]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_object.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Virtual memory object module. | |
63 | */ | |
64 | ||
2d21ac55 | 65 | #include <debug.h> |
1c79356b A |
66 | #include <mach_pagemap.h> |
67 | #include <task_swapper.h> | |
68 | ||
0b4e3aa0 | 69 | #include <mach/mach_types.h> |
1c79356b A |
70 | #include <mach/memory_object.h> |
71 | #include <mach/memory_object_default.h> | |
72 | #include <mach/memory_object_control_server.h> | |
73 | #include <mach/vm_param.h> | |
91447636 A |
74 | |
75 | #include <ipc/ipc_types.h> | |
1c79356b | 76 | #include <ipc/ipc_port.h> |
91447636 A |
77 | |
78 | #include <kern/kern_types.h> | |
1c79356b A |
79 | #include <kern/assert.h> |
80 | #include <kern/lock.h> | |
81 | #include <kern/queue.h> | |
82 | #include <kern/xpr.h> | |
83 | #include <kern/zalloc.h> | |
84 | #include <kern/host.h> | |
85 | #include <kern/host_statistics.h> | |
86 | #include <kern/processor.h> | |
91447636 A |
87 | #include <kern/misc_protos.h> |
88 | ||
1c79356b A |
89 | #include <vm/memory_object.h> |
90 | #include <vm/vm_fault.h> | |
91 | #include <vm/vm_map.h> | |
92 | #include <vm/vm_object.h> | |
93 | #include <vm/vm_page.h> | |
94 | #include <vm/vm_pageout.h> | |
91447636 | 95 | #include <vm/vm_protos.h> |
2d21ac55 | 96 | #include <vm/vm_purgeable_internal.h> |
1c79356b | 97 | |
1c79356b A |
98 | /* |
99 | * Virtual memory objects maintain the actual data | |
100 | * associated with allocated virtual memory. A given | |
101 | * page of memory exists within exactly one object. | |
102 | * | |
103 | * An object is only deallocated when all "references" | |
0b4e3aa0 | 104 | * are given up. |
1c79356b A |
105 | * |
106 | * Associated with each object is a list of all resident | |
107 | * memory pages belonging to that object; this list is | |
108 | * maintained by the "vm_page" module, but locked by the object's | |
109 | * lock. | |
110 | * | |
0b4e3aa0 | 111 | * Each object also records the memory object reference |
1c79356b | 112 | * that is used by the kernel to request and write |
0b4e3aa0 | 113 | * back data (the memory object, field "pager"), etc... |
1c79356b A |
114 | * |
115 | * Virtual memory objects are allocated to provide | |
116 | * zero-filled memory (vm_allocate) or map a user-defined | |
117 | * memory object into a virtual address space (vm_map). | |
118 | * | |
119 | * Virtual memory objects that refer to a user-defined | |
120 | * memory object are called "permanent", because all changes | |
121 | * made in virtual memory are reflected back to the | |
122 | * memory manager, which may then store it permanently. | |
123 | * Other virtual memory objects are called "temporary", | |
124 | * meaning that changes need be written back only when | |
125 | * necessary to reclaim pages, and that storage associated | |
126 | * with the object can be discarded once it is no longer | |
127 | * mapped. | |
128 | * | |
129 | * A permanent memory object may be mapped into more | |
130 | * than one virtual address space. Moreover, two threads | |
131 | * may attempt to make the first mapping of a memory | |
132 | * object concurrently. Only one thread is allowed to | |
133 | * complete this mapping; all others wait for the | |
134 | * "pager_initialized" field is asserted, indicating | |
135 | * that the first thread has initialized all of the | |
136 | * necessary fields in the virtual memory object structure. | |
137 | * | |
138 | * The kernel relies on a *default memory manager* to | |
139 | * provide backing storage for the zero-filled virtual | |
0b4e3aa0 | 140 | * memory objects. The pager memory objects associated |
1c79356b | 141 | * with these temporary virtual memory objects are only |
0b4e3aa0 A |
142 | * requested from the default memory manager when it |
143 | * becomes necessary. Virtual memory objects | |
1c79356b A |
144 | * that depend on the default memory manager are called |
145 | * "internal". The "pager_created" field is provided to | |
146 | * indicate whether these ports have ever been allocated. | |
147 | * | |
148 | * The kernel may also create virtual memory objects to | |
149 | * hold changed pages after a copy-on-write operation. | |
150 | * In this case, the virtual memory object (and its | |
151 | * backing storage -- its memory object) only contain | |
152 | * those pages that have been changed. The "shadow" | |
153 | * field refers to the virtual memory object that contains | |
154 | * the remainder of the contents. The "shadow_offset" | |
155 | * field indicates where in the "shadow" these contents begin. | |
156 | * The "copy" field refers to a virtual memory object | |
157 | * to which changed pages must be copied before changing | |
158 | * this object, in order to implement another form | |
159 | * of copy-on-write optimization. | |
160 | * | |
161 | * The virtual memory object structure also records | |
162 | * the attributes associated with its memory object. | |
163 | * The "pager_ready", "can_persist" and "copy_strategy" | |
164 | * fields represent those attributes. The "cached_list" | |
165 | * field is used in the implementation of the persistence | |
166 | * attribute. | |
167 | * | |
168 | * ZZZ Continue this comment. | |
169 | */ | |
170 | ||
171 | /* Forward declarations for internal functions. */ | |
0b4e3aa0 | 172 | static kern_return_t vm_object_terminate( |
1c79356b A |
173 | vm_object_t object); |
174 | ||
175 | extern void vm_object_remove( | |
176 | vm_object_t object); | |
177 | ||
0b4e3aa0 | 178 | static vm_object_t vm_object_cache_trim( |
1c79356b A |
179 | boolean_t called_from_vm_object_deallocate); |
180 | ||
0b4e3aa0 | 181 | static void vm_object_deactivate_all_pages( |
1c79356b A |
182 | vm_object_t object); |
183 | ||
0b4e3aa0 | 184 | static kern_return_t vm_object_copy_call( |
1c79356b A |
185 | vm_object_t src_object, |
186 | vm_object_offset_t src_offset, | |
187 | vm_object_size_t size, | |
188 | vm_object_t *_result_object); | |
189 | ||
0b4e3aa0 | 190 | static void vm_object_do_collapse( |
1c79356b A |
191 | vm_object_t object, |
192 | vm_object_t backing_object); | |
193 | ||
0b4e3aa0 | 194 | static void vm_object_do_bypass( |
1c79356b A |
195 | vm_object_t object, |
196 | vm_object_t backing_object); | |
197 | ||
0b4e3aa0 A |
198 | static void vm_object_release_pager( |
199 | memory_object_t pager); | |
1c79356b | 200 | |
0b4e3aa0 | 201 | static zone_t vm_object_zone; /* vm backing store zone */ |
1c79356b A |
202 | |
203 | /* | |
204 | * All wired-down kernel memory belongs to a single virtual | |
205 | * memory object (kernel_object) to avoid wasting data structures. | |
206 | */ | |
0b4e3aa0 | 207 | static struct vm_object kernel_object_store; |
0c530ab8 | 208 | vm_object_t kernel_object; |
1c79356b | 209 | |
2d21ac55 | 210 | |
1c79356b A |
211 | /* |
212 | * The submap object is used as a placeholder for vm_map_submap | |
213 | * operations. The object is declared in vm_map.c because it | |
214 | * is exported by the vm_map module. The storage is declared | |
215 | * here because it must be initialized here. | |
216 | */ | |
0b4e3aa0 | 217 | static struct vm_object vm_submap_object_store; |
1c79356b A |
218 | |
219 | /* | |
220 | * Virtual memory objects are initialized from | |
221 | * a template (see vm_object_allocate). | |
222 | * | |
223 | * When adding a new field to the virtual memory | |
224 | * object structure, be sure to add initialization | |
0b4e3aa0 | 225 | * (see _vm_object_allocate()). |
1c79356b | 226 | */ |
0b4e3aa0 | 227 | static struct vm_object vm_object_template; |
1c79356b A |
228 | |
229 | /* | |
230 | * Virtual memory objects that are not referenced by | |
231 | * any address maps, but that are allowed to persist | |
232 | * (an attribute specified by the associated memory manager), | |
233 | * are kept in a queue (vm_object_cached_list). | |
234 | * | |
235 | * When an object from this queue is referenced again, | |
236 | * for example to make another address space mapping, | |
237 | * it must be removed from the queue. That is, the | |
238 | * queue contains *only* objects with zero references. | |
239 | * | |
240 | * The kernel may choose to terminate objects from this | |
241 | * queue in order to reclaim storage. The current policy | |
242 | * is to permit a fixed maximum number of unreferenced | |
243 | * objects (vm_object_cached_max). | |
244 | * | |
245 | * A spin lock (accessed by routines | |
246 | * vm_object_cache_{lock,lock_try,unlock}) governs the | |
247 | * object cache. It must be held when objects are | |
248 | * added to or removed from the cache (in vm_object_terminate). | |
249 | * The routines that acquire a reference to a virtual | |
250 | * memory object based on one of the memory object ports | |
251 | * must also lock the cache. | |
252 | * | |
253 | * Ideally, the object cache should be more isolated | |
254 | * from the reference mechanism, so that the lock need | |
255 | * not be held to make simple references. | |
256 | */ | |
0b4e3aa0 | 257 | static queue_head_t vm_object_cached_list; |
9bccf70c | 258 | static int vm_object_cached_count=0; |
0b4e3aa0 A |
259 | static int vm_object_cached_high; /* highest # cached objects */ |
260 | static int vm_object_cached_max = 512; /* may be patched*/ | |
1c79356b | 261 | |
0b4e3aa0 | 262 | static decl_mutex_data(,vm_object_cached_lock_data) |
1c79356b A |
263 | |
264 | #define vm_object_cache_lock() \ | |
265 | mutex_lock(&vm_object_cached_lock_data) | |
266 | #define vm_object_cache_lock_try() \ | |
267 | mutex_try(&vm_object_cached_lock_data) | |
268 | #define vm_object_cache_unlock() \ | |
269 | mutex_unlock(&vm_object_cached_lock_data) | |
270 | ||
271 | #define VM_OBJECT_HASH_COUNT 1024 | |
0b4e3aa0 A |
272 | static queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT]; |
273 | static struct zone *vm_object_hash_zone; | |
1c79356b A |
274 | |
275 | struct vm_object_hash_entry { | |
276 | queue_chain_t hash_link; /* hash chain link */ | |
0b4e3aa0 | 277 | memory_object_t pager; /* pager we represent */ |
1c79356b A |
278 | vm_object_t object; /* corresponding object */ |
279 | boolean_t waiting; /* someone waiting for | |
280 | * termination */ | |
281 | }; | |
282 | ||
283 | typedef struct vm_object_hash_entry *vm_object_hash_entry_t; | |
284 | #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0) | |
285 | ||
286 | #define VM_OBJECT_HASH_SHIFT 8 | |
287 | #define vm_object_hash(pager) \ | |
288 | ((((unsigned)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT) | |
289 | ||
91447636 A |
290 | void vm_object_hash_entry_free( |
291 | vm_object_hash_entry_t entry); | |
292 | ||
8f6c56a5 A |
293 | static void vm_object_reap(vm_object_t object); |
294 | static void vm_object_reap_async(vm_object_t object); | |
295 | static void vm_object_reaper_thread(void); | |
296 | static queue_head_t vm_object_reaper_queue; /* protected by vm_object_cache_lock() */ | |
297 | unsigned int vm_object_reap_count = 0; | |
298 | unsigned int vm_object_reap_count_async = 0; | |
299 | ||
1c79356b A |
300 | /* |
301 | * vm_object_hash_lookup looks up a pager in the hashtable | |
302 | * and returns the corresponding entry, with optional removal. | |
303 | */ | |
304 | ||
0b4e3aa0 | 305 | static vm_object_hash_entry_t |
1c79356b | 306 | vm_object_hash_lookup( |
0b4e3aa0 | 307 | memory_object_t pager, |
1c79356b A |
308 | boolean_t remove_entry) |
309 | { | |
310 | register queue_t bucket; | |
311 | register vm_object_hash_entry_t entry; | |
312 | ||
313 | bucket = &vm_object_hashtable[vm_object_hash(pager)]; | |
314 | ||
315 | entry = (vm_object_hash_entry_t)queue_first(bucket); | |
316 | while (!queue_end(bucket, (queue_entry_t)entry)) { | |
317 | if (entry->pager == pager && !remove_entry) | |
318 | return(entry); | |
319 | else if (entry->pager == pager) { | |
320 | queue_remove(bucket, entry, | |
321 | vm_object_hash_entry_t, hash_link); | |
322 | return(entry); | |
323 | } | |
324 | ||
325 | entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link); | |
326 | } | |
327 | ||
328 | return(VM_OBJECT_HASH_ENTRY_NULL); | |
329 | } | |
330 | ||
331 | /* | |
332 | * vm_object_hash_enter enters the specified | |
333 | * pager / cache object association in the hashtable. | |
334 | */ | |
335 | ||
0b4e3aa0 | 336 | static void |
1c79356b A |
337 | vm_object_hash_insert( |
338 | vm_object_hash_entry_t entry) | |
339 | { | |
340 | register queue_t bucket; | |
341 | ||
342 | bucket = &vm_object_hashtable[vm_object_hash(entry->pager)]; | |
343 | ||
344 | queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link); | |
345 | } | |
346 | ||
0b4e3aa0 | 347 | static vm_object_hash_entry_t |
1c79356b | 348 | vm_object_hash_entry_alloc( |
0b4e3aa0 | 349 | memory_object_t pager) |
1c79356b A |
350 | { |
351 | vm_object_hash_entry_t entry; | |
352 | ||
353 | entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone); | |
354 | entry->pager = pager; | |
355 | entry->object = VM_OBJECT_NULL; | |
356 | entry->waiting = FALSE; | |
357 | ||
358 | return(entry); | |
359 | } | |
360 | ||
361 | void | |
362 | vm_object_hash_entry_free( | |
363 | vm_object_hash_entry_t entry) | |
364 | { | |
91447636 | 365 | zfree(vm_object_hash_zone, entry); |
1c79356b A |
366 | } |
367 | ||
368 | /* | |
369 | * vm_object_allocate: | |
370 | * | |
371 | * Returns a new object with the given size. | |
372 | */ | |
373 | ||
91447636 | 374 | __private_extern__ void |
1c79356b A |
375 | _vm_object_allocate( |
376 | vm_object_size_t size, | |
377 | vm_object_t object) | |
378 | { | |
379 | XPR(XPR_VM_OBJECT, | |
380 | "vm_object_allocate, object 0x%X size 0x%X\n", | |
381 | (integer_t)object, size, 0,0,0); | |
382 | ||
383 | *object = vm_object_template; | |
384 | queue_init(&object->memq); | |
385 | queue_init(&object->msr_q); | |
91447636 | 386 | #ifdef UPL_DEBUG |
1c79356b | 387 | queue_init(&object->uplq); |
91447636 | 388 | #endif /* UPL_DEBUG */ |
1c79356b A |
389 | vm_object_lock_init(object); |
390 | object->size = size; | |
391 | } | |
392 | ||
0b4e3aa0 | 393 | __private_extern__ vm_object_t |
1c79356b A |
394 | vm_object_allocate( |
395 | vm_object_size_t size) | |
396 | { | |
397 | register vm_object_t object; | |
1c79356b A |
398 | |
399 | object = (vm_object_t) zalloc(vm_object_zone); | |
400 | ||
0b4e3aa0 A |
401 | // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */ |
402 | ||
403 | if (object != VM_OBJECT_NULL) | |
404 | _vm_object_allocate(size, object); | |
1c79356b A |
405 | |
406 | return object; | |
407 | } | |
408 | ||
2d21ac55 A |
409 | |
410 | lck_grp_t vm_object_lck_grp; | |
411 | lck_grp_attr_t vm_object_lck_grp_attr; | |
412 | lck_attr_t vm_object_lck_attr; | |
413 | lck_attr_t kernel_object_lck_attr; | |
414 | ||
1c79356b A |
415 | /* |
416 | * vm_object_bootstrap: | |
417 | * | |
418 | * Initialize the VM objects module. | |
419 | */ | |
0b4e3aa0 | 420 | __private_extern__ void |
1c79356b A |
421 | vm_object_bootstrap(void) |
422 | { | |
91447636 | 423 | register int i; |
1c79356b A |
424 | |
425 | vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object), | |
55e303ae A |
426 | round_page_32(512*1024), |
427 | round_page_32(12*1024), | |
1c79356b A |
428 | "vm objects"); |
429 | ||
6601e61a | 430 | queue_init(&vm_object_reaper_queue); |
1c79356b | 431 | queue_init(&vm_object_cached_list); |
91447636 | 432 | mutex_init(&vm_object_cached_lock_data, 0); |
1c79356b A |
433 | |
434 | vm_object_hash_zone = | |
435 | zinit((vm_size_t) sizeof (struct vm_object_hash_entry), | |
55e303ae A |
436 | round_page_32(512*1024), |
437 | round_page_32(12*1024), | |
1c79356b A |
438 | "vm object hash entries"); |
439 | ||
440 | for (i = 0; i < VM_OBJECT_HASH_COUNT; i++) | |
441 | queue_init(&vm_object_hashtable[i]); | |
442 | ||
2d21ac55 A |
443 | vm_object_init_lck_grp(); |
444 | ||
1c79356b A |
445 | /* |
446 | * Fill in a template object, for quick initialization | |
447 | */ | |
448 | ||
449 | /* memq; Lock; init after allocation */ | |
2d21ac55 A |
450 | vm_object_template.memq.prev = NULL; |
451 | vm_object_template.memq.next = NULL; | |
452 | #if 0 | |
453 | /* | |
454 | * We can't call vm_object_lock_init() here because that will | |
455 | * allocate some memory and VM is not fully initialized yet. | |
456 | * The lock will be initialized for each allocate object in | |
457 | * _vm_object_allocate(), so we don't need to initialize it in | |
458 | * the vm_object_template. | |
459 | */ | |
460 | vm_object_lock_init(&vm_object_template); | |
461 | #endif | |
1c79356b | 462 | vm_object_template.size = 0; |
91447636 | 463 | vm_object_template.memq_hint = VM_PAGE_NULL; |
1c79356b A |
464 | vm_object_template.ref_count = 1; |
465 | #if TASK_SWAPPER | |
466 | vm_object_template.res_count = 1; | |
467 | #endif /* TASK_SWAPPER */ | |
468 | vm_object_template.resident_page_count = 0; | |
469 | vm_object_template.copy = VM_OBJECT_NULL; | |
470 | vm_object_template.shadow = VM_OBJECT_NULL; | |
471 | vm_object_template.shadow_offset = (vm_object_offset_t) 0; | |
0b4e3aa0 | 472 | vm_object_template.pager = MEMORY_OBJECT_NULL; |
1c79356b | 473 | vm_object_template.paging_offset = 0; |
91447636 | 474 | vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL; |
1c79356b | 475 | vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC; |
1c79356b A |
476 | vm_object_template.paging_in_progress = 0; |
477 | ||
478 | /* Begin bitfields */ | |
479 | vm_object_template.all_wanted = 0; /* all bits FALSE */ | |
480 | vm_object_template.pager_created = FALSE; | |
481 | vm_object_template.pager_initialized = FALSE; | |
482 | vm_object_template.pager_ready = FALSE; | |
483 | vm_object_template.pager_trusted = FALSE; | |
484 | vm_object_template.can_persist = FALSE; | |
485 | vm_object_template.internal = TRUE; | |
486 | vm_object_template.temporary = TRUE; | |
487 | vm_object_template.private = FALSE; | |
488 | vm_object_template.pageout = FALSE; | |
489 | vm_object_template.alive = TRUE; | |
2d21ac55 A |
490 | vm_object_template.purgable = VM_PURGABLE_DENY; |
491 | vm_object_template.shadowed = FALSE; | |
1c79356b A |
492 | vm_object_template.silent_overwrite = FALSE; |
493 | vm_object_template.advisory_pageout = FALSE; | |
2d21ac55 | 494 | vm_object_template.true_share = FALSE; |
1c79356b | 495 | vm_object_template.terminating = FALSE; |
2d21ac55 | 496 | vm_object_template.named = FALSE; |
1c79356b A |
497 | vm_object_template.shadow_severed = FALSE; |
498 | vm_object_template.phys_contiguous = FALSE; | |
0b4e3aa0 | 499 | vm_object_template.nophyscache = FALSE; |
1c79356b A |
500 | /* End bitfields */ |
501 | ||
2d21ac55 A |
502 | vm_object_template.cached_list.prev = NULL; |
503 | vm_object_template.cached_list.next = NULL; | |
504 | vm_object_template.msr_q.prev = NULL; | |
505 | vm_object_template.msr_q.next = NULL; | |
506 | ||
1c79356b | 507 | vm_object_template.last_alloc = (vm_object_offset_t) 0; |
2d21ac55 A |
508 | vm_object_template.sequential = (vm_object_offset_t) 0; |
509 | vm_object_template.pages_created = 0; | |
510 | vm_object_template.pages_used = 0; | |
511 | ||
1c79356b A |
512 | #if MACH_PAGEMAP |
513 | vm_object_template.existence_map = VM_EXTERNAL_NULL; | |
514 | #endif /* MACH_PAGEMAP */ | |
2d21ac55 | 515 | vm_object_template.cow_hint = ~(vm_offset_t)0; |
1c79356b A |
516 | #if MACH_ASSERT |
517 | vm_object_template.paging_object = VM_OBJECT_NULL; | |
518 | #endif /* MACH_ASSERT */ | |
519 | ||
2d21ac55 A |
520 | /* cache bitfields */ |
521 | vm_object_template.wimg_bits = VM_WIMG_DEFAULT; | |
522 | vm_object_template.code_signed = FALSE; | |
593a1d5f | 523 | vm_object_template.mapping_in_progress = FALSE; |
2d21ac55 A |
524 | vm_object_template.not_in_use = 0; |
525 | #ifdef UPL_DEBUG | |
526 | vm_object_template.uplq.prev = NULL; | |
527 | vm_object_template.uplq.next = NULL; | |
528 | #endif /* UPL_DEBUG */ | |
529 | #ifdef VM_PIP_DEBUG | |
530 | bzero(&vm_object_template.pip_holders, | |
531 | sizeof (vm_object_template.pip_holders)); | |
532 | #endif /* VM_PIP_DEBUG */ | |
533 | ||
534 | vm_object_template.objq.next=NULL; | |
535 | vm_object_template.objq.prev=NULL; | |
536 | ||
537 | ||
1c79356b A |
538 | /* |
539 | * Initialize the "kernel object" | |
540 | */ | |
541 | ||
542 | kernel_object = &kernel_object_store; | |
543 | ||
544 | /* | |
545 | * Note that in the following size specifications, we need to add 1 because | |
55e303ae | 546 | * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size. |
1c79356b | 547 | */ |
55e303ae A |
548 | |
549 | #ifdef ppc | |
550 | _vm_object_allocate((vm_last_addr - VM_MIN_KERNEL_ADDRESS) + 1, | |
551 | kernel_object); | |
552 | #else | |
1c79356b A |
553 | _vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1, |
554 | kernel_object); | |
55e303ae A |
555 | #endif |
556 | kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
1c79356b A |
557 | |
558 | /* | |
559 | * Initialize the "submap object". Make it as large as the | |
560 | * kernel object so that no limit is imposed on submap sizes. | |
561 | */ | |
562 | ||
563 | vm_submap_object = &vm_submap_object_store; | |
55e303ae A |
564 | #ifdef ppc |
565 | _vm_object_allocate((vm_last_addr - VM_MIN_KERNEL_ADDRESS) + 1, | |
566 | vm_submap_object); | |
567 | #else | |
1c79356b A |
568 | _vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1, |
569 | vm_submap_object); | |
55e303ae A |
570 | #endif |
571 | vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
572 | ||
1c79356b A |
573 | /* |
574 | * Create an "extra" reference to this object so that we never | |
575 | * try to deallocate it; zfree doesn't like to be called with | |
576 | * non-zone memory. | |
577 | */ | |
578 | vm_object_reference(vm_submap_object); | |
579 | ||
580 | #if MACH_PAGEMAP | |
581 | vm_external_module_initialize(); | |
582 | #endif /* MACH_PAGEMAP */ | |
583 | } | |
584 | ||
8f6c56a5 A |
585 | void |
586 | vm_object_reaper_init(void) | |
587 | { | |
588 | kern_return_t kr; | |
589 | thread_t thread; | |
590 | ||
8f6c56a5 A |
591 | kr = kernel_thread_start_priority( |
592 | (thread_continue_t) vm_object_reaper_thread, | |
593 | NULL, | |
594 | BASEPRI_PREEMPT - 1, | |
595 | &thread); | |
596 | if (kr != KERN_SUCCESS) { | |
2d21ac55 | 597 | panic("failed to launch vm_object_reaper_thread kr=0x%x", kr); |
8f6c56a5 A |
598 | } |
599 | thread_deallocate(thread); | |
600 | } | |
601 | ||
0b4e3aa0 | 602 | __private_extern__ void |
1c79356b A |
603 | vm_object_init(void) |
604 | { | |
605 | /* | |
606 | * Finish initializing the kernel object. | |
607 | */ | |
608 | } | |
609 | ||
2d21ac55 A |
610 | |
611 | __private_extern__ void | |
612 | vm_object_init_lck_grp(void) | |
613 | { | |
614 | /* | |
615 | * initialze the vm_object lock world | |
616 | */ | |
617 | lck_grp_attr_setdefault(&vm_object_lck_grp_attr); | |
618 | lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr); | |
619 | lck_attr_setdefault(&vm_object_lck_attr); | |
620 | lck_attr_setdefault(&kernel_object_lck_attr); | |
621 | lck_attr_cleardebug(&kernel_object_lck_attr); | |
622 | } | |
623 | ||
1c79356b A |
624 | |
625 | #define MIGHT_NOT_CACHE_SHADOWS 1 | |
626 | #if MIGHT_NOT_CACHE_SHADOWS | |
0b4e3aa0 | 627 | static int cache_shadows = TRUE; |
1c79356b A |
628 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ |
629 | ||
630 | /* | |
631 | * vm_object_deallocate: | |
632 | * | |
633 | * Release a reference to the specified object, | |
634 | * gained either through a vm_object_allocate | |
635 | * or a vm_object_reference call. When all references | |
636 | * are gone, storage associated with this object | |
637 | * may be relinquished. | |
638 | * | |
639 | * No object may be locked. | |
640 | */ | |
2d21ac55 A |
641 | unsigned long vm_object_deallocate_shared_successes = 0; |
642 | unsigned long vm_object_deallocate_shared_failures = 0; | |
643 | unsigned long vm_object_deallocate_shared_swap_failures = 0; | |
0b4e3aa0 | 644 | __private_extern__ void |
1c79356b A |
645 | vm_object_deallocate( |
646 | register vm_object_t object) | |
647 | { | |
2d21ac55 A |
648 | boolean_t retry_cache_trim = FALSE; |
649 | vm_object_t shadow = VM_OBJECT_NULL; | |
650 | uint32_t try_failed_count = 0; | |
1c79356b A |
651 | |
652 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ | |
653 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ | |
654 | ||
2d21ac55 A |
655 | if (object == VM_OBJECT_NULL) |
656 | return; | |
657 | ||
658 | if (object == kernel_object) { | |
659 | vm_object_lock(kernel_object); | |
660 | kernel_object->ref_count--; | |
661 | if (kernel_object->ref_count == 0) { | |
662 | panic("vm_object_deallocate: losing kernel_object\n"); | |
663 | } | |
664 | vm_object_unlock(kernel_object); | |
665 | return; | |
666 | } | |
667 | ||
668 | if (object->ref_count > 2 || | |
669 | (!object->named && object->ref_count > 1)) { | |
670 | UInt32 original_ref_count; | |
671 | volatile UInt32 *ref_count_p; | |
672 | Boolean atomic_swap; | |
673 | ||
674 | /* | |
675 | * The object currently looks like it is not being | |
676 | * kept alive solely by the reference we're about to release. | |
677 | * Let's try and release our reference without taking | |
678 | * all the locks we would need if we had to terminate the | |
679 | * object (cache lock + exclusive object lock). | |
680 | * Lock the object "shared" to make sure we don't race with | |
681 | * anyone holding it "exclusive". | |
682 | */ | |
683 | vm_object_lock_shared(object); | |
684 | ref_count_p = (volatile UInt32 *) &object->ref_count; | |
685 | original_ref_count = object->ref_count; | |
686 | /* | |
687 | * Test again as "ref_count" could have changed. | |
688 | * "named" shouldn't change. | |
689 | */ | |
690 | if (original_ref_count > 2 || | |
691 | (!object->named && original_ref_count > 1)) { | |
692 | atomic_swap = OSCompareAndSwap( | |
693 | original_ref_count, | |
694 | original_ref_count - 1, | |
695 | (UInt32 *) &object->ref_count); | |
696 | if (atomic_swap == FALSE) { | |
697 | vm_object_deallocate_shared_swap_failures++; | |
698 | } | |
699 | ||
700 | } else { | |
701 | atomic_swap = FALSE; | |
702 | } | |
703 | vm_object_unlock(object); | |
704 | ||
705 | if (atomic_swap) { | |
706 | /* ref_count was updated atomically ! */ | |
707 | vm_object_deallocate_shared_successes++; | |
708 | return; | |
709 | } | |
710 | ||
711 | /* | |
712 | * Someone else updated the ref_count at the same | |
713 | * time and we lost the race. Fall back to the usual | |
714 | * slow but safe path... | |
715 | */ | |
716 | vm_object_deallocate_shared_failures++; | |
717 | } | |
1c79356b A |
718 | |
719 | while (object != VM_OBJECT_NULL) { | |
720 | ||
721 | /* | |
722 | * The cache holds a reference (uncounted) to | |
723 | * the object; we must lock it before removing | |
724 | * the object. | |
725 | */ | |
55e303ae A |
726 | for (;;) { |
727 | vm_object_cache_lock(); | |
1c79356b | 728 | |
55e303ae A |
729 | /* |
730 | * if we try to take a regular lock here | |
731 | * we risk deadlocking against someone | |
732 | * holding a lock on this object while | |
733 | * trying to vm_object_deallocate a different | |
734 | * object | |
735 | */ | |
736 | if (vm_object_lock_try(object)) | |
737 | break; | |
738 | vm_object_cache_unlock(); | |
2d21ac55 A |
739 | try_failed_count++; |
740 | ||
741 | mutex_pause(try_failed_count); /* wait a bit */ | |
55e303ae | 742 | } |
0b4e3aa0 A |
743 | assert(object->ref_count > 0); |
744 | ||
745 | /* | |
746 | * If the object has a named reference, and only | |
747 | * that reference would remain, inform the pager | |
748 | * about the last "mapping" reference going away. | |
749 | */ | |
750 | if ((object->ref_count == 2) && (object->named)) { | |
751 | memory_object_t pager = object->pager; | |
752 | ||
753 | /* Notify the Pager that there are no */ | |
754 | /* more mappers for this object */ | |
755 | ||
756 | if (pager != MEMORY_OBJECT_NULL) { | |
593a1d5f A |
757 | vm_object_mapping_wait(object, THREAD_UNINT); |
758 | vm_object_mapping_begin(object); | |
0b4e3aa0 A |
759 | vm_object_unlock(object); |
760 | vm_object_cache_unlock(); | |
761 | ||
593a1d5f | 762 | memory_object_last_unmap(pager); |
0b4e3aa0 | 763 | |
2d21ac55 | 764 | try_failed_count = 0; |
55e303ae A |
765 | for (;;) { |
766 | vm_object_cache_lock(); | |
767 | ||
768 | /* | |
769 | * if we try to take a regular lock here | |
770 | * we risk deadlocking against someone | |
771 | * holding a lock on this object while | |
772 | * trying to vm_object_deallocate a different | |
773 | * object | |
774 | */ | |
775 | if (vm_object_lock_try(object)) | |
776 | break; | |
777 | vm_object_cache_unlock(); | |
2d21ac55 A |
778 | try_failed_count++; |
779 | ||
780 | mutex_pause(try_failed_count); /* wait a bit */ | |
55e303ae | 781 | } |
0b4e3aa0 | 782 | assert(object->ref_count > 0); |
593a1d5f A |
783 | |
784 | vm_object_mapping_end(object); | |
0b4e3aa0 A |
785 | } |
786 | } | |
1c79356b A |
787 | |
788 | /* | |
789 | * Lose the reference. If other references | |
790 | * remain, then we are done, unless we need | |
791 | * to retry a cache trim. | |
792 | * If it is the last reference, then keep it | |
793 | * until any pending initialization is completed. | |
794 | */ | |
795 | ||
0b4e3aa0 A |
796 | /* if the object is terminating, it cannot go into */ |
797 | /* the cache and we obviously should not call */ | |
798 | /* terminate again. */ | |
799 | ||
800 | if ((object->ref_count > 1) || object->terminating) { | |
2d21ac55 | 801 | vm_object_lock_assert_exclusive(object); |
1c79356b | 802 | object->ref_count--; |
1c79356b | 803 | vm_object_res_deallocate(object); |
1c79356b | 804 | vm_object_cache_unlock(); |
91447636 A |
805 | |
806 | if (object->ref_count == 1 && | |
807 | object->shadow != VM_OBJECT_NULL) { | |
808 | /* | |
0c530ab8 A |
809 | * There's only one reference left on this |
810 | * VM object. We can't tell if it's a valid | |
811 | * one (from a mapping for example) or if this | |
812 | * object is just part of a possibly stale and | |
813 | * useless shadow chain. | |
814 | * We would like to try and collapse it into | |
815 | * its parent, but we don't have any pointers | |
816 | * back to this parent object. | |
91447636 A |
817 | * But we can try and collapse this object with |
