falloc overflow");
4494 *(intf *)q -= n+s-s; /* s-s to avoid warning */
4495 return (voidpf)(fixed_mem + *(intf *)q);
4496}
4497
4498
4499int inflate_trees_fixed(bl, bd, tl, td)
4500uIntf *bl; /* literal desired/actual bit depth */
4501uIntf *bd; /* distance desired/actual bit depth */
4502inflate_huft * FAR *tl; /* literal/length tree result */
4503inflate_huft * FAR *td; /* distance tree result */
4504{
4505 /* build fixed tables if not already (multiple overlapped executions ok) */
4506 if (!fixed_built)
4507 {
4508 int k; /* temporary variable */
4509 unsigned c[288]; /* length list for huft_build */
4510 z_stream z; /* for falloc function */
4511 int f = FIXEDH; /* number of hufts left in fixed_mem */
4512
4513 /* set up fake z_stream for memory routines */
4514 z.zalloc = falloc;
4515 z.zfree = Z_NULL;
4516 z.opaque = (voidpf)&f;
4517
4518 /* literal table */
4519 for (k = 0; k < 144; k++)
4520 c[k] = 8;
4521 for (; k < 256; k++)
4522 c[k] = 9;
4523 for (; k < 280; k++)
4524 c[k] = 7;
4525 for (; k < 288; k++)
4526 c[k] = 8;
4527 fixed_bl = 7;
4528 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4529
4530 /* distance table */
4531 for (k = 0; k < 30; k++)
4532 c[k] = 5;
4533 fixed_bd = 5;
4534 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4535
4536 /* done */
4537 Assert(f == 0, "invalid build of fixed tables");
4538 fixed_built = 1;
4539 }
4540 *bl = fixed_bl;
4541 *bd = fixed_bd;
4542 *tl = fixed_tl;
4543 *td = fixed_td;
4544 return Z_OK;
4545}
4546
4547
4548int inflate_trees_free(t, z)
4549inflate_huft *t; /* table to free */
4550z_streamp z; /* for zfree function */
4551/* Free the malloc'ed tables built by huft_build(), which makes a linked
4552 list of the tables it made, with the links in a dummy first entry of
4553 each table. */
4554{
4555 register inflate_huft *p, *q, *r;
4556
4557 /* Reverse linked list */
4558 p = Z_NULL;
4559 q = t;
4560 while (q != Z_NULL)
4561 {
4562 r = (q - 1)->next;
4563 (q - 1)->next = p;
4564 p = q;
4565 q = r;
4566 }
4567 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4568 while (p != Z_NULL)
4569 {
4570 q = (--p)->next;
4571 ZFREE(z,p);
4572 p = q;
4573 }
4574 return Z_OK;
4575}
4576/* --- inftrees.c */
4577
4578/* +++ infcodes.c */
4579/* infcodes.c -- process literals and length/distance pairs
4580 * Copyright (C) 1995-1996 Mark Adler
4581 * For conditions of distribution and use, see copyright notice in zlib.h
4582 */
4583
4584/* #include "zutil.h" */
4585/* #include "inftrees.h" */
4586/* #include "infblock.h" */
4587/* #include "infcodes.h" */
4588/* #include "infutil.h" */
4589
4590/* +++ inffast.h */
4591/* inffast.h -- header to use inffast.c
4592 * Copyright (C) 1995-1996 Mark Adler
4593 * For conditions of distribution and use, see copyright notice in zlib.h
4594 */
4595
4596/* WARNING: this file should *not* be used by applications. It is
4597 part of the implementation of the compression library and is
4598 subject to change. Applications should only use zlib.h.
