]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/uipc_socket2.c
xnu-517.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
CommitLineData
1c79356b
A
1/*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
43866e37 6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
1c79356b 7 *
43866e37
A
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
1c79356b
A
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
43866e37
A
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
1c79356b
A
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25/* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
26/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
27/*
28 * Copyright (c) 1982, 1986, 1988, 1990, 1993
29 * The Regents of the University of California. All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. All advertising materials mentioning features or use of this software
40 * must display the following acknowledgement:
41 * This product includes software developed by the University of
42 * California, Berkeley and its contributors.
43 * 4. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
9bccf70c 60 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $
1c79356b
A
61 */
62
63#include <sys/param.h>
64#include <sys/systm.h>
65#include <sys/domain.h>
66#include <sys/kernel.h>
67#include <sys/proc.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/protosw.h>
71#include <sys/stat.h>
72#include <sys/socket.h>
73#include <sys/socketvar.h>
74#include <sys/signalvar.h>
75#include <sys/sysctl.h>
76#include <sys/ev.h>
77
fa4905b1
A
78#include <sys/kdebug.h>
79
80#define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
81#define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
82
83
1c79356b
A
84/*
85 * Primitive routines for operating on sockets and socket buffers
86 */
87
88u_long sb_max = SB_MAX; /* XXX should be static */
89
90static u_long sb_efficiency = 8; /* parameter for sbreserve() */
91
1c79356b
A
92/*
93 * Procedures to manipulate state flags of socket
94 * and do appropriate wakeups. Normal sequence from the
95 * active (originating) side is that soisconnecting() is
96 * called during processing of connect() call,
97 * resulting in an eventual call to soisconnected() if/when the
98 * connection is established. When the connection is torn down
9bccf70c 99 * soisdisconnecting() is called during processing of disconnect() call,
1c79356b
A
100 * and soisdisconnected() is called when the connection to the peer
101 * is totally severed. The semantics of these routines are such that
102 * connectionless protocols can call soisconnected() and soisdisconnected()
103 * only, bypassing the in-progress calls when setting up a ``connection''
104 * takes no time.
105 *
106 * From the passive side, a socket is created with
e3027f41
A
107 * two queues of sockets: so_incomp for connections in progress
108 * and so_comp for connections already made and awaiting user acceptance.
9bccf70c 109 * As a protocol is preparing incoming connections, it creates a socket
e3027f41 110 * structure queued on so_incomp by calling sonewconn(). When the connection
1c79356b 111 * is established, soisconnected() is called, and transfers the
e3027f41 112 * socket structure to so_comp, making it available to accept().
1c79356b 113 *
9bccf70c 114 * If a socket is closed with sockets on either
e3027f41 115 * so_incomp or so_comp, these sockets are dropped.
9bccf70c 116 *
1c79356b
A
117 * If higher level protocols are implemented in
118 * the kernel, the wakeups done here will sometimes
119 * cause software-interrupt process scheduling.
120 */
121
122void
123soisconnecting(so)
124 register struct socket *so;
125{
126
127 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
128 so->so_state |= SS_ISCONNECTING;
129}
130
131void
132soisconnected(so)
9bccf70c
A
133 struct socket *so;
134{
135 struct socket *head = so->so_head;
136 struct kextcb *kp;
1c79356b
A
137
138 kp = sotokextcb(so);
9bccf70c
A
139 while (kp) {
140 if (kp->e_soif && kp->e_soif->sf_soisconnected) {
141 if ((*kp->e_soif->sf_soisconnected)(so, kp))
1c79356b
A
142 return;
143 }
144 kp = kp->e_next;
145 }
146
147 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
148 so->so_state |= SS_ISCONNECTED;
149 if (head && (so->so_state & SS_INCOMP)) {
150 postevent(head,0,EV_RCONN);
151 TAILQ_REMOVE(&head->so_incomp, so, so_list);
152 head->so_incqlen--;
153 so->so_state &= ~SS_INCOMP;
154 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
155 so->so_state |= SS_COMP;
156 sorwakeup(head);
9bccf70c 157 wakeup_one(&head->so_timeo);
1c79356b
A
158 } else {
159 postevent(so,0,EV_WCONN);
160 wakeup((caddr_t)&so->so_timeo);
161 sorwakeup(so);
162 sowwakeup(so);
163 }
164}
165
166void
167soisdisconnecting(so)
168 register struct socket *so;
9bccf70c
A
169{
170 register struct kextcb *kp;
1c79356b
A
171
172 kp = sotokextcb(so);
9bccf70c
A
173 while (kp) {
174 if (kp->e_soif && kp->e_soif->sf_soisdisconnecting) {
175 if ((*kp->e_soif->sf_soisdisconnecting)(so, kp))
1c79356b
A
176 return;
177 }
178 kp = kp->e_next;
179 }
180
181 so->so_state &= ~SS_ISCONNECTING;
182 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
183 wakeup((caddr_t)&so->so_timeo);
184 sowwakeup(so);
185 sorwakeup(so);
186}
187
188void
189soisdisconnected(so)
190 register struct socket *so;
9bccf70c
A
191{
192 register struct kextcb *kp;
1c79356b
A
193
194 kp = sotokextcb(so);
9bccf70c
A
195 while (kp) {
196 if (kp->e_soif && kp->e_soif->sf_soisdisconnected) {
197 if ((*kp->e_soif->sf_soisdisconnected)(so, kp))
1c79356b
A
198 return;
199 }
200 kp = kp->e_next;
201 }
202
203 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
9bccf70c 204 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
1c79356b
A
205 wakeup((caddr_t)&so->so_timeo);
206 sowwakeup(so);
207 sorwakeup(so);
208}
209
210/*
211 * Return a random connection that hasn't been serviced yet and
212 * is eligible for discard. There is a one in qlen chance that
213 * we will return a null, saying that there are no dropable
214 * requests. In this case, the protocol specific code should drop
215 * the new request. This insures fairness.
