]>
Commit | Line | Data |
---|---|---|
2d21ac55 A |
1 | /* |
2 | * Copyright (c) 2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /************* | |
30 | * These functions implement RPCSEC_GSS security for the NFS client and server. | |
31 | * The code is specific to the use of Kerberos v5 and the use of DES MAC MD5 | |
32 | * protection as described in Internet RFC 2203 and 2623. | |
33 | * | |
34 | * In contrast to the original AUTH_SYS authentication, RPCSEC_GSS is stateful. | |
35 | * It requires the client and server negotiate a secure connection as part of a | |
36 | * security context. The context state is maintained in client and server structures. | |
37 | * On the client side, each user of an NFS mount is assigned their own context, | |
38 | * identified by UID, on their first use of the mount, and it persists until the | |
39 | * unmount or until the context is renewed. Each user context has a corresponding | |
40 | * server context which the server maintains until the client destroys it, or | |
41 | * until the context expires. | |
42 | * | |
43 | * The client and server contexts are set up dynamically. When a user attempts | |
44 | * to send an NFS request, if there is no context for the user, then one is | |
45 | * set up via an exchange of NFS null procedure calls as described in RFC 2203. | |
46 | * During this exchange, the client and server pass a security token that is | |
47 | * forwarded via Mach upcall to the gssd, which invokes the GSS-API to authenticate | |
48 | * the user to the server (and vice-versa). The client and server also receive | |
49 | * a unique session key that can be used to digitally sign the credentials and | |
50 | * verifier or optionally to provide data integrity and/or privacy. | |
51 | * | |
52 | * Once the context is complete, the client and server enter a normal data | |
53 | * exchange phase - beginning with the NFS request that prompted the context | |
54 | * creation. During this phase, the client's RPC header contains an RPCSEC_GSS | |
55 | * credential and verifier, and the server returns a verifier as well. | |
56 | * For simple authentication, the verifier contains a signed checksum of the | |
57 | * RPC header, including the credential. The server's verifier has a signed | |
58 | * checksum of the current sequence number. | |
59 | * | |
60 | * Each client call contains a sequence number that nominally increases by one | |
61 | * on each request. The sequence number is intended to prevent replay attacks. | |
62 | * Since the protocol can be used over UDP, there is some allowance for | |
63 | * out-of-sequence requests, so the server checks whether the sequence numbers | |
64 | * are within a sequence "window". If a sequence number is outside the lower | |
65 | * bound of the window, the server silently drops the request. This has some | |
66 | * implications for retransmission. If a request needs to be retransmitted, the | |
67 | * client must bump the sequence number even if the request XID is unchanged. | |
68 | * | |
69 | * When the NFS mount is unmounted, the client sends a "destroy" credential | |
70 | * to delete the server's context for each user of the mount. Since it's | |
71 | * possible for the client to crash or disconnect without sending the destroy | |
72 | * message, the server has a thread that reaps contexts that have been idle | |
73 | * too long. | |
74 | */ | |
75 | ||
76 | #include <stdint.h> | |
77 | #include <sys/param.h> | |
78 | #include <sys/systm.h> | |
79 | #include <sys/proc.h> | |
80 | #include <sys/kauth.h> | |
81 | #include <sys/kernel.h> | |
82 | #include <sys/mount_internal.h> | |
83 | #include <sys/vnode.h> | |
84 | #include <sys/ubc.h> | |
85 | #include <sys/malloc.h> | |
86 | #include <sys/kpi_mbuf.h> | |
87 | ||
88 | #include <kern/host.h> | |
89 | #include <libkern/libkern.h> | |
90 | ||
91 | #include <mach/task.h> | |
92 | #include <mach/task_special_ports.h> | |
93 | #include <mach/host_priv.h> | |
94 | #include <mach/thread_act.h> | |
95 | #include <mach/mig_errors.h> | |
96 | #include <mach/vm_map.h> | |
97 | #include <vm/vm_map.h> | |
98 | #include <vm/vm_kern.h> | |
99 | #include <gssd/gssd_mach.h> | |
100 | ||
101 | #include <nfs/rpcv2.h> | |
102 | #include <nfs/nfsproto.h> | |
103 | #include <nfs/nfs.h> | |
104 | #include <nfs/nfsnode.h> | |
105 | #include <nfs/nfs_gss.h> | |
106 | #include <nfs/nfsmount.h> | |
107 | #include <nfs/xdr_subs.h> | |
108 | #include <nfs/nfsm_subs.h> | |
109 | #include <nfs/nfs_gss.h> | |
110 | ||
111 | #define NFS_GSS_MACH_MAX_RETRIES 3 | |
112 | ||
113 | #if NFSSERVER | |
114 | u_long nfs_gss_svc_ctx_hash; | |
115 | struct nfs_gss_svc_ctx_hashhead *nfs_gss_svc_ctx_hashtbl; | |
116 | lck_mtx_t *nfs_gss_svc_ctx_mutex; | |
117 | lck_grp_t *nfs_gss_svc_grp; | |
118 | #endif /* NFSSERVER */ | |
119 | ||
120 | #if NFSCLIENT | |
121 | lck_grp_t *nfs_gss_clnt_grp; | |
122 | #endif /* NFSCLIENT */ | |
123 | ||
124 | /* | |
125 | * These octet strings are used to encode/decode ASN.1 tokens | |
126 | * in the RPCSEC_GSS verifiers. | |
127 | */ | |
128 | static u_char krb5_tokhead[] = { 0x60, 0x23 }; | |
129 | static u_char krb5_mech[] = { 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 }; | |
130 | static u_char krb5_mic[] = { 0x01, 0x01, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff }; | |
131 | static u_char krb5_wrap[] = { 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff }; | |
132 | static u_char iv0[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // DES MAC Initialization Vector | |
133 | ||
134 | /* | |
135 | * The size of the Kerberos v5 ASN.1 token | |
136 | * in the verifier. | |
137 | * | |
138 | * Note that the second octet of the krb5_tokhead (0x23) is a | |
139 | * DER-encoded size field that has variable length. If the size | |
140 | * is 128 bytes or greater, then it uses two bytes, three bytes | |
141 | * if 65536 or greater, and so on. Since the MIC tokens are | |
142 | * separate from the data, the size is always the same: 35 bytes (0x23). | |
143 | * However, the wrap token is different. Its size field includes the | |
144 | * size of the token + the encrypted data that follows. So the size | |
145 | * field may be two, three or four bytes. | |
146 | */ | |
147 | #define KRB5_SZ_TOKHEAD sizeof(krb5_tokhead) | |
148 | #define KRB5_SZ_MECH sizeof(krb5_mech) | |
149 | #define KRB5_SZ_ALG sizeof(krb5_mic) // 8 - same as krb5_wrap | |
150 | #define KRB5_SZ_SEQ 8 | |
151 | #define KRB5_SZ_CKSUM 8 | |
152 | #define KRB5_SZ_EXTRA 3 // a wrap token may be longer by up to this many octets | |
153 | #define KRB5_SZ_TOKEN (KRB5_SZ_TOKHEAD + KRB5_SZ_MECH + KRB5_SZ_ALG + KRB5_SZ_SEQ + KRB5_SZ_CKSUM) | |
154 | #define KRB5_SZ_TOKMAX (KRB5_SZ_TOKEN + KRB5_SZ_EXTRA) | |
155 | ||
156 | #if NFSCLIENT | |
157 | static int nfs_gss_clnt_ctx_find(struct nfsreq *); | |
158 | static int nfs_gss_clnt_ctx_failover(struct nfsreq *); | |
159 | static int nfs_gss_clnt_ctx_init(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
160 | static int nfs_gss_clnt_ctx_callserver(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
161 | static char *nfs_gss_clnt_svcname(struct nfsmount *); | |
162 | static int nfs_gss_clnt_gssd_upcall(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
163 | static void nfs_gss_clnt_ctx_remove(struct nfsmount *, struct nfs_gss_clnt_ctx *); | |
164 | static int nfs_gss_clnt_ctx_delay(struct nfsreq *, int *); | |
165 | #endif /* NFSCLIENT */ | |
166 | ||
167 | #if NFSSERVER | |
168 | static struct nfs_gss_svc_ctx *nfs_gss_svc_ctx_find(uint32_t); | |
169 | static void nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *); | |
170 | static void nfs_gss_svc_ctx_timer(void *, void *); | |
171 | static int nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *); | |
172 | static int nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *, uint32_t); | |
173 | #endif /* NFSSERVER */ | |
174 | ||
175 | static void task_release_special_port(mach_port_t); | |
176 | static mach_port_t task_copy_special_port(mach_port_t); | |
177 | static void nfs_gss_mach_alloc_buffer(u_char *, uint32_t, vm_map_copy_t *); | |
178 | static int nfs_gss_mach_vmcopyout(vm_map_copy_t, uint32_t, u_char *); | |
179 | static int nfs_gss_token_get(des_key_schedule, u_char *, u_char *, int, uint32_t *, u_char *); | |
180 | static int nfs_gss_token_put(des_key_schedule, u_char *, u_char *, int, int, u_char *); | |
181 | static int nfs_gss_der_length_size(int); | |
182 | static void nfs_gss_der_length_put(u_char **, int); | |
183 | static int nfs_gss_der_length_get(u_char **); | |
184 | static int nfs_gss_mchain_length(mbuf_t); | |
185 | static int nfs_gss_append_chain(struct nfsm_chain *, mbuf_t); | |
186 | static void nfs_gss_nfsm_chain(struct nfsm_chain *, mbuf_t); | |
187 | static void nfs_gss_cksum_mchain(des_key_schedule, mbuf_t, u_char *, int, int, u_char *); | |
188 | static void nfs_gss_cksum_chain(des_key_schedule, struct nfsm_chain *, u_char *, int, int, u_char *); | |
189 | static void nfs_gss_cksum_rep(des_key_schedule, uint32_t, u_char *); | |
190 | static void nfs_gss_encrypt_mchain(u_char *, mbuf_t, int, int, int); | |
191 | static void nfs_gss_encrypt_chain(u_char *, struct nfsm_chain *, int, int, int); | |
192 | static DES_LONG des_cbc_cksum(des_cblock *, des_cblock *, long, des_key_schedule, des_cblock *); | |
193 | static void des_cbc_encrypt(des_cblock *, des_cblock *, long, des_key_schedule, | |
194 | des_cblock *, des_cblock *, int); | |
195 | ||
196 | #if NFSSERVER | |
197 | thread_call_t nfs_gss_svc_ctx_timer_call; | |
198 | int nfs_gss_timer_on = 0; | |
199 | uint32_t nfs_gss_ctx_count = 0; | |
200 | const uint32_t nfs_gss_ctx_max = GSS_SVC_MAXCONTEXTS; | |
201 | #endif /* NFSSERVER */ | |
202 | ||
203 | /* | |
204 | * Initialization when NFS starts | |
205 | */ | |
206 | void | |
207 | nfs_gss_init(void) | |
208 | { | |
209 | #if NFSCLIENT | |
210 | nfs_gss_clnt_grp = lck_grp_alloc_init("rpcsec_gss_clnt", LCK_GRP_ATTR_NULL); | |
211 | #endif /* NFSCLIENT */ | |
212 | ||
213 | #if NFSSERVER | |
214 | nfs_gss_svc_grp = lck_grp_alloc_init("rpcsec_gss_svc", LCK_GRP_ATTR_NULL); | |
215 | ||
216 | nfs_gss_svc_ctx_hashtbl = hashinit(SVC_CTX_HASHSZ, M_TEMP, &nfs_gss_svc_ctx_hash); | |
217 | nfs_gss_svc_ctx_mutex = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL); | |
218 | ||
219 | nfs_gss_svc_ctx_timer_call = thread_call_allocate(nfs_gss_svc_ctx_timer, NULL); | |
220 | #endif /* NFSSERVER */ | |
221 | } | |
222 | ||
223 | #if NFSCLIENT | |
224 | ||
225 | /* | |
226 | * Find the context for a particular user. | |
227 | * | |
228 | * If the context doesn't already exist | |
229 | * then create a new context for this user. | |
230 | * | |
231 | * Note that the code allows superuser (uid == 0) | |
232 | * to adopt the context of another user. | |
233 | */ | |
234 | static int | |
235 | nfs_gss_clnt_ctx_find(struct nfsreq *req) | |
236 | { | |
237 | struct nfsmount *nmp = req->r_nmp; | |
238 | struct nfs_gss_clnt_ctx *cp; | |
239 | uid_t uid = kauth_cred_getuid(req->r_cred); | |
240 | int error = 0; | |
241 | int retrycnt = 0; | |
242 | ||
243 | retry: | |
244 | lck_mtx_lock(&nmp->nm_lock); | |
245 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
246 | if (cp->gss_clnt_uid == uid) { | |
247 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) | |
248 | continue; | |
249 | lck_mtx_unlock(&nmp->nm_lock); | |
250 | nfs_gss_clnt_ctx_ref(req, cp); | |
251 | return (0); | |
252 | } | |
253 | } | |
254 | ||
255 | if (uid == 0) { | |
256 | /* | |
257 | * If superuser is trying to get access, then co-opt | |
258 | * the first valid context in the list. | |
259 | * XXX Ultimately, we need to allow superuser to | |
260 | * go ahead and attempt to set up its own context | |
261 | * in case one is set up for it. | |
262 | */ | |
263 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
264 | if (!(cp->gss_clnt_flags & GSS_CTX_INVAL)) { | |
265 | lck_mtx_unlock(&nmp->nm_lock); | |
266 | nfs_gss_clnt_ctx_ref(req, cp); | |
267 | return (0); | |
268 | } | |
269 | } | |
270 | } | |
271 | ||
272 | /* | |
273 | * Not found - create a new context | |
274 | */ | |
275 | ||
276 | /* | |
277 | * If the thread is async, then it cannot get | |
278 | * kerberos creds and set up a proper context. | |
279 | * If no sec= mount option is given, attempt | |
280 | * to failover to sec=sys. | |
281 | */ | |
282 | if (req->r_thread == NULL) { | |
283 | if ((nmp->nm_flag & NFSMNT_SECGIVEN) == 0) { | |
284 | error = nfs_gss_clnt_ctx_failover(req); | |
285 | } else { | |
286 | printf("nfs_gss_clnt_ctx_find: no context for async\n"); | |
287 | error = EAUTH; | |
288 | } | |
289 | ||
290 | lck_mtx_unlock(&nmp->nm_lock); | |
291 | return (error); | |
292 | } | |
293 | ||
294 | ||
295 | MALLOC(cp, struct nfs_gss_clnt_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO); | |
296 | if (cp == NULL) { | |
297 | lck_mtx_unlock(&nmp->nm_lock); | |
298 | return (ENOMEM); | |
299 | } | |
300 | ||
301 | cp->gss_clnt_uid = uid; | |
302 | cp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL); | |
303 | cp->gss_clnt_thread = current_thread(); | |
304 | nfs_gss_clnt_ctx_ref(req, cp); | |
305 | TAILQ_INSERT_TAIL(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
306 | lck_mtx_unlock(&nmp->nm_lock); | |
307 | ||
308 | error = nfs_gss_clnt_ctx_init(req, cp); | |
309 | if (error) | |
310 | nfs_gss_clnt_ctx_unref(req); | |
311 | ||
312 | if (error == ENEEDAUTH) { | |
313 | error = nfs_gss_clnt_ctx_delay(req, &retrycnt); | |
314 | if (!error) | |
315 | goto retry; | |
316 | } | |
317 | ||
318 | /* | |
319 | * If we failed to set up a Kerberos context for this | |
320 | * user and no sec= mount option was given then set | |
321 | * up a dummy context that allows this user to attempt | |
322 | * sec=sys calls. | |
323 | */ | |
324 | if (error && (nmp->nm_flag & NFSMNT_SECGIVEN) == 0) { | |
325 | lck_mtx_lock(&nmp->nm_lock); | |
326 | error = nfs_gss_clnt_ctx_failover(req); | |
327 | lck_mtx_unlock(&nmp->nm_lock); | |
328 | } | |
329 | ||
330 | return (error); | |
331 | } | |
332 | ||
333 | /* | |
334 | * Set up a dummy context to allow the use of sec=sys | |
335 | * for this user, if the server allows sec=sys. | |
336 | * The context is valid for GSS_CLNT_SYS_VALID seconds, | |
337 | * so that the user will periodically attempt to fail back | |
338 | * and get a real credential. | |
339 | * | |
340 | * Assumes context list (nm_lock) is locked | |
341 | */ | |
342 | static int | |
343 | nfs_gss_clnt_ctx_failover(struct nfsreq *req) | |
344 | { | |
345 | struct nfsmount *nmp = req->r_nmp; | |
346 | struct nfs_gss_clnt_ctx *cp; | |
347 | uid_t uid = kauth_cred_getuid(req->r_cred); | |
348 | struct timeval now; | |
349 | ||
350 | MALLOC(cp, struct nfs_gss_clnt_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO); | |
351 | if (cp == NULL) | |
352 | return (ENOMEM); | |
353 | ||
354 | cp->gss_clnt_service = RPCSEC_GSS_SVC_SYS; | |
355 | cp->gss_clnt_uid = uid; | |
356 | cp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL); | |
357 | microuptime(&now); | |