818 | * its own shadows, in case these are useless | |
819 | * too... | |
0c530ab8 A |
820 | * We can't bypass this object though, since we |
821 | * don't know if this last reference on it is | |
822 | * meaningful or not. | |
91447636 | 823 | */ |
0c530ab8 | 824 | vm_object_collapse(object, 0, FALSE); |
91447636 A |
825 | } |
826 | ||
827 | vm_object_unlock(object); | |
1c79356b A |
828 | if (retry_cache_trim && |
829 | ((object = vm_object_cache_trim(TRUE)) != | |
830 | VM_OBJECT_NULL)) { | |
831 | continue; | |
832 | } | |
833 | return; | |
834 | } | |
835 | ||
836 | /* | |
837 | * We have to wait for initialization | |
838 | * before destroying or caching the object. | |
839 | */ | |
840 | ||
841 | if (object->pager_created && ! object->pager_initialized) { | |
842 | assert(! object->can_persist); | |
843 | vm_object_assert_wait(object, | |
844 | VM_OBJECT_EVENT_INITIALIZED, | |
845 | THREAD_UNINT); | |
846 | vm_object_unlock(object); | |
847 | vm_object_cache_unlock(); | |
9bccf70c | 848 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
849 | continue; |
850 | } | |
851 | ||
852 | /* | |
853 | * If this object can persist, then enter it in | |
854 | * the cache. Otherwise, terminate it. | |
855 | * | |
856 | * NOTE: Only permanent objects are cached, and | |
857 | * permanent objects cannot have shadows. This | |
858 | * affects the residence counting logic in a minor | |
859 | * way (can do it in-line, mostly). | |
860 | */ | |
861 | ||
0b4e3aa0 | 862 | if ((object->can_persist) && (object->alive)) { |
1c79356b A |
863 | /* |
864 | * Now it is safe to decrement reference count, | |
865 | * and to return if reference count is > 0. | |
866 | */ | |
2d21ac55 | 867 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
868 | if (--object->ref_count > 0) { |
869 | vm_object_res_deallocate(object); | |
870 | vm_object_unlock(object); | |
871 | vm_object_cache_unlock(); | |
872 | if (retry_cache_trim && | |
873 | ((object = vm_object_cache_trim(TRUE)) != | |
874 | VM_OBJECT_NULL)) { | |
875 | continue; | |
876 | } | |
877 | return; | |
878 | } | |
879 | ||
880 | #if MIGHT_NOT_CACHE_SHADOWS | |
881 | /* | |
882 | * Remove shadow now if we don't | |
883 | * want to cache shadows. | |
884 | */ | |
885 | if (! cache_shadows) { | |
886 | shadow = object->shadow; | |
887 | object->shadow = VM_OBJECT_NULL; | |
888 | } | |
889 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
890 | ||
891 | /* | |
892 | * Enter the object onto the queue of | |
893 | * cached objects, and deactivate | |
894 | * all of its pages. | |
895 | */ | |
896 | assert(object->shadow == VM_OBJECT_NULL); | |
897 | VM_OBJ_RES_DECR(object); | |
898 | XPR(XPR_VM_OBJECT, | |
899 | "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n", | |
900 | (integer_t)object, | |
901 | (integer_t)vm_object_cached_list.next, | |
902 | (integer_t)vm_object_cached_list.prev,0,0); | |
903 | ||
904 | vm_object_cached_count++; | |
905 | if (vm_object_cached_count > vm_object_cached_high) | |
906 | vm_object_cached_high = vm_object_cached_count; | |
907 | queue_enter(&vm_object_cached_list, object, | |
908 | vm_object_t, cached_list); | |
909 | vm_object_cache_unlock(); | |
0b4e3aa0 | 910 | vm_object_deactivate_all_pages(object); |
1c79356b A |
911 | vm_object_unlock(object); |
912 | ||
913 | #if MIGHT_NOT_CACHE_SHADOWS | |
914 | /* | |
915 | * If we have a shadow that we need | |
916 | * to deallocate, do so now, remembering | |
917 | * to trim the cache later. | |
918 | */ | |
919 | if (! cache_shadows && shadow != VM_OBJECT_NULL) { | |
920 | object = shadow; | |
921 | retry_cache_trim = TRUE; | |
922 | continue; | |
923 | } | |
924 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
925 | ||
926 | /* | |
927 | * Trim the cache. If the cache trim | |
928 | * returns with a shadow for us to deallocate, | |
929 | * then remember to retry the cache trim | |
930 | * when we are done deallocating the shadow. | |
931 | * Otherwise, we are done. | |
932 | */ | |
933 | ||
934 | object = vm_object_cache_trim(TRUE); | |
935 | if (object == VM_OBJECT_NULL) { | |
936 | return; | |
937 | } | |
938 | retry_cache_trim = TRUE; | |
939 | ||
940 | } else { | |
941 | /* | |
942 | * This object is not cachable; terminate it. | |
943 | */ | |
944 | XPR(XPR_VM_OBJECT, | |
91447636 A |
945 | "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n", |
946 | (integer_t)object, object->resident_page_count, | |
947 | object->paging_in_progress, | |
948 | (void *)current_thread(),object->ref_count); | |
1c79356b A |
949 | |
950 | VM_OBJ_RES_DECR(object); /* XXX ? */ | |
951 | /* | |
952 | * Terminate this object. If it had a shadow, | |
953 | * then deallocate it; otherwise, if we need | |
954 | * to retry a cache trim, do so now; otherwise, | |
955 | * we are done. "pageout" objects have a shadow, | |
956 | * but maintain a "paging reference" rather than | |
957 | * a normal reference. | |
958 | */ | |
959 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
960 | if(vm_object_terminate(object) != KERN_SUCCESS) { | |
961 | return; | |
962 | } | |
963 | if (shadow != VM_OBJECT_NULL) { | |
964 | object = shadow; | |
965 | continue; | |
966 | } | |
967 | if (retry_cache_trim && | |
968 | ((object = vm_object_cache_trim(TRUE)) != | |
969 | VM_OBJECT_NULL)) { | |
970 | continue; | |
971 | } | |
972 | return; | |
973 | } | |
974 | } | |
975 | assert(! retry_cache_trim); | |
976 | } | |
977 | ||
978 | /* | |
979 | * Check to see whether we really need to trim | |
980 | * down the cache. If so, remove an object from | |
981 | * the cache, terminate it, and repeat. | |
982 | * | |
983 | * Called with, and returns with, cache lock unlocked. | |
984 | */ | |
985 | vm_object_t | |
986 | vm_object_cache_trim( | |
987 | boolean_t called_from_vm_object_deallocate) | |
988 | { | |
989 | register vm_object_t object = VM_OBJECT_NULL; | |
990 | vm_object_t shadow; | |
991 | ||
992 | for (;;) { | |
993 | ||
994 | /* | |
995 | * If we no longer need to trim the cache, | |
996 | * then we are done. | |
997 | */ | |
998 | ||
999 | vm_object_cache_lock(); | |
1000 | if (vm_object_cached_count <= vm_object_cached_max) { | |
1001 | vm_object_cache_unlock(); | |
1002 | return VM_OBJECT_NULL; | |
1003 | } | |
1004 | ||
1005 | /* | |
1006 | * We must trim down the cache, so remove | |
1007 | * the first object in the cache. | |
1008 | */ | |
1009 | XPR(XPR_VM_OBJECT, | |
1010 | "vm_object_cache_trim: removing from front of cache (%x, %x)\n", | |
1011 | (integer_t)vm_object_cached_list.next, | |
1012 | (integer_t)vm_object_cached_list.prev, 0, 0, 0); | |
1013 | ||
1014 | object = (vm_object_t) queue_first(&vm_object_cached_list); | |
9bccf70c A |
1015 | if(object == (vm_object_t) &vm_object_cached_list) { |
1016 | /* something's wrong with the calling parameter or */ | |
1017 | /* the value of vm_object_cached_count, just fix */ | |
1018 | /* and return */ | |
1019 | if(vm_object_cached_max < 0) | |
1020 | vm_object_cached_max = 0; | |
1021 | vm_object_cached_count = 0; | |
1022 | vm_object_cache_unlock(); | |
1023 | return VM_OBJECT_NULL; | |
1024 | } | |
1c79356b A |
1025 | vm_object_lock(object); |
1026 | queue_remove(&vm_object_cached_list, object, vm_object_t, | |
1027 | cached_list); | |
1028 | vm_object_cached_count--; | |
1029 | ||
1030 | /* | |
1031 | * Since this object is in the cache, we know | |
1032 | * that it is initialized and has no references. | |
1033 | * Take a reference to avoid recursive deallocations. | |
1034 | */ | |
1035 | ||
1036 | assert(object->pager_initialized); | |
1037 | assert(object->ref_count == 0); | |
2d21ac55 | 1038 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
1039 | object->ref_count++; |
1040 | ||
1041 | /* | |
1042 | * Terminate the object. | |
1043 | * If the object had a shadow, we let vm_object_deallocate | |
1044 | * deallocate it. "pageout" objects have a shadow, but | |
1045 | * maintain a "paging reference" rather than a normal | |
1046 | * reference. | |
1047 | * (We are careful here to limit recursion.) | |
1048 | */ | |
1049 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
1050 | if(vm_object_terminate(object) != KERN_SUCCESS) | |
1051 | continue; | |
1052 | if (shadow != VM_OBJECT_NULL) { | |
1053 | if (called_from_vm_object_deallocate) { | |
1054 | return shadow; | |
1055 | } else { | |
1056 | vm_object_deallocate(shadow); | |
1057 | } | |
1058 | } | |
1059 | } | |
1060 | } | |
1061 | ||
2d21ac55 A |
1062 | #define VM_OBJ_TERM_STATS DEBUG |
1063 | #if VM_OBJ_TERM_STATS | |
1064 | uint32_t vm_object_terminate_pages_freed = 0; | |
1065 | uint32_t vm_object_terminate_pages_removed = 0; | |
1066 | uint32_t vm_object_terminate_batches = 0; | |
1067 | uint32_t vm_object_terminate_biggest_batch = 0; | |
1068 | #endif /* VM_OBJ_TERM_STATS */ | |
1069 | ||
1070 | #define V_O_T_MAX_BATCH 256 | |
1c79356b A |
1071 | |
1072 | /* | |
1073 | * Routine: vm_object_terminate | |
1074 | * Purpose: | |
1075 | * Free all resources associated with a vm_object. | |
1076 | * In/out conditions: | |
0b4e3aa0 | 1077 | * Upon entry, the object must be locked, |
1c79356b A |
1078 | * and the object must have exactly one reference. |
1079 | * | |
1080 | * The shadow object reference is left alone. | |
1081 | * | |
1082 | * The object must be unlocked if its found that pages | |
1083 | * must be flushed to a backing object. If someone | |
1084 | * manages to map the object while it is being flushed | |
1085 | * the object is returned unlocked and unchanged. Otherwise, | |
1086 | * upon exit, the cache will be unlocked, and the | |
1087 | * object will cease to exist. | |
1088 | */ | |
0b4e3aa0 | 1089 | static kern_return_t |
1c79356b A |
1090 | vm_object_terminate( |
1091 | register vm_object_t object) | |
1092 | { | |
1093 | register vm_page_t p; | |
1094 | vm_object_t shadow_object; | |
2d21ac55 A |
1095 | vm_page_t local_free_q; |
1096 | int loop_count; | |
1097 | #if VM_OBJ_TERM_STATS | |
1098 | uint32_t local_free_count; | |
1099 | uint32_t pages_removed; | |
1100 | #endif /* VM_OBJ_TERM_STATS */ | |
1101 | ||
1102 | #if VM_OBJ_TERM_STATS | |
1103 | #define VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count) \ | |
1104 | MACRO_BEGIN \ | |
1105 | if (_pages_removed) { \ | |
1106 | hw_atomic_add(&vm_object_terminate_batches, 1); \ | |
1107 | hw_atomic_add(&vm_object_terminate_pages_removed, \ | |
1108 | _pages_removed); \ | |
1109 | hw_atomic_add(&vm_object_terminate_pages_freed, \ | |
1110 | _local_free_count); \ | |
1111 | if (_local_free_count > \ | |
1112 | vm_object_terminate_biggest_batch) { \ | |
1113 | vm_object_terminate_biggest_batch = \ | |
1114 | _local_free_count; \ | |
1115 | } \ | |
1116 | _local_free_count = 0; \ | |
1117 | } \ | |
1118 | MACRO_END | |
1119 | #else /* VM_OBJ_TERM_STATS */ | |
1120 | #define VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count) | |
1121 | #endif /* VM_OBJ_TERM_STATS */ | |
1122 | ||
1123 | #define VM_OBJ_TERM_FREELIST(_pages_removed, _local_free_count, _local_free_q) \ | |
1124 | MACRO_BEGIN \ | |
1125 | VM_OBJ_TERM_FREELIST_DEBUG(_pages_removed, _local_free_count); \ | |
1126 | if (_local_free_q) { \ | |
1127 | vm_page_free_list(_local_free_q); \ | |
1128 | _local_free_q = VM_PAGE_NULL; \ | |
1129 | } \ | |
1130 | MACRO_END | |
1131 | ||
1132 | ||
1c79356b A |
1133 | |
1134 | XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n", | |
1135 | (integer_t)object, object->ref_count, 0, 0, 0); | |
1136 | ||
2d21ac55 A |
1137 | local_free_q = VM_PAGE_NULL; |
1138 | #if VM_OBJ_TERM_STATS | |
1139 | local_free_count = 0; | |
1140 | pages_removed = 0; | |
1141 | #endif /* VM_OBJ_TERM_STATS */ | |
1142 | ||
1c79356b A |
1143 | if (!object->pageout && (!object->temporary || object->can_persist) |
1144 | && (object->pager != NULL || object->shadow_severed)) { | |
0b4e3aa0 | 1145 | vm_object_cache_unlock(); |
2d21ac55 A |
1146 | loop_count = V_O_T_MAX_BATCH; |
1147 | vm_page_lock_queues(); | |
1c79356b | 1148 | while (!queue_empty(&object->memq)) { |
2d21ac55 A |
1149 | if (--loop_count == 0) { |
1150 | /* | |
1151 | * Free the pages we've reclaimed so far and | |
1152 | * take a little break to avoid hogging | |
1153 | * the page queues lock too long. | |
1154 | */ | |
1155 | VM_OBJ_TERM_FREELIST(pages_removed, | |
1156 | local_free_count, | |
1157 | local_free_q); | |
1158 | mutex_yield(&vm_page_queue_lock); | |
1159 | loop_count = V_O_T_MAX_BATCH; | |
1160 | } | |
1c79356b A |
1161 | /* |
1162 | * Clear pager_trusted bit so that the pages get yanked | |
1163 | * out of the object instead of cleaned in place. This | |
1164 | * prevents a deadlock in XMM and makes more sense anyway. | |
1165 | */ | |
1166 | object->pager_trusted = FALSE; | |
1167 | ||
1168 | p = (vm_page_t) queue_first(&object->memq); | |
1169 | ||
1170 | VM_PAGE_CHECK(p); | |
1171 | ||
1172 | if (p->busy || p->cleaning) { | |
1173 | if(p->cleaning || p->absent) { | |
2d21ac55 A |
1174 | /* free the pages reclaimed so far */ |
1175 | VM_OBJ_TERM_FREELIST(pages_removed, | |
1176 | local_free_count, | |
1177 | local_free_q); | |
1178 | vm_page_unlock_queues(); | |
1c79356b | 1179 | vm_object_paging_wait(object, THREAD_UNINT); |
2d21ac55 | 1180 | vm_page_lock_queues(); |
1c79356b A |
1181 | continue; |
1182 | } else { | |
2d21ac55 | 1183 | panic("vm_object_terminate.3 %p %p", object, p); |
1c79356b A |
1184 | } |
1185 | } | |
1186 | ||
55e303ae | 1187 | p->busy = TRUE; |
1c79356b | 1188 | VM_PAGE_QUEUES_REMOVE(p); |
2d21ac55 A |
1189 | #if VM_OBJ_TERM_STATS |
1190 | pages_removed++; | |
1191 | #endif /* VM_OBJ_TERM_STATS */ | |
1c79356b A |
1192 | |
1193 | if (p->absent || p->private) { | |
1194 | ||
1195 | /* | |
1196 | * For private pages, VM_PAGE_FREE just | |
1197 | * leaves the page structure around for | |
1198 | * its owner to clean up. For absent | |
1199 | * pages, the structure is returned to | |
1200 | * the appropriate pool. | |
1201 | */ | |
1202 | ||
1203 | goto free_page; | |
1204 | } | |
1205 | ||
2d21ac55 A |
1206 | if (p->fictitious) { |
1207 | if (p->phys_page == vm_page_guard_addr) { | |
1208 | goto free_page; | |
1209 | } | |
1210 | panic("vm_object_terminate.4 %p %p", object, p); | |
1211 | } | |
1c79356b | 1212 | |
4a3eedf9 | 1213 | if (!p->dirty && p->wpmapped) |
55e303ae | 1214 | p->dirty = pmap_is_modified(p->phys_page); |
1c79356b | 1215 | |
0b4e3aa0 | 1216 | if ((p->dirty || p->precious) && !p->error && object->alive) { |
2d21ac55 A |
1217 | /* free the pages reclaimed so far */ |
1218 | VM_OBJ_TERM_FREELIST(pages_removed, | |
1219 | local_free_count, | |
1220 | local_free_q); | |
1221 | vm_page_unlock_queues(); | |
1c79356b | 1222 | vm_pageout_cluster(p); /* flush page */ |
1c79356b A |
1223 | vm_object_paging_wait(object, THREAD_UNINT); |
1224 | XPR(XPR_VM_OBJECT, | |
1225 | "vm_object_terminate restart, object 0x%X ref %d\n", | |
1226 | (integer_t)object, object->ref_count, 0, 0, 0); | |
2d21ac55 | 1227 | vm_page_lock_queues(); |
1c79356b A |
1228 | } else { |
1229 | free_page: | |
2d21ac55 A |
1230 | /* |
1231 | * Add this page to our list of reclaimed pages, | |
1232 | * to be freed later. | |
1233 | */ | |
1234 | vm_page_free_prepare(p); | |
1235 | p->pageq.next = (queue_entry_t) local_free_q; | |
1236 | local_free_q = p; | |
1237 | #if VM_OBJ_TERM_STATS | |
1238 | local_free_count++; | |
1239 | #endif /* VM_OBJ_TERM_STATS */ | |
1c79356b A |
1240 | } |
1241 | } | |
2d21ac55 A |
1242 | |
1243 | /* | |
1244 | * Free the remaining reclaimed pages. | |
1245 | */ | |
1246 | VM_OBJ_TERM_FREELIST(pages_removed, | |
1247 | local_free_count, | |
1248 | local_free_q); | |
1249 | vm_page_unlock_queues(); | |
0b4e3aa0 A |
1250 | vm_object_unlock(object); |
1251 | vm_object_cache_lock(); | |
1252 | vm_object_lock(object); | |
1c79356b | 1253 | } |
0b4e3aa0 A |
1254 | |
1255 | /* | |
1256 | * Make sure the object isn't already being terminated | |
1257 | */ | |
1258 | if(object->terminating) { | |
2d21ac55 A |
1259 | vm_object_lock_assert_exclusive(object); |
1260 | object->ref_count--; | |
0b4e3aa0 A |
1261 | assert(object->ref_count > 0); |
1262 | vm_object_cache_unlock(); | |
1263 | vm_object_unlock(object); | |
1264 | return KERN_FAILURE; | |
1265 | } | |
1266 | ||
1267 | /* | |
1268 | * Did somebody get a reference to the object while we were | |
1269 | * cleaning it? | |
1270 | */ | |
1c79356b | 1271 | if(object->ref_count != 1) { |
2d21ac55 A |
1272 | vm_object_lock_assert_exclusive(object); |
1273 | object->ref_count--; | |
0b4e3aa0 | 1274 | assert(object->ref_count > 0); |
1c79356b | 1275 | vm_object_res_deallocate(object); |
0b4e3aa0 | 1276 | vm_object_cache_unlock(); |
1c79356b A |
1277 | vm_object_unlock(object); |
1278 | return KERN_FAILURE; | |
1279 | } | |
1280 | ||
1c79356b A |
1281 | /* |
1282 | * Make sure no one can look us up now. | |
1283 | */ | |
1284 | ||
0b4e3aa0 A |
1285 | object->terminating = TRUE; |
1286 | object->alive = FALSE; | |
1287 | vm_object_remove(object); | |
1c79356b A |
1288 | |
1289 | /* | |
1290 | * Detach the object from its shadow if we are the shadow's | |
55e303ae A |
1291 | * copy. The reference we hold on the shadow must be dropped |
1292 | * by our caller. | |
1c79356b A |
1293 | */ |
1294 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && | |
1295 | !(object->pageout)) { | |
1296 | vm_object_lock(shadow_object); | |
55e303ae A |
1297 | if (shadow_object->copy == object) |
1298 | shadow_object->copy = VM_OBJECT_NULL; | |
1c79356b A |
1299 | vm_object_unlock(shadow_object); |
1300 | } | |
1301 | ||
6601e61a | 1302 | if (object->paging_in_progress != 0) { |
8f6c56a5 A |
1303 | /* |
1304 | * There are still some paging_in_progress references | |
1305 | * on this object, meaning that there are some paging | |
1306 | * or other I/O operations in progress for this VM object. | |
1307 | * Such operations take some paging_in_progress references | |
1308 | * up front to ensure that the object doesn't go away, but | |
1309 | * they may also need to acquire a reference on the VM object, | |
1310 | * to map it in kernel space, for example. That means that | |
1311 | * they may end up releasing the last reference on the VM | |
1312 | * object, triggering its termination, while still holding | |
1313 | * paging_in_progress references. Waiting for these | |
1314 | * pending paging_in_progress references to go away here would | |
1315 | * deadlock. | |
1316 | * | |
1317 | * To avoid deadlocking, we'll let the vm_object_reaper_thread | |
1318 | * complete the VM object termination if it still holds | |
1319 | * paging_in_progress references at this point. | |
1320 | * | |
1321 | * No new paging_in_progress should appear now that the | |
1322 | * VM object is "terminating" and not "alive". | |
1323 | */ | |
1324 | vm_object_reap_async(object); | |
1325 | vm_object_cache_unlock(); | |
1326 | vm_object_unlock(object); | |
6601e61a A |
1327 | /* |
1328 | * Return KERN_FAILURE to let the caller know that we | |
1329 | * haven't completed the termination and it can't drop this | |
1330 | * object's reference on its shadow object yet. | |
1331 | * The reaper thread will take care of that once it has | |
1332 | * completed this object's termination. | |
1333 | */ | |
1334 | return KERN_FAILURE; | |
8f6c56a5 | 1335 | } |
4452a7af | 1336 | |
8f6c56a5 A |
1337 | /* complete the VM object termination */ |
1338 | vm_object_reap(object); | |
1339 | object = VM_OBJECT_NULL; | |
1340 | /* cache lock and object lock were released by vm_object_reap() */ | |
1341 | ||
2d21ac55 A |
1342 | /* |
1343 | * KERN_SUCCESS means that this object has been terminated | |
1344 | * and no longer needs its shadow object but still holds a | |
1345 | * reference on it. | |
1346 | * The caller is responsible for dropping that reference. | |
1347 | * We can't call vm_object_deallocate() here because that | |
1348 | * would create a recursion. | |
1349 | */ | |
8f6c56a5 A |
1350 | return KERN_SUCCESS; |
1351 | } | |
1352 | ||
1353 | /* | |
1354 | * vm_object_reap(): | |
1355 | * | |
1356 | * Complete the termination of a VM object after it's been marked | |
1357 | * as "terminating" and "!alive" by vm_object_terminate(). | |
1358 | * | |
1359 | * The VM object cache and the VM object must be locked by caller. | |
1360 | * The locks will be released on return and the VM object is no longer valid. | |
1361 | */ | |
1362 | void | |
1363 | vm_object_reap( | |
1364 | vm_object_t object) | |
1365 | { | |
1366 | memory_object_t pager; | |
1367 | vm_page_t p; | |
2d21ac55 A |
1368 | vm_page_t local_free_q; |
1369 | int loop_count; | |
1370 | #if VM_OBJ_TERM_STATS | |
1371 | uint32_t local_free_count; | |
1372 | #endif /* VM_OBJ_TERM_STATS */ | |
8f6c56a5 A |
1373 | |
1374 | #if DEBUG | |
1375 | mutex_assert(&vm_object_cached_lock_data, MA_OWNED); | |
8f6c56a5 | 1376 | #endif /* DEBUG */ |
2d21ac55 A |
1377 | vm_object_lock_assert_exclusive(object); |
1378 | assert(object->paging_in_progress == 0); | |
8f6c56a5 A |
1379 | |
1380 | vm_object_reap_count++; | |
1381 | ||
2d21ac55 A |
1382 | local_free_q = VM_PAGE_NULL; |
1383 | #if VM_OBJ_TERM_STATS | |
1384 | local_free_count = 0; | |
1385 | #endif /* VM_OBJ_TERM_STATS */ | |
0b4e3aa0 A |
1386 | |
1387 | pager = object->pager; | |
1388 | object->pager = MEMORY_OBJECT_NULL; | |
1389 | ||
1390 | if (pager != MEMORY_OBJECT_NULL) | |
91447636 | 1391 | memory_object_control_disable(object->pager_control); |
0b4e3aa0 A |
1392 | vm_object_cache_unlock(); |
1393 | ||
2d21ac55 | 1394 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
1395 | object->ref_count--; |
1396 | #if TASK_SWAPPER | |
1397 | assert(object->res_count == 0); | |
1398 | #endif /* TASK_SWAPPER */ | |
1399 | ||
1c79356b A |
1400 | assert (object->ref_count == 0); |
1401 | ||
2d21ac55 A |
1402 | /* remove from purgeable queue if it's on */ |
1403 | if (object->objq.next || object->objq.prev) { | |
1404 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
1405 | assert(queue); | |
1406 | ||
1407 | /* Must take page lock for this - using it to protect token queue */ | |
1408 | vm_page_lock_queues(); | |
1409 | vm_purgeable_token_delete_first(queue); | |
1410 | ||
1411 | assert(queue->debug_count_objects>=0); | |
1412 | vm_page_unlock_queues(); | |
1413 | } | |
1414 | ||
1c79356b A |
1415 | /* |
1416 | * Clean or free the pages, as appropriate. | |
1417 | * It is possible for us to find busy/absent pages, | |
1418 | * if some faults on this object were aborted. | |
1419 | */ | |
1420 | if (object->pageout) { | |
8f6c56a5 | 1421 | assert(object->shadow != VM_OBJECT_NULL); |
1c79356b A |
1422 | |
1423 | vm_pageout_object_terminate(object); | |
1424 | ||
0b4e3aa0 A |
1425 | } else if ((object->temporary && !object->can_persist) || |
1426 | (pager == MEMORY_OBJECT_NULL)) { | |
2d21ac55 A |
1427 | loop_count = V_O_T_MAX_BATCH; |
1428 | vm_page_lock_queues(); | |
1c79356b | 1429 | while (!queue_empty(&object->memq)) { |
2d21ac55 A |
1430 | if (--loop_count == 0) { |
1431 | /* | |
1432 | * Free the pages we reclaimed so far | |
1433 | * and take a little break to avoid | |
1434 | * hogging the page queue lock too long | |
1435 | */ | |
1436 | VM_OBJ_TERM_FREELIST(local_free_count, | |
1437 | local_free_count, | |
1438 | local_free_q); | |
1439 | mutex_yield(&vm_page_queue_lock); | |
1440 | loop_count = V_O_T_MAX_BATCH; | |
1441 | } | |
1c79356b A |
1442 | p = (vm_page_t) queue_first(&object->memq); |
1443 | ||
2d21ac55 A |
1444 | vm_page_free_prepare(p); |
1445 | ||
1446 | assert(p->pageq.next == NULL && p->pageq.prev == NULL); | |
1447 | p->pageq.next = (queue_entry_t) local_free_q; | |
1448 | local_free_q = p; | |
1449 | #if VM_OBJ_TERM_STATS | |
1450 | local_free_count++; | |
1451 | #endif /* VM_OBJ_TERM_STATS */ | |
1c79356b | 1452 | } |
2d21ac55 A |
1453 | /* |
1454 | * Free the remaining reclaimed pages | |
1455 | */ | |
1456 | VM_OBJ_TERM_FREELIST(local_free_count, | |
1457 | local_free_count, | |
1458 | local_free_q); | |
1459 | vm_page_unlock_queues(); | |
1c79356b | 1460 | } else if (!queue_empty(&object->memq)) { |
8f6c56a5 | 1461 | panic("vm_object_reap: queue just emptied isn't"); |
1c79356b A |
1462 | } |
1463 | ||
1464 | assert(object->paging_in_progress == 0); | |
1465 | assert(object->ref_count == 0); | |
1466 | ||
1c79356b | 1467 | /* |
0b4e3aa0 A |
1468 | * If the pager has not already been released by |
1469 | * vm_object_destroy, we need to terminate it and | |
1470 | * release our reference to it here. | |
1c79356b | 1471 | */ |
0b4e3aa0 A |
1472 | if (pager != MEMORY_OBJECT_NULL) { |
1473 | vm_object_unlock(object); | |
1474 | vm_object_release_pager(pager); | |
1475 | vm_object_lock(object); | |
1c79356b | 1476 | } |
0b4e3aa0 | 1477 | |
1c79356b | 1478 | /* kick off anyone waiting on terminating */ |
0b4e3aa0 | 1479 | object->terminating = FALSE; |
1c79356b A |
1480 | vm_object_paging_begin(object); |
1481 | vm_object_paging_end(object); | |
1482 | vm_object_unlock(object); | |
1483 | ||
1484 | #if MACH_PAGEMAP | |
1485 | vm_external_destroy(object->existence_map, object->size); | |
1486 | #endif /* MACH_PAGEMAP */ | |
1487 | ||
6601e61a A |
1488 | object->shadow = VM_OBJECT_NULL; |
1489 | ||
2d21ac55 | 1490 | vm_object_lock_destroy(object); |
1c79356b A |
1491 | /* |
1492 | * Free the space for the object. | |
1493 | */ | |
91447636 | 1494 | zfree(vm_object_zone, object); |
8f6c56a5 A |
1495 | object = VM_OBJECT_NULL; |
1496 | } | |
1497 | ||
1498 | void | |
1499 | vm_object_reap_async( | |
1500 | vm_object_t object) | |
1501 | { | |
1502 | #if DEBUG | |
1503 | mutex_assert(&vm_object_cached_lock_data, MA_OWNED); | |
8f6c56a5 | 1504 | #endif /* DEBUG */ |
2d21ac55 | 1505 | vm_object_lock_assert_exclusive(object); |
8f6c56a5 A |
1506 | |
1507 | vm_object_reap_count_async++; | |
1508 | ||
1509 | /* enqueue the VM object... */ | |
1510 | queue_enter(&vm_object_reaper_queue, object, | |
1511 | vm_object_t, cached_list); | |
1512 | /* ... and wake up the reaper thread */ | |
1513 | thread_wakeup((event_t) &vm_object_reaper_queue); | |
1514 | } | |
1515 | ||
1516 | void | |
1517 | vm_object_reaper_thread(void) | |
1518 | { | |
6601e61a | 1519 | vm_object_t object, shadow_object; |
8f6c56a5 A |
1520 | |
1521 | vm_object_cache_lock(); | |
1522 | ||
1523 | while (!queue_empty(&vm_object_reaper_queue)) { | |
1524 | queue_remove_first(&vm_object_reaper_queue, | |
1525 | object, | |
1526 | vm_object_t, | |
1527 | cached_list); | |
1528 | vm_object_lock(object); | |
1529 | assert(object->terminating); | |
1530 | assert(!object->alive); | |
2d21ac55 A |
1531 | |
1532 | /* | |
1533 | * The pageout daemon might be playing with our pages. | |
1534 | * Now that the object is dead, it won't touch any more | |
1535 | * pages, but some pages might already be on their way out. | |
1536 | * Hence, we wait until the active paging activities have | |
1537 | * ceased before we break the association with the pager | |
1538 | * itself. | |
1539 | */ | |
1540 | while (object->paging_in_progress != 0) { | |
1541 | vm_object_cache_unlock(); | |
1542 | vm_object_wait(object, | |
1543 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
1544 | THREAD_UNINT); | |
1545 | vm_object_cache_lock(); | |
1546 | vm_object_lock(object); | |
1547 | } | |
6601e61a A |
1548 | |
1549 | shadow_object = | |
1550 | object->pageout ? VM_OBJECT_NULL : object->shadow; | |
1551 | ||
8f6c56a5 A |
1552 | vm_object_reap(object); |
1553 | /* cache is unlocked and object is no longer valid */ | |
1554 | object = VM_OBJECT_NULL; | |
1555 | ||
6601e61a A |
1556 | if (shadow_object != VM_OBJECT_NULL) { |
1557 | /* | |
1558 | * Drop the reference "object" was holding on | |
1559 | * its shadow object. | |
1560 | */ | |
1561 | vm_object_deallocate(shadow_object); | |
1562 | shadow_object = VM_OBJECT_NULL; | |
1563 | } | |
1564 | ||
8f6c56a5 A |
1565 | vm_object_cache_lock(); |
1566 | } | |
1567 | ||
1568 | /* wait for more work... */ | |
1569 | assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT); | |
1570 | vm_object_cache_unlock(); | |
1571 | thread_block((thread_continue_t) vm_object_reaper_thread); | |
1572 | /*NOTREACHED*/ | |
1c79356b A |
1573 | } |
1574 | ||
1575 | /* | |
1576 | * Routine: vm_object_pager_wakeup | |
1577 | * Purpose: Wake up anyone waiting for termination of a pager. | |
1578 | */ | |
1579 | ||
0b4e3aa0 | 1580 | static void |
1c79356b | 1581 | vm_object_pager_wakeup( |
0b4e3aa0 | 1582 | memory_object_t pager) |
1c79356b A |
1583 | { |
1584 | vm_object_hash_entry_t entry; | |
1585 | boolean_t waiting = FALSE; | |
1586 | ||
1587 | /* | |
1588 | * If anyone was waiting for the memory_object_terminate | |
1589 | * to be queued, wake them up now. | |
1590 | */ | |
1591 | vm_object_cache_lock(); | |
1592 | entry = vm_object_hash_lookup(pager, TRUE); | |
1593 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
1594 | waiting = entry->waiting; | |
1595 | vm_object_cache_unlock(); | |
1596 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) { | |
1597 | if (waiting) | |
1598 | thread_wakeup((event_t) pager); | |
1599 | vm_object_hash_entry_free(entry); | |
1600 | } | |
1601 | } | |
1602 | ||
1603 | /* | |
0b4e3aa0 A |
1604 | * Routine: vm_object_release_pager |
1605 | * Purpose: Terminate the pager and, upon completion, | |
1606 | * release our last reference to it. | |
1607 | * just like memory_object_terminate, except | |
1608 | * that we wake up anyone blocked in vm_object_enter | |
1609 | * waiting for termination message to be queued | |
1610 | * before calling memory_object_init. | |
1c79356b | 1611 | */ |
0b4e3aa0 A |
1612 | static void |
1613 | vm_object_release_pager( | |
1614 | memory_object_t pager) | |
1c79356b | 1615 | { |
1c79356b | 1616 | |
0b4e3aa0 A |
1617 | /* |
1618 | * Terminate the pager. | |
1619 | */ | |
1c79356b | 1620 | |
0b4e3aa0 | 1621 | (void) memory_object_terminate(pager); |
1c79356b | 1622 | |
0b4e3aa0 A |
1623 | /* |
1624 | * Wakeup anyone waiting for this terminate | |
1625 | */ | |
1626 | vm_object_pager_wakeup(pager); | |
1c79356b | 1627 | |
0b4e3aa0 A |
1628 | /* |
1629 | * Release reference to pager. | |
1630 | */ | |
1631 | memory_object_deallocate(pager); | |
1632 | } | |
1c79356b | 1633 | |
1c79356b | 1634 | /* |
0b4e3aa0 | 1635 | * Routine: vm_object_destroy |