216 *
217 * This may be used in conjunction with protocol specific queue
218 * congestion routines.
219 */
220struct socket *
221sodropablereq(head)
222 register struct socket *head;
223{
224 register struct socket *so;
225 unsigned int i, j, qlen;
226 static int rnd;
227 static struct timeval old_runtime;
228 static unsigned int cur_cnt, old_cnt;
229 struct timeval tv;
230
231 microtime(&tv);
232 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
233 old_runtime = tv;
234 old_cnt = cur_cnt / i;
235 cur_cnt = 0;
236 }
237
238 so = TAILQ_FIRST(&head->so_incomp);
239 if (!so)
240 return (so);
241
242 qlen = head->so_incqlen;
243 if (++cur_cnt > qlen || old_cnt > qlen) {
244 rnd = (314159 * rnd + 66329) & 0xffff;
245 j = ((qlen + 1) * rnd) >> 16;
246
247 while (j-- && so)
248 so = TAILQ_NEXT(so, so_list);
249 }
250
251 return (so);
252}
253
254/*
255 * When an attempt at a new connection is noted on a socket
256 * which accepts connections, sonewconn is called. If the
257 * connection is possible (subject to space constraints, etc.)
258 * then we allocate a new structure, propoerly linked into the
259 * data structure of the original socket, and return this.
260 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
261 */
262struct socket *
263sonewconn(head, connstatus)
264 register struct socket *head;
265 int connstatus;
9bccf70c
A
266{
267 int error = 0;
1c79356b
A
268 register struct socket *so;
269 register struct kextcb *kp;
270
271 if (head->so_qlen > 3 * head->so_qlimit / 2)
272 return ((struct socket *)0);
0b4e3aa0 273 so = soalloc(1, head->so_proto->pr_domain->dom_family, head->so_type);
1c79356b
A
274 if (so == NULL)
275 return ((struct socket *)0);
9bccf70c
A
276 /* check if head was closed during the soalloc */
277 if (head->so_proto == NULL) {
278 sodealloc(so);
279 return ((struct socket *)0);
1c79356b
A
280 }
281
282 so->so_head = head;
283 so->so_type = head->so_type;
284 so->so_options = head->so_options &~ SO_ACCEPTCONN;
285 so->so_linger = head->so_linger;
286 so->so_state = head->so_state | SS_NOFDREF;
287 so->so_proto = head->so_proto;
288 so->so_timeo = head->so_timeo;
289 so->so_pgid = head->so_pgid;
290 so->so_uid = head->so_uid;
1c79356b 291
9bccf70c 292 /* Attach socket filters for this protocol */
1c79356b
A
293 if (so->so_proto->pr_sfilter.tqh_first)
294 error = sfilter_init(so);
9bccf70c
A
295 if (error != 0) {
296 sodealloc(so);
297 return ((struct socket *)0);
298 }
299
300 /* Call socket filters' sonewconn1 function if set */
301 kp = sotokextcb(so);
302 while (kp) {
303 if (kp->e_soif && kp->e_soif->sf_sonewconn) {
304 error = (int)(*kp->e_soif->sf_sonewconn)(so, connstatus, kp);
305 if (error == EJUSTRETURN) {
306 return so;
307 } else if (error != 0) {
308 sodealloc(so);
309 return NULL;
310 }
311 }
312 kp = kp->e_next;
313 }
314
315 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
316 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
1c79356b
A
317 sfilter_term(so);
318 sodealloc(so);
319 return ((struct socket *)0);
320 }
9bccf70c 321#ifdef __APPLE__
1c79356b 322 so->so_proto->pr_domain->dom_refs++;
9bccf70c 323#endif
1c79356b
A
324
325 if (connstatus) {
326 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
327 so->so_state |= SS_COMP;
328 } else {
329 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
330 so->so_state |= SS_INCOMP;
331 head->so_incqlen++;
332 }
333 head->so_qlen++;
334 if (connstatus) {
335 sorwakeup(head);
336 wakeup((caddr_t)&head->so_timeo);
337 so->so_state |= connstatus;
338 }
9bccf70c 339#ifdef __APPLE__
1c79356b
A
340 so->so_rcv.sb_so = so->so_snd.sb_so = so;
341 TAILQ_INIT(&so->so_evlist);
9bccf70c 342#endif
1c79356b
A
343 return (so);
344}
345
346/*
347 * Socantsendmore indicates that no more data will be sent on the
348 * socket; it would normally be applied to a socket when the user
349 * informs the system that no more data is to be sent, by the protocol
350 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
351 * will be received, and will normally be applied to the socket by a
352 * protocol when it detects that the peer will send no more data.
353 * Data queued for reading in the socket may yet be read.
354 */
355
356void
357socantsendmore(so)
358 struct socket *so;
9bccf70c
A
359{
360 register struct kextcb *kp;
361
1c79356b 362 kp = sotokextcb(so);
9bccf70c
A
363 while (kp) {
364 if (kp->e_soif && kp->e_soif->sf_socantsendmore) {
365 if ((*kp->e_soif->sf_socantsendmore)(so, kp))
1c79356b
A
366 return;
367 }
368 kp = kp->e_next;
369 }
370
371
372 so->so_state |= SS_CANTSENDMORE;
373 sowwakeup(so);
374}
375
376void
377socantrcvmore(so)
378 struct socket *so;
9bccf70c
A
379{
380 register struct kextcb *kp;
1c79356b
A
381
382 kp = sotokextcb(so);
9bccf70c
A
383 while (kp) {
384 if (kp->e_soif && kp->e_soif->sf_socantrcvmore) {
385 if ((*kp->e_soif->sf_socantrcvmore)(so, kp))
1c79356b
A
386 return;
387 }
388 kp = kp->e_next;
389 }
390
391
392 so->so_state |= SS_CANTRCVMORE;
393 sorwakeup(so);
394}
395
396/*
397 * Wait for data to arrive at/drain from a socket buffer.
