]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
e5568f75 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
43866e37 | 11 | * |
e5568f75 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
e5568f75 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_FREE_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: sched_prim.c | |
54 | * Author: Avadis Tevanian, Jr. | |
55 | * Date: 1986 | |
56 | * | |
57 | * Scheduling primitives | |
58 | * | |
59 | */ | |
60 | ||
61 | #include <debug.h> | |
62 | #include <cpus.h> | |
63 | #include <mach_kdb.h> | |
64 | #include <simple_clock.h> | |
1c79356b A |
65 | |
66 | #include <ddb/db_output.h> | |
67 | #include <mach/machine.h> | |
68 | #include <machine/machine_routines.h> | |
69 | #include <machine/sched_param.h> | |
70 | #include <kern/ast.h> | |
71 | #include <kern/clock.h> | |
72 | #include <kern/counters.h> | |
73 | #include <kern/cpu_number.h> | |
74 | #include <kern/cpu_data.h> | |
75 | #include <kern/etap_macros.h> | |
76 | #include <kern/lock.h> | |
77 | #include <kern/macro_help.h> | |
78 | #include <kern/machine.h> | |
79 | #include <kern/misc_protos.h> | |
80 | #include <kern/processor.h> | |
81 | #include <kern/queue.h> | |
82 | #include <kern/sched.h> | |
83 | #include <kern/sched_prim.h> | |
84 | #include <kern/syscall_subr.h> | |
85 | #include <kern/task.h> | |
86 | #include <kern/thread.h> | |
87 | #include <kern/thread_swap.h> | |
88 | #include <vm/pmap.h> | |
89 | #include <vm/vm_kern.h> | |
90 | #include <vm/vm_map.h> | |
91 | #include <mach/policy.h> | |
92 | #include <mach/sync_policy.h> | |
1c79356b A |
93 | #include <kern/mk_sp.h> /*** ??? fix so this can be removed ***/ |
94 | #include <sys/kdebug.h> | |
95 | ||
0b4e3aa0 | 96 | #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */ |
1c79356b A |
97 | int default_preemption_rate = DEFAULT_PREEMPTION_RATE; |
98 | ||
0b4e3aa0 A |
99 | #define MAX_UNSAFE_QUANTA 800 |
100 | int max_unsafe_quanta = MAX_UNSAFE_QUANTA; | |
101 | ||
102 | #define MAX_POLL_QUANTA 2 | |
103 | int max_poll_quanta = MAX_POLL_QUANTA; | |
104 | ||
105 | #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */ | |
106 | int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT; | |
107 | ||
0b4e3aa0 | 108 | uint32_t std_quantum_us; |
1c79356b | 109 | |
55e303ae A |
110 | uint64_t max_unsafe_computation; |
111 | uint32_t sched_safe_duration; | |
112 | uint64_t max_poll_computation; | |
113 | ||
114 | uint32_t std_quantum; | |
115 | uint32_t min_std_quantum; | |
116 | ||
117 | uint32_t max_rt_quantum; | |
118 | uint32_t min_rt_quantum; | |
119 | ||
120 | static uint32_t sched_tick_interval; | |
121 | ||
1c79356b A |
122 | unsigned sched_tick; |
123 | ||
124 | #if SIMPLE_CLOCK | |
125 | int sched_usec; | |
126 | #endif /* SIMPLE_CLOCK */ | |
127 | ||
128 | /* Forwards */ | |
1c79356b A |
129 | void wait_queues_init(void); |
130 | ||
55e303ae A |
131 | static thread_t choose_thread( |
132 | processor_set_t pset, | |
133 | processor_t processor); | |
1c79356b | 134 | |
55e303ae | 135 | static void do_thread_scan(void); |
1c79356b | 136 | |
1c79356b | 137 | #if DEBUG |
0b4e3aa0 | 138 | static |
1c79356b A |
139 | boolean_t thread_runnable( |
140 | thread_t thread); | |
141 | ||
0b4e3aa0 A |
142 | #endif /*DEBUG*/ |
143 | ||
144 | ||
1c79356b A |
145 | /* |
146 | * State machine | |
147 | * | |
148 | * states are combinations of: | |
149 | * R running | |
150 | * W waiting (or on wait queue) | |
151 | * N non-interruptible | |
152 | * O swapped out | |
153 | * I being swapped in | |
154 | * | |
155 | * init action | |
156 | * assert_wait thread_block clear_wait swapout swapin | |
157 | * | |
158 | * R RW, RWN R; setrun - - | |
159 | * RN RWN RN; setrun - - | |
160 | * | |
161 | * RW W R - | |
162 | * RWN WN RN - | |
163 | * | |
164 | * W R; setrun WO | |
165 | * WN RN; setrun - | |
166 | * | |
167 | * RO - - R | |
168 | * | |
169 | */ | |
170 | ||
171 | /* | |
172 | * Waiting protocols and implementation: | |
173 | * | |
174 | * Each thread may be waiting for exactly one event; this event | |
175 | * is set using assert_wait(). That thread may be awakened either | |
176 | * by performing a thread_wakeup_prim() on its event, | |
177 | * or by directly waking that thread up with clear_wait(). | |
178 | * | |
179 | * The implementation of wait events uses a hash table. Each | |
180 | * bucket is queue of threads having the same hash function | |
181 | * value; the chain for the queue (linked list) is the run queue | |
182 | * field. [It is not possible to be waiting and runnable at the | |
183 | * same time.] | |
184 | * | |
185 | * Locks on both the thread and on the hash buckets govern the | |
186 | * wait event field and the queue chain field. Because wakeup | |
187 | * operations only have the event as an argument, the event hash | |
188 | * bucket must be locked before any thread. | |
189 | * | |
190 | * Scheduling operations may also occur at interrupt level; therefore, | |
191 | * interrupts below splsched() must be prevented when holding | |
192 | * thread or hash bucket locks. | |
193 | * | |
194 | * The wait event hash table declarations are as follows: | |
195 | */ | |
196 | ||
197 | #define NUMQUEUES 59 | |
198 | ||
199 | struct wait_queue wait_queues[NUMQUEUES]; | |
200 | ||
201 | #define wait_hash(event) \ | |
202 | ((((int)(event) < 0)? ~(int)(event): (int)(event)) % NUMQUEUES) | |
203 | ||
204 | void | |
205 | sched_init(void) | |
206 | { | |
207 | /* | |
0b4e3aa0 A |
208 | * Calculate the timeslicing quantum |
209 | * in us. | |
1c79356b A |
210 | */ |
211 | if (default_preemption_rate < 1) | |
212 | default_preemption_rate = DEFAULT_PREEMPTION_RATE; | |
0b4e3aa0 | 213 | std_quantum_us = (1000 * 1000) / default_preemption_rate; |
1c79356b | 214 | |
0b4e3aa0 | 215 | printf("standard timeslicing quantum is %d us\n", std_quantum_us); |
1c79356b | 216 | |
55e303ae A |
217 | sched_safe_duration = (2 * max_unsafe_quanta / default_preemption_rate) * |
218 | (1 << SCHED_TICK_SHIFT); | |
219 | ||
1c79356b A |
220 | wait_queues_init(); |
221 | pset_sys_bootstrap(); /* initialize processor mgmt. */ | |
1c79356b A |
222 | sched_tick = 0; |
223 | #if SIMPLE_CLOCK | |
224 | sched_usec = 0; | |
225 | #endif /* SIMPLE_CLOCK */ | |
226 | ast_init(); | |
1c79356b A |
227 | } |
228 | ||
55e303ae A |
229 | void |
230 | sched_timebase_init(void) | |
231 | { | |
232 | uint64_t abstime; | |
233 | ||
234 | clock_interval_to_absolutetime_interval( | |
235 | std_quantum_us, NSEC_PER_USEC, &abstime); | |
236 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
237 | std_quantum = abstime; | |
238 | ||
239 | /* 250 us */ | |
240 | clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime); | |
241 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
242 | min_std_quantum = abstime; | |
243 | ||
244 | /* 50 us */ | |
245 | clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime); | |
246 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
247 | min_rt_quantum = abstime; | |
248 | ||
249 | /* 50 ms */ | |
250 | clock_interval_to_absolutetime_interval( | |
251 | 50, 1000*NSEC_PER_USEC, &abstime); | |
252 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
253 | max_rt_quantum = abstime; | |
254 | ||
255 | clock_interval_to_absolutetime_interval(1000 >> SCHED_TICK_SHIFT, | |
256 | USEC_PER_SEC, &abstime); | |
257 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); | |
258 | sched_tick_interval = abstime; | |
259 | ||
260 | max_unsafe_computation = max_unsafe_quanta * std_quantum; | |
261 | max_poll_computation = max_poll_quanta * std_quantum; | |
262 | } | |
263 | ||
1c79356b A |
264 | void |
265 | wait_queues_init(void) | |
266 | { | |
267 | register int i; | |
268 | ||
269 | for (i = 0; i < NUMQUEUES; i++) { | |
270 | wait_queue_init(&wait_queues[i], SYNC_POLICY_FIFO); | |
271 | } | |
272 | } | |
273 | ||
274 | /* | |
0b4e3aa0 | 275 | * Thread wait timer expiration. |
1c79356b A |
276 | */ |
277 | void | |
278 | thread_timer_expire( | |
279 | timer_call_param_t p0, | |
280 | timer_call_param_t p1) | |
281 | { | |
282 | thread_t thread = p0; | |
283 | spl_t s; | |
284 | ||
285 | s = splsched(); | |
55e303ae | 286 | thread_lock(thread); |
0b4e3aa0 A |
287 | if (--thread->wait_timer_active == 1) { |
288 | if (thread->wait_timer_is_set) { | |
289 | thread->wait_timer_is_set = FALSE; | |
55e303ae | 290 | clear_wait_internal(thread, THREAD_TIMED_OUT); |
0b4e3aa0 | 291 | } |
1c79356b | 292 | } |
55e303ae | 293 | thread_unlock(thread); |
1c79356b A |
294 | splx(s); |
295 | } | |
296 | ||
297 | /* | |
298 | * thread_set_timer: | |
299 | * | |
300 | * Set a timer for the current thread, if the thread | |
301 | * is ready to wait. Must be called between assert_wait() | |
302 | * and thread_block(). | |
303 | */ | |
304 | void | |
305 | thread_set_timer( | |
0b4e3aa0 A |
306 | uint32_t interval, |
307 | uint32_t scale_factor) | |
1c79356b A |
308 | { |
309 | thread_t thread = current_thread(); | |
0b4e3aa0 | 310 | uint64_t deadline; |
1c79356b A |
311 | spl_t s; |
312 | ||
313 | s = splsched(); | |
1c79356b A |
314 | thread_lock(thread); |
315 | if ((thread->state & TH_WAIT) != 0) { | |
316 | clock_interval_to_deadline(interval, scale_factor, &deadline); | |
317 | timer_call_enter(&thread->wait_timer, deadline); | |
318 | assert(!thread->wait_timer_is_set); | |
319 | thread->wait_timer_active++; | |
320 | thread->wait_timer_is_set = TRUE; | |
321 | } | |
322 | thread_unlock(thread); | |
1c79356b A |
323 | splx(s); |
324 | } | |
325 | ||
326 | void | |
327 | thread_set_timer_deadline( | |
0b4e3aa0 | 328 | uint64_t deadline) |
1c79356b A |
329 | { |
330 | thread_t thread = current_thread(); | |
331 | spl_t s; | |
332 | ||
333 | s = splsched(); | |
1c79356b A |
334 | thread_lock(thread); |
335 | if ((thread->state & TH_WAIT) != 0) { | |
336 | timer_call_enter(&thread->wait_timer, deadline); | |
337 | assert(!thread->wait_timer_is_set); | |
338 | thread->wait_timer_active++; | |
339 | thread->wait_timer_is_set = TRUE; | |
340 | } | |
341 | thread_unlock(thread); | |
1c79356b A |
342 | splx(s); |
343 | } | |
344 | ||
345 | void | |
346 | thread_cancel_timer(void) | |
347 | { | |
348 | thread_t thread = current_thread(); | |
349 | spl_t s; | |
350 | ||
351 | s = splsched(); | |
55e303ae | 352 | thread_lock(thread); |
1c79356b A |
353 | if (thread->wait_timer_is_set) { |
354 | if (timer_call_cancel(&thread->wait_timer)) | |
355 | thread->wait_timer_active--; | |
356 | thread->wait_timer_is_set = FALSE; | |