358 | cp->gss_clnt_ctime = now.tv_sec; // time stamp | |
359 | nfs_gss_clnt_ctx_ref(req, cp); | |
360 | TAILQ_INSERT_TAIL(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
361 | ||
362 | return (0); | |
363 | } | |
364 | ||
365 | /* | |
366 | * Inserts an RPCSEC_GSS credential into an RPC header. | |
367 | * After the credential is inserted, the code continues | |
368 | * to build the verifier which contains a signed checksum | |
369 | * of the RPC header. | |
370 | */ | |
371 | int | |
372 | nfs_gss_clnt_cred_put(struct nfsreq *req, struct nfsm_chain *nmc, mbuf_t args) | |
373 | { | |
374 | struct nfsmount *nmp = req->r_nmp; | |
375 | struct nfs_gss_clnt_ctx *cp; | |
376 | uint32_t seqnum = 0; | |
377 | int error = 0; | |
378 | int slpflag = 0; | |
379 | int start, len, offset = 0; | |
380 | int pad, toklen; | |
381 | struct nfsm_chain nmc_tmp; | |
382 | struct gss_seq *gsp; | |
383 | u_char tokbuf[KRB5_SZ_TOKMAX]; | |
384 | u_char cksum[8]; | |
385 | struct timeval now; | |
386 | ||
387 | retry: | |
388 | if (req->r_gss_ctx == NULL) { | |
389 | /* | |
390 | * Find the context for this user. | |
391 | * If no context is found, one will | |
392 | * be created. | |
393 | */ | |
394 | error = nfs_gss_clnt_ctx_find(req); | |
395 | if (error) | |
396 | return (error); | |
397 | } | |
398 | cp = req->r_gss_ctx; | |
399 | ||
400 | /* | |
401 | * If it's a dummy context for a user that's using | |
402 | * a fallback to sec=sys, then just return an error | |
403 | * so rpchead can encode an RPCAUTH_UNIX cred. | |
404 | */ | |
405 | if (cp->gss_clnt_service == RPCSEC_GSS_SVC_SYS) { | |
406 | /* | |
407 | * The dummy context is valid for just | |
408 | * GSS_CLNT_SYS_VALID seconds. If the context | |
409 | * is older than this, mark it invalid and try | |
410 | * again to get a real one. | |
411 | */ | |
412 | lck_mtx_lock(cp->gss_clnt_mtx); | |
413 | microuptime(&now); | |
414 | if (now.tv_sec > cp->gss_clnt_ctime + GSS_CLNT_SYS_VALID) { | |
415 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
416 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
417 | nfs_gss_clnt_ctx_unref(req); | |
418 | goto retry; | |
419 | } | |
420 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
421 | return (ENEEDAUTH); | |
422 | } | |
423 | ||
424 | /* | |
425 | * If the context thread isn't null, then the context isn't | |
426 | * yet complete and is for the exclusive use of the thread | |
427 | * doing the context setup. Wait until the context thread | |
428 | * is null. | |
429 | */ | |
430 | lck_mtx_lock(cp->gss_clnt_mtx); | |
431 | if (cp->gss_clnt_thread && cp->gss_clnt_thread != current_thread()) { | |
432 | cp->gss_clnt_flags |= GSS_NEEDCTX; | |
433 | slpflag = (PZERO-1) | PDROP | (((nmp->nm_flag & NFSMNT_INT) && req->r_thread) ? PCATCH : 0); | |
434 | msleep(cp, cp->gss_clnt_mtx, slpflag, "ctxwait", NULL); | |
435 | if ((error = nfs_sigintr(nmp, req, req->r_thread, 0))) | |
436 | return (error); | |
437 | nfs_gss_clnt_ctx_unref(req); | |
438 | goto retry; | |
439 | } | |
440 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
441 | ||
442 | if (cp->gss_clnt_flags & GSS_CTX_COMPLETE) { | |
443 | /* | |
444 | * Get a sequence number for this request. | |
445 | * Check whether the oldest request in the window is complete. | |
446 | * If it's still pending, then wait until it's done before | |
447 | * we allocate a new sequence number and allow this request | |
448 | * to proceed. | |
449 | */ | |
450 | lck_mtx_lock(cp->gss_clnt_mtx); | |
451 | while (win_getbit(cp->gss_clnt_seqbits, | |
452 | ((cp->gss_clnt_seqnum - cp->gss_clnt_seqwin) + 1) % cp->gss_clnt_seqwin)) { | |
453 | cp->gss_clnt_flags |= GSS_NEEDSEQ; | |
454 | slpflag = (PZERO-1) | (((nmp->nm_flag & NFSMNT_INT) && req->r_thread) ? PCATCH : 0); | |
455 | msleep(cp, cp->gss_clnt_mtx, slpflag, "seqwin", NULL); | |
456 | if ((error = nfs_sigintr(nmp, req, req->r_thread, 0))) { | |
457 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
458 | return (error); | |
459 | } | |
460 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) { | |
461 | /* Renewed while while we were waiting */ | |
462 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
463 | nfs_gss_clnt_ctx_unref(req); | |
464 | goto retry; | |
465 | } | |
466 | } | |
467 | seqnum = ++cp->gss_clnt_seqnum; | |
468 | win_setbit(cp->gss_clnt_seqbits, seqnum % cp->gss_clnt_seqwin); | |
469 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
470 | ||
471 | MALLOC(gsp, struct gss_seq *, sizeof(*gsp), M_TEMP, M_WAITOK|M_ZERO); | |
472 | if (gsp == NULL) | |
473 | return (ENOMEM); | |
474 | gsp->gss_seqnum = seqnum; | |
475 | SLIST_INSERT_HEAD(&req->r_gss_seqlist, gsp, gss_seqnext); | |
476 | } | |
477 | ||
478 | /* Insert the credential */ | |
479 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); | |
480 | nfsm_chain_add_32(error, nmc, 5 * NFSX_UNSIGNED + cp->gss_clnt_handle_len); | |
481 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS_VERS_1); | |
482 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_proc); | |
483 | nfsm_chain_add_32(error, nmc, seqnum); | |
484 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_service); | |
485 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_handle_len); | |
486 | nfsm_chain_add_opaque(error, nmc, cp->gss_clnt_handle, cp->gss_clnt_handle_len); | |
487 | ||
488 | /* | |
489 | * Now add the verifier | |
490 | */ | |
491 | if (cp->gss_clnt_proc == RPCSEC_GSS_INIT || | |
492 | cp->gss_clnt_proc == RPCSEC_GSS_CONTINUE_INIT) { | |
493 | /* | |
494 | * If the context is still being created | |
495 | * then use a null verifier. | |
496 | */ | |
497 | nfsm_chain_add_32(error, nmc, RPCAUTH_NULL); // flavor | |
498 | nfsm_chain_add_32(error, nmc, 0); // length | |
499 | nfsm_chain_build_done(error, nmc); | |
500 | if (!error) | |
501 | nfs_gss_append_chain(nmc, args); | |
502 | return (error); | |
503 | } | |
504 | ||
505 | offset = nmp->nm_sotype == SOCK_STREAM ? NFSX_UNSIGNED : 0; // record mark | |
506 | nfsm_chain_build_done(error, nmc); | |
507 | nfs_gss_cksum_chain(cp->gss_clnt_sched, nmc, krb5_mic, offset, 0, cksum); | |
508 | ||
509 | toklen = nfs_gss_token_put(cp->gss_clnt_sched, krb5_mic, tokbuf, 1, 0, cksum); | |
510 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); // flavor | |
511 | nfsm_chain_add_32(error, nmc, toklen); // length | |
512 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
513 | nfsm_chain_build_done(error, nmc); | |
514 | if (error) | |
515 | return (error); | |
516 | ||
517 | /* | |
518 | * Now we may have to compute integrity or encrypt the call args | |
519 | * per RFC 2203 Section 5.3.2 | |
520 | */ | |
521 | switch (cp->gss_clnt_service) { | |
522 | case RPCSEC_GSS_SVC_NONE: | |
523 | nfs_gss_append_chain(nmc, args); | |
524 | break; | |
525 | case RPCSEC_GSS_SVC_INTEGRITY: | |
526 | len = nfs_gss_mchain_length(args); // Find args length | |
527 | req->r_gss_arglen = len; // Stash the args len | |
528 | len += NFSX_UNSIGNED; // Add seqnum length | |
529 | nfsm_chain_add_32(error, nmc, len); // and insert it | |
530 | start = nfsm_chain_offset(nmc); | |
531 | nfsm_chain_add_32(error, nmc, seqnum); // Insert seqnum | |
532 | req->r_gss_argoff = nfsm_chain_offset(nmc); // Offset to args | |
533 | nfsm_chain_build_done(error, nmc); | |
534 | if (error) | |
535 | return (error); | |
536 | nfs_gss_append_chain(nmc, args); // Append the args mbufs | |
537 | ||
538 | /* Now compute a checksum over the seqnum + args */ | |
539 | nfs_gss_cksum_chain(cp->gss_clnt_sched, nmc, krb5_mic, start, len, cksum); | |
540 | ||
541 | /* Insert it into a token and append to the request */ | |
542 | toklen = nfs_gss_token_put(cp->gss_clnt_sched, krb5_mic, tokbuf, 1, 0, cksum); | |
543 | nfsm_chain_finish_mbuf(error, nmc); // force checksum into new mbuf | |
544 | nfsm_chain_add_32(error, nmc, toklen); | |
545 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
546 | nfsm_chain_build_done(error, nmc); | |
547 | break; | |
548 | case RPCSEC_GSS_SVC_PRIVACY: | |
549 | /* Prepend a new mbuf with the confounder & sequence number */ | |
550 | nfsm_chain_build_alloc_init(error, &nmc_tmp, 3 * NFSX_UNSIGNED); | |
551 | nfsm_chain_add_32(error, &nmc_tmp, random()); // confounder bytes 1-4 | |
552 | nfsm_chain_add_32(error, &nmc_tmp, random()); // confounder bytes 4-8 | |
553 | nfsm_chain_add_32(error, &nmc_tmp, seqnum); | |
554 | nfsm_chain_build_done(error, &nmc_tmp); | |
555 | if (error) | |
556 | return (error); | |
557 | nfs_gss_append_chain(&nmc_tmp, args); // Append the args mbufs | |
558 | ||
559 | len = nfs_gss_mchain_length(args); // Find args length | |
560 | len += 3 * NFSX_UNSIGNED; // add confounder & seqnum | |
561 | req->r_gss_arglen = len; // Stash length | |
562 | ||
563 | /* | |
564 | * Append a pad trailer - per RFC 1964 section 1.2.2.3 | |
565 | * Since XDR data is always 32-bit aligned, it | |
566 | * needs to be padded either by 4 bytes or 8 bytes. | |
567 | */ | |
568 | nfsm_chain_finish_mbuf(error, &nmc_tmp); // force padding into new mbuf | |
569 | if (len % 8 > 0) { | |
570 | nfsm_chain_add_32(error, &nmc_tmp, 0x04040404); | |
571 | len += NFSX_UNSIGNED; | |
572 | } else { | |
573 | nfsm_chain_add_32(error, &nmc_tmp, 0x08080808); | |
574 | nfsm_chain_add_32(error, &nmc_tmp, 0x08080808); | |
575 | len += 2 * NFSX_UNSIGNED; | |
576 | } | |
577 | nfsm_chain_build_done(error, &nmc_tmp); | |
578 | ||
579 | /* Now compute a checksum over the confounder + seqnum + args */ | |
580 | nfs_gss_cksum_chain(cp->gss_clnt_sched, &nmc_tmp, krb5_wrap, 0, len, cksum); | |
581 | ||
582 | /* Insert it into a token */ | |
583 | toklen = nfs_gss_token_put(cp->gss_clnt_sched, krb5_wrap, tokbuf, 1, len, cksum); | |
584 | nfsm_chain_add_32(error, nmc, toklen + len); // token + args length | |
585 | nfsm_chain_add_opaque_nopad(error, nmc, tokbuf, toklen); | |
586 | req->r_gss_argoff = nfsm_chain_offset(nmc); // Stash offset | |
587 | nfsm_chain_build_done(error, nmc); | |
588 | if (error) | |
589 | return (error); | |
590 | nfs_gss_append_chain(nmc, nmc_tmp.nmc_mhead); // Append the args mbufs | |
591 | ||
592 | /* Finally, encrypt the args */ | |
593 | nfs_gss_encrypt_chain(cp->gss_clnt_skey, &nmc_tmp, 0, len, DES_ENCRYPT); | |
594 | ||
595 | /* Add null XDR pad if the ASN.1 token misaligned the data */ | |
596 | pad = nfsm_pad(toklen + len); | |
597 | if (pad > 0) { | |
598 | nfsm_chain_add_opaque_nopad(error, nmc, iv0, pad); | |
599 | nfsm_chain_build_done(error, nmc); | |
600 | } | |
601 | break; | |
602 | } | |
603 | ||
604 | return (error); | |
605 | } | |
606 | ||
607 | /* | |
608 | * When receiving a reply, the client checks the verifier | |
609 | * returned by the server. Check that the verifier is the | |
610 | * correct type, then extract the sequence number checksum | |
611 | * from the token in the credential and compare it with a | |
612 | * computed checksum of the sequence number in the request | |
613 | * that was sent. | |
614 | */ | |
615 | int | |
616 | nfs_gss_clnt_verf_get( | |
617 | struct nfsreq *req, | |
618 | struct nfsm_chain *nmc, | |
619 | uint32_t verftype, | |
620 | uint32_t verflen, | |
621 | uint32_t *accepted_statusp) | |
622 | { | |
623 | u_char tokbuf[KRB5_SZ_TOKMAX]; | |
624 | u_char cksum1[8], cksum2[8]; | |
625 | uint32_t seqnum = 0; | |
626 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
627 | struct nfsm_chain nmc_tmp; | |
628 | struct gss_seq *gsp; | |
629 | uint32_t reslen, start, cksumlen, toklen; | |
630 | int error = 0; | |
631 | ||
632 | reslen = cksumlen = 0; | |
633 | *accepted_statusp = 0; | |
634 | ||
635 | if (cp == NULL) | |
636 | return (EAUTH); | |
637 | /* | |
638 | * If it's not an RPCSEC_GSS verifier, then it has to | |
639 | * be a null verifier that resulted from either | |
640 | * a CONTINUE_NEEDED reply during context setup or | |
641 | * from the reply to an AUTH_UNIX call from a dummy | |
642 | * context that resulted from a fallback to sec=sys. | |
643 | */ | |
644 | if (verftype != RPCSEC_GSS) { | |
645 | if (verftype != RPCAUTH_NULL) | |
646 | return (EAUTH); | |
647 | if (cp->gss_clnt_flags & GSS_CTX_COMPLETE && | |
648 | cp->gss_clnt_service != RPCSEC_GSS_SVC_SYS) | |
649 | return (EAUTH); | |
650 | if (verflen > 0) | |
651 | nfsm_chain_adv(error, nmc, nfsm_rndup(verflen)); | |
652 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
653 | return (error); | |
654 | } | |
655 | ||
656 | if (verflen != KRB5_SZ_TOKEN) | |
657 | return (EAUTH); | |
658 | ||
659 | /* | |
660 | * If we received an RPCSEC_GSS verifier but the | |
661 | * context isn't yet complete, then it must be | |
662 | * the context complete message from the server. | |
663 | * The verifier will contain an encrypted checksum | |
664 | * of the window but we don't have the session key | |
665 | * yet so we can't decrypt it. Stash the verifier | |
666 | * and check it later in nfs_gss_clnt_ctx_init() when | |
667 | * the context is complete. | |
668 | */ | |
669 | if (!(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) { | |
670 | MALLOC(cp->gss_clnt_verf, u_char *, verflen, M_TEMP, M_WAITOK|M_ZERO); | |
671 | if (cp->gss_clnt_verf == NULL) | |
672 | return (ENOMEM); | |
673 | nfsm_chain_get_opaque(error, nmc, verflen, cp->gss_clnt_verf); | |
674 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
675 | return (error); | |
676 | } | |
677 | ||
678 | /* | |
679 | * Get the 8 octet sequence number | |
680 | * checksum out of the verifier token. | |
681 | */ | |
682 | nfsm_chain_get_opaque(error, nmc, verflen, tokbuf); | |
683 | if (error) | |
684 | goto nfsmout; | |
685 | error = nfs_gss_token_get(cp->gss_clnt_sched, krb5_mic, tokbuf, 0, NULL, cksum1); | |
686 | if (error) | |
687 | goto nfsmout; | |
688 | ||
689 | /* | |
690 | * Search the request sequence numbers for this reply, starting | |
691 | * with the most recent, looking for a checksum that matches | |
692 | * the one in the verifier returned by the server. | |
693 | */ | |
694 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
695 | nfs_gss_cksum_rep(cp->gss_clnt_sched, gsp->gss_seqnum, cksum2); | |
696 | if (bcmp(cksum1, cksum2, 8) == 0) | |
697 | break; | |
698 | } | |
699 | if (gsp == NULL) | |
700 | return (EAUTH); | |
701 | ||
702 | /* | |
703 | * Get the RPC accepted status | |
704 | */ | |
705 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
706 | if (*accepted_statusp != RPC_SUCCESS) | |
707 | return (0); | |
708 | ||
709 | /* | |
710 | * Now we may have to check integrity or decrypt the results | |
711 | * per RFC 2203 Section 5.3.2 | |
712 | */ | |
713 | switch (cp->gss_clnt_service) { | |
714 | case RPCSEC_GSS_SVC_NONE: | |
715 | /* nothing to do */ | |
716 | break; | |
717 | case RPCSEC_GSS_SVC_INTEGRITY: | |
718 | /* | |
719 | * Here's what we expect in the integrity results: | |
720 | * | |
721 | * - length of seq num + results (4 bytes) | |
722 | * - sequence number (4 bytes) | |
723 | * - results (variable bytes) | |
724 | * - length of checksum token (37) | |
725 | * - checksum of seqnum + results (37 bytes) | |
726 | */ | |
727 | nfsm_chain_get_32(error, nmc, reslen); // length of results | |