398 */
399int
400sbwait(sb)
401 struct sockbuf *sb;
402{
403
404 sb->sb_flags |= SB_WAIT;
405 return (tsleep((caddr_t)&sb->sb_cc,
406 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
407 sb->sb_timeo));
408}
409
410/*
411 * Lock a sockbuf already known to be locked;
412 * return any error returned from sleep (EINTR).
413 */
414int
415sb_lock(sb)
416 register struct sockbuf *sb;
417{
418 int error;
419
420 while (sb->sb_flags & SB_LOCK) {
421 sb->sb_flags |= SB_WANT;
422 error = tsleep((caddr_t)&sb->sb_flags,
423 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
424 "sblock", 0);
425 if (error)
426 return (error);
427 }
428 sb->sb_flags |= SB_LOCK;
429 return (0);
430}
431
432/*
433 * Wakeup processes waiting on a socket buffer.
434 * Do asynchronous notification via SIGIO
435 * if the socket has the SS_ASYNC flag set.
436 */
437void
438sowakeup(so, sb)
439 register struct socket *so;
440 register struct sockbuf *sb;
441{
442 struct proc *p = current_proc();
9bccf70c
A
443 /* We clear the flag before calling selwakeup. */
444 /* BSD calls selwakeup then sets the flag */
0b4e3aa0 445 sb->sb_flags &= ~SB_SEL;
1c79356b 446 selwakeup(&sb->sb_sel);
1c79356b
A
447 if (sb->sb_flags & SB_WAIT) {
448 sb->sb_flags &= ~SB_WAIT;
449 wakeup((caddr_t)&sb->sb_cc);
450 }
451 if (so->so_state & SS_ASYNC) {
452 if (so->so_pgid < 0)
453 gsignal(-so->so_pgid, SIGIO);
454 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
455 psignal(p, SIGIO);
456 }
1c79356b
A
457 if (sb->sb_flags & SB_UPCALL)
458 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
55e303ae
A
459 if (sb->sb_flags & SB_KNOTE &&
460 !(sb->sb_sel.si_flags & SI_INITED))
461 KNOTE(&sb->sb_sel.si_note, 0);
1c79356b
A
462}
463
464/*
465 * Socket buffer (struct sockbuf) utility routines.
466 *
467 * Each socket contains two socket buffers: one for sending data and
468 * one for receiving data. Each buffer contains a queue of mbufs,
469 * information about the number of mbufs and amount of data in the
470 * queue, and other fields allowing select() statements and notification
471 * on data availability to be implemented.
472 *
473 * Data stored in a socket buffer is maintained as a list of records.
474 * Each record is a list of mbufs chained together with the m_next
475 * field. Records are chained together with the m_nextpkt field. The upper
476 * level routine soreceive() expects the following conventions to be
477 * observed when placing information in the receive buffer:
478 *
479 * 1. If the protocol requires each message be preceded by the sender's
480 * name, then a record containing that name must be present before
481 * any associated data (mbuf's must be of type MT_SONAME).
482 * 2. If the protocol supports the exchange of ``access rights'' (really
483 * just additional data associated with the message), and there are
484 * ``rights'' to be received, then a record containing this data
485 * should be present (mbuf's must be of type MT_RIGHTS).
486 * 3. If a name or rights record exists, then it must be followed by
487 * a data record, perhaps of zero length.
488 *
489 * Before using a new socket structure it is first necessary to reserve
490 * buffer space to the socket, by calling sbreserve(). This should commit
491 * some of the available buffer space in the system buffer pool for the
492 * socket (currently, it does nothing but enforce limits). The space
493 * should be released by calling sbrelease() when the socket is destroyed.
494 */
495
496int
497soreserve(so, sndcc, rcvcc)
498 register struct socket *so;
499 u_long sndcc, rcvcc;
500{
501 register struct kextcb *kp;
502
503 kp = sotokextcb(so);
9bccf70c
A
504 while (kp) {
505 if (kp->e_soif && kp->e_soif->sf_soreserve) {
506 if ((*kp->e_soif->sf_soreserve)(so, sndcc, rcvcc, kp))
1c79356b
A
507 return;
508 }
509 kp = kp->e_next;
510 }
511
512 if (sbreserve(&so->so_snd, sndcc) == 0)
513 goto bad;
514 if (sbreserve(&so->so_rcv, rcvcc) == 0)
515 goto bad2;
516 if (so->so_rcv.sb_lowat == 0)
517 so->so_rcv.sb_lowat = 1;
518 if (so->so_snd.sb_lowat == 0)
519 so->so_snd.sb_lowat = MCLBYTES;
520 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
521 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
522 return (0);
523bad2:
9bccf70c 524#ifdef __APPLE__
0b4e3aa0 525 selthreadclear(&so->so_snd.sb_sel);
9bccf70c 526#endif
1c79356b
A
527 sbrelease(&so->so_snd);
528bad:
529 return (ENOBUFS);
530}
531
532/*
533 * Allot mbufs to a sockbuf.
534 * Attempt to scale mbmax so that mbcnt doesn't become limiting
535 * if buffering efficiency is near the normal case.
536 */
537int
538sbreserve(sb, cc)
539 struct sockbuf *sb;
540 u_long cc;
541{
542 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
543 return (0);
544 sb->sb_hiwat = cc;
545 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
546 if (sb->sb_lowat > sb->sb_hiwat)
547 sb->sb_lowat = sb->sb_hiwat;
548 return (1);
549}
550
551/*
552 * Free mbufs held by a socket, and reserved mbuf space.