357 | } | |
55e303ae | 358 | thread_unlock(thread); |
1c79356b A |
359 | splx(s); |
360 | } | |
361 | ||
1c79356b A |
362 | /* |
363 | * Set up thread timeout element when thread is created. | |
364 | */ | |
365 | void | |
366 | thread_timer_setup( | |
367 | thread_t thread) | |
368 | { | |
0b4e3aa0 A |
369 | extern void thread_depress_expire( |
370 | timer_call_param_t p0, | |
371 | timer_call_param_t p1); | |
372 | ||
1c79356b A |
373 | timer_call_setup(&thread->wait_timer, thread_timer_expire, thread); |
374 | thread->wait_timer_is_set = FALSE; | |
375 | thread->wait_timer_active = 1; | |
1c79356b | 376 | |
0b4e3aa0 A |
377 | timer_call_setup(&thread->depress_timer, thread_depress_expire, thread); |
378 | thread->depress_timer_active = 1; | |
379 | ||
380 | thread->ref_count++; | |
1c79356b A |
381 | } |
382 | ||
383 | void | |
384 | thread_timer_terminate(void) | |
385 | { | |
386 | thread_t thread = current_thread(); | |
9bccf70c | 387 | wait_result_t res; |
1c79356b A |
388 | spl_t s; |
389 | ||
390 | s = splsched(); | |
55e303ae | 391 | thread_lock(thread); |
1c79356b A |
392 | if (thread->wait_timer_is_set) { |
393 | if (timer_call_cancel(&thread->wait_timer)) | |
394 | thread->wait_timer_active--; | |
395 | thread->wait_timer_is_set = FALSE; | |
396 | } | |
397 | ||
398 | thread->wait_timer_active--; | |
399 | ||
400 | while (thread->wait_timer_active > 0) { | |
55e303ae | 401 | thread_unlock(thread); |
1c79356b A |
402 | splx(s); |
403 | ||
55e303ae | 404 | delay(1); |
1c79356b A |
405 | |
406 | s = splsched(); | |
55e303ae | 407 | thread_lock(thread); |
1c79356b A |
408 | } |
409 | ||
0b4e3aa0 A |
410 | thread->depress_timer_active--; |
411 | ||
412 | while (thread->depress_timer_active > 0) { | |
55e303ae | 413 | thread_unlock(thread); |
0b4e3aa0 A |
414 | splx(s); |
415 | ||
55e303ae | 416 | delay(1); |
0b4e3aa0 A |
417 | |
418 | s = splsched(); | |
55e303ae | 419 | thread_lock(thread); |
0b4e3aa0 A |
420 | } |
421 | ||
55e303ae | 422 | thread_unlock(thread); |
1c79356b A |
423 | splx(s); |
424 | ||
425 | thread_deallocate(thread); | |
426 | } | |
427 | ||
428 | /* | |
429 | * Routine: thread_go_locked | |
430 | * Purpose: | |
431 | * Start a thread running. | |
432 | * Conditions: | |
433 | * thread lock held, IPC locks may be held. | |
434 | * thread must have been pulled from wait queue under same lock hold. | |
9bccf70c A |
435 | * Returns: |
436 | * KERN_SUCCESS - Thread was set running | |
437 | * KERN_NOT_WAITING - Thread was not waiting | |
1c79356b | 438 | */ |
9bccf70c | 439 | kern_return_t |
1c79356b A |
440 | thread_go_locked( |
441 | thread_t thread, | |
55e303ae | 442 | wait_result_t wresult) |
1c79356b | 443 | { |
1c79356b | 444 | assert(thread->at_safe_point == FALSE); |
9bccf70c | 445 | assert(thread->wait_event == NO_EVENT64); |
1c79356b A |
446 | assert(thread->wait_queue == WAIT_QUEUE_NULL); |
447 | ||
9bccf70c | 448 | if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) { |
55e303ae A |
449 | thread_roust_t roust_hint; |
450 | ||
1c79356b | 451 | thread->state &= ~(TH_WAIT|TH_UNINT); |
55e303ae A |
452 | _mk_sp_thread_unblock(thread); |
453 | ||
454 | roust_hint = thread->roust; | |
455 | thread->roust = NULL; | |
456 | if ( roust_hint != NULL && | |
457 | (*roust_hint)(thread, wresult) ) { | |
458 | if (thread->wait_timer_is_set) { | |
459 | if (timer_call_cancel(&thread->wait_timer)) | |
460 | thread->wait_timer_active--; | |
461 | thread->wait_timer_is_set = FALSE; | |
462 | } | |
463 | ||
464 | return (KERN_SUCCESS); | |
465 | } | |
466 | ||
467 | thread->wait_result = wresult; | |
468 | ||
1c79356b A |
469 | if (!(thread->state & TH_RUN)) { |
470 | thread->state |= TH_RUN; | |
0b4e3aa0 | 471 | |
9bccf70c A |
472 | if (thread->active_callout) |
473 | call_thread_unblock(); | |
474 | ||
55e303ae A |
475 | pset_run_incr(thread->processor_set); |
476 | if (thread->sched_mode & TH_MODE_TIMESHARE) | |
477 | pset_share_incr(thread->processor_set); | |
478 | ||
479 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
1c79356b | 480 | } |
0b4e3aa0 | 481 | |
55e303ae A |
482 | KERNEL_DEBUG_CONSTANT( |
483 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE, | |
484 | (int)thread, (int)thread->sched_pri, 0, 0, 0); | |
485 | ||
486 | return (KERN_SUCCESS); | |
1c79356b | 487 | } |
55e303ae A |
488 | |
489 | return (KERN_NOT_WAITING); | |
1c79356b A |
490 | } |
491 | ||
9bccf70c A |
492 | /* |
493 | * Routine: thread_mark_wait_locked | |
494 | * Purpose: | |
495 | * Mark a thread as waiting. If, given the circumstances, | |
496 | * it doesn't want to wait (i.e. already aborted), then | |
497 | * indicate that in the return value. | |
498 | * Conditions: | |
499 | * at splsched() and thread is locked. | |
500 | */ | |
501 | __private_extern__ | |
502 | wait_result_t | |
1c79356b | 503 | thread_mark_wait_locked( |
9bccf70c A |
504 | thread_t thread, |
505 | wait_interrupt_t interruptible) | |
1c79356b | 506 | { |
55e303ae | 507 | boolean_t at_safe_point; |
1c79356b | 508 | |
9bccf70c A |
509 | /* |
510 | * The thread may have certain types of interrupts/aborts masked | |
511 | * off. Even if the wait location says these types of interrupts | |
512 | * are OK, we have to honor mask settings (outer-scoped code may | |
513 | * not be able to handle aborts at the moment). | |
514 | */ | |
515 | if (interruptible > thread->interrupt_level) | |
516 | interruptible = thread->interrupt_level; | |
517 | ||
518 | at_safe_point = (interruptible == THREAD_ABORTSAFE); | |
519 | ||
55e303ae A |
520 | if ( interruptible == THREAD_UNINT || |
521 | !(thread->state & TH_ABORT) || | |
522 | (!at_safe_point && | |
523 | (thread->state & TH_ABORT_SAFELY)) ) { | |
9bccf70c A |
524 | thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT); |
525 | thread->at_safe_point = at_safe_point; | |
526 | thread->sleep_stamp = sched_tick; | |
527 | return (thread->wait_result = THREAD_WAITING); | |
9bccf70c | 528 | } |
55e303ae A |
529 | else |
530 | if (thread->state & TH_ABORT_SAFELY) | |
531 | thread->state &= ~(TH_ABORT|TH_ABORT_SAFELY); | |
532 | ||
9bccf70c | 533 | return (thread->wait_result = THREAD_INTERRUPTED); |
1c79356b A |
534 | } |
535 | ||
9bccf70c A |
536 | /* |
537 | * Routine: thread_interrupt_level | |
538 | * Purpose: | |
539 | * Set the maximum interruptible state for the | |
540 | * current thread. The effective value of any | |
541 | * interruptible flag passed into assert_wait | |
542 | * will never exceed this. | |
543 | * | |
544 | * Useful for code that must not be interrupted, | |
545 | * but which calls code that doesn't know that. | |
546 | * Returns: | |
547 | * The old interrupt level for the thread. | |
548 | */ | |
549 | __private_extern__ | |
550 | wait_interrupt_t | |
551 | thread_interrupt_level( | |
552 | wait_interrupt_t new_level) | |
553 | { | |
554 | thread_t thread = current_thread(); | |
555 | wait_interrupt_t result = thread->interrupt_level; | |
1c79356b | 556 | |
9bccf70c A |
557 | thread->interrupt_level = new_level; |
558 | return result; | |
559 | } | |
1c79356b A |
560 | |
561 | /* | |
562 | * Routine: assert_wait_timeout | |
563 | * Purpose: | |
564 | * Assert that the thread intends to block, | |
565 | * waiting for a timeout (no user known event). | |
566 | */ | |
567 | unsigned int assert_wait_timeout_event; | |
568 | ||
9bccf70c | 569 | wait_result_t |
1c79356b | 570 | assert_wait_timeout( |
9bccf70c A |
571 | mach_msg_timeout_t msecs, |
572 | wait_interrupt_t interruptible) | |
1c79356b | 573 | { |
9bccf70c | 574 | wait_result_t res; |
1c79356b | 575 | |
9bccf70c A |
576 | res = assert_wait((event_t)&assert_wait_timeout_event, interruptible); |
577 | if (res == THREAD_WAITING) | |
578 | thread_set_timer(msecs, 1000*NSEC_PER_USEC); | |
579 | return res; | |
1c79356b A |
580 | } |
581 | ||
582 | /* | |
583 | * Check to see if an assert wait is possible, without actually doing one. | |
584 | * This is used by debug code in locks and elsewhere to verify that it is | |
585 | * always OK to block when trying to take a blocking lock (since waiting | |
586 | * for the actual assert_wait to catch the case may make it hard to detect | |
587 | * this case. | |
588 | */ | |
589 | boolean_t | |
590 | assert_wait_possible(void) | |
591 | { | |
592 | ||
593 | thread_t thread; | |
594 | extern unsigned int debug_mode; | |
595 | ||
596 | #if DEBUG | |
597 | if(debug_mode) return TRUE; /* Always succeed in debug mode */ | |
598 | #endif | |
599 | ||
600 | thread = current_thread(); | |
601 | ||
602 | return (thread == NULL || wait_queue_assert_possible(thread)); | |
603 | } | |
604 | ||
605 | /* | |
606 | * assert_wait: | |
607 | * | |
608 | * Assert that the current thread is about to go to | |
609 | * sleep until the specified event occurs. | |
610 | */ | |
9bccf70c | 611 | wait_result_t |
1c79356b A |
612 | assert_wait( |
613 | event_t event, | |
9bccf70c | 614 | wait_interrupt_t interruptible) |
1c79356b A |
615 | { |
616 | register wait_queue_t wq; | |
617 | register int index; | |
618 | ||
619 | assert(event != NO_EVENT); | |
1c79356b A |
620 | |
621 | index = wait_hash(event); | |
622 | wq = &wait_queues[index]; | |
9bccf70c A |
623 | return wait_queue_assert_wait(wq, event, interruptible); |
624 | } | |
625 | ||
55e303ae A |
626 | __private_extern__ |
627 | wait_queue_t | |
628 | wait_event_wait_queue( | |
629 | event_t event) | |
630 | { | |
631 | assert(event != NO_EVENT); | |
632 | ||
633 | return (&wait_queues[wait_hash(event)]); | |
634 | } | |
635 | ||
636 | wait_result_t | |
637 | assert_wait_prim( | |
638 | event_t event, | |
639 | thread_roust_t roust_hint, | |
640 | uint64_t deadline, | |
641 | wait_interrupt_t interruptible) | |
642 | { | |
643 | thread_t thread = current_thread(); | |
644 | wait_result_t wresult; | |
645 | wait_queue_t wq; | |
646 | spl_t s; | |
647 | ||
648 | assert(event != NO_EVENT); | |
649 | ||
650 | wq = &wait_queues[wait_hash(event)]; | |
651 | ||
652 | s = splsched(); | |
653 | wait_queue_lock(wq); | |
654 | thread_lock(thread); | |
655 | ||
656 | wresult = wait_queue_assert_wait64_locked(wq, (uint32_t)event, | |
657 | interruptible, thread); | |
658 | if (wresult == THREAD_WAITING) { | |
659 | if (roust_hint != NULL) | |
660 | thread->roust = roust_hint; | |
661 | ||
662 | if (deadline != 0) { | |
663 | timer_call_enter(&thread->wait_timer, deadline); | |
664 | assert(!thread->wait_timer_is_set); | |
665 | thread->wait_timer_active++; | |
666 | thread->wait_timer_is_set = TRUE; | |