728 | if (reslen > NFS_MAXPACKET) { | |
729 | error = EBADRPC; | |
730 | goto nfsmout; | |
731 | } | |
732 | ||
733 | /* Compute a checksum over the sequence number + results */ | |
734 | start = nfsm_chain_offset(nmc); | |
735 | nfs_gss_cksum_chain(cp->gss_clnt_sched, nmc, krb5_mic, start, reslen, cksum1); | |
736 | ||
737 | /* | |
738 | * Get the sequence number prepended to the results | |
739 | * and compare it against the list in the request. | |
740 | */ | |
741 | nfsm_chain_get_32(error, nmc, seqnum); | |
742 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
743 | if (seqnum == gsp->gss_seqnum) | |
744 | break; | |
745 | } | |
746 | if (gsp == NULL) { | |
747 | error = EBADRPC; | |
748 | goto nfsmout; | |
749 | } | |
750 | ||
751 | /* | |
752 | * Advance to the end of the results and | |
753 | * fetch the checksum computed by the server. | |
754 | */ | |
755 | nmc_tmp = *nmc; | |
756 | reslen -= NFSX_UNSIGNED; // already skipped seqnum | |
757 | nfsm_chain_adv(error, &nmc_tmp, reslen); // skip over the results | |
758 | nfsm_chain_get_32(error, &nmc_tmp, cksumlen); // length of checksum | |
759 | if (cksumlen != KRB5_SZ_TOKEN) { | |
760 | error = EBADRPC; | |
761 | goto nfsmout; | |
762 | } | |
763 | nfsm_chain_get_opaque(error, &nmc_tmp, cksumlen, tokbuf); | |
764 | if (error) | |
765 | goto nfsmout; | |
766 | error = nfs_gss_token_get(cp->gss_clnt_sched, krb5_mic, tokbuf, 0, | |
767 | NULL, cksum2); | |
768 | if (error) | |
769 | goto nfsmout; | |
770 | ||
771 | /* Verify that the checksums are the same */ | |
772 | if (bcmp(cksum1, cksum2, 8) != 0) { | |
773 | error = EBADRPC; | |
774 | goto nfsmout; | |
775 | } | |
776 | break; | |
777 | case RPCSEC_GSS_SVC_PRIVACY: | |
778 | /* | |
779 | * Here's what we expect in the privacy results: | |
780 | * | |
781 | * - length of confounder + seq num + token + results | |
782 | * - wrap token (37-40 bytes) | |
783 | * - confounder (8 bytes) | |
784 | * - sequence number (4 bytes) | |
785 | * - results (encrypted) | |
786 | */ | |
787 | nfsm_chain_get_32(error, nmc, reslen); // length of results | |
788 | if (reslen > NFS_MAXPACKET) { | |
789 | error = EBADRPC; | |
790 | goto nfsmout; | |
791 | } | |
792 | ||
793 | /* Get the token that prepends the encrypted results */ | |
794 | nfsm_chain_get_opaque(error, nmc, KRB5_SZ_TOKMAX, tokbuf); | |
795 | if (error) | |
796 | goto nfsmout; | |
797 | error = nfs_gss_token_get(cp->gss_clnt_sched, krb5_wrap, tokbuf, 0, | |
798 | &toklen, cksum1); | |
799 | if (error) | |
800 | goto nfsmout; | |
801 | nfsm_chain_reverse(nmc, nfsm_pad(toklen)); | |
802 | reslen -= toklen; // size of confounder + seqnum + results | |
803 | ||
804 | /* decrypt the confounder + sequence number + results */ | |
805 | start = nfsm_chain_offset(nmc); | |
806 | nfs_gss_encrypt_chain(cp->gss_clnt_skey, nmc, start, reslen, DES_DECRYPT); | |
807 | ||
808 | /* Compute a checksum over the confounder + sequence number + results */ | |
809 | nfs_gss_cksum_chain(cp->gss_clnt_sched, nmc, krb5_wrap, start, reslen, cksum2); | |
810 | ||
811 | /* Verify that the checksums are the same */ | |
812 | if (bcmp(cksum1, cksum2, 8) != 0) { | |
813 | error = EBADRPC; | |
814 | goto nfsmout; | |
815 | } | |
816 | ||
817 | nfsm_chain_adv(error, nmc, 8); // skip over the confounder | |
818 | ||
819 | /* | |
820 | * Get the sequence number prepended to the results | |
821 | * and compare it against the list in the request. | |
822 | */ | |
823 | nfsm_chain_get_32(error, nmc, seqnum); | |
824 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
825 | if (seqnum == gsp->gss_seqnum) | |
826 | break; | |
827 | } | |
828 | if (gsp == NULL) { | |
829 | error = EBADRPC; | |
830 | goto nfsmout; | |
831 | } | |
832 | ||
833 | break; | |
834 | } | |
835 | nfsmout: | |
836 | return (error); | |
837 | } | |
838 | ||
839 | /* | |
840 | * An RPCSEC_GSS request with no integrity or privacy consists | |
841 | * of just the header mbufs followed by the arg mbufs. | |
842 | * | |
843 | * However, integrity or privacy both trailer mbufs to the args, | |
844 | * which means we have to do some work to restore the arg mbuf | |
845 | * chain to its previous state in case we need to retransmit. | |
846 | * | |
847 | * The location and length of the args is marked by two fields | |
848 | * in the request structure: r_gss_argoff and r_gss_arglen, | |
849 | * which are stashed when the NFS request is built. | |
850 | */ | |
851 | int | |
852 | nfs_gss_clnt_args_restore(struct nfsreq *req) | |
853 | { | |
854 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
855 | struct nfsm_chain mchain, *nmc = &mchain; | |
856 | int len, error = 0; | |
857 | ||
858 | if (cp == NULL) | |
859 | return (EAUTH); | |
860 | ||
861 | if ((cp->gss_clnt_flags & GSS_CTX_COMPLETE) == 0) | |
862 | return (ENEEDAUTH); | |
863 | ||
864 | nfsm_chain_dissect_init(error, nmc, req->r_mhead); // start at RPC header | |
865 | nfsm_chain_adv(error, nmc, req->r_gss_argoff); // advance to args | |
866 | if (error) | |
867 | return (error); | |
868 | ||
869 | switch (cp->gss_clnt_service) { | |
870 | case RPCSEC_GSS_SVC_NONE: | |
871 | /* nothing to do */ | |
872 | break; | |
873 | case RPCSEC_GSS_SVC_INTEGRITY: | |
874 | /* | |
875 | * All we have to do here is remove the appended checksum mbufs. | |
876 | * We know that the checksum starts in a new mbuf beyond the end | |
877 | * of the args. | |
878 | */ | |
879 | nfsm_chain_adv(error, nmc, req->r_gss_arglen); // adv to last args mbuf | |
880 | if (error) | |
881 | return (error); | |
882 | ||
883 | mbuf_freem(mbuf_next(nmc->nmc_mcur)); // free the cksum mbuf | |
884 | error = mbuf_setnext(nmc->nmc_mcur, NULL); | |
885 | break; | |
886 | case RPCSEC_GSS_SVC_PRIVACY: | |
887 | /* | |
888 | * The args are encrypted along with prepended confounders and seqnum. | |
889 | * First we decrypt, the confounder, seqnum and args then skip to the | |
890 | * final mbuf of the args. | |
891 | * The arglen includes 8 bytes of confounder and 4 bytes of seqnum. | |
892 | * Finally, we remove between 4 and 8 bytes of encryption padding | |
893 | * as well as any alignment padding in the trailing mbuf. | |
894 | */ | |
895 | len = req->r_gss_arglen; | |
896 | len += len % 8 > 0 ? 4 : 8; // add DES padding length | |
897 | nfs_gss_encrypt_chain(cp->gss_clnt_skey, nmc, | |
898 | req->r_gss_argoff, len, DES_DECRYPT); | |
899 | nfsm_chain_adv(error, nmc, req->r_gss_arglen); | |
900 | if (error) | |
901 | return (error); | |
902 | mbuf_freem(mbuf_next(nmc->nmc_mcur)); // free the pad mbuf | |
903 | error = mbuf_setnext(nmc->nmc_mcur, NULL); | |
904 | break; | |
905 | } | |
906 | ||
907 | return (error); | |
908 | } | |
909 | ||
910 | /* | |
911 | * This function sets up a new context on the client. | |
912 | * Context setup alternates upcalls to the gssd with NFS nullproc calls | |
913 | * to the server. Each of these calls exchanges an opaque token, obtained | |
914 | * via the gssd's calls into the GSS-API on either the client or the server. | |
915 | * This cycle of calls ends when the client's upcall to the gssd and the | |
916 | * server's response both return GSS_S_COMPLETE. At this point, the client | |
917 | * should have its session key and a handle that it can use to refer to its | |
918 | * new context on the server. | |
919 | */ | |
920 | static int | |
921 | nfs_gss_clnt_ctx_init(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
922 | { | |
923 | struct nfsmount *nmp = req->r_nmp; | |
924 | int client_complete = 0; | |
925 | int server_complete = 0; | |
926 | u_char cksum1[8], cksum2[8]; | |
927 | int error = 0; | |
928 | struct timeval now; | |
929 | ||
930 | /* Initialize a new client context */ | |
931 | ||
932 | cp->gss_clnt_svcname = nfs_gss_clnt_svcname(nmp); | |
933 | if (cp->gss_clnt_svcname == NULL) { | |
934 | error = EAUTH; | |
935 | goto nfsmout; | |
936 | } | |
937 | cp->gss_clnt_proc = RPCSEC_GSS_INIT; | |
938 | ||
939 | cp->gss_clnt_service = | |
940 | nmp->nm_auth == RPCAUTH_KRB5 ? RPCSEC_GSS_SVC_NONE : | |
941 | nmp->nm_auth == RPCAUTH_KRB5I ? RPCSEC_GSS_SVC_INTEGRITY : | |
942 | nmp->nm_auth == RPCAUTH_KRB5P ? RPCSEC_GSS_SVC_PRIVACY : 0; | |
943 | ||
944 | /* | |
945 | * Now loop around alternating gss_init_sec_context and | |
946 | * gss_accept_sec_context upcalls to the gssd on the client | |
947 | * and server side until the context is complete - or fails. | |
948 | */ | |
949 | for (;;) { | |
950 | ||
951 | /* Upcall to the gss_init_sec_context in the gssd */ | |
952 | error = nfs_gss_clnt_gssd_upcall(req, cp); | |
953 | if (error) | |
954 | goto nfsmout; | |
955 | ||
956 | if (cp->gss_clnt_major == GSS_S_COMPLETE) { | |
957 | client_complete = 1; | |
958 | if (server_complete) | |
959 | break; | |
960 | } else if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
961 | error = EAUTH; | |
962 | goto nfsmout; | |
963 | } | |
964 | ||
965 | /* | |
966 | * Pass the token to the server. | |
967 | */ | |
968 | error = nfs_gss_clnt_ctx_callserver(req, cp); | |
969 | if (error) | |
970 | goto nfsmout; | |
971 | ||
972 | if (cp->gss_clnt_major == GSS_S_COMPLETE) { | |
973 | server_complete = 1; | |
974 | if (client_complete) | |
975 | break; | |
976 | } else if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
977 | error = EAUTH; | |
978 | goto nfsmout; | |
979 | } | |
980 | ||
981 | cp->gss_clnt_proc = RPCSEC_GSS_CONTINUE_INIT; | |
982 | } | |
983 | ||
984 | /* | |
985 | * The context is apparently established successfully | |
986 | */ | |
987 | cp->gss_clnt_flags |= GSS_CTX_COMPLETE; | |
988 | cp->gss_clnt_proc = RPCSEC_GSS_DATA; | |
989 | microuptime(&now); | |
990 | cp->gss_clnt_ctime = now.tv_sec; // time stamp | |
991 | ||
992 | /* | |
993 | * Construct a key schedule from our shiny new session key | |
994 | */ | |
995 | error = des_key_sched((des_cblock *) cp->gss_clnt_skey, cp->gss_clnt_sched); | |
996 | if (error) { | |
997 | error = EAUTH; | |
998 | goto nfsmout; | |
999 | } | |
1000 | ||
1001 | /* | |
1002 | * Compute checksum of the server's window | |
1003 | */ | |
1004 | nfs_gss_cksum_rep(cp->gss_clnt_sched, cp->gss_clnt_seqwin, cksum1); | |
1005 | ||
1006 | /* | |
1007 | * and see if it matches the one in the | |
1008 | * verifier the server returned. | |
1009 | */ | |
1010 | error = nfs_gss_token_get(cp->gss_clnt_sched, krb5_mic, cp->gss_clnt_verf, 0, | |
1011 | NULL, cksum2); | |
1012 | FREE(cp->gss_clnt_verf, M_TEMP); | |
1013 | cp->gss_clnt_verf = NULL; | |
1014 | ||
1015 | if (error || bcmp(cksum1, cksum2, 8) != 0) { | |
1016 | error = EAUTH; | |
1017 | goto nfsmout; | |
1018 | } | |
1019 | ||
1020 | /* | |
1021 | * Set an initial sequence number somewhat randomized. | |
1022 | * Start small so we don't overflow GSS_MAXSEQ too quickly. | |
1023 | * Add the size of the sequence window so seqbits arithmetic | |
1024 | * doesn't go negative. | |
1025 | */ | |
1026 | cp->gss_clnt_seqnum = (random() & 0xffff) + cp->gss_clnt_seqwin; | |
1027 | ||
1028 | /* | |
1029 | * Allocate a bitmap to keep track of which requests | |
1030 | * are pending within the sequence number window. | |
1031 | */ | |
1032 | MALLOC(cp->gss_clnt_seqbits, uint32_t *, | |
1033 | nfsm_rndup((cp->gss_clnt_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO); | |
1034 | if (cp->gss_clnt_seqbits == NULL) | |
1035 | error = EAUTH; | |
1036 | nfsmout: | |
1037 | /* | |
1038 | * If there's an error, just mark it as invalid. | |
1039 | * It will be removed when the reference count | |
1040 | * drops to zero. | |
1041 | */ | |
1042 | if (error) | |
1043 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
1044 | ||
1045 | /* | |
1046 | * Wake any threads waiting to use the context | |
1047 | */ | |
1048 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1049 | cp->gss_clnt_thread = NULL; | |
1050 | if (cp->gss_clnt_flags & GSS_NEEDCTX) { | |
1051 | cp->gss_clnt_flags &= ~GSS_NEEDCTX; | |
1052 | wakeup(cp); | |
1053 | } | |
1054 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1055 | ||
1056 | return (error); | |
1057 | } | |
1058 | ||
1059 | /* | |
1060 | * Call the NFS server using a null procedure for context setup. | |
1061 | * Even though it's a null procedure and nominally has no arguments | |
1062 | * RFC 2203 requires that the GSS-API token be passed as an argument | |
1063 | * and received as a reply. | |
1064 | */ | |
1065 | static int | |
1066 | nfs_gss_clnt_ctx_callserver(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1067 | { | |
1068 | struct nfsmount *nmp = req->r_nmp; | |
1069 | struct nfsm_chain nmreq, nmrep; | |
1070 | int error = 0, status; | |
1071 | u_int64_t xid; | |
1072 | int sz; | |
1073 | ||
1074 | nfsm_chain_null(&nmreq); | |
1075 | nfsm_chain_null(&nmrep); | |
1076 | sz = NFSX_UNSIGNED + nfsm_rndup(cp->gss_clnt_tokenlen); | |
1077 | nfsm_chain_build_alloc_init(error, &nmreq, sz); | |
1078 | nfsm_chain_add_32(error, &nmreq, cp->gss_clnt_tokenlen); | |
1079 | nfsm_chain_add_opaque(error, &nmreq, cp->gss_clnt_token, cp->gss_clnt_tokenlen); | |
1080 | nfsm_chain_build_done(error, &nmreq); | |
1081 | if (error) | |
1082 | goto nfsmout; | |
1083 | ||
1084 | /* Call the server */ | |
1085 | error = nfs_request2(NULL, nmp->nm_mountp, &nmreq, NFSPROC_NULL, | |
1086 | req->r_thread, req->r_cred, 0, &nmrep, &xid, &status); | |
1087 | if (cp->gss_clnt_token != NULL) { | |
1088 | FREE(cp->gss_clnt_token, M_TEMP); | |
1089 | cp->gss_clnt_token = NULL; | |
1090 | } | |
1091 | if (!error) | |
1092 | error = status; | |
1093 | if (error) | |
1094 | goto nfsmout; | |
1095 | ||
1096 | /* Get the server's reply */ | |
1097 | ||
1098 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_handle_len); | |
1099 | if (cp->gss_clnt_handle != NULL) | |
1100 | FREE(cp->gss_clnt_handle, M_TEMP); | |
1101 | if (cp->gss_clnt_handle_len > 0) { | |
1102 | MALLOC(cp->gss_clnt_handle, u_char *, cp->gss_clnt_handle_len, M_TEMP, M_WAITOK); | |
1103 | if (cp->gss_clnt_handle == NULL) { | |
1104 | error = ENOMEM; | |
1105 | goto nfsmout; | |
1106 | } | |
1107 | nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_handle_len, cp->gss_clnt_handle); | |
1108 | } | |
1109 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_major); | |
1110 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_minor); | |
1111 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_seqwin); | |
1112 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_tokenlen); | |
1113 | if (error) | |
1114 | goto nfsmout; | |
1115 | if (cp->gss_clnt_tokenlen > 0) { | |
1116 | MALLOC(cp->gss_clnt_token, u_char *, cp->gss_clnt_tokenlen, M_TEMP, M_WAITOK); | |
1117 | if (cp->gss_clnt_token == NULL) { | |
1118 | error = ENOMEM; | |
1119 | goto nfsmout; | |
1120 | } | |
1121 | nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_tokenlen, cp->gss_clnt_token); | |
1122 | } | |
1123 | ||
1124 | /* | |
1125 | * Make sure any unusual errors are expanded and logged by gssd | |
1126 | */ | |
1127 | if (cp->gss_clnt_major != GSS_S_COMPLETE && | |
1128 | cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
1129 | char who[] = "server"; | |
1130 | ||
1131 | (void) mach_gss_log_error( | |
1132 | cp->gss_clnt_mport, | |