553 */
0b4e3aa0 554 /* WARNING needs to do selthreadclear() before calling this */
1c79356b
A
555void
556sbrelease(sb)
557 struct sockbuf *sb;
558{
559
560 sbflush(sb);
9bccf70c
A
561 sb->sb_hiwat = 0;
562 sb->sb_mbmax = 0;
563
1c79356b
A
564}
565
566/*
567 * Routines to add and remove
568 * data from an mbuf queue.
569 *
570 * The routines sbappend() or sbappendrecord() are normally called to
571 * append new mbufs to a socket buffer, after checking that adequate
572 * space is available, comparing the function sbspace() with the amount
573 * of data to be added. sbappendrecord() differs from sbappend() in
574 * that data supplied is treated as the beginning of a new record.
575 * To place a sender's address, optional access rights, and data in a
576 * socket receive buffer, sbappendaddr() should be used. To place
577 * access rights and data in a socket receive buffer, sbappendrights()
578 * should be used. In either case, the new data begins a new record.
579 * Note that unlike sbappend() and sbappendrecord(), these routines check
580 * for the caller that there will be enough space to store the data.
581 * Each fails if there is not enough space, or if it cannot find mbufs
582 * to store additional information in.
583 *
584 * Reliable protocols may use the socket send buffer to hold data
585 * awaiting acknowledgement. Data is normally copied from a socket
586 * send buffer in a protocol with m_copy for output to a peer,
587 * and then removing the data from the socket buffer with sbdrop()
588 * or sbdroprecord() when the data is acknowledged by the peer.
589 */
590
591/*
592 * Append mbuf chain m to the last record in the
593 * socket buffer sb. The additional space associated
594 * the mbuf chain is recorded in sb. Empty mbufs are
595 * discarded and mbufs are compacted where possible.
596 */
597void
598sbappend(sb, m)
599 struct sockbuf *sb;
600 struct mbuf *m;
9bccf70c
A
601{
602 struct kextcb *kp;
1c79356b
A
603 register struct mbuf *n;
604
fa4905b1
A
605
606 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_START), sb, m->m_len, 0, 0, 0);
607
1c79356b
A
608 if (m == 0)
609 return;
610 kp = sotokextcb(sbtoso(sb));
9bccf70c
A
611 while (kp) {
612 if (kp->e_sout && kp->e_sout->su_sbappend) {
55e303ae
A
613 if ((*kp->e_sout->su_sbappend)(sb, m, kp)) {
614 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, kp, 0, 0);
1c79356b 615 return;
55e303ae 616 }
1c79356b
A
617 }
618 kp = kp->e_next;
619 }
9bccf70c
A
620 n = sb->sb_mb;
621 if (n) {
1c79356b
A
622 while (n->m_nextpkt)
623 n = n->m_nextpkt;
624 do {
625 if (n->m_flags & M_EOR) {
626 sbappendrecord(sb, m); /* XXXXXX!!!! */
55e303ae 627 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, 0, 0, 0);
1c79356b
A
628 return;
629 }
630 } while (n->m_next && (n = n->m_next));
631 }
632 sbcompress(sb, m, n);
fa4905b1
A
633
634 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, 0, 0, 0);
1c79356b
A
635}
636
637#ifdef SOCKBUF_DEBUG
638void
639sbcheck(sb)
640 register struct sockbuf *sb;
641{
642 register struct mbuf *m;
643 register struct mbuf *n = 0;
644 register u_long len = 0, mbcnt = 0;
645
646 for (m = sb->sb_mb; m; m = n) {
647 n = m->m_nextpkt;
648 for (; m; m = m->m_next) {
9bccf70c
A
649 len += m->m_len;
650 mbcnt += MSIZE;
651 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
652 mbcnt += m->m_ext.ext_size;
653 }
1c79356b 654 }
9bccf70c
A
655#ifndef __APPLE__
656 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
657 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
658 mbcnt, sb->sb_mbcnt);
659 panic("sbcheck");
660 }
661#else
662 if (len != sb->sb_cc)
663 printf("sbcheck len %ld != sb_cc %ld\n", len, sb->sb_cc);
664 if (mbcnt != sb->sb_mbcnt)
665 printf("sbcheck mbcnt %ld != sb_mbcnt %ld\n", mbcnt, sb->sb_mbcnt);
666#endif
1c79356b
A
667}
668#endif
669
670/*
671 * As above, except the mbuf chain
672 * begins a new record.
673 */
674void
675sbappendrecord(sb, m0)
676 register struct sockbuf *sb;
677 register struct mbuf *m0;
678{
679 register struct mbuf *m;
680 register struct kextcb *kp;
9bccf70c 681
1c79356b
A
682 if (m0 == 0)
683 return;
684
685 kp = sotokextcb(sbtoso(sb));
686 while (kp)
687 { if (kp->e_sout && kp->e_sout->su_sbappendrecord)
688 { if ((*kp->e_sout->su_sbappendrecord)(sb, m0, kp))
689 return;
690 }
691 kp = kp->e_next;
692 }
693
694 m = sb->sb_mb;
695 if (m)
696 while (m->m_nextpkt)
697 m = m->m_nextpkt;
698 /*
699 * Put the first mbuf on the queue.
700 * Note this permits zero length records.
701 */
702 sballoc(sb, m0);
703 if (m)
704 m->m_nextpkt = m0;
705 else
706 sb->sb_mb = m0;
707 m = m0->m_next;
708 m0->m_next = 0;
709 if (m && (m0->m_flags & M_EOR)) {
710 m0->m_flags &= ~M_EOR;
711 m->m_flags |= M_EOR;
712 }
713 sbcompress(sb, m, m0);
714}
715
716/*
717 * As above except that OOB data
718 * is inserted at the beginning of the sockbuf,
719 * but after any other OOB data.