4599 */
4600
4601extern int inflate_fast OF((
4602 uInt,
4603 uInt,
4604 inflate_huft *,
4605 inflate_huft *,
4606 inflate_blocks_statef *,
4607 z_streamp ));
4608/* --- inffast.h */
4609
4610/* simplify the use of the inflate_huft type with some defines */
4611#define base more.Base
4612#define next more.Next
4613#define exop word.what.Exop
4614#define bits word.what.Bits
4615
4616/* inflate codes private state */
4617struct inflate_codes_state {
4618
4619 /* mode */
4620 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4621 START, /* x: set up for LEN */
4622 LEN, /* i: get length/literal/eob next */
4623 LENEXT, /* i: getting length extra (have base) */
4624 DIST, /* i: get distance next */
4625 DISTEXT, /* i: getting distance extra */
4626 COPY, /* o: copying bytes in window, waiting for space */
4627 LIT, /* o: got literal, waiting for output space */
4628 WASH, /* o: got eob, possibly still output waiting */
4629 END, /* x: got eob and all data flushed */
4630 BADCODE} /* x: got error */
4631 mode; /* current inflate_codes mode */
4632
4633 /* mode dependent information */
4634 uInt len;
4635 union {
4636 struct {
4637 inflate_huft *tree; /* pointer into tree */
4638 uInt need; /* bits needed */
4639 } code; /* if LEN or DIST, where in tree */
4640 uInt lit; /* if LIT, literal */
4641 struct {
4642 uInt get; /* bits to get for extra */
4643 uInt dist; /* distance back to copy from */
4644 } copy; /* if EXT or COPY, where and how much */
4645 } sub; /* submode */
4646
4647 /* mode independent information */
4648 Byte lbits; /* ltree bits decoded per branch */
4649 Byte dbits; /* dtree bits decoder per branch */
4650 inflate_huft *ltree; /* literal/length/eob tree */
4651 inflate_huft *dtree; /* distance tree */
4652
4653};
4654
4655
4656inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4657uInt bl, bd;
4658inflate_huft *tl;
4659inflate_huft *td; /* need separate declaration for Borland C++ */
4660z_streamp z;
4661{
4662 inflate_codes_statef *c;
4663
4664 if ((c = (inflate_codes_statef *)
4665 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4666 {
4667 c->mode = START;
4668 c->lbits = (Byte)bl;
4669 c->dbits = (Byte)bd;
4670 c->ltree = tl;
4671 c->dtree = td;
4672 Tracev((stderr, "inflate: codes new\n"));
4673 }
4674 return c;
4675}
4676
4677
4678int inflate_codes(s, z, r)
4679inflate_blocks_statef *s;
4680z_streamp z;
4681int r;
4682{
4683 uInt j; /* temporary storage */
4684 inflate_huft *t; /* temporary pointer */
4685 uInt e; /* extra bits or operation */
4686 uLong b; /* bit buffer */
4687 uInt k; /* bits in bit buffer */
4688 Bytef *p; /* input data pointer */
4689 uInt n; /* bytes available there */
4690 Bytef *q; /* output window write pointer */
4691 uInt m; /* bytes to end of window or read pointer */
4692 Bytef *f; /* pointer to copy strings from */
4693 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4694
4695 /* copy input/output information to locals (UPDATE macro restores) */
4696 LOAD
4697
4698 /* process input and output based on current state */
4699 while (1) switch (c->mode)
4700 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4701 case START: /* x: set up for LEN */
4702#ifndef SLOW
4703 if (m >= 258 && n >= 10)
4704 {
4705 UPDATE
4706 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4707 LOAD
4708 if (r != Z_OK)
4709 {
4710 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4711 break;
4712 }
4713 }
4714#endif /* !SLOW */
4715 c->sub.code.need = c->lbits;
4716 c->sub.code.tree = c->ltree;
4717 c->mode = LEN;
4718 case LEN: /* i: get length/literal/eob next */
4719 j = c->sub.code.need;