667 | } | |
668 | } | |
669 | ||
670 | thread_unlock(thread); | |
671 | wait_queue_unlock(wq); | |
672 | splx(s); | |
673 | ||
674 | return (wresult); | |
675 | } | |
9bccf70c A |
676 | |
677 | /* | |
678 | * thread_sleep_fast_usimple_lock: | |
679 | * | |
680 | * Cause the current thread to wait until the specified event | |
681 | * occurs. The specified simple_lock is unlocked before releasing | |
682 | * the cpu and re-acquired as part of waking up. | |
683 | * | |
684 | * This is the simple lock sleep interface for components that use a | |
685 | * faster version of simple_lock() than is provided by usimple_lock(). | |
686 | */ | |
687 | __private_extern__ wait_result_t | |
688 | thread_sleep_fast_usimple_lock( | |
689 | event_t event, | |
690 | simple_lock_t lock, | |
691 | wait_interrupt_t interruptible) | |
692 | { | |
693 | wait_result_t res; | |
694 | ||
695 | res = assert_wait(event, interruptible); | |
696 | if (res == THREAD_WAITING) { | |
697 | simple_unlock(lock); | |
698 | res = thread_block(THREAD_CONTINUE_NULL); | |
699 | simple_lock(lock); | |
700 | } | |
701 | return res; | |
1c79356b A |
702 | } |
703 | ||
9bccf70c A |
704 | |
705 | /* | |
706 | * thread_sleep_usimple_lock: | |
707 | * | |
708 | * Cause the current thread to wait until the specified event | |
709 | * occurs. The specified usimple_lock is unlocked before releasing | |
710 | * the cpu and re-acquired as part of waking up. | |
711 | * | |
712 | * This is the simple lock sleep interface for components where | |
713 | * simple_lock() is defined in terms of usimple_lock(). | |
714 | */ | |
715 | wait_result_t | |
716 | thread_sleep_usimple_lock( | |
717 | event_t event, | |
718 | usimple_lock_t lock, | |
719 | wait_interrupt_t interruptible) | |
720 | { | |
721 | wait_result_t res; | |
722 | ||
723 | res = assert_wait(event, interruptible); | |
724 | if (res == THREAD_WAITING) { | |
725 | usimple_unlock(lock); | |
726 | res = thread_block(THREAD_CONTINUE_NULL); | |
727 | usimple_lock(lock); | |
728 | } | |
729 | return res; | |
730 | } | |
731 | ||
732 | /* | |
733 | * thread_sleep_mutex: | |
734 | * | |
735 | * Cause the current thread to wait until the specified event | |
736 | * occurs. The specified mutex is unlocked before releasing | |
737 | * the cpu. The mutex will be re-acquired before returning. | |
738 | * | |
739 | * JMM - Add hint to make sure mutex is available before rousting | |
740 | */ | |
741 | wait_result_t | |
742 | thread_sleep_mutex( | |
743 | event_t event, | |
744 | mutex_t *mutex, | |
745 | wait_interrupt_t interruptible) | |
746 | { | |
747 | wait_result_t res; | |
748 | ||
749 | res = assert_wait(event, interruptible); | |
750 | if (res == THREAD_WAITING) { | |
751 | mutex_unlock(mutex); | |
752 | res = thread_block(THREAD_CONTINUE_NULL); | |
753 | mutex_lock(mutex); | |
754 | } | |
755 | return res; | |
756 | } | |
1c79356b | 757 | |
9bccf70c A |
758 | /* |
759 | * thread_sleep_mutex_deadline: | |
760 | * | |
761 | * Cause the current thread to wait until the specified event | |
762 | * (or deadline) occurs. The specified mutex is unlocked before | |
763 | * releasing the cpu. The mutex will be re-acquired before returning. | |
764 | * | |
765 | * JMM - Add hint to make sure mutex is available before rousting | |
766 | */ | |
767 | wait_result_t | |
768 | thread_sleep_mutex_deadline( | |
769 | event_t event, | |
770 | mutex_t *mutex, | |
771 | uint64_t deadline, | |
772 | wait_interrupt_t interruptible) | |
773 | { | |
774 | wait_result_t res; | |
775 | ||
776 | res = assert_wait(event, interruptible); | |
777 | if (res == THREAD_WAITING) { | |
778 | mutex_unlock(mutex); | |
779 | thread_set_timer_deadline(deadline); | |
780 | res = thread_block(THREAD_CONTINUE_NULL); | |
781 | if (res != THREAD_TIMED_OUT) | |
782 | thread_cancel_timer(); | |
783 | mutex_lock(mutex); | |
784 | } | |
785 | return res; | |
786 | } | |
787 | ||
788 | /* | |
789 | * thread_sleep_lock_write: | |
790 | * | |
791 | * Cause the current thread to wait until the specified event | |
792 | * occurs. The specified (write) lock is unlocked before releasing | |
793 | * the cpu. The (write) lock will be re-acquired before returning. | |
794 | * | |
795 | * JMM - Add hint to make sure mutex is available before rousting | |
796 | */ | |
797 | wait_result_t | |
798 | thread_sleep_lock_write( | |
799 | event_t event, | |
800 | lock_t *lock, | |
801 | wait_interrupt_t interruptible) | |
802 | { | |
803 | wait_result_t res; | |
804 | ||
805 | res = assert_wait(event, interruptible); | |
806 | if (res == THREAD_WAITING) { | |
807 | lock_write_done(lock); | |
808 | res = thread_block(THREAD_CONTINUE_NULL); | |
809 | lock_write(lock); | |
810 | } | |
811 | return res; | |
812 | } | |
813 | ||
814 | ||
815 | /* | |
816 | * thread_sleep_funnel: | |
817 | * | |
818 | * Cause the current thread to wait until the specified event | |
819 | * occurs. If the thread is funnelled, the funnel will be released | |
820 | * before giving up the cpu. The funnel will be re-acquired before returning. | |
821 | * | |
822 | * JMM - Right now the funnel is dropped and re-acquired inside | |
823 | * thread_block(). At some point, this may give thread_block() a hint. | |
824 | */ | |
825 | wait_result_t | |
826 | thread_sleep_funnel( | |
827 | event_t event, | |
828 | wait_interrupt_t interruptible) | |
829 | { | |
830 | wait_result_t res; | |
831 | ||
832 | res = assert_wait(event, interruptible); | |
833 | if (res == THREAD_WAITING) { | |
834 | res = thread_block(THREAD_CONTINUE_NULL); | |
835 | } | |
836 | return res; | |
837 | } | |
838 | ||
1c79356b A |
839 | /* |
840 | * thread_[un]stop(thread) | |
841 | * Once a thread has blocked interruptibly (via assert_wait) prevent | |
842 | * it from running until thread_unstop. | |
843 | * | |
844 | * If someone else has already stopped the thread, wait for the | |
845 | * stop to be cleared, and then stop it again. | |
846 | * | |
847 | * Return FALSE if interrupted. | |
848 | * | |
849 | * NOTE: thread_hold/thread_suspend should be called on the activation | |
850 | * before calling thread_stop. TH_SUSP is only recognized when | |
851 | * a thread blocks and only prevents clear_wait/thread_wakeup | |
852 | * from restarting an interruptible wait. The wake_active flag is | |
853 | * used to indicate that someone is waiting on the thread. | |
854 | */ | |
855 | boolean_t | |
856 | thread_stop( | |
9bccf70c | 857 | thread_t thread) |
1c79356b | 858 | { |
9bccf70c | 859 | spl_t s = splsched(); |
1c79356b | 860 | |
1c79356b A |
861 | wake_lock(thread); |
862 | ||
863 | while (thread->state & TH_SUSP) { | |
9bccf70c | 864 | wait_result_t result; |
e7c99d92 | 865 | |
1c79356b | 866 | thread->wake_active = TRUE; |
9bccf70c | 867 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
1c79356b A |
868 | wake_unlock(thread); |
869 | splx(s); | |
870 | ||
9bccf70c A |
871 | if (result == THREAD_WAITING) |
872 | result = thread_block(THREAD_CONTINUE_NULL); | |
873 | ||
874 | if (result != THREAD_AWAKENED) | |
1c79356b A |
875 | return (FALSE); |
876 | ||
877 | s = splsched(); | |
878 | wake_lock(thread); | |
879 | } | |
9bccf70c | 880 | |
1c79356b A |
881 | thread_lock(thread); |
882 | thread->state |= TH_SUSP; | |
1c79356b | 883 | |
9bccf70c A |
884 | while (thread->state & TH_RUN) { |
885 | wait_result_t result; | |
886 | processor_t processor = thread->last_processor; | |
887 | ||
55e303ae A |
888 | if ( processor != PROCESSOR_NULL && |
889 | processor->state == PROCESSOR_RUNNING && | |
890 | processor->active_thread == thread ) | |
9bccf70c A |
891 | cause_ast_check(processor); |
892 | thread_unlock(thread); | |
893 | ||
894 | thread->wake_active = TRUE; | |
895 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); | |
896 | wake_unlock(thread); | |
897 | splx(s); | |
898 | ||
899 | if (result == THREAD_WAITING) | |
900 | result = thread_block(THREAD_CONTINUE_NULL); | |
901 | ||
902 | if (result != THREAD_AWAKENED) { | |
903 | thread_unstop(thread); | |
904 | return (FALSE); | |
905 | } | |
906 | ||
907 | s = splsched(); | |
908 | wake_lock(thread); | |
909 | thread_lock(thread); | |
910 | } | |
911 | ||
912 | thread_unlock(thread); | |
1c79356b A |
913 | wake_unlock(thread); |
914 | splx(s); | |
915 | ||
916 | return (TRUE); | |
917 | } | |
918 | ||
919 | /* | |
920 | * Clear TH_SUSP and if the thread has been stopped and is now runnable, | |
921 | * put it back on the run queue. | |
922 | */ | |
923 | void | |
924 | thread_unstop( | |
9bccf70c | 925 | thread_t thread) |
1c79356b | 926 | { |
9bccf70c | 927 | spl_t s = splsched(); |
1c79356b | 928 | |
1c79356b A |
929 | wake_lock(thread); |
930 | thread_lock(thread); | |
931 | ||
9bccf70c | 932 | if ((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) == TH_SUSP) { |
0b4e3aa0 A |
933 | thread->state &= ~TH_SUSP; |
934 | thread->state |= TH_RUN; | |
935 | ||
936 | _mk_sp_thread_unblock(thread); | |
55e303ae A |
937 | |
938 | pset_run_incr(thread->processor_set); | |
939 | if (thread->sched_mode & TH_MODE_TIMESHARE) | |
940 | pset_share_incr(thread->processor_set); | |
941 | ||
942 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
943 | ||
944 | KERNEL_DEBUG_CONSTANT( | |
945 | MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE, | |
946 | (int)thread, (int)thread->sched_pri, 0, 0, 0); | |
1c79356b A |
947 | } |
948 | else | |
949 | if (thread->state & TH_SUSP) { | |
950 | thread->state &= ~TH_SUSP; | |
951 | ||
952 | if (thread->wake_active) { | |
953 | thread->wake_active = FALSE; | |
954 | thread_unlock(thread); | |
955 | wake_unlock(thread); | |
956 | splx(s); | |
1c79356b | 957 | |
9bccf70c | 958 | thread_wakeup(&thread->wake_active); |
1c79356b A |
959 | return; |
960 | } | |
961 | } | |
962 | ||
963 | thread_unlock(thread); | |
964 | wake_unlock(thread); | |
965 | splx(s); | |
966 | } | |
967 | ||
968 | /* | |
969 | * Wait for the thread's RUN bit to clear | |
970 | */ | |
971 | boolean_t | |
972 | thread_wait( | |
9bccf70c | 973 | thread_t thread) |
1c79356b | 974 | { |
9bccf70c | 975 | spl_t s = splsched(); |
1c79356b | 976 | |
1c79356b | 977 | wake_lock(thread); |
9bccf70c | 978 | thread_lock(thread); |
1c79356b | 979 | |
9bccf70c A |
980 | while (thread->state & TH_RUN) { |
981 | wait_result_t result; | |
982 | processor_t processor = thread->last_processor; | |
e7c99d92 | 983 | |
55e303ae A |
984 | if ( processor != PROCESSOR_NULL && |
985 | processor->state == PROCESSOR_RUNNING && | |
