]>
Commit | Line | Data |
---|---|---|
39037602 A |
1 | /* |
2 | * Copyright (c) 2011 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* Manage timers */ | |
30 | ||
31 | #include <mach/mach_types.h> | |
32 | #include <kern/cpu_data.h> /* current_thread() */ | |
33 | #include <kern/kalloc.h> | |
34 | #include <sys/errno.h> | |
35 | #include <sys/vm.h> | |
36 | #include <sys/ktrace.h> | |
37 | ||
38 | #include <machine/machine_routines.h> | |
39 | #if defined(__x86_64__) | |
40 | #include <i386/mp.h> | |
41 | #endif /* defined(__x86_64__) */ | |
42 | ||
43 | #include <kperf/kperf.h> | |
44 | #include <kperf/buffer.h> | |
45 | #include <kperf/context.h> | |
46 | #include <kperf/action.h> | |
47 | #include <kperf/kperf_timer.h> | |
48 | #include <kperf/kperf_arch.h> | |
49 | #include <kperf/pet.h> | |
50 | #include <kperf/sample.h> | |
51 | ||
52 | /* the list of timers */ | |
53 | struct kperf_timer *kperf_timerv = NULL; | |
54 | unsigned int kperf_timerc = 0; | |
55 | ||
56 | static unsigned int pet_timer_id = 999; | |
57 | ||
58 | /* maximum number of timers we can construct */ | |
59 | #define TIMER_MAX (16) | |
60 | ||
61 | #if defined(__x86_64__) | |
62 | ||
63 | #define MIN_PERIOD_NS (20 * NSEC_PER_USEC) | |
64 | #define MIN_PERIOD_BG_NS (10 * NSEC_PER_MSEC) | |
65 | #define MIN_PERIOD_PET_NS (2 * NSEC_PER_MSEC) | |
66 | #define MIN_PERIOD_PET_BG_NS (10 * NSEC_PER_MSEC) | |
67 | ||
68 | #else /* defined(__x86_64__) */ | |
69 | #error "unsupported architecture" | |
70 | #endif /* defined(__x86_64__) */ | |
71 | ||
72 | static uint64_t min_period_abstime; | |
73 | static uint64_t min_period_bg_abstime; | |
74 | static uint64_t min_period_pet_abstime; | |
75 | static uint64_t min_period_pet_bg_abstime; | |
76 | ||
77 | static uint64_t | |
78 | kperf_timer_min_period_abstime(void) | |
79 | { | |
80 | if (ktrace_background_active()) { | |
81 | return min_period_bg_abstime; | |
82 | } else { | |
83 | return min_period_abstime; | |
84 | } | |
85 | } | |
86 | ||
87 | static uint64_t | |
88 | kperf_timer_min_pet_period_abstime(void) | |
89 | { | |
90 | if (ktrace_background_active()) { | |
91 | return min_period_pet_bg_abstime; | |
92 | } else { | |
93 | return min_period_pet_abstime; | |
94 | } | |
95 | } | |
96 | ||
97 | static void | |
98 | kperf_timer_schedule(struct kperf_timer *timer, uint64_t now) | |
99 | { | |
100 | BUF_INFO(PERF_TM_SCHED, timer->period); | |
101 | ||
102 | /* if we re-programmed the timer to zero, just drop it */ | |
103 | if (timer->period == 0) { | |
104 | return; | |
105 | } | |
106 | ||
107 | /* calculate deadline */ | |
108 | uint64_t deadline = now + timer->period; | |
109 | ||
110 | /* re-schedule the timer, making sure we don't apply slop */ | |
111 | timer_call_enter(&timer->tcall, deadline, TIMER_CALL_SYS_CRITICAL); | |
112 | } | |
113 | ||
114 | void | |
115 | kperf_ipi_handler(void *param) | |
116 | { | |
117 | struct kperf_context ctx; | |
118 | struct kperf_timer *timer = param; | |
119 | ||
120 | assert(timer != NULL); | |
121 | ||
122 | /* Always cut a tracepoint to show a sample event occurred */ | |
123 | BUF_DATA(PERF_TM_HNDLR | DBG_FUNC_START, 0); | |
124 | ||
125 | int ncpu = cpu_number(); | |
126 | ||
127 | struct kperf_sample *intbuf = kperf_intr_sample_buffer(); | |
128 | ||
129 | /* On a timer, we can see the "real" current thread */ | |
130 | ctx.cur_thread = current_thread(); | |
131 | ctx.cur_pid = task_pid(get_threadtask(ctx.cur_thread)); | |
132 | ||
133 | /* who fired */ | |
134 | ctx.trigger_type = TRIGGER_TYPE_TIMER; | |
135 | ctx.trigger_id = (unsigned int)(timer - kperf_timerv); | |
136 | ||