1c79356b | 1636 | * Purpose: |
0b4e3aa0 | 1637 | * Shut down a VM object, despite the |
1c79356b A |
1638 | * presence of address map (or other) references |
1639 | * to the vm_object. | |
1640 | */ | |
1641 | kern_return_t | |
0b4e3aa0 A |
1642 | vm_object_destroy( |
1643 | vm_object_t object, | |
91447636 | 1644 | __unused kern_return_t reason) |
1c79356b | 1645 | { |
0b4e3aa0 | 1646 | memory_object_t old_pager; |
1c79356b A |
1647 | |
1648 | if (object == VM_OBJECT_NULL) | |
1649 | return(KERN_SUCCESS); | |
1650 | ||
1651 | /* | |
0b4e3aa0 | 1652 | * Remove the pager association immediately. |
1c79356b A |
1653 | * |
1654 | * This will prevent the memory manager from further | |
1655 | * meddling. [If it wanted to flush data or make | |
1656 | * other changes, it should have done so before performing | |
1657 | * the destroy call.] | |
1658 | */ | |
1659 | ||
1660 | vm_object_cache_lock(); | |
1661 | vm_object_lock(object); | |
1c79356b A |
1662 | object->can_persist = FALSE; |
1663 | object->named = FALSE; | |
0b4e3aa0 | 1664 | object->alive = FALSE; |
1c79356b A |
1665 | |
1666 | /* | |
0b4e3aa0 | 1667 | * Rip out the pager from the vm_object now... |
1c79356b A |
1668 | */ |
1669 | ||
0b4e3aa0 A |
1670 | vm_object_remove(object); |
1671 | old_pager = object->pager; | |
1672 | object->pager = MEMORY_OBJECT_NULL; | |
1673 | if (old_pager != MEMORY_OBJECT_NULL) | |
91447636 | 1674 | memory_object_control_disable(object->pager_control); |
0b4e3aa0 | 1675 | vm_object_cache_unlock(); |
1c79356b A |
1676 | |
1677 | /* | |
0b4e3aa0 A |
1678 | * Wait for the existing paging activity (that got |
1679 | * through before we nulled out the pager) to subside. | |
1c79356b A |
1680 | */ |
1681 | ||
1682 | vm_object_paging_wait(object, THREAD_UNINT); | |
1683 | vm_object_unlock(object); | |
1684 | ||
1685 | /* | |
0b4e3aa0 | 1686 | * Terminate the object now. |
1c79356b | 1687 | */ |
0b4e3aa0 A |
1688 | if (old_pager != MEMORY_OBJECT_NULL) { |
1689 | vm_object_release_pager(old_pager); | |
1690 | ||
1691 | /* | |
1692 | * JMM - Release the caller's reference. This assumes the | |
1693 | * caller had a reference to release, which is a big (but | |
1694 | * currently valid) assumption if this is driven from the | |
1695 | * vnode pager (it is holding a named reference when making | |
1696 | * this call).. | |
1697 | */ | |
1698 | vm_object_deallocate(object); | |
1c79356b | 1699 | |
1c79356b | 1700 | } |
1c79356b A |
1701 | return(KERN_SUCCESS); |
1702 | } | |
1703 | ||
2d21ac55 A |
1704 | #define VM_OBJ_DEACT_ALL_STATS DEBUG |
1705 | #if VM_OBJ_DEACT_ALL_STATS | |
1706 | uint32_t vm_object_deactivate_all_pages_batches = 0; | |
1707 | uint32_t vm_object_deactivate_all_pages_pages = 0; | |
1708 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1c79356b A |
1709 | /* |
1710 | * vm_object_deactivate_pages | |
1711 | * | |
1712 | * Deactivate all pages in the specified object. (Keep its pages | |
1713 | * in memory even though it is no longer referenced.) | |
1714 | * | |
1715 | * The object must be locked. | |
1716 | */ | |
0b4e3aa0 A |
1717 | static void |
1718 | vm_object_deactivate_all_pages( | |
1c79356b A |
1719 | register vm_object_t object) |
1720 | { | |
1721 | register vm_page_t p; | |
2d21ac55 A |
1722 | int loop_count; |
1723 | #if VM_OBJ_DEACT_ALL_STATS | |
1724 | int pages_count; | |
1725 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1726 | #define V_O_D_A_P_MAX_BATCH 256 | |
1727 | ||
1728 | loop_count = V_O_D_A_P_MAX_BATCH; | |
1729 | #if VM_OBJ_DEACT_ALL_STATS | |
1730 | pages_count = 0; | |
1731 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1732 | vm_page_lock_queues(); | |
1c79356b | 1733 | queue_iterate(&object->memq, p, vm_page_t, listq) { |
2d21ac55 A |
1734 | if (--loop_count == 0) { |
1735 | #if VM_OBJ_DEACT_ALL_STATS | |
1736 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, | |
1737 | 1); | |
1738 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
1739 | pages_count); | |
1740 | pages_count = 0; | |
1741 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1742 | mutex_yield(&vm_page_queue_lock); | |
1743 | loop_count = V_O_D_A_P_MAX_BATCH; | |
1744 | } | |
1745 | if (!p->busy && !p->throttled) { | |
1746 | #if VM_OBJ_DEACT_ALL_STATS | |
1747 | pages_count++; | |
1748 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
1c79356b | 1749 | vm_page_deactivate(p); |
2d21ac55 A |
1750 | } |
1751 | } | |
1752 | #if VM_OBJ_DEACT_ALL_STATS | |
1753 | if (pages_count) { | |
1754 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1); | |
1755 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
1756 | pages_count); | |
1757 | pages_count = 0; | |
1c79356b | 1758 | } |
2d21ac55 A |
1759 | #endif /* VM_OBJ_DEACT_ALL_STATS */ |
1760 | vm_page_unlock_queues(); | |
1c79356b A |
1761 | } |
1762 | ||
0b4e3aa0 A |
1763 | __private_extern__ void |
1764 | vm_object_deactivate_pages( | |
1765 | vm_object_t object, | |
1766 | vm_object_offset_t offset, | |
1767 | vm_object_size_t size, | |
1768 | boolean_t kill_page) | |
1769 | { | |
1770 | vm_object_t orig_object; | |
1771 | int pages_moved = 0; | |
1772 | int pages_found = 0; | |
1773 | ||
1774 | /* | |
1775 | * entered with object lock held, acquire a paging reference to | |
1776 | * prevent the memory_object and control ports from | |
1777 | * being destroyed. | |
1778 | */ | |
1779 | orig_object = object; | |
1780 | ||
1781 | for (;;) { | |
1782 | register vm_page_t m; | |
1783 | vm_object_offset_t toffset; | |
1784 | vm_object_size_t tsize; | |
1785 | ||
1786 | vm_object_paging_begin(object); | |
1787 | vm_page_lock_queues(); | |
1788 | ||
1789 | for (tsize = size, toffset = offset; tsize; tsize -= PAGE_SIZE, toffset += PAGE_SIZE) { | |
1790 | ||
1791 | if ((m = vm_page_lookup(object, toffset)) != VM_PAGE_NULL) { | |
1792 | ||
1793 | pages_found++; | |
1794 | ||
1795 | if ((m->wire_count == 0) && (!m->private) && (!m->gobbled) && (!m->busy)) { | |
1796 | ||
91447636 A |
1797 | assert(!m->laundry); |
1798 | ||
0b4e3aa0 | 1799 | m->reference = FALSE; |
55e303ae | 1800 | pmap_clear_reference(m->phys_page); |
0b4e3aa0 A |
1801 | |
1802 | if ((kill_page) && (object->internal)) { | |
1803 | m->precious = FALSE; | |
1804 | m->dirty = FALSE; | |
55e303ae | 1805 | pmap_clear_modify(m->phys_page); |
2d21ac55 | 1806 | #if MACH_PAGEMAP |
0b4e3aa0 | 1807 | vm_external_state_clr(object->existence_map, offset); |
2d21ac55 | 1808 | #endif /* MACH_PAGEMAP */ |
0b4e3aa0 | 1809 | } |
0b4e3aa0 | 1810 | |
2d21ac55 A |
1811 | if (!m->throttled) { |
1812 | VM_PAGE_QUEUES_REMOVE(m); | |
1813 | ||
1814 | assert(!m->laundry); | |
1815 | assert(m->object != kernel_object); | |
1816 | assert(m->pageq.next == NULL && | |
1817 | m->pageq.prev == NULL); | |
1818 | ||
1819 | if(m->zero_fill) { | |
1820 | queue_enter_first( | |
9bccf70c A |
1821 | &vm_page_queue_zf, |
1822 | m, vm_page_t, pageq); | |
2d21ac55 A |
1823 | vm_zf_queue_count++; |
1824 | } else { | |
1825 | queue_enter_first( | |
1826 | &vm_page_queue_inactive, | |
1827 | m, vm_page_t, pageq); | |
1828 | } | |
0b4e3aa0 | 1829 | |
2d21ac55 A |
1830 | m->inactive = TRUE; |
1831 | if (!m->fictitious) { | |
1832 | vm_page_inactive_count++; | |
1833 | token_new_pagecount++; | |
1834 | } else { | |
1835 | assert(m->phys_page == vm_page_fictitious_addr); | |
1836 | } | |
0b4e3aa0 | 1837 | |
2d21ac55 A |
1838 | pages_moved++; |
1839 | } | |
0b4e3aa0 A |
1840 | } |
1841 | } | |
1842 | } | |
1843 | vm_page_unlock_queues(); | |
1844 | vm_object_paging_end(object); | |
1845 | ||
1846 | if (object->shadow) { | |
1847 | vm_object_t tmp_object; | |
1848 | ||
1849 | kill_page = 0; | |
1850 | ||
1851 | offset += object->shadow_offset; | |
1852 | ||
1853 | tmp_object = object->shadow; | |
1854 | vm_object_lock(tmp_object); | |
1855 | ||
1856 | if (object != orig_object) | |
1857 | vm_object_unlock(object); | |
1858 | object = tmp_object; | |
1859 | } else | |
1860 | break; | |
1861 | } | |
1862 | if (object != orig_object) | |
1863 | vm_object_unlock(object); | |
1864 | } | |
1c79356b A |
1865 | |
1866 | /* | |
1867 | * Routine: vm_object_pmap_protect | |
1868 | * | |
1869 | * Purpose: | |
1870 | * Reduces the permission for all physical | |
1871 | * pages in the specified object range. | |
1872 | * | |
1873 | * If removing write permission only, it is | |
1874 | * sufficient to protect only the pages in | |
1875 | * the top-level object; only those pages may | |
1876 | * have write permission. | |
1877 | * | |
1878 | * If removing all access, we must follow the | |
1879 | * shadow chain from the top-level object to | |
1880 | * remove access to all pages in shadowed objects. | |
1881 | * | |
1882 | * The object must *not* be locked. The object must | |
1883 | * be temporary/internal. | |
1884 | * | |
1885 | * If pmap is not NULL, this routine assumes that | |
1886 | * the only mappings for the pages are in that | |
1887 | * pmap. | |
1888 | */ | |
1889 | ||
0b4e3aa0 | 1890 | __private_extern__ void |
1c79356b A |
1891 | vm_object_pmap_protect( |
1892 | register vm_object_t object, | |
1893 | register vm_object_offset_t offset, | |
91447636 | 1894 | vm_object_size_t size, |
1c79356b | 1895 | pmap_t pmap, |
91447636 | 1896 | vm_map_offset_t pmap_start, |
1c79356b A |
1897 | vm_prot_t prot) |
1898 | { | |
1899 | if (object == VM_OBJECT_NULL) | |
1900 | return; | |
91447636 A |
1901 | size = vm_object_round_page(size); |
1902 | offset = vm_object_trunc_page(offset); | |
1c79356b A |
1903 | |
1904 | vm_object_lock(object); | |
1905 | ||
2d21ac55 A |
1906 | if (object->phys_contiguous) { |
1907 | if (pmap != NULL) { | |
1908 | vm_object_unlock(object); | |
1909 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
1910 | } else { | |
1911 | vm_object_offset_t phys_start, phys_end, phys_addr; | |
1912 | ||
1913 | phys_start = object->shadow_offset + offset; | |
1914 | phys_end = phys_start + size; | |
1915 | assert(phys_start <= phys_end); | |
1916 | assert(phys_end <= object->shadow_offset + object->size); | |
1917 | vm_object_unlock(object); | |
1918 | ||
1919 | for (phys_addr = phys_start; | |
1920 | phys_addr < phys_end; | |
1921 | phys_addr += PAGE_SIZE_64) { | |
935ed37a | 1922 | pmap_page_protect(phys_addr >> PAGE_SHIFT, prot); |
2d21ac55 A |
1923 | } |
1924 | } | |
1925 | return; | |
1926 | } | |
1927 | ||
55e303ae | 1928 | assert(object->internal); |
de355530 | 1929 | |
1c79356b | 1930 | while (TRUE) { |
91447636 | 1931 | if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) { |
1c79356b A |
1932 | vm_object_unlock(object); |
1933 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
1934 | return; | |
1935 | } | |
1936 | ||
9bccf70c A |
1937 | /* if we are doing large ranges with respect to resident */ |
1938 | /* page count then we should interate over pages otherwise */ | |
1939 | /* inverse page look-up will be faster */ | |
91447636 | 1940 | if (ptoa_64(object->resident_page_count / 4) < size) { |
9bccf70c A |
1941 | vm_page_t p; |
1942 | vm_object_offset_t end; | |
1c79356b A |
1943 | |
1944 | end = offset + size; | |
1945 | ||
1946 | if (pmap != PMAP_NULL) { | |
1947 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1948 | if (!p->fictitious && | |
1949 | (offset <= p->offset) && (p->offset < end)) { | |
91447636 | 1950 | vm_map_offset_t start; |
1c79356b | 1951 | |
91447636 A |
1952 | start = pmap_start + p->offset - offset; |
1953 | pmap_protect(pmap, start, start + PAGE_SIZE_64, prot); | |
1c79356b A |
1954 | } |
1955 | } | |
1956 | } else { | |
1957 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1958 | if (!p->fictitious && | |
1959 | (offset <= p->offset) && (p->offset < end)) { | |
1960 | ||
2d21ac55 | 1961 | pmap_page_protect(p->phys_page, prot); |
1c79356b A |
1962 | } |
1963 | } | |
1964 | } | |
9bccf70c A |
1965 | } else { |
1966 | vm_page_t p; | |
1967 | vm_object_offset_t end; | |
1968 | vm_object_offset_t target_off; | |
1969 | ||
1970 | end = offset + size; | |
1971 | ||
1972 | if (pmap != PMAP_NULL) { | |
1973 | for(target_off = offset; | |
91447636 A |
1974 | target_off < end; |
1975 | target_off += PAGE_SIZE) { | |
1976 | p = vm_page_lookup(object, target_off); | |
1977 | if (p != VM_PAGE_NULL) { | |
1978 | vm_offset_t start; | |
1979 | start = pmap_start + | |
9bccf70c A |
1980 | (vm_offset_t)(p->offset - offset); |
1981 | pmap_protect(pmap, start, | |
1982 | start + PAGE_SIZE, prot); | |
1983 | } | |
1984 | } | |
1985 | } else { | |
1986 | for(target_off = offset; | |
1987 | target_off < end; target_off += PAGE_SIZE) { | |
91447636 A |
1988 | p = vm_page_lookup(object, target_off); |
1989 | if (p != VM_PAGE_NULL) { | |
2d21ac55 | 1990 | pmap_page_protect(p->phys_page, prot); |
9bccf70c A |
1991 | } |
1992 | } | |
1993 | } | |
1994 | } | |
1c79356b A |
1995 | |
1996 | if (prot == VM_PROT_NONE) { | |
1997 | /* | |
1998 | * Must follow shadow chain to remove access | |
1999 | * to pages in shadowed objects. | |
2000 | */ | |
2001 | register vm_object_t next_object; | |
2002 | ||
2003 | next_object = object->shadow; | |
2004 | if (next_object != VM_OBJECT_NULL) { | |
2005 | offset += object->shadow_offset; | |
2006 | vm_object_lock(next_object); | |
2007 | vm_object_unlock(object); | |
2008 | object = next_object; | |
2009 | } | |
2010 | else { | |
2011 | /* | |
2012 | * End of chain - we are done. | |
2013 | */ | |
2014 | break; | |
2015 | } | |
2016 | } | |
2017 | else { | |
2018 | /* | |
2019 | * Pages in shadowed objects may never have | |
2020 | * write permission - we may stop here. | |
2021 | */ | |
2022 | break; | |
2023 | } | |
2024 | } | |
2025 | ||
2026 | vm_object_unlock(object); | |
2027 | } | |
2028 | ||
2029 | /* | |
2030 | * Routine: vm_object_copy_slowly | |
2031 | * | |
2032 | * Description: | |
2033 | * Copy the specified range of the source | |
2034 | * virtual memory object without using | |
2035 | * protection-based optimizations (such | |
2036 | * as copy-on-write). The pages in the | |
2037 | * region are actually copied. | |
2038 | * | |
2039 | * In/out conditions: | |
2040 | * The caller must hold a reference and a lock | |
2041 | * for the source virtual memory object. The source | |
2042 | * object will be returned *unlocked*. | |
2043 | * | |
2044 | * Results: | |
2045 | * If the copy is completed successfully, KERN_SUCCESS is | |
2046 | * returned. If the caller asserted the interruptible | |
2047 | * argument, and an interruption occurred while waiting | |
2048 | * for a user-generated event, MACH_SEND_INTERRUPTED is | |
2049 | * returned. Other values may be returned to indicate | |
2050 | * hard errors during the copy operation. | |
2051 | * | |
2052 | * A new virtual memory object is returned in a | |
2053 | * parameter (_result_object). The contents of this | |
2054 | * new object, starting at a zero offset, are a copy | |
2055 | * of the source memory region. In the event of | |
2056 | * an error, this parameter will contain the value | |
2057 | * VM_OBJECT_NULL. | |
2058 | */ | |
0b4e3aa0 | 2059 | __private_extern__ kern_return_t |
1c79356b A |
2060 | vm_object_copy_slowly( |
2061 | register vm_object_t src_object, | |
2062 | vm_object_offset_t src_offset, | |
2063 | vm_object_size_t size, | |
2064 | boolean_t interruptible, | |
2065 | vm_object_t *_result_object) /* OUT */ | |
2066 | { | |
2067 | vm_object_t new_object; | |
2068 | vm_object_offset_t new_offset; | |
2069 | ||
2d21ac55 | 2070 | struct vm_object_fault_info fault_info; |
1c79356b A |
2071 | |
2072 | XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n", | |
2073 | src_object, src_offset, size, 0, 0); | |
2074 | ||
2075 | if (size == 0) { | |
2076 | vm_object_unlock(src_object); | |
2077 | *_result_object = VM_OBJECT_NULL; | |
2078 | return(KERN_INVALID_ARGUMENT); | |
2079 | } | |
2080 | ||
2081 | /* | |
2082 | * Prevent destruction of the source object while we copy. | |
2083 | */ | |
2084 | ||
2d21ac55 | 2085 | vm_object_reference_locked(src_object); |
1c79356b A |
2086 | vm_object_unlock(src_object); |
2087 | ||
2088 | /* | |
2089 | * Create a new object to hold the copied pages. | |
2090 | * A few notes: | |
2091 | * We fill the new object starting at offset 0, | |
2092 | * regardless of the input offset. | |
2093 | * We don't bother to lock the new object within | |
2094 | * this routine, since we have the only reference. | |
2095 | */ | |
2096 | ||
2097 | new_object = vm_object_allocate(size); | |
2098 | new_offset = 0; | |
2099 | ||
2100 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ | |
2101 | ||
2d21ac55 A |
2102 | fault_info.interruptible = interruptible; |
2103 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
2104 | fault_info.user_tag = 0; | |
2105 | fault_info.lo_offset = src_offset; | |
2106 | fault_info.hi_offset = src_offset + size; | |
2107 | fault_info.no_cache = FALSE; | |
2108 | ||
1c79356b A |
2109 | for ( ; |
2110 | size != 0 ; | |
2111 | src_offset += PAGE_SIZE_64, | |
2112 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 | |
2113 | ) { | |
2114 | vm_page_t new_page; | |
2115 | vm_fault_return_t result; | |
2116 | ||
2d21ac55 A |
2117 | vm_object_lock(new_object); |
2118 | ||
1c79356b A |
2119 | while ((new_page = vm_page_alloc(new_object, new_offset)) |
2120 | == VM_PAGE_NULL) { | |
2d21ac55 A |
2121 | |
2122 | vm_object_unlock(new_object); | |
2123 | ||
1c79356b A |
2124 | if (!vm_page_wait(interruptible)) { |
2125 | vm_object_deallocate(new_object); | |
91447636 | 2126 | vm_object_deallocate(src_object); |
1c79356b A |
2127 | *_result_object = VM_OBJECT_NULL; |
2128 | return(MACH_SEND_INTERRUPTED); | |
2129 | } | |
2d21ac55 | 2130 | vm_object_lock(new_object); |
1c79356b | 2131 | } |
2d21ac55 | 2132 | vm_object_unlock(new_object); |
1c79356b A |
2133 | |
2134 | do { | |
2135 | vm_prot_t prot = VM_PROT_READ; | |
2136 | vm_page_t _result_page; | |
2137 | vm_page_t top_page; | |
2138 | register | |
2139 | vm_page_t result_page; | |
2140 | kern_return_t error_code; | |
2141 | ||
2142 | vm_object_lock(src_object); | |
2143 | vm_object_paging_begin(src_object); | |
2144 | ||
2d21ac55 A |
2145 | fault_info.cluster_size = size; |
2146 | ||
1c79356b A |
2147 | XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0); |
2148 | result = vm_fault_page(src_object, src_offset, | |
2d21ac55 | 2149 | VM_PROT_READ, FALSE, |
1c79356b A |
2150 | &prot, &_result_page, &top_page, |
2151 | (int *)0, | |
2d21ac55 | 2152 | &error_code, FALSE, FALSE, &fault_info); |
1c79356b A |
2153 | |
2154 | switch(result) { | |
2155 | case VM_FAULT_SUCCESS: | |
2156 | result_page = _result_page; | |
2157 | ||
2158 | /* | |
2159 | * We don't need to hold the object | |
2160 | * lock -- the busy page will be enough. | |
2161 | * [We don't care about picking up any | |
2162 | * new modifications.] | |
2163 | * | |
2164 | * Copy the page to the new object. | |
2165 | * | |
2166 | * POLICY DECISION: | |
2167 | * If result_page is clean, | |
2168 | * we could steal it instead | |
2169 | * of copying. | |
2170 | */ | |
2171 | ||
2172 | vm_object_unlock(result_page->object); | |
2173 | vm_page_copy(result_page, new_page); | |
2174 | ||
2175 | /* | |
2176 | * Let go of both pages (make them | |
2177 | * not busy, perform wakeup, activate). | |
2178 | */ | |
2d21ac55 | 2179 | vm_object_lock(new_object); |
1c79356b | 2180 | new_page->dirty = TRUE; |
2d21ac55 A |
2181 | PAGE_WAKEUP_DONE(new_page); |
2182 | vm_object_unlock(new_object); | |
2183 | ||
1c79356b A |
2184 | vm_object_lock(result_page->object); |
2185 | PAGE_WAKEUP_DONE(result_page); | |
2186 | ||
2d21ac55 | 2187 | vm_page_lockspin_queues(); |
1c79356b | 2188 | if (!result_page->active && |
2d21ac55 A |
2189 | !result_page->inactive && |
2190 | !result_page->throttled) | |
1c79356b A |
2191 | vm_page_activate(result_page); |
2192 | vm_page_activate(new_page); | |
2193 | vm_page_unlock_queues(); | |
2194 | ||
2195 | /* | |
2196 | * Release paging references and | |
2197 | * top-level placeholder page, if any. | |
2198 | */ | |
2199 | ||
2200 | vm_fault_cleanup(result_page->object, | |
2201 | top_page); | |
2202 | ||
2203 | break; | |
2204 | ||
2205 | case VM_FAULT_RETRY: | |
2206 | break; | |
2207 | ||
2208 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
2209 | vm_page_more_fictitious(); | |
2210 | break; | |
2211 | ||
2212 | case VM_FAULT_MEMORY_SHORTAGE: | |
2213 | if (vm_page_wait(interruptible)) | |
2214 | break; | |
2215 | /* fall thru */ | |
2216 | ||
2217 | case VM_FAULT_INTERRUPTED: | |
593a1d5f A |
2218 | vm_object_lock(new_object); |
2219 | vm_page_lock_queues(); | |
1c79356b | 2220 | vm_page_free(new_page); |
593a1d5f A |
2221 | vm_page_unlock_queues(); |
2222 | vm_object_unlock(new_object); | |
2223 | ||
1c79356b A |
2224 | vm_object_deallocate(new_object); |
2225 | vm_object_deallocate(src_object); | |
2226 | *_result_object = VM_OBJECT_NULL; | |
2227 | return(MACH_SEND_INTERRUPTED); | |
2228 | ||
2229 | case VM_FAULT_MEMORY_ERROR: | |
2230 | /* | |
2231 | * A policy choice: | |
2232 | * (a) ignore pages that we can't | |
2233 | * copy | |
2234 | * (b) return the null object if | |
2235 | * any page fails [chosen] | |
2236 | */ | |
2237 | ||
593a1d5f | 2238 | vm_object_lock(new_object); |
1c79356b A |
2239 | vm_page_lock_queues(); |
2240 | vm_page_free(new_page); | |
2241 | vm_page_unlock_queues(); | |
593a1d5f | 2242 | vm_object_unlock(new_object); |
2d21ac55 | 2243 | |
1c79356b A |
2244 | vm_object_deallocate(new_object); |
2245 | vm_object_deallocate(src_object); | |
2246 | *_result_object = VM_OBJECT_NULL; | |
2247 | return(error_code ? error_code: | |
2248 | KERN_MEMORY_ERROR); | |
2249 | } | |
2250 | } while (result != VM_FAULT_SUCCESS); | |
2251 | } | |
2252 | ||
2253 | /* | |
2254 | * Lose the extra reference, and return our object. | |
2255 | */ | |
1c79356b A |
2256 | vm_object_deallocate(src_object); |
2257 | *_result_object = new_object; | |
2258 | return(KERN_SUCCESS); | |
2259 | } | |
2260 | ||
2261 | /* | |
2262 | * Routine: vm_object_copy_quickly | |
2263 | * | |
2264 | * Purpose: | |
2265 | * Copy the specified range of the source virtual | |
2266 | * memory object, if it can be done without waiting | |
2267 | * for user-generated events. | |
2268 | * | |
2269 | * Results: | |
2270 | * If the copy is successful, the copy is returned in | |
2271 | * the arguments; otherwise, the arguments are not | |
2272 | * affected. | |
2273 | * | |
2274 | * In/out conditions: | |
2275 | * The object should be unlocked on entry and exit. | |
2276 | */ | |
2277 | ||
2278 | /*ARGSUSED*/ | |
0b4e3aa0 | 2279 | __private_extern__ boolean_t |
1c79356b A |
2280 | vm_object_copy_quickly( |
2281 | vm_object_t *_object, /* INOUT */ | |
91447636 A |
2282 | __unused vm_object_offset_t offset, /* IN */ |
2283 | __unused vm_object_size_t size, /* IN */ | |
1c79356b A |
2284 | boolean_t *_src_needs_copy, /* OUT */ |
2285 | boolean_t *_dst_needs_copy) /* OUT */ | |
2286 | { | |
2287 | vm_object_t object = *_object; | |
2288 | memory_object_copy_strategy_t copy_strategy; | |
2289 | ||
2290 | XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n", | |
2291 | *_object, offset, size, 0, 0); | |
2292 | if (object == VM_OBJECT_NULL) { | |
2293 | *_src_needs_copy = FALSE; | |
2294 | *_dst_needs_copy = FALSE; | |
2295 | return(TRUE); | |
2296 | } | |
2297 | ||
2298 | vm_object_lock(object); | |
2299 | ||
2300 | copy_strategy = object->copy_strategy; | |
2301 | ||
2302 | switch (copy_strategy) { | |
2303 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
2304 | ||
2305 | /* | |
2306 | * Symmetric copy strategy. | |
2307 | * Make another reference to the object. | |
2308 | * Leave object/offset unchanged. | |
2309 | */ | |
2310 | ||
2d21ac55 | 2311 | vm_object_reference_locked(object); |
1c79356b A |
2312 | object->shadowed = TRUE; |
2313 | vm_object_unlock(object); | |
2314 | ||
2315 | /* | |
2316 | * Both source and destination must make | |
2317 | * shadows, and the source must be made | |
2318 | * read-only if not already. | |
2319 | */ | |
2320 | ||
2321 | *_src_needs_copy = TRUE; | |
2322 | *_dst_needs_copy = TRUE; | |
2323 | ||
2324 | break; | |
2325 | ||
2326 | case MEMORY_OBJECT_COPY_DELAY: | |
2327 | vm_object_unlock(object); | |
2328 | return(FALSE); | |
2329 | ||
2330 | default: | |
2331 | vm_object_unlock(object); | |
2332 | return(FALSE); | |
2333 | } | |
2334 | return(TRUE); | |
2335 | } | |
2336 | ||
0b4e3aa0 A |
2337 | static int copy_call_count = 0; |
2338 | static int copy_call_sleep_count = 0; | |
2339 | static int copy_call_restart_count = 0; | |
1c79356b A |
2340 | |
2341 | /* | |
2342 | * Routine: vm_object_copy_call [internal] | |
2343 | * | |
2344 | * Description: | |
2345 | * Copy the source object (src_object), using the | |
2346 | * user-managed copy algorithm. | |
2347 | * | |
2348 | * In/out conditions: | |
2349 | * The source object must be locked on entry. It | |
2350 | * will be *unlocked* on exit. | |
2351 | * | |
2352 | * Results: | |
2353 | * If the copy is successful, KERN_SUCCESS is returned. | |
2354 | * A new object that represents the copied virtual | |
2355 | * memory is returned in a parameter (*_result_object). | |
2356 | * If the return value indicates an error, this parameter | |
2357 | * is not valid. | |
2358 | */ | |
0b4e3aa0 | 2359 | static kern_return_t |
1c79356b A |
2360 | vm_object_copy_call( |
2361 | vm_object_t src_object, | |
2362 | vm_object_offset_t src_offset, | |
2363 | vm_object_size_t size, | |
2364 | vm_object_t *_result_object) /* OUT */ | |
2365 | { | |
2366 | kern_return_t kr; | |
2367 | vm_object_t copy; | |
2368 | boolean_t check_ready = FALSE; | |
2d21ac55 | 2369 | uint32_t try_failed_count = 0; |
1c79356b A |
2370 | |
2371 | /* | |
2372 | * If a copy is already in progress, wait and retry. | |
2373 | * | |
2374 | * XXX | |
2375 | * Consider making this call interruptable, as Mike | |
2376 | * intended it to be. | |
2377 | * | |
2378 | * XXXO | |
2379 | * Need a counter or version or something to allow | |
2380 | * us to use the copy that the currently requesting | |
2381 | * thread is obtaining -- is it worth adding to the | |
2382 | * vm object structure? Depends how common this case it. | |
2383 | */ | |
2384 | copy_call_count++; | |
2385 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
9bccf70c | 2386 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, |
1c79356b | 2387 | THREAD_UNINT); |
1c79356b A |
2388 | copy_call_restart_count++; |
2389 | } | |
2390 | ||
2391 | /* | |
2392 | * Indicate (for the benefit of memory_object_create_copy) | |
2393 | * that we want a copy for src_object. (Note that we cannot | |
2394 | * do a real assert_wait before calling memory_object_copy, | |
2395 | * so we simply set the flag.) | |
2396 | */ | |
2397 | ||
2398 | vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL); | |
2399 | vm_object_unlock(src_object); | |
2400 | ||
2401 | /* | |
2402 | * Ask the memory manager to give us a memory object | |
2403 | * which represents a copy of the src object. | |
2404 | * The memory manager may give us a memory object | |
2405 | * which we already have, or it may give us a | |
2406 | * new memory object. This memory object will arrive | |
2407 | * via memory_object_create_copy. | |
2408 | */ | |
2409 | ||
2410 | kr = KERN_FAILURE; /* XXX need to change memory_object.defs */ | |
2411 | if (kr != KERN_SUCCESS) { | |
2412 | return kr; | |
2413 | } | |
2414 | ||
2415 | /* | |
2416 | * Wait for the copy to arrive. | |
2417 | */ | |
2418 | vm_object_lock(src_object); | |
2419 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
9bccf70c | 2420 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, |
1c79356b | 2421 | THREAD_UNINT); |
1c79356b A |
2422 | copy_call_sleep_count++; |
2423 | } | |
2424 | Retry: | |
2425 | assert(src_object->copy != VM_OBJECT_NULL); | |
2426 | copy = src_object->copy; | |
2427 | if (!vm_object_lock_try(copy)) { | |
2428 | vm_object_unlock(src_object); | |
2d21ac55 A |
2429 | |
2430 | try_failed_count++; | |
2431 | mutex_pause(try_failed_count); /* wait a bit */ | |
2432 | ||
1c79356b A |
2433 | vm_object_lock(src_object); |
2434 | goto Retry; | |
2435 | } | |
2436 | if (copy->size < src_offset+size) | |
2437 | copy->size = src_offset+size; | |
2438 | ||
2439 | if (!copy->pager_ready) | |
2440 | check_ready = TRUE; | |
2441 | ||
2442 | /* | |
2443 | * Return the copy. | |
2444 | */ | |
2445 | *_result_object = copy; | |
2446 | vm_object_unlock(copy); | |
2447 | vm_object_unlock(src_object); | |
2448 | ||
2449 | /* Wait for the copy to be ready. */ | |
2450 | if (check_ready == TRUE) { | |
2451 | vm_object_lock(copy); | |
2452 | while (!copy->pager_ready) { | |
9bccf70c | 2453 | vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); |
1c79356b A |
2454 | } |
2455 | vm_object_unlock(copy); | |
2456 | } | |
2457 | ||
2458 | return KERN_SUCCESS; | |
2459 | } | |
2460 | ||
0b4e3aa0 A |
2461 | static int copy_delayed_lock_collisions = 0; |
2462 | static int copy_delayed_max_collisions = 0; | |
2463 | static int copy_delayed_lock_contention = 0; | |
2464 | static int copy_delayed_protect_iterate = 0; | |
1c79356b A |
2465 | |
2466 | /* | |
2467 | * Routine: vm_object_copy_delayed [internal] | |
2468 | * | |
2469 | * Description: | |
2470 | * Copy the specified virtual memory object, using | |
2471 | * the asymmetric copy-on-write algorithm. | |
2472 | * | |
2473 | * In/out conditions: | |
55e303ae A |
2474 | * The src_object must be locked on entry. It will be unlocked |
2475 | * on exit - so the caller must also hold a reference to it. | |
1c79356b A |
2476 | * |
2477 | * This routine will not block waiting for user-generated | |
2478 | * events. It is not interruptible. | |
2479 | */ | |
0b4e3aa0 | 2480 | __private_extern__ vm_object_t |
1c79356b A |
2481 | vm_object_copy_delayed( |
2482 | vm_object_t src_object, | |
2483 | vm_object_offset_t src_offset, | |
2d21ac55 A |
2484 | vm_object_size_t size, |
2485 | boolean_t src_object_shared) | |
1c79356b A |
2486 | { |
2487 | vm_object_t new_copy = VM_OBJECT_NULL; | |
2488 | vm_object_t old_copy; | |
2489 | vm_page_t p; | |
55e303ae | 2490 | vm_object_size_t copy_size = src_offset + size; |
1c79356b | 2491 | |
2d21ac55 | 2492 | |
1c79356b A |
2493 | int collisions = 0; |
2494 | /* | |
2495 | * The user-level memory manager wants to see all of the changes | |