986 | processor->active_thread == thread ) | |
9bccf70c A |
987 | cause_ast_check(processor); |
988 | thread_unlock(thread); | |
1c79356b A |
989 | |
990 | thread->wake_active = TRUE; | |
9bccf70c | 991 | result = assert_wait(&thread->wake_active, THREAD_ABORTSAFE); |
1c79356b A |
992 | wake_unlock(thread); |
993 | splx(s); | |
994 | ||
9bccf70c A |
995 | if (result == THREAD_WAITING) |
996 | result = thread_block(THREAD_CONTINUE_NULL); | |
997 | ||
998 | if (result != THREAD_AWAKENED) | |
999 | return (FALSE); | |
1c79356b A |
1000 | |
1001 | s = splsched(); | |
1002 | wake_lock(thread); | |
9bccf70c | 1003 | thread_lock(thread); |
1c79356b | 1004 | } |
0b4e3aa0 | 1005 | |
9bccf70c | 1006 | thread_unlock(thread); |
1c79356b A |
1007 | wake_unlock(thread); |
1008 | splx(s); | |
0b4e3aa0 A |
1009 | |
1010 | return (TRUE); | |
1c79356b A |
1011 | } |
1012 | ||
1c79356b A |
1013 | /* |
1014 | * Routine: clear_wait_internal | |
1015 | * | |
1016 | * Clear the wait condition for the specified thread. | |
1017 | * Start the thread executing if that is appropriate. | |
1018 | * Arguments: | |
1019 | * thread thread to awaken | |
1020 | * result Wakeup result the thread should see | |
1021 | * Conditions: | |
1022 | * At splsched | |
1023 | * the thread is locked. | |
9bccf70c A |
1024 | * Returns: |
1025 | * KERN_SUCCESS thread was rousted out a wait | |
1026 | * KERN_FAILURE thread was waiting but could not be rousted | |
1027 | * KERN_NOT_WAITING thread was not waiting | |
1c79356b | 1028 | */ |
9bccf70c | 1029 | __private_extern__ kern_return_t |
1c79356b | 1030 | clear_wait_internal( |
9bccf70c | 1031 | thread_t thread, |
55e303ae | 1032 | wait_result_t wresult) |
1c79356b | 1033 | { |
9bccf70c | 1034 | wait_queue_t wq = thread->wait_queue; |
55e303ae | 1035 | int i = LockTimeOut; |
9bccf70c | 1036 | |
9bccf70c | 1037 | do { |
55e303ae A |
1038 | if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT)) |
1039 | return (KERN_FAILURE); | |
9bccf70c A |
1040 | |
1041 | if (wq != WAIT_QUEUE_NULL) { | |
1042 | if (wait_queue_lock_try(wq)) { | |
1043 | wait_queue_pull_thread_locked(wq, thread, TRUE); | |
1044 | /* wait queue unlocked, thread still locked */ | |
55e303ae A |
1045 | } |
1046 | else { | |
9bccf70c A |
1047 | thread_unlock(thread); |
1048 | delay(1); | |
55e303ae | 1049 | |
9bccf70c | 1050 | thread_lock(thread); |
55e303ae A |
1051 | if (wq != thread->wait_queue) |
1052 | return (KERN_NOT_WAITING); | |
9bccf70c | 1053 | |
9bccf70c A |
1054 | continue; |
1055 | } | |
1c79356b | 1056 | } |
55e303ae A |
1057 | |
1058 | return (thread_go_locked(thread, wresult)); | |
1059 | } while (--i > 0); | |
1060 | ||
9bccf70c A |
1061 | panic("clear_wait_internal: deadlock: thread=0x%x, wq=0x%x, cpu=%d\n", |
1062 | thread, wq, cpu_number()); | |
55e303ae A |
1063 | |
1064 | return (KERN_FAILURE); | |
1c79356b A |
1065 | } |
1066 | ||
1067 | ||
1068 | /* | |
1069 | * clear_wait: | |
1070 | * | |
1071 | * Clear the wait condition for the specified thread. Start the thread | |
1072 | * executing if that is appropriate. | |
1073 | * | |
1074 | * parameters: | |
1075 | * thread thread to awaken | |
1076 | * result Wakeup result the thread should see | |
1077 | */ | |
9bccf70c | 1078 | kern_return_t |
1c79356b | 1079 | clear_wait( |
9bccf70c A |
1080 | thread_t thread, |
1081 | wait_result_t result) | |
1c79356b | 1082 | { |
9bccf70c | 1083 | kern_return_t ret; |
1c79356b A |
1084 | spl_t s; |
1085 | ||
1086 | s = splsched(); | |
1087 | thread_lock(thread); | |
9bccf70c | 1088 | ret = clear_wait_internal(thread, result); |
1c79356b A |
1089 | thread_unlock(thread); |
1090 | splx(s); | |
9bccf70c | 1091 | return ret; |
1c79356b A |
1092 | } |
1093 | ||
1094 | ||
1095 | /* | |
1096 | * thread_wakeup_prim: | |
1097 | * | |
1098 | * Common routine for thread_wakeup, thread_wakeup_with_result, | |
1099 | * and thread_wakeup_one. | |
1100 | * | |
1101 | */ | |
9bccf70c | 1102 | kern_return_t |
1c79356b A |
1103 | thread_wakeup_prim( |
1104 | event_t event, | |
1105 | boolean_t one_thread, | |
9bccf70c | 1106 | wait_result_t result) |
1c79356b A |
1107 | { |
1108 | register wait_queue_t wq; | |
1109 | register int index; | |
1110 | ||
1111 | index = wait_hash(event); | |
1112 | wq = &wait_queues[index]; | |
1113 | if (one_thread) | |
9bccf70c | 1114 | return (wait_queue_wakeup_one(wq, event, result)); |
1c79356b | 1115 | else |
9bccf70c | 1116 | return (wait_queue_wakeup_all(wq, event, result)); |
1c79356b A |
1117 | } |
1118 | ||
1119 | /* | |
1120 | * thread_bind: | |
1121 | * | |
1122 | * Force a thread to execute on the specified processor. | |
1c79356b | 1123 | * |
55e303ae A |
1124 | * Returns the previous binding. PROCESSOR_NULL means |
1125 | * not bound. | |
1126 | * | |
1127 | * XXX - DO NOT export this to users - XXX | |
1c79356b | 1128 | */ |
55e303ae | 1129 | processor_t |
1c79356b A |
1130 | thread_bind( |
1131 | register thread_t thread, | |
1132 | processor_t processor) | |
1133 | { | |
55e303ae A |
1134 | processor_t prev; |
1135 | run_queue_t runq = RUN_QUEUE_NULL; | |
1136 | spl_t s; | |
1c79356b A |
1137 | |
1138 | s = splsched(); | |
1139 | thread_lock(thread); | |
55e303ae A |
1140 | prev = thread->bound_processor; |
1141 | if (prev != PROCESSOR_NULL) | |
1142 | runq = run_queue_remove(thread); | |
1143 | ||
1144 | thread->bound_processor = processor; | |
1145 | ||
1146 | if (runq != RUN_QUEUE_NULL) | |
1147 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); | |
1c79356b A |
1148 | thread_unlock(thread); |
1149 | splx(s); | |
55e303ae A |
1150 | |
1151 | return (prev); | |
1c79356b A |
1152 | } |
1153 | ||
55e303ae A |
1154 | struct { |
1155 | uint32_t idle_pset_last, | |
1156 | idle_pset_any, | |
1157 | idle_bound; | |
1158 | ||
1159 | uint32_t pset_self, | |
1160 | pset_last, | |
1161 | pset_other, | |
1162 | bound_self, | |
1163 | bound_other; | |
1164 | ||
1165 | uint32_t realtime_self, | |
1166 | realtime_last, | |
1167 | realtime_other; | |
1168 | ||
1169 | uint32_t missed_realtime, | |
1170 | missed_other; | |
1171 | } dispatch_counts; | |
1172 | ||
1c79356b | 1173 | /* |
55e303ae A |
1174 | * Select a thread for the current processor to run. |
1175 | * | |
1176 | * May select the current thread, which must be locked. | |
1c79356b A |
1177 | */ |
1178 | thread_t | |
1179 | thread_select( | |
55e303ae | 1180 | register processor_t processor) |
1c79356b A |
1181 | { |
1182 | register thread_t thread; | |
1183 | processor_set_t pset; | |
1c79356b | 1184 | boolean_t other_runnable; |
1c79356b A |
1185 | |
1186 | /* | |
1187 | * Check for other non-idle runnable threads. | |
1188 | */ | |
55e303ae A |
1189 | pset = processor->processor_set; |
1190 | thread = processor->active_thread; | |
0b4e3aa0 A |
1191 | |
1192 | /* Update the thread's priority */ | |
1193 | if (thread->sched_stamp != sched_tick) | |
1194 | update_priority(thread); | |
1c79356b | 1195 | |
55e303ae | 1196 | processor->current_pri = thread->sched_pri; |
9bccf70c | 1197 | |
55e303ae | 1198 | simple_lock(&pset->sched_lock); |
1c79356b | 1199 | |
55e303ae | 1200 | other_runnable = processor->runq.count > 0 || pset->runq.count > 0; |
1c79356b A |
1201 | |
1202 | if ( thread->state == TH_RUN && | |
1c79356b A |
1203 | thread->processor_set == pset && |
1204 | (thread->bound_processor == PROCESSOR_NULL || | |
55e303ae A |
1205 | thread->bound_processor == processor) ) { |
1206 | if ( thread->sched_pri >= BASEPRI_RTQUEUES && | |
1207 | first_timeslice(processor) ) { | |
1208 | if (pset->runq.highq >= BASEPRI_RTQUEUES) { | |
1209 | register run_queue_t runq = &pset->runq; | |
1210 | register queue_t q; | |
1211 | ||
1212 | q = runq->queues + runq->highq; | |
1213 | if (((thread_t)q->next)->realtime.deadline < | |
1214 | processor->deadline) { | |
1215 | thread = (thread_t)q->next; | |
1216 | ((queue_entry_t)thread)->next->prev = q; | |
1217 | q->next = ((queue_entry_t)thread)->next; | |
1218 | thread->runq = RUN_QUEUE_NULL; | |
1219 | assert(thread->sched_mode & TH_MODE_PREEMPT); | |
1220 | runq->count--; runq->urgency--; | |
1221 | if (queue_empty(q)) { | |
1222 | if (runq->highq != IDLEPRI) | |
1223 | clrbit(MAXPRI - runq->highq, runq->bitmap); | |
1224 | runq->highq = MAXPRI - ffsbit(runq->bitmap); | |
1225 | } | |
1226 | } | |
1227 | } | |
1228 | ||
1229 | processor->deadline = thread->realtime.deadline; | |
1230 | ||
1231 | simple_unlock(&pset->sched_lock); | |
1232 | ||
1233 | return (thread); | |
1234 | } | |
1c79356b | 1235 | |
55e303ae A |
1236 | if ( (!other_runnable || |
1237 | (processor->runq.highq < thread->sched_pri && | |
1238 | pset->runq.highq < thread->sched_pri)) ) { | |
1c79356b | 1239 | |
55e303ae A |
1240 | /* I am the highest priority runnable (non-idle) thread */ |
1241 | ||
1242 | processor->deadline = UINT64_MAX; | |
1243 | ||
1244 | simple_unlock(&pset->sched_lock); | |
1245 | ||
1246 | return (thread); | |
1247 | } | |
1c79356b | 1248 | } |
55e303ae | 1249 | |
9bccf70c | 1250 | if (other_runnable) |
55e303ae | 1251 | thread = choose_thread(pset, processor); |
1c79356b | 1252 | else { |
1c79356b A |
1253 | /* |
1254 | * Nothing is runnable, so set this processor idle if it | |
55e303ae | 1255 | * was running. Return its idle thread. |
1c79356b | 1256 | */ |
55e303ae A |
1257 | if (processor->state == PROCESSOR_RUNNING) { |
1258 | remqueue(&pset->active_queue, (queue_entry_t)processor); | |
1259 | processor->state = PROCESSOR_IDLE; | |
1c79356b | 1260 | |
55e303ae | 1261 | enqueue_tail(&pset->idle_queue, (queue_entry_t)processor); |
1c79356b A |
1262 | pset->idle_count++; |
1263 | } | |
1c79356b | 1264 | |
55e303ae A |
1265 | processor->deadline = UINT64_MAX; |
1266 | ||
1267 | thread = processor->idle_thread; | |
1c79356b A |
1268 | } |
1269 | ||
55e303ae A |
1270 | simple_unlock(&pset->sched_lock); |
1271 | ||
1c79356b A |
1272 | return (thread); |
1273 | } | |
1274 | ||
1c79356b | 1275 | /* |
55e303ae A |
1276 | * Perform a context switch and start executing the new thread. |
1277 | * | |
1278 | * If continuation is non-zero, resume the old (current) thread | |
1279 | * next by executing at continuation on a new stack, in lieu | |
1280 | * of returning. | |
1281 | * | |
1c79356b | 1282 | * Returns TRUE if the hand-off succeeds. |
9bccf70c | 1283 | * |
55e303ae | 1284 | * Called at splsched. |
1c79356b A |
1285 | */ |
1286 | ||
55e303ae A |
1287 | #define funnel_release_check(thread, debug) \ |
1288 | MACRO_BEGIN \ | |
1289 | if ((thread)->funnel_state & TH_FN_OWNED) { \ | |
