]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/kern_clock.c
xnu-201.14.tar.gz
[apple/xnu.git] / bsd / kern / kern_clock.c
CommitLineData
1c79356b
A
1/*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
23/*-
24 * Copyright (c) 1982, 1986, 1991, 1993
25 * The Regents of the University of California. All rights reserved.
26 * (c) UNIX System Laboratories, Inc.
27 * All or some portions of this file are derived from material licensed
28 * to the University of California by American Telephone and Telegraph
29 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
30 * the permission of UNIX System Laboratories, Inc.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
61 */
62/*
63 * HISTORY
64 */
65
66#include <machine/spl.h>
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/time.h>
71#include <sys/dkstat.h>
72#include <sys/resourcevar.h>
73#include <sys/kernel.h>
74#include <sys/resource.h>
75#include <sys/proc.h>
76#include <sys/vm.h>
77
78#ifdef GPROF
79#include <sys/gmon.h>
80#endif
81
82#include <kern/thread.h>
83#include <kern/ast.h>
84#include <kern/assert.h>
85#include <mach/boolean.h>
86
87#include <kern/thread_call.h>
88
89/*
90 * Clock handling routines.
91 *
92 * This code is written to operate with two timers which run
93 * independently of each other. The main clock, running at hz
94 * times per second, is used to do scheduling and timeout calculations.
95 * The second timer does resource utilization estimation statistically
96 * based on the state of the machine phz times a second. Both functions
97 * can be performed by a single clock (ie hz == phz), however the
98 * statistics will be much more prone to errors. Ideally a machine
99 * would have separate clocks measuring time spent in user state, system
100 * state, interrupt state, and idle state. These clocks would allow a non-
101 * approximate measure of resource utilization.
102 */
103
104/*
105 * The hz hardware interval timer.
106 * We update the events relating to real time.
107 * If this timer is also being used to gather statistics,
108 * we run through the statistics gathering routine as well.
109 */
110
111int bsd_hardclockinit = 0;
112/*ARGSUSED*/
113void
114bsd_hardclock(usermode, pc, numticks)
115 boolean_t usermode;
116 caddr_t pc;
117 int numticks;
118{
119 register struct proc *p;
120 register int s;
121 int ticks = numticks;
122 extern int tickdelta;
123 extern long timedelta;
124 register thread_t thread;
125 int nusecs = numticks * tick;
126
127 if (!bsd_hardclockinit)
128 return;
129
130 thread = current_thread();
131
132 /*
133 * Charge the time out based on the mode the cpu is in.
134 * Here again we fudge for the lack of proper interval timers
135 * assuming that the current state has been around at least
136 * one tick.
137 */
0b4e3aa0 138 p = (struct proc *)current_proc();
1c79356b
A
139 if (p && ((p->p_flag & P_WEXIT) == NULL)) {
140 if (usermode) {
141 if (p) {
142 if (p->p_stats && p->p_stats->p_prof.pr_scale) {
143 p->p_flag |= P_OWEUPC;
144 ast_on(AST_BSD);
145 }
146 }
147
148 /*
149 * CPU was in user state. Increment
150 * user time counter, and process process-virtual time
151 * interval timer.
152 */
153 if (p->p_stats &&
154 timerisset(&p->p_stats->p_timer[ITIMER_VIRTUAL].it_value) &&
155 itimerdecr(&p->p_stats->p_timer[ITIMER_VIRTUAL], nusecs) == 0) {
156 extern void psignal_vtalarm(struct proc *);
157
158 /* does psignal(p, SIGVTALRM) in a thread context */
159 thread_call_func((thread_call_func_t)psignal_vtalarm, p, FALSE);
160 }
161 }
162
163 /*
164 * If the cpu is currently scheduled to a process, then
165 * charge it with resource utilization for a tick, updating
166 * statistics which run in (user+system) virtual time,
167 * such as the cpu time limit and profiling timers.
168 * This assumes that the current process has been running
169 * the entire last tick.
170 */
171 if (p && !(is_thread_idle(thread)))
172 {
173 if (p->p_limit && (p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY)) {
174 time_value_t sys_time, user_time;
175
176 thread_read_times(thread, &user_time, &sys_time);
177 if ((sys_time.seconds + user_time.seconds + 1) >
178 p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur) {
179 extern void psignal_xcpu(struct proc *);
180
181 /* does psignal(p, SIGXCPU) in a thread context */
182 thread_call_func((thread_call_func_t)psignal_xcpu, p, FALSE);
183
184 if (p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur <
185 p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_max)
186 p->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur += 5;
187 }
188 }
189 if (timerisset(&p->p_stats->p_timer[ITIMER_PROF].it_value) &&
190 itimerdecr(&p->p_stats->p_timer[ITIMER_PROF], nusecs) == 0) {
191 extern void psignal_sigprof(struct proc *);
192
193 /* does psignal(p, SIGPROF) in a thread context */
194 thread_call_func((thread_call_func_t)psignal_sigprof, p, FALSE);
195 }
196 }
197
198 /*
199 * Increment the time-of-day, and schedule
200 * processing of the callouts at a very low cpu priority,
201 * so we don't keep the relatively high clock interrupt
202 * priority any longer than necessary.