2496 | * to this object, but it has promised not to make any changes on | |
2497 | * its own. | |
2498 | * | |
2499 | * Perform an asymmetric copy-on-write, as follows: | |
2500 | * Create a new object, called a "copy object" to hold | |
2501 | * pages modified by the new mapping (i.e., the copy, | |
2502 | * not the original mapping). | |
2503 | * Record the original object as the backing object for | |
2504 | * the copy object. If the original mapping does not | |
2505 | * change a page, it may be used read-only by the copy. | |
2506 | * Record the copy object in the original object. | |
2507 | * When the original mapping causes a page to be modified, | |
2508 | * it must be copied to a new page that is "pushed" to | |
2509 | * the copy object. | |
2510 | * Mark the new mapping (the copy object) copy-on-write. | |
2511 | * This makes the copy object itself read-only, allowing | |
2512 | * it to be reused if the original mapping makes no | |
2513 | * changes, and simplifying the synchronization required | |
2514 | * in the "push" operation described above. | |
2515 | * | |
2516 | * The copy-on-write is said to be assymetric because the original | |
2517 | * object is *not* marked copy-on-write. A copied page is pushed | |
2518 | * to the copy object, regardless which party attempted to modify | |
2519 | * the page. | |
2520 | * | |
2521 | * Repeated asymmetric copy operations may be done. If the | |
2522 | * original object has not been changed since the last copy, its | |
2523 | * copy object can be reused. Otherwise, a new copy object can be | |
2524 | * inserted between the original object and its previous copy | |
2525 | * object. Since any copy object is read-only, this cannot affect | |
2526 | * affect the contents of the previous copy object. | |
2527 | * | |
2528 | * Note that a copy object is higher in the object tree than the | |
2529 | * original object; therefore, use of the copy object recorded in | |
2530 | * the original object must be done carefully, to avoid deadlock. | |
2531 | */ | |
2532 | ||
2533 | Retry: | |
1c79356b | 2534 | |
55e303ae A |
2535 | /* |
2536 | * Wait for paging in progress. | |
2537 | */ | |
2d21ac55 A |
2538 | if (!src_object->true_share && src_object->paging_in_progress) { |
2539 | if (src_object_shared == TRUE) { | |
2540 | vm_object_unlock(src_object); | |
2541 | ||
2542 | vm_object_lock(src_object); | |
2543 | src_object_shared = FALSE; | |
2544 | } | |
55e303ae | 2545 | vm_object_paging_wait(src_object, THREAD_UNINT); |
2d21ac55 | 2546 | } |
1c79356b A |
2547 | /* |
2548 | * See whether we can reuse the result of a previous | |
2549 | * copy operation. | |
2550 | */ | |
2551 | ||
2552 | old_copy = src_object->copy; | |
2553 | if (old_copy != VM_OBJECT_NULL) { | |
2d21ac55 A |
2554 | int lock_granted; |
2555 | ||
1c79356b A |
2556 | /* |
2557 | * Try to get the locks (out of order) | |
2558 | */ | |
2d21ac55 A |
2559 | if (src_object_shared == TRUE) |
2560 | lock_granted = vm_object_lock_try_shared(old_copy); | |
2561 | else | |
2562 | lock_granted = vm_object_lock_try(old_copy); | |
2563 | ||
2564 | if (!lock_granted) { | |
1c79356b | 2565 | vm_object_unlock(src_object); |
1c79356b | 2566 | |
1c79356b A |
2567 | if (collisions++ == 0) |
2568 | copy_delayed_lock_contention++; | |
2d21ac55 A |
2569 | mutex_pause(collisions); |
2570 | ||
2571 | /* Heisenberg Rules */ | |
2572 | copy_delayed_lock_collisions++; | |
1c79356b A |
2573 | |
2574 | if (collisions > copy_delayed_max_collisions) | |
2575 | copy_delayed_max_collisions = collisions; | |
2576 | ||
2d21ac55 A |
2577 | if (src_object_shared == TRUE) |
2578 | vm_object_lock_shared(src_object); | |
2579 | else | |
2580 | vm_object_lock(src_object); | |
2581 | ||
1c79356b A |
2582 | goto Retry; |
2583 | } | |
2584 | ||
2585 | /* | |
2586 | * Determine whether the old copy object has | |
2587 | * been modified. | |
2588 | */ | |
2589 | ||
2590 | if (old_copy->resident_page_count == 0 && | |
2591 | !old_copy->pager_created) { | |
2592 | /* | |
2593 | * It has not been modified. | |
2594 | * | |
2595 | * Return another reference to | |
55e303ae A |
2596 | * the existing copy-object if |
2597 | * we can safely grow it (if | |
2598 | * needed). | |
de355530 | 2599 | */ |
1c79356b | 2600 | |
55e303ae | 2601 | if (old_copy->size < copy_size) { |
2d21ac55 A |
2602 | if (src_object_shared == TRUE) { |
2603 | vm_object_unlock(old_copy); | |
2604 | vm_object_unlock(src_object); | |
2605 | ||
2606 | vm_object_lock(src_object); | |
2607 | src_object_shared = FALSE; | |
2608 | goto Retry; | |
2609 | } | |
55e303ae A |
2610 | /* |
2611 | * We can't perform a delayed copy if any of the | |
2612 | * pages in the extended range are wired (because | |
2613 | * we can't safely take write permission away from | |
2614 | * wired pages). If the pages aren't wired, then | |
2615 | * go ahead and protect them. | |
2616 | */ | |
2617 | copy_delayed_protect_iterate++; | |
2d21ac55 | 2618 | |
55e303ae A |
2619 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { |
2620 | if (!p->fictitious && | |
2621 | p->offset >= old_copy->size && | |
2622 | p->offset < copy_size) { | |
2623 | if (p->wire_count > 0) { | |
2624 | vm_object_unlock(old_copy); | |
2625 | vm_object_unlock(src_object); | |
91447636 A |
2626 | |
2627 | if (new_copy != VM_OBJECT_NULL) { | |
2628 | vm_object_unlock(new_copy); | |
2629 | vm_object_deallocate(new_copy); | |
2630 | } | |
2631 | ||
55e303ae A |
2632 | return VM_OBJECT_NULL; |
2633 | } else { | |
2634 | pmap_page_protect(p->phys_page, | |
2d21ac55 | 2635 | (VM_PROT_ALL & ~VM_PROT_WRITE)); |
55e303ae A |
2636 | } |
2637 | } | |
2638 | } | |
2639 | old_copy->size = copy_size; | |
2640 | } | |
2d21ac55 A |
2641 | if (src_object_shared == TRUE) |
2642 | vm_object_reference_shared(old_copy); | |
2643 | else | |
2644 | vm_object_reference_locked(old_copy); | |
d7e50217 A |
2645 | vm_object_unlock(old_copy); |
2646 | vm_object_unlock(src_object); | |
91447636 A |
2647 | |
2648 | if (new_copy != VM_OBJECT_NULL) { | |
2649 | vm_object_unlock(new_copy); | |
2650 | vm_object_deallocate(new_copy); | |
2651 | } | |
55e303ae | 2652 | return(old_copy); |
d7e50217 | 2653 | } |
2d21ac55 A |
2654 | |
2655 | ||
de355530 A |
2656 | |
2657 | /* | |
2658 | * Adjust the size argument so that the newly-created | |
2659 | * copy object will be large enough to back either the | |
55e303ae | 2660 | * old copy object or the new mapping. |
de355530 | 2661 | */ |
55e303ae A |
2662 | if (old_copy->size > copy_size) |
2663 | copy_size = old_copy->size; | |
2664 | ||
2665 | if (new_copy == VM_OBJECT_NULL) { | |
2666 | vm_object_unlock(old_copy); | |
2667 | vm_object_unlock(src_object); | |
2668 | new_copy = vm_object_allocate(copy_size); | |
2669 | vm_object_lock(src_object); | |
2670 | vm_object_lock(new_copy); | |
2d21ac55 A |
2671 | |
2672 | src_object_shared = FALSE; | |
55e303ae A |
2673 | goto Retry; |
2674 | } | |
2675 | new_copy->size = copy_size; | |
1c79356b A |
2676 | |
2677 | /* | |
2678 | * The copy-object is always made large enough to | |
2679 | * completely shadow the original object, since | |
2680 | * it may have several users who want to shadow | |
2681 | * the original object at different points. | |
2682 | */ | |
2683 | ||
2684 | assert((old_copy->shadow == src_object) && | |
2685 | (old_copy->shadow_offset == (vm_object_offset_t) 0)); | |
2686 | ||
55e303ae A |
2687 | } else if (new_copy == VM_OBJECT_NULL) { |
2688 | vm_object_unlock(src_object); | |
2689 | new_copy = vm_object_allocate(copy_size); | |
2690 | vm_object_lock(src_object); | |
2691 | vm_object_lock(new_copy); | |
2d21ac55 A |
2692 | |
2693 | src_object_shared = FALSE; | |
55e303ae A |
2694 | goto Retry; |
2695 | } | |
2696 | ||
2697 | /* | |
2698 | * We now have the src object locked, and the new copy object | |
2699 | * allocated and locked (and potentially the old copy locked). | |
2700 | * Before we go any further, make sure we can still perform | |
2701 | * a delayed copy, as the situation may have changed. | |
2702 | * | |
2703 | * Specifically, we can't perform a delayed copy if any of the | |
2704 | * pages in the range are wired (because we can't safely take | |
2705 | * write permission away from wired pages). If the pages aren't | |
2706 | * wired, then go ahead and protect them. | |
2707 | */ | |
2708 | copy_delayed_protect_iterate++; | |
2d21ac55 | 2709 | |
55e303ae A |
2710 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { |
2711 | if (!p->fictitious && p->offset < copy_size) { | |
2712 | if (p->wire_count > 0) { | |
2713 | if (old_copy) | |
2714 | vm_object_unlock(old_copy); | |
2715 | vm_object_unlock(src_object); | |
2716 | vm_object_unlock(new_copy); | |
2717 | vm_object_deallocate(new_copy); | |
2718 | return VM_OBJECT_NULL; | |
2719 | } else { | |
2720 | pmap_page_protect(p->phys_page, | |
2d21ac55 | 2721 | (VM_PROT_ALL & ~VM_PROT_WRITE)); |
55e303ae A |
2722 | } |
2723 | } | |
2724 | } | |
55e303ae | 2725 | if (old_copy != VM_OBJECT_NULL) { |
1c79356b A |
2726 | /* |
2727 | * Make the old copy-object shadow the new one. | |
2728 | * It will receive no more pages from the original | |
2729 | * object. | |
2730 | */ | |
2731 | ||
2d21ac55 A |
2732 | /* remove ref. from old_copy */ |
2733 | vm_object_lock_assert_exclusive(src_object); | |
2734 | src_object->ref_count--; | |
1c79356b | 2735 | assert(src_object->ref_count > 0); |
2d21ac55 | 2736 | vm_object_lock_assert_exclusive(old_copy); |
1c79356b | 2737 | old_copy->shadow = new_copy; |
2d21ac55 | 2738 | vm_object_lock_assert_exclusive(new_copy); |
1c79356b A |
2739 | assert(new_copy->ref_count > 0); |
2740 | new_copy->ref_count++; /* for old_copy->shadow ref. */ | |
2741 | ||
2742 | #if TASK_SWAPPER | |
2743 | if (old_copy->res_count) { | |
2744 | VM_OBJ_RES_INCR(new_copy); | |
2745 | VM_OBJ_RES_DECR(src_object); | |
2746 | } | |
2747 | #endif | |
2748 | ||
2749 | vm_object_unlock(old_copy); /* done with old_copy */ | |
1c79356b A |
2750 | } |
2751 | ||
2752 | /* | |
2753 | * Point the new copy at the existing object. | |
2754 | */ | |
2d21ac55 | 2755 | vm_object_lock_assert_exclusive(new_copy); |
1c79356b A |
2756 | new_copy->shadow = src_object; |
2757 | new_copy->shadow_offset = 0; | |
2758 | new_copy->shadowed = TRUE; /* caller must set needs_copy */ | |
2d21ac55 A |
2759 | |
2760 | vm_object_lock_assert_exclusive(src_object); | |
2761 | vm_object_reference_locked(src_object); | |
1c79356b | 2762 | src_object->copy = new_copy; |
55e303ae | 2763 | vm_object_unlock(src_object); |
1c79356b A |
2764 | vm_object_unlock(new_copy); |
2765 | ||
1c79356b A |
2766 | XPR(XPR_VM_OBJECT, |
2767 | "vm_object_copy_delayed: used copy object %X for source %X\n", | |
2768 | (integer_t)new_copy, (integer_t)src_object, 0, 0, 0); | |
2769 | ||
2d21ac55 | 2770 | return new_copy; |
1c79356b A |
2771 | } |
2772 | ||
2773 | /* | |
2774 | * Routine: vm_object_copy_strategically | |
2775 | * | |
2776 | * Purpose: | |
2777 | * Perform a copy according to the source object's | |
2778 | * declared strategy. This operation may block, | |
2779 | * and may be interrupted. | |
2780 | */ | |
0b4e3aa0 | 2781 | __private_extern__ kern_return_t |
1c79356b A |
2782 | vm_object_copy_strategically( |
2783 | register vm_object_t src_object, | |
2784 | vm_object_offset_t src_offset, | |
2785 | vm_object_size_t size, | |
2786 | vm_object_t *dst_object, /* OUT */ | |
2787 | vm_object_offset_t *dst_offset, /* OUT */ | |
2788 | boolean_t *dst_needs_copy) /* OUT */ | |
2789 | { | |
2790 | boolean_t result; | |
2791 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ | |
2d21ac55 | 2792 | boolean_t object_lock_shared = FALSE; |
1c79356b A |
2793 | memory_object_copy_strategy_t copy_strategy; |
2794 | ||
2795 | assert(src_object != VM_OBJECT_NULL); | |
2796 | ||
2d21ac55 A |
2797 | copy_strategy = src_object->copy_strategy; |
2798 | ||
2799 | if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
2800 | vm_object_lock_shared(src_object); | |
2801 | object_lock_shared = TRUE; | |
2802 | } else | |
2803 | vm_object_lock(src_object); | |
1c79356b A |
2804 | |
2805 | /* | |
2806 | * The copy strategy is only valid if the memory manager | |
2807 | * is "ready". Internal objects are always ready. | |
2808 | */ | |
2809 | ||
2810 | while (!src_object->internal && !src_object->pager_ready) { | |
9bccf70c | 2811 | wait_result_t wait_result; |
1c79356b | 2812 | |
2d21ac55 A |
2813 | if (object_lock_shared == TRUE) { |
2814 | vm_object_unlock(src_object); | |
2815 | vm_object_lock(src_object); | |
2816 | object_lock_shared = FALSE; | |
2817 | continue; | |
2818 | } | |
9bccf70c A |
2819 | wait_result = vm_object_sleep( src_object, |
2820 | VM_OBJECT_EVENT_PAGER_READY, | |
2821 | interruptible); | |
2822 | if (wait_result != THREAD_AWAKENED) { | |
2823 | vm_object_unlock(src_object); | |
1c79356b A |
2824 | *dst_object = VM_OBJECT_NULL; |
2825 | *dst_offset = 0; | |
2826 | *dst_needs_copy = FALSE; | |
2827 | return(MACH_SEND_INTERRUPTED); | |
2828 | } | |
1c79356b A |
2829 | } |
2830 | ||
1c79356b A |
2831 | /* |
2832 | * Use the appropriate copy strategy. | |
2833 | */ | |
2834 | ||
2835 | switch (copy_strategy) { | |
55e303ae A |
2836 | case MEMORY_OBJECT_COPY_DELAY: |
2837 | *dst_object = vm_object_copy_delayed(src_object, | |
2d21ac55 | 2838 | src_offset, size, object_lock_shared); |
55e303ae A |
2839 | if (*dst_object != VM_OBJECT_NULL) { |
2840 | *dst_offset = src_offset; | |
2841 | *dst_needs_copy = TRUE; | |
2842 | result = KERN_SUCCESS; | |
2843 | break; | |
2844 | } | |
2845 | vm_object_lock(src_object); | |
2846 | /* fall thru when delayed copy not allowed */ | |
2847 | ||
1c79356b A |
2848 | case MEMORY_OBJECT_COPY_NONE: |
2849 | result = vm_object_copy_slowly(src_object, src_offset, size, | |
2850 | interruptible, dst_object); | |
2851 | if (result == KERN_SUCCESS) { | |
2852 | *dst_offset = 0; | |
2853 | *dst_needs_copy = FALSE; | |
2854 | } | |
2855 | break; | |
2856 | ||
2857 | case MEMORY_OBJECT_COPY_CALL: | |
2858 | result = vm_object_copy_call(src_object, src_offset, size, | |
2859 | dst_object); | |
2860 | if (result == KERN_SUCCESS) { | |
2861 | *dst_offset = src_offset; | |
2862 | *dst_needs_copy = TRUE; | |
2863 | } | |
2864 | break; | |
2865 | ||
1c79356b A |
2866 | case MEMORY_OBJECT_COPY_SYMMETRIC: |
2867 | XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n",(natural_t)src_object, src_offset, size, 0, 0); | |
2868 | vm_object_unlock(src_object); | |
2869 | result = KERN_MEMORY_RESTART_COPY; | |
2870 | break; | |
2871 | ||
2872 | default: | |
2873 | panic("copy_strategically: bad strategy"); | |
2874 | result = KERN_INVALID_ARGUMENT; | |
2875 | } | |
2876 | return(result); | |
2877 | } | |
2878 | ||
2879 | /* | |
2880 | * vm_object_shadow: | |
2881 | * | |
2882 | * Create a new object which is backed by the | |
2883 | * specified existing object range. The source | |
2884 | * object reference is deallocated. | |
2885 | * | |
2886 | * The new object and offset into that object | |
2887 | * are returned in the source parameters. | |
2888 | */ | |
2889 | boolean_t vm_object_shadow_check = FALSE; | |
2890 | ||
0b4e3aa0 | 2891 | __private_extern__ boolean_t |
1c79356b A |
2892 | vm_object_shadow( |
2893 | vm_object_t *object, /* IN/OUT */ | |
2894 | vm_object_offset_t *offset, /* IN/OUT */ | |
2895 | vm_object_size_t length) | |
2896 | { | |
2897 | register vm_object_t source; | |
2898 | register vm_object_t result; | |
2899 | ||
2900 | source = *object; | |
2d21ac55 A |
2901 | #if 0 |
2902 | /* | |
2903 | * XXX FBDP | |
2904 | * This assertion is valid but it gets triggered by Rosetta for example | |
2905 | * due to a combination of vm_remap() that changes a VM object's | |
2906 | * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY) | |
2907 | * that then sets "needs_copy" on its map entry. This creates a | |
2908 | * mapping situation that VM should never see and doesn't know how to | |
2909 | * handle. | |
2910 | * It's not clear if this can create any real problem but we should | |
2911 | * look into fixing this, probably by having vm_protect(VM_PROT_COPY) | |
2912 | * do more than just set "needs_copy" to handle the copy-on-write... | |
2913 | * In the meantime, let's disable the assertion. | |
2914 | */ | |
1c79356b | 2915 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); |
2d21ac55 | 2916 | #endif |
1c79356b A |
2917 | |
2918 | /* | |
2919 | * Determine if we really need a shadow. | |
2920 | */ | |
2921 | ||
2922 | if (vm_object_shadow_check && source->ref_count == 1 && | |
2923 | (source->shadow == VM_OBJECT_NULL || | |
2924 | source->shadow->copy == VM_OBJECT_NULL)) | |
2925 | { | |
2926 | source->shadowed = FALSE; | |
2927 | return FALSE; | |
2928 | } | |
2929 | ||
2930 | /* | |
2931 | * Allocate a new object with the given length | |
2932 | */ | |
2933 | ||
2934 | if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) | |
2935 | panic("vm_object_shadow: no object for shadowing"); | |
2936 | ||
2937 | /* | |
2938 | * The new object shadows the source object, adding | |
2939 | * a reference to it. Our caller changes his reference | |
2940 | * to point to the new object, removing a reference to | |
2941 | * the source object. Net result: no change of reference | |
2942 | * count. | |
2943 | */ | |
2944 | result->shadow = source; | |
2945 | ||
2946 | /* | |
2947 | * Store the offset into the source object, | |
2948 | * and fix up the offset into the new object. | |
2949 | */ | |
2950 | ||
2951 | result->shadow_offset = *offset; | |
2952 | ||
2953 | /* | |
2954 | * Return the new things | |
2955 | */ | |
2956 | ||
2957 | *offset = 0; | |
2958 | *object = result; | |
2959 | return TRUE; | |
2960 | } | |
2961 | ||
2962 | /* | |
2963 | * The relationship between vm_object structures and | |
0b4e3aa0 | 2964 | * the memory_object requires careful synchronization. |
1c79356b | 2965 | * |
0b4e3aa0 A |
2966 | * All associations are created by memory_object_create_named |
2967 | * for external pagers and vm_object_pager_create for internal | |
2968 | * objects as follows: | |
2969 | * | |
2970 | * pager: the memory_object itself, supplied by | |
1c79356b A |
2971 | * the user requesting a mapping (or the kernel, |
2972 | * when initializing internal objects); the | |
2973 | * kernel simulates holding send rights by keeping | |
2974 | * a port reference; | |
0b4e3aa0 | 2975 | * |
1c79356b A |
2976 | * pager_request: |
2977 | * the memory object control port, | |
2978 | * created by the kernel; the kernel holds | |
2979 | * receive (and ownership) rights to this | |
2980 | * port, but no other references. | |
1c79356b A |
2981 | * |
2982 | * When initialization is complete, the "initialized" field | |
2983 | * is asserted. Other mappings using a particular memory object, | |
2984 | * and any references to the vm_object gained through the | |
2985 | * port association must wait for this initialization to occur. | |
2986 | * | |
2987 | * In order to allow the memory manager to set attributes before | |
2988 | * requests (notably virtual copy operations, but also data or | |
2989 | * unlock requests) are made, a "ready" attribute is made available. | |
2990 | * Only the memory manager may affect the value of this attribute. | |
2991 | * Its value does not affect critical kernel functions, such as | |
2992 | * internal object initialization or destruction. [Furthermore, | |
2993 | * memory objects created by the kernel are assumed to be ready | |
2994 | * immediately; the default memory manager need not explicitly | |
2995 | * set the "ready" attribute.] | |
2996 | * | |
2997 | * [Both the "initialized" and "ready" attribute wait conditions | |
2998 | * use the "pager" field as the wait event.] | |
2999 | * | |
3000 | * The port associations can be broken down by any of the | |
3001 | * following routines: | |
3002 | * vm_object_terminate: | |
3003 | * No references to the vm_object remain, and | |
3004 | * the object cannot (or will not) be cached. | |
3005 | * This is the normal case, and is done even | |
3006 | * though one of the other cases has already been | |
3007 | * done. | |
1c79356b A |
3008 | * memory_object_destroy: |
3009 | * The memory manager has requested that the | |
0b4e3aa0 A |
3010 | * kernel relinquish references to the memory |
3011 | * object. [The memory manager may not want to | |
3012 | * destroy the memory object, but may wish to | |
3013 | * refuse or tear down existing memory mappings.] | |
3014 | * | |
1c79356b A |
3015 | * Each routine that breaks an association must break all of |
3016 | * them at once. At some later time, that routine must clear | |
0b4e3aa0 | 3017 | * the pager field and release the memory object references. |
1c79356b A |
3018 | * [Furthermore, each routine must cope with the simultaneous |
3019 | * or previous operations of the others.] | |
3020 | * | |
3021 | * In addition to the lock on the object, the vm_object_cache_lock | |
0b4e3aa0 A |
3022 | * governs the associations. References gained through the |
3023 | * association require use of the cache lock. | |
1c79356b | 3024 | * |
0b4e3aa0 | 3025 | * Because the pager field may be cleared spontaneously, it |
1c79356b A |
3026 | * cannot be used to determine whether a memory object has |
3027 | * ever been associated with a particular vm_object. [This | |
2d21ac55 A |
3028 | * knowledge is important to the shadow object mechanism.] |
3029 | * For this reason, an additional "created" attribute is | |
3030 | * provided. | |
3031 | * | |
3032 | * During various paging operations, the pager reference found in the | |
3033 | * vm_object must be valid. To prevent this from being released, | |
3034 | * (other than being removed, i.e., made null), routines may use | |
3035 | * the vm_object_paging_begin/end routines [actually, macros]. | |
3036 | * The implementation uses the "paging_in_progress" and "wanted" fields. | |
3037 | * [Operations that alter the validity of the pager values include the | |
3038 | * termination routines and vm_object_collapse.] | |
3039 | */ | |
1c79356b | 3040 | |
1c79356b A |
3041 | |
3042 | /* | |
3043 | * Routine: vm_object_enter | |
3044 | * Purpose: | |
3045 | * Find a VM object corresponding to the given | |
3046 | * pager; if no such object exists, create one, | |
3047 | * and initialize the pager. | |
3048 | */ | |
3049 | vm_object_t | |
3050 | vm_object_enter( | |
0b4e3aa0 | 3051 | memory_object_t pager, |
1c79356b A |
3052 | vm_object_size_t size, |
3053 | boolean_t internal, | |
3054 | boolean_t init, | |
0b4e3aa0 | 3055 | boolean_t named) |
1c79356b A |
3056 | { |
3057 | register vm_object_t object; | |
3058 | vm_object_t new_object; | |
3059 | boolean_t must_init; | |
1c79356b | 3060 | vm_object_hash_entry_t entry, new_entry; |
2d21ac55 | 3061 | uint32_t try_failed_count = 0; |
1c79356b | 3062 | |
0b4e3aa0 | 3063 | if (pager == MEMORY_OBJECT_NULL) |
1c79356b A |
3064 | return(vm_object_allocate(size)); |
3065 | ||
3066 | new_object = VM_OBJECT_NULL; | |
3067 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
3068 | must_init = init; | |
3069 | ||
3070 | /* | |
3071 | * Look for an object associated with this port. | |
3072 | */ | |
2d21ac55 | 3073 | Retry: |
1c79356b | 3074 | vm_object_cache_lock(); |
55e303ae | 3075 | do { |
1c79356b A |
3076 | entry = vm_object_hash_lookup(pager, FALSE); |
3077 | ||
55e303ae A |
3078 | if (entry == VM_OBJECT_HASH_ENTRY_NULL) { |
3079 | if (new_object == VM_OBJECT_NULL) { | |
3080 | /* | |
3081 | * We must unlock to create a new object; | |
3082 | * if we do so, we must try the lookup again. | |
3083 | */ | |
3084 | vm_object_cache_unlock(); | |
3085 | assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL); | |
3086 | new_entry = vm_object_hash_entry_alloc(pager); | |
3087 | new_object = vm_object_allocate(size); | |
3088 | vm_object_cache_lock(); | |
3089 | } else { | |
3090 | /* | |
3091 | * Lookup failed twice, and we have something | |
3092 | * to insert; set the object. | |
3093 | */ | |
3094 | vm_object_hash_insert(new_entry); | |
3095 | entry = new_entry; | |
3096 | entry->object = new_object; | |
3097 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
3098 | new_object = VM_OBJECT_NULL; | |
3099 | must_init = TRUE; | |
3100 | } | |
3101 | } else if (entry->object == VM_OBJECT_NULL) { | |
3102 | /* | |
3103 | * If a previous object is being terminated, | |
3104 | * we must wait for the termination message | |
3105 | * to be queued (and lookup the entry again). | |
3106 | */ | |
1c79356b | 3107 | entry->waiting = TRUE; |
55e303ae | 3108 | entry = VM_OBJECT_HASH_ENTRY_NULL; |
1c79356b A |
3109 | assert_wait((event_t) pager, THREAD_UNINT); |
3110 | vm_object_cache_unlock(); | |
91447636 | 3111 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b | 3112 | vm_object_cache_lock(); |
1c79356b | 3113 | } |
55e303ae | 3114 | } while (entry == VM_OBJECT_HASH_ENTRY_NULL); |
1c79356b A |
3115 | |
3116 | object = entry->object; | |
3117 | assert(object != VM_OBJECT_NULL); | |
3118 | ||
3119 | if (!must_init) { | |
2d21ac55 A |
3120 | if (!vm_object_lock_try(object)) { |
3121 | ||
3122 | vm_object_cache_unlock(); | |
3123 | ||
3124 | try_failed_count++; | |
3125 | mutex_pause(try_failed_count); /* wait a bit */ | |
3126 | ||
3127 | goto Retry; | |
3128 | } | |
1c79356b | 3129 | assert(!internal || object->internal); |
0b4e3aa0 A |
3130 | if (named) { |
3131 | assert(!object->named); | |
1c79356b | 3132 | object->named = TRUE; |
0b4e3aa0 | 3133 | } |
1c79356b A |
3134 | if (object->ref_count == 0) { |
3135 | XPR(XPR_VM_OBJECT_CACHE, | |
3136 | "vm_object_enter: removing %x from cache, head (%x, %x)\n", | |
3137 | (integer_t)object, | |
3138 | (integer_t)vm_object_cached_list.next, | |
3139 | (integer_t)vm_object_cached_list.prev, 0,0); | |
3140 | queue_remove(&vm_object_cached_list, object, | |
3141 | vm_object_t, cached_list); | |
3142 | vm_object_cached_count--; | |
3143 | } | |
2d21ac55 | 3144 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
3145 | object->ref_count++; |
3146 | vm_object_res_reference(object); | |
3147 | vm_object_unlock(object); | |
3148 | ||
2d21ac55 | 3149 | VM_STAT_INCR(hits); |
1c79356b A |
3150 | } |
3151 | assert(object->ref_count > 0); | |
3152 | ||
2d21ac55 | 3153 | VM_STAT_INCR(lookups); |
1c79356b A |
3154 | |
3155 | vm_object_cache_unlock(); | |
3156 | ||
3157 | XPR(XPR_VM_OBJECT, | |
3158 | "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n", | |
3159 | (integer_t)pager, (integer_t)object, must_init, 0, 0); | |
3160 | ||
3161 | /* | |
3162 | * If we raced to create a vm_object but lost, let's | |
3163 | * throw away ours. | |
3164 | */ | |
3165 | ||
3166 | if (new_object != VM_OBJECT_NULL) | |
3167 | vm_object_deallocate(new_object); | |
3168 | ||
3169 | if (new_entry != VM_OBJECT_HASH_ENTRY_NULL) | |
3170 | vm_object_hash_entry_free(new_entry); | |
3171 | ||
3172 | if (must_init) { | |
91447636 | 3173 | memory_object_control_t control; |
1c79356b A |
3174 | |
3175 | /* | |
3176 | * Allocate request port. | |
3177 | */ | |
3178 | ||
91447636 A |
3179 | control = memory_object_control_allocate(object); |
3180 | assert (control != MEMORY_OBJECT_CONTROL_NULL); | |
1c79356b A |
3181 | |
3182 | vm_object_lock(object); | |
91447636 | 3183 | assert(object != kernel_object); |
1c79356b A |
3184 | |
3185 | /* | |
0b4e3aa0 | 3186 | * Copy the reference we were given. |
1c79356b A |
3187 | */ |
3188 | ||
0b4e3aa0 | 3189 | memory_object_reference(pager); |
1c79356b A |
3190 | object->pager_created = TRUE; |
3191 | object->pager = pager; | |
3192 | object->internal = internal; | |
3193 | object->pager_trusted = internal; | |
3194 | if (!internal) { | |
3195 | /* copy strategy invalid until set by memory manager */ | |
3196 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; | |
3197 | } | |
91447636 | 3198 | object->pager_control = control; |
1c79356b A |
3199 | object->pager_ready = FALSE; |
3200 | ||
1c79356b A |
3201 | vm_object_unlock(object); |
3202 | ||
3203 | /* | |
3204 | * Let the pager know we're using it. | |
3205 | */ | |
3206 | ||
0b4e3aa0 | 3207 | (void) memory_object_init(pager, |
91447636 | 3208 | object->pager_control, |
0b4e3aa0 | 3209 | PAGE_SIZE); |
1c79356b A |
3210 | |
3211 | vm_object_lock(object); | |
0b4e3aa0 A |
3212 | if (named) |
3213 | object->named = TRUE; | |
1c79356b A |
3214 | if (internal) { |
3215 | object->pager_ready = TRUE; | |
3216 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
3217 | } | |
3218 | ||
3219 | object->pager_initialized = TRUE; | |
3220 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); | |
3221 | } else { | |
3222 | vm_object_lock(object); | |
3223 | } | |
3224 | ||
3225 | /* | |
3226 | * [At this point, the object must be locked] | |
3227 | */ | |
3228 | ||
3229 | /* | |
3230 | * Wait for the work above to be done by the first | |
3231 | * thread to map this object. | |
3232 | */ | |
3233 | ||
3234 | while (!object->pager_initialized) { | |
9bccf70c | 3235 | vm_object_sleep(object, |
1c79356b A |
3236 | VM_OBJECT_EVENT_INITIALIZED, |
3237 | THREAD_UNINT); | |
1c79356b A |
3238 | } |
3239 | vm_object_unlock(object); | |
3240 | ||
3241 | XPR(XPR_VM_OBJECT, | |
3242 | "vm_object_enter: vm_object %x, memory_object %x, internal %d\n", | |
3243 | (integer_t)object, (integer_t)object->pager, internal, 0,0); | |
3244 | return(object); | |
3245 | } | |
3246 | ||
3247 | /* | |
3248 | * Routine: vm_object_pager_create | |
3249 | * Purpose: | |
3250 | * Create a memory object for an internal object. | |
3251 | * In/out conditions: | |
3252 | * The object is locked on entry and exit; | |
3253 | * it may be unlocked within this call. | |
3254 | * Limitations: | |
3255 | * Only one thread may be performing a | |
3256 | * vm_object_pager_create on an object at | |
3257 | * a time. Presumably, only the pageout | |
3258 | * daemon will be using this routine. | |
3259 | */ | |
3260 | ||
3261 | void | |
3262 | vm_object_pager_create( | |
3263 | register vm_object_t object) | |
3264 | { | |
0b4e3aa0 | 3265 | memory_object_t pager; |
1c79356b A |
3266 | vm_object_hash_entry_t entry; |
3267 | #if MACH_PAGEMAP | |
3268 | vm_object_size_t size; | |
3269 | vm_external_map_t map; | |
3270 | #endif /* MACH_PAGEMAP */ | |