4720 NEEDBITS(j)
4721 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4722 DUMPBITS(t->bits)
4723 e = (uInt)(t->exop);
4724 if (e == 0) /* literal */
4725 {
4726 c->sub.lit = t->base;
4727 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4728 "inflate: literal '%c'\n" :
4729 "inflate: literal 0x%02x\n", t->base));
4730 c->mode = LIT;
4731 break;
4732 }
4733 if (e & 16) /* length */
4734 {
4735 c->sub.copy.get = e & 15;
4736 c->len = t->base;
4737 c->mode = LENEXT;
4738 break;
4739 }
4740 if ((e & 64) == 0) /* next table */
4741 {
4742 c->sub.code.need = e;
4743 c->sub.code.tree = t->next;
4744 break;
4745 }
4746 if (e & 32) /* end of block */
4747 {
4748 Tracevv((stderr, "inflate: end of block\n"));
4749 c->mode = WASH;
4750 break;
4751 }
4752 c->mode = BADCODE; /* invalid code */
4753 z->msg = (char*)"invalid literal/length code";
4754 r = Z_DATA_ERROR;
4755 LEAVE
4756 case LENEXT: /* i: getting length extra (have base) */
4757 j = c->sub.copy.get;
4758 NEEDBITS(j)
4759 c->len += (uInt)b & inflate_mask[j];
4760 DUMPBITS(j)
4761 c->sub.code.need = c->dbits;
4762 c->sub.code.tree = c->dtree;
4763 Tracevv((stderr, "inflate: length %u\n", c->len));
4764 c->mode = DIST;
4765 case DIST: /* i: get distance next */
4766 j = c->sub.code.need;
4767 NEEDBITS(j)
4768 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4769 DUMPBITS(t->bits)
4770 e = (uInt)(t->exop);
4771 if (e & 16) /* distance */
4772 {
4773 c->sub.copy.get = e & 15;
4774 c->sub.copy.dist = t->base;
4775 c->mode = DISTEXT;
4776 break;
4777 }
4778 if ((e & 64) == 0) /* next table */
4779 {
4780 c->sub.code.need = e;
4781 c->sub.code.tree = t->next;
4782 break;
4783 }
4784 c->mode = BADCODE; /* invalid code */
4785 z->msg = (char*)"invalid distance code";
4786 r = Z_DATA_ERROR;
4787 LEAVE
4788 case DISTEXT: /* i: getting distance extra */
4789 j = c->sub.copy.get;
4790 NEEDBITS(j)
4791 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4792 DUMPBITS(j)
4793 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4794 c->mode = COPY;
4795 case COPY: /* o: copying bytes in window, waiting for space */
4796#ifndef __TURBOC__ /* Turbo C bug for following expression */
4797 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4798 s->end - (c->sub.copy.dist - (q - s->window)) :
4799 q - c->sub.copy.dist;
4800#else
4801 f = q - c->sub.copy.dist;
4802 if ((uInt)(q - s->window) < c->sub.copy.dist)
4803 f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4804#endif
4805 while (c->len)
4806 {
4807 NEEDOUT
4808 OUTBYTE(*f++)
4809 if (f == s->end)
4810 f = s->window;
4811 c->len--;
4812 }
4813 c->mode = START;
4814 break;
4815 case LIT: /* o: got literal, waiting for output space */
4816 NEEDOUT
4817 OUTBYTE(c->sub.lit)
4818 c->mode = START;
4819 break;
4820 case WASH: /* o: got eob, possibly more output */
4821 FLUSH
4822 if (s->read != s->write)
4823 LEAVE
4824 c->mode = END;
4825 case END:
4826 r = Z_STREAM_END;
4827 LEAVE
4828 case BADCODE: /* x: got error */
4829 r = Z_DATA_ERROR;
4830 LEAVE
4831 default:
4832 r = Z_STREAM_ERROR;
4833 LEAVE
4834 }
4835}
4836
4837
4838void inflate_codes_free(c, z)
4839inflate_codes_statef *c;
4840z_streamp z;
4841{
4842 ZFREE(z, c);
4843 Tracev((stderr, "inflate: codes free\n"));
4844}
4845/* --- infcodes.c */
4846
4847/* +++ infutil.c */
4848/* inflate_util.c -- data and routines common to blocks and codes
4849 * Copyright (C) 1995-1996 Mark Adler
4850 * For conditions of distribution and use, see copyright notice in zlib.h
4851 */
4852
4853/* #include "zutil.h" */
4854/* #include "infblock.h" */
4855/* #include "inftrees.h" */
4856/* #include "infcodes.h" */