203 */
204
205 /*
206 * Gather the statistics.
207 */
208 gatherstats(usermode, pc);
209
210 }
211 if (timedelta != 0) {
212 register delta;
213 clock_res_t nsdelta = tickdelta * NSEC_PER_USEC;
214
215 if (timedelta < 0) {
216 delta = ticks - tickdelta;
217 timedelta += tickdelta;
218 nsdelta = -nsdelta;
219 } else {
220 delta = ticks + tickdelta;
221 timedelta -= tickdelta;
222 }
223 clock_adjust_calendar(nsdelta);
224 }
225 microtime(&time);
226}
227
228/*
229 * Gather statistics on resource utilization.
230 *
231 * We make a gross assumption: that the system has been in the
232 * state it is in (user state, kernel state, interrupt state,
233 * or idle state) for the entire last time interval, and
234 * update statistics accordingly.
235 */
236/*ARGSUSED*/
237void
238gatherstats(usermode, pc)
239 boolean_t usermode;
240 caddr_t pc;
241{
242 register int cpstate, s;
243 struct proc *proc =current_proc();
244#ifdef GPROF
245 struct gmonparam *p = &_gmonparam;
246#endif
247
248 /*
249 * Determine what state the cpu is in.
250 */
251 if (usermode) {
252 /*
253 * CPU was in user state.
254 */
255 if (proc->p_nice > NZERO)
256 cpstate = CP_NICE;
257 else
258 cpstate = CP_USER;
259 } else {
260 /*
261 * CPU was in system state. If profiling kernel
262 * increment a counter. If no process is running
263 * then this is a system tick if we were running
264 * at a non-zero IPL (in a driver). If a process is running,
265 * then we charge it with system time even if we were
266 * at a non-zero IPL, since the system often runs
267 * this way during processing of system calls.
268 * This is approximate, but the lack of true interval
269 * timers makes doing anything else difficult.
270 */
271 cpstate = CP_SYS;
272 if (is_thread_idle(current_thread()))
273 cpstate = CP_IDLE;
274#ifdef GPROF
275 if (p->state == GMON_PROF_ON) {
276 s = pc - p->lowpc;
277 if (s < p->textsize) {
278 s /= (HISTFRACTION * sizeof(*p->kcount));
279 p->kcount[s]++;
280 }
281 }
282#endif
283 }
284 /*
285 * We maintain statistics shown by user-level statistics
286 * programs: the amount of time in each cpu state, and
287 * the amount of time each of DK_NDRIVE ``drives'' is busy.
288 */
289 cp_time[cpstate]++;
290 for (s = 0; s < DK_NDRIVE; s++)
291 if (dk_busy & (1 << s))
292 dk_time[s]++;
293}
294
295
296/*
297 * Kernel timeout services.
298 */
299
300/*
301 * Set a timeout.
302 *
303 * fcn: function to call
304 * param: parameter to pass to function
305 * interval: timeout interval, in hz.
306 */
307void
308timeout(
309 timeout_fcn_t fcn,
310 void *param,
311 int interval)
312{
0b4e3aa0 313 uint64_t deadline;
1c79356b
A
314
315 clock_interval_to_deadline(interval, NSEC_PER_SEC / hz, &deadline);
316 thread_call_func_delayed((thread_call_func_t)fcn, param, deadline);
317}
318
319/*
320 * Cancel a timeout.
321 */
322void
323untimeout(
324 register timeout_fcn_t fcn,
325 register void *param)
326{
327 thread_call_func_cancel((thread_call_func_t)fcn, param, FALSE);
328}
329
330
331
332/*
333 * Compute number of hz until specified time.
334 * Used to compute third argument to timeout() from an
335 * absolute time.
336 */
337hzto(tv)
338 struct timeval *tv;
339{
340 register long ticks;
341 register long sec;
342 int s = splhigh();
343
344 /*
345 * If number of milliseconds will fit in 32 bit arithmetic,
346 * then compute number of milliseconds to time and scale to
347 * ticks. Otherwise just compute number of hz in time, rounding
348 * times greater than representible to maximum value.
349 *
350 * Delta times less than 25 days can be computed ``exactly''.
351 * Maximum value for any timeout in 10ms ticks is 250 days.