1133 | vfs_statfs(nmp->nm_mountp)->f_mntfromname, | |
1134 | cp->gss_clnt_uid, | |
1135 | who, | |
1136 | cp->gss_clnt_major, | |
1137 | cp->gss_clnt_minor); | |
1138 | } | |
1139 | ||
1140 | nfsmout: | |
1141 | nfsm_chain_cleanup(&nmreq); | |
1142 | nfsm_chain_cleanup(&nmrep); | |
1143 | ||
1144 | return (error); | |
1145 | } | |
1146 | ||
1147 | /* | |
1148 | * Ugly hack to get the service principal from the f_mntfromname field in | |
1149 | * the statfs struct. We assume a format of server:path. We don't currently | |
1150 | * support url's or other bizarre formats like path@server. A better solution | |
1151 | * here might be to allow passing the service principal down in the mount args. | |
1152 | * For kerberos we just use the default realm. | |
1153 | */ | |
1154 | static char * | |
1155 | nfs_gss_clnt_svcname(struct nfsmount *nmp) | |
1156 | { | |
1157 | char *svcname, *d; | |
1158 | char* mntfromhere = &vfs_statfs(nmp->nm_mountp)->f_mntfromname[0]; | |
1159 | int len; | |
1160 | ||
1161 | len = strlen(mntfromhere) + 5; /* "nfs/" plus null */ | |
1162 | MALLOC(svcname, char *, len, M_TEMP, M_NOWAIT); | |
1163 | if (svcname == NULL) | |
1164 | return (NULL); | |
1165 | strlcpy(svcname, "nfs/", len); | |
1166 | strlcat(svcname, mntfromhere, len); | |
1167 | d = strchr(svcname, ':'); | |
1168 | if (d) | |
1169 | *d = '\0'; | |
1170 | ||
1171 | return (svcname); | |
1172 | } | |
1173 | ||
1174 | /* | |
1175 | * Make an upcall to the gssd using Mach RPC | |
1176 | * The upcall is made using a task special port. | |
1177 | * This allows launchd to fire up the gssd in the | |
1178 | * user's session. This is important, since gssd | |
1179 | * must have access to the user's credential cache. | |
1180 | */ | |
1181 | static int | |
1182 | nfs_gss_clnt_gssd_upcall(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1183 | { | |
1184 | kern_return_t kr; | |
1185 | byte_buffer okey = NULL; | |
1186 | uint32_t skeylen = 0; | |
1187 | int retry_cnt = 0; | |
1188 | vm_map_copy_t itoken = NULL; | |
1189 | byte_buffer otoken = NULL; | |
1190 | int error = 0; | |
1191 | char uprinc[1]; | |
1192 | ||
1193 | /* | |
1194 | * NFS currently only supports default principals or | |
1195 | * principals based on the uid of the caller. | |
1196 | * | |
1197 | * N.B. Note we define a one character array for the principal | |
1198 | * so that we can hold an empty string required by mach, since | |
1199 | * the kernel is being compiled with -Wwrite-strings. | |
1200 | */ | |
1201 | uprinc[0] = '\0'; | |
1202 | if (cp->gss_clnt_mport == NULL) { | |
1203 | kr = task_get_gssd_port(get_threadtask(req->r_thread), &cp->gss_clnt_mport); | |
1204 | if (kr != KERN_SUCCESS) { | |
1205 | printf("nfs_gss_clnt_gssd_upcall: can't get gssd port, status %d\n", kr); | |
1206 | return (EAUTH); | |
1207 | } | |
1208 | if (!IPC_PORT_VALID(cp->gss_clnt_mport)) { | |
1209 | printf("nfs_gss_clnt_gssd_upcall: gssd port not valid\n"); | |
1210 | cp->gss_clnt_mport = NULL; | |
1211 | return (EAUTH); | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | if (cp->gss_clnt_tokenlen > 0) | |
1216 | nfs_gss_mach_alloc_buffer(cp->gss_clnt_token, cp->gss_clnt_tokenlen, &itoken); | |
1217 | ||
1218 | retry: | |
1219 | kr = mach_gss_init_sec_context( | |
1220 | cp->gss_clnt_mport, | |
1221 | KRB5_MECH, | |
1222 | (byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_clnt_tokenlen, | |
1223 | cp->gss_clnt_uid, | |
1224 | uprinc, | |
1225 | cp->gss_clnt_svcname, | |
1226 | GSSD_MUTUAL_FLAG | GSSD_NO_UI, | |
1227 | &cp->gss_clnt_gssd_verf, | |
1228 | &cp->gss_clnt_context, | |
1229 | &cp->gss_clnt_cred_handle, | |
1230 | &okey, (mach_msg_type_number_t *) &skeylen, | |
1231 | &otoken, (mach_msg_type_number_t *) &cp->gss_clnt_tokenlen, | |
1232 | &cp->gss_clnt_major, | |
1233 | &cp->gss_clnt_minor); | |
1234 | ||
1235 | if (kr != 0) { | |
1236 | printf("nfs_gss_clnt_gssd_upcall: mach_gss_init_sec_context failed: %x\n", kr); | |
1237 | if (kr == MIG_SERVER_DIED && cp->gss_clnt_cred_handle == 0 && | |
1238 | retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES) | |
1239 | goto retry; | |
1240 | task_release_special_port(cp->gss_clnt_mport); | |
1241 | cp->gss_clnt_mport = NULL; | |
1242 | return (EAUTH); | |
1243 | } | |
1244 | ||
1245 | /* | |
1246 | * Make sure any unusual errors are expanded and logged by gssd | |
1247 | */ | |
1248 | if (cp->gss_clnt_major != GSS_S_COMPLETE && | |
1249 | cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
1250 | char who[] = "client"; | |
1251 | ||
1252 | (void) mach_gss_log_error( | |
1253 | cp->gss_clnt_mport, | |
1254 | vfs_statfs(req->r_nmp->nm_mountp)->f_mntfromname, | |
1255 | cp->gss_clnt_uid, | |
1256 | who, | |
1257 | cp->gss_clnt_major, | |
1258 | cp->gss_clnt_minor); | |
1259 | } | |
1260 | ||
1261 | if (skeylen > 0) { | |
1262 | if (skeylen != SKEYLEN) { | |
1263 | printf("nfs_gss_clnt_gssd_upcall: bad key length (%d)\n", skeylen); | |
1264 | return (EAUTH); | |
1265 | } | |
1266 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) okey, skeylen, cp->gss_clnt_skey); | |
1267 | if (error) | |
1268 | return (EAUTH); | |
1269 | } | |
1270 | ||
1271 | if (cp->gss_clnt_tokenlen > 0) { | |
1272 | MALLOC(cp->gss_clnt_token, u_char *, cp->gss_clnt_tokenlen, M_TEMP, M_WAITOK); | |
1273 | if (cp->gss_clnt_token == NULL) | |
1274 | return (ENOMEM); | |
1275 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, cp->gss_clnt_tokenlen, | |
1276 | cp->gss_clnt_token); | |
1277 | if (error) | |
1278 | return (EAUTH); | |
1279 | } | |
1280 | ||
1281 | return (0); | |
1282 | } | |
1283 | ||
1284 | /* | |
1285 | * Invoked at the completion of an RPC call that uses an RPCSEC_GSS | |
1286 | * credential. The sequence number window that the server returns | |
1287 | * at context setup indicates the maximum number of client calls that | |
1288 | * can be outstanding on a context. The client maintains a bitmap that | |
1289 | * represents the server's window. Each pending request has a bit set | |
1290 | * in the window bitmap. When a reply comes in or times out, we reset | |
1291 | * the bit in the bitmap and if there are any other threads waiting for | |
1292 | * a context slot we notify the waiting thread(s). | |
1293 | * | |
1294 | * Note that if a request is retransmitted, it will have a single XID | |
1295 | * but it may be associated with multiple sequence numbers. So we | |
1296 | * may have to reset multiple sequence number bits in the window bitmap. | |
1297 | */ | |
1298 | void | |
1299 | nfs_gss_clnt_rpcdone(struct nfsreq *req) | |
1300 | { | |
1301 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1302 | struct gss_seq *gsp, *ngsp; | |
1303 | int i = 0; | |
1304 | ||
1305 | if (cp == NULL || !(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) | |
1306 | return; // no context - don't bother | |
1307 | /* | |
1308 | * Reset the bit for this request in the | |
1309 | * sequence number window to indicate it's done. | |
1310 | * We do this even if the request timed out. | |
1311 | */ | |
1312 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1313 | gsp = SLIST_FIRST(&req->r_gss_seqlist); | |
1314 | if (gsp && gsp->gss_seqnum > (cp->gss_clnt_seqnum - cp->gss_clnt_seqwin)) | |
1315 | win_resetbit(cp->gss_clnt_seqbits, | |
1316 | gsp->gss_seqnum % cp->gss_clnt_seqwin); | |
1317 | ||
1318 | /* | |
1319 | * Limit the seqnum list to GSS_CLNT_SEQLISTMAX entries | |
1320 | */ | |
1321 | SLIST_FOREACH_SAFE(gsp, &req->r_gss_seqlist, gss_seqnext, ngsp) { | |
1322 | if (++i > GSS_CLNT_SEQLISTMAX) { | |
1323 | SLIST_REMOVE(&req->r_gss_seqlist, gsp, gss_seq, gss_seqnext); | |
1324 | FREE(gsp, M_TEMP); | |
1325 | } | |
1326 | } | |
1327 | ||
1328 | /* | |
1329 | * If there's a thread waiting for | |
1330 | * the window to advance, wake it up. | |
1331 | */ | |
1332 | if (cp->gss_clnt_flags & GSS_NEEDSEQ) { | |
1333 | cp->gss_clnt_flags &= ~GSS_NEEDSEQ; | |
1334 | wakeup(cp); | |
1335 | } | |
1336 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1337 | } | |
1338 | ||
1339 | /* | |
1340 | * Create a reference to a context from a request | |
1341 | * and bump the reference count | |
1342 | */ | |
1343 | void | |
1344 | nfs_gss_clnt_ctx_ref(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1345 | { | |
1346 | req->r_gss_ctx = cp; | |
1347 | ||
1348 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1349 | cp->gss_clnt_refcnt++; | |
1350 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1351 | } | |
1352 | ||
1353 | /* | |
1354 | * Remove a context reference from a request | |
1355 | * If the reference count drops to zero, and the | |
1356 | * context is invalid, destroy the context | |
1357 | */ | |
1358 | void | |
1359 | nfs_gss_clnt_ctx_unref(struct nfsreq *req) | |
1360 | { | |
1361 | struct nfsmount *nmp = req->r_nmp; | |
1362 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1363 | ||
1364 | if (cp == NULL) | |
1365 | return; | |
1366 | ||
1367 | req->r_gss_ctx = NULL; | |
1368 | ||
1369 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1370 | if (--cp->gss_clnt_refcnt == 0 | |
1371 | && cp->gss_clnt_flags & GSS_CTX_INVAL) { | |
1372 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1373 | ||
1374 | if (nmp) | |
1375 | lck_mtx_lock(&nmp->nm_lock); | |
1376 | nfs_gss_clnt_ctx_remove(nmp, cp); | |
1377 | if (nmp) | |
1378 | lck_mtx_unlock(&nmp->nm_lock); | |
1379 | ||
1380 | return; | |
1381 | } | |
1382 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1383 | } | |
1384 | ||
1385 | /* | |
1386 | * Remove a context | |
1387 | */ | |
1388 | static void | |
1389 | nfs_gss_clnt_ctx_remove(struct nfsmount *nmp, struct nfs_gss_clnt_ctx *cp) | |
1390 | { | |
1391 | /* | |
1392 | * If dequeueing, assume nmp->nm_lock is held | |
1393 | */ | |
1394 | if (nmp != NULL) | |
1395 | TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
1396 | ||
1397 | if (cp->gss_clnt_mport) | |
1398 | task_release_special_port(cp->gss_clnt_mport); | |
1399 | if (cp->gss_clnt_mtx) | |
1400 | lck_mtx_destroy(cp->gss_clnt_mtx, nfs_gss_clnt_grp); | |
1401 | if (cp->gss_clnt_handle) | |
1402 | FREE(cp->gss_clnt_handle, M_TEMP); | |
1403 | if (cp->gss_clnt_seqbits) | |
1404 | FREE(cp->gss_clnt_seqbits, M_TEMP); | |
1405 | if (cp->gss_clnt_token) | |
1406 | FREE(cp->gss_clnt_token, M_TEMP); | |
1407 | if (cp->gss_clnt_svcname) | |
1408 | FREE(cp->gss_clnt_svcname, M_TEMP); | |
1409 | FREE(cp, M_TEMP); | |
1410 | } | |
1411 | ||
1412 | /* | |
1413 | * The context for a user is invalid. | |
1414 | * Mark the context as invalid, then | |
1415 | * create a new context. | |
1416 | */ | |
1417 | int | |
1418 | nfs_gss_clnt_ctx_renew(struct nfsreq *req) | |
1419 | { | |
1420 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1421 | struct nfsmount *nmp = req->r_nmp; | |
1422 | struct nfs_gss_clnt_ctx *ncp; | |
1423 | int error = 0; | |
1424 | uid_t saved_uid; | |
1425 | mach_port_t saved_mport; | |
1426 | int retrycnt = 0; | |
1427 | ||
1428 | if (cp == NULL || !(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) | |
1429 | return (0); | |
1430 | ||
1431 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1432 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) { | |
1433 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1434 | nfs_gss_clnt_ctx_unref(req); | |
1435 | return (0); // already being renewed | |
1436 | } | |
1437 | saved_uid = cp->gss_clnt_uid; | |
1438 | saved_mport = task_copy_special_port(cp->gss_clnt_mport); | |
1439 | ||
1440 | /* Remove the old context */ | |
1441 | lck_mtx_lock(&nmp->nm_lock); | |
1442 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
1443 | lck_mtx_unlock(&nmp->nm_lock); | |
1444 | ||
1445 | /* | |
1446 | * If there's a thread waiting | |
1447 | * in the old context, wake it up. | |
1448 | */ | |
1449 | if (cp->gss_clnt_flags & (GSS_NEEDCTX | GSS_NEEDSEQ)) { | |
1450 | cp->gss_clnt_flags &= ~GSS_NEEDSEQ; | |
1451 | wakeup(cp); | |
1452 | } | |
1453 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1454 | ||
1455 | retry: | |
1456 | /* | |
1457 | * Create a new context | |
1458 | */ | |
1459 | MALLOC(ncp, struct nfs_gss_clnt_ctx *, sizeof(*ncp), | |
1460 | M_TEMP, M_WAITOK|M_ZERO); | |
1461 | if (ncp == NULL) { | |
1462 | return (ENOMEM); | |
1463 | } | |
1464 | ||
1465 | ncp->gss_clnt_uid = saved_uid; | |
1466 | ncp->gss_clnt_mport = task_copy_special_port(saved_mport); // re-use the gssd port | |
1467 | ncp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL); | |
1468 | ncp->gss_clnt_thread = current_thread(); | |
1469 | lck_mtx_lock(&nmp->nm_lock); | |
1470 | TAILQ_INSERT_TAIL(&nmp->nm_gsscl, ncp, gss_clnt_entries); | |
1471 | lck_mtx_unlock(&nmp->nm_lock); | |
1472 | ||
1473 | /* Adjust reference counts to new and old context */ | |
1474 | nfs_gss_clnt_ctx_unref(req); | |
1475 | nfs_gss_clnt_ctx_ref(req, ncp); | |
1476 | ||
1477 | error = nfs_gss_clnt_ctx_init(req, ncp); // Initialize new context | |
1478 | if (error == ENEEDAUTH) { | |
1479 | error = nfs_gss_clnt_ctx_delay(req, &retrycnt); | |
1480 | if (!error) | |
1481 | goto retry; | |
1482 | } | |
1483 | ||
1484 | task_release_special_port(saved_mport); | |
1485 | if (error) | |
1486 | nfs_gss_clnt_ctx_unref(req); | |
1487 | ||
1488 | return (error); | |
1489 | } | |
1490 | ||
1491 | /* | |
1492 | * Destroy all the contexts associated with a mount. | |
1493 | * The contexts are also destroyed by the server. | |
1494 | */ | |
1495 | void | |
1496 | nfs_gss_clnt_ctx_unmount(struct nfsmount *nmp, int mntflags) | |
1497 | { | |
1498 | struct nfs_gss_clnt_ctx *cp; | |
1499 | struct ucred temp_cred; | |
1500 | kauth_cred_t cred; | |
1501 | struct nfsm_chain nmreq, nmrep; | |
1502 | u_int64_t xid; | |
1503 | int error, status; | |
1504 | struct nfsreq req; | |
1505 | ||
1506 | bzero((caddr_t) &temp_cred, sizeof(temp_cred)); | |
1507 | temp_cred.cr_ngroups = 1; | |
1508 | req.r_nmp = nmp; | |
1509 | ||
1510 | for (;;) { | |
1511 | lck_mtx_lock(&nmp->nm_lock); | |
1512 | cp = TAILQ_FIRST(&nmp->nm_gsscl); | |
1513 | lck_mtx_unlock(&nmp->nm_lock); | |
1514 | if (cp == NULL) | |
1515 | break; | |
1516 | ||
1517 | nfs_gss_clnt_ctx_ref(&req, cp); | |
1518 | ||
1519 | /* | |
1520 | * Tell the server to destroy its context. | |
1521 | * But don't bother if it's a forced unmount | |
1522 | * or if it's a dummy sec=sys context. | |
1523 | */ | |
1524 | if (!(mntflags & MNT_FORCE) && cp->gss_clnt_service != RPCSEC_GSS_SVC_SYS) { | |
1525 | temp_cred.cr_uid = cp->gss_clnt_uid; | |
1526 | cred = kauth_cred_create(&temp_cred); | |
1527 | cp->gss_clnt_proc = RPCSEC_GSS_DESTROY; | |
1528 | ||
1529 | error = 0; | |
1530 | nfsm_chain_null(&nmreq); | |
1531 | nfsm_chain_null(&nmrep); | |
1532 | nfsm_chain_build_alloc_init(error, &nmreq, 0); | |
1533 | nfsm_chain_build_done(error, &nmreq); | |
1534 | if (!error) | |
1535 | nfs_request2(NULL, nmp->nm_mountp, &nmreq, NFSPROC_NULL, | |
1536 | current_thread(), cred, 0, &nmrep, &xid, &status); | |
1537 | nfsm_chain_cleanup(&nmreq); | |
1538 | nfsm_chain_cleanup(&nmrep); | |
1539 | kauth_cred_unref(&cred); | |
1540 | } | |
1541 | ||
1542 | /* | |
1543 | * Mark the context invalid then drop | |