4857/* #include "infutil.h" */
4858
4859#ifndef NO_DUMMY_DECL
4860struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4861#endif
4862
4863/* And'ing with mask[n] masks the lower n bits */
4864uInt inflate_mask[17] = {
4865 0x0000,
4866 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4867 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4868};
4869
4870
4871/* copy as much as possible from the sliding window to the output area */
4872int inflate_flush(s, z, r)
4873inflate_blocks_statef *s;
4874z_streamp z;
4875int r;
4876{
4877 uInt n;
4878 Bytef *p;
4879 Bytef *q;
4880
4881 /* local copies of source and destination pointers */
4882 p = z->next_out;
4883 q = s->read;
4884
4885 /* compute number of bytes to copy as far as end of window */
4886 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4887 if (n > z->avail_out) n = z->avail_out;
4888 if (n && r == Z_BUF_ERROR) r = Z_OK;
4889
4890 /* update counters */
4891 z->avail_out -= n;
4892 z->total_out += n;
4893
4894 /* update check information */
4895 if (s->checkfn != Z_NULL)
4896 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4897
4898 /* copy as far as end of window */
4899 if (p != Z_NULL) {
4900 zmemcpy(p, q, n);
4901 p += n;
4902 }
4903 q += n;
4904
4905 /* see if more to copy at beginning of window */
4906 if (q == s->end)
4907 {
4908 /* wrap pointers */
4909 q = s->window;
4910 if (s->write == s->end)
4911 s->write = s->window;
4912
4913 /* compute bytes to copy */
4914 n = (uInt)(s->write - q);
4915 if (n > z->avail_out) n = z->avail_out;
4916 if (n && r == Z_BUF_ERROR) r = Z_OK;
4917
4918 /* update counters */
4919 z->avail_out -= n;
4920 z->total_out += n;
4921
4922 /* update check information */
4923 if (s->checkfn != Z_NULL)
4924 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4925
4926 /* copy */
4927 if (p != Z_NULL) {
4928 zmemcpy(p, q, n);
4929 p += n;
4930 }
4931 q += n;
4932 }
4933
4934 /* update pointers */
4935 z->next_out = p;
4936 s->read = q;
4937
4938 /* done */
4939 return r;
4940}
4941/* --- infutil.c */
4942
4943/* +++ inffast.c */
4944/* inffast.c -- process literals and length/distance pairs fast
4945 * Copyright (C) 1995-1996 Mark Adler
4946 * For conditions of distribution and use, see copyright notice in zlib.h
4947 */
4948
4949/* #include "zutil.h" */
4950/* #include "inftrees.h" */
4951/* #include "infblock.h" */
4952/* #include "infcodes.h" */
4953/* #include "infutil.h" */
4954/* #include "inffast.h" */
4955
4956#ifndef NO_DUMMY_DECL
4957struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4958#endif
4959
4960/* simplify the use of the inflate_huft type with some defines */
4961#define base more.Base
4962#define next more.Next
4963#define exop word.what.Exop
4964#define bits word.what.Bits
4965
4966/* macros for bit input with no checking and for returning unused bytes */
4967#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4968#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4969
4970/* Called with number of bytes left to write in window at least 258
4971 (the maximum string length) and number of input bytes available
4972 at least ten. The ten bytes are six bytes for the longest length/
4973 distance pair plus four bytes for overloading the bit buffer. */
4974
4975int inflate_fast(bl, bd, tl, td, s, z)
4976uInt bl, bd;
4977inflate_huft *tl;
4978inflate_huft *td; /* need separate declaration for Borland C++ */
4979inflate_blocks_statef *s;
4980z_streamp z;
4981{
4982 inflate_huft *t; /* temporary pointer */
4983 uInt e; /* extra bits or operation */
4984 uLong b; /* bit buffer */
4985 uInt k; /* bits in bit buffer */