720 */
721void
722sbinsertoob(sb, m0)
723 register struct sockbuf *sb;
724 register struct mbuf *m0;
725{
726 register struct mbuf *m;
727 register struct mbuf **mp;
728 register struct kextcb *kp;
729
730 if (m0 == 0)
731 return;
732
733 kp = sotokextcb(sbtoso(sb));
734 while (kp)
735 { if (kp->e_sout && kp->e_sout->su_sbinsertoob)
736 { if ((*kp->e_sout->su_sbinsertoob)(sb, m0, kp))
737 return;
738 }
739 kp = kp->e_next;
740 }
741
742 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
743 m = *mp;
744 again:
745 switch (m->m_type) {
746
747 case MT_OOBDATA:
748 continue; /* WANT next train */
749
750 case MT_CONTROL:
751 m = m->m_next;
752 if (m)
753 goto again; /* inspect THIS train further */
754 }
755 break;
756 }
757 /*
758 * Put the first mbuf on the queue.
759 * Note this permits zero length records.
760 */
761 sballoc(sb, m0);
762 m0->m_nextpkt = *mp;
763 *mp = m0;
764 m = m0->m_next;
765 m0->m_next = 0;
766 if (m && (m0->m_flags & M_EOR)) {
767 m0->m_flags &= ~M_EOR;
768 m->m_flags |= M_EOR;
769 }
770 sbcompress(sb, m, m0);
771}
772
773/*
774 * Append address and data, and optionally, control (ancillary) data
775 * to the receive queue of a socket. If present,
776 * m0 must include a packet header with total length.
777 * Returns 0 if no space in sockbuf or insufficient mbufs.
778 */
779int
780sbappendaddr(sb, asa, m0, control)
781 register struct sockbuf *sb;
782 struct sockaddr *asa;
783 struct mbuf *m0, *control;
784{
785 register struct mbuf *m, *n;
786 int space = asa->sa_len;
787 register struct kextcb *kp;
788
789 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
790 panic("sbappendaddr");
791
792 kp = sotokextcb(sbtoso(sb));
793 while (kp)
794 { if (kp->e_sout && kp->e_sout->su_sbappendaddr)
795 { if ((*kp->e_sout->su_sbappendaddr)(sb, asa, m0, control, kp))
796 return 0;
797 }
798 kp = kp->e_next;
799 }
800
801 if (m0)
802 space += m0->m_pkthdr.len;
803 for (n = control; n; n = n->m_next) {
804 space += n->m_len;
805 if (n->m_next == 0) /* keep pointer to last control buf */
806 break;
807 }
808 if (space > sbspace(sb))
809 return (0);
810 if (asa->sa_len > MLEN)
811 return (0);
812 MGET(m, M_DONTWAIT, MT_SONAME);
813 if (m == 0)
814 return (0);
815 m->m_len = asa->sa_len;
816 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
817 if (n)
818 n->m_next = m0; /* concatenate data to control */
819 else
820 control = m0;
821 m->m_next = control;
822 for (n = m; n; n = n->m_next)
823 sballoc(sb, n);
824 n = sb->sb_mb;
825 if (n) {
826 while (n->m_nextpkt)
827 n = n->m_nextpkt;
828 n->m_nextpkt = m;
829 } else
830 sb->sb_mb = m;
831 postevent(0,sb,EV_RWBYTES);
832 return (1);
833}
834
835int
836sbappendcontrol(sb, m0, control)
837 struct sockbuf *sb;
838 struct mbuf *control, *m0;
839{
840 register struct mbuf *m, *n;
841 int space = 0;
842 register struct kextcb *kp;
843
844 if (control == 0)
845 panic("sbappendcontrol");
846
847 kp = sotokextcb(sbtoso(sb));
848 while (kp)
849 { if (kp->e_sout && kp->e_sout->su_sbappendcontrol)
850 { if ((*kp->e_sout->su_sbappendcontrol)(sb, m0, control, kp))
851 return 0;
852 }
853 kp = kp->e_next;
854 }
855
856 for (m = control; ; m = m->m_next) {
857 space += m->m_len;
858 if (m->m_next == 0)
859 break;
860 }
861 n = m; /* save pointer to last control buffer */
862 for (m = m0; m; m = m->m_next)
863 space += m->m_len;
864 if (space > sbspace(sb))
865 return (0);
866 n->m_next = m0; /* concatenate data to control */
867 for (m = control; m; m = m->m_next)
868 sballoc(sb, m);
869 n = sb->sb_mb;
870 if (n) {
871 while (n->m_nextpkt)
872 n = n->m_nextpkt;
873 n->m_nextpkt = control;
874 } else
875 sb->sb_mb = control;
876 postevent(0,sb,EV_RWBYTES);
877 return (1);
878}
879
880/*
881 * Compress mbuf chain m into the socket
882 * buffer sb following mbuf n. If n
883 * is null, the buffer is presumed empty.
884 */
885void
886sbcompress(sb, m, n)
887 register struct sockbuf *sb;
888 register struct mbuf *m, *n;
889{
890 register int eor = 0;
891 register struct mbuf *o;
892
893 while (m) {
894 eor |= m->m_flags & M_EOR;
895 if (m->m_len == 0 &&
896 (eor == 0 ||
897 (((o = m->m_next) || (o = n)) &&
898 o->m_type == m->m_type))) {
899 m = m_free(m);
900 continue;
901 }
9bccf70c
A
902 if (n && (n->m_flags & M_EOR) == 0 &&
903#ifndef __APPLE__
904 M_WRITABLE(n) &&
905#endif
906 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
907 m->m_len <= M_TRAILINGSPACE(n) &&
1c79356b
A
908 n->m_type == m->m_type) {
909 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
910 (unsigned)m->m_len);
911 n->m_len += m->m_len;
912 sb->sb_cc += m->m_len;
913 m = m_free(m);
914 continue;
915 }
916 if (n)
917 n->m_next = m;
918 else
919 sb->sb_mb = m;
920 sballoc(sb, m);
921 n = m;
922 m->m_flags &= ~M_EOR;
923 m = m->m_next;
924 n->m_next = 0;
925 }
926 if (eor) {
927 if (n)
928 n->m_flags |= eor;
929 else
930 printf("semi-panic: sbcompress\n");
931 }
932 postevent(0,sb, EV_RWBYTES);
933}
934
935/*
936 * Free all mbufs in a sockbuf.