1544 | * the reference to remove it if its | |
1545 | * refcount is zero. | |
1546 | */ | |
1547 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
1548 | nfs_gss_clnt_ctx_unref(&req); | |
1549 | } | |
1550 | } | |
1551 | ||
1552 | /* | |
1553 | * If we get a failure in trying to establish a context we need to wait a | |
1554 | * little while to see if the server is feeling better. In our case this is | |
1555 | * probably a failure in directory services not coming up in a timely fashion. | |
1556 | * This routine sort of mimics receiving a jukebox error. | |
1557 | */ | |
1558 | static int | |
1559 | nfs_gss_clnt_ctx_delay(struct nfsreq *req, int *retry) | |
1560 | { | |
1561 | int timeo = (1 << *retry) * NFS_TRYLATERDEL; | |
1562 | int error = 0; | |
1563 | struct nfsmount *nmp = req->r_nmp; | |
1564 | struct timeval now; | |
1565 | time_t waituntil; | |
1566 | ||
1567 | if ((nmp->nm_flag & NFSMNT_SOFT) && *retry > nmp->nm_retry) | |
1568 | return (ETIMEDOUT); | |
1569 | if (timeo > 60) | |
1570 | timeo = 60; | |
1571 | ||
1572 | microuptime(&now); | |
1573 | waituntil = now.tv_sec + timeo; | |
1574 | while (now.tv_sec < waituntil) { | |
1575 | tsleep(&lbolt, PSOCK, "nfs_gss_clnt_ctx_delay", 0); | |
1576 | error = nfs_sigintr(nmp, req, current_thread(), 0); | |
1577 | if (error) | |
1578 | break; | |
1579 | microuptime(&now); | |
1580 | } | |
1581 | *retry += 1; | |
1582 | ||
1583 | return (error); | |
1584 | } | |
1585 | ||
1586 | ||
1587 | #endif /* NFSCLIENT */ | |
1588 | ||
1589 | /************* | |
1590 | * | |
1591 | * Server functions | |
1592 | */ | |
1593 | ||
1594 | #if NFSSERVER | |
1595 | ||
1596 | /* | |
1597 | * Find a server context based on a handle value received | |
1598 | * in an RPCSEC_GSS credential. | |
1599 | */ | |
1600 | static struct nfs_gss_svc_ctx * | |
1601 | nfs_gss_svc_ctx_find(uint32_t handle) | |
1602 | { | |
1603 | struct nfs_gss_svc_ctx_hashhead *head; | |
1604 | struct nfs_gss_svc_ctx *cp; | |
1605 | ||
1606 | head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(handle)]; | |
1607 | ||
1608 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
1609 | LIST_FOREACH(cp, head, gss_svc_entries) | |
1610 | if (cp->gss_svc_handle == handle) | |
1611 | break; | |
1612 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
1613 | ||
1614 | return (cp); | |
1615 | } | |
1616 | ||
1617 | /* | |
1618 | * Insert a new server context into the hash table | |
1619 | * and start the context reap thread if necessary. | |
1620 | */ | |
1621 | static void | |
1622 | nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *cp) | |
1623 | { | |
1624 | struct nfs_gss_svc_ctx_hashhead *head; | |
1625 | ||
1626 | head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(cp->gss_svc_handle)]; | |
1627 | ||
1628 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
1629 | LIST_INSERT_HEAD(head, cp, gss_svc_entries); | |
1630 | nfs_gss_ctx_count++; | |
1631 | ||
1632 | if (!nfs_gss_timer_on) { | |
1633 | nfs_gss_timer_on = 1; | |
1634 | nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call, | |
1635 | GSS_TIMER_PERIOD * MSECS_PER_SEC); | |
1636 | } | |
1637 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
1638 | } | |
1639 | ||
1640 | /* | |
1641 | * This function is called via the kernel's callout | |
1642 | * mechanism. It runs only when there are | |
1643 | * cached RPCSEC_GSS contexts. | |
1644 | */ | |
1645 | void | |
1646 | nfs_gss_svc_ctx_timer(__unused void *param1, __unused void *param2) | |
1647 | { | |
1648 | struct nfs_gss_svc_ctx_hashhead *head; | |
1649 | struct nfs_gss_svc_ctx *cp, *next; | |
1650 | uint64_t timenow; | |
1651 | int contexts = 0; | |
1652 | int i; | |
1653 | ||
1654 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
1655 | clock_get_uptime(&timenow); | |
1656 | ||
1657 | /* | |
1658 | * Scan all the hash chains | |
1659 | * Assume nfs_gss_svc_ctx_mutex is held | |
1660 | */ | |
1661 | for (i = 0; i < SVC_CTX_HASHSZ; i++) { | |
1662 | /* | |
1663 | * For each hash chain, look for entries | |
1664 | * that haven't been used in a while. | |
1665 | */ | |
1666 | head = &nfs_gss_svc_ctx_hashtbl[i]; | |
1667 | for (cp = LIST_FIRST(head); cp; cp = next) { | |
1668 | contexts++; | |
1669 | next = LIST_NEXT(cp, gss_svc_entries); | |
1670 | if (timenow > cp->gss_svc_expiretime) { | |
1671 | /* | |
1672 | * A stale context - remove it | |
1673 | */ | |
1674 | LIST_REMOVE(cp, gss_svc_entries); | |
1675 | if (cp->gss_svc_seqbits) | |
1676 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
1677 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
1678 | FREE(cp, M_TEMP); | |
1679 | contexts--; | |
1680 | } | |
1681 | } | |
1682 | } | |
1683 | ||
1684 | nfs_gss_ctx_count = contexts; | |
1685 | ||
1686 | /* | |
1687 | * If there are still some cached contexts left, | |
1688 | * set up another callout to check on them later. | |
1689 | */ | |
1690 | nfs_gss_timer_on = nfs_gss_ctx_count > 0; | |
1691 | if (nfs_gss_timer_on) | |
1692 | nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call, | |
1693 | GSS_TIMER_PERIOD * MSECS_PER_SEC); | |
1694 | ||
1695 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
1696 | } | |
1697 | ||
1698 | /* | |
1699 | * Here the server receives an RPCSEC_GSS credential in an | |
1700 | * RPC call header. First there's some checking to make sure | |
1701 | * the credential is appropriate - whether the context is still | |
1702 | * being set up, or is complete. Then we use the handle to find | |
1703 | * the server's context and validate the verifier, which contains | |
1704 | * a signed checksum of the RPC header. If the verifier checks | |
1705 | * out, we extract the user's UID and groups from the context | |
1706 | * and use it to set up a UNIX credential for the user's request. | |
1707 | */ | |
1708 | int | |
1709 | nfs_gss_svc_cred_get(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
1710 | { | |
1711 | uint32_t vers, proc, seqnum, service; | |
1712 | uint32_t handle, handle_len; | |
1713 | struct nfs_gss_svc_ctx *cp = NULL; | |
1714 | uint32_t flavor = 0, verflen = 0; | |
1715 | int error = 0; | |
1716 | uint32_t arglen, start, toklen, cksumlen; | |
1717 | u_char tokbuf[KRB5_SZ_TOKMAX]; | |
1718 | u_char cksum1[8], cksum2[8]; | |
1719 | struct nfsm_chain nmc_tmp; | |
1720 | ||
1721 | vers = proc = seqnum = service = handle_len = 0; | |
1722 | arglen = cksumlen = 0; | |
1723 | ||
1724 | nfsm_chain_get_32(error, nmc, vers); | |
1725 | if (vers != RPCSEC_GSS_VERS_1) { | |
1726 | error = NFSERR_AUTHERR | AUTH_REJECTCRED; | |
1727 | goto nfsmout; | |
1728 | } | |
1729 | ||
1730 | nfsm_chain_get_32(error, nmc, proc); | |
1731 | nfsm_chain_get_32(error, nmc, seqnum); | |
1732 | nfsm_chain_get_32(error, nmc, service); | |
1733 | nfsm_chain_get_32(error, nmc, handle_len); | |
1734 | if (error) | |
1735 | goto nfsmout; | |
1736 | ||
1737 | /* | |
1738 | * Make sure context setup/destroy is being done with a nullproc | |
1739 | */ | |
1740 | if (proc != RPCSEC_GSS_DATA && nd->nd_procnum != NFSPROC_NULL) { | |
1741 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
1742 | goto nfsmout; | |
1743 | } | |
1744 | ||
1745 | /* | |
1746 | * If the sequence number is greater than the max | |
1747 | * allowable, reject and have the client init a | |
1748 | * new context. | |
1749 | */ | |
1750 | if (seqnum > GSS_MAXSEQ) { | |
1751 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
1752 | goto nfsmout; | |
1753 | } | |
1754 | ||
1755 | nd->nd_sec = | |
1756 | service == RPCSEC_GSS_SVC_NONE ? RPCAUTH_KRB5 : | |
1757 | service == RPCSEC_GSS_SVC_INTEGRITY ? RPCAUTH_KRB5I : | |
1758 | service == RPCSEC_GSS_SVC_PRIVACY ? RPCAUTH_KRB5P : 0; | |
1759 | ||
1760 | if (proc == RPCSEC_GSS_INIT) { | |
1761 | /* | |
1762 | * Limit the total number of contexts | |
1763 | */ | |
1764 | if (nfs_gss_ctx_count > nfs_gss_ctx_max) { | |
1765 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
1766 | goto nfsmout; | |
1767 | } | |
1768 | ||
1769 | /* | |
1770 | * Set up a new context | |
1771 | */ | |
1772 | MALLOC(cp, struct nfs_gss_svc_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO); | |
1773 | if (cp == NULL) { | |
1774 | error = ENOMEM; | |
1775 | goto nfsmout; | |
1776 | } | |
1777 | } else { | |
1778 | ||
1779 | /* | |
1780 | * Use the handle to find the context | |
1781 | */ | |
1782 | if (handle_len != sizeof(handle)) { | |
1783 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
1784 | goto nfsmout; | |
1785 | } | |
1786 | nfsm_chain_get_32(error, nmc, handle); | |
1787 | if (error) | |
1788 | goto nfsmout; | |
1789 | cp = nfs_gss_svc_ctx_find(handle); | |
1790 | if (cp == NULL) { | |
1791 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
1792 | goto nfsmout; | |
1793 | } | |
1794 | } | |
1795 | ||
1796 | cp->gss_svc_proc = proc; | |
1797 | ||
1798 | if (proc == RPCSEC_GSS_DATA || proc == RPCSEC_GSS_DESTROY) { | |
1799 | struct ucred temp_cred; | |
1800 | ||
1801 | if (cp->gss_svc_seqwin == 0) { | |
1802 | /* | |
1803 | * Context isn't complete | |
1804 | */ | |
1805 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
1806 | goto nfsmout; | |
1807 | } | |
1808 | ||
1809 | if (!nfs_gss_svc_seqnum_valid(cp, seqnum)) { | |
1810 | /* | |
1811 | * Sequence number is bad | |
1812 | */ | |
1813 | error = EINVAL; // drop the request | |
1814 | goto nfsmout; | |
1815 | } | |
1816 | ||
1817 | /* Now compute the client's call header checksum */ | |
1818 | nfs_gss_cksum_chain(cp->gss_svc_sched, nmc, krb5_mic, 0, 0, cksum1); | |
1819 | ||
1820 | /* | |
1821 | * Validate the verifier. | |
1822 | * The verifier contains an encrypted checksum | |
1823 | * of the call header from the XID up to and | |
1824 | * including the credential. We compute the | |
1825 | * checksum and compare it with what came in | |
1826 | * the verifier. | |
1827 | */ | |
1828 | nfsm_chain_get_32(error, nmc, flavor); | |
1829 | nfsm_chain_get_32(error, nmc, verflen); | |
1830 | if (flavor != RPCSEC_GSS || verflen != KRB5_SZ_TOKEN) | |
1831 | error = NFSERR_AUTHERR | AUTH_BADVERF; | |
1832 | nfsm_chain_get_opaque(error, nmc, verflen, tokbuf); | |
1833 | if (error) | |
1834 | goto nfsmout; | |
1835 | ||
1836 | /* Get the checksum from the token inside the verifier */ | |
1837 | error = nfs_gss_token_get(cp->gss_svc_sched, krb5_mic, tokbuf, 1, | |
1838 | NULL, cksum2); | |
1839 | if (error) | |
1840 | goto nfsmout; | |
1841 | ||
1842 | if (bcmp(cksum1, cksum2, 8) != 0) { | |
1843 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
1844 | goto nfsmout; | |
1845 | } | |
1846 | ||
1847 | nd->nd_gss_seqnum = seqnum; | |
1848 | ||
1849 | /* | |
1850 | * Set up the user's cred | |
1851 | */ | |
1852 | bzero(&temp_cred, sizeof(temp_cred)); | |
1853 | temp_cred.cr_uid = cp->gss_svc_uid; | |
1854 | bcopy(cp->gss_svc_gids, temp_cred.cr_groups, | |
1855 | sizeof(gid_t) * cp->gss_svc_ngroups); | |
1856 | temp_cred.cr_ngroups = cp->gss_svc_ngroups; | |
1857 | ||
1858 | nd->nd_cr = kauth_cred_create(&temp_cred); | |
1859 | if (nd->nd_cr == NULL) { | |
1860 | error = ENOMEM; | |
1861 | goto nfsmout; | |
1862 | } | |
1863 | clock_interval_to_deadline(GSS_CTX_EXPIRE, NSEC_PER_SEC, | |
1864 | &cp->gss_svc_expiretime); | |
1865 | ||
1866 | /* | |
1867 | * If the call arguments are integrity or privacy protected | |
1868 | * then we need to check them here. | |
1869 | */ | |
1870 | switch (service) { | |
1871 | case RPCSEC_GSS_SVC_NONE: | |
1872 | /* nothing to do */ | |
1873 | break; | |
1874 | case RPCSEC_GSS_SVC_INTEGRITY: | |
1875 | /* | |
1876 | * Here's what we expect in the integrity call args: | |
1877 | * | |
1878 | * - length of seq num + call args (4 bytes) | |
1879 | * - sequence number (4 bytes) | |
1880 | * - call args (variable bytes) | |
1881 | * - length of checksum token (37) | |
1882 | * - checksum of seqnum + call args (37 bytes) | |
1883 | */ | |
1884 | nfsm_chain_get_32(error, nmc, arglen); // length of args | |
1885 | if (arglen > NFS_MAXPACKET) { | |
1886 | error = EBADRPC; | |
1887 | goto nfsmout; | |
1888 | } | |
1889 | ||
1890 | /* Compute the checksum over the call args */ | |
1891 | start = nfsm_chain_offset(nmc); | |
1892 | nfs_gss_cksum_chain(cp->gss_svc_sched, nmc, krb5_mic, start, arglen, cksum1); | |
1893 | ||
1894 | /* | |
1895 | * Get the sequence number prepended to the args | |
1896 | * and compare it against the one sent in the | |
1897 | * call credential. | |
1898 | */ | |
1899 | nfsm_chain_get_32(error, nmc, seqnum); | |
1900 | if (seqnum != nd->nd_gss_seqnum) { | |
1901 | error = EBADRPC; // returns as GARBAGEARGS | |
1902 | goto nfsmout; | |
1903 | } | |
1904 | ||
1905 | /* | |
1906 | * Advance to the end of the args and | |
1907 | * fetch the checksum computed by the client. | |
1908 | */ | |
1909 | nmc_tmp = *nmc; | |
1910 | arglen -= NFSX_UNSIGNED; // skipped seqnum | |
1911 | nfsm_chain_adv(error, &nmc_tmp, arglen); // skip args | |
1912 | nfsm_chain_get_32(error, &nmc_tmp, cksumlen); // length of checksum | |
1913 | if (cksumlen != KRB5_SZ_TOKEN) { | |
1914 | error = EBADRPC; | |
1915 | goto nfsmout; | |
1916 | } | |
1917 | nfsm_chain_get_opaque(error, &nmc_tmp, cksumlen, tokbuf); | |
1918 | if (error) | |
1919 | goto nfsmout; | |
1920 | error = nfs_gss_token_get(cp->gss_svc_sched, krb5_mic, tokbuf, 1, | |
1921 | NULL, cksum2); | |
1922 | ||
1923 | /* Verify that the checksums are the same */ | |
1924 | if (error || bcmp(cksum1, cksum2, 8) != 0) { | |
1925 | error = EBADRPC; | |
1926 | goto nfsmout; | |
1927 | } | |
1928 | break; | |
1929 | case RPCSEC_GSS_SVC_PRIVACY: | |
1930 | /* | |
1931 | * Here's what we expect in the privacy call args: | |
1932 | * | |
1933 | * - length of confounder + seq num + token + call args | |
1934 | * - wrap token (37-40 bytes) | |
1935 | * - confounder (8 bytes) | |
1936 | * - sequence number (4 bytes) | |
1937 | * - call args (encrypted) | |
1938 | */ | |
1939 | nfsm_chain_get_32(error, nmc, arglen); // length of args | |
1940 | if (arglen > NFS_MAXPACKET) { | |
1941 | error = EBADRPC; | |
1942 | goto nfsmout; | |
1943 | } | |
1944 | ||
1945 | /* Get the token that prepends the encrypted args */ | |
1946 | nfsm_chain_get_opaque(error, nmc, KRB5_SZ_TOKMAX, tokbuf); | |
1947 | if (error) | |
1948 | goto nfsmout; | |
1949 | error = nfs_gss_token_get(cp->gss_svc_sched, krb5_wrap, tokbuf, 1, | |
1950 | &toklen, cksum1); | |
1951 | if (error) | |
1952 | goto nfsmout; | |
1953 | nfsm_chain_reverse(nmc, nfsm_pad(toklen)); | |
1954 | ||
1955 | /* decrypt the 8 byte confounder + seqnum + args */ | |
1956 | start = nfsm_chain_offset(nmc); | |
1957 | arglen -= toklen; | |
1958 | nfs_gss_encrypt_chain(cp->gss_svc_skey, nmc, start, arglen, DES_DECRYPT); | |
1959 | ||
1960 | /* Compute a checksum over the sequence number + results */ | |
1961 | nfs_gss_cksum_chain(cp->gss_svc_sched, nmc, krb5_wrap, start, arglen, cksum2); | |
1962 | ||
1963 | /* Verify that the checksums are the same */ | |
1964 | if (bcmp(cksum1, cksum2, 8) != 0) { | |
1965 | error = EBADRPC; | |
1966 | goto nfsmout; | |
1967 | } | |
1968 | ||
1969 | /* | |
1970 | * Get the sequence number prepended to the args | |