1290 | (thread)->funnel_state = TH_FN_REFUNNEL; \ | |
1291 | KERNEL_DEBUG(0x603242c | DBG_FUNC_NONE, \ | |
1292 | (thread)->funnel_lock, (debug), 0, 0, 0); \ | |
1293 | funnel_unlock((thread)->funnel_lock); \ | |
1294 | } \ | |
1295 | MACRO_END | |
1296 | ||
1297 | #define funnel_refunnel_check(thread, debug) \ | |
1298 | MACRO_BEGIN \ | |
1299 | if ((thread)->funnel_state & TH_FN_REFUNNEL) { \ | |
1300 | kern_return_t result = (thread)->wait_result; \ | |
1301 | \ | |
1302 | (thread)->funnel_state = 0; \ | |
1303 | KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, \ | |
1304 | (thread)->funnel_lock, (debug), 0, 0, 0); \ | |
1305 | funnel_lock((thread)->funnel_lock); \ | |
1306 | KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, \ | |
1307 | (thread)->funnel_lock, (debug), 0, 0, 0); \ | |
1308 | (thread)->funnel_state = TH_FN_OWNED; \ | |
1309 | (thread)->wait_result = result; \ | |
1310 | } \ | |
1311 | MACRO_END | |
1312 | ||
1c79356b A |
1313 | static thread_t |
1314 | __current_thread(void) | |
1315 | { | |
1316 | return (current_thread()); | |
1317 | } | |
1318 | ||
1319 | boolean_t | |
1320 | thread_invoke( | |
1321 | register thread_t old_thread, | |
1322 | register thread_t new_thread, | |
1323 | int reason, | |
9bccf70c | 1324 | thread_continue_t old_cont) |
1c79356b | 1325 | { |
9bccf70c A |
1326 | thread_continue_t new_cont; |
1327 | processor_t processor; | |
1c79356b | 1328 | |
9bccf70c | 1329 | if (get_preemption_level() != 0) |
0b4e3aa0 | 1330 | panic("thread_invoke: preemption_level %d\n", |
9bccf70c | 1331 | get_preemption_level()); |
0b4e3aa0 | 1332 | |
1c79356b | 1333 | /* |
9bccf70c | 1334 | * Mark thread interruptible. |
1c79356b A |
1335 | */ |
1336 | thread_lock(new_thread); | |
1337 | new_thread->state &= ~TH_UNINT; | |
1338 | ||
1c79356b A |
1339 | assert(thread_runnable(new_thread)); |
1340 | ||
9bccf70c | 1341 | assert(old_thread->continuation == NULL); |
1c79356b | 1342 | |
9bccf70c A |
1343 | /* |
1344 | * Allow time constraint threads to hang onto | |
1345 | * a stack. | |
1346 | */ | |
0b4e3aa0 | 1347 | if ( (old_thread->sched_mode & TH_MODE_REALTIME) && |
55e303ae A |
1348 | !old_thread->reserved_stack ) { |
1349 | old_thread->reserved_stack = old_thread->kernel_stack; | |
1c79356b A |
1350 | } |
1351 | ||
9bccf70c A |
1352 | if (old_cont != NULL) { |
1353 | if (new_thread->state & TH_STACK_HANDOFF) { | |
1354 | /* | |
1355 | * If the old thread is using a privileged stack, | |
1356 | * check to see whether we can exchange it with | |
1357 | * that of the new thread. | |
1358 | */ | |
55e303ae A |
1359 | if ( old_thread->kernel_stack == old_thread->reserved_stack && |
1360 | !new_thread->reserved_stack) | |
9bccf70c | 1361 | goto need_stack; |
1c79356b | 1362 | |
9bccf70c A |
1363 | new_thread->state &= ~TH_STACK_HANDOFF; |
1364 | new_cont = new_thread->continuation; | |
1365 | new_thread->continuation = NULL; | |
1c79356b | 1366 | |
9bccf70c A |
1367 | /* |
1368 | * Set up ast context of new thread and switch | |
1369 | * to its timer. | |
1370 | */ | |
1371 | processor = current_processor(); | |
55e303ae | 1372 | processor->active_thread = new_thread; |
9bccf70c | 1373 | processor->current_pri = new_thread->sched_pri; |
55e303ae | 1374 | new_thread->last_processor = processor; |
9bccf70c A |
1375 | ast_context(new_thread->top_act, processor->slot_num); |
1376 | timer_switch(&new_thread->system_timer); | |
1377 | thread_unlock(new_thread); | |
0b4e3aa0 | 1378 | |
9bccf70c | 1379 | current_task()->csw++; |
1c79356b | 1380 | |
9bccf70c A |
1381 | old_thread->reason = reason; |
1382 | old_thread->continuation = old_cont; | |
0b4e3aa0 | 1383 | |
9bccf70c | 1384 | _mk_sp_thread_done(old_thread, new_thread, processor); |
1c79356b | 1385 | |
55e303ae | 1386 | machine_stack_handoff(old_thread, new_thread); |
9bccf70c A |
1387 | |
1388 | _mk_sp_thread_begin(new_thread, processor); | |
1c79356b | 1389 | |
1c79356b A |
1390 | wake_lock(old_thread); |
1391 | thread_lock(old_thread); | |
1c79356b | 1392 | |
9bccf70c A |
1393 | /* |
1394 | * Inline thread_dispatch but | |
1395 | * don't free stack. | |
1396 | */ | |
1397 | ||
1398 | switch (old_thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_IDLE)) { | |
1399 | ||
1400 | case TH_RUN | TH_UNINT: | |
1401 | case TH_RUN: | |
1402 | /* | |
1403 | * Still running, put back | |
1404 | * onto a run queue. | |
1405 | */ | |
1406 | old_thread->state |= TH_STACK_HANDOFF; | |
1407 | _mk_sp_thread_dispatch(old_thread); | |
1408 | ||
1409 | thread_unlock(old_thread); | |
1410 | wake_unlock(old_thread); | |
1411 | break; | |
1c79356b | 1412 | |
9bccf70c A |
1413 | case TH_RUN | TH_WAIT | TH_UNINT: |
1414 | case TH_RUN | TH_WAIT: | |
1415 | { | |
55e303ae | 1416 | boolean_t term, wake, callout; |
1c79356b | 1417 | |
9bccf70c A |
1418 | /* |
1419 | * Waiting. | |
1420 | */ | |
1421 | old_thread->sleep_stamp = sched_tick; | |
1422 | old_thread->state |= TH_STACK_HANDOFF; | |
1423 | old_thread->state &= ~TH_RUN; | |
55e303ae A |
1424 | |
1425 | term = (old_thread->state & TH_TERMINATE)? TRUE: FALSE; | |
1426 | callout = old_thread->active_callout; | |
9bccf70c A |
1427 | wake = old_thread->wake_active; |
1428 | old_thread->wake_active = FALSE; | |
55e303ae A |
1429 | |
1430 | if (old_thread->sched_mode & TH_MODE_TIMESHARE) | |
1431 | pset_share_decr(old_thread->processor_set); | |
1432 | pset_run_decr(old_thread->processor_set); | |
9bccf70c A |
1433 | |
1434 | thread_unlock(old_thread); | |
1435 | wake_unlock(old_thread); | |
1436 | ||
55e303ae | 1437 | if (callout) |
9bccf70c A |
1438 | call_thread_block(); |
1439 | ||
1440 | if (wake) | |
1441 | thread_wakeup((event_t)&old_thread->wake_active); | |
1442 | ||
55e303ae | 1443 | if (term) |
9bccf70c A |
1444 | thread_reaper_enqueue(old_thread); |
1445 | break; | |
1446 | } | |
1c79356b | 1447 | |
9bccf70c A |
1448 | case TH_RUN | TH_IDLE: |
1449 | /* | |
1450 | * The idle threads don't go | |
1451 | * onto a run queue. | |
1452 | */ | |
1453 | old_thread->state |= TH_STACK_HANDOFF; | |
1454 | thread_unlock(old_thread); | |
1455 | wake_unlock(old_thread); | |
1456 | break; | |
1c79356b | 1457 | |
9bccf70c A |
1458 | default: |
1459 | panic("thread_invoke: state 0x%x\n", old_thread->state); | |
1460 | } | |
1c79356b | 1461 | |
9bccf70c | 1462 | counter_always(c_thread_invoke_hits++); |
1c79356b | 1463 | |
55e303ae | 1464 | funnel_refunnel_check(new_thread, 2); |
9bccf70c | 1465 | (void) spllo(); |
1c79356b | 1466 | |
9bccf70c A |
1467 | assert(new_cont); |
1468 | call_continuation(new_cont); | |
1469 | /*NOTREACHED*/ | |
1470 | return (TRUE); | |
1c79356b | 1471 | } |
9bccf70c A |
1472 | else |
1473 | if (new_thread->state & TH_STACK_ALLOC) { | |
1474 | /* | |
1475 | * Waiting for a stack | |
1476 | */ | |
1c79356b | 1477 | counter_always(c_thread_invoke_misses++); |
9bccf70c A |
1478 | thread_unlock(new_thread); |
1479 | return (FALSE); | |
1480 | } | |
1481 | else | |
1482 | if (new_thread == old_thread) { | |
1483 | /* same thread but with continuation */ | |
1484 | counter(++c_thread_invoke_same); | |
1485 | thread_unlock(new_thread); | |
1486 | ||
55e303ae | 1487 | funnel_refunnel_check(new_thread, 3); |
9bccf70c | 1488 | (void) spllo(); |
55e303ae | 1489 | |
9bccf70c A |
1490 | call_continuation(old_cont); |
1491 | /*NOTREACHED*/ | |
1492 | } | |
1c79356b | 1493 | } |
9bccf70c A |
1494 | else { |
1495 | /* | |
1496 | * Check that the new thread has a stack | |
1497 | */ | |
1498 | if (new_thread->state & TH_STACK_HANDOFF) { | |
1499 | need_stack: | |
1500 | if (!stack_alloc_try(new_thread, thread_continue)) { | |
1501 | counter_always(c_thread_invoke_misses++); | |
1502 | thread_swapin(new_thread); | |
1503 | return (FALSE); | |
1504 | } | |
1c79356b | 1505 | |
9bccf70c A |
1506 | new_thread->state &= ~TH_STACK_HANDOFF; |
1507 | } | |
1508 | else | |
1509 | if (new_thread->state & TH_STACK_ALLOC) { | |
1510 | /* | |
1511 | * Waiting for a stack | |
1512 | */ | |
1513 | counter_always(c_thread_invoke_misses++); | |
1514 | thread_unlock(new_thread); | |
1515 | return (FALSE); | |
1516 | } | |
1517 | else | |
1518 | if (old_thread == new_thread) { | |
1519 | counter(++c_thread_invoke_same); | |
1520 | thread_unlock(new_thread); | |
1521 | return (TRUE); | |
1522 | } | |
1523 | } | |
1c79356b A |
1524 | |
1525 | /* | |
9bccf70c | 1526 | * Set up ast context of new thread and switch to its timer. |
1c79356b | 1527 | */ |
9bccf70c | 1528 | processor = current_processor(); |
55e303ae | 1529 | processor->active_thread = new_thread; |
9bccf70c | 1530 | processor->current_pri = new_thread->sched_pri; |
55e303ae | 1531 | new_thread->last_processor = processor; |
9bccf70c | 1532 | ast_context(new_thread->top_act, processor->slot_num); |
1c79356b A |
1533 | timer_switch(&new_thread->system_timer); |
1534 | assert(thread_runnable(new_thread)); | |
1c79356b A |
1535 | thread_unlock(new_thread); |
1536 | ||
1537 | counter_always(c_thread_invoke_csw++); | |
1538 | current_task()->csw++; | |
1539 | ||
1c79356b | 1540 | assert(old_thread->runq == RUN_QUEUE_NULL); |
9bccf70c A |
1541 | old_thread->reason = reason; |
1542 | old_thread->continuation = old_cont; | |
1c79356b | 1543 | |
9bccf70c | 1544 | _mk_sp_thread_done(old_thread, new_thread, processor); |
1c79356b A |
1545 | |
1546 | /* | |
55e303ae A |
1547 | * Here is where we actually change register context, |
1548 | * and address space if required. Note that control | |
1549 | * will not return here immediately. | |
1c79356b | 1550 | */ |
55e303ae | 1551 | old_thread = machine_switch_context(old_thread, old_cont, new_thread); |
1c79356b A |
1552 | |
1553 | /* Now on new thread's stack. Set a local variable to refer to it. */ | |
1554 | new_thread = __current_thread(); | |
1555 | assert(old_thread != new_thread); | |
1556 | ||
1c79356b | 1557 | assert(thread_runnable(new_thread)); |
9bccf70c | 1558 | _mk_sp_thread_begin(new_thread, new_thread->last_processor); |
1c79356b A |
1559 | |
1560 | /* | |
1561 | * We're back. Now old_thread is the thread that resumed | |
1562 | * us, and we have to dispatch it. | |
1563 | */ | |
1c79356b | 1564 | thread_dispatch(old_thread); |
9bccf70c A |
1565 | |
1566 | if (old_cont) { | |
55e303ae | 1567 | funnel_refunnel_check(new_thread, 3); |
9bccf70c | 1568 | (void) spllo(); |
55e303ae | 1569 | |
9bccf70c A |
1570 | call_continuation(old_cont); |
1571 | /*NOTREACHED*/ | |
1c79356b A |
1572 | } |
1573 | ||
9bccf70c | 1574 | return (TRUE); |
1c79356b A |
1575 | } |
1576 | ||