4986 Bytef *p; /* input data pointer */
4987 uInt n; /* bytes available there */
4988 Bytef *q; /* output window write pointer */
4989 uInt m; /* bytes to end of window or read pointer */
4990 uInt ml; /* mask for literal/length tree */
4991 uInt md; /* mask for distance tree */
4992 uInt c; /* bytes to copy */
4993 uInt d; /* distance back to copy from */
4994 Bytef *r; /* copy source pointer */
4995
4996 /* load input, output, bit values */
4997 LOAD
4998
4999 /* initialize masks */
5000 ml = inflate_mask[bl];
5001 md = inflate_mask[bd];
5002
5003 /* do until not enough input or output space for fast loop */
5004 do { /* assume called with m >= 258 && n >= 10 */
5005 /* get literal/length code */
5006 GRABBITS(20) /* max bits for literal/length code */
5007 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5008 {
5009 DUMPBITS(t->bits)
5010 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5011 "inflate: * literal '%c'\n" :
5012 "inflate: * literal 0x%02x\n", t->base));
5013 *q++ = (Byte)t->base;
5014 m--;
5015 continue;
5016 }
5017 do {
5018 DUMPBITS(t->bits)
5019 if (e & 16)
5020 {
5021 /* get extra bits for length */
5022 e &= 15;
5023 c = t->base + ((uInt)b & inflate_mask[e]);
5024 DUMPBITS(e)
5025 Tracevv((stderr, "inflate: * length %u\n", c));
5026
5027 /* decode distance base of block to copy */
5028 GRABBITS(15); /* max bits for distance code */
5029 e = (t = td + ((uInt)b & md))->exop;
5030 do {
5031 DUMPBITS(t->bits)
5032 if (e & 16)
5033 {
5034 /* get extra bits to add to distance base */
5035 e &= 15;
5036 GRABBITS(e) /* get extra bits (up to 13) */
5037 d = t->base + ((uInt)b & inflate_mask[e]);
5038 DUMPBITS(e)
5039 Tracevv((stderr, "inflate: * distance %u\n", d));
5040
5041 /* do the copy */
5042 m -= c;
5043 if ((uInt)(q - s->window) >= d) /* offset before dest */
5044 { /* just copy */
5045 r = q - d;
5046 *q++ = *r++; c--; /* minimum count is three, */
5047 *q++ = *r++; c--; /* so unroll loop a little */
5048 }
5049 else /* else offset after destination */
5050 {
5051 e = d - (uInt)(q - s->window); /* bytes from offset to end */
5052 r = s->end - e; /* pointer to offset */
5053 if (c > e) /* if source crosses, */
5054 {
5055 c -= e; /* copy to end of window */
5056 do {
5057 *q++ = *r++;
5058 } while (--e);
5059 r = s->window; /* copy rest from start of window */
5060 }
5061 }
5062 do { /* copy all or what's left */
5063 *q++ = *r++;
5064 } while (--c);
5065 break;
5066 }
5067 else if ((e & 64) == 0)
5068 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5069 else
5070 {
5071 z->msg = (char*)"invalid distance code";
5072 UNGRAB
5073 UPDATE
5074 return Z_DATA_ERROR;
5075 }
5076 } while (1);
5077 break;
5078 }
5079 if ((e & 64) == 0)
5080 {
5081 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5082 {
5083 DUMPBITS(t->bits)
5084 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5085 "inflate: * literal '%c'\n" :
5086 "inflate: * literal 0x%02x\n", t->base));
5087 *q++ = (Byte)t->base;
5088 m--;
5089 break;
5090 }
5091 }
5092 else if (e & 32)
5093 {
5094 Tracevv((stderr, "inflate: * end of block\n"));
5095 UNGRAB
5096 UPDATE
5097 return Z_STREAM_END;
5098 }
5099 else
5100 {
5101 z->msg = (char*)"invalid literal/length code";
5102 UNGRAB
5103 UPDATE
5104 return Z_DATA_ERROR;
5105 }
5106 } while (1);
5107 } while (m >= 258 && n >= 10);
5108
5109 /* not enough input or output--restore pointers and return */
5110 UNGRAB
5111 UPDATE
5112 return Z_OK;
5113}
5114/* --- inffast.c */
5115
5116/* +++ zutil.c */
5117/* zutil.c -- target dependent utility functions for the compression library
5118 * Copyright (C) 1995-1996 Jean-loup Gailly.