1971 | * and compare it against the one sent in the | |
1972 | * call credential. | |
1973 | */ | |
1974 | nfsm_chain_adv(error, nmc, 8); // skip over the confounder | |
1975 | nfsm_chain_get_32(error, nmc, seqnum); | |
1976 | if (seqnum != nd->nd_gss_seqnum) { | |
1977 | error = EBADRPC; // returns as GARBAGEARGS | |
1978 | goto nfsmout; | |
1979 | } | |
1980 | break; | |
1981 | } | |
1982 | } else { | |
1983 | /* | |
1984 | * If the proc is RPCSEC_GSS_INIT or RPCSEC_GSS_CONTINUE_INIT | |
1985 | * then we expect a null verifier. | |
1986 | */ | |
1987 | nfsm_chain_get_32(error, nmc, flavor); | |
1988 | nfsm_chain_get_32(error, nmc, verflen); | |
1989 | if (error || flavor != RPCAUTH_NULL || verflen > 0) | |
1990 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
1991 | if (error) | |
1992 | goto nfsmout; | |
1993 | } | |
1994 | ||
1995 | nd->nd_gss_context = cp; | |
1996 | nfsmout: | |
1997 | return (error); | |
1998 | } | |
1999 | ||
2000 | /* | |
2001 | * Insert the server's verifier into the RPC reply header. | |
2002 | * It contains a signed checksum of the sequence number that | |
2003 | * was received in the RPC call. | |
2004 | * Then go on to add integrity or privacy if necessary. | |
2005 | */ | |
2006 | int | |
2007 | nfs_gss_svc_verf_put(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
2008 | { | |
2009 | struct nfs_gss_svc_ctx *cp; | |
2010 | int error = 0; | |
2011 | u_char tokbuf[KRB5_SZ_TOKEN]; | |
2012 | int toklen; | |
2013 | u_char cksum[8]; | |
2014 | ||
2015 | cp = nd->nd_gss_context; | |
2016 | ||
2017 | if (cp->gss_svc_major != GSS_S_COMPLETE) { | |
2018 | /* | |
2019 | * If the context isn't yet complete | |
2020 | * then return a null verifier. | |
2021 | */ | |
2022 | nfsm_chain_add_32(error, nmc, RPCAUTH_NULL); | |
2023 | nfsm_chain_add_32(error, nmc, 0); | |
2024 | return (error); | |
2025 | } | |
2026 | ||
2027 | /* | |
2028 | * Compute checksum of the request seq number | |
2029 | * If it's the final reply of context setup | |
2030 | * then return the checksum of the context | |
2031 | * window size. | |
2032 | */ | |
2033 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
2034 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) | |
2035 | nfs_gss_cksum_rep(cp->gss_svc_sched, cp->gss_svc_seqwin, cksum); | |
2036 | else | |
2037 | nfs_gss_cksum_rep(cp->gss_svc_sched, nd->nd_gss_seqnum, cksum); | |
2038 | /* | |
2039 | * Now wrap it in a token and add | |
2040 | * the verifier to the reply. | |
2041 | */ | |
2042 | toklen = nfs_gss_token_put(cp->gss_svc_sched, krb5_mic, tokbuf, 0, 0, cksum); | |
2043 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); | |
2044 | nfsm_chain_add_32(error, nmc, toklen); | |
2045 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
2046 | ||
2047 | return (error); | |
2048 | } | |
2049 | ||
2050 | /* | |
2051 | * The results aren't available yet, but if they need to be | |
2052 | * checksummed for integrity protection or encrypted, then | |
2053 | * we can record the start offset here, insert a place-holder | |
2054 | * for the results length, as well as the sequence number. | |
2055 | * The rest of the work is done later by nfs_gss_svc_protect_reply() | |
2056 | * when the results are available. | |
2057 | */ | |
2058 | int | |
2059 | nfs_gss_svc_prepare_reply(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
2060 | { | |
2061 | struct nfs_gss_svc_ctx *cp = nd->nd_gss_context; | |
2062 | int error = 0; | |
2063 | ||
2064 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
2065 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) | |
2066 | return (0); | |
2067 | ||
2068 | switch (nd->nd_sec) { | |
2069 | case RPCAUTH_KRB5: | |
2070 | /* Nothing to do */ | |
2071 | break; | |
2072 | case RPCAUTH_KRB5I: | |
2073 | nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf | |
2074 | nfsm_chain_finish_mbuf(error, nmc); // split the chain here | |
2075 | nfsm_chain_add_32(error, nmc, nd->nd_gss_seqnum); // req sequence number | |
2076 | break; | |
2077 | case RPCAUTH_KRB5P: | |
2078 | nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf | |
2079 | nfsm_chain_finish_mbuf(error, nmc); // split the chain here | |
2080 | nfsm_chain_add_32(error, nmc, random()); // confounder bytes 1-4 | |
2081 | nfsm_chain_add_32(error, nmc, random()); // confounder bytes 5-8 | |
2082 | nfsm_chain_add_32(error, nmc, nd->nd_gss_seqnum); // req sequence number | |
2083 | break; | |
2084 | } | |
2085 | ||
2086 | return (error); | |
2087 | } | |
2088 | ||
2089 | /* | |
2090 | * The results are checksummed or encrypted for return to the client | |
2091 | */ | |
2092 | int | |
2093 | nfs_gss_svc_protect_reply(struct nfsrv_descript *nd, mbuf_t mrep) | |
2094 | { | |
2095 | struct nfs_gss_svc_ctx *cp = nd->nd_gss_context; | |
2096 | struct nfsm_chain nmrep_res, *nmc_res = &nmrep_res; | |
2097 | struct nfsm_chain nmrep_pre, *nmc_pre = &nmrep_pre; | |
2098 | mbuf_t mb, results; | |
2099 | uint32_t reslen; | |
2100 | u_char tokbuf[KRB5_SZ_TOKMAX]; | |
2101 | int pad, toklen; | |
2102 | u_char cksum[8]; | |
2103 | int error = 0; | |
2104 | ||
2105 | /* | |
2106 | * Using a reference to the mbuf where we previously split the reply | |
2107 | * mbuf chain, we split the mbuf chain argument into two mbuf chains, | |
2108 | * one that allows us to prepend a length field or token, (nmc_pre) | |
2109 | * and the second which holds just the results that we're going to | |
2110 | * checksum and/or encrypt. When we're done, we join the chains back | |
2111 | * together. | |
2112 | */ | |
2113 | nfs_gss_nfsm_chain(nmc_res, mrep); // set up the results chain | |
2114 | mb = nd->nd_gss_mb; // the mbuf where we split | |
2115 | results = mbuf_next(mb); // first mbuf in the results | |
2116 | reslen = nfs_gss_mchain_length(results); // length of results | |
2117 | error = mbuf_setnext(mb, NULL); // disconnect the chains | |
2118 | if (error) | |
2119 | return (error); | |
2120 | nfs_gss_nfsm_chain(nmc_pre, mb); // set up the prepend chain | |
2121 | ||
2122 | if (nd->nd_sec == RPCAUTH_KRB5I) { | |
2123 | nfsm_chain_add_32(error, nmc_pre, reslen); | |
2124 | nfsm_chain_build_done(error, nmc_pre); | |
2125 | if (error) | |
2126 | return (error); | |
2127 | nfs_gss_append_chain(nmc_pre, results); // Append the results mbufs | |
2128 | ||
2129 | /* Now compute the checksum over the results data */ | |
2130 | nfs_gss_cksum_mchain(cp->gss_svc_sched, results, krb5_mic, 0, reslen, cksum); | |
2131 | ||
2132 | /* Put it into a token and append to the request */ | |
2133 | toklen = nfs_gss_token_put(cp->gss_svc_sched, krb5_mic, tokbuf, 0, 0, cksum); | |
2134 | nfsm_chain_add_32(error, nmc_res, toklen); | |
2135 | nfsm_chain_add_opaque(error, nmc_res, tokbuf, toklen); | |
2136 | nfsm_chain_build_done(error, nmc_res); | |
2137 | } else { | |
2138 | /* RPCAUTH_KRB5P */ | |
2139 | /* | |
2140 | * Append a pad trailer - per RFC 1964 section 1.2.2.3 | |
2141 | * Since XDR data is always 32-bit aligned, it | |
2142 | * needs to be padded either by 4 bytes or 8 bytes. | |
2143 | */ | |
2144 | if (reslen % 8 > 0) { | |
2145 | nfsm_chain_add_32(error, nmc_res, 0x04040404); | |
2146 | reslen += NFSX_UNSIGNED; | |
2147 | } else { | |
2148 | nfsm_chain_add_32(error, nmc_res, 0x08080808); | |
2149 | nfsm_chain_add_32(error, nmc_res, 0x08080808); | |
2150 | reslen += 2 * NFSX_UNSIGNED; | |
2151 | } | |
2152 | nfsm_chain_build_done(error, nmc_res); | |
2153 | ||
2154 | /* Now compute the checksum over the results data */ | |
2155 | nfs_gss_cksum_mchain(cp->gss_svc_sched, results, krb5_wrap, 0, reslen, cksum); | |
2156 | ||
2157 | /* Put it into a token and insert in the reply */ | |
2158 | toklen = nfs_gss_token_put(cp->gss_svc_sched, krb5_wrap, tokbuf, 0, reslen, cksum); | |
2159 | nfsm_chain_add_32(error, nmc_pre, toklen + reslen); | |
2160 | nfsm_chain_add_opaque_nopad(error, nmc_pre, tokbuf, toklen); | |
2161 | nfsm_chain_build_done(error, nmc_pre); | |
2162 | if (error) | |
2163 | return (error); | |
2164 | nfs_gss_append_chain(nmc_pre, results); // Append the results mbufs | |
2165 | ||
2166 | /* Encrypt the confounder + seqnum + results */ | |
2167 | nfs_gss_encrypt_mchain(cp->gss_svc_skey, results, 0, reslen, DES_ENCRYPT); | |
2168 | ||
2169 | /* Add null XDR pad if the ASN.1 token misaligned the data */ | |
2170 | pad = nfsm_pad(toklen + reslen); | |
2171 | if (pad > 0) { | |
2172 | nfsm_chain_add_opaque_nopad(error, nmc_pre, iv0, pad); | |
2173 | nfsm_chain_build_done(error, nmc_pre); | |
2174 | } | |
2175 | } | |
2176 | ||
2177 | return (error); | |
2178 | } | |
2179 | ||
2180 | /* | |
2181 | * This function handles the context setup calls from the client. | |
2182 | * Essentially, it implements the NFS null procedure calls when | |
2183 | * an RPCSEC_GSS credential is used. | |
2184 | * This is the context maintenance function. It creates and | |
2185 | * destroys server contexts at the whim of the client. | |
2186 | * During context creation, it receives GSS-API tokens from the | |
2187 | * client, passes them up to gssd, and returns a received token | |
2188 | * back to the client in the null procedure reply. | |
2189 | */ | |
2190 | int | |
2191 | nfs_gss_svc_ctx_init(struct nfsrv_descript *nd, struct nfsrv_sock *slp, mbuf_t *mrepp) | |
2192 | { | |
2193 | struct nfs_gss_svc_ctx *cp = NULL; | |
2194 | uint32_t handle = 0; | |
2195 | int error = 0; | |
2196 | int autherr = 0; | |
2197 | struct nfsm_chain *nmreq, nmrep; | |
2198 | int sz; | |
2199 | ||
2200 | nmreq = &nd->nd_nmreq; | |
2201 | nfsm_chain_null(&nmrep); | |
2202 | *mrepp = NULL; | |
2203 | cp = nd->nd_gss_context; | |
2204 | nd->nd_repstat = 0; | |
2205 | ||
2206 | switch (cp->gss_svc_proc) { | |
2207 | case RPCSEC_GSS_INIT: | |
2208 | /* | |
2209 | * Give the client a random handle so that | |
2210 | * if we reboot it's unlikely the client | |
2211 | * will get a bad context match. | |
2212 | * Make sure it's not zero, or already assigned. | |
2213 | */ | |
2214 | do { | |
2215 | handle = random(); | |
2216 | } while (nfs_gss_svc_ctx_find(handle) != NULL || handle == 0); | |
2217 | cp->gss_svc_handle = handle; | |
2218 | cp->gss_svc_mtx = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL); | |
2219 | clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, | |
2220 | &cp->gss_svc_expiretime); | |
2221 | ||
2222 | nfs_gss_svc_ctx_insert(cp); | |
2223 | ||
2224 | /* FALLTHRU */ | |
2225 | ||
2226 | case RPCSEC_GSS_CONTINUE_INIT: | |
2227 | /* Get the token from the request */ | |
2228 | nfsm_chain_get_32(error, nmreq, cp->gss_svc_tokenlen); | |
2229 | if (cp->gss_svc_tokenlen == 0) { | |
2230 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2231 | break; | |
2232 | } | |
2233 | MALLOC(cp->gss_svc_token, u_char *, cp->gss_svc_tokenlen, M_TEMP, M_WAITOK); | |
2234 | if (cp->gss_svc_token == NULL) { | |
2235 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2236 | break; | |
2237 | } | |
2238 | nfsm_chain_get_opaque(error, nmreq, cp->gss_svc_tokenlen, cp->gss_svc_token); | |
2239 | ||
2240 | /* Use the token in a gss_accept_sec_context upcall */ | |
2241 | error = nfs_gss_svc_gssd_upcall(cp); | |
2242 | if (error) { | |
2243 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2244 | if (error == EAUTH) | |
2245 | error = 0; | |
2246 | break; | |
2247 | } | |
2248 | ||
2249 | /* | |
2250 | * If the context isn't complete, pass the new token | |
2251 | * back to the client for another round. | |
2252 | */ | |
2253 | if (cp->gss_svc_major != GSS_S_COMPLETE) | |
2254 | break; | |
2255 | ||
2256 | /* | |
2257 | * Now the server context is complete. | |
2258 | * Finish setup. | |
2259 | */ | |
2260 | clock_interval_to_deadline(GSS_CTX_EXPIRE, NSEC_PER_SEC, | |
2261 | &cp->gss_svc_expiretime); | |
2262 | cp->gss_svc_seqwin = GSS_SVC_SEQWINDOW; | |
2263 | MALLOC(cp->gss_svc_seqbits, uint32_t *, | |
2264 | nfsm_rndup((cp->gss_svc_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO); | |
2265 | if (cp->gss_svc_seqbits == NULL) { | |
2266 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2267 | break; | |
2268 | } | |
2269 | ||
2270 | /* | |
2271 | * Generate a key schedule from our shiny new DES key | |
2272 | */ | |
2273 | error = des_key_sched((des_cblock *) cp->gss_svc_skey, cp->gss_svc_sched); | |
2274 | if (error) { | |
2275 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2276 | error = 0; | |
2277 | break; | |
2278 | } | |
2279 | break; | |
2280 | ||
2281 | case RPCSEC_GSS_DATA: | |
2282 | /* Just a nullproc ping - do nothing */ | |
2283 | break; | |
2284 | ||
2285 | case RPCSEC_GSS_DESTROY: | |
2286 | /* | |
2287 | * Don't destroy the context immediately because | |
2288 | * other active requests might still be using it. | |
2289 | * Instead, schedule it for destruction after | |
2290 | * GSS_CTX_PEND time has elapsed. | |
2291 | */ | |
2292 | cp = nfs_gss_svc_ctx_find(cp->gss_svc_handle); | |
2293 | if (cp != NULL) { | |
2294 | cp->gss_svc_handle = 0; // so it can't be found | |
2295 | lck_mtx_lock(cp->gss_svc_mtx); | |
2296 | clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, | |
2297 | &cp->gss_svc_expiretime); | |
2298 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2299 | } | |
2300 | break; | |
2301 | default: | |
2302 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2303 | break; | |
2304 | } | |
2305 | ||
2306 | /* Now build the reply */ | |
2307 | ||
2308 | if (nd->nd_repstat == 0) | |
2309 | nd->nd_repstat = autherr ? (NFSERR_AUTHERR | autherr) : NFSERR_RETVOID; | |
2310 | sz = 7 * NFSX_UNSIGNED + nfsm_rndup(cp->gss_svc_tokenlen); // size of results | |
2311 | error = nfsrv_rephead(nd, slp, &nmrep, sz); | |
2312 | *mrepp = nmrep.nmc_mhead; | |
2313 | if (error || autherr) | |
2314 | goto nfsmout; | |
2315 | ||
2316 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
2317 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) { | |
2318 | nfsm_chain_add_32(error, &nmrep, sizeof(cp->gss_svc_handle)); | |
2319 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_handle); | |
2320 | ||
2321 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_major); | |
2322 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_minor); | |
2323 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_seqwin); | |
2324 | ||
2325 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_tokenlen); | |
2326 | nfsm_chain_add_opaque(error, &nmrep, cp->gss_svc_token, cp->gss_svc_tokenlen); | |
2327 | if (cp->gss_svc_token != NULL) { | |
2328 | FREE(cp->gss_svc_token, M_TEMP); | |
2329 | cp->gss_svc_token = NULL; | |
2330 | } | |
2331 | } | |
2332 | ||
2333 | nfsmout: | |
2334 | if (autherr != 0) { | |
2335 | LIST_REMOVE(cp, gss_svc_entries); | |
2336 | if (cp->gss_svc_seqbits != NULL) | |
2337 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
2338 | if (cp->gss_svc_token != NULL) | |
2339 | FREE(cp->gss_svc_token, M_TEMP); | |
2340 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
2341 | FREE(cp, M_TEMP); | |
2342 | } | |
2343 | ||
2344 | nfsm_chain_build_done(error, &nmrep); | |
2345 | if (error) { | |
2346 | nfsm_chain_cleanup(&nmrep); | |
2347 | *mrepp = NULL; | |
2348 | } | |