1577 | /* | |
1578 | * thread_continue: | |
1579 | * | |
55e303ae A |
1580 | * Called at splsched when a thread first receives |
1581 | * a new stack after a continuation. | |
1c79356b A |
1582 | */ |
1583 | void | |
1584 | thread_continue( | |
0b4e3aa0 | 1585 | register thread_t old_thread) |
1c79356b | 1586 | { |
9bccf70c A |
1587 | register thread_t self = current_thread(); |
1588 | register thread_continue_t continuation; | |
1589 | ||
1590 | continuation = self->continuation; | |
1591 | self->continuation = NULL; | |
1592 | ||
1593 | _mk_sp_thread_begin(self, self->last_processor); | |
1c79356b A |
1594 | |
1595 | /* | |
1596 | * We must dispatch the old thread and then | |
1597 | * call the current thread's continuation. | |
1598 | * There might not be an old thread, if we are | |
1599 | * the first thread to run on this processor. | |
1600 | */ | |
0b4e3aa0 | 1601 | if (old_thread != THREAD_NULL) |
1c79356b | 1602 | thread_dispatch(old_thread); |
1c79356b | 1603 | |
55e303ae | 1604 | funnel_refunnel_check(self, 4); |
9bccf70c | 1605 | (void)spllo(); |
55e303ae | 1606 | |
9bccf70c | 1607 | call_continuation(continuation); |
1c79356b A |
1608 | /*NOTREACHED*/ |
1609 | } | |
1610 | ||
1c79356b A |
1611 | /* |
1612 | * thread_block_reason: | |
1613 | * | |
55e303ae A |
1614 | * Forces a reschedule, blocking the caller if a wait |
1615 | * has been asserted. | |
1616 | * | |
1617 | * If a continuation is specified, then thread_invoke will | |
1c79356b A |
1618 | * attempt to discard the thread's kernel stack. When the |
1619 | * thread resumes, it will execute the continuation function | |
1620 | * on a new kernel stack. | |
1621 | */ | |
1622 | counter(mach_counter_t c_thread_block_calls = 0;) | |
1623 | ||
1624 | int | |
1625 | thread_block_reason( | |
9bccf70c A |
1626 | thread_continue_t continuation, |
1627 | ast_t reason) | |
1c79356b A |
1628 | { |
1629 | register thread_t thread = current_thread(); | |
55e303ae | 1630 | register processor_t processor; |
1c79356b A |
1631 | register thread_t new_thread; |
1632 | spl_t s; | |
1633 | ||
1634 | counter(++c_thread_block_calls); | |
1635 | ||
1636 | check_simple_locks(); | |
1637 | ||
1c79356b A |
1638 | s = splsched(); |
1639 | ||
55e303ae A |
1640 | if (!(reason & AST_PREEMPT)) |
1641 | funnel_release_check(thread, 2); | |
1c79356b | 1642 | |
55e303ae | 1643 | processor = current_processor(); |
1c79356b | 1644 | |
9bccf70c A |
1645 | /* If we're explicitly yielding, force a subsequent quantum */ |
1646 | if (reason & AST_YIELD) | |
55e303ae | 1647 | processor->timeslice = 0; |
0b4e3aa0 | 1648 | |
9bccf70c A |
1649 | /* We're handling all scheduling AST's */ |
1650 | ast_off(AST_SCHEDULING); | |
1c79356b | 1651 | |
9bccf70c | 1652 | thread_lock(thread); |
55e303ae | 1653 | new_thread = thread_select(processor); |
9bccf70c | 1654 | assert(new_thread && thread_runnable(new_thread)); |
1c79356b A |
1655 | thread_unlock(thread); |
1656 | while (!thread_invoke(thread, new_thread, reason, continuation)) { | |
1657 | thread_lock(thread); | |
55e303ae | 1658 | new_thread = thread_select(processor); |
9bccf70c | 1659 | assert(new_thread && thread_runnable(new_thread)); |
1c79356b A |
1660 | thread_unlock(thread); |
1661 | } | |
1662 | ||
55e303ae | 1663 | funnel_refunnel_check(thread, 5); |
1c79356b A |
1664 | splx(s); |
1665 | ||
9bccf70c | 1666 | return (thread->wait_result); |
1c79356b A |
1667 | } |
1668 | ||
1669 | /* | |
1670 | * thread_block: | |
1671 | * | |
9bccf70c | 1672 | * Block the current thread if a wait has been asserted. |
1c79356b A |
1673 | */ |
1674 | int | |
1675 | thread_block( | |
9bccf70c | 1676 | thread_continue_t continuation) |
1c79356b | 1677 | { |
0b4e3aa0 | 1678 | return thread_block_reason(continuation, AST_NONE); |
1c79356b A |
1679 | } |
1680 | ||
1681 | /* | |
1682 | * thread_run: | |
1683 | * | |
9bccf70c | 1684 | * Switch directly from the current (old) thread to the |
55e303ae | 1685 | * new thread, handing off our quantum if appropriate. |
9bccf70c A |
1686 | * |
1687 | * New thread must be runnable, and not on a run queue. | |
1c79356b | 1688 | * |
55e303ae | 1689 | * Called at splsched. |
1c79356b A |
1690 | */ |
1691 | int | |
1692 | thread_run( | |
9bccf70c A |
1693 | thread_t old_thread, |
1694 | thread_continue_t continuation, | |
1695 | thread_t new_thread) | |
1c79356b | 1696 | { |
9bccf70c A |
1697 | ast_t handoff = AST_HANDOFF; |
1698 | ||
1699 | assert(old_thread == current_thread()); | |
1700 | ||
55e303ae | 1701 | funnel_release_check(old_thread, 3); |
9bccf70c A |
1702 | |
1703 | while (!thread_invoke(old_thread, new_thread, handoff, continuation)) { | |
55e303ae | 1704 | register processor_t processor = current_processor(); |
9bccf70c | 1705 | |
1c79356b | 1706 | thread_lock(old_thread); |
55e303ae | 1707 | new_thread = thread_select(processor); |
1c79356b | 1708 | thread_unlock(old_thread); |
9bccf70c A |
1709 | handoff = AST_NONE; |
1710 | } | |
1711 | ||
55e303ae | 1712 | funnel_refunnel_check(old_thread, 6); |
9bccf70c A |
1713 | |
1714 | return (old_thread->wait_result); | |
1c79356b A |
1715 | } |
1716 | ||
1717 | /* | |
55e303ae A |
1718 | * Dispatches a running thread that is not on a |
1719 | * run queue. | |
1720 | * | |
1c79356b A |
1721 | * Called at splsched. |
1722 | */ | |
1723 | void | |
1724 | thread_dispatch( | |
1725 | register thread_t thread) | |
1726 | { | |
9bccf70c A |
1727 | wake_lock(thread); |
1728 | thread_lock(thread); | |
1729 | ||
1c79356b A |
1730 | /* |
1731 | * If we are discarding the thread's stack, we must do it | |
1732 | * before the thread has a chance to run. | |
1733 | */ | |
1c79356b | 1734 | #ifndef i386 |
9bccf70c A |
1735 | if (thread->continuation != NULL) { |
1736 | assert((thread->state & TH_STACK_STATE) == 0); | |
1737 | thread->state |= TH_STACK_HANDOFF; | |
1738 | stack_free(thread); | |
1739 | } | |
1c79356b A |
1740 | #endif |
1741 | ||
1742 | switch (thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_IDLE)) { | |
1743 | ||
1744 | case TH_RUN | TH_UNINT: | |
1745 | case TH_RUN: | |
1746 | /* | |
1747 | * No reason to stop. Put back on a run queue. | |
1748 | */ | |
0b4e3aa0 | 1749 | _mk_sp_thread_dispatch(thread); |
1c79356b A |
1750 | break; |
1751 | ||
1752 | case TH_RUN | TH_WAIT | TH_UNINT: | |
1753 | case TH_RUN | TH_WAIT: | |
9bccf70c | 1754 | { |
55e303ae | 1755 | boolean_t term, wake, callout; |
1c79356b A |
1756 | |
1757 | /* | |
1758 | * Waiting | |
1759 | */ | |
9bccf70c | 1760 | thread->sleep_stamp = sched_tick; |
1c79356b | 1761 | thread->state &= ~TH_RUN; |
55e303ae A |
1762 | |
1763 | term = (thread->state & TH_TERMINATE)? TRUE: FALSE; | |
1764 | callout = thread->active_callout; | |
9bccf70c A |
1765 | wake = thread->wake_active; |
1766 | thread->wake_active = FALSE; | |
55e303ae A |
1767 | |
1768 | if (thread->sched_mode & TH_MODE_TIMESHARE) | |
1769 | pset_share_decr(thread->processor_set); | |
1770 | pset_run_decr(thread->processor_set); | |
1c79356b | 1771 | |
9bccf70c A |
1772 | thread_unlock(thread); |
1773 | wake_unlock(thread); | |
1774 | ||
55e303ae | 1775 | if (callout) |
9bccf70c A |
1776 | call_thread_block(); |
1777 | ||
1778 | if (wake) | |
1c79356b | 1779 | thread_wakeup((event_t)&thread->wake_active); |
9bccf70c | 1780 | |
55e303ae | 1781 | if (term) |
9bccf70c A |
1782 | thread_reaper_enqueue(thread); |
1783 | ||
1784 | return; | |
1785 | } | |
1c79356b A |
1786 | |
1787 | case TH_RUN | TH_IDLE: | |
1788 | /* | |
9bccf70c A |
1789 | * The idle threads don't go |
1790 | * onto a run queue. | |
1c79356b A |
1791 | */ |
1792 | break; | |
1793 | ||
1794 | default: | |
55e303ae | 1795 | panic("thread_dispatch: state 0x%x\n", thread->state); |
1c79356b | 1796 | } |
9bccf70c | 1797 | |
1c79356b A |
1798 | thread_unlock(thread); |
1799 | wake_unlock(thread); | |
1800 | } | |
1801 | ||
1802 | /* | |
55e303ae A |
1803 | * Enqueue thread on run queue. Thread must be locked, |
1804 | * and not already be on a run queue. Returns TRUE | |
1805 | * if a preemption is indicated based on the state | |
1806 | * of the run queue. | |
1807 | * | |
1808 | * Run queue must be locked, see run_queue_remove() | |
1809 | * for more info. | |
1c79356b | 1810 | */ |
55e303ae | 1811 | static boolean_t |
1c79356b A |
1812 | run_queue_enqueue( |
1813 | register run_queue_t rq, | |
1814 | register thread_t thread, | |
55e303ae | 1815 | integer_t options) |
1c79356b | 1816 | { |
9bccf70c A |
1817 | register int whichq = thread->sched_pri; |
1818 | register queue_t queue = &rq->queues[whichq]; | |
1819 | boolean_t result = FALSE; | |
1c79356b | 1820 | |
1c79356b A |
1821 | assert(whichq >= MINPRI && whichq <= MAXPRI); |
1822 | ||
1c79356b | 1823 | assert(thread->runq == RUN_QUEUE_NULL); |
9bccf70c A |
1824 | if (queue_empty(queue)) { |
1825 | enqueue_tail(queue, (queue_entry_t)thread); | |
1826 | ||
1827 | setbit(MAXPRI - whichq, rq->bitmap); | |
55e303ae | 1828 | if (whichq > rq->highq) { |
9bccf70c | 1829 | rq->highq = whichq; |
55e303ae A |
1830 | result = TRUE; |
1831 | } | |
9bccf70c A |
1832 | } |
1833 | else | |
55e303ae | 1834 | if (options & SCHED_HEADQ) |
9bccf70c | 1835 | enqueue_head(queue, (queue_entry_t)thread); |
55e303ae A |
1836 | else |
1837 | enqueue_tail(queue, (queue_entry_t)thread); | |
1c79356b | 1838 | |
1c79356b | 1839 | thread->runq = rq; |
9bccf70c A |
1840 | if (thread->sched_mode & TH_MODE_PREEMPT) |
1841 | rq->urgency++; | |
1842 | rq->count++; | |
1c79356b | 1843 | |
9bccf70c | 1844 | return (result); |
1c79356b A |
1845 | } |
1846 | ||
1847 | /* | |
55e303ae A |
1848 | * Enqueue a thread for realtime execution, similar |
1849 | * to above. Handles preemption directly. | |
1c79356b | 1850 | */ |
55e303ae A |
1851 | static void |
1852 | realtime_schedule_insert( | |
1853 | register processor_set_t pset, | |
1854 | register thread_t thread) | |
1c79356b | 1855 | { |
55e303ae A |
1856 | register run_queue_t rq = &pset->runq; |
1857 | register int whichq = thread->sched_pri; | |
1858 | register queue_t queue = &rq->queues[whichq]; | |
1859 | uint64_t deadline = thread->realtime.deadline; | |
1860 | boolean_t try_preempt = FALSE; | |
1c79356b | 1861 | |
55e303ae | 1862 | assert(whichq >= BASEPRI_REALTIME && whichq <= MAXPRI); |
1c79356b | 1863 | |
55e303ae A |
1864 | assert(thread->runq == RUN_QUEUE_NULL); |
1865 | if (queue_empty(queue)) { | |
1866 | enqueue_tail(queue, (queue_entry_t)thread); | |
1867 | ||
1868 | setbit(MAXPRI - whichq, rq->bitmap); | |
1869 | if (whichq > rq->highq) | |