137 | if (ctx.trigger_id == pet_timer_id && ncpu < machine_info.logical_cpu_max) { | |
138 | kperf_thread_on_cpus[ncpu] = ctx.cur_thread; | |
139 | } | |
140 | ||
141 | /* make sure sampling is on */ | |
142 | unsigned int status = kperf_sampling_status(); | |
143 | if (status == KPERF_SAMPLING_OFF) { | |
144 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, SAMPLE_OFF); | |
145 | return; | |
146 | } else if (status == KPERF_SAMPLING_SHUTDOWN) { | |
147 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, SAMPLE_SHUTDOWN); | |
148 | return; | |
149 | } | |
150 | ||
151 | /* call the action -- kernel-only from interrupt, pend user */ | |
152 | int r = kperf_sample(intbuf, &ctx, timer->actionid, SAMPLE_FLAG_PEND_USER); | |
153 | ||
154 | /* end tracepoint is informational */ | |
155 | BUF_INFO(PERF_TM_HNDLR | DBG_FUNC_END, r); | |
156 | ||
157 | #if defined(__x86_64__) | |
158 | (void)atomic_bit_clear(&(timer->pending_cpus), ncpu, __ATOMIC_RELAXED); | |
159 | #endif /* defined(__x86_64__) */ | |
160 | } | |
161 | ||
162 | static void | |
163 | kperf_timer_handler(void *param0, __unused void *param1) | |
164 | { | |
165 | struct kperf_timer *timer = param0; | |
166 | unsigned int ntimer = (unsigned int)(timer - kperf_timerv); | |
167 | unsigned int ncpus = machine_info.logical_cpu_max; | |
168 | ||
169 | timer->active = 1; | |
170 | ||
171 | /* along the lines of do not ipi if we are all shutting down */ | |
172 | if (kperf_sampling_status() == KPERF_SAMPLING_SHUTDOWN) { | |
173 | goto deactivate; | |
174 | } | |
175 | ||
176 | BUF_DATA(PERF_TM_FIRE, ntimer, ntimer == pet_timer_id, timer->period, | |
177 | timer->actionid); | |
178 | ||
179 | if (ntimer == pet_timer_id) { | |
180 | kperf_pet_fire_before(); | |
181 | ||
182 | /* clean-up the thread-on-CPUs cache */ | |
183 | bzero(kperf_thread_on_cpus, ncpus * sizeof(*kperf_thread_on_cpus)); | |
184 | } | |
185 | ||
186 | /* ping all CPUs */ | |
187 | kperf_mp_broadcast_running(timer); | |
188 | ||
189 | /* release the pet thread? */ | |
190 | if (ntimer == pet_timer_id) { | |
191 | /* PET mode is responsible for rearming the timer */ | |
192 | kperf_pet_fire_after(); | |
193 | } else { | |
194 | /* | |
195 | * FIXME: Get the current time from elsewhere. The next | |
196 | * timer's period now includes the time taken to reach this | |
197 | * point. This causes a bias towards longer sampling periods | |
198 | * than requested. | |
199 | */ | |
200 | kperf_timer_schedule(timer, mach_absolute_time()); | |
201 | } | |
202 | ||
203 | deactivate: | |
204 | timer->active = 0; | |
205 | } | |
206 | ||
207 | /* program the timer from the PET thread */ | |
208 | void | |
209 | kperf_timer_pet_rearm(uint64_t elapsed_ticks) | |
210 | { | |
211 | struct kperf_timer *timer = NULL; | |
212 | uint64_t period = 0; | |
213 | uint64_t deadline; | |
214 | ||
215 | /* | |
216 | * If the pet_timer_id is invalid, it has been disabled, so this should | |
217 | * do nothing. | |
218 | */ | |
219 | if (pet_timer_id >= kperf_timerc) { | |
220 | return; | |
221 | } | |
222 | ||
223 | unsigned int status = kperf_sampling_status(); | |
224 | /* do not reprogram the timer if it has been shutdown or sampling is off */ | |
225 | if (status == KPERF_SAMPLING_OFF) { | |
226 | BUF_INFO(PERF_PET_END, SAMPLE_OFF); | |
227 | return; | |
228 | } else if (status == KPERF_SAMPLING_SHUTDOWN) { | |
229 | BUF_INFO(PERF_PET_END, SAMPLE_SHUTDOWN); | |
230 | return; | |
231 | } | |
232 | ||
233 | timer = &(kperf_timerv[pet_timer_id]); | |
234 | ||
235 | /* if we re-programmed the timer to zero, just drop it */ | |
236 | if (!timer->period) { | |
237 | return; | |
238 | } | |
239 | ||