2349 | return (error); | |
2350 | } | |
2351 | ||
2352 | /* | |
2353 | * This is almost a mirror-image of the client side upcall. | |
2354 | * It passes and receives a token, but invokes gss_accept_sec_context. | |
2355 | * If it's the final call of the context setup, then gssd also returns | |
2356 | * the session key and the user's UID. | |
2357 | */ | |
2358 | static int | |
2359 | nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *cp) | |
2360 | { | |
2361 | kern_return_t kr; | |
2362 | mach_port_t mp; | |
2363 | int retry_cnt = 0; | |
2364 | byte_buffer okey = NULL; | |
2365 | uint32_t skeylen = 0; | |
2366 | vm_map_copy_t itoken = NULL; | |
2367 | byte_buffer otoken = NULL; | |
2368 | int error = 0; | |
2369 | char svcname[] = "nfs"; | |
2370 | ||
2371 | kr = task_get_gssd_port(get_threadtask(current_thread()), &mp); | |
2372 | if (kr != KERN_SUCCESS) { | |
2373 | printf("nfs_gss_svc_gssd_upcall: can't get gssd port, status 0x%08x\n", kr); | |
2374 | return (EAUTH); | |
2375 | } | |
2376 | if (!IPC_PORT_VALID(mp)) { | |
2377 | printf("nfs_gss_svc_gssd_upcall: gssd port not valid\n"); | |
2378 | return (EAUTH); | |
2379 | } | |
2380 | ||
2381 | if (cp->gss_svc_tokenlen > 0) | |
2382 | nfs_gss_mach_alloc_buffer(cp->gss_svc_token, cp->gss_svc_tokenlen, &itoken); | |
2383 | ||
2384 | retry: | |
2385 | kr = mach_gss_accept_sec_context( | |
2386 | mp, | |
2387 | (byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_svc_tokenlen, | |
2388 | svcname, | |
2389 | 0, | |
2390 | &cp->gss_svc_gssd_verf, | |
2391 | &cp->gss_svc_context, | |
2392 | &cp->gss_svc_cred_handle, | |
2393 | &cp->gss_svc_uid, | |
2394 | cp->gss_svc_gids, | |
2395 | &cp->gss_svc_ngroups, | |
2396 | &okey, (mach_msg_type_number_t *) &skeylen, | |
2397 | &otoken, (mach_msg_type_number_t *) &cp->gss_svc_tokenlen, | |
2398 | &cp->gss_svc_major, | |
2399 | &cp->gss_svc_minor); | |
2400 | ||
2401 | if (kr != KERN_SUCCESS) { | |
2402 | printf("nfs_gss_svc_gssd_upcall failed: %d\n", kr); | |
2403 | if (kr == MIG_SERVER_DIED && cp->gss_svc_context == 0 && | |
2404 | retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES) | |
2405 | goto retry; | |
2406 | task_release_special_port(mp); | |
2407 | return (EAUTH); | |
2408 | } | |
2409 | ||
2410 | task_release_special_port(mp); | |
2411 | if (skeylen > 0) { | |
2412 | if (skeylen != SKEYLEN) { | |
2413 | printf("nfs_gss_svc_gssd_upcall: bad key length (%d)\n", skeylen); | |
2414 | return (EAUTH); | |
2415 | } | |
2416 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) okey, skeylen, cp->gss_svc_skey); | |
2417 | if (error) | |
2418 | return (EAUTH); | |
2419 | } | |
2420 | ||
2421 | if (cp->gss_svc_tokenlen > 0) { | |
2422 | MALLOC(cp->gss_svc_token, u_char *, cp->gss_svc_tokenlen, M_TEMP, M_WAITOK); | |
2423 | if (cp->gss_svc_token == NULL) | |
2424 | return (ENOMEM); | |
2425 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, cp->gss_svc_tokenlen, | |
2426 | cp->gss_svc_token); | |
2427 | if (error) | |
2428 | return (EAUTH); | |
2429 | } | |
2430 | ||
2431 | return (kr); | |
2432 | } | |
2433 | ||
2434 | /* | |
2435 | * Validate the sequence number in the credential as described | |
2436 | * in RFC 2203 Section 5.3.3.1 | |
2437 | * | |
2438 | * Here the window of valid sequence numbers is represented by | |
2439 | * a bitmap. As each sequence number is received, its bit is | |
2440 | * set in the bitmap. An invalid sequence number lies below | |
2441 | * the lower bound of the window, or is within the window but | |
2442 | * has its bit already set. | |
2443 | */ | |
2444 | static int | |
2445 | nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *cp, uint32_t seq) | |
2446 | { | |
2447 | uint32_t *bits = cp->gss_svc_seqbits; | |
2448 | uint32_t win = cp->gss_svc_seqwin; | |
2449 | uint32_t i; | |
2450 | ||
2451 | lck_mtx_lock(cp->gss_svc_mtx); | |
2452 | ||
2453 | /* | |
2454 | * If greater than the window upper bound, | |
2455 | * move the window up, and set the bit. | |
2456 | */ | |
2457 | if (seq > cp->gss_svc_seqmax) { | |
2458 | if (seq - cp->gss_svc_seqmax > win) | |
2459 | bzero(bits, nfsm_rndup((win + 7) / 8)); | |
2460 | else | |
2461 | for (i = cp->gss_svc_seqmax + 1; i < seq; i++) | |
2462 | win_resetbit(bits, i % win); | |
2463 | win_setbit(bits, seq % win); | |
2464 | cp->gss_svc_seqmax = seq; | |
2465 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2466 | return (1); | |
2467 | } | |
2468 | ||
2469 | /* | |
2470 | * Invalid if below the lower bound of the window | |
2471 | */ | |
2472 | if (seq <= cp->gss_svc_seqmax - win) { | |
2473 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2474 | return (0); | |
2475 | } | |
2476 | ||
2477 | /* | |
2478 | * In the window, invalid if the bit is already set | |
2479 | */ | |
2480 | if (win_getbit(bits, seq % win)) { | |
2481 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2482 | return (0); | |
2483 | } | |
2484 | win_setbit(bits, seq % win); | |
2485 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2486 | return (1); | |
2487 | } | |
2488 | ||
2489 | /* | |
2490 | * Called at NFS server shutdown - destroy all contexts | |
2491 | */ | |
2492 | void | |
2493 | nfs_gss_svc_cleanup(void) | |
2494 | { | |
2495 | struct nfs_gss_svc_ctx_hashhead *head; | |
2496 | struct nfs_gss_svc_ctx *cp, *ncp; | |
2497 | int i; | |
2498 | ||
2499 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
2500 | ||
2501 | /* | |
2502 | * Run through all the buckets | |
2503 | */ | |
2504 | for (i = 0; i < SVC_CTX_HASHSZ; i++) { | |
2505 | /* | |
2506 | * Remove and free all entries in the bucket | |
2507 | */ | |
2508 | head = &nfs_gss_svc_ctx_hashtbl[i]; | |
2509 | LIST_FOREACH_SAFE(cp, head, gss_svc_entries, ncp) { | |
2510 | LIST_REMOVE(cp, gss_svc_entries); | |
2511 | if (cp->gss_svc_seqbits) | |
2512 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
2513 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
2514 | FREE(cp, M_TEMP); | |
2515 | } | |
2516 | } | |
2517 | ||
2518 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
2519 | } | |
2520 | ||
2521 | #endif /* NFSSERVER */ | |
2522 | ||
2523 | ||
2524 | /************* | |
2525 | * The following functions are used by both client and server. | |
2526 | */ | |
2527 | ||
2528 | /* | |
2529 | * Release a task special port that was obtained by task_get_special_port | |
2530 | * or one of its macros (task_get_gssd_port in this case). | |
2531 | * This really should be in a public kpi. | |
2532 | */ | |
2533 | ||
2534 | /* This should be in a public header if this routine is not */ | |
2535 | extern void ipc_port_release_send(ipc_port_t); | |
2536 | extern ipc_port_t ipc_port_copy_send(ipc_port_t); | |
2537 | ||
2538 | static void | |
2539 | task_release_special_port(mach_port_t mp) | |
2540 | { | |
2541 | ||
2542 | ipc_port_release_send(mp); | |
2543 | } | |
2544 | ||
2545 | static mach_port_t | |
2546 | task_copy_special_port(mach_port_t mp) | |
2547 | { | |
2548 | return ipc_port_copy_send(mp); | |
2549 | } | |
2550 | ||
2551 | /* | |
2552 | * The token that is sent and received in the gssd upcall | |
2553 | * has unbounded variable length. Mach RPC does not pass | |
2554 | * the token in-line. Instead it uses page mapping to handle | |
2555 | * these parameters. This function allocates a VM buffer | |
2556 | * to hold the token for an upcall and copies the token | |
2557 | * (received from the client) into it. The VM buffer is | |
2558 | * marked with a src_destroy flag so that the upcall will | |
2559 | * automatically de-allocate the buffer when the upcall is | |
2560 | * complete. | |
2561 | */ | |
2562 | static void | |
2563 | nfs_gss_mach_alloc_buffer(u_char *buf, uint32_t buflen, vm_map_copy_t *addr) | |
2564 | { | |
2565 | kern_return_t kr; | |
2566 | vm_offset_t kmem_buf; | |
2567 | vm_size_t tbuflen; | |
2568 | ||
2569 | *addr = NULL; | |
2570 | if (buf == NULL || buflen == 0) | |
2571 | return; | |
2572 | ||
2573 | tbuflen = round_page(buflen); | |
2574 | kr = vm_allocate(ipc_kernel_map, &kmem_buf, tbuflen, VM_FLAGS_ANYWHERE); | |
2575 | if (kr != 0) { | |
2576 | printf("nfs_gss_mach_alloc_buffer: vm_allocate failed\n"); | |
2577 | return; | |
2578 | } | |
2579 | ||
2580 | kr = vm_map_wire(ipc_kernel_map, vm_map_trunc_page(kmem_buf), | |
2581 | vm_map_round_page(kmem_buf + tbuflen), | |
2582 | VM_PROT_READ|VM_PROT_WRITE, FALSE); | |
2583 | ||
2584 | bcopy(buf, (void *) kmem_buf, buflen); | |
2585 | ||
2586 | kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(kmem_buf), | |
2587 | vm_map_round_page(kmem_buf + tbuflen), FALSE); | |
2588 | if (kr != 0) { | |
2589 | printf("nfs_gss_mach_alloc_buffer: vm_map_unwire failed\n"); | |
2590 | return; | |
2591 | } | |
2592 | ||
2593 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t) kmem_buf, | |
2594 | (vm_map_size_t) buflen, TRUE, addr); | |
2595 | if (kr != 0) { | |
2596 | printf("nfs_gss_mach_alloc_buffer: vm_map_copyin failed\n"); | |
2597 | return; | |
2598 | } | |
2599 | ||
2600 | if (buflen != tbuflen) | |
2601 | kmem_free(ipc_kernel_map, kmem_buf + buflen, tbuflen - buflen); | |
2602 | } | |
2603 | ||
2604 | /* | |
2605 | * Here we handle a token received from the gssd via an upcall. | |
2606 | * The received token resides in an allocate VM buffer. | |
2607 | * We copy the token out of this buffer to a chunk of malloc'ed | |
2608 | * memory of the right size, then de-allocate the VM buffer. | |
2609 | */ | |
2610 | static int | |
2611 | nfs_gss_mach_vmcopyout(vm_map_copy_t in, uint32_t len, u_char *out) | |
2612 | { | |
2613 | vm_map_offset_t map_data; | |
2614 | vm_offset_t data; | |
2615 | int error; | |
2616 | ||
2617 | error = vm_map_copyout(ipc_kernel_map, &map_data, in); | |
2618 | if (error) | |
2619 | return (error); | |
2620 | ||
2621 | data = CAST_DOWN(vm_offset_t, map_data); | |
2622 | bcopy((void *) data, out, len); | |
2623 | vm_deallocate(ipc_kernel_map, data, len); | |
2624 | ||
2625 | return (0); | |
2626 | } | |
2627 | ||
2628 | /* | |
2629 | * Encode an ASN.1 token to be wrapped in an RPCSEC_GSS verifier. | |
2630 | * Returns the size of the token, since it contains a variable | |
2631 | * length DER encoded size field. | |
2632 | */ | |
2633 | static int | |
2634 | nfs_gss_token_put( | |
2635 | des_key_schedule sched, | |
2636 | u_char *alg, | |
2637 | u_char *p, | |
2638 | int initiator, | |
2639 | int datalen, | |
2640 | u_char *cksum) | |
2641 | { | |
2642 | static uint32_t seqnum = 0; | |
2643 | u_char *psave = p; | |
2644 | u_char plain[8]; | |
2645 | int toklen, i; | |
2646 | ||
2647 | /* | |
2648 | * Fill in the token header: 2 octets. | |
2649 | * This is 0x06 - an ASN.1 tag for APPLICATION, 0, SEQUENCE | |
2650 | * followed by the length of the token: 35 + 0 octets for a | |
2651 | * MIC token, or 35 + encrypted octets for a wrap token; | |
2652 | */ | |
2653 | *p++ = 0x060; | |
2654 | toklen = KRB5_SZ_MECH + KRB5_SZ_ALG + KRB5_SZ_SEQ + KRB5_SZ_CKSUM; | |
2655 | nfs_gss_der_length_put(&p, toklen + datalen); | |
2656 | ||
2657 | /* | |
2658 | * Fill in the DER encoded mech OID for Kerberos v5. | |
2659 | * This represents the Kerberos OID 1.2.840.113554.1.2.2 | |
2660 | * described in RFC 2623, section 4.2 | |
2661 | */ | |
2662 | bcopy(krb5_mech, p, sizeof(krb5_mech)); | |
2663 | p += sizeof(krb5_mech); | |
2664 | ||
2665 | /* | |
2666 | * Now at the token described in RFC 1964, section 1.2.1 | |
2667 | * Fill in the token ID, integrity algorithm indicator, | |
2668 | * for DES MAC MD5, and four filler octets. | |
2669 | * The alg string encodes the bytes to represent either | |
2670 | * a MIC token or a WRAP token for Kerberos. | |
2671 | */ | |
2672 | bcopy(alg, p, KRB5_SZ_ALG); | |
2673 | p += KRB5_SZ_ALG; | |
2674 | ||
2675 | /* | |
2676 | * Now encode the sequence number according to | |
2677 | * RFC 1964, section 1.2.1.2 which dictates 4 octets | |
2678 | * of sequence number followed by 4 bytes of direction | |
2679 | * indicator: 0x00 for initiator or 0xff for acceptor. | |
2680 | * We DES CBC encrypt the sequence number using the first | |
2681 | * 8 octets of the checksum field as an initialization | |
2682 | * vector. | |
2683 | * Note that this sequence number is not at all related | |
2684 | * to the RPCSEC_GSS protocol sequence number. This | |
2685 | * number is private to the ASN.1 token. The only | |
2686 | * requirement is that it not be repeated in case the | |
2687 | * server has replay detection on, which normally should | |
2688 | * not be the case, since RFC 2203 section 5.2.3 says that | |
2689 | * replay detection and sequence checking must be turned off. | |
2690 | */ | |
2691 | seqnum++; | |
2692 | for (i = 0; i < 4; i++) | |
2693 | plain[i] = (u_char) ((seqnum >> (i * 8)) & 0xff); | |
2694 | for (i = 4; i < 8; i++) | |
2695 | plain[i] = initiator ? 0x00 : 0xff; | |
2696 | des_cbc_encrypt((des_cblock *) plain, (des_cblock *) p, 8, | |
2697 | sched, (des_cblock *) cksum, NULL, DES_ENCRYPT); | |
2698 | p += 8; | |
2699 | ||
2700 | /* | |
2701 | * Finally, append 8 octets of DES MAC MD5 | |
2702 | * checksum of the alg + plaintext data. | |
2703 | * The plaintext could be an RPC call header, | |
2704 | * the window value, or a sequence number. | |
2705 | */ | |
2706 | bcopy(cksum, p, 8); | |
2707 | p += 8; | |
2708 | ||
2709 | return (p - psave); | |
2710 | } | |
2711 | ||
2712 | /* | |
2713 | * Determine size of ASN.1 DER length | |
2714 | */ | |
2715 | static int | |
2716 | nfs_gss_der_length_size(int len) | |
2717 | { | |
2718 | return | |
2719 | len < (1 << 7) ? 1 : | |
2720 | len < (1 << 8) ? 2 : | |
2721 | len < (1 << 16) ? 3 : | |
2722 | len < (1 << 24) ? 4 : 5; | |
2723 | } | |
2724 | ||
2725 | /* | |
2726 | * Encode an ASN.1 DER length field | |
2727 | */ | |
2728 | static void | |
2729 | nfs_gss_der_length_put(u_char **pp, int len) | |
2730 | { | |
2731 | int sz = nfs_gss_der_length_size(len); | |
2732 | u_char *p = *pp; | |
2733 | ||
2734 | if (sz == 1) { | |
2735 | *p++ = (u_char) len; | |
2736 | } else { | |
2737 | *p++ = (u_char) ((sz-1) | 0x80); | |
2738 | sz -= 1; | |
2739 | while (sz--) | |
2740 | *p++ = (u_char) ((len >> (sz * 8)) & 0xff); | |
2741 | } | |
2742 | ||
2743 | *pp = p; | |
2744 | } | |
2745 | ||
2746 | /* | |
2747 | * Decode an ASN.1 DER length field | |
2748 | */ | |
2749 | static int | |
2750 | nfs_gss_der_length_get(u_char **pp) | |
2751 | { | |
2752 | u_char *p = *pp; | |
2753 | uint32_t flen, len = 0; | |
2754 | ||
2755 | flen = *p & 0x7f; | |
2756 | ||
2757 | if ((*p++ & 0x80) == 0) | |
2758 | len = flen; | |
2759 | else { | |
2760 | if (flen > sizeof(uint32_t)) | |
2761 | return (-1); | |
2762 | while (flen--) | |
2763 | len = (len << 8) + *p++; | |
2764 | } | |
2765 | *pp = p; | |
2766 | return (len); | |
2767 | } | |
2768 | ||
2769 | /* | |
2770 | * Decode an ASN.1 token from an RPCSEC_GSS verifier. | |
2771 | */ | |
2772 | static int | |
2773 | nfs_gss_token_get( | |
2774 | des_key_schedule sched, | |
2775 | u_char *alg, | |
2776 | u_char *p, | |
2777 | int initiator, | |
2778 | uint32_t *len, | |
2779 | u_char *cksum) | |
2780 | { | |
2781 | u_char d, plain[8]; | |
2782 | u_char *psave = p; | |