1870 | rq->highq = whichq; | |
1871 | try_preempt = TRUE; | |
1872 | } | |
1873 | else { | |
1874 | register thread_t entry = (thread_t)queue_first(queue); | |
1875 | ||
1876 | while (TRUE) { | |
1877 | if ( queue_end(queue, (queue_entry_t)entry) || | |
1878 | deadline < entry->realtime.deadline ) { | |
1879 | entry = (thread_t)queue_prev((queue_entry_t)entry); | |
1880 | break; | |
1881 | } | |
1882 | ||
1883 | entry = (thread_t)queue_next((queue_entry_t)entry); | |
1884 | } | |
1885 | ||
1886 | if ((queue_entry_t)entry == queue) | |
1887 | try_preempt = TRUE; | |
1888 | ||
1889 | insque((queue_entry_t)thread, (queue_entry_t)entry); | |
1890 | } | |
1891 | ||
1892 | thread->runq = rq; | |
1893 | assert(thread->sched_mode & TH_MODE_PREEMPT); | |
1894 | rq->count++; rq->urgency++; | |
1895 | ||
1896 | if (try_preempt) { | |
1897 | register processor_t processor; | |
1898 | ||
1899 | processor = current_processor(); | |
1900 | if ( pset == processor->processor_set && | |
1901 | (thread->sched_pri > processor->current_pri || | |
1902 | deadline < processor->deadline ) ) { | |
1903 | dispatch_counts.realtime_self++; | |
1904 | simple_unlock(&pset->sched_lock); | |
1905 | ||
1906 | ast_on(AST_PREEMPT | AST_URGENT); | |
1907 | return; | |
1908 | } | |
1909 | ||
1910 | if ( pset->processor_count > 1 || | |
1911 | pset != processor->processor_set ) { | |
1912 | processor_t myprocessor, lastprocessor; | |
1913 | queue_entry_t next; | |
1914 | ||
1915 | myprocessor = processor; | |
1916 | processor = thread->last_processor; | |
1917 | if ( processor != myprocessor && | |
1918 | processor != PROCESSOR_NULL && | |
1919 | processor->processor_set == pset && | |
1920 | processor->state == PROCESSOR_RUNNING && | |
1921 | (thread->sched_pri > processor->current_pri || | |
1922 | deadline < processor->deadline ) ) { | |
1923 | dispatch_counts.realtime_last++; | |
1924 | cause_ast_check(processor); | |
1925 | simple_unlock(&pset->sched_lock); | |
1926 | return; | |
1927 | } | |
1928 | ||
1929 | lastprocessor = processor; | |
1930 | queue = &pset->active_queue; | |
1931 | processor = (processor_t)queue_first(queue); | |
1932 | while (!queue_end(queue, (queue_entry_t)processor)) { | |
1933 | next = queue_next((queue_entry_t)processor); | |
1934 | ||
1935 | if ( processor != myprocessor && | |
1936 | processor != lastprocessor && | |
1937 | (thread->sched_pri > processor->current_pri || | |
1938 | deadline < processor->deadline ) ) { | |
1939 | if (!queue_end(queue, next)) { | |
1940 | remqueue(queue, (queue_entry_t)processor); | |
1941 | enqueue_tail(queue, (queue_entry_t)processor); | |
1942 | } | |
1943 | dispatch_counts.realtime_other++; | |
1944 | cause_ast_check(processor); | |
1945 | simple_unlock(&pset->sched_lock); | |
1946 | return; | |
1947 | } | |
1948 | ||
1949 | processor = (processor_t)next; | |
1950 | } | |
1951 | } | |
1952 | } | |
1953 | ||
1954 | simple_unlock(&pset->sched_lock); | |
1955 | } | |
1956 | ||
1957 | /* | |
1958 | * thread_setrun: | |
1959 | * | |
1960 | * Dispatch thread for execution, directly onto an idle | |
1961 | * processor if possible. Else put on appropriate run | |
1962 | * queue. (local if bound, else processor set) | |
1963 | * | |
1964 | * Thread must be locked. | |
1965 | */ | |
1966 | void | |
1967 | thread_setrun( | |
1968 | register thread_t new_thread, | |
1969 | integer_t options) | |
1970 | { | |
1971 | register processor_t processor; | |
1972 | register processor_set_t pset; | |
1973 | register thread_t thread; | |
1974 | ast_t preempt = (options & SCHED_PREEMPT)? | |
1975 | AST_PREEMPT: AST_NONE; | |
1976 | ||
1977 | assert(thread_runnable(new_thread)); | |
1978 | ||
1979 | /* | |
1980 | * Update priority if needed. | |
1981 | */ | |
1982 | if (new_thread->sched_stamp != sched_tick) | |
1983 | update_priority(new_thread); | |
1984 | ||
1985 | /* | |
9bccf70c | 1986 | * Check for urgent preemption. |
1c79356b | 1987 | */ |
9bccf70c | 1988 | if (new_thread->sched_mode & TH_MODE_PREEMPT) |
55e303ae | 1989 | preempt = (AST_PREEMPT | AST_URGENT); |
9bccf70c A |
1990 | |
1991 | assert(new_thread->runq == RUN_QUEUE_NULL); | |
1992 | ||
1c79356b A |
1993 | if ((processor = new_thread->bound_processor) == PROCESSOR_NULL) { |
1994 | /* | |
9bccf70c A |
1995 | * First try to dispatch on |
1996 | * the last processor. | |
1c79356b A |
1997 | */ |
1998 | pset = new_thread->processor_set; | |
9bccf70c A |
1999 | processor = new_thread->last_processor; |
2000 | if ( pset->processor_count > 1 && | |
2001 | processor != PROCESSOR_NULL && | |
2002 | processor->state == PROCESSOR_IDLE ) { | |
55e303ae | 2003 | processor_lock(processor); |
9bccf70c A |
2004 | simple_lock(&pset->sched_lock); |
2005 | if ( processor->processor_set == pset && | |
2006 | processor->state == PROCESSOR_IDLE ) { | |
2007 | remqueue(&pset->idle_queue, (queue_entry_t)processor); | |
1c79356b A |
2008 | pset->idle_count--; |
2009 | processor->next_thread = new_thread; | |
55e303ae A |
2010 | if (new_thread->sched_pri >= BASEPRI_RTQUEUES) |
2011 | processor->deadline = new_thread->realtime.deadline; | |
2012 | else | |
2013 | processor->deadline = UINT64_MAX; | |
1c79356b | 2014 | processor->state = PROCESSOR_DISPATCHING; |
55e303ae | 2015 | dispatch_counts.idle_pset_last++; |
9bccf70c | 2016 | simple_unlock(&pset->sched_lock); |
55e303ae | 2017 | processor_unlock(processor); |
9bccf70c | 2018 | if (processor != current_processor()) |
1c79356b | 2019 | machine_signal_idle(processor); |
1c79356b A |
2020 | return; |
2021 | } | |
55e303ae | 2022 | processor_unlock(processor); |
9bccf70c A |
2023 | } |
2024 | else | |
2025 | simple_lock(&pset->sched_lock); | |
2026 | ||
2027 | /* | |
2028 | * Next pick any idle processor | |
2029 | * in the processor set. | |
2030 | */ | |
2031 | if (pset->idle_count > 0) { | |
2032 | processor = (processor_t)dequeue_head(&pset->idle_queue); | |
2033 | pset->idle_count--; | |
2034 | processor->next_thread = new_thread; | |
55e303ae A |
2035 | if (new_thread->sched_pri >= BASEPRI_RTQUEUES) |
2036 | processor->deadline = new_thread->realtime.deadline; | |
2037 | else | |
2038 | processor->deadline = UINT64_MAX; | |
9bccf70c | 2039 | processor->state = PROCESSOR_DISPATCHING; |
55e303ae | 2040 | dispatch_counts.idle_pset_any++; |
9bccf70c A |
2041 | simple_unlock(&pset->sched_lock); |
2042 | if (processor != current_processor()) | |
2043 | machine_signal_idle(processor); | |
9bccf70c A |
2044 | return; |
2045 | } | |
1c79356b | 2046 | |
55e303ae A |
2047 | if (new_thread->sched_pri >= BASEPRI_RTQUEUES) |
2048 | realtime_schedule_insert(pset, new_thread); | |
2049 | else { | |
2050 | if (!run_queue_enqueue(&pset->runq, new_thread, options)) | |
2051 | preempt = AST_NONE; | |
9bccf70c | 2052 | |
9bccf70c | 2053 | /* |
55e303ae | 2054 | * Update the timesharing quanta. |
1c79356b | 2055 | */ |
55e303ae A |
2056 | timeshare_quanta_update(pset); |
2057 | ||
9bccf70c | 2058 | /* |
55e303ae | 2059 | * Preempt check. |
9bccf70c | 2060 | */ |
55e303ae | 2061 | if (preempt != AST_NONE) { |
9bccf70c | 2062 | /* |
55e303ae A |
2063 | * First try the current processor |
2064 | * if it is a member of the correct | |
2065 | * processor set. | |
9bccf70c | 2066 | */ |
55e303ae A |
2067 | processor = current_processor(); |
2068 | thread = processor->active_thread; | |
2069 | if ( pset == processor->processor_set && | |
2070 | csw_needed(thread, processor) ) { | |
2071 | dispatch_counts.pset_self++; | |
9bccf70c | 2072 | simple_unlock(&pset->sched_lock); |
55e303ae A |
2073 | |
2074 | ast_on(preempt); | |
9bccf70c A |
2075 | return; |
2076 | } | |
2077 | ||
2078 | /* | |
55e303ae A |
2079 | * If that failed and we have other |
2080 | * processors available keep trying. | |
9bccf70c | 2081 | */ |
55e303ae A |
2082 | if ( pset->processor_count > 1 || |
2083 | pset != processor->processor_set ) { | |
2084 | queue_t queue = &pset->active_queue; | |
2085 | processor_t myprocessor, lastprocessor; | |
2086 | queue_entry_t next; | |
2087 | ||
2088 | /* | |
2089 | * Next try the last processor | |
2090 | * dispatched on. | |
2091 | */ | |
2092 | myprocessor = processor; | |
2093 | processor = new_thread->last_processor; | |
9bccf70c | 2094 | if ( processor != myprocessor && |
55e303ae A |
2095 | processor != PROCESSOR_NULL && |
2096 | processor->processor_set == pset && | |
2097 | processor->state == PROCESSOR_RUNNING && | |
9bccf70c | 2098 | new_thread->sched_pri > processor->current_pri ) { |
55e303ae | 2099 | dispatch_counts.pset_last++; |
9bccf70c A |
2100 | cause_ast_check(processor); |
2101 | simple_unlock(&pset->sched_lock); | |
9bccf70c A |
2102 | return; |
2103 | } | |
2104 | ||
55e303ae A |
2105 | /* |
2106 | * Lastly, pick any other | |
2107 | * available processor. | |
2108 | */ | |
2109 | lastprocessor = processor; | |
2110 | processor = (processor_t)queue_first(queue); | |
2111 | while (!queue_end(queue, (queue_entry_t)processor)) { | |
2112 | next = queue_next((queue_entry_t)processor); | |
2113 | ||
2114 | if ( processor != myprocessor && | |
2115 | processor != lastprocessor && | |
2116 | new_thread->sched_pri > | |
2117 | processor->current_pri ) { | |
2118 | if (!queue_end(queue, next)) { | |
2119 | remqueue(queue, (queue_entry_t)processor); | |
2120 | enqueue_tail(queue, (queue_entry_t)processor); | |
2121 | } | |
2122 | dispatch_counts.pset_other++; | |
2123 | cause_ast_check(processor); | |
2124 | simple_unlock(&pset->sched_lock); | |
2125 | return; | |
2126 | } | |
2127 | ||
2128 | processor = (processor_t)next; | |
2129 | } | |
9bccf70c A |
2130 | } |
2131 | } | |
9bccf70c | 2132 | |
55e303ae A |
2133 | simple_unlock(&pset->sched_lock); |
2134 | } | |
1c79356b A |
2135 | } |
2136 | else { | |
2137 | /* | |
2138 | * Bound, can only run on bound processor. Have to lock | |
2139 | * processor here because it may not be the current one. | |
2140 | */ | |
55e303ae A |
2141 | processor_lock(processor); |
2142 | pset = processor->processor_set; | |
2143 | if (pset != PROCESSOR_SET_NULL) { | |
9bccf70c | 2144 | simple_lock(&pset->sched_lock); |
1c79356b | 2145 | if (processor->state == PROCESSOR_IDLE) { |
9bccf70c | 2146 | remqueue(&pset->idle_queue, (queue_entry_t)processor); |
1c79356b A |
2147 | pset->idle_count--; |
2148 | processor->next_thread = new_thread; | |
55e303ae | 2149 | processor->deadline = UINT64_MAX; |
1c79356b | 2150 | processor->state = PROCESSOR_DISPATCHING; |
55e303ae | 2151 | dispatch_counts.idle_bound++; |
9bccf70c | 2152 | simple_unlock(&pset->sched_lock); |