5119 * For conditions of distribution and use, see copyright notice in zlib.h
5120 */
5121
5122/* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5123
5124#ifdef DEBUG_ZLIB
5125#include <stdio.h>
5126#endif
5127
5128/* #include "zutil.h" */
5129
5130#ifndef NO_DUMMY_DECL
5131struct internal_state {int dummy;}; /* for buggy compilers */
5132#endif
5133
5134#ifndef STDC
5135extern void exit OF((int));
5136#endif
5137
5138static const char *z_errmsg[10] = {
5139"need dictionary", /* Z_NEED_DICT 2 */
5140"stream end", /* Z_STREAM_END 1 */
5141"", /* Z_OK 0 */
5142"file error", /* Z_ERRNO (-1) */
5143"stream error", /* Z_STREAM_ERROR (-2) */
5144"data error", /* Z_DATA_ERROR (-3) */
5145"insufficient memory", /* Z_MEM_ERROR (-4) */
5146"buffer error", /* Z_BUF_ERROR (-5) */
5147"incompatible version",/* Z_VERSION_ERROR (-6) */
5148""};
5149
5150
5151const char *zlibVersion()
5152{
5153 return ZLIB_VERSION;
5154}
5155
5156#ifdef DEBUG_ZLIB
5157void z_error (m)
5158 char *m;
5159{
5160 fprintf(stderr, "%s\n", m);
5161 exit(1);
5162}
5163#endif
5164
5165#ifndef HAVE_MEMCPY
5166
5167void zmemcpy(dest, source, len)
5168 Bytef* dest;
5169 Bytef* source;
5170 uInt len;
5171{
5172 if (len == 0) return;
5173 do {
5174 *dest++ = *source++; /* ??? to be unrolled */
5175 } while (--len != 0);
5176}
5177
5178int zmemcmp(s1, s2, len)
5179 Bytef* s1;
5180 Bytef* s2;
5181 uInt len;
5182{
5183 uInt j;
5184
5185 for (j = 0; j < len; j++) {
5186 if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5187 }
5188 return 0;
5189}
5190
5191void zmemzero(dest, len)
5192 Bytef* dest;
5193 uInt len;
5194{
5195 if (len == 0) return;
5196 do {
5197 *dest++ = 0; /* ??? to be unrolled */
5198 } while (--len != 0);
5199}
5200#endif
5201
5202#ifdef __TURBOC__
5203#if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5204/* Small and medium model in Turbo C are for now limited to near allocation
5205 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5206 */
5207# define MY_ZCALLOC
5208
5209/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5210 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5211 * must fix the pointer. Warning: the pointer must be put back to its
5212 * original form in order to free it, use zcfree().
5213 */
5214
5215#define MAX_PTR 10
5216/* 10*64K = 640K */
5217
5218local int next_ptr = 0;
5219
5220typedef struct ptr_table_s {
5221 voidpf org_ptr;
5222 voidpf new_ptr;
5223} ptr_table;
5224
5225local ptr_table table[MAX_PTR];
5226/* This table is used to remember the original form of pointers
5227 * to large buffers (64K). Such pointers are normalized with a zero offset.
5228 * Since MSDOS is not a preemptive multitasking OS, this table is not
5229 * protected from concurrent access. This hack doesn't work anyway on
5230 * a protected system like OS/2. Use Microsoft C instead.
5231 */
5232
5233voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5234{
5235 voidpf buf = opaque; /* just to make some compilers happy */
5236 ulg bsize = (ulg)items*size;
5237
5238 /* If we allocate less than 65520 bytes, we assume that farmalloc
5239 * will return a usable pointer which doesn't have to be normalized.