3271 | ||
3272 | XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n", | |
3273 | (integer_t)object, 0,0,0,0); | |
3274 | ||
91447636 A |
3275 | assert(object != kernel_object); |
3276 | ||
1c79356b A |
3277 | if (memory_manager_default_check() != KERN_SUCCESS) |
3278 | return; | |
3279 | ||
3280 | /* | |
3281 | * Prevent collapse or termination by holding a paging reference | |
3282 | */ | |
3283 | ||
3284 | vm_object_paging_begin(object); | |
3285 | if (object->pager_created) { | |
3286 | /* | |
3287 | * Someone else got to it first... | |
3288 | * wait for them to finish initializing the ports | |
3289 | */ | |
3290 | while (!object->pager_initialized) { | |
9bccf70c A |
3291 | vm_object_sleep(object, |
3292 | VM_OBJECT_EVENT_INITIALIZED, | |
3293 | THREAD_UNINT); | |
1c79356b A |
3294 | } |
3295 | vm_object_paging_end(object); | |
3296 | return; | |
3297 | } | |
3298 | ||
3299 | /* | |
3300 | * Indicate that a memory object has been assigned | |
3301 | * before dropping the lock, to prevent a race. | |
3302 | */ | |
3303 | ||
3304 | object->pager_created = TRUE; | |
3305 | object->paging_offset = 0; | |
3306 | ||
3307 | #if MACH_PAGEMAP | |
3308 | size = object->size; | |
3309 | #endif /* MACH_PAGEMAP */ | |
3310 | vm_object_unlock(object); | |
3311 | ||
3312 | #if MACH_PAGEMAP | |
3313 | map = vm_external_create(size); | |
3314 | vm_object_lock(object); | |
3315 | assert(object->size == size); | |
3316 | object->existence_map = map; | |
3317 | vm_object_unlock(object); | |
3318 | #endif /* MACH_PAGEMAP */ | |
3319 | ||
3320 | /* | |
0b4e3aa0 | 3321 | * Create the [internal] pager, and associate it with this object. |
1c79356b | 3322 | * |
0b4e3aa0 | 3323 | * We make the association here so that vm_object_enter() |
1c79356b A |
3324 | * can look up the object to complete initializing it. No |
3325 | * user will ever map this object. | |
3326 | */ | |
3327 | { | |
0b4e3aa0 | 3328 | memory_object_default_t dmm; |
1c79356b | 3329 | |
0b4e3aa0 | 3330 | /* acquire a reference for the default memory manager */ |
2d21ac55 | 3331 | dmm = memory_manager_default_reference(); |
1c79356b | 3332 | |
1c79356b A |
3333 | assert(object->temporary); |
3334 | ||
0b4e3aa0 A |
3335 | /* create our new memory object */ |
3336 | (void) memory_object_create(dmm, object->size, &pager); | |
3337 | ||
3338 | memory_object_default_deallocate(dmm); | |
1c79356b A |
3339 | } |
3340 | ||
3341 | entry = vm_object_hash_entry_alloc(pager); | |
3342 | ||
3343 | vm_object_cache_lock(); | |
3344 | vm_object_hash_insert(entry); | |
3345 | ||
3346 | entry->object = object; | |
3347 | vm_object_cache_unlock(); | |
3348 | ||
3349 | /* | |
0b4e3aa0 | 3350 | * A reference was returned by |
1c79356b A |
3351 | * memory_object_create(), and it is |
3352 | * copied by vm_object_enter(). | |
3353 | */ | |
3354 | ||
3355 | if (vm_object_enter(pager, object->size, TRUE, TRUE, FALSE) != object) | |
3356 | panic("vm_object_pager_create: mismatch"); | |
3357 | ||
3358 | /* | |
0b4e3aa0 | 3359 | * Drop the reference we were passed. |
1c79356b | 3360 | */ |
0b4e3aa0 | 3361 | memory_object_deallocate(pager); |
1c79356b A |
3362 | |
3363 | vm_object_lock(object); | |
3364 | ||
3365 | /* | |
3366 | * Release the paging reference | |
3367 | */ | |
3368 | vm_object_paging_end(object); | |
3369 | } | |
3370 | ||
3371 | /* | |
3372 | * Routine: vm_object_remove | |
3373 | * Purpose: | |
3374 | * Eliminate the pager/object association | |
3375 | * for this pager. | |
3376 | * Conditions: | |
3377 | * The object cache must be locked. | |
3378 | */ | |
0b4e3aa0 | 3379 | __private_extern__ void |
1c79356b A |
3380 | vm_object_remove( |
3381 | vm_object_t object) | |
3382 | { | |
0b4e3aa0 | 3383 | memory_object_t pager; |
1c79356b | 3384 | |
0b4e3aa0 | 3385 | if ((pager = object->pager) != MEMORY_OBJECT_NULL) { |
1c79356b A |
3386 | vm_object_hash_entry_t entry; |
3387 | ||
0b4e3aa0 | 3388 | entry = vm_object_hash_lookup(pager, FALSE); |
1c79356b A |
3389 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) |
3390 | entry->object = VM_OBJECT_NULL; | |
3391 | } | |
3392 | ||
1c79356b A |
3393 | } |
3394 | ||
3395 | /* | |
3396 | * Global variables for vm_object_collapse(): | |
3397 | * | |
3398 | * Counts for normal collapses and bypasses. | |
3399 | * Debugging variables, to watch or disable collapse. | |
3400 | */ | |
0b4e3aa0 A |
3401 | static long object_collapses = 0; |
3402 | static long object_bypasses = 0; | |
1c79356b | 3403 | |
0b4e3aa0 A |
3404 | static boolean_t vm_object_collapse_allowed = TRUE; |
3405 | static boolean_t vm_object_bypass_allowed = TRUE; | |
3406 | ||
2d21ac55 | 3407 | #if MACH_PAGEMAP |
0b4e3aa0 A |
3408 | static int vm_external_discarded; |
3409 | static int vm_external_collapsed; | |
2d21ac55 | 3410 | #endif |
1c79356b | 3411 | |
91447636 A |
3412 | unsigned long vm_object_collapse_encrypted = 0; |
3413 | ||
1c79356b | 3414 | /* |
0b4e3aa0 A |
3415 | * Routine: vm_object_do_collapse |
3416 | * Purpose: | |
3417 | * Collapse an object with the object backing it. | |
3418 | * Pages in the backing object are moved into the | |
3419 | * parent, and the backing object is deallocated. | |
3420 | * Conditions: | |
3421 | * Both objects and the cache are locked; the page | |
3422 | * queues are unlocked. | |
1c79356b A |
3423 | * |
3424 | */ | |
0b4e3aa0 | 3425 | static void |
1c79356b A |
3426 | vm_object_do_collapse( |
3427 | vm_object_t object, | |
3428 | vm_object_t backing_object) | |
3429 | { | |
3430 | vm_page_t p, pp; | |
3431 | vm_object_offset_t new_offset, backing_offset; | |
3432 | vm_object_size_t size; | |
3433 | ||
3434 | backing_offset = object->shadow_offset; | |
3435 | size = object->size; | |
3436 | ||
1c79356b A |
3437 | /* |
3438 | * Move all in-memory pages from backing_object | |
3439 | * to the parent. Pages that have been paged out | |
3440 | * will be overwritten by any of the parent's | |
3441 | * pages that shadow them. | |
3442 | */ | |
3443 | ||
3444 | while (!queue_empty(&backing_object->memq)) { | |
3445 | ||
3446 | p = (vm_page_t) queue_first(&backing_object->memq); | |
3447 | ||
3448 | new_offset = (p->offset - backing_offset); | |
3449 | ||
3450 | assert(!p->busy || p->absent); | |
91447636 | 3451 | |
1c79356b A |
3452 | /* |
3453 | * If the parent has a page here, or if | |
3454 | * this page falls outside the parent, | |
3455 | * dispose of it. | |
3456 | * | |
3457 | * Otherwise, move it as planned. | |
3458 | */ | |
3459 | ||
3460 | if (p->offset < backing_offset || new_offset >= size) { | |
3461 | VM_PAGE_FREE(p); | |
3462 | } else { | |
91447636 A |
3463 | /* |
3464 | * ENCRYPTED SWAP: | |
3465 | * The encryption key includes the "pager" and the | |
2d21ac55 A |
3466 | * "paging_offset". These will not change during the |
3467 | * object collapse, so we can just move an encrypted | |
3468 | * page from one object to the other in this case. | |
3469 | * We can't decrypt the page here, since we can't drop | |
91447636 | 3470 | * the object lock. |
91447636 | 3471 | */ |
2d21ac55 A |
3472 | if (p->encrypted) { |
3473 | vm_object_collapse_encrypted++; | |
3474 | } | |
1c79356b A |
3475 | pp = vm_page_lookup(object, new_offset); |
3476 | if (pp == VM_PAGE_NULL) { | |
3477 | ||
3478 | /* | |
3479 | * Parent now has no page. | |
3480 | * Move the backing object's page up. | |
3481 | */ | |
3482 | ||
2d21ac55 | 3483 | vm_page_rename(p, object, new_offset, TRUE); |
1c79356b A |
3484 | #if MACH_PAGEMAP |
3485 | } else if (pp->absent) { | |
3486 | ||
3487 | /* | |
3488 | * Parent has an absent page... | |
3489 | * it's not being paged in, so | |
3490 | * it must really be missing from | |
3491 | * the parent. | |
3492 | * | |
3493 | * Throw out the absent page... | |
3494 | * any faults looking for that | |
3495 | * page will restart with the new | |
3496 | * one. | |
3497 | */ | |
3498 | ||
3499 | VM_PAGE_FREE(pp); | |
2d21ac55 | 3500 | vm_page_rename(p, object, new_offset, TRUE); |
1c79356b A |
3501 | #endif /* MACH_PAGEMAP */ |
3502 | } else { | |
3503 | assert(! pp->absent); | |
3504 | ||
3505 | /* | |
3506 | * Parent object has a real page. | |
3507 | * Throw away the backing object's | |
3508 | * page. | |
3509 | */ | |
3510 | VM_PAGE_FREE(p); | |
3511 | } | |
3512 | } | |
3513 | } | |
3514 | ||
55e303ae | 3515 | #if !MACH_PAGEMAP |
2d21ac55 | 3516 | assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL)) |
55e303ae | 3517 | || (!backing_object->pager_created |
2d21ac55 | 3518 | && (backing_object->pager == MEMORY_OBJECT_NULL))); |
55e303ae A |
3519 | #else |
3520 | assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL); | |
3521 | #endif /* !MACH_PAGEMAP */ | |
1c79356b | 3522 | |
0b4e3aa0 | 3523 | if (backing_object->pager != MEMORY_OBJECT_NULL) { |
1c79356b A |
3524 | vm_object_hash_entry_t entry; |
3525 | ||
3526 | /* | |
3527 | * Move the pager from backing_object to object. | |
3528 | * | |
3529 | * XXX We're only using part of the paging space | |
3530 | * for keeps now... we ought to discard the | |
3531 | * unused portion. | |
3532 | */ | |
3533 | ||
55e303ae | 3534 | assert(!object->paging_in_progress); |
1c79356b A |
3535 | object->pager = backing_object->pager; |
3536 | entry = vm_object_hash_lookup(object->pager, FALSE); | |
3537 | assert(entry != VM_OBJECT_HASH_ENTRY_NULL); | |
3538 | entry->object = object; | |
3539 | object->pager_created = backing_object->pager_created; | |
91447636 | 3540 | object->pager_control = backing_object->pager_control; |
1c79356b A |
3541 | object->pager_ready = backing_object->pager_ready; |
3542 | object->pager_initialized = backing_object->pager_initialized; | |
1c79356b A |
3543 | object->paging_offset = |
3544 | backing_object->paging_offset + backing_offset; | |
91447636 A |
3545 | if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) { |
3546 | memory_object_control_collapse(object->pager_control, | |
0b4e3aa0 | 3547 | object); |
1c79356b A |
3548 | } |
3549 | } | |
3550 | ||
3551 | vm_object_cache_unlock(); | |
3552 | ||
1c79356b A |
3553 | #if MACH_PAGEMAP |
3554 | /* | |
3555 | * If the shadow offset is 0, the use the existence map from | |
3556 | * the backing object if there is one. If the shadow offset is | |
3557 | * not zero, toss it. | |
3558 | * | |
3559 | * XXX - If the shadow offset is not 0 then a bit copy is needed | |
3560 | * if the map is to be salvaged. For now, we just just toss the | |
3561 | * old map, giving the collapsed object no map. This means that | |
3562 | * the pager is invoked for zero fill pages. If analysis shows | |
3563 | * that this happens frequently and is a performance hit, then | |
3564 | * this code should be fixed to salvage the map. | |
3565 | */ | |
3566 | assert(object->existence_map == VM_EXTERNAL_NULL); | |
3567 | if (backing_offset || (size != backing_object->size)) { | |
3568 | vm_external_discarded++; | |
3569 | vm_external_destroy(backing_object->existence_map, | |
3570 | backing_object->size); | |
3571 | } | |
3572 | else { | |
3573 | vm_external_collapsed++; | |
3574 | object->existence_map = backing_object->existence_map; | |
3575 | } | |
3576 | backing_object->existence_map = VM_EXTERNAL_NULL; | |
3577 | #endif /* MACH_PAGEMAP */ | |
3578 | ||
3579 | /* | |
3580 | * Object now shadows whatever backing_object did. | |
3581 | * Note that the reference to backing_object->shadow | |
3582 | * moves from within backing_object to within object. | |
3583 | */ | |
3584 | ||
91447636 A |
3585 | assert(!object->phys_contiguous); |
3586 | assert(!backing_object->phys_contiguous); | |
1c79356b | 3587 | object->shadow = backing_object->shadow; |
91447636 A |
3588 | if (object->shadow) { |
3589 | object->shadow_offset += backing_object->shadow_offset; | |
3590 | } else { | |
3591 | /* no shadow, therefore no shadow offset... */ | |
3592 | object->shadow_offset = 0; | |
3593 | } | |
1c79356b | 3594 | assert((object->shadow == VM_OBJECT_NULL) || |
55e303ae | 3595 | (object->shadow->copy != backing_object)); |
1c79356b A |
3596 | |
3597 | /* | |
3598 | * Discard backing_object. | |
3599 | * | |
3600 | * Since the backing object has no pages, no | |
3601 | * pager left, and no object references within it, | |
3602 | * all that is necessary is to dispose of it. | |
3603 | */ | |
3604 | ||
3605 | assert((backing_object->ref_count == 1) && | |
3606 | (backing_object->resident_page_count == 0) && | |
3607 | (backing_object->paging_in_progress == 0)); | |
3608 | ||
1c79356b A |
3609 | backing_object->alive = FALSE; |
3610 | vm_object_unlock(backing_object); | |
3611 | ||
3612 | XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n", | |
3613 | (integer_t)backing_object, 0,0,0,0); | |
3614 | ||
2d21ac55 A |
3615 | vm_object_lock_destroy(backing_object); |
3616 | ||
91447636 | 3617 | zfree(vm_object_zone, backing_object); |
1c79356b A |
3618 | |
3619 | object_collapses++; | |
3620 | } | |
3621 | ||
0b4e3aa0 | 3622 | static void |
1c79356b A |
3623 | vm_object_do_bypass( |
3624 | vm_object_t object, | |
3625 | vm_object_t backing_object) | |
3626 | { | |
3627 | /* | |
3628 | * Make the parent shadow the next object | |
3629 | * in the chain. | |
3630 | */ | |
3631 | ||
2d21ac55 A |
3632 | vm_object_lock_assert_exclusive(backing_object); |
3633 | ||
1c79356b A |
3634 | #if TASK_SWAPPER |
3635 | /* | |
3636 | * Do object reference in-line to | |
3637 | * conditionally increment shadow's | |
3638 | * residence count. If object is not | |
3639 | * resident, leave residence count | |
3640 | * on shadow alone. | |
3641 | */ | |
3642 | if (backing_object->shadow != VM_OBJECT_NULL) { | |
3643 | vm_object_lock(backing_object->shadow); | |
2d21ac55 | 3644 | vm_object_lock_assert_exclusive(backing_object->shadow); |
1c79356b A |
3645 | backing_object->shadow->ref_count++; |
3646 | if (object->res_count != 0) | |
3647 | vm_object_res_reference(backing_object->shadow); | |
3648 | vm_object_unlock(backing_object->shadow); | |
3649 | } | |
3650 | #else /* TASK_SWAPPER */ | |
3651 | vm_object_reference(backing_object->shadow); | |
3652 | #endif /* TASK_SWAPPER */ | |
3653 | ||
91447636 A |
3654 | assert(!object->phys_contiguous); |
3655 | assert(!backing_object->phys_contiguous); | |
1c79356b | 3656 | object->shadow = backing_object->shadow; |
91447636 A |
3657 | if (object->shadow) { |
3658 | object->shadow_offset += backing_object->shadow_offset; | |
3659 | } else { | |
3660 | /* no shadow, therefore no shadow offset... */ | |
3661 | object->shadow_offset = 0; | |
3662 | } | |
1c79356b A |
3663 | |
3664 | /* | |
3665 | * Backing object might have had a copy pointer | |
3666 | * to us. If it did, clear it. | |
3667 | */ | |
3668 | if (backing_object->copy == object) { | |
3669 | backing_object->copy = VM_OBJECT_NULL; | |
3670 | } | |
3671 | ||
3672 | /* | |
3673 | * Drop the reference count on backing_object. | |
3674 | #if TASK_SWAPPER | |
3675 | * Since its ref_count was at least 2, it | |
3676 | * will not vanish; so we don't need to call | |
3677 | * vm_object_deallocate. | |
593a1d5f | 3678 | * [with a caveat for "named" objects] |
1c79356b A |
3679 | * |
3680 | * The res_count on the backing object is | |
3681 | * conditionally decremented. It's possible | |
3682 | * (via vm_pageout_scan) to get here with | |
3683 | * a "swapped" object, which has a 0 res_count, | |
3684 | * in which case, the backing object res_count | |
3685 | * is already down by one. | |
3686 | #else | |
3687 | * Don't call vm_object_deallocate unless | |
3688 | * ref_count drops to zero. | |
3689 | * | |
3690 | * The ref_count can drop to zero here if the | |
3691 | * backing object could be bypassed but not | |
3692 | * collapsed, such as when the backing object | |
3693 | * is temporary and cachable. | |
3694 | #endif | |
3695 | */ | |
593a1d5f A |
3696 | if (backing_object->ref_count > 2 || |
3697 | (!backing_object->named && backing_object->ref_count > 1)) { | |
2d21ac55 | 3698 | vm_object_lock_assert_exclusive(backing_object); |
1c79356b A |
3699 | backing_object->ref_count--; |
3700 | #if TASK_SWAPPER | |
3701 | if (object->res_count != 0) | |
3702 | vm_object_res_deallocate(backing_object); | |
3703 | assert(backing_object->ref_count > 0); | |
3704 | #endif /* TASK_SWAPPER */ | |
3705 | vm_object_unlock(backing_object); | |
3706 | } else { | |
3707 | ||
3708 | /* | |
3709 | * Drop locks so that we can deallocate | |
3710 | * the backing object. | |
3711 | */ | |
3712 | ||
3713 | #if TASK_SWAPPER | |
3714 | if (object->res_count == 0) { | |
3715 | /* XXX get a reference for the deallocate below */ | |
3716 | vm_object_res_reference(backing_object); | |
3717 | } | |
3718 | #endif /* TASK_SWAPPER */ | |
3719 | vm_object_unlock(object); | |
3720 | vm_object_unlock(backing_object); | |
3721 | vm_object_deallocate(backing_object); | |
3722 | ||
3723 | /* | |
3724 | * Relock object. We don't have to reverify | |
3725 | * its state since vm_object_collapse will | |
3726 | * do that for us as it starts at the | |
3727 | * top of its loop. | |
3728 | */ | |
3729 | ||
3730 | vm_object_lock(object); | |
3731 | } | |
3732 | ||
3733 | object_bypasses++; | |
3734 | } | |
0b4e3aa0 | 3735 | |
1c79356b A |
3736 | |
3737 | /* | |
3738 | * vm_object_collapse: | |
3739 | * | |
3740 | * Perform an object collapse or an object bypass if appropriate. | |
3741 | * The real work of collapsing and bypassing is performed in | |
3742 | * the routines vm_object_do_collapse and vm_object_do_bypass. | |
3743 | * | |
3744 | * Requires that the object be locked and the page queues be unlocked. | |
3745 | * | |
3746 | */ | |
91447636 A |
3747 | static unsigned long vm_object_collapse_calls = 0; |
3748 | static unsigned long vm_object_collapse_objects = 0; | |
3749 | static unsigned long vm_object_collapse_do_collapse = 0; | |
3750 | static unsigned long vm_object_collapse_do_bypass = 0; | |
2d21ac55 | 3751 | static unsigned long vm_object_collapse_delays = 0; |
0b4e3aa0 | 3752 | __private_extern__ void |
1c79356b | 3753 | vm_object_collapse( |
55e303ae | 3754 | register vm_object_t object, |
0c530ab8 A |
3755 | register vm_object_offset_t hint_offset, |
3756 | boolean_t can_bypass) | |
1c79356b A |
3757 | { |
3758 | register vm_object_t backing_object; | |
55e303ae A |
3759 | register unsigned int rcount; |
3760 | register unsigned int size; | |
91447636 A |
3761 | vm_object_t original_object; |
3762 | ||
3763 | vm_object_collapse_calls++; | |
0b4e3aa0 | 3764 | |
0c530ab8 A |
3765 | if (! vm_object_collapse_allowed && |
3766 | ! (can_bypass && vm_object_bypass_allowed)) { | |
1c79356b A |
3767 | return; |
3768 | } | |
3769 | ||
3770 | XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n", | |
3771 | (integer_t)object, 0,0,0,0); | |
3772 | ||
91447636 A |
3773 | if (object == VM_OBJECT_NULL) |
3774 | return; | |
3775 | ||
3776 | original_object = object; | |
3777 | ||
1c79356b | 3778 | while (TRUE) { |
91447636 | 3779 | vm_object_collapse_objects++; |
1c79356b A |
3780 | /* |
3781 | * Verify that the conditions are right for either | |
3782 | * collapse or bypass: | |
1c79356b | 3783 | */ |
1c79356b A |
3784 | |
3785 | /* | |
3786 | * There is a backing object, and | |
3787 | */ | |
3788 | ||
91447636 A |
3789 | backing_object = object->shadow; |
3790 | if (backing_object == VM_OBJECT_NULL) { | |
3791 | if (object != original_object) { | |
3792 | vm_object_unlock(object); | |
3793 | } | |
1c79356b | 3794 | return; |
91447636 | 3795 | } |
1c79356b | 3796 | |
91447636 A |
3797 | /* |
3798 | * No pages in the object are currently | |
3799 | * being paged out, and | |
3800 | */ | |
2d21ac55 | 3801 | if (object->paging_in_progress != 0) { |
91447636 A |
3802 | /* try and collapse the rest of the shadow chain */ |
3803 | vm_object_lock(backing_object); | |
3804 | if (object != original_object) { | |
3805 | vm_object_unlock(object); | |
3806 | } | |
3807 | object = backing_object; | |
3808 | continue; | |
3809 | } | |
3810 | ||
1c79356b A |
3811 | vm_object_lock(backing_object); |
3812 | ||
3813 | /* | |
3814 | * ... | |
3815 | * The backing object is not read_only, | |
3816 | * and no pages in the backing object are | |
3817 | * currently being paged out. | |
3818 | * The backing object is internal. | |
3819 | * | |
3820 | */ | |
3821 | ||
3822 | if (!backing_object->internal || | |
3823 | backing_object->paging_in_progress != 0) { | |
91447636 A |
3824 | /* try and collapse the rest of the shadow chain */ |
3825 | if (object != original_object) { | |
3826 | vm_object_unlock(object); | |
3827 | } | |
3828 | object = backing_object; | |
3829 | continue; | |
1c79356b A |
3830 | } |
3831 | ||
3832 | /* | |
3833 | * The backing object can't be a copy-object: | |
3834 | * the shadow_offset for the copy-object must stay | |
3835 | * as 0. Furthermore (for the 'we have all the | |
3836 | * pages' case), if we bypass backing_object and | |
3837 | * just shadow the next object in the chain, old | |
3838 | * pages from that object would then have to be copied | |
3839 | * BOTH into the (former) backing_object and into the | |
3840 | * parent object. | |
3841 | */ | |
3842 | if (backing_object->shadow != VM_OBJECT_NULL && | |
55e303ae | 3843 | backing_object->shadow->copy == backing_object) { |
91447636 A |
3844 | /* try and collapse the rest of the shadow chain */ |
3845 | if (object != original_object) { | |
3846 | vm_object_unlock(object); | |
3847 | } | |
3848 | object = backing_object; | |
3849 | continue; | |
1c79356b A |
3850 | } |
3851 | ||
3852 | /* | |
3853 | * We can now try to either collapse the backing | |
3854 | * object (if the parent is the only reference to | |
3855 | * it) or (perhaps) remove the parent's reference | |
3856 | * to it. | |
1c79356b | 3857 | * |
0b4e3aa0 A |
3858 | * If there is exactly one reference to the backing |
3859 | * object, we may be able to collapse it into the | |
3860 | * parent. | |
1c79356b | 3861 | * |
55e303ae A |
3862 | * If MACH_PAGEMAP is defined: |
3863 | * The parent must not have a pager created for it, | |
3864 | * since collapsing a backing_object dumps new pages | |
3865 | * into the parent that its pager doesn't know about | |
3866 | * (and the collapse code can't merge the existence | |
3867 | * maps). | |
3868 | * Otherwise: | |
3869 | * As long as one of the objects is still not known | |
3870 | * to the pager, we can collapse them. | |
1c79356b | 3871 | */ |
1c79356b | 3872 | if (backing_object->ref_count == 1 && |
55e303ae A |
3873 | (!object->pager_created |
3874 | #if !MACH_PAGEMAP | |
91447636 | 3875 | || !backing_object->pager_created |
55e303ae A |
3876 | #endif /*!MACH_PAGEMAP */ |
3877 | ) && vm_object_collapse_allowed) { | |
1c79356b A |
3878 | |
3879 | XPR(XPR_VM_OBJECT, | |
91447636 | 3880 | "vm_object_collapse: %x to %x, pager %x, pager_control %x\n", |
1c79356b A |
3881 | (integer_t)backing_object, (integer_t)object, |
3882 | (integer_t)backing_object->pager, | |
91447636 | 3883 | (integer_t)backing_object->pager_control, 0); |
1c79356b A |
3884 | |
3885 | /* | |
3886 | * We need the cache lock for collapsing, | |
3887 | * but we must not deadlock. | |
3888 | */ | |
3889 | ||
3890 | if (! vm_object_cache_lock_try()) { | |
91447636 A |
3891 | if (object != original_object) { |
3892 | vm_object_unlock(object); | |
3893 | } | |
1c79356b A |
3894 | vm_object_unlock(backing_object); |
3895 | return; | |
3896 | } | |
3897 | ||
3898 | /* | |
3899 | * Collapse the object with its backing | |
3900 | * object, and try again with the object's | |
3901 | * new backing object. | |
3902 | */ | |
3903 | ||
3904 | vm_object_do_collapse(object, backing_object); | |
91447636 | 3905 | vm_object_collapse_do_collapse++; |
1c79356b A |
3906 | continue; |
3907 | } | |
3908 | ||
1c79356b A |
3909 | /* |
3910 | * Collapsing the backing object was not possible | |
3911 | * or permitted, so let's try bypassing it. | |
3912 | */ | |
3913 | ||
0c530ab8 | 3914 | if (! (can_bypass && vm_object_bypass_allowed)) { |
91447636 A |
3915 | /* try and collapse the rest of the shadow chain */ |
3916 | if (object != original_object) { | |
3917 | vm_object_unlock(object); | |
3918 | } | |
3919 | object = backing_object; | |
3920 | continue; | |
1c79356b A |
3921 | } |
3922 | ||
0b4e3aa0 | 3923 | |
1c79356b | 3924 | /* |
55e303ae A |
3925 | * If the object doesn't have all its pages present, |
3926 | * we have to make sure no pages in the backing object | |
3927 | * "show through" before bypassing it. | |
1c79356b | 3928 | */ |
55e303ae A |
3929 | size = atop(object->size); |
3930 | rcount = object->resident_page_count; | |
3931 | if (rcount != size) { | |
55e303ae A |
3932 | vm_object_offset_t offset; |
3933 | vm_object_offset_t backing_offset; | |
3934 | unsigned int backing_rcount; | |
3935 | unsigned int lookups = 0; | |
3936 | ||
3937 | /* | |
3938 | * If the backing object has a pager but no pagemap, | |
3939 | * then we cannot bypass it, because we don't know | |
3940 | * what pages it has. | |
3941 | */ | |
3942 | if (backing_object->pager_created | |
1c79356b | 3943 | #if MACH_PAGEMAP |
55e303ae | 3944 | && (backing_object->existence_map == VM_EXTERNAL_NULL) |
1c79356b | 3945 | #endif /* MACH_PAGEMAP */ |
55e303ae | 3946 | ) { |
91447636 A |
3947 | /* try and collapse the rest of the shadow chain */ |
3948 | if (object != original_object) { | |
3949 | vm_object_unlock(object); | |
3950 | } | |
3951 | object = backing_object; | |
3952 | continue; | |
55e303ae | 3953 | } |
1c79356b | 3954 | |
55e303ae A |
3955 | /* |
3956 | * If the object has a pager but no pagemap, | |
3957 | * then we cannot bypass it, because we don't know | |
3958 | * what pages it has. | |
3959 | */ | |
3960 | if (object->pager_created | |
0b4e3aa0 | 3961 | #if MACH_PAGEMAP |
55e303ae | 3962 | && (object->existence_map == VM_EXTERNAL_NULL) |
0b4e3aa0 | 3963 | #endif /* MACH_PAGEMAP */ |
55e303ae | 3964 | ) { |
91447636 A |
3965 | /* try and collapse the rest of the shadow chain */ |
3966 | if (object != original_object) { | |
3967 | vm_object_unlock(object); | |
3968 | } | |
3969 | object = backing_object; | |
3970 | continue; | |
55e303ae | 3971 | } |
0b4e3aa0 | 3972 | |
55e303ae A |
3973 | /* |
3974 | * If all of the pages in the backing object are | |
3975 | * shadowed by the parent object, the parent | |
3976 | * object no longer has to shadow the backing | |
3977 | * object; it can shadow the next one in the | |
3978 | * chain. | |
3979 | * | |
3980 | * If the backing object has existence info, | |
3981 | * we must check examine its existence info | |
3982 | * as well. | |
3983 | * | |
3984 | */ | |
1c79356b | 3985 | |
55e303ae A |
3986 | backing_offset = object->shadow_offset; |
3987 | backing_rcount = backing_object->resident_page_count; | |
1c79356b | 3988 | |
2d21ac55 | 3989 | #if MACH_PAGEMAP |
55e303ae A |
3990 | #define EXISTS_IN_OBJECT(obj, off, rc) \ |
3991 | (vm_external_state_get((obj)->existence_map, \ | |
3992 | (vm_offset_t)(off)) == VM_EXTERNAL_STATE_EXISTS || \ | |
3993 | ((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
2d21ac55 A |
3994 | #else |
3995 | #define EXISTS_IN_OBJECT(obj, off, rc) \ | |
3996 | (((rc) && ++lookups && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
3997 | #endif /* MACH_PAGEMAP */ | |
55e303ae A |
3998 | |
3999 | /* | |
4000 | * Check the hint location first | |
4001 | * (since it is often the quickest way out of here). | |
4002 | */ | |
4003 | if (object->cow_hint != ~(vm_offset_t)0) | |
4004 | hint_offset = (vm_object_offset_t)object->cow_hint; | |
4005 | else | |
4006 | hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ? | |
4007 | (hint_offset - 8 * PAGE_SIZE_64) : 0; | |
4008 | ||
4009 | if (EXISTS_IN_OBJECT(backing_object, hint_offset + | |
4010 | backing_offset, backing_rcount) && | |
4011 | !EXISTS_IN_OBJECT(object, hint_offset, rcount)) { | |
4012 | /* dependency right at the hint */ | |
4013 | object->cow_hint = (vm_offset_t)hint_offset; | |
91447636 A |
4014 | /* try and collapse the rest of the shadow chain */ |
4015 | if (object != original_object) { | |
4016 | vm_object_unlock(object); | |
4017 | } | |
4018 | object = backing_object; | |
4019 | continue; | |
0b4e3aa0 | 4020 | } |
55e303ae A |
4021 | |
4022 | /* | |
4023 | * If the object's window onto the backing_object | |
4024 | * is large compared to the number of resident | |
4025 | * pages in the backing object, it makes sense to | |
4026 | * walk the backing_object's resident pages first. | |
4027 | * | |
4028 | * NOTE: Pages may be in both the existence map and | |
4029 | * resident. So, we can't permanently decrement | |
4030 | * the rcount here because the second loop may | |
4031 | * find the same pages in the backing object' | |
4032 | * existence map that we found here and we would | |
4033 | * double-decrement the rcount. We also may or | |
4034 | * may not have found the | |
4035 | */ | |
2d21ac55 A |
4036 | if (backing_rcount && |
4037 | #if MACH_PAGEMAP | |
4038 | size > ((backing_object->existence_map) ? | |
4039 | backing_rcount : (backing_rcount >> 1)) | |
4040 | #else | |
4041 | size > (backing_rcount >> 1) | |
4042 | #endif /* MACH_PAGEMAP */ | |
4043 | ) { | |
55e303ae A |
4044 | unsigned int rc = rcount; |
4045 | vm_page_t p; | |
4046 | ||
4047 | backing_rcount = backing_object->resident_page_count; | |
4048 | p = (vm_page_t)queue_first(&backing_object->memq); | |
4049 | do { | |
4050 | /* Until we get more than one lookup lock */ | |
4051 | if (lookups > 256) { | |
2d21ac55 | 4052 | vm_object_collapse_delays++; |
55e303ae | 4053 | lookups = 0; |
2d21ac55 | 4054 | mutex_pause(0); |
55e303ae A |
4055 | } |
4056 | ||
4057 | offset = (p->offset - backing_offset); | |
4058 | if (offset < object->size && | |
4059 | offset != hint_offset && | |
4060 | !EXISTS_IN_OBJECT(object, offset, rc)) { | |
4061 | /* found a dependency */ | |
4062 | object->cow_hint = (vm_offset_t)offset; | |
91447636 | 4063 | break; |
55e303ae | 4064 | } |
91447636 | 4065 | p = (vm_page_t) queue_next(&p->listq); |
55e303ae A |
4066 | |
4067 | } while (--backing_rcount); | |
91447636 A |
4068 | if (backing_rcount != 0 ) { |
4069 | /* try and collapse the rest of the shadow chain */ | |
4070 | if (object != original_object) { | |
4071 | vm_object_unlock(object); | |
4072 | } | |
4073 | object = backing_object; | |
4074 | continue; | |