2783 | int seqnum, i; | |
2784 | ||
2785 | /* | |
2786 | * Check that we have a valid token header | |
2787 | */ | |
2788 | if (*p++ != 0x60) | |
2789 | return (AUTH_BADCRED); | |
2790 | (void) nfs_gss_der_length_get(&p); // ignore the size | |
2791 | ||
2792 | /* | |
2793 | * Check that we have the DER encoded Kerberos v5 mech OID | |
2794 | */ | |
2795 | if (bcmp(p, krb5_mech, sizeof(krb5_mech) != 0)) | |
2796 | return (AUTH_BADCRED); | |
2797 | p += sizeof(krb5_mech); | |
2798 | ||
2799 | /* | |
2800 | * Now check the token ID, DES MAC MD5 algorithm | |
2801 | * indicator, and filler octets. | |
2802 | */ | |
2803 | if (bcmp(p, alg, KRB5_SZ_ALG) != 0) | |
2804 | return (AUTH_BADCRED); | |
2805 | p += KRB5_SZ_ALG; | |
2806 | ||
2807 | /* | |
2808 | * Now decrypt the sequence number. | |
2809 | * Note that the DES CBC decryption uses the first 8 octets | |
2810 | * of the checksum field as an initialization vector (p + 8). | |
2811 | * Per RFC 2203 section 5.2.2 we don't check the sequence number | |
2812 | * in the ASN.1 token because the RPCSEC_GSS protocol has its | |
2813 | * own sequence number described in section 5.3.3.1 | |
2814 | */ | |
2815 | seqnum = 0; | |
2816 | des_cbc_encrypt((des_cblock *) p, (des_cblock *) plain, 8, | |
2817 | sched, (des_cblock *) (p + 8), NULL, DES_DECRYPT); | |
2818 | p += 8; | |
2819 | for (i = 0; i < 4; i++) | |
2820 | seqnum |= plain[i] << (i * 8); | |
2821 | ||
2822 | /* | |
2823 | * Make sure the direction | |
2824 | * indicator octets are correct. | |
2825 | */ | |
2826 | d = initiator ? 0x00 : 0xff; | |
2827 | for (i = 4; i < 8; i++) | |
2828 | if (plain[i] != d) | |
2829 | return (AUTH_BADCRED); | |
2830 | ||
2831 | /* | |
2832 | * Finally, get the checksum | |
2833 | */ | |
2834 | bcopy(p, cksum, 8); | |
2835 | p += 8; | |
2836 | ||
2837 | if (len != NULL) | |
2838 | *len = p - psave; | |
2839 | ||
2840 | return (0); | |
2841 | } | |
2842 | ||
2843 | /* | |
2844 | * Return the number of bytes in an mbuf chain. | |
2845 | */ | |
2846 | static int | |
2847 | nfs_gss_mchain_length(mbuf_t mhead) | |
2848 | { | |
2849 | mbuf_t mb; | |
2850 | int len = 0; | |
2851 | ||
2852 | for (mb = mhead; mb; mb = mbuf_next(mb)) | |
2853 | len += mbuf_len(mb); | |
2854 | ||
2855 | return (len); | |
2856 | } | |
2857 | ||
2858 | /* | |
2859 | * Append an args or results mbuf chain to the header chain | |
2860 | */ | |
2861 | static int | |
2862 | nfs_gss_append_chain(struct nfsm_chain *nmc, mbuf_t mc) | |
2863 | { | |
2864 | int error = 0; | |
2865 | mbuf_t mb, tail; | |
2866 | ||
2867 | /* Connect the mbuf chains */ | |
2868 | error = mbuf_setnext(nmc->nmc_mcur, mc); | |
2869 | if (error) | |
2870 | return (error); | |
2871 | ||
2872 | /* Find the last mbuf in the chain */ | |
2873 | tail = NULL; | |
2874 | for (mb = mc; mb; mb = mbuf_next(mb)) | |
2875 | tail = mb; | |
2876 | ||
2877 | nmc->nmc_mcur = tail; | |
2878 | nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail); | |
2879 | nmc->nmc_left = mbuf_trailingspace(tail); | |
2880 | ||
2881 | return (0); | |
2882 | } | |
2883 | ||
2884 | /* | |
2885 | * Convert an mbuf chain to an NFS mbuf chain | |
2886 | */ | |
2887 | static void | |
2888 | nfs_gss_nfsm_chain(struct nfsm_chain *nmc, mbuf_t mc) | |
2889 | { | |
2890 | mbuf_t mb, tail; | |
2891 | ||
2892 | /* Find the last mbuf in the chain */ | |
2893 | tail = NULL; | |
2894 | for (mb = mc; mb; mb = mbuf_next(mb)) | |
2895 | tail = mb; | |
2896 | ||
2897 | nmc->nmc_mhead = mc; | |
2898 | nmc->nmc_mcur = tail; | |
2899 | nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail); | |
2900 | nmc->nmc_left = mbuf_trailingspace(tail); | |
2901 | nmc->nmc_flags = 0; | |
2902 | } | |
2903 | ||
2904 | ||
2905 | /* | |
2906 | * Compute a checksum over an mbuf chain. | |
2907 | * Start building an MD5 digest at the given offset and keep | |
2908 | * going until the end of data in the current mbuf is reached. | |
2909 | * Then convert the 16 byte MD5 digest to an 8 byte DES CBC | |
2910 | * checksum. | |
2911 | */ | |
2912 | static void | |
2913 | nfs_gss_cksum_mchain( | |
2914 | des_key_schedule sched, | |
2915 | mbuf_t mhead, | |
2916 | u_char *alg, | |
2917 | int offset, | |
2918 | int len, | |
2919 | u_char *cksum) | |
2920 | { | |
2921 | mbuf_t mb; | |
2922 | u_char *ptr; | |
2923 | int left, bytes; | |
2924 | MD5_CTX context; | |
2925 | u_char digest[16]; | |
2926 | ||
2927 | MD5Init(&context); | |
2928 | ||
2929 | /* | |
2930 | * Logically prepend the first 8 bytes of the algorithm | |
2931 | * field as required by RFC 1964, section 1.2.1.1 | |
2932 | */ | |
2933 | MD5Update(&context, alg, KRB5_SZ_ALG); | |
2934 | ||
2935 | /* | |
2936 | * Move down the mbuf chain until we reach the given | |
2937 | * byte offset, then start MD5 on the mbuf data until | |
2938 | * we've done len bytes. | |
2939 | */ | |
2940 | ||
2941 | for (mb = mhead; mb && len > 0; mb = mbuf_next(mb)) { | |
2942 | ptr = mbuf_data(mb); | |
2943 | left = mbuf_len(mb); | |
2944 | if (offset >= left) { | |
2945 | /* Offset not yet reached */ | |
2946 | offset -= left; | |
2947 | continue; | |
2948 | } | |
2949 | /* At or beyond offset - checksum data */ | |
2950 | ptr += offset; | |
2951 | left -= offset; | |
2952 | offset = 0; | |
2953 | ||
2954 | bytes = left < len ? left : len; | |
2955 | if (bytes > 0) | |
2956 | MD5Update(&context, ptr, bytes); | |
2957 | len -= bytes; | |
2958 | } | |
2959 | ||
2960 | MD5Final(digest, &context); | |
2961 | ||
2962 | /* | |
2963 | * Now get the DES CBC checksum for the digest. | |
2964 | */ | |
2965 | (void) des_cbc_cksum((des_cblock *) digest, (des_cblock *) cksum, | |
2966 | sizeof(digest), sched, (des_cblock *) iv0); | |
2967 | } | |
2968 | ||
2969 | /* | |
2970 | * Compute a checksum over an NFS mbuf chain. | |
2971 | * Start building an MD5 digest at the given offset and keep | |
2972 | * going until the end of data in the current mbuf is reached. | |
2973 | * Then convert the 16 byte MD5 digest to an 8 byte DES CBC | |
2974 | * checksum. | |
2975 | */ | |
2976 | static void | |
2977 | nfs_gss_cksum_chain( | |
2978 | des_key_schedule sched, | |
2979 | struct nfsm_chain *nmc, | |
2980 | u_char *alg, | |
2981 | int offset, | |
2982 | int len, | |
2983 | u_char *cksum) | |
2984 | { | |
2985 | /* | |
2986 | * If the length parameter is zero, then we need | |
2987 | * to use the length from the offset to the current | |
2988 | * encode/decode offset. | |
2989 | */ | |
2990 | if (len == 0) | |
2991 | len = nfsm_chain_offset(nmc) - offset; | |
2992 | ||
2993 | return (nfs_gss_cksum_mchain(sched, nmc->nmc_mhead, alg, offset, len, cksum)); | |
2994 | } | |
2995 | ||
2996 | /* | |
2997 | * Compute a checksum of the sequence number (or sequence window) | |
2998 | * of an RPCSEC_GSS reply. | |
2999 | */ | |
3000 | static void | |
3001 | nfs_gss_cksum_rep(des_key_schedule sched, uint32_t seqnum, u_char *cksum) | |
3002 | { | |
3003 | MD5_CTX context; | |
3004 | u_char digest[16]; | |
3005 | uint32_t val = htonl(seqnum); | |
3006 | ||
3007 | MD5Init(&context); | |
3008 | ||
3009 | /* | |
3010 | * Logically prepend the first 8 bytes of the MIC | |
3011 | * token as required by RFC 1964, section 1.2.1.1 | |
3012 | */ | |
3013 | MD5Update(&context, krb5_mic, KRB5_SZ_ALG); | |
3014 | ||
3015 | /* | |
3016 | * Compute the digest of the seqnum in network order | |
3017 | */ | |
3018 | MD5Update(&context, (u_char *) &val, 4); | |
3019 | MD5Final(digest, &context); | |
3020 | ||
3021 | /* | |
3022 | * Now get the DES CBC checksum for the digest. | |
3023 | */ | |
3024 | (void) des_cbc_cksum((des_cblock *) digest, (des_cblock *) cksum, | |
3025 | sizeof(digest), sched, (des_cblock *) iv0); | |
3026 | } | |
3027 | ||
3028 | /* | |
3029 | * Encrypt or decrypt data in an mbuf chain with des-cbc. | |
3030 | */ | |
3031 | static void | |
3032 | nfs_gss_encrypt_mchain( | |
3033 | u_char *key, | |
3034 | mbuf_t mhead, | |
3035 | int offset, | |
3036 | int len, | |
3037 | int encrypt) | |
3038 | { | |
3039 | des_key_schedule sched; | |
3040 | mbuf_t mb, mbn; | |
3041 | u_char *ptr, *nptr; | |
3042 | u_char tmp[8], ivec[8]; | |
3043 | int i, left, left8, remain; | |
3044 | ||
3045 | /* | |
3046 | * Make the key schedule per RFC 1964 section 1.2.2.3 | |
3047 | */ | |
3048 | for (i = 0; i < 8; i++) | |
3049 | tmp[i] = key[i] ^ 0xf0; | |
3050 | bzero(ivec, 8); | |
3051 | ||
3052 | (void) des_key_sched((des_cblock *) tmp, sched); | |
3053 | ||
3054 | /* | |
3055 | * Move down the mbuf chain until we reach the given | |
3056 | * byte offset, then start encrypting the mbuf data until | |
3057 | * we've done len bytes. | |
3058 | */ | |
3059 | ||
3060 | for (mb = mhead; mb && len > 0; mb = mbn) { | |
3061 | mbn = mbuf_next(mb); | |
3062 | ptr = mbuf_data(mb); | |
3063 | left = mbuf_len(mb); | |
3064 | if (offset >= left) { | |
3065 | /* Offset not yet reached */ | |
3066 | offset -= left; | |
3067 | continue; | |
3068 | } | |
3069 | /* At or beyond offset - encrypt data */ | |
3070 | ptr += offset; | |
3071 | left -= offset; | |
3072 | offset = 0; | |
3073 | ||
3074 | /* | |
3075 | * DES CBC has to encrypt 8 bytes at a time. | |
3076 | * If the number of bytes to be encrypted in this | |
3077 | * mbuf isn't some multiple of 8 bytes, encrypt all | |
3078 | * the 8 byte blocks, then combine the remaining | |
3079 | * bytes with enough from the next mbuf to make up | |
3080 | * an 8 byte block and encrypt that block separately, | |
3081 | * i.e. that block is split across two mbufs. | |
3082 | */ | |
3083 | remain = left % 8; | |
3084 | left8 = left - remain; | |
3085 | left = left8 < len ? left8 : len; | |
3086 | if (left > 0) { | |
3087 | des_cbc_encrypt((des_cblock *) ptr, (des_cblock *) ptr, left, sched, | |
3088 | (des_cblock *) ivec, (des_cblock *) ivec, encrypt); | |
3089 | len -= left; | |
3090 | } | |
3091 | ||
3092 | if (mbn && remain > 0) { | |
3093 | nptr = mbuf_data(mbn); | |
3094 | offset = 8 - remain; | |
3095 | bcopy(ptr + left, tmp, remain); // grab from this mbuf | |
3096 | bcopy(nptr, tmp + remain, offset); // grab from next mbuf | |
3097 | des_cbc_encrypt((des_cblock *) tmp, (des_cblock *) tmp, 8, sched, | |
3098 | (des_cblock *) ivec, (des_cblock *) ivec, encrypt); | |
3099 | bcopy(tmp, ptr + left, remain); // return to this mbuf | |
3100 | bcopy(tmp + remain, nptr, offset); // return to next mbuf | |
3101 | len -= 8; | |
3102 | } | |
3103 | } | |
3104 | } | |
3105 | ||
3106 | /* | |
3107 | * Encrypt or decrypt data in an NFS mbuf chain with des-cbc. | |
3108 | */ | |
3109 | static void | |
3110 | nfs_gss_encrypt_chain( | |
3111 | u_char *key, | |
3112 | struct nfsm_chain *nmc, | |
3113 | int offset, | |
3114 | int len, | |
3115 | int encrypt) | |
3116 | { | |
3117 | /* | |
3118 | * If the length parameter is zero, then we need | |
3119 | * to use the length from the offset to the current | |
3120 | * encode/decode offset. | |
3121 | */ | |
3122 | if (len == 0) | |
3123 | len = nfsm_chain_offset(nmc) - offset; | |
3124 | ||
3125 | return (nfs_gss_encrypt_mchain(key, nmc->nmc_mhead, offset, len, encrypt)); | |
3126 | } | |
3127 | ||
3128 | /* | |
3129 | * XXX This function borrowed from OpenBSD. | |
3130 | * It will likely be moved into kernel crypto. | |
3131 | */ | |
3132 | static DES_LONG | |
3133 | des_cbc_cksum(input, output, length, schedule, ivec) | |
3134 | des_cblock (*input); | |
3135 | des_cblock (*output); | |
3136 | long length; | |
3137 | des_key_schedule schedule; | |
3138 | des_cblock (*ivec); | |
3139 | { | |
3140 | register unsigned long tout0,tout1,tin0,tin1; | |
3141 | register long l=length; | |
3142 | unsigned long tin[2]; | |
3143 | unsigned char *in,*out,*iv; | |
3144 | ||
3145 | in=(unsigned char *)input; | |
3146 | out=(unsigned char *)output; | |
3147 | iv=(unsigned char *)ivec; | |
3148 | ||
3149 | c2l(iv,tout0); | |
3150 | c2l(iv,tout1); | |
3151 | for (; l>0; l-=8) { | |
3152 | if (l >= 8) { | |
3153 | c2l(in,tin0); | |
3154 | c2l(in,tin1); | |
3155 | } else | |
3156 | c2ln(in,tin0,tin1,l); | |
3157 | ||
3158 | tin0^=tout0; tin[0]=tin0; | |
3159 | tin1^=tout1; tin[1]=tin1; | |
3160 | des_encrypt1((DES_LONG *)tin,schedule,DES_ENCRYPT); | |
3161 | /* fix 15/10/91 eay - thanks to keithr@sco.COM */ | |
3162 | tout0=tin[0]; | |
3163 | tout1=tin[1]; | |
3164 | } | |
3165 | if (out != NULL) { | |
3166 | l2c(tout0,out); | |
3167 | l2c(tout1,out); | |
3168 | } | |
3169 | tout0=tin0=tin1=tin[0]=tin[1]=0; | |
3170 | return(tout1); | |
3171 | } | |
3172 | ||
3173 | /* | |
3174 | * XXX This function borrowed from OpenBSD. | |
3175 | * It will likely be moved into kernel crypto. | |
3176 | */ | |
3177 | static void | |
3178 | des_cbc_encrypt(input, output, length, schedule, ivec, retvec, encrypt) | |
3179 | des_cblock (*input); | |
3180 | des_cblock (*output); | |
3181 | long length; | |
3182 | des_key_schedule schedule; | |
3183 | des_cblock (*ivec); | |
3184 | des_cblock (*retvec); | |
3185 | int encrypt; | |
3186 | { | |
3187 | register unsigned long tin0,tin1; | |
3188 | register unsigned long tout0,tout1,xor0,xor1; | |
3189 | register unsigned char *in,*out,*retval; | |
3190 | register long l=length; | |
3191 | unsigned long tin[2]; | |
3192 | unsigned char *iv; | |
3193 | tin0 = tin1 = 0; | |
3194 | ||
3195 | in=(unsigned char *)input; | |
3196 | out=(unsigned char *)output; | |
3197 | retval=(unsigned char *)retvec; | |
3198 | iv=(unsigned char *)ivec; | |
3199 | ||
3200 | if (encrypt) { | |
3201 | c2l(iv,tout0); | |
3202 | c2l(iv,tout1); | |
3203 | for (l-=8; l>=0; l-=8) { | |
3204 | c2l(in,tin0); | |
3205 | c2l(in,tin1); | |
3206 | tin0^=tout0; tin[0]=tin0; | |
3207 | tin1^=tout1; tin[1]=tin1; | |
3208 | des_encrypt1((DES_LONG *)tin,schedule,DES_ENCRYPT); | |
3209 | tout0=tin[0]; l2c(tout0,out); | |
3210 | tout1=tin[1]; l2c(tout1,out); | |
3211 | } | |
3212 | if (l != -8) { | |
3213 | c2ln(in,tin0,tin1,l+8); | |
3214 | tin0^=tout0; tin[0]=tin0; | |
3215 | tin1^=tout1; tin[1]=tin1; | |
3216 | des_encrypt1((DES_LONG *)tin,schedule,DES_ENCRYPT); | |
3217 | tout0=tin[0]; l2c(tout0,out); | |
3218 | tout1=tin[1]; l2c(tout1,out); | |
3219 | } | |
3220 | if (retval) { | |
3221 | l2c(tout0,retval); | |
3222 | l2c(tout1,retval); | |
3223 | } | |
3224 | } else { | |
3225 | c2l(iv,xor0); | |
3226 | c2l(iv,xor1); | |
3227 | for (l-=8; l>=0; l-=8) { | |
3228 | c2l(in,tin0); tin[0]=tin0; | |
3229 | c2l(in,tin1); tin[1]=tin1; | |
3230 | des_encrypt1((DES_LONG *)tin,schedule,DES_DECRYPT); | |
3231 | tout0=tin[0]^xor0; | |
3232 | tout1=tin[1]^xor1; | |
3233 | l2c(tout0,out); | |
3234 | l2c(tout1,out); | |
3235 | xor0=tin0; | |
3236 | xor1=tin1; | |
3237 | } | |
3238 | if (l != -8) { | |
3239 | c2l(in,tin0); tin[0]=tin0; | |
3240 | c2l(in,tin1); tin[1]=tin1; | |
3241 | des_encrypt1((DES_LONG *)tin,schedule,DES_DECRYPT); | |
3242 | tout0=tin[0]^xor0; | |
3243 | tout1=tin[1]^xor1; | |
3244 | l2cn(tout0,tout1,out,l+8); | |
3245 | /* xor0=tin0; | |
3246 | xor1=tin1; */ | |
3247 | } | |
3248 | if (retval) { | |
3249 | l2c(tin0,retval); | |
3250 | l2c(tin1,retval); | |
3251 | } | |
3252 | } | |
3253 | tin0=tin1=tout0=tout1=xor0=xor1=0; | |
3254 | tin[0]=tin[1]=0; | |
3255 | } |