5240 */
5241 if (bsize < 65520L) {
5242 buf = farmalloc(bsize);
5243 if (*(ush*)&buf != 0) return buf;
5244 } else {
5245 buf = farmalloc(bsize + 16L);
5246 }
5247 if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5248 table[next_ptr].org_ptr = buf;
5249
5250 /* Normalize the pointer to seg:0 */
5251 *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5252 *(ush*)&buf = 0;
5253 table[next_ptr++].new_ptr = buf;
5254 return buf;
5255}
5256
5257void zcfree (voidpf opaque, voidpf ptr)
5258{
5259 int n;
5260 if (*(ush*)&ptr != 0) { /* object < 64K */
5261 farfree(ptr);
5262 return;
5263 }
5264 /* Find the original pointer */
5265 for (n = 0; n < next_ptr; n++) {
5266 if (ptr != table[n].new_ptr) continue;
5267
5268 farfree(table[n].org_ptr);
5269 while (++n < next_ptr) {
5270 table[n-1] = table[n];
5271 }
5272 next_ptr--;
5273 return;
5274 }
5275 ptr = opaque; /* just to make some compilers happy */
5276 Assert(0, "zcfree: ptr not found");
5277}
5278#endif
5279#endif /* __TURBOC__ */
5280
5281
5282#if defined(M_I86) && !defined(__32BIT__)
5283/* Microsoft C in 16-bit mode */
5284
5285# define MY_ZCALLOC
5286
5287#if (!defined(_MSC_VER) || (_MSC_VER < 600))
5288# define _halloc halloc
5289# define _hfree hfree
5290#endif
5291
5292voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5293{
5294 if (opaque) opaque = 0; /* to make compiler happy */
5295 return _halloc((long)items, size);
5296}
5297
5298void zcfree (voidpf opaque, voidpf ptr)
5299{
5300 if (opaque) opaque = 0; /* to make compiler happy */
5301 _hfree(ptr);
5302}
5303
5304#endif /* MSC */
5305
5306
5307#ifndef MY_ZCALLOC /* Any system without a special alloc function */
5308
5309#ifndef STDC
5310extern voidp calloc OF((uInt items, uInt size));
5311extern void free OF((voidpf ptr));
5312#endif
5313
5314voidpf zcalloc (opaque, items, size)
5315 voidpf opaque;
5316 unsigned items;
5317 unsigned size;
5318{
5319 if (opaque) items += size - size; /* make compiler happy */
5320 return (voidpf)calloc(items, size);
5321}
5322
5323void zcfree (opaque, ptr)
5324 voidpf opaque;
5325 voidpf ptr;
5326{
5327 _FREE(ptr);
5328 if (opaque) return; /* make compiler happy */
5329}
5330
5331#endif /* MY_ZCALLOC */
5332/* --- zutil.c */
5333
5334/* +++ adler32.c */
5335/* adler32.c -- compute the Adler-32 checksum of a data stream
5336 * Copyright (C) 1995-1996 Mark Adler
5337 * For conditions of distribution and use, see copyright notice in zlib.h
5338 */
5339
5340/* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5341
5342/* #include "zlib.h" */
5343
5344#define BASE 65521L /* largest prime smaller than 65536 */
5345#define NMAX 5552
5346/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5347
5348#define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5349#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5350#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5351#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5352#define DO16(buf) DO8(buf,0); DO8(buf,8);
5353
5354/* ========================================================================= */
5355uLong adler32(adler, buf, len)
5356 uLong adler;
5357 const Bytef *buf;
5358 uInt len;
5359{
5360 unsigned long s1 = adler & 0xffff;
5361 unsigned long s2 = (adler >> 16) & 0xffff;
5362 int k;
5363
5364 if (buf == Z_NULL) return 1L;
5365
5366 while (len > 0) {
5367 k = len < NMAX ? len : NMAX;
5368 len -= k;
5369 while (k >= 16) {
5370 DO16(buf);
5371 buf += 16;
5372 k -= 16;
5373 }
5374 if (k != 0) do {
5375 s1 += *buf++;
5376 s2 += s1;
5377 } while (--k);
5378 s1 %= BASE;
5379 s2 %= BASE;
5380 }
5381 return (s2 << 16) | s1;
5382}
5383/* --- adler32.c */