4075 | } | |
0b4e3aa0 | 4076 | } |
55e303ae A |
4077 | |
4078 | /* | |
4079 | * Walk through the offsets looking for pages in the | |
4080 | * backing object that show through to the object. | |
4081 | */ | |
2d21ac55 | 4082 | #if MACH_PAGEMAP |
593a1d5f | 4083 | if (backing_rcount || backing_object->existence_map) |
2d21ac55 | 4084 | #else |
593a1d5f | 4085 | if (backing_rcount) |
2d21ac55 | 4086 | #endif /* MACH_PAGEMAP */ |
593a1d5f | 4087 | { |
55e303ae A |
4088 | offset = hint_offset; |
4089 | ||
4090 | while((offset = | |
4091 | (offset + PAGE_SIZE_64 < object->size) ? | |
4092 | (offset + PAGE_SIZE_64) : 0) != hint_offset) { | |
4093 | ||
4094 | /* Until we get more than one lookup lock */ | |
4095 | if (lookups > 256) { | |
2d21ac55 | 4096 | vm_object_collapse_delays++; |
55e303ae | 4097 | lookups = 0; |
2d21ac55 | 4098 | mutex_pause(0); |
55e303ae A |
4099 | } |
4100 | ||
4101 | if (EXISTS_IN_OBJECT(backing_object, offset + | |
4102 | backing_offset, backing_rcount) && | |
4103 | !EXISTS_IN_OBJECT(object, offset, rcount)) { | |
4104 | /* found a dependency */ | |
4105 | object->cow_hint = (vm_offset_t)offset; | |
91447636 | 4106 | break; |
55e303ae A |
4107 | } |
4108 | } | |
91447636 A |
4109 | if (offset != hint_offset) { |
4110 | /* try and collapse the rest of the shadow chain */ | |
4111 | if (object != original_object) { | |
4112 | vm_object_unlock(object); | |
4113 | } | |
4114 | object = backing_object; | |
4115 | continue; | |
4116 | } | |
0b4e3aa0 A |
4117 | } |
4118 | } | |
1c79356b | 4119 | |
55e303ae A |
4120 | /* reset the offset hint for any objects deeper in the chain */ |
4121 | object->cow_hint = (vm_offset_t)0; | |
1c79356b A |
4122 | |
4123 | /* | |
4124 | * All interesting pages in the backing object | |
4125 | * already live in the parent or its pager. | |
4126 | * Thus we can bypass the backing object. | |
4127 | */ | |
4128 | ||
4129 | vm_object_do_bypass(object, backing_object); | |
91447636 | 4130 | vm_object_collapse_do_bypass++; |
1c79356b A |
4131 | |
4132 | /* | |
4133 | * Try again with this object's new backing object. | |
4134 | */ | |
4135 | ||
4136 | continue; | |
4137 | } | |
91447636 A |
4138 | |
4139 | if (object != original_object) { | |
4140 | vm_object_unlock(object); | |
4141 | } | |
1c79356b A |
4142 | } |
4143 | ||
4144 | /* | |
4145 | * Routine: vm_object_page_remove: [internal] | |
4146 | * Purpose: | |
4147 | * Removes all physical pages in the specified | |
4148 | * object range from the object's list of pages. | |
4149 | * | |
4150 | * In/out conditions: | |
4151 | * The object must be locked. | |
4152 | * The object must not have paging_in_progress, usually | |
4153 | * guaranteed by not having a pager. | |
4154 | */ | |
4155 | unsigned int vm_object_page_remove_lookup = 0; | |
4156 | unsigned int vm_object_page_remove_iterate = 0; | |
4157 | ||
0b4e3aa0 | 4158 | __private_extern__ void |
1c79356b A |
4159 | vm_object_page_remove( |
4160 | register vm_object_t object, | |
4161 | register vm_object_offset_t start, | |
4162 | register vm_object_offset_t end) | |
4163 | { | |
4164 | register vm_page_t p, next; | |
4165 | ||
4166 | /* | |
4167 | * One and two page removals are most popular. | |
4168 | * The factor of 16 here is somewhat arbitrary. | |
4169 | * It balances vm_object_lookup vs iteration. | |
4170 | */ | |
4171 | ||
55e303ae | 4172 | if (atop_64(end - start) < (unsigned)object->resident_page_count/16) { |
1c79356b A |
4173 | vm_object_page_remove_lookup++; |
4174 | ||
4175 | for (; start < end; start += PAGE_SIZE_64) { | |
4176 | p = vm_page_lookup(object, start); | |
4177 | if (p != VM_PAGE_NULL) { | |
4178 | assert(!p->cleaning && !p->pageout); | |
2d21ac55 | 4179 | if (!p->fictitious && p->pmapped) |
91447636 | 4180 | pmap_disconnect(p->phys_page); |
1c79356b A |
4181 | VM_PAGE_FREE(p); |
4182 | } | |
4183 | } | |
4184 | } else { | |
4185 | vm_object_page_remove_iterate++; | |
4186 | ||
4187 | p = (vm_page_t) queue_first(&object->memq); | |
4188 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
4189 | next = (vm_page_t) queue_next(&p->listq); | |
4190 | if ((start <= p->offset) && (p->offset < end)) { | |
4191 | assert(!p->cleaning && !p->pageout); | |
2d21ac55 | 4192 | if (!p->fictitious && p->pmapped) |
91447636 | 4193 | pmap_disconnect(p->phys_page); |
1c79356b A |
4194 | VM_PAGE_FREE(p); |
4195 | } | |
4196 | p = next; | |
4197 | } | |
4198 | } | |
4199 | } | |
4200 | ||
0b4e3aa0 | 4201 | |
1c79356b A |
4202 | /* |
4203 | * Routine: vm_object_coalesce | |
4204 | * Function: Coalesces two objects backing up adjoining | |
4205 | * regions of memory into a single object. | |
4206 | * | |
4207 | * returns TRUE if objects were combined. | |
4208 | * | |
4209 | * NOTE: Only works at the moment if the second object is NULL - | |
4210 | * if it's not, which object do we lock first? | |
4211 | * | |
4212 | * Parameters: | |
4213 | * prev_object First object to coalesce | |
4214 | * prev_offset Offset into prev_object | |
4215 | * next_object Second object into coalesce | |
4216 | * next_offset Offset into next_object | |
4217 | * | |
4218 | * prev_size Size of reference to prev_object | |
4219 | * next_size Size of reference to next_object | |
4220 | * | |
4221 | * Conditions: | |
4222 | * The object(s) must *not* be locked. The map must be locked | |
4223 | * to preserve the reference to the object(s). | |
4224 | */ | |
0b4e3aa0 | 4225 | static int vm_object_coalesce_count = 0; |
1c79356b | 4226 | |
0b4e3aa0 | 4227 | __private_extern__ boolean_t |
1c79356b A |
4228 | vm_object_coalesce( |
4229 | register vm_object_t prev_object, | |
4230 | vm_object_t next_object, | |
4231 | vm_object_offset_t prev_offset, | |
91447636 | 4232 | __unused vm_object_offset_t next_offset, |
1c79356b A |
4233 | vm_object_size_t prev_size, |
4234 | vm_object_size_t next_size) | |
4235 | { | |
4236 | vm_object_size_t newsize; | |
4237 | ||
4238 | #ifdef lint | |
4239 | next_offset++; | |
4240 | #endif /* lint */ | |
4241 | ||
4242 | if (next_object != VM_OBJECT_NULL) { | |
4243 | return(FALSE); | |
4244 | } | |
4245 | ||
4246 | if (prev_object == VM_OBJECT_NULL) { | |
4247 | return(TRUE); | |
4248 | } | |
4249 | ||
4250 | XPR(XPR_VM_OBJECT, | |
4251 | "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n", | |
4252 | (integer_t)prev_object, prev_offset, prev_size, next_size, 0); | |
4253 | ||
4254 | vm_object_lock(prev_object); | |
4255 | ||
4256 | /* | |
4257 | * Try to collapse the object first | |
4258 | */ | |
0c530ab8 | 4259 | vm_object_collapse(prev_object, prev_offset, TRUE); |
1c79356b A |
4260 | |
4261 | /* | |
4262 | * Can't coalesce if pages not mapped to | |
4263 | * prev_entry may be in use any way: | |
4264 | * . more than one reference | |
4265 | * . paged out | |
4266 | * . shadows another object | |
4267 | * . has a copy elsewhere | |
2d21ac55 | 4268 | * . is purgeable |
1c79356b A |
4269 | * . paging references (pages might be in page-list) |
4270 | */ | |
4271 | ||
4272 | if ((prev_object->ref_count > 1) || | |
4273 | prev_object->pager_created || | |
4274 | (prev_object->shadow != VM_OBJECT_NULL) || | |
4275 | (prev_object->copy != VM_OBJECT_NULL) || | |
4276 | (prev_object->true_share != FALSE) || | |
2d21ac55 | 4277 | (prev_object->purgable != VM_PURGABLE_DENY) || |
1c79356b A |
4278 | (prev_object->paging_in_progress != 0)) { |
4279 | vm_object_unlock(prev_object); | |
4280 | return(FALSE); | |
4281 | } | |
4282 | ||
4283 | vm_object_coalesce_count++; | |
4284 | ||
4285 | /* | |
4286 | * Remove any pages that may still be in the object from | |
4287 | * a previous deallocation. | |
4288 | */ | |
4289 | vm_object_page_remove(prev_object, | |
4290 | prev_offset + prev_size, | |
4291 | prev_offset + prev_size + next_size); | |
4292 | ||
4293 | /* | |
4294 | * Extend the object if necessary. | |
4295 | */ | |
4296 | newsize = prev_offset + prev_size + next_size; | |
4297 | if (newsize > prev_object->size) { | |
4298 | #if MACH_PAGEMAP | |
4299 | /* | |
4300 | * We cannot extend an object that has existence info, | |
4301 | * since the existence info might then fail to cover | |
4302 | * the entire object. | |
4303 | * | |
4304 | * This assertion must be true because the object | |
4305 | * has no pager, and we only create existence info | |
4306 | * for objects with pagers. | |
4307 | */ | |
4308 | assert(prev_object->existence_map == VM_EXTERNAL_NULL); | |
4309 | #endif /* MACH_PAGEMAP */ | |
4310 | prev_object->size = newsize; | |
4311 | } | |
4312 | ||
4313 | vm_object_unlock(prev_object); | |
4314 | return(TRUE); | |
4315 | } | |
4316 | ||
4317 | /* | |
4318 | * Attach a set of physical pages to an object, so that they can | |
4319 | * be mapped by mapping the object. Typically used to map IO memory. | |
4320 | * | |
4321 | * The mapping function and its private data are used to obtain the | |
4322 | * physical addresses for each page to be mapped. | |
4323 | */ | |
4324 | void | |
4325 | vm_object_page_map( | |
4326 | vm_object_t object, | |
4327 | vm_object_offset_t offset, | |
4328 | vm_object_size_t size, | |
4329 | vm_object_offset_t (*map_fn)(void *map_fn_data, | |
4330 | vm_object_offset_t offset), | |
4331 | void *map_fn_data) /* private to map_fn */ | |
4332 | { | |
4333 | int num_pages; | |
4334 | int i; | |
4335 | vm_page_t m; | |
4336 | vm_page_t old_page; | |
4337 | vm_object_offset_t addr; | |
4338 | ||
55e303ae | 4339 | num_pages = atop_64(size); |
1c79356b A |
4340 | |
4341 | for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) { | |
4342 | ||
4343 | addr = (*map_fn)(map_fn_data, offset); | |
4344 | ||
4345 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
4346 | vm_page_more_fictitious(); | |
4347 | ||
4348 | vm_object_lock(object); | |
4349 | if ((old_page = vm_page_lookup(object, offset)) | |
4350 | != VM_PAGE_NULL) | |
4351 | { | |
4352 | vm_page_lock_queues(); | |
4353 | vm_page_free(old_page); | |
4354 | vm_page_unlock_queues(); | |
4355 | } | |
4356 | ||
4357 | vm_page_init(m, addr); | |
0b4e3aa0 A |
4358 | /* private normally requires lock_queues but since we */ |
4359 | /* are initializing the page, its not necessary here */ | |
1c79356b A |
4360 | m->private = TRUE; /* don`t free page */ |
4361 | m->wire_count = 1; | |
4362 | vm_page_insert(m, object, offset); | |
4363 | ||
4364 | PAGE_WAKEUP_DONE(m); | |
4365 | vm_object_unlock(object); | |
4366 | } | |
4367 | } | |
4368 | ||
4369 | #include <mach_kdb.h> | |
4370 | ||
4371 | #if MACH_KDB | |
4372 | #include <ddb/db_output.h> | |
4373 | #include <vm/vm_print.h> | |
4374 | ||
4375 | #define printf kdbprintf | |
4376 | ||
4377 | extern boolean_t vm_object_cached( | |
4378 | vm_object_t object); | |
4379 | ||
4380 | extern void print_bitstring( | |
4381 | char byte); | |
4382 | ||
4383 | boolean_t vm_object_print_pages = FALSE; | |
4384 | ||
4385 | void | |
4386 | print_bitstring( | |
4387 | char byte) | |
4388 | { | |
4389 | printf("%c%c%c%c%c%c%c%c", | |
4390 | ((byte & (1 << 0)) ? '1' : '0'), | |
4391 | ((byte & (1 << 1)) ? '1' : '0'), | |
4392 | ((byte & (1 << 2)) ? '1' : '0'), | |
4393 | ((byte & (1 << 3)) ? '1' : '0'), | |
4394 | ((byte & (1 << 4)) ? '1' : '0'), | |
4395 | ((byte & (1 << 5)) ? '1' : '0'), | |
4396 | ((byte & (1 << 6)) ? '1' : '0'), | |
4397 | ((byte & (1 << 7)) ? '1' : '0')); | |
4398 | } | |
4399 | ||
4400 | boolean_t | |
4401 | vm_object_cached( | |
4402 | register vm_object_t object) | |
4403 | { | |
4404 | register vm_object_t o; | |
4405 | ||
4406 | queue_iterate(&vm_object_cached_list, o, vm_object_t, cached_list) { | |
4407 | if (object == o) { | |
4408 | return TRUE; | |
4409 | } | |
4410 | } | |
4411 | return FALSE; | |
4412 | } | |
4413 | ||
4414 | #if MACH_PAGEMAP | |
4415 | /* | |
4416 | * vm_external_print: [ debug ] | |
4417 | */ | |
4418 | void | |
4419 | vm_external_print( | |
91447636 A |
4420 | vm_external_map_t emap, |
4421 | vm_size_t size) | |
1c79356b | 4422 | { |
91447636 | 4423 | if (emap == VM_EXTERNAL_NULL) { |
1c79356b A |
4424 | printf("0 "); |
4425 | } else { | |
4426 | vm_size_t existence_size = stob(size); | |
4427 | printf("{ size=%d, map=[", existence_size); | |
4428 | if (existence_size > 0) { | |
91447636 | 4429 | print_bitstring(emap[0]); |
1c79356b A |
4430 | } |
4431 | if (existence_size > 1) { | |
91447636 | 4432 | print_bitstring(emap[1]); |
1c79356b A |
4433 | } |
4434 | if (existence_size > 2) { | |
4435 | printf("..."); | |
91447636 | 4436 | print_bitstring(emap[existence_size-1]); |
1c79356b A |
4437 | } |
4438 | printf("] }\n"); | |
4439 | } | |
4440 | return; | |
4441 | } | |
4442 | #endif /* MACH_PAGEMAP */ | |
4443 | ||
4444 | int | |
4445 | vm_follow_object( | |
4446 | vm_object_t object) | |
4447 | { | |
0b4e3aa0 A |
4448 | int count = 0; |
4449 | int orig_db_indent = db_indent; | |
1c79356b | 4450 | |
0b4e3aa0 A |
4451 | while (TRUE) { |
4452 | if (object == VM_OBJECT_NULL) { | |
4453 | db_indent = orig_db_indent; | |
4454 | return count; | |
4455 | } | |
1c79356b | 4456 | |
0b4e3aa0 | 4457 | count += 1; |
1c79356b | 4458 | |
0b4e3aa0 A |
4459 | iprintf("object 0x%x", object); |
4460 | printf(", shadow=0x%x", object->shadow); | |
4461 | printf(", copy=0x%x", object->copy); | |
4462 | printf(", pager=0x%x", object->pager); | |
4463 | printf(", ref=%d\n", object->ref_count); | |
4464 | ||
4465 | db_indent += 2; | |
4466 | object = object->shadow; | |
4467 | } | |
1c79356b | 4468 | |
1c79356b A |
4469 | } |
4470 | ||
4471 | /* | |
4472 | * vm_object_print: [ debug ] | |
4473 | */ | |
4474 | void | |
2d21ac55 A |
4475 | vm_object_print(db_expr_t db_addr, __unused boolean_t have_addr, |
4476 | __unused db_expr_t arg_count, __unused char *modif) | |
1c79356b | 4477 | { |
91447636 | 4478 | vm_object_t object; |
1c79356b | 4479 | register vm_page_t p; |
91447636 | 4480 | const char *s; |
1c79356b A |
4481 | |
4482 | register int count; | |
4483 | ||
91447636 | 4484 | object = (vm_object_t) (long) db_addr; |
1c79356b A |
4485 | if (object == VM_OBJECT_NULL) |
4486 | return; | |
4487 | ||
4488 | iprintf("object 0x%x\n", object); | |
4489 | ||
4490 | db_indent += 2; | |
4491 | ||
4492 | iprintf("size=0x%x", object->size); | |
91447636 | 4493 | printf(", memq_hint=%p", object->memq_hint); |
1c79356b A |
4494 | printf(", ref_count=%d\n", object->ref_count); |
4495 | iprintf(""); | |
4496 | #if TASK_SWAPPER | |
4497 | printf("res_count=%d, ", object->res_count); | |
4498 | #endif /* TASK_SWAPPER */ | |
4499 | printf("resident_page_count=%d\n", object->resident_page_count); | |
4500 | ||
4501 | iprintf("shadow=0x%x", object->shadow); | |
4502 | if (object->shadow) { | |
4503 | register int i = 0; | |
4504 | vm_object_t shadow = object; | |
91447636 | 4505 | while((shadow = shadow->shadow)) |
1c79356b A |
4506 | i++; |
4507 | printf(" (depth %d)", i); | |
4508 | } | |
4509 | printf(", copy=0x%x", object->copy); | |
4510 | printf(", shadow_offset=0x%x", object->shadow_offset); | |
4511 | printf(", last_alloc=0x%x\n", object->last_alloc); | |
4512 | ||
4513 | iprintf("pager=0x%x", object->pager); | |
4514 | printf(", paging_offset=0x%x", object->paging_offset); | |
91447636 | 4515 | printf(", pager_control=0x%x\n", object->pager_control); |
1c79356b A |
4516 | |
4517 | iprintf("copy_strategy=%d[", object->copy_strategy); | |
4518 | switch (object->copy_strategy) { | |
4519 | case MEMORY_OBJECT_COPY_NONE: | |
4520 | printf("copy_none"); | |
4521 | break; | |
4522 | ||
4523 | case MEMORY_OBJECT_COPY_CALL: | |
4524 | printf("copy_call"); | |
4525 | break; | |
4526 | ||
4527 | case MEMORY_OBJECT_COPY_DELAY: | |
4528 | printf("copy_delay"); | |
4529 | break; | |
4530 | ||
4531 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
4532 | printf("copy_symmetric"); | |
4533 | break; | |
4534 | ||
4535 | case MEMORY_OBJECT_COPY_INVALID: | |
4536 | printf("copy_invalid"); | |
4537 | break; | |
4538 | ||
4539 | default: | |
4540 | printf("?"); | |
4541 | } | |
4542 | printf("]"); | |
1c79356b A |
4543 | |
4544 | iprintf("all_wanted=0x%x<", object->all_wanted); | |
4545 | s = ""; | |
4546 | if (vm_object_wanted(object, VM_OBJECT_EVENT_INITIALIZED)) { | |
4547 | printf("%sinit", s); | |
4548 | s = ","; | |
4549 | } | |
4550 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGER_READY)) { | |
4551 | printf("%sready", s); | |
4552 | s = ","; | |
4553 | } | |
4554 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS)) { | |
4555 | printf("%spaging", s); | |
4556 | s = ","; | |
4557 | } | |
1c79356b A |
4558 | if (vm_object_wanted(object, VM_OBJECT_EVENT_LOCK_IN_PROGRESS)) { |
4559 | printf("%slock", s); | |
4560 | s = ","; | |
4561 | } | |
4562 | if (vm_object_wanted(object, VM_OBJECT_EVENT_UNCACHING)) { | |
4563 | printf("%suncaching", s); | |
4564 | s = ","; | |
4565 | } | |
4566 | if (vm_object_wanted(object, VM_OBJECT_EVENT_COPY_CALL)) { | |
4567 | printf("%scopy_call", s); | |
4568 | s = ","; | |
4569 | } | |
4570 | if (vm_object_wanted(object, VM_OBJECT_EVENT_CACHING)) { | |
4571 | printf("%scaching", s); | |
4572 | s = ","; | |
4573 | } | |
4574 | printf(">"); | |
4575 | printf(", paging_in_progress=%d\n", object->paging_in_progress); | |
4576 | ||
4577 | iprintf("%screated, %sinit, %sready, %spersist, %strusted, %spageout, %s, %s\n", | |
4578 | (object->pager_created ? "" : "!"), | |
4579 | (object->pager_initialized ? "" : "!"), | |
4580 | (object->pager_ready ? "" : "!"), | |
4581 | (object->can_persist ? "" : "!"), | |
4582 | (object->pager_trusted ? "" : "!"), | |
4583 | (object->pageout ? "" : "!"), | |
4584 | (object->internal ? "internal" : "external"), | |
4585 | (object->temporary ? "temporary" : "permanent")); | |
2d21ac55 | 4586 | iprintf("%salive, %spurgeable, %spurgeable_volatile, %spurgeable_empty, %sshadowed, %scached, %sprivate\n", |
1c79356b | 4587 | (object->alive ? "" : "!"), |
2d21ac55 A |
4588 | ((object->purgable != VM_PURGABLE_DENY) ? "" : "!"), |
4589 | ((object->purgable == VM_PURGABLE_VOLATILE) ? "" : "!"), | |
4590 | ((object->purgable == VM_PURGABLE_EMPTY) ? "" : "!"), | |
1c79356b A |
4591 | (object->shadowed ? "" : "!"), |
4592 | (vm_object_cached(object) ? "" : "!"), | |
4593 | (object->private ? "" : "!")); | |
4594 | iprintf("%sadvisory_pageout, %ssilent_overwrite\n", | |
4595 | (object->advisory_pageout ? "" : "!"), | |
4596 | (object->silent_overwrite ? "" : "!")); | |
4597 | ||
4598 | #if MACH_PAGEMAP | |
4599 | iprintf("existence_map="); | |
4600 | vm_external_print(object->existence_map, object->size); | |
4601 | #endif /* MACH_PAGEMAP */ | |
4602 | #if MACH_ASSERT | |
4603 | iprintf("paging_object=0x%x\n", object->paging_object); | |
4604 | #endif /* MACH_ASSERT */ | |
4605 | ||
4606 | if (vm_object_print_pages) { | |
4607 | count = 0; | |
4608 | p = (vm_page_t) queue_first(&object->memq); | |
4609 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
4610 | if (count == 0) { | |
4611 | iprintf("memory:="); | |
4612 | } else if (count == 2) { | |
4613 | printf("\n"); | |
4614 | iprintf(" ..."); | |
4615 | count = 0; | |
4616 | } else { | |
4617 | printf(","); | |
4618 | } | |
4619 | count++; | |
4620 | ||
91447636 | 4621 | printf("(off=0x%llX,page=%p)", p->offset, p); |
1c79356b A |
4622 | p = (vm_page_t) queue_next(&p->listq); |
4623 | } | |
4624 | if (count != 0) { | |
4625 | printf("\n"); | |
4626 | } | |
4627 | } | |
4628 | db_indent -= 2; | |
4629 | } | |
4630 | ||
4631 | ||
4632 | /* | |
4633 | * vm_object_find [ debug ] | |
4634 | * | |
4635 | * Find all tasks which reference the given vm_object. | |
4636 | */ | |
4637 | ||
4638 | boolean_t vm_object_find(vm_object_t object); | |
4639 | boolean_t vm_object_print_verbose = FALSE; | |
4640 | ||
4641 | boolean_t | |
4642 | vm_object_find( | |
4643 | vm_object_t object) | |
4644 | { | |
4645 | task_t task; | |
4646 | vm_map_t map; | |
4647 | vm_map_entry_t entry; | |
1c79356b A |
4648 | boolean_t found = FALSE; |
4649 | ||
2d21ac55 | 4650 | queue_iterate(&tasks, task, task_t, tasks) { |
1c79356b A |
4651 | map = task->map; |
4652 | for (entry = vm_map_first_entry(map); | |
4653 | entry && entry != vm_map_to_entry(map); | |
4654 | entry = entry->vme_next) { | |
4655 | ||
4656 | vm_object_t obj; | |
4657 | ||
4658 | /* | |
4659 | * For the time being skip submaps, | |
4660 | * only the kernel can have submaps, | |
4661 | * and unless we are interested in | |
4662 | * kernel objects, we can simply skip | |
4663 | * submaps. See sb/dejan/nmk18b7/src/mach_kernel/vm | |
4664 | * for a full solution. | |
4665 | */ | |
4666 | if (entry->is_sub_map) | |
4667 | continue; | |
4668 | if (entry) | |
4669 | obj = entry->object.vm_object; | |
4670 | else | |
4671 | continue; | |
4672 | ||
4673 | while (obj != VM_OBJECT_NULL) { | |
4674 | if (obj == object) { | |
4675 | if (!found) { | |
4676 | printf("TASK\t\tMAP\t\tENTRY\n"); | |
4677 | found = TRUE; | |
4678 | } | |
4679 | printf("0x%x\t0x%x\t0x%x\n", | |
4680 | task, map, entry); | |
4681 | } | |
4682 | obj = obj->shadow; | |
4683 | } | |
4684 | } | |
4685 | } | |
4686 | ||
4687 | return(found); | |
4688 | } | |
4689 | ||
4690 | #endif /* MACH_KDB */ | |
4691 | ||
0b4e3aa0 A |
4692 | kern_return_t |
4693 | vm_object_populate_with_private( | |
55e303ae | 4694 | vm_object_t object, |
0b4e3aa0 | 4695 | vm_object_offset_t offset, |
55e303ae A |
4696 | ppnum_t phys_page, |
4697 | vm_size_t size) | |
0b4e3aa0 | 4698 | { |
55e303ae | 4699 | ppnum_t base_page; |
0b4e3aa0 A |
4700 | vm_object_offset_t base_offset; |
4701 | ||
4702 | ||
4703 | if(!object->private) | |
4704 | return KERN_FAILURE; | |
4705 | ||
55e303ae | 4706 | base_page = phys_page; |
0b4e3aa0 A |
4707 | |
4708 | vm_object_lock(object); | |
4709 | if(!object->phys_contiguous) { | |
4710 | vm_page_t m; | |
55e303ae | 4711 | if((base_offset = trunc_page_64(offset)) != offset) { |
0b4e3aa0 A |
4712 | vm_object_unlock(object); |
4713 | return KERN_FAILURE; | |
4714 | } | |
4715 | base_offset += object->paging_offset; | |
4716 | while(size) { | |
4717 | m = vm_page_lookup(object, base_offset); | |
4718 | if(m != VM_PAGE_NULL) { | |
4719 | if(m->fictitious) { | |
2d21ac55 A |
4720 | if (m->phys_page != |
4721 | vm_page_guard_addr) { | |
4722 | vm_page_lockspin_queues(); | |
4723 | m->fictitious = FALSE; | |
4724 | m->private = TRUE; | |
4725 | m->phys_page = base_page; | |
4726 | if(!m->busy) { | |
4727 | m->busy = TRUE; | |
4728 | } | |
4729 | if(!m->absent) { | |
4730 | m->absent = TRUE; | |
4731 | } | |
4732 | m->list_req_pending = TRUE; | |
4733 | vm_page_unlock_queues(); | |
0b4e3aa0 | 4734 | } |
55e303ae | 4735 | } else if (m->phys_page != base_page) { |
2d21ac55 A |
4736 | if (m->pmapped) { |
4737 | /* | |
4738 | * pmap call to clear old mapping | |
4739 | */ | |
4740 | pmap_disconnect(m->phys_page); | |
4741 | } | |
55e303ae | 4742 | m->phys_page = base_page; |
0b4e3aa0 | 4743 | } |
91447636 A |
4744 | |
4745 | /* | |
4746 | * ENCRYPTED SWAP: | |
4747 | * We're not pointing to the same | |
4748 | * physical page any longer and the | |
4749 | * contents of the new one are not | |
4750 | * supposed to be encrypted. | |
4751 | * XXX What happens to the original | |
4752 | * physical page. Is it lost ? | |
4753 | */ | |
4754 | m->encrypted = FALSE; | |
4755 | ||
0b4e3aa0 A |
4756 | } else { |
4757 | while ((m = vm_page_grab_fictitious()) | |
4758 | == VM_PAGE_NULL) | |
4759 | vm_page_more_fictitious(); | |
2d21ac55 | 4760 | vm_page_lockspin_queues(); |
0b4e3aa0 A |
4761 | m->fictitious = FALSE; |
4762 | m->private = TRUE; | |
55e303ae | 4763 | m->phys_page = base_page; |
0b4e3aa0 A |
4764 | m->list_req_pending = TRUE; |
4765 | m->absent = TRUE; | |
4766 | m->unusual = TRUE; | |
0b4e3aa0 A |
4767 | vm_page_unlock_queues(); |
4768 | vm_page_insert(m, object, base_offset); | |
4769 | } | |
55e303ae | 4770 | base_page++; /* Go to the next physical page */ |
0b4e3aa0 A |
4771 | base_offset += PAGE_SIZE; |
4772 | size -= PAGE_SIZE; | |
4773 | } | |
4774 | } else { | |
4775 | /* NOTE: we should check the original settings here */ | |
4776 | /* if we have a size > zero a pmap call should be made */ | |
4777 | /* to disable the range */ | |
4778 | ||
4779 | /* pmap_? */ | |
4780 | ||
4781 | /* shadows on contiguous memory are not allowed */ | |
4782 | /* we therefore can use the offset field */ | |
935ed37a | 4783 | object->shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT; |
0b4e3aa0 A |
4784 | object->size = size; |
4785 | } | |
4786 | vm_object_unlock(object); | |
4787 | return KERN_SUCCESS; | |
4788 | } | |
4789 | ||
1c79356b A |
4790 | /* |
4791 | * memory_object_free_from_cache: | |
4792 | * | |
4793 | * Walk the vm_object cache list, removing and freeing vm_objects | |
0c530ab8 | 4794 | * which are backed by the pager identified by the caller, (pager_ops). |
1c79356b A |
4795 | * Remove up to "count" objects, if there are that may available |
4796 | * in the cache. | |
0b4e3aa0 | 4797 | * |
1c79356b A |
4798 | * Walk the list at most once, return the number of vm_objects |
4799 | * actually freed. | |
1c79356b A |
4800 | */ |
4801 | ||
0b4e3aa0 | 4802 | __private_extern__ kern_return_t |
1c79356b | 4803 | memory_object_free_from_cache( |
91447636 | 4804 | __unused host_t host, |
0c530ab8 | 4805 | memory_object_pager_ops_t pager_ops, |
1c79356b A |
4806 | int *count) |
4807 | { | |
4808 | ||
4809 | int object_released = 0; | |
1c79356b A |
4810 | |
4811 | register vm_object_t object = VM_OBJECT_NULL; | |
4812 | vm_object_t shadow; | |
4813 | ||
4814 | /* | |
4815 | if(host == HOST_NULL) | |
4816 | return(KERN_INVALID_ARGUMENT); | |
4817 | */ | |
4818 | ||
4819 | try_again: | |
4820 | vm_object_cache_lock(); | |
4821 | ||
4822 | queue_iterate(&vm_object_cached_list, object, | |
4823 | vm_object_t, cached_list) { | |
0c530ab8 A |
4824 | if (object->pager && |
4825 | (pager_ops == object->pager->mo_pager_ops)) { | |
1c79356b A |
4826 | vm_object_lock(object); |
4827 | queue_remove(&vm_object_cached_list, object, | |
4828 | vm_object_t, cached_list); | |
4829 | vm_object_cached_count--; | |
4830 | ||
4831 | /* | |
4832 | * Since this object is in the cache, we know | |
0b4e3aa0 A |
4833 | * that it is initialized and has only a pager's |
4834 | * (implicit) reference. Take a reference to avoid | |
4835 | * recursive deallocations. | |
1c79356b A |
4836 | */ |
4837 | ||
4838 | assert(object->pager_initialized); | |
4839 | assert(object->ref_count == 0); | |
2d21ac55 | 4840 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
4841 | object->ref_count++; |
4842 | ||
4843 | /* | |
4844 | * Terminate the object. | |
4845 | * If the object had a shadow, we let | |
4846 | * vm_object_deallocate deallocate it. | |
4847 | * "pageout" objects have a shadow, but | |
4848 | * maintain a "paging reference" rather | |
4849 | * than a normal reference. | |
4850 | * (We are careful here to limit recursion.) | |
4851 | */ | |
4852 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
4853 | if ((vm_object_terminate(object) == KERN_SUCCESS) | |
4854 | && (shadow != VM_OBJECT_NULL)) { | |
4855 | vm_object_deallocate(shadow); | |
4856 | } | |
4857 | ||
4858 | if(object_released++ == *count) | |
4859 | return KERN_SUCCESS; | |
4860 | goto try_again; | |
4861 | } | |
4862 | } | |
4863 | vm_object_cache_unlock(); | |
4864 | *count = object_released; | |
4865 | return KERN_SUCCESS; | |
4866 | } | |
4867 | ||
0b4e3aa0 | 4868 | |
1c79356b A |
4869 | |
4870 | kern_return_t | |
0b4e3aa0 A |
4871 | memory_object_create_named( |
4872 | memory_object_t pager, | |
4873 | memory_object_offset_t size, | |
4874 | memory_object_control_t *control) | |
1c79356b | 4875 | { |
0b4e3aa0 A |
4876 | vm_object_t object; |
4877 | vm_object_hash_entry_t entry; | |
1c79356b | 4878 | |
0b4e3aa0 A |
4879 | *control = MEMORY_OBJECT_CONTROL_NULL; |
4880 | if (pager == MEMORY_OBJECT_NULL) | |
4881 | return KERN_INVALID_ARGUMENT; | |
1c79356b | 4882 | |
0b4e3aa0 A |
4883 | vm_object_cache_lock(); |
4884 | entry = vm_object_hash_lookup(pager, FALSE); | |
4885 | if ((entry != VM_OBJECT_HASH_ENTRY_NULL) && | |
4886 | (entry->object != VM_OBJECT_NULL)) { | |
4887 | if (entry->object->named == TRUE) | |
4888 | panic("memory_object_create_named: caller already holds the right"); } | |
1c79356b | 4889 | |
0b4e3aa0 A |
4890 | vm_object_cache_unlock(); |
4891 | if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) | |
4892 | == VM_OBJECT_NULL) { | |
4893 | return(KERN_INVALID_OBJECT); | |
4894 | } | |
4895 | ||
4896 | /* wait for object (if any) to be ready */ | |
4897 | if (object != VM_OBJECT_NULL) { | |
4898 | vm_object_lock(object); | |
4899 | object->named = TRUE; | |
4900 | while (!object->pager_ready) { | |
9bccf70c A |
4901 | vm_object_sleep(object, |
4902 | VM_OBJECT_EVENT_PAGER_READY, | |
4903 | THREAD_UNINT); | |
0b4e3aa0 | 4904 | } |
91447636 | 4905 | *control = object->pager_control; |
0b4e3aa0 A |
4906 | vm_object_unlock(object); |
4907 | } | |
4908 | return (KERN_SUCCESS); | |
4909 | } | |
1c79356b | 4910 | |
1c79356b | 4911 | |
0b4e3aa0 A |
4912 | /* |
4913 | * Routine: memory_object_recover_named [user interface] | |
4914 | * Purpose: | |
4915 | * Attempt to recover a named reference for a VM object. | |
4916 | * VM will verify that the object has not already started | |
4917 | * down the termination path, and if it has, will optionally | |
4918 | * wait for that to finish. | |
4919 | * Returns: | |
4920 | * KERN_SUCCESS - we recovered a named reference on the object | |
4921 | * KERN_FAILURE - we could not recover a reference (object dead) | |
4922 | * KERN_INVALID_ARGUMENT - bad memory object control | |
4923 | */ | |
4924 | kern_return_t | |
4925 | memory_object_recover_named( | |
4926 | memory_object_control_t control, | |
4927 | boolean_t wait_on_terminating) | |
4928 | { | |
4929 | vm_object_t object; | |
1c79356b | 4930 | |
0b4e3aa0 A |
4931 | vm_object_cache_lock(); |
4932 | object = memory_object_control_to_vm_object(control); | |
4933 | if (object == VM_OBJECT_NULL) { | |
4934 | vm_object_cache_unlock(); | |
4935 | return (KERN_INVALID_ARGUMENT); | |
4936 | } | |
1c79356b | 4937 | |
0b4e3aa0 A |
4938 | restart: |
4939 | vm_object_lock(object); | |
1c79356b | 4940 | |
0b4e3aa0 A |
4941 | if (object->terminating && wait_on_terminating) { |
4942 | vm_object_cache_unlock(); | |
4943 | vm_object_wait(object, | |