937 * Check that all resources are reclaimed.
938 */
939void
940sbflush(sb)
941 register struct sockbuf *sb;
942{
943 register struct kextcb *kp;
944
945 kp = sotokextcb(sbtoso(sb));
9bccf70c
A
946 while (kp) {
947 if (kp->e_sout && kp->e_sout->su_sbflush) {
948 if ((*kp->e_sout->su_sbflush)(sb, kp))
1c79356b
A
949 return;
950 }
951 kp = kp->e_next;
952 }
953
55e303ae 954 (void)sblock(sb, M_WAIT);
9bccf70c
A
955 while (sb->sb_mbcnt) {
956 /*
957 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
958 * we would loop forever. Panic instead.
959 */
960 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
961 break;
1c79356b 962 sbdrop(sb, (int)sb->sb_cc);
9bccf70c 963 }
1c79356b
A
964 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
965 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
55e303ae
A
966
967 sbunlock(sb);
968
1c79356b
A
969 postevent(0, sb, EV_RWBYTES);
970}
971
972/*
973 * Drop data from (the front of) a sockbuf.
9bccf70c
A
974 * use m_freem_list to free the mbuf structures
975 * under a single lock... this is done by pruning
976 * the top of the tree from the body by keeping track
977 * of where we get to in the tree and then zeroing the
978 * two pertinent pointers m_nextpkt and m_next
979 * the socket buffer is then updated to point at the new
980 * top of the tree and the pruned area is released via
981 * m_freem_list.
1c79356b
A
982 */
983void
984sbdrop(sb, len)
985 register struct sockbuf *sb;
986 register int len;
987{
fa4905b1
A
988 register struct mbuf *m, *free_list, *ml;
989 struct mbuf *next, *last;
1c79356b
A
990 register struct kextcb *kp;
991
fa4905b1
A
992 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
993
1c79356b 994 kp = sotokextcb(sbtoso(sb));
9bccf70c
A
995 while (kp) {
996 if (kp->e_sout && kp->e_sout->su_sbdrop) {
55e303ae
A
997 if ((*kp->e_sout->su_sbdrop)(sb, len, kp)) {
998 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, len, kp, 0, 0);
1c79356b 999 return;
55e303ae 1000 }
1c79356b
A
1001 }
1002 kp = kp->e_next;
1003 }
1c79356b 1004 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
fa4905b1
A
1005 free_list = last = m;
1006 ml = (struct mbuf *)0;
1007
1c79356b
A
1008 while (len > 0) {
1009 if (m == 0) {
9bccf70c
A
1010 if (next == 0) {
1011 /* temporarily replacing this panic with printf because
1012 * it occurs occasionally when closing a socket when there
1013 * is no harm in ignoring it. This problem will be investigated
1014 * further.
1015 */
1016 /* panic("sbdrop"); */
1017 printf("sbdrop - count not zero\n");
1018 len = 0;
1019 /* zero the counts. if we have no mbufs, we have no data (PR-2986815) */
1020 sb->sb_cc = 0;
1021 sb->sb_mbcnt = 0;
1022 break;
1023 }
1024 m = last = next;
1025 next = m->m_nextpkt;
1026 continue;
1c79356b
A
1027 }
1028 if (m->m_len > len) {
1029 m->m_len -= len;
1030 m->m_data += len;
1031 sb->sb_cc -= len;
1032 break;
1033 }
1034 len -= m->m_len;
1035 sbfree(sb, m);
fa4905b1
A
1036
1037 ml = m;
1038 m = m->m_next;
1c79356b
A
1039 }
1040 while (m && m->m_len == 0) {
1041 sbfree(sb, m);
fa4905b1
A
1042
1043 ml = m;
1044 m = m->m_next;
1045 }
1046 if (ml) {
1047 ml->m_next = (struct mbuf *)0;
1048 last->m_nextpkt = (struct mbuf *)0;
1049 m_freem_list(free_list);
1c79356b
A
1050 }
1051 if (m) {
1052 sb->sb_mb = m;
1053 m->m_nextpkt = next;
1054 } else
1055 sb->sb_mb = next;
fa4905b1 1056
1c79356b 1057 postevent(0, sb, EV_RWBYTES);
fa4905b1
A
1058
1059 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1c79356b
A
1060}
1061
1062/*
1063 * Drop a record off the front of a sockbuf
1064 * and move the next record to the front.
1065 */
1066void
1067sbdroprecord(sb)
1068 register struct sockbuf *sb;
1069{
1070 register struct mbuf *m, *mn;
1071 register struct kextcb *kp;
1072
1073 kp = sotokextcb(sbtoso(sb));
9bccf70c
A
1074 while (kp) {
1075 if (kp->e_sout && kp->e_sout->su_sbdroprecord) {
1076 if ((*kp->e_sout->su_sbdroprecord)(sb, kp))
1c79356b
A
1077 return;
1078 }
1079 kp = kp->e_next;
1080 }
1081
1082 m = sb->sb_mb;
1083 if (m) {
1084 sb->sb_mb = m->m_nextpkt;
1085 do {
1086 sbfree(sb, m);
1087 MFREE(m, mn);
9bccf70c
A
1088 m = mn;
1089 } while (m);
1c79356b
A
1090 }
1091 postevent(0, sb, EV_RWBYTES);
1092}
1093
1094/*
1095 * Create a "control" mbuf containing the specified data
1096 * with the specified type for presentation on a socket buffer.