352 */
353 sec = tv->tv_sec - time.tv_sec;
354 if (sec <= 0x7fffffff / 1000 - 1000)
355 ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
356 (tv->tv_usec - time.tv_usec) / 1000)
357 / (tick / 1000);
358 else if (sec <= 0x7fffffff / hz)
359 ticks = sec * hz;
360 else
361 ticks = 0x7fffffff;
362 splx(s);
363 return (ticks);
364}
365
366#if 0 /* [ */
367/*
368 * Convert ticks to a timeval
369 */
370ticks_to_timeval(ticks, tvp)
371 register long ticks;
372 struct timeval *tvp;
373{
374 tvp->tv_sec = ticks/hz;
375 tvp->tv_usec = (ticks%hz) * tick;
376 asert(tvp->tv_usec < 1000000);
377}
378#endif /* ] */
379
380/*
381 * Return information about system clocks.
382 */
383int
384sysctl_clockrate(where, sizep)
385 register char *where;
386 size_t *sizep;
387{
388 struct clockinfo clkinfo;
389
390 /*
391 * Construct clockinfo structure.
392 */
393 clkinfo.hz = hz;
394 clkinfo.tick = tick;
395 clkinfo.profhz = hz;
396 clkinfo.stathz = hz;
397 return sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo));
398}
399
400
401/*
402 * Compute number of ticks in the specified amount of time.
403 */
404int
405tvtohz(tv)
406 struct timeval *tv;
407{
408 register unsigned long ticks;
409 register long sec, usec;
410
411 /*
412 * If the number of usecs in the whole seconds part of the time
413 * difference fits in a long, then the total number of usecs will
414 * fit in an unsigned long. Compute the total and convert it to
415 * ticks, rounding up and adding 1 to allow for the current tick
416 * to expire. Rounding also depends on unsigned long arithmetic
417 * to avoid overflow.
418 *
419 * Otherwise, if the number of ticks in the whole seconds part of
420 * the time difference fits in a long, then convert the parts to
421 * ticks separately and add, using similar rounding methods and
422 * overflow avoidance. This method would work in the previous
423 * case but it is slightly slower and assumes that hz is integral.
424 *
425 * Otherwise, round the time difference down to the maximum
426 * representable value.
427 *
428 * If ints have 32 bits, then the maximum value for any timeout in
429 * 10ms ticks is 248 days.
430 */
431 sec = tv->tv_sec;
432 usec = tv->tv_usec;
433 if (usec < 0) {
434 sec--;
435 usec += 1000000;
436 }
437 if (sec < 0) {
438#ifdef DIAGNOSTIC
439 if (usec > 0) {
440 sec++;
441 usec -= 1000000;
442 }
443 printf("tvotohz: negative time difference %ld sec %ld usec\n",
444 sec, usec);
445#endif
446 ticks = 1;
447 } else if (sec <= LONG_MAX / 1000000)
448 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
449 / tick + 1;
450 else if (sec <= LONG_MAX / hz)
451 ticks = sec * hz
452 + ((unsigned long)usec + (tick - 1)) / tick + 1;
453 else
454 ticks = LONG_MAX;
455 if (ticks > INT_MAX)
456 ticks = INT_MAX;
457 return ((int)ticks);
458}
459
460
461/*
462 * Start profiling on a process.
463 *
464 * Kernel profiling passes kernel_proc which never exits and hence
465 * keeps the profile clock running constantly.
466 */
467void
468startprofclock(p)
469 register struct proc *p;
470{
471 if ((p->p_flag & P_PROFIL) == 0)
472 p->p_flag |= P_PROFIL;
473}
474
475/*
476 * Stop profiling on a process.
477 */
478void
479stopprofclock(p)
480 register struct proc *p;
481{
482 if (p->p_flag & P_PROFIL)
483 p->p_flag &= ~P_PROFIL;
484}
485
486void
487bsd_uprofil(struct time_value *syst, unsigned int pc)
488{
489struct proc *p = current_proc();
490int ticks;
491struct timeval *tv;
492struct timeval st;
493
494 if (p == NULL)
495 return;
496 if ( !(p->p_flag & P_PROFIL))
497 return;
498
499 st.tv_sec = syst->seconds;
500 st.tv_usec = syst->microseconds;
501
502 tv = &(p->p_stats->p_ru.ru_stime);
503
504 ticks = ((tv->tv_sec - st.tv_sec) * 1000 +
505 (tv->tv_usec - st.tv_usec) / 1000) /
506 (tick / 1000);
507 if (ticks)
508 addupc_task(p, pc, ticks);
509}
510
511void
512get_procrustime(time_value_t *tv)
513{
514 struct proc *p = current_proc();
515 struct timeval st;
516
517 if (p == NULL)
518 return;
519 if ( !(p->p_flag & P_PROFIL))
520 return;
521
522 st = p->p_stats->p_ru.ru_stime;
523
524 tv->seconds = st.tv_sec;
525 tv->microseconds = st.tv_usec;
526}