4944 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
4945 | THREAD_UNINT); | |
4946 | vm_object_cache_lock(); | |
4947 | goto restart; | |
4948 | } | |
4949 | ||
4950 | if (!object->alive) { | |
4951 | vm_object_cache_unlock(); | |
4952 | vm_object_unlock(object); | |
4953 | return KERN_FAILURE; | |
1c79356b A |
4954 | } |
4955 | ||
0b4e3aa0 A |
4956 | if (object->named == TRUE) { |
4957 | vm_object_cache_unlock(); | |
4958 | vm_object_unlock(object); | |
4959 | return KERN_SUCCESS; | |
4960 | } | |
1c79356b | 4961 | |
0b4e3aa0 A |
4962 | if((object->ref_count == 0) && (!object->terminating)){ |
4963 | queue_remove(&vm_object_cached_list, object, | |
4964 | vm_object_t, cached_list); | |
4965 | vm_object_cached_count--; | |
4966 | XPR(XPR_VM_OBJECT_CACHE, | |
4967 | "memory_object_recover_named: removing %X, head (%X, %X)\n", | |
4968 | (integer_t)object, | |
4969 | (integer_t)vm_object_cached_list.next, | |
4970 | (integer_t)vm_object_cached_list.prev, 0,0); | |
4971 | } | |
4972 | ||
4973 | vm_object_cache_unlock(); | |
4974 | ||
4975 | object->named = TRUE; | |
2d21ac55 | 4976 | vm_object_lock_assert_exclusive(object); |
0b4e3aa0 A |
4977 | object->ref_count++; |
4978 | vm_object_res_reference(object); | |
4979 | while (!object->pager_ready) { | |
9bccf70c A |
4980 | vm_object_sleep(object, |
4981 | VM_OBJECT_EVENT_PAGER_READY, | |
4982 | THREAD_UNINT); | |
0b4e3aa0 A |
4983 | } |
4984 | vm_object_unlock(object); | |
4985 | return (KERN_SUCCESS); | |
1c79356b A |
4986 | } |
4987 | ||
0b4e3aa0 A |
4988 | |
4989 | /* | |
4990 | * vm_object_release_name: | |
4991 | * | |
4992 | * Enforces name semantic on memory_object reference count decrement | |
4993 | * This routine should not be called unless the caller holds a name | |
4994 | * reference gained through the memory_object_create_named. | |
4995 | * | |
4996 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
4997 | * reference count is not 1. i.e. idle with the only remaining reference | |
4998 | * being the name. | |
4999 | * If the decision is made to proceed the name field flag is set to | |
5000 | * false and the reference count is decremented. If the RESPECT_CACHE | |
5001 | * flag is set and the reference count has gone to zero, the | |
5002 | * memory_object is checked to see if it is cacheable otherwise when | |
5003 | * the reference count is zero, it is simply terminated. | |
5004 | */ | |
5005 | ||
5006 | __private_extern__ kern_return_t | |
5007 | vm_object_release_name( | |
5008 | vm_object_t object, | |
5009 | int flags) | |
1c79356b | 5010 | { |
0b4e3aa0 A |
5011 | vm_object_t shadow; |
5012 | boolean_t original_object = TRUE; | |
1c79356b | 5013 | |
0b4e3aa0 | 5014 | while (object != VM_OBJECT_NULL) { |
1c79356b | 5015 | |
0b4e3aa0 A |
5016 | /* |
5017 | * The cache holds a reference (uncounted) to | |
5018 | * the object. We must locke it before removing | |
5019 | * the object. | |
5020 | * | |
5021 | */ | |
5022 | ||
1c79356b | 5023 | vm_object_cache_lock(); |
0b4e3aa0 A |
5024 | vm_object_lock(object); |
5025 | assert(object->alive); | |
5026 | if(original_object) | |
5027 | assert(object->named); | |
5028 | assert(object->ref_count > 0); | |
5029 | ||
5030 | /* | |
5031 | * We have to wait for initialization before | |
5032 | * destroying or caching the object. | |
5033 | */ | |
5034 | ||
5035 | if (object->pager_created && !object->pager_initialized) { | |
5036 | assert(!object->can_persist); | |
5037 | vm_object_assert_wait(object, | |
5038 | VM_OBJECT_EVENT_INITIALIZED, | |
5039 | THREAD_UNINT); | |
5040 | vm_object_unlock(object); | |
5041 | vm_object_cache_unlock(); | |
9bccf70c | 5042 | thread_block(THREAD_CONTINUE_NULL); |
0b4e3aa0 | 5043 | continue; |
1c79356b A |
5044 | } |
5045 | ||
0b4e3aa0 A |
5046 | if (((object->ref_count > 1) |
5047 | && (flags & MEMORY_OBJECT_TERMINATE_IDLE)) | |
5048 | || (object->terminating)) { | |
5049 | vm_object_unlock(object); | |
5050 | vm_object_cache_unlock(); | |
5051 | return KERN_FAILURE; | |
5052 | } else { | |
5053 | if (flags & MEMORY_OBJECT_RELEASE_NO_OP) { | |
5054 | vm_object_unlock(object); | |
5055 | vm_object_cache_unlock(); | |
5056 | return KERN_SUCCESS; | |
1c79356b | 5057 | } |
0b4e3aa0 A |
5058 | } |
5059 | ||
5060 | if ((flags & MEMORY_OBJECT_RESPECT_CACHE) && | |
5061 | (object->ref_count == 1)) { | |
5062 | if(original_object) | |
5063 | object->named = FALSE; | |
1c79356b | 5064 | vm_object_unlock(object); |
0b4e3aa0 A |
5065 | vm_object_cache_unlock(); |
5066 | /* let vm_object_deallocate push this thing into */ | |
5067 | /* the cache, if that it is where it is bound */ | |
5068 | vm_object_deallocate(object); | |
5069 | return KERN_SUCCESS; | |
5070 | } | |
5071 | VM_OBJ_RES_DECR(object); | |
5072 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
5073 | if(object->ref_count == 1) { | |
5074 | if(vm_object_terminate(object) != KERN_SUCCESS) { | |
5075 | if(original_object) { | |
5076 | return KERN_FAILURE; | |
5077 | } else { | |
5078 | return KERN_SUCCESS; | |
5079 | } | |
5080 | } | |
5081 | if (shadow != VM_OBJECT_NULL) { | |
5082 | original_object = FALSE; | |
5083 | object = shadow; | |
5084 | continue; | |
5085 | } | |
5086 | return KERN_SUCCESS; | |
5087 | } else { | |
2d21ac55 | 5088 | vm_object_lock_assert_exclusive(object); |
0b4e3aa0 A |
5089 | object->ref_count--; |
5090 | assert(object->ref_count > 0); | |
5091 | if(original_object) | |
5092 | object->named = FALSE; | |
5093 | vm_object_unlock(object); | |
5094 | vm_object_cache_unlock(); | |
5095 | return KERN_SUCCESS; | |
1c79356b | 5096 | } |
1c79356b | 5097 | } |
91447636 A |
5098 | /*NOTREACHED*/ |
5099 | assert(0); | |
5100 | return KERN_FAILURE; | |
1c79356b A |
5101 | } |
5102 | ||
0b4e3aa0 A |
5103 | |
5104 | __private_extern__ kern_return_t | |
5105 | vm_object_lock_request( | |
5106 | vm_object_t object, | |
5107 | vm_object_offset_t offset, | |
5108 | vm_object_size_t size, | |
5109 | memory_object_return_t should_return, | |
5110 | int flags, | |
5111 | vm_prot_t prot) | |
1c79356b | 5112 | { |
91447636 A |
5113 | __unused boolean_t should_flush; |
5114 | ||
5115 | should_flush = flags & MEMORY_OBJECT_DATA_FLUSH; | |
1c79356b | 5116 | |
0b4e3aa0 A |
5117 | XPR(XPR_MEMORY_OBJECT, |
5118 | "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n", | |
5119 | (integer_t)object, offset, size, | |
5120 | (((should_return&1)<<1)|should_flush), prot); | |
1c79356b | 5121 | |
0b4e3aa0 A |
5122 | /* |
5123 | * Check for bogus arguments. | |
5124 | */ | |
5125 | if (object == VM_OBJECT_NULL) | |
5126 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 5127 | |
0b4e3aa0 A |
5128 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) |
5129 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 5130 | |
55e303ae | 5131 | size = round_page_64(size); |
0b4e3aa0 A |
5132 | |
5133 | /* | |
5134 | * Lock the object, and acquire a paging reference to | |
5135 | * prevent the memory_object reference from being released. | |
5136 | */ | |
5137 | vm_object_lock(object); | |
5138 | vm_object_paging_begin(object); | |
0b4e3aa0 A |
5139 | |
5140 | (void)vm_object_update(object, | |
91447636 | 5141 | offset, size, NULL, NULL, should_return, flags, prot); |
0b4e3aa0 A |
5142 | |
5143 | vm_object_paging_end(object); | |
5144 | vm_object_unlock(object); | |
5145 | ||
5146 | return (KERN_SUCCESS); | |
5147 | } | |
5148 | ||
593a1d5f A |
5149 | unsigned int vm_page_purged_wired = 0; |
5150 | unsigned int vm_page_purged_busy = 0; | |
5151 | unsigned int vm_page_purged_others = 0; | |
91447636 | 5152 | /* |
2d21ac55 | 5153 | * Empty a purgeable object by grabbing the physical pages assigned to it and |
91447636 A |
5154 | * putting them on the free queue without writing them to backing store, etc. |
5155 | * When the pages are next touched they will be demand zero-fill pages. We | |
5156 | * skip pages which are busy, being paged in/out, wired, etc. We do _not_ | |
5157 | * skip referenced/dirty pages, pages on the active queue, etc. We're more | |
2d21ac55 | 5158 | * than happy to grab these since this is a purgeable object. We mark the |
91447636 A |
5159 | * object as "empty" after reaping its pages. |
5160 | * | |
5161 | * On entry the object and page queues are locked, the object must be a | |
2d21ac55 | 5162 | * purgeable object with no delayed copies pending. |
91447636 A |
5163 | */ |
5164 | unsigned int | |
5165 | vm_object_purge(vm_object_t object) | |
5166 | { | |
5167 | vm_page_t p, next; | |
5168 | unsigned int num_purged_pages; | |
5169 | vm_page_t local_freeq; | |
5170 | unsigned long local_freed; | |
5171 | int purge_loop_quota; | |
5172 | /* free pages as soon as we gather PURGE_BATCH_FREE_LIMIT pages to free */ | |
5173 | #define PURGE_BATCH_FREE_LIMIT 50 | |
5174 | /* release page queues lock every PURGE_LOOP_QUOTA iterations */ | |
5175 | #define PURGE_LOOP_QUOTA 100 | |
5176 | ||
5177 | num_purged_pages = 0; | |
2d21ac55 | 5178 | if (object->purgable == VM_PURGABLE_DENY) |
91447636 | 5179 | return num_purged_pages; |
0b4e3aa0 | 5180 | |
2d21ac55 A |
5181 | assert(object->purgable != VM_PURGABLE_NONVOLATILE); |
5182 | object->purgable = VM_PURGABLE_EMPTY; | |
91447636 A |
5183 | |
5184 | assert(object->copy == VM_OBJECT_NULL); | |
5185 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
5186 | purge_loop_quota = PURGE_LOOP_QUOTA; | |
5187 | ||
5188 | local_freeq = VM_PAGE_NULL; | |
5189 | local_freed = 0; | |
5190 | ||
5191 | /* | |
5192 | * Go through the object's resident pages and try and discard them. | |
5193 | */ | |
5194 | next = (vm_page_t)queue_first(&object->memq); | |
5195 | while (!queue_end(&object->memq, (queue_entry_t)next)) { | |
5196 | p = next; | |
5197 | next = (vm_page_t)queue_next(&next->listq); | |
5198 | ||
5199 | if (purge_loop_quota-- == 0) { | |
5200 | /* | |
5201 | * Avoid holding the page queues lock for too long. | |
5202 | * Let someone else take it for a while if needed. | |
5203 | * Keep holding the object's lock to guarantee that | |
5204 | * the object's page list doesn't change under us | |
5205 | * while we yield. | |
5206 | */ | |
5207 | if (local_freeq != VM_PAGE_NULL) { | |
5208 | /* | |
5209 | * Flush our queue of pages to free. | |
5210 | */ | |
5211 | vm_page_free_list(local_freeq); | |
5212 | local_freeq = VM_PAGE_NULL; | |
5213 | local_freed = 0; | |
5214 | } | |
2d21ac55 | 5215 | mutex_yield(&vm_page_queue_lock); |
91447636 A |
5216 | |
5217 | /* resume with the current page and a new quota */ | |
5218 | purge_loop_quota = PURGE_LOOP_QUOTA; | |
5219 | } | |
593a1d5f | 5220 | |
91447636 A |
5221 | if (p->wire_count) { |
5222 | /* don't discard a wired page */ | |
593a1d5f A |
5223 | vm_page_purged_wired++; |
5224 | ||
5225 | skip_page: | |
5226 | /* | |
5227 | * This page is no longer "purgeable", | |
5228 | * for accounting purposes. | |
5229 | */ | |
5230 | assert(vm_page_purgeable_count > 0); | |
5231 | vm_page_purgeable_count--; | |
91447636 A |
5232 | continue; |
5233 | } | |
5234 | ||
593a1d5f A |
5235 | if (p->busy) { |
5236 | /* | |
5237 | * We can't reclaim a busy page but we can deactivate | |
5238 | * it (if it's not wired) to make sure it gets | |
5239 | * considered by vm_pageout_scan() later. | |
5240 | */ | |
5241 | vm_page_deactivate(p); | |
5242 | vm_page_purged_busy++; | |
5243 | goto skip_page; | |
5244 | } | |
5245 | ||
5246 | if (p->cleaning || p->laundry || p->list_req_pending) { | |
5247 | /* page is being acted upon, so don't mess with it */ | |
5248 | vm_page_purged_others++; | |
5249 | goto skip_page; | |
5250 | } | |
5251 | ||
2d21ac55 A |
5252 | assert(!p->laundry); |
5253 | assert(p->object != kernel_object); | |
91447636 A |
5254 | |
5255 | /* we can discard this page */ | |
5256 | ||
5257 | /* advertize that this page is in a transition state */ | |
5258 | p->busy = TRUE; | |
5259 | ||
2d21ac55 | 5260 | if (p->pmapped == TRUE) { |
91447636 A |
5261 | /* unmap the page */ |
5262 | int refmod_state; | |
5263 | ||
5264 | refmod_state = pmap_disconnect(p->phys_page); | |
5265 | if (refmod_state & VM_MEM_MODIFIED) { | |
5266 | p->dirty = TRUE; | |
5267 | } | |
5268 | } | |
5269 | ||
5270 | if (p->dirty || p->precious) { | |
5271 | /* we saved the cost of cleaning this page ! */ | |
5272 | num_purged_pages++; | |
5273 | vm_page_purged_count++; | |
5274 | } | |
5275 | ||
2d21ac55 | 5276 | vm_page_free_prepare(p); |
593a1d5f A |
5277 | /* |
5278 | * vm_page_purgeable_count is not updated when freeing | |
5279 | * a page from an "empty" object, so do it explicitly here. | |
5280 | */ | |
5281 | assert(vm_page_purgeable_count > 0); | |
5282 | vm_page_purgeable_count--; | |
91447636 A |
5283 | |
5284 | /* ... and put it on our queue of pages to free */ | |
91447636 A |
5285 | assert(p->pageq.next == NULL && |
5286 | p->pageq.prev == NULL); | |
5287 | p->pageq.next = (queue_entry_t) local_freeq; | |
5288 | local_freeq = p; | |
5289 | if (++local_freed >= PURGE_BATCH_FREE_LIMIT) { | |
5290 | /* flush our queue of pages to free */ | |
5291 | vm_page_free_list(local_freeq); | |
5292 | local_freeq = VM_PAGE_NULL; | |
5293 | local_freed = 0; | |
5294 | } | |
5295 | } | |
5296 | ||
5297 | /* flush our local queue of pages to free one last time */ | |
5298 | if (local_freeq != VM_PAGE_NULL) { | |
5299 | vm_page_free_list(local_freeq); | |
5300 | local_freeq = VM_PAGE_NULL; | |
5301 | local_freed = 0; | |
5302 | } | |
5303 | ||
5304 | return num_purged_pages; | |
5305 | } | |
5306 | ||
5307 | /* | |
2d21ac55 A |
5308 | * vm_object_purgeable_control() allows the caller to control and investigate the |
5309 | * state of a purgeable object. A purgeable object is created via a call to | |
5310 | * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will | |
5311 | * never be coalesced with any other object -- even other purgeable objects -- | |
5312 | * and will thus always remain a distinct object. A purgeable object has | |
91447636 | 5313 | * special semantics when its reference count is exactly 1. If its reference |
2d21ac55 | 5314 | * count is greater than 1, then a purgeable object will behave like a normal |
91447636 A |
5315 | * object and attempts to use this interface will result in an error return |
5316 | * of KERN_INVALID_ARGUMENT. | |
5317 | * | |
2d21ac55 | 5318 | * A purgeable object may be put into a "volatile" state which will make the |
91447636 A |
5319 | * object's pages elligable for being reclaimed without paging to backing |
5320 | * store if the system runs low on memory. If the pages in a volatile | |
2d21ac55 A |
5321 | * purgeable object are reclaimed, the purgeable object is said to have been |
5322 | * "emptied." When a purgeable object is emptied the system will reclaim as | |
91447636 A |
5323 | * many pages from the object as it can in a convenient manner (pages already |
5324 | * en route to backing store or busy for other reasons are left as is). When | |
2d21ac55 | 5325 | * a purgeable object is made volatile, its pages will generally be reclaimed |
91447636 A |
5326 | * before other pages in the application's working set. This semantic is |
5327 | * generally used by applications which can recreate the data in the object | |
5328 | * faster than it can be paged in. One such example might be media assets | |
5329 | * which can be reread from a much faster RAID volume. | |
5330 | * | |
2d21ac55 | 5331 | * A purgeable object may be designated as "non-volatile" which means it will |
91447636 A |
5332 | * behave like all other objects in the system with pages being written to and |
5333 | * read from backing store as needed to satisfy system memory needs. If the | |
5334 | * object was emptied before the object was made non-volatile, that fact will | |
2d21ac55 | 5335 | * be returned as the old state of the purgeable object (see |
91447636 A |
5336 | * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which |
5337 | * were reclaimed as part of emptying the object will be refaulted in as | |
5338 | * zero-fill on demand. It is up to the application to note that an object | |
5339 | * was emptied and recreate the objects contents if necessary. When a | |
2d21ac55 A |
5340 | * purgeable object is made non-volatile, its pages will generally not be paged |
5341 | * out to backing store in the immediate future. A purgeable object may also | |
91447636 A |
5342 | * be manually emptied. |
5343 | * | |
5344 | * Finally, the current state (non-volatile, volatile, volatile & empty) of a | |
2d21ac55 | 5345 | * volatile purgeable object may be queried at any time. This information may |
91447636 A |
5346 | * be used as a control input to let the application know when the system is |
5347 | * experiencing memory pressure and is reclaiming memory. | |
5348 | * | |
2d21ac55 | 5349 | * The specified address may be any address within the purgeable object. If |
91447636 A |
5350 | * the specified address does not represent any object in the target task's |
5351 | * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the | |
2d21ac55 | 5352 | * object containing the specified address is not a purgeable object, then |
91447636 A |
5353 | * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be |
5354 | * returned. | |
5355 | * | |
5356 | * The control parameter may be any one of VM_PURGABLE_SET_STATE or | |
5357 | * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter | |
2d21ac55 A |
5358 | * state is used to set the new state of the purgeable object and return its |
5359 | * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable | |
91447636 A |
5360 | * object is returned in the parameter state. |
5361 | * | |
5362 | * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE, | |
5363 | * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent | |
5364 | * the non-volatile, volatile and volatile/empty states described above. | |
2d21ac55 | 5365 | * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will |
91447636 A |
5366 | * immediately reclaim as many pages in the object as can be conveniently |
5367 | * collected (some may have already been written to backing store or be | |
5368 | * otherwise busy). | |
5369 | * | |
2d21ac55 A |
5370 | * The process of making a purgeable object non-volatile and determining its |
5371 | * previous state is atomic. Thus, if a purgeable object is made | |
91447636 | 5372 | * VM_PURGABLE_NONVOLATILE and the old state is returned as |
2d21ac55 | 5373 | * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are |
91447636 A |
5374 | * completely intact and will remain so until the object is made volatile |
5375 | * again. If the old state is returned as VM_PURGABLE_EMPTY then the object | |
5376 | * was reclaimed while it was in a volatile state and its previous contents | |
5377 | * have been lost. | |
5378 | */ | |
5379 | /* | |
5380 | * The object must be locked. | |
5381 | */ | |
5382 | kern_return_t | |
5383 | vm_object_purgable_control( | |
5384 | vm_object_t object, | |
5385 | vm_purgable_t control, | |
5386 | int *state) | |
5387 | { | |
5388 | int old_state; | |
2d21ac55 | 5389 | int new_state; |
91447636 A |
5390 | |
5391 | if (object == VM_OBJECT_NULL) { | |
5392 | /* | |
2d21ac55 | 5393 | * Object must already be present or it can't be purgeable. |
91447636 A |
5394 | */ |
5395 | return KERN_INVALID_ARGUMENT; | |
5396 | } | |
5397 | ||
5398 | /* | |
2d21ac55 | 5399 | * Get current state of the purgeable object. |
91447636 | 5400 | */ |
2d21ac55 A |
5401 | old_state = object->purgable; |
5402 | if (old_state == VM_PURGABLE_DENY) | |
91447636 A |
5403 | return KERN_INVALID_ARGUMENT; |
5404 | ||
2d21ac55 | 5405 | /* purgeable cant have delayed copies - now or in the future */ |
91447636 A |
5406 | assert(object->copy == VM_OBJECT_NULL); |
5407 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
5408 | ||
5409 | /* | |
5410 | * Execute the desired operation. | |
5411 | */ | |
5412 | if (control == VM_PURGABLE_GET_STATE) { | |
5413 | *state = old_state; | |
5414 | return KERN_SUCCESS; | |
5415 | } | |
5416 | ||
2d21ac55 A |
5417 | new_state = *state & VM_PURGABLE_STATE_MASK; |
5418 | switch (new_state) { | |
5419 | case VM_PURGABLE_DENY: | |
91447636 | 5420 | case VM_PURGABLE_NONVOLATILE: |
2d21ac55 A |
5421 | object->purgable = new_state; |
5422 | ||
5423 | if (old_state != VM_PURGABLE_NONVOLATILE) { | |
5424 | vm_page_lock_queues(); | |
2d21ac55 | 5425 | if (old_state==VM_PURGABLE_VOLATILE) { |
593a1d5f A |
5426 | assert(vm_page_purgeable_count >= |
5427 | object->resident_page_count); | |
5428 | vm_page_purgeable_count -= object->resident_page_count; | |
5429 | ||
2d21ac55 A |
5430 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ |
5431 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
5432 | assert(queue); | |
91447636 | 5433 | |
2d21ac55 A |
5434 | vm_purgeable_token_delete_first(queue); |
5435 | assert(queue->debug_count_objects>=0); | |
5436 | }; | |
5437 | vm_page_unlock_queues(); | |
91447636 | 5438 | } |
91447636 A |
5439 | break; |
5440 | ||
5441 | case VM_PURGABLE_VOLATILE: | |
91447636 | 5442 | |
593a1d5f A |
5443 | if (old_state == VM_PURGABLE_EMPTY && |
5444 | object->resident_page_count == 0) | |
2d21ac55 A |
5445 | break; |
5446 | purgeable_q_t queue; | |
5447 | ||
5448 | /* find the correct queue */ | |
5449 | if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE) | |
593a1d5f | 5450 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; |
2d21ac55 A |
5451 | else { |
5452 | if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO) | |
5453 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
5454 | else | |
5455 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
91447636 | 5456 | } |
2d21ac55 | 5457 | |
593a1d5f A |
5458 | if (old_state == VM_PURGABLE_NONVOLATILE || |
5459 | old_state == VM_PURGABLE_EMPTY) { | |
2d21ac55 A |
5460 | /* try to add token... this can fail */ |
5461 | vm_page_lock_queues(); | |
91447636 | 5462 | |
2d21ac55 A |
5463 | kern_return_t result = vm_purgeable_token_add(queue); |
5464 | if (result != KERN_SUCCESS) { | |
5465 | vm_page_unlock_queues(); | |
5466 | return result; | |
91447636 | 5467 | } |
2d21ac55 A |
5468 | vm_page_purgeable_count += object->resident_page_count; |
5469 | ||
5470 | vm_page_unlock_queues(); | |
5471 | ||
5472 | object->purgable = new_state; | |
5473 | ||
5474 | /* object should not be on a queue */ | |
5475 | assert(object->objq.next == NULL && object->objq.prev == NULL); | |
91447636 | 5476 | } |
2d21ac55 A |
5477 | else if (old_state == VM_PURGABLE_VOLATILE) { |
5478 | /* | |
5479 | * if reassigning priorities / purgeable groups, we don't change the | |
5480 | * token queue. So moving priorities will not make pages stay around longer. | |
5481 | * Reasoning is that the algorithm gives most priority to the most important | |
5482 | * object. If a new token is added, the most important object' priority is boosted. | |
5483 | * This biases the system already for purgeable queues that move a lot. | |
5484 | * It doesn't seem more biasing is neccessary in this case, where no new object is added. | |
5485 | */ | |
5486 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
5487 | ||
5488 | purgeable_q_t old_queue=vm_purgeable_object_remove(object); | |
5489 | assert(old_queue); | |
5490 | ||
5491 | if (old_queue != queue) { | |
5492 | kern_return_t result; | |
5493 | ||
5494 | /* Changing queue. Have to move token. */ | |
5495 | vm_page_lock_queues(); | |
5496 | vm_purgeable_token_delete_first(old_queue); | |
5497 | result = vm_purgeable_token_add(queue); | |
5498 | vm_page_unlock_queues(); | |
91447636 | 5499 | |
2d21ac55 A |
5500 | assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */ |
5501 | } | |
5502 | }; | |
5503 | vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT ); | |
5504 | ||
5505 | assert(queue->debug_count_objects>=0); | |
5506 | ||
91447636 A |
5507 | break; |
5508 | ||
5509 | ||
5510 | case VM_PURGABLE_EMPTY: | |
2d21ac55 A |
5511 | if (old_state != new_state) |
5512 | { | |
5513 | assert(old_state==VM_PURGABLE_NONVOLATILE || old_state==VM_PURGABLE_VOLATILE); | |
5514 | if(old_state==VM_PURGABLE_VOLATILE) { | |
5515 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
5516 | purgeable_q_t old_queue=vm_purgeable_object_remove(object); | |
5517 | assert(old_queue); | |
5518 | vm_page_lock_queues(); | |
5519 | vm_purgeable_token_delete_first(old_queue); | |
5520 | } | |
5521 | ||
593a1d5f A |
5522 | if (old_state==VM_PURGABLE_NONVOLATILE || |
5523 | old_state == VM_PURGABLE_EMPTY) { | |
2d21ac55 | 5524 | vm_page_lock_queues(); |
593a1d5f | 5525 | vm_page_purgeable_count += object->resident_page_count; |
2d21ac55 | 5526 | } |
593a1d5f | 5527 | object->purgable = VM_PURGABLE_VOLATILE; |
2d21ac55 A |
5528 | (void) vm_object_purge(object); |
5529 | vm_page_unlock_queues(); | |
91447636 | 5530 | } |
91447636 A |
5531 | break; |
5532 | ||
5533 | } | |
5534 | *state = old_state; | |
5535 | ||
5536 | return KERN_SUCCESS; | |
5537 | } | |
0b4e3aa0 A |
5538 | |
5539 | #if TASK_SWAPPER | |
5540 | /* | |
5541 | * vm_object_res_deallocate | |
5542 | * | |
5543 | * (recursively) decrement residence counts on vm objects and their shadows. | |
5544 | * Called from vm_object_deallocate and when swapping out an object. | |
5545 | * | |
5546 | * The object is locked, and remains locked throughout the function, | |
5547 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
5548 | * will be dropped, but not the original object. | |
5549 | * | |
5550 | * NOTE: this function used to use recursion, rather than iteration. | |
5551 | */ | |
5552 | ||
5553 | __private_extern__ void | |
5554 | vm_object_res_deallocate( | |
5555 | vm_object_t object) | |
5556 | { | |
5557 | vm_object_t orig_object = object; | |
5558 | /* | |
5559 | * Object is locked so it can be called directly | |
5560 | * from vm_object_deallocate. Original object is never | |
5561 | * unlocked. | |
5562 | */ | |
5563 | assert(object->res_count > 0); | |
5564 | while (--object->res_count == 0) { | |
5565 | assert(object->ref_count >= object->res_count); | |
5566 | vm_object_deactivate_all_pages(object); | |
5567 | /* iterate on shadow, if present */ | |
5568 | if (object->shadow != VM_OBJECT_NULL) { | |
5569 | vm_object_t tmp_object = object->shadow; | |
5570 | vm_object_lock(tmp_object); | |
5571 | if (object != orig_object) | |
5572 | vm_object_unlock(object); | |
5573 | object = tmp_object; | |
5574 | assert(object->res_count > 0); | |
5575 | } else | |
5576 | break; | |
5577 | } | |
5578 | if (object != orig_object) | |
1c79356b | 5579 | vm_object_unlock(object); |
0b4e3aa0 A |
5580 | } |
5581 | ||
5582 | /* | |
5583 | * vm_object_res_reference | |
5584 | * | |
5585 | * Internal function to increment residence count on a vm object | |
5586 | * and its shadows. It is called only from vm_object_reference, and | |
5587 | * when swapping in a vm object, via vm_map_swap. | |
5588 | * | |
5589 | * The object is locked, and remains locked throughout the function, | |
5590 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
5591 | * will be dropped, but not the original object. | |
5592 | * | |
5593 | * NOTE: this function used to use recursion, rather than iteration. | |
5594 | */ | |
5595 | ||
5596 | __private_extern__ void | |
5597 | vm_object_res_reference( | |
5598 | vm_object_t object) | |
5599 | { | |
5600 | vm_object_t orig_object = object; | |
5601 | /* | |
5602 | * Object is locked, so this can be called directly | |
5603 | * from vm_object_reference. This lock is never released. | |
5604 | */ | |
5605 | while ((++object->res_count == 1) && | |
5606 | (object->shadow != VM_OBJECT_NULL)) { | |
5607 | vm_object_t tmp_object = object->shadow; | |
5608 | ||
5609 | assert(object->ref_count >= object->res_count); | |
5610 | vm_object_lock(tmp_object); | |
5611 | if (object != orig_object) | |
5612 | vm_object_unlock(object); | |
5613 | object = tmp_object; | |
1c79356b | 5614 | } |
0b4e3aa0 A |
5615 | if (object != orig_object) |
5616 | vm_object_unlock(object); | |
5617 | assert(orig_object->ref_count >= orig_object->res_count); | |
1c79356b | 5618 | } |
0b4e3aa0 A |
5619 | #endif /* TASK_SWAPPER */ |
5620 | ||
5621 | /* | |
5622 | * vm_object_reference: | |
5623 | * | |
5624 | * Gets another reference to the given object. | |
5625 | */ | |
5626 | #ifdef vm_object_reference | |
5627 | #undef vm_object_reference | |
5628 | #endif | |
5629 | __private_extern__ void | |
5630 | vm_object_reference( | |
5631 | register vm_object_t object) | |
5632 | { | |
5633 | if (object == VM_OBJECT_NULL) | |
5634 | return; | |
5635 | ||
5636 | vm_object_lock(object); | |
5637 | assert(object->ref_count > 0); | |
5638 | vm_object_reference_locked(object); | |
5639 | vm_object_unlock(object); | |
5640 | } | |
5641 | ||
1c79356b A |
5642 | #ifdef MACH_BSD |
5643 | /* | |
5644 | * Scale the vm_object_cache | |
5645 | * This is required to make sure that the vm_object_cache is big | |
5646 | * enough to effectively cache the mapped file. | |
5647 | * This is really important with UBC as all the regular file vnodes | |
5648 | * have memory object associated with them. Havving this cache too | |
5649 | * small results in rapid reclaim of vnodes and hurts performance a LOT! | |
5650 | * | |
5651 | * This is also needed as number of vnodes can be dynamically scaled. | |
5652 | */ | |
5653 | kern_return_t | |
91447636 A |
5654 | adjust_vm_object_cache( |
5655 | __unused vm_size_t oval, | |
5656 | vm_size_t nval) | |
1c79356b A |
5657 | { |
5658 | vm_object_cached_max = nval; | |
5659 | vm_object_cache_trim(FALSE); | |
5660 | return (KERN_SUCCESS); | |
5661 | } | |
5662 | #endif /* MACH_BSD */ | |
5663 | ||
91447636 A |
5664 | |
5665 | /* | |
5666 | * vm_object_transpose | |
5667 | * | |
5668 | * This routine takes two VM objects of the same size and exchanges | |
5669 | * their backing store. | |
5670 | * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE | |
5671 | * and UPL_BLOCK_ACCESS if they are referenced anywhere. | |
5672 | * | |
5673 | * The VM objects must not be locked by caller. | |
5674 | */ | |
5675 | kern_return_t | |
5676 | vm_object_transpose( | |
5677 | vm_object_t object1, | |
5678 | vm_object_t object2, | |
5679 | vm_object_size_t transpose_size) | |
5680 | { | |
5681 | vm_object_t tmp_object; | |
5682 | kern_return_t retval; | |