1097 */
1098struct mbuf *
1099sbcreatecontrol(p, size, type, level)
1100 caddr_t p;
1101 register int size;
1102 int type, level;
1103{
1104 register struct cmsghdr *cp;
1105 struct mbuf *m;
1106
9bccf70c
A
1107 if (CMSG_SPACE((u_int)size) > MLEN)
1108 return ((struct mbuf *) NULL);
1c79356b
A
1109 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1110 return ((struct mbuf *) NULL);
1111 cp = mtod(m, struct cmsghdr *);
1112 /* XXX check size? */
1113 (void)memcpy(CMSG_DATA(cp), p, size);
9bccf70c
A
1114 m->m_len = CMSG_SPACE(size);
1115 cp->cmsg_len = CMSG_LEN(size);
1c79356b
A
1116 cp->cmsg_level = level;
1117 cp->cmsg_type = type;
1118 return (m);
1119}
1120
1121/*
1122 * Some routines that return EOPNOTSUPP for entry points that are not
1123 * supported by a protocol. Fill in as needed.
1124 */
1125int
1126pru_abort_notsupp(struct socket *so)
1127{
1128 return EOPNOTSUPP;
1129}
1130
1131
1132int
1133pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
1134{
1135 return EOPNOTSUPP;
1136}
1137
1138int
1139pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
1140{
1141 return EOPNOTSUPP;
1142}
1143
1144int
1145pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1146{
1147 return EOPNOTSUPP;
1148}
1149
1150int
1151pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1152{
1153 return EOPNOTSUPP;
1154}
1155
1156int
1157pru_connect2_notsupp(struct socket *so1, struct socket *so2)
1158{
1159 return EOPNOTSUPP;
1160}
1161
1162int
1163pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
1164 struct ifnet *ifp, struct proc *p)
1165{
1166 return EOPNOTSUPP;
1167}
1168
1169int
1170pru_detach_notsupp(struct socket *so)
1171{
1172 return EOPNOTSUPP;
1173}
1174
1175int
1176pru_disconnect_notsupp(struct socket *so)
1177{
1178 return EOPNOTSUPP;
1179}
1180
1181int
1182pru_listen_notsupp(struct socket *so, struct proc *p)
1183{
1184 return EOPNOTSUPP;
1185}
1186
1187int
1188pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
1189{
1190 return EOPNOTSUPP;
1191}
1192
1193int
1194pru_rcvd_notsupp(struct socket *so, int flags)
1195{
1196 return EOPNOTSUPP;
1197}
1198
1199int
1200pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
1201{
1202 return EOPNOTSUPP;
1203}
1204
1205int
1206pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
1207 struct sockaddr *addr, struct mbuf *control,
1208 struct proc *p)
1209
1210{
1211 return EOPNOTSUPP;
1212}
1213
1214
1215/*
1216 * This isn't really a ``null'' operation, but it's the default one
1217 * and doesn't do anything destructive.
1218 */
1219int
1220pru_sense_null(struct socket *so, struct stat *sb)
1221{
1222 sb->st_blksize = so->so_snd.sb_hiwat;
1223 return 0;
1224}
1225
1226
1227int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr,
1228 struct uio *uio, struct mbuf *top,
1229 struct mbuf *control, int flags)
1230
1231{
1232 return EOPNOTSUPP;
1233}
1234
1235int pru_soreceive_notsupp(struct socket *so,
1236 struct sockaddr **paddr,
1237 struct uio *uio, struct mbuf **mp0,
1238 struct mbuf **controlp, int *flagsp)
1239{
1240 return EOPNOTSUPP;
1241}
1242
1243int
1244
1245pru_shutdown_notsupp(struct socket *so)
1246{
1247 return EOPNOTSUPP;
1248}
1249
1250int
1251pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
1252{
1253 return EOPNOTSUPP;
1254}
1255
1256int pru_sosend(struct socket *so, struct sockaddr *addr,
1257 struct uio *uio, struct mbuf *top,
1258 struct mbuf *control, int flags)
1259{
1260 return EOPNOTSUPP;
1261}
1262
1263int pru_soreceive(struct socket *so,
1264 struct sockaddr **paddr,
1265 struct uio *uio, struct mbuf **mp0,
1266 struct mbuf **controlp, int *flagsp)
1267{
1268 return EOPNOTSUPP;
1269}
1270
1271
1272int pru_sopoll_notsupp(struct socket *so, int events,
1273 struct ucred *cred)
1274{
1275 return EOPNOTSUPP;
1276}
1277
1278
9bccf70c
A
1279#ifdef __APPLE__
1280/*
1281 * The following are macros on BSD and functions on Darwin
1282 */
1c79356b 1283
0b4e3aa0
A
1284/*
1285 * Do we need to notify the other side when I/O is possible?
1286 */
1287
1288int
1289sb_notify(struct sockbuf *sb)
1290{
55e303ae 1291 return ((sb->sb_flags & (SB_WAIT|SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)) != 0);
0b4e3aa0
A
1292}
1293
1294/*
1295 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1296 * This is problematical if the fields are unsigned, as the space might
1297 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1298 * overflow and return 0. Should use "lmin" but it doesn't exist now.