240 | /* subtract the time the pet sample took being careful not to underflow */ | |
241 | if (timer->period > elapsed_ticks) { | |
242 | period = timer->period - elapsed_ticks; | |
243 | } | |
244 | ||
245 | /* make sure we don't set the next PET sample to happen too soon */ | |
246 | if (period < min_period_pet_abstime) { | |
247 | period = min_period_pet_abstime; | |
248 | } | |
249 | ||
250 | /* we probably took so long in the PET thread, it makes sense to take | |
251 | * the time again. | |
252 | */ | |
253 | deadline = mach_absolute_time() + period; | |
254 | ||
255 | BUF_INFO(PERF_PET_SCHED, timer->period, period, elapsed_ticks, deadline); | |
256 | ||
257 | /* re-schedule the timer, making sure we don't apply slop */ | |
258 | timer_call_enter(&(timer->tcall), deadline, TIMER_CALL_SYS_CRITICAL); | |
259 | ||
260 | return; | |
261 | } | |
262 | ||
263 | /* turn on all the timers */ | |
264 | void | |
265 | kperf_timer_go(void) | |
266 | { | |
267 | /* get the PET thread going */ | |
268 | if (pet_timer_id < kperf_timerc) { | |
269 | kperf_pet_config(kperf_timerv[pet_timer_id].actionid); | |
270 | } | |
271 | ||
272 | uint64_t now = mach_absolute_time(); | |
273 | ||
274 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
275 | if (kperf_timerv[i].period == 0) { | |
276 | continue; | |
277 | } | |
278 | ||
279 | kperf_timer_schedule(&(kperf_timerv[i]), now); | |
280 | } | |
281 | } | |
282 | ||
283 | void | |
284 | kperf_timer_stop(void) | |
285 | { | |
286 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
287 | if (kperf_timerv[i].period == 0) { | |
288 | continue; | |
289 | } | |
290 | ||
291 | /* wait for the timer to stop */ | |
292 | while (kperf_timerv[i].active); | |
293 | ||
294 | timer_call_cancel(&(kperf_timerv[i].tcall)); | |
295 | } | |
296 | ||
297 | /* wait for PET to stop, too */ | |
298 | kperf_pet_config(0); | |
299 | } | |
300 | ||
301 | unsigned int | |
302 | kperf_timer_get_petid(void) | |
303 | { | |
304 | return pet_timer_id; | |
305 | } | |
306 | ||
307 | int | |
308 | kperf_timer_set_petid(unsigned int timerid) | |
309 | { | |
310 | if (timerid < kperf_timerc) { | |
311 | uint64_t min_period; | |
312 | ||
313 | min_period = kperf_timer_min_pet_period_abstime(); | |
314 | if (kperf_timerv[timerid].period < min_period) { | |
315 | kperf_timerv[timerid].period = min_period; | |
316 | } | |
317 | kperf_pet_config(kperf_timerv[timerid].actionid); | |
318 | } else { | |
319 | /* clear the PET trigger if it's a bogus ID */ | |
320 | kperf_pet_config(0); | |
321 | } | |
322 | ||
323 | pet_timer_id = timerid; | |
324 | ||
325 | return 0; | |
326 | } | |
327 | ||
328 | int | |
329 | kperf_timer_get_period(unsigned int timerid, uint64_t *period_abstime) | |
330 | { | |
331 | if (timerid >= kperf_timerc) { | |
332 | return EINVAL; | |
333 | } | |
334 | ||
335 | *period_abstime = kperf_timerv[timerid].period; | |
336 | return 0; | |
337 | } | |
338 | ||
339 | int | |
340 | kperf_timer_set_period(unsigned int timerid, uint64_t period_abstime) | |
341 | { | |
342 | uint64_t min_period; | |
343 | ||
344 | if (timerid >= kperf_timerc) { | |
345 | return EINVAL; | |
346 | } | |
347 | ||
348 | if (pet_timer_id == timerid) { | |
349 | min_period = kperf_timer_min_pet_period_abstime(); | |
350 | } else { | |
351 | min_period = kperf_timer_min_period_abstime(); | |
352 | } | |
353 | ||
354 | if (period_abstime > 0 && period_abstime < min_period) { | |
355 | period_abstime = min_period; | |
356 | } | |
357 | ||
358 | kperf_timerv[timerid].period = period_abstime; | |
359 | ||
360 | /* FIXME: re-program running timers? */ | |
361 | ||
362 | return 0; | |
363 | } | |