5683 | boolean_t object1_locked, object2_locked; | |
5684 | boolean_t object1_paging, object2_paging; | |
5685 | vm_page_t page; | |
5686 | vm_object_offset_t page_offset; | |
5687 | ||
5688 | tmp_object = VM_OBJECT_NULL; | |
5689 | object1_locked = FALSE; object2_locked = FALSE; | |
5690 | object1_paging = FALSE; object2_paging = FALSE; | |
5691 | ||
5692 | if (object1 == object2 || | |
5693 | object1 == VM_OBJECT_NULL || | |
5694 | object2 == VM_OBJECT_NULL) { | |
5695 | /* | |
5696 | * If the 2 VM objects are the same, there's | |
5697 | * no point in exchanging their backing store. | |
5698 | */ | |
5699 | retval = KERN_INVALID_VALUE; | |
5700 | goto done; | |
5701 | } | |
5702 | ||
5703 | vm_object_lock(object1); | |
5704 | object1_locked = TRUE; | |
2d21ac55 A |
5705 | if (!object1->alive || object1->terminating || |
5706 | object1->copy || object1->shadow || object1->shadowed || | |
5707 | object1->purgable != VM_PURGABLE_DENY) { | |
91447636 A |
5708 | /* |
5709 | * We don't deal with copy or shadow objects (yet). | |
5710 | */ | |
5711 | retval = KERN_INVALID_VALUE; | |
5712 | goto done; | |
5713 | } | |
5714 | /* | |
5715 | * Since we're about to mess with the object's backing store, | |
5716 | * mark it as "paging_in_progress". Note that this is not enough | |
5717 | * to prevent any paging activity on this object, so the caller should | |
5718 | * have "quiesced" the objects beforehand, via a UPL operation with | |
5719 | * UPL_SET_IO_WIRE (to make sure all the pages are there and wired) | |
5720 | * and UPL_BLOCK_ACCESS (to mark the pages "busy"). | |
5721 | */ | |
5722 | vm_object_paging_begin(object1); | |
5723 | object1_paging = TRUE; | |
5724 | vm_object_unlock(object1); | |
5725 | object1_locked = FALSE; | |
5726 | ||
5727 | /* | |
5728 | * Same as above for the 2nd object... | |
5729 | */ | |
5730 | vm_object_lock(object2); | |
5731 | object2_locked = TRUE; | |
2d21ac55 A |
5732 | if (! object2->alive || object2->terminating || |
5733 | object2->copy || object2->shadow || object2->shadowed || | |
5734 | object2->purgable != VM_PURGABLE_DENY) { | |
91447636 A |
5735 | retval = KERN_INVALID_VALUE; |
5736 | goto done; | |
5737 | } | |
5738 | vm_object_paging_begin(object2); | |
5739 | object2_paging = TRUE; | |
5740 | vm_object_unlock(object2); | |
5741 | object2_locked = FALSE; | |
5742 | ||
5743 | /* | |
5744 | * Allocate a temporary VM object to hold object1's contents | |
5745 | * while we copy object2 to object1. | |
5746 | */ | |
5747 | tmp_object = vm_object_allocate(transpose_size); | |
5748 | vm_object_lock(tmp_object); | |
5749 | vm_object_paging_begin(tmp_object); | |
5750 | tmp_object->can_persist = FALSE; | |
5751 | ||
5752 | /* | |
5753 | * Since we need to lock both objects at the same time, | |
5754 | * make sure we always lock them in the same order to | |
5755 | * avoid deadlocks. | |
5756 | */ | |
5757 | if (object1 < object2) { | |
5758 | vm_object_lock(object1); | |
5759 | vm_object_lock(object2); | |
5760 | } else { | |
5761 | vm_object_lock(object2); | |
5762 | vm_object_lock(object1); | |
5763 | } | |
5764 | object1_locked = TRUE; | |
5765 | object2_locked = TRUE; | |
5766 | ||
5767 | if (object1->size != object2->size || | |
5768 | object1->size != transpose_size) { | |
5769 | /* | |
5770 | * If the 2 objects don't have the same size, we can't | |
5771 | * exchange their backing stores or one would overflow. | |
5772 | * If their size doesn't match the caller's | |
5773 | * "transpose_size", we can't do it either because the | |
5774 | * transpose operation will affect the entire span of | |
5775 | * the objects. | |
5776 | */ | |
5777 | retval = KERN_INVALID_VALUE; | |
5778 | goto done; | |
5779 | } | |
5780 | ||
5781 | ||
5782 | /* | |
5783 | * Transpose the lists of resident pages. | |
2d21ac55 | 5784 | * This also updates the resident_page_count and the memq_hint. |
91447636 A |
5785 | */ |
5786 | if (object1->phys_contiguous || queue_empty(&object1->memq)) { | |
5787 | /* | |
5788 | * No pages in object1, just transfer pages | |
5789 | * from object2 to object1. No need to go through | |
5790 | * an intermediate object. | |
5791 | */ | |
5792 | while (!queue_empty(&object2->memq)) { | |
5793 | page = (vm_page_t) queue_first(&object2->memq); | |
2d21ac55 | 5794 | vm_page_rename(page, object1, page->offset, FALSE); |
91447636 A |
5795 | } |
5796 | assert(queue_empty(&object2->memq)); | |
5797 | } else if (object2->phys_contiguous || queue_empty(&object2->memq)) { | |
5798 | /* | |
5799 | * No pages in object2, just transfer pages | |
5800 | * from object1 to object2. No need to go through | |
5801 | * an intermediate object. | |
5802 | */ | |
5803 | while (!queue_empty(&object1->memq)) { | |
5804 | page = (vm_page_t) queue_first(&object1->memq); | |
2d21ac55 | 5805 | vm_page_rename(page, object2, page->offset, FALSE); |
91447636 A |
5806 | } |
5807 | assert(queue_empty(&object1->memq)); | |
5808 | } else { | |
5809 | /* transfer object1's pages to tmp_object */ | |
5810 | vm_page_lock_queues(); | |
5811 | while (!queue_empty(&object1->memq)) { | |
5812 | page = (vm_page_t) queue_first(&object1->memq); | |
5813 | page_offset = page->offset; | |
5814 | vm_page_remove(page); | |
5815 | page->offset = page_offset; | |
5816 | queue_enter(&tmp_object->memq, page, vm_page_t, listq); | |
5817 | } | |
5818 | vm_page_unlock_queues(); | |
5819 | assert(queue_empty(&object1->memq)); | |
5820 | /* transfer object2's pages to object1 */ | |
5821 | while (!queue_empty(&object2->memq)) { | |
5822 | page = (vm_page_t) queue_first(&object2->memq); | |
2d21ac55 | 5823 | vm_page_rename(page, object1, page->offset, FALSE); |
91447636 A |
5824 | } |
5825 | assert(queue_empty(&object2->memq)); | |
5826 | /* transfer tmp_object's pages to object1 */ | |
5827 | while (!queue_empty(&tmp_object->memq)) { | |
5828 | page = (vm_page_t) queue_first(&tmp_object->memq); | |
5829 | queue_remove(&tmp_object->memq, page, | |
5830 | vm_page_t, listq); | |
5831 | vm_page_insert(page, object2, page->offset); | |
5832 | } | |
5833 | assert(queue_empty(&tmp_object->memq)); | |
5834 | } | |
5835 | ||
91447636 A |
5836 | #define __TRANSPOSE_FIELD(field) \ |
5837 | MACRO_BEGIN \ | |
5838 | tmp_object->field = object1->field; \ | |
5839 | object1->field = object2->field; \ | |
5840 | object2->field = tmp_object->field; \ | |
5841 | MACRO_END | |
5842 | ||
2d21ac55 A |
5843 | /* "size" should be identical */ |
5844 | assert(object1->size == object2->size); | |
5845 | /* "Lock" refers to the object not its contents */ | |
5846 | /* "ref_count" refers to the object not its contents */ | |
5847 | #if TASK_SWAPPER | |
5848 | /* "res_count" refers to the object not its contents */ | |
5849 | #endif | |
5850 | /* "resident_page_count" was updated above when transposing pages */ | |
5851 | /* there should be no "copy" */ | |
91447636 A |
5852 | assert(!object1->copy); |
5853 | assert(!object2->copy); | |
2d21ac55 | 5854 | /* there should be no "shadow" */ |
91447636 A |
5855 | assert(!object1->shadow); |
5856 | assert(!object2->shadow); | |
91447636 A |
5857 | __TRANSPOSE_FIELD(shadow_offset); /* used by phys_contiguous objects */ |
5858 | __TRANSPOSE_FIELD(pager); | |
5859 | __TRANSPOSE_FIELD(paging_offset); | |
91447636 A |
5860 | __TRANSPOSE_FIELD(pager_control); |
5861 | /* update the memory_objects' pointers back to the VM objects */ | |
5862 | if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
5863 | memory_object_control_collapse(object1->pager_control, | |
5864 | object1); | |
5865 | } | |
5866 | if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
5867 | memory_object_control_collapse(object2->pager_control, | |
5868 | object2); | |
5869 | } | |
2d21ac55 A |
5870 | __TRANSPOSE_FIELD(copy_strategy); |
5871 | /* "paging_in_progress" refers to the object not its contents */ | |
91447636 A |
5872 | assert(object1->paging_in_progress); |
5873 | assert(object2->paging_in_progress); | |
2d21ac55 | 5874 | /* "all_wanted" refers to the object not its contents */ |
91447636 A |
5875 | __TRANSPOSE_FIELD(pager_created); |
5876 | __TRANSPOSE_FIELD(pager_initialized); | |
5877 | __TRANSPOSE_FIELD(pager_ready); | |
5878 | __TRANSPOSE_FIELD(pager_trusted); | |
2d21ac55 | 5879 | __TRANSPOSE_FIELD(can_persist); |
91447636 A |
5880 | __TRANSPOSE_FIELD(internal); |
5881 | __TRANSPOSE_FIELD(temporary); | |
5882 | __TRANSPOSE_FIELD(private); | |
5883 | __TRANSPOSE_FIELD(pageout); | |
2d21ac55 A |
5884 | /* "alive" should be set */ |
5885 | assert(object1->alive); | |
5886 | assert(object2->alive); | |
5887 | /* "purgeable" should be non-purgeable */ | |
5888 | assert(object1->purgable == VM_PURGABLE_DENY); | |
5889 | assert(object2->purgable == VM_PURGABLE_DENY); | |
5890 | /* "shadowed" refers to the the object not its contents */ | |
5891 | __TRANSPOSE_FIELD(silent_overwrite); | |
5892 | __TRANSPOSE_FIELD(advisory_pageout); | |
91447636 | 5893 | __TRANSPOSE_FIELD(true_share); |
2d21ac55 A |
5894 | /* "terminating" should not be set */ |
5895 | assert(!object1->terminating); | |
5896 | assert(!object2->terminating); | |
5897 | __TRANSPOSE_FIELD(named); | |
5898 | /* "shadow_severed" refers to the object not its contents */ | |
91447636 A |
5899 | __TRANSPOSE_FIELD(phys_contiguous); |
5900 | __TRANSPOSE_FIELD(nophyscache); | |
2d21ac55 A |
5901 | /* "cached_list" should be NULL */ |
5902 | assert(object1->cached_list.prev == NULL); | |
5903 | assert(object1->cached_list.next == NULL); | |
5904 | assert(object2->cached_list.prev == NULL); | |
5905 | assert(object2->cached_list.next == NULL); | |
5906 | /* "msr_q" is linked to the object not its contents */ | |
5907 | assert(queue_empty(&object1->msr_q)); | |
5908 | assert(queue_empty(&object2->msr_q)); | |
91447636 A |
5909 | __TRANSPOSE_FIELD(last_alloc); |
5910 | __TRANSPOSE_FIELD(sequential); | |
2d21ac55 A |
5911 | __TRANSPOSE_FIELD(pages_created); |
5912 | __TRANSPOSE_FIELD(pages_used); | |
5913 | #if MACH_PAGEMAP | |
91447636 | 5914 | __TRANSPOSE_FIELD(existence_map); |
2d21ac55 | 5915 | #endif |
91447636 | 5916 | __TRANSPOSE_FIELD(cow_hint); |
2d21ac55 A |
5917 | #if MACH_ASSERT |
5918 | __TRANSPOSE_FIELD(paging_object); | |
5919 | #endif | |
91447636 | 5920 | __TRANSPOSE_FIELD(wimg_bits); |
2d21ac55 A |
5921 | __TRANSPOSE_FIELD(code_signed); |
5922 | __TRANSPOSE_FIELD(not_in_use); | |
5923 | #ifdef UPL_DEBUG | |
5924 | /* "uplq" refers to the object not its contents (see upl_transpose()) */ | |
5925 | #endif | |
91447636 A |
5926 | |
5927 | #undef __TRANSPOSE_FIELD | |
5928 | ||
5929 | retval = KERN_SUCCESS; | |
5930 | ||
5931 | done: | |
5932 | /* | |
5933 | * Cleanup. | |
5934 | */ | |
5935 | if (tmp_object != VM_OBJECT_NULL) { | |
5936 | vm_object_paging_end(tmp_object); | |
5937 | vm_object_unlock(tmp_object); | |
5938 | /* | |
5939 | * Re-initialize the temporary object to avoid | |
5940 | * deallocating a real pager. | |
5941 | */ | |
5942 | _vm_object_allocate(transpose_size, tmp_object); | |
5943 | vm_object_deallocate(tmp_object); | |
5944 | tmp_object = VM_OBJECT_NULL; | |
5945 | } | |
5946 | ||
5947 | if (object1_locked) { | |
5948 | vm_object_unlock(object1); | |
5949 | object1_locked = FALSE; | |
5950 | } | |
5951 | if (object2_locked) { | |
5952 | vm_object_unlock(object2); | |
5953 | object2_locked = FALSE; | |
5954 | } | |
5955 | if (object1_paging) { | |
5956 | vm_object_lock(object1); | |
5957 | vm_object_paging_end(object1); | |
5958 | vm_object_unlock(object1); | |
5959 | object1_paging = FALSE; | |
5960 | } | |
5961 | if (object2_paging) { | |
5962 | vm_object_lock(object2); | |
5963 | vm_object_paging_end(object2); | |
5964 | vm_object_unlock(object2); | |
5965 | object2_paging = FALSE; | |
5966 | } | |
5967 | ||
5968 | return retval; | |
5969 | } | |
0c530ab8 A |
5970 | |
5971 | ||
2d21ac55 A |
5972 | /* |
5973 | * vm_object_build_cluster | |
5974 | * | |
5975 | * Determine how big a cluster we should issue an I/O for... | |
5976 | * | |
5977 | * Inputs: *start == offset of page needed | |
5978 | * *length == maximum cluster pager can handle | |
5979 | * Outputs: *start == beginning offset of cluster | |
5980 | * *length == length of cluster to try | |
5981 | * | |
5982 | * The original *start will be encompassed by the cluster | |
5983 | * | |
5984 | */ | |
5985 | extern int speculative_reads_disabled; | |
5986 | ||
5987 | uint32_t pre_heat_scaling[MAX_UPL_TRANSFER]; | |
5988 | uint32_t pre_heat_cluster[MAX_UPL_TRANSFER]; | |
5989 | ||
5990 | #define PRE_HEAT_MULTIPLIER 4 | |
5991 | ||
5992 | __private_extern__ void | |
5993 | vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start, | |
5994 | vm_size_t *length, vm_object_fault_info_t fault_info) | |
5995 | { | |
5996 | vm_size_t pre_heat_size; | |
5997 | vm_size_t tail_size; | |
5998 | vm_size_t head_size; | |
5999 | vm_size_t max_length; | |
6000 | vm_size_t cluster_size; | |
6001 | vm_object_offset_t object_size; | |
6002 | vm_object_offset_t orig_start; | |
6003 | vm_object_offset_t target_start; | |
6004 | vm_object_offset_t offset; | |
6005 | vm_behavior_t behavior; | |
6006 | boolean_t look_behind = TRUE; | |
6007 | boolean_t look_ahead = TRUE; | |
6008 | int sequential_run; | |
6009 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6010 | ||
6011 | assert( !(*length & PAGE_MASK)); | |
6012 | assert( !(*start & PAGE_MASK_64)); | |
6013 | ||
6014 | if ( (max_length = *length) > (MAX_UPL_TRANSFER * PAGE_SIZE) ) | |
6015 | max_length = (MAX_UPL_TRANSFER * PAGE_SIZE); | |
6016 | /* | |
6017 | * we'll always return a cluster size of at least | |
6018 | * 1 page, since the original fault must always | |
6019 | * be processed | |
6020 | */ | |
6021 | *length = PAGE_SIZE; | |
6022 | ||
6023 | if (speculative_reads_disabled || fault_info == NULL || max_length == 0) { | |
6024 | /* | |
6025 | * no cluster... just fault the page in | |
6026 | */ | |
6027 | return; | |
6028 | } | |
6029 | orig_start = *start; | |
6030 | target_start = orig_start; | |
6031 | cluster_size = round_page_32(fault_info->cluster_size); | |
6032 | behavior = fault_info->behavior; | |
6033 | ||
6034 | vm_object_lock(object); | |
6035 | ||
6036 | if (object->internal) | |
6037 | object_size = object->size; | |
6038 | else if (object->pager != MEMORY_OBJECT_NULL) | |
6039 | vnode_pager_get_object_size(object->pager, &object_size); | |
6040 | else | |
6041 | goto out; /* pager is gone for this object, nothing more to do */ | |
6042 | ||
6043 | object_size = round_page_64(object_size); | |
6044 | ||
6045 | if (orig_start >= object_size) { | |
6046 | /* | |
6047 | * fault occurred beyond the EOF... | |
6048 | * we need to punt w/o changing the | |
6049 | * starting offset | |
6050 | */ | |
6051 | goto out; | |
6052 | } | |
6053 | if (object->pages_used > object->pages_created) { | |
6054 | /* | |
6055 | * must have wrapped our 32 bit counters | |
6056 | * so reset | |
6057 | */ | |
6058 | object->pages_used = object->pages_created = 0; | |
6059 | } | |
6060 | if ((sequential_run = object->sequential)) { | |
6061 | if (sequential_run < 0) { | |
6062 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
6063 | sequential_run = 0 - sequential_run; | |
6064 | } else { | |
6065 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
6066 | } | |
6067 | } | |
6068 | switch(behavior) { | |
6069 | ||
6070 | default: | |
6071 | behavior = VM_BEHAVIOR_DEFAULT; | |
6072 | ||
6073 | case VM_BEHAVIOR_DEFAULT: | |
6074 | if (object->internal && fault_info->user_tag == VM_MEMORY_STACK) | |
6075 | goto out; | |
6076 | ||
6077 | if (sequential_run >= (3 * PAGE_SIZE)) { | |
6078 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6079 | ||
6080 | if ((behavior = sequential_behavior) == VM_BEHAVIOR_SEQUENTIAL) | |
6081 | look_behind = FALSE; | |
6082 | else | |
6083 | look_ahead = FALSE; | |
6084 | } else { | |
6085 | uint32_t pages_unused; | |
6086 | ||
6087 | if (object->pages_created < 32 * PRE_HEAT_MULTIPLIER) { | |
6088 | /* | |
6089 | * prime the pump | |
6090 | */ | |
6091 | pre_heat_size = PAGE_SIZE * 8 * PRE_HEAT_MULTIPLIER; | |
6092 | break; | |
6093 | } | |
6094 | pages_unused = object->pages_created - object->pages_used; | |
6095 | ||
6096 | if (pages_unused < (object->pages_created / 8)) { | |
6097 | pre_heat_size = PAGE_SIZE * 32 * PRE_HEAT_MULTIPLIER; | |
6098 | } else if (pages_unused < (object->pages_created / 4)) { | |
6099 | pre_heat_size = PAGE_SIZE * 16 * PRE_HEAT_MULTIPLIER; | |
6100 | } else if (pages_unused < (object->pages_created / 2)) { | |
6101 | pre_heat_size = PAGE_SIZE * 8 * PRE_HEAT_MULTIPLIER; | |
6102 | } else { | |
6103 | pre_heat_size = PAGE_SIZE * 4 * PRE_HEAT_MULTIPLIER; | |
6104 | } | |
6105 | } | |
6106 | break; | |
6107 | ||
6108 | case VM_BEHAVIOR_RANDOM: | |
6109 | if ((pre_heat_size = cluster_size) <= PAGE_SIZE) | |
6110 | goto out; | |
6111 | break; | |
6112 | ||
6113 | case VM_BEHAVIOR_SEQUENTIAL: | |
6114 | if ((pre_heat_size = cluster_size) == 0) | |
6115 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6116 | look_behind = FALSE; | |
6117 | ||
6118 | break; | |
6119 | ||
6120 | case VM_BEHAVIOR_RSEQNTL: | |
6121 | if ((pre_heat_size = cluster_size) == 0) | |
6122 | pre_heat_size = sequential_run + PAGE_SIZE; | |
6123 | look_ahead = FALSE; | |
6124 | ||
6125 | break; | |
6126 | ||
6127 | } | |
6128 | if (pre_heat_size > max_length) | |
6129 | pre_heat_size = max_length; | |
6130 | ||
6131 | if (behavior == VM_BEHAVIOR_DEFAULT && vm_page_free_count < vm_page_free_target) | |
6132 | pre_heat_size /= 2; | |
6133 | ||
6134 | if (look_ahead == TRUE) { | |
6135 | if (look_behind == TRUE) | |
6136 | target_start &= ~(pre_heat_size - 1); | |
6137 | ||
6138 | if ((target_start + pre_heat_size) > object_size) | |
6139 | pre_heat_size = (vm_size_t)(trunc_page_64(object_size - target_start)); | |
6140 | ||
6141 | tail_size = pre_heat_size - (orig_start - target_start) - PAGE_SIZE; | |
6142 | } else { | |
6143 | if (pre_heat_size > target_start) | |
6144 | pre_heat_size = target_start; | |
6145 | tail_size = 0; | |
6146 | } | |
6147 | pre_heat_scaling[pre_heat_size / PAGE_SIZE]++; | |
6148 | ||
6149 | if (pre_heat_size <= PAGE_SIZE) | |
6150 | goto out; | |
6151 | ||
6152 | if (look_behind == TRUE) { | |
6153 | /* | |
6154 | * take a look at the pages before the original | |
6155 | * faulting offset | |
6156 | */ | |
6157 | head_size = pre_heat_size - tail_size - PAGE_SIZE; | |
6158 | ||
6159 | for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) { | |
6160 | /* | |
6161 | * don't poke below the lowest offset | |
6162 | */ | |
6163 | if (offset < fault_info->lo_offset) | |
6164 | break; | |
6165 | /* | |
6166 | * for external objects and internal objects w/o an existence map | |
6167 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
6168 | */ | |
6169 | #if MACH_PAGEMAP | |
6170 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
6171 | /* | |
6172 | * we know for a fact that the pager can't provide the page | |
6173 | * so don't include it or any pages beyond it in this cluster | |
6174 | */ | |
6175 | break; | |
6176 | } | |
6177 | #endif | |
6178 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
6179 | /* | |
6180 | * don't bridge resident pages | |
6181 | */ | |
6182 | break; | |
6183 | } | |
6184 | *start = offset; | |
6185 | *length += PAGE_SIZE; | |
6186 | } | |
6187 | } | |
6188 | if (look_ahead == TRUE) { | |
6189 | for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) { | |
6190 | /* | |
6191 | * don't poke above the highest offset | |
6192 | */ | |
6193 | if (offset >= fault_info->hi_offset) | |
6194 | break; | |
6195 | /* | |
6196 | * for external objects and internal objects w/o an existence map | |
6197 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
6198 | */ | |
6199 | #if MACH_PAGEMAP | |
6200 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
6201 | /* | |
6202 | * we know for a fact that the pager can't provide the page | |
6203 | * so don't include it or any pages beyond it in this cluster | |
6204 | */ | |
6205 | break; | |
6206 | } | |
6207 | #endif | |
6208 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { | |
6209 | /* | |
6210 | * don't bridge resident pages | |
6211 | */ | |
6212 | break; | |
6213 | } | |
6214 | *length += PAGE_SIZE; | |
6215 | } | |
6216 | } | |
6217 | out: | |
6218 | pre_heat_cluster[*length / PAGE_SIZE]++; | |
6219 | ||
6220 | vm_object_unlock(object); | |
6221 | } | |
6222 | ||
6223 | ||
6224 | /* | |
6225 | * Allow manipulation of individual page state. This is actually part of | |
6226 | * the UPL regimen but takes place on the VM object rather than on a UPL | |
6227 | */ | |
0c530ab8 A |
6228 | |
6229 | kern_return_t | |
6230 | vm_object_page_op( | |
6231 | vm_object_t object, | |
6232 | vm_object_offset_t offset, | |
6233 | int ops, | |
6234 | ppnum_t *phys_entry, | |
6235 | int *flags) | |
6236 | { | |
6237 | vm_page_t dst_page; | |
6238 | ||
6239 | vm_object_lock(object); | |
6240 | ||
6241 | if(ops & UPL_POP_PHYSICAL) { | |
6242 | if(object->phys_contiguous) { | |
6243 | if (phys_entry) { | |
6244 | *phys_entry = (ppnum_t) | |
935ed37a | 6245 | (object->shadow_offset >> PAGE_SHIFT); |
0c530ab8 A |
6246 | } |
6247 | vm_object_unlock(object); | |
6248 | return KERN_SUCCESS; | |
6249 | } else { | |
6250 | vm_object_unlock(object); | |
6251 | return KERN_INVALID_OBJECT; | |
6252 | } | |
6253 | } | |
6254 | if(object->phys_contiguous) { | |
6255 | vm_object_unlock(object); | |
6256 | return KERN_INVALID_OBJECT; | |
6257 | } | |
6258 | ||
6259 | while(TRUE) { | |
6260 | if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) { | |
6261 | vm_object_unlock(object); | |
6262 | return KERN_FAILURE; | |
6263 | } | |
6264 | ||
6265 | /* Sync up on getting the busy bit */ | |
6266 | if((dst_page->busy || dst_page->cleaning) && | |
6267 | (((ops & UPL_POP_SET) && | |
6268 | (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) { | |
6269 | /* someone else is playing with the page, we will */ | |
6270 | /* have to wait */ | |
6271 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
6272 | continue; | |
6273 | } | |
6274 | ||
6275 | if (ops & UPL_POP_DUMP) { | |
2d21ac55 | 6276 | if (dst_page->pmapped == TRUE) |
0c530ab8 | 6277 | pmap_disconnect(dst_page->phys_page); |
0c530ab8 | 6278 | |
2d21ac55 A |
6279 | vm_page_lock_queues(); |
6280 | vm_page_free(dst_page); | |
0c530ab8 | 6281 | vm_page_unlock_queues(); |
2d21ac55 | 6282 | |
0c530ab8 A |
6283 | break; |
6284 | } | |
6285 | ||
6286 | if (flags) { | |
6287 | *flags = 0; | |
6288 | ||
6289 | /* Get the condition of flags before requested ops */ | |
6290 | /* are undertaken */ | |
6291 | ||
6292 | if(dst_page->dirty) *flags |= UPL_POP_DIRTY; | |
6293 | if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT; | |
6294 | if(dst_page->precious) *flags |= UPL_POP_PRECIOUS; | |
6295 | if(dst_page->absent) *flags |= UPL_POP_ABSENT; | |
6296 | if(dst_page->busy) *flags |= UPL_POP_BUSY; | |
6297 | } | |
6298 | ||
6299 | /* The caller should have made a call either contingent with */ | |
6300 | /* or prior to this call to set UPL_POP_BUSY */ | |
6301 | if(ops & UPL_POP_SET) { | |
6302 | /* The protection granted with this assert will */ | |
6303 | /* not be complete. If the caller violates the */ | |
6304 | /* convention and attempts to change page state */ | |
6305 | /* without first setting busy we may not see it */ | |
6306 | /* because the page may already be busy. However */ | |
6307 | /* if such violations occur we will assert sooner */ | |
6308 | /* or later. */ | |
6309 | assert(dst_page->busy || (ops & UPL_POP_BUSY)); | |
6310 | if (ops & UPL_POP_DIRTY) dst_page->dirty = TRUE; | |
6311 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE; | |
6312 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE; | |
6313 | if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE; | |
6314 | if (ops & UPL_POP_BUSY) dst_page->busy = TRUE; | |
6315 | } | |
6316 | ||
6317 | if(ops & UPL_POP_CLR) { | |
6318 | assert(dst_page->busy); | |
6319 | if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE; | |
6320 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE; | |
6321 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE; | |
6322 | if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE; | |
6323 | if (ops & UPL_POP_BUSY) { | |
6324 | dst_page->busy = FALSE; | |
6325 | PAGE_WAKEUP(dst_page); | |
6326 | } | |
6327 | } | |
6328 | ||
6329 | if (dst_page->encrypted) { | |
6330 | /* | |
6331 | * ENCRYPTED SWAP: | |
6332 | * We need to decrypt this encrypted page before the | |
6333 | * caller can access its contents. | |
6334 | * But if the caller really wants to access the page's | |
6335 | * contents, they have to keep the page "busy". | |
6336 | * Otherwise, the page could get recycled or re-encrypted | |
6337 | * at any time. | |
6338 | */ | |
6339 | if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) && | |
6340 | dst_page->busy) { | |
6341 | /* | |
6342 | * The page is stable enough to be accessed by | |
6343 | * the caller, so make sure its contents are | |
6344 | * not encrypted. | |
6345 | */ | |
6346 | vm_page_decrypt(dst_page, 0); | |
6347 | } else { | |
6348 | /* | |
6349 | * The page is not busy, so don't bother | |
6350 | * decrypting it, since anything could | |
6351 | * happen to it between now and when the | |
6352 | * caller wants to access it. | |
6353 | * We should not give the caller access | |
6354 | * to this page. | |
6355 | */ | |
6356 | assert(!phys_entry); | |
6357 | } | |
6358 | } | |
6359 | ||
6360 | if (phys_entry) { | |
6361 | /* | |
6362 | * The physical page number will remain valid | |
6363 | * only if the page is kept busy. | |
6364 | * ENCRYPTED SWAP: make sure we don't let the | |
6365 | * caller access an encrypted page. | |
6366 | */ | |
6367 | assert(dst_page->busy); | |
6368 | assert(!dst_page->encrypted); | |
6369 | *phys_entry = dst_page->phys_page; | |
6370 | } | |
6371 | ||
6372 | break; | |
6373 | } | |
6374 | ||
6375 | vm_object_unlock(object); | |
6376 | return KERN_SUCCESS; | |
6377 | ||
6378 | } | |
6379 | ||
6380 | /* | |
6381 | * vm_object_range_op offers performance enhancement over | |
6382 | * vm_object_page_op for page_op functions which do not require page | |
6383 | * level state to be returned from the call. Page_op was created to provide | |
6384 | * a low-cost alternative to page manipulation via UPLs when only a single | |
6385 | * page was involved. The range_op call establishes the ability in the _op | |
6386 | * family of functions to work on multiple pages where the lack of page level | |
6387 | * state handling allows the caller to avoid the overhead of the upl structures. | |
6388 | */ | |
6389 | ||
6390 | kern_return_t | |
6391 | vm_object_range_op( | |
6392 | vm_object_t object, | |
6393 | vm_object_offset_t offset_beg, | |
6394 | vm_object_offset_t offset_end, | |
6395 | int ops, | |
6396 | int *range) | |
6397 | { | |
6398 | vm_object_offset_t offset; | |
6399 | vm_page_t dst_page; | |
6400 | ||
6401 | if (object->resident_page_count == 0) { | |
6402 | if (range) { | |
6403 | if (ops & UPL_ROP_PRESENT) | |
6404 | *range = 0; | |
6405 | else | |
6406 | *range = offset_end - offset_beg; | |
6407 | } | |
6408 | return KERN_SUCCESS; | |
6409 | } | |
6410 | vm_object_lock(object); | |
6411 | ||
6412 | if (object->phys_contiguous) { | |
6413 | vm_object_unlock(object); | |
6414 | return KERN_INVALID_OBJECT; | |
6415 | } | |
6416 | ||
2d21ac55 | 6417 | offset = offset_beg & ~PAGE_MASK_64; |
0c530ab8 A |
6418 | |
6419 | while (offset < offset_end) { | |
6420 | dst_page = vm_page_lookup(object, offset); | |
6421 | if (dst_page != VM_PAGE_NULL) { | |
6422 | if (ops & UPL_ROP_DUMP) { | |
6423 | if (dst_page->busy || dst_page->cleaning) { | |
6424 | /* | |
6425 | * someone else is playing with the | |
6426 | * page, we will have to wait | |
6427 | */ | |
2d21ac55 | 6428 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
0c530ab8 A |
6429 | /* |
6430 | * need to relook the page up since it's | |
6431 | * state may have changed while we slept | |
6432 | * it might even belong to a different object | |
6433 | * at this point | |
6434 | */ | |
6435 | continue; | |
6436 | } | |
2d21ac55 | 6437 | if (dst_page->pmapped == TRUE) |
0c530ab8 | 6438 | pmap_disconnect(dst_page->phys_page); |
0c530ab8 | 6439 | |
2d21ac55 A |
6440 | vm_page_lock_queues(); |
6441 | vm_page_free(dst_page); | |
0c530ab8 | 6442 | vm_page_unlock_queues(); |
2d21ac55 | 6443 | |
0c530ab8 A |
6444 | } else if (ops & UPL_ROP_ABSENT) |
6445 | break; | |
6446 | } else if (ops & UPL_ROP_PRESENT) | |
6447 | break; | |
6448 | ||
6449 | offset += PAGE_SIZE; | |
6450 | } | |
6451 | vm_object_unlock(object); | |
6452 | ||
2d21ac55 A |
6453 | if (range) { |
6454 | if (offset > offset_end) | |
6455 | offset = offset_end; | |
cf7d32b8 A |
6456 | if(offset > offset_beg) |
6457 | *range = offset - offset_beg; | |
6458 | else *range=0; | |
2d21ac55 | 6459 | } |
0c530ab8 A |
6460 | return KERN_SUCCESS; |
6461 | } | |
2d21ac55 A |
6462 | |
6463 | ||
6464 | uint32_t scan_object_collision = 0; | |
6465 | ||
6466 | void | |
6467 | vm_object_lock(vm_object_t object) | |
6468 | { | |
6469 | if (object == vm_pageout_scan_wants_object) { | |
6470 | scan_object_collision++; | |
6471 | mutex_pause(2); | |
6472 | } | |
6473 | lck_rw_lock_exclusive(&object->Lock); | |
6474 | } | |
6475 | ||
6476 | boolean_t | |
6477 | vm_object_lock_try(vm_object_t object) | |
6478 | { | |
6479 | if (object == vm_pageout_scan_wants_object) { | |
6480 | scan_object_collision++; | |
6481 | mutex_pause(2); | |
6482 | } | |
6483 | return (lck_rw_try_lock_exclusive(&object->Lock)); | |
6484 | } | |
6485 | ||
6486 | void | |
6487 | vm_object_lock_shared(vm_object_t object) | |
6488 | { | |
6489 | if (object == vm_pageout_scan_wants_object) { | |
6490 | scan_object_collision++; | |
6491 | mutex_pause(2); | |
6492 | } | |
6493 | lck_rw_lock_shared(&object->Lock); | |
6494 | } | |
6495 | ||
6496 | boolean_t | |
6497 | vm_object_lock_try_shared(vm_object_t object) | |
6498 | { | |
6499 | if (object == vm_pageout_scan_wants_object) { | |
6500 | scan_object_collision++; | |
6501 | mutex_pause(2); | |
6502 | } | |
6503 | return (lck_rw_try_lock_shared(&object->Lock)); | |
6504 | } |