1299 */
1300long
1301sbspace(struct sockbuf *sb)
1302{
1303 return ((long) imin((int)(sb->sb_hiwat - sb->sb_cc),
1304 (int)(sb->sb_mbmax - sb->sb_mbcnt)));
1305}
1306
1307/* do we have to send all at once on a socket? */
1308int
1309sosendallatonce(struct socket *so)
1310{
1311 return (so->so_proto->pr_flags & PR_ATOMIC);
1312}
1313
1314/* can we read something from so? */
1315int
1316soreadable(struct socket *so)
1317{
1318 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
1319 (so->so_state & SS_CANTRCVMORE) ||
1320 so->so_comp.tqh_first || so->so_error);
1321}
1322
1323/* can we write something to so? */
1324
1325int
1326sowriteable(struct socket *so)
1327{
1328 return ((sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat &&
1329 ((so->so_state&SS_ISCONNECTED) ||
1330 (so->so_proto->pr_flags&PR_CONNREQUIRED)==0)) ||
1331 (so->so_state & SS_CANTSENDMORE) ||
1332 so->so_error);
1333}
1334
1335/* adjust counters in sb reflecting allocation of m */
1336
1337void
1338sballoc(struct sockbuf *sb, struct mbuf *m)
1339{
1340 sb->sb_cc += m->m_len;
1341 sb->sb_mbcnt += MSIZE;
1342 if (m->m_flags & M_EXT)
1343 sb->sb_mbcnt += m->m_ext.ext_size;
1344}
1345
1346/* adjust counters in sb reflecting freeing of m */
1347void
1348sbfree(struct sockbuf *sb, struct mbuf *m)
1349{
1350 sb->sb_cc -= m->m_len;
1351 sb->sb_mbcnt -= MSIZE;
1352 if (m->m_flags & M_EXT)
1353 sb->sb_mbcnt -= m->m_ext.ext_size;
1354}
1355
1356/*
1357 * Set lock on sockbuf sb; sleep if lock is already held.
1358 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1359 * Returns error without lock if sleep is interrupted.
1360 */
1361int
1362sblock(struct sockbuf *sb, int wf)
1363{
1364 return(sb->sb_flags & SB_LOCK ?
1365 ((wf == M_WAIT) ? sb_lock(sb) : EWOULDBLOCK) :
1366 (sb->sb_flags |= SB_LOCK), 0);
1367}
1368
1369/* release lock on sockbuf sb */
1370void
1371sbunlock(struct sockbuf *sb)
1372{
1373 sb->sb_flags &= ~SB_LOCK;
1374 if (sb->sb_flags & SB_WANT) {
1375 sb->sb_flags &= ~SB_WANT;
1376 wakeup((caddr_t)&(sb)->sb_flags);
1377 }
1378}
1379
1380void
1381sorwakeup(struct socket * so)
1382{
1383 if (sb_notify(&so->so_rcv))
1384 sowakeup(so, &so->so_rcv);
1385}
1386
1387void
1388sowwakeup(struct socket * so)
1389{
1390 if (sb_notify(&so->so_snd))
1391 sowakeup(so, &so->so_snd);
1392}
9bccf70c 1393#endif __APPLE__
0b4e3aa0 1394
1c79356b
A
1395/*
1396 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1397 */
1398struct sockaddr *
1399dup_sockaddr(sa, canwait)
1400 struct sockaddr *sa;
1401 int canwait;
1402{
1403 struct sockaddr *sa2;
1404
1405 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
1406 canwait ? M_WAITOK : M_NOWAIT);
1407 if (sa2)
1408 bcopy(sa, sa2, sa->sa_len);
1409 return sa2;
1410}
1411
1412/*
1413 * Create an external-format (``xsocket'') structure using the information
1414 * in the kernel-format socket structure pointed to by so. This is done
1415 * to reduce the spew of irrelevant information over this interface,
1416 * to isolate user code from changes in the kernel structure, and
1417 * potentially to provide information-hiding if we decide that
1418 * some of this information should be hidden from users.
1419 */
1420void
1421sotoxsocket(struct socket *so, struct xsocket *xso)
1422{
1423 xso->xso_len = sizeof *xso;
1424 xso->xso_so = so;
1425 xso->so_type = so->so_type;
1426 xso->so_options = so->so_options;
1427 xso->so_linger = so->so_linger;
1428 xso->so_state = so->so_state;
1429 xso->so_pcb = so->so_pcb;
1430 xso->xso_protocol = so->so_proto->pr_protocol;
1431 xso->xso_family = so->so_proto->pr_domain->dom_family;
1432 xso->so_qlen = so->so_qlen;
1433 xso->so_incqlen = so->so_incqlen;
1434 xso->so_qlimit = so->so_qlimit;
1435 xso->so_timeo = so->so_timeo;
1436 xso->so_error = so->so_error;
1437 xso->so_pgid = so->so_pgid;
1438 xso->so_oobmark = so->so_oobmark;
1439 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1440 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1441 xso->so_uid = so->so_uid;
1442}
1443
1444/*
1445 * This does the same for sockbufs. Note that the xsockbuf structure,
1446 * since it is always embedded in a socket, does not include a self
1447 * pointer nor a length. We make this entry point public in case
1448 * some other mechanism needs it.
1449 */
1450void
1451sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1452{
1453 xsb->sb_cc = sb->sb_cc;
1454 xsb->sb_hiwat = sb->sb_hiwat;
1455 xsb->sb_mbcnt = sb->sb_mbcnt;
1456 xsb->sb_mbmax = sb->sb_mbmax;
1457 xsb->sb_lowat = sb->sb_lowat;
1458 xsb->sb_flags = sb->sb_flags;
1459 xsb->sb_timeo = sb->sb_timeo;
1460}
1461
1462/*
1463 * Here is the definition of some of the basic objects in the kern.ipc
1464 * branch of the MIB.
1465 */
1c79356b
A
1466SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1467
1468/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1469static int dummy;
1470SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1471
9bccf70c
A
1472SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
1473 &sb_max, 0, "Maximum socket buffer size");
1474SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1475 &maxsockets, 0, "Maximum number of sockets avaliable");
1c79356b
A
1476SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1477 &sb_efficiency, 0, "");
1478SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD, &nmbclusters, 0, "");
1479