364 | ||
365 | int | |
366 | kperf_timer_get_action(unsigned int timerid, uint32_t *action) | |
367 | { | |
368 | if (timerid >= kperf_timerc) { | |
369 | return EINVAL; | |
370 | } | |
371 | ||
372 | *action = kperf_timerv[timerid].actionid; | |
373 | return 0; | |
374 | } | |
375 | ||
376 | int | |
377 | kperf_timer_set_action(unsigned int timerid, uint32_t action) | |
378 | { | |
379 | if (timerid >= kperf_timerc) { | |
380 | return EINVAL; | |
381 | } | |
382 | ||
383 | kperf_timerv[timerid].actionid = action; | |
384 | return 0; | |
385 | } | |
386 | ||
387 | unsigned int | |
388 | kperf_timer_get_count(void) | |
389 | { | |
390 | return kperf_timerc; | |
391 | } | |
392 | ||
393 | void | |
394 | kperf_timer_reset(void) | |
395 | { | |
396 | kperf_timer_set_petid(999); | |
397 | kperf_set_pet_idle_rate(KPERF_PET_DEFAULT_IDLE_RATE); | |
398 | kperf_set_lightweight_pet(0); | |
399 | for (unsigned int i = 0; i < kperf_timerc; i++) { | |
400 | kperf_timerv[i].period = 0; | |
401 | kperf_timerv[i].actionid = 0; | |
402 | #if defined(__x86_64__) | |
403 | kperf_timerv[i].pending_cpus = 0; | |
404 | #endif /* defined(__x86_64__) */ | |
405 | } | |
406 | } | |
407 | ||
408 | extern int | |
409 | kperf_timer_set_count(unsigned int count) | |
410 | { | |
411 | struct kperf_timer *new_timerv = NULL, *old_timerv = NULL; | |
412 | unsigned int old_count; | |
413 | ||
414 | if (min_period_abstime == 0) { | |
415 | nanoseconds_to_absolutetime(MIN_PERIOD_NS, &min_period_abstime); | |
416 | nanoseconds_to_absolutetime(MIN_PERIOD_BG_NS, &min_period_bg_abstime); | |
417 | nanoseconds_to_absolutetime(MIN_PERIOD_PET_NS, &min_period_pet_abstime); | |
418 | nanoseconds_to_absolutetime(MIN_PERIOD_PET_BG_NS, | |
419 | &min_period_pet_bg_abstime); | |
420 | assert(min_period_abstime > 0); | |
421 | } | |
422 | ||
423 | if (count == kperf_timerc) { | |
424 | return 0; | |
425 | } | |
426 | if (count > TIMER_MAX) { | |
427 | return EINVAL; | |
428 | } | |
429 | ||
430 | /* TODO: allow shrinking? */ | |
431 | if (count < kperf_timerc) { | |
432 | return EINVAL; | |
433 | } | |
434 | ||
435 | /* | |
436 | * Make sure kperf is initialized when creating the array for the first | |
437 | * time. | |
438 | */ | |
439 | if (kperf_timerc == 0) { | |
440 | int r; | |
441 | ||
442 | /* main kperf */ | |
443 | if ((r = kperf_init())) { | |
444 | return r; | |
445 | } | |
446 | } | |
447 | ||
448 | /* | |
449 | * Shut down any running timers since we will be messing with the timer | |
450 | * call structures. | |
451 | */ | |
452 | kperf_timer_stop(); | |
453 | ||
454 | /* create a new array */ | |
455 | new_timerv = kalloc_tag(count * sizeof(struct kperf_timer), | |
456 | VM_KERN_MEMORY_DIAG); | |
457 | if (new_timerv == NULL) { | |
458 | return ENOMEM; | |
459 | } | |
460 | old_timerv = kperf_timerv; | |
461 | old_count = kperf_timerc; | |
462 | ||
463 | if (old_timerv != NULL) { | |
464 | bcopy(kperf_timerv, new_timerv, | |
465 | kperf_timerc * sizeof(struct kperf_timer)); | |
466 | } | |
467 | ||
468 | /* zero the new entries */ | |
469 | bzero(&(new_timerv[kperf_timerc]), | |
470 | (count - old_count) * sizeof(struct kperf_timer)); | |
471 | ||
472 | /* (re-)setup the timer call info for all entries */ | |
473 | for (unsigned int i = 0; i < count; i++) { | |
474 | timer_call_setup(&(new_timerv[i].tcall), kperf_timer_handler, &(new_timerv[i])); | |
475 | } | |
476 | ||
477 | kperf_timerv = new_timerv; | |
478 | kperf_timerc = count; | |
479 | ||
480 | if (old_timerv != NULL) { | |
481 | kfree(old_timerv, old_count * sizeof(struct kperf_timer)); | |
482 | } | |
483 | ||
484 | return 0; | |
485 | } |