55e303ae | 2153 | processor_unlock(processor); |
9bccf70c | 2154 | if (processor != current_processor()) |
1c79356b | 2155 | machine_signal_idle(processor); |
1c79356b A |
2156 | return; |
2157 | } | |
1c79356b A |
2158 | } |
2159 | ||
55e303ae A |
2160 | if (!run_queue_enqueue(&processor->runq, new_thread, options)) |
2161 | preempt = AST_NONE; | |
9bccf70c | 2162 | |
55e303ae A |
2163 | if (preempt != AST_NONE) { |
2164 | if (processor == current_processor()) { | |
2165 | thread = processor->active_thread; | |
9bccf70c | 2166 | if (csw_needed(thread, processor)) { |
9bccf70c | 2167 | dispatch_counts.bound_self++; |
55e303ae | 2168 | ast_on(preempt); |
9bccf70c A |
2169 | } |
2170 | } | |
55e303ae A |
2171 | else |
2172 | if ( processor->state == PROCESSOR_RUNNING && | |
2173 | new_thread->sched_pri > processor->current_pri ) { | |
2174 | dispatch_counts.bound_other++; | |
2175 | cause_ast_check(processor); | |
9bccf70c A |
2176 | } |
2177 | } | |
55e303ae A |
2178 | |
2179 | if (pset != PROCESSOR_SET_NULL) | |
2180 | simple_unlock(&pset->sched_lock); | |
2181 | ||
2182 | processor_unlock(processor); | |
9bccf70c A |
2183 | } |
2184 | } | |
2185 | ||
2186 | /* | |
55e303ae A |
2187 | * Check for a possible preemption point in |
2188 | * the (current) thread. | |
2189 | * | |
2190 | * Called at splsched. | |
9bccf70c A |
2191 | */ |
2192 | ast_t | |
2193 | csw_check( | |
2194 | thread_t thread, | |
2195 | processor_t processor) | |
2196 | { | |
2197 | int current_pri = thread->sched_pri; | |
2198 | ast_t result = AST_NONE; | |
2199 | run_queue_t runq; | |
2200 | ||
55e303ae | 2201 | if (first_timeslice(processor)) { |
9bccf70c | 2202 | runq = &processor->processor_set->runq; |
55e303ae A |
2203 | if (runq->highq >= BASEPRI_RTQUEUES) |
2204 | return (AST_PREEMPT | AST_URGENT); | |
2205 | ||
9bccf70c A |
2206 | if (runq->highq > current_pri) { |
2207 | if (runq->urgency > 0) | |
55e303ae | 2208 | return (AST_PREEMPT | AST_URGENT); |
9bccf70c | 2209 | |
55e303ae | 2210 | result |= AST_PREEMPT; |
9bccf70c A |
2211 | } |
2212 | ||
2213 | runq = &processor->runq; | |
2214 | if (runq->highq > current_pri) { | |
2215 | if (runq->urgency > 0) | |
55e303ae | 2216 | return (AST_PREEMPT | AST_URGENT); |
9bccf70c | 2217 | |
55e303ae | 2218 | result |= AST_PREEMPT; |
9bccf70c A |
2219 | } |
2220 | } | |
2221 | else { | |
2222 | runq = &processor->processor_set->runq; | |
2223 | if (runq->highq >= current_pri) { | |
2224 | if (runq->urgency > 0) | |
55e303ae | 2225 | return (AST_PREEMPT | AST_URGENT); |
9bccf70c | 2226 | |
55e303ae | 2227 | result |= AST_PREEMPT; |
9bccf70c A |
2228 | } |
2229 | ||
2230 | runq = &processor->runq; | |
2231 | if (runq->highq >= current_pri) { | |
2232 | if (runq->urgency > 0) | |
55e303ae | 2233 | return (AST_PREEMPT | AST_URGENT); |
9bccf70c | 2234 | |
55e303ae | 2235 | result |= AST_PREEMPT; |
9bccf70c | 2236 | } |
1c79356b | 2237 | } |
9bccf70c A |
2238 | |
2239 | if (result != AST_NONE) | |
2240 | return (result); | |
2241 | ||
2242 | if (thread->state & TH_SUSP) | |
55e303ae | 2243 | result |= AST_PREEMPT; |
9bccf70c A |
2244 | |
2245 | return (result); | |
1c79356b A |
2246 | } |
2247 | ||
2248 | /* | |
9bccf70c | 2249 | * set_sched_pri: |
1c79356b | 2250 | * |
55e303ae A |
2251 | * Set the scheduled priority of the specified thread. |
2252 | * | |
9bccf70c | 2253 | * This may cause the thread to change queues. |
1c79356b | 2254 | * |
55e303ae | 2255 | * Thread must be locked. |
1c79356b A |
2256 | */ |
2257 | void | |
9bccf70c | 2258 | set_sched_pri( |
1c79356b | 2259 | thread_t thread, |
9bccf70c | 2260 | int priority) |
1c79356b | 2261 | { |
55e303ae | 2262 | register struct run_queue *rq = run_queue_remove(thread); |
9bccf70c A |
2263 | |
2264 | if ( !(thread->sched_mode & TH_MODE_TIMESHARE) && | |
2265 | (priority >= BASEPRI_PREEMPT || | |
2266 | (thread->task_priority < MINPRI_KERNEL && | |
2267 | thread->task_priority >= BASEPRI_BACKGROUND && | |
2268 | priority > thread->task_priority) || | |
2269 | (thread->sched_mode & TH_MODE_FORCEDPREEMPT) ) ) | |
2270 | thread->sched_mode |= TH_MODE_PREEMPT; | |
2271 | else | |
2272 | thread->sched_mode &= ~TH_MODE_PREEMPT; | |
1c79356b | 2273 | |
9bccf70c A |
2274 | thread->sched_pri = priority; |
2275 | if (rq != RUN_QUEUE_NULL) | |
55e303ae | 2276 | thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ); |
9bccf70c | 2277 | else |
55e303ae | 2278 | if (thread->state & TH_RUN) { |
9bccf70c A |
2279 | processor_t processor = thread->last_processor; |
2280 | ||
2281 | if (thread == current_thread()) { | |
2282 | ast_t preempt = csw_check(thread, processor); | |
2283 | ||
2284 | if (preempt != AST_NONE) | |
2285 | ast_on(preempt); | |
2286 | processor->current_pri = priority; | |
2287 | } | |
2288 | else | |
2289 | if ( processor != PROCESSOR_NULL && | |
55e303ae | 2290 | processor->active_thread == thread ) |
9bccf70c | 2291 | cause_ast_check(processor); |
1c79356b A |
2292 | } |
2293 | } | |
2294 | ||
2295 | /* | |
55e303ae | 2296 | * run_queue_remove: |
1c79356b | 2297 | * |
55e303ae A |
2298 | * Remove a thread from its current run queue and |
2299 | * return the run queue if successful. | |
2300 | * | |
2301 | * Thread must be locked. | |
1c79356b A |
2302 | */ |
2303 | run_queue_t | |
55e303ae | 2304 | run_queue_remove( |
1c79356b A |
2305 | thread_t thread) |
2306 | { | |
55e303ae | 2307 | register run_queue_t rq = thread->runq; |
1c79356b | 2308 | |
1c79356b A |
2309 | /* |
2310 | * If rq is RUN_QUEUE_NULL, the thread will stay out of the | |
55e303ae A |
2311 | * run queues because the caller locked the thread. Otherwise |
2312 | * the thread is on a run queue, but could be chosen for dispatch | |
2313 | * and removed. | |
1c79356b A |
2314 | */ |
2315 | if (rq != RUN_QUEUE_NULL) { | |
55e303ae A |
2316 | processor_set_t pset = thread->processor_set; |
2317 | processor_t processor = thread->bound_processor; | |
2318 | ||
2319 | /* | |
2320 | * The run queues are locked by the pset scheduling | |
2321 | * lock, except when a processor is off-line the | |
2322 | * local run queue is locked by the processor lock. | |
2323 | */ | |
2324 | if (processor != PROCESSOR_NULL) { | |
2325 | processor_lock(processor); | |
2326 | pset = processor->processor_set; | |
2327 | } | |
2328 | ||
2329 | if (pset != PROCESSOR_SET_NULL) | |
2330 | simple_lock(&pset->sched_lock); | |
2331 | ||
1c79356b A |
2332 | if (rq == thread->runq) { |
2333 | /* | |
55e303ae A |
2334 | * Thread is on a run queue and we have a lock on |
2335 | * that run queue. | |
1c79356b | 2336 | */ |
1c79356b A |
2337 | remqueue(&rq->queues[0], (queue_entry_t)thread); |
2338 | rq->count--; | |
9bccf70c A |
2339 | if (thread->sched_mode & TH_MODE_PREEMPT) |
2340 | rq->urgency--; | |
2341 | assert(rq->urgency >= 0); | |
1c79356b A |
2342 | |
2343 | if (queue_empty(rq->queues + thread->sched_pri)) { | |
2344 | /* update run queue status */ | |
2345 | if (thread->sched_pri != IDLEPRI) | |
2346 | clrbit(MAXPRI - thread->sched_pri, rq->bitmap); | |
2347 | rq->highq = MAXPRI - ffsbit(rq->bitmap); | |
2348 | } | |
55e303ae | 2349 | |
1c79356b | 2350 | thread->runq = RUN_QUEUE_NULL; |
1c79356b A |
2351 | } |
2352 | else { | |
2353 | /* | |
55e303ae A |
2354 | * The thread left the run queue before we could |
2355 | * lock the run queue. | |
1c79356b A |
2356 | */ |
2357 | assert(thread->runq == RUN_QUEUE_NULL); | |
1c79356b A |
2358 | rq = RUN_QUEUE_NULL; |
2359 | } | |
55e303ae A |
2360 | |
2361 | if (pset != PROCESSOR_SET_NULL) | |
2362 | simple_unlock(&pset->sched_lock); | |
2363 | ||
2364 | if (processor != PROCESSOR_NULL) | |
2365 | processor_unlock(processor); | |
1c79356b A |
2366 | } |
2367 | ||
2368 | return (rq); | |
2369 | } | |
2370 | ||
1c79356b A |
2371 | /* |
2372 | * choose_thread: | |
2373 | * | |
55e303ae A |
2374 | * Remove a thread to execute from the run queues |
2375 | * and return it. | |
1c79356b | 2376 | * |
55e303ae | 2377 | * Called with pset scheduling lock held. |
1c79356b | 2378 | */ |
55e303ae | 2379 | static thread_t |
1c79356b | 2380 | choose_thread( |
55e303ae A |
2381 | processor_set_t pset, |
2382 | processor_t processor) | |
1c79356b | 2383 | { |
1c79356b | 2384 | register run_queue_t runq; |
55e303ae A |
2385 | register thread_t thread; |
2386 | register queue_t q; | |
1c79356b | 2387 | |
55e303ae | 2388 | runq = &processor->runq; |
1c79356b | 2389 | |
1c79356b A |
2390 | if (runq->count > 0 && runq->highq >= pset->runq.highq) { |
2391 | q = runq->queues + runq->highq; | |
55e303ae A |
2392 | |
2393 | thread = (thread_t)q->next; | |
2394 | ((queue_entry_t)thread)->next->prev = q; | |
2395 | q->next = ((queue_entry_t)thread)->next; | |
2396 | thread->runq = RUN_QUEUE_NULL; | |
2397 | runq->count--; | |
2398 | if (thread->sched_mode & TH_MODE_PREEMPT) | |
2399 | runq->urgency--; | |
2400 | assert(runq->urgency >= 0); | |
2401 | if (queue_empty(q)) { | |
2402 | if (runq->highq != IDLEPRI) | |
2403 | clrbit(MAXPRI - runq->highq, runq->bitmap); | |
2404 | runq->highq = MAXPRI - ffsbit(runq->bitmap); | |
1c79356b | 2405 | } |
1c79356b | 2406 | |
55e303ae | 2407 | processor->deadline = UINT64_MAX; |
1c79356b | 2408 | |
55e303ae | 2409 | return (thread); |
1c79356b | 2410 | } |
1c79356b | 2411 | |
55e303ae | 2412 | runq = &pset->runq; |
9bccf70c | 2413 | |
55e303ae A |
2414 | assert(runq->count > 0); |
2415 | q = runq->queues + runq->highq; | |
1c79356b | 2416 | |
55e303ae A |
2417 | thread = (thread_t)q->next; |
2418 | ((queue_entry_t)thread)->next->prev = q; | |
2419 | q->next = ((queue_entry_t)thread)->next; | |
2420 | thread->runq = RUN_QUEUE_NULL; | |
2421 | runq->count--; | |
2422 | if (runq->highq >= BASEPRI_RTQUEUES) | |
2423 | processor->deadline = thread->realtime.deadline; | |
2424 | else | |
2425 | processor->deadline = UINT64_MAX; | |
2426 | if (thread->sched_mode & TH_MODE_PREEMPT) | |
2427 | runq->urgency--; | |
2428 | assert(runq->urgency >= 0); | |
2429 | if (queue_empty(q)) { | |
2430 | if (runq->highq != IDLEPRI) | |
2431 | clrbit(MAXPRI - runq->highq, runq->bitmap); | |
2432 | runq->highq = MAXPRI - ffsbit(runq->bitmap); | |
1c79356b | 2433 | } |
1c79356b | 2434 | |
55e303ae A |
2435 | timeshare_quanta_update(pset); |
2436 | ||
2437 | return (thread); | |
1c79356b A |
2438 | } |
2439 | ||
2440 | /* | |
2441 | * no_dispatch_count counts number of times processors go non-idle | |
2442 | * without being dispatched. This should be very rare. | |
2443 | */ | |
2444 | int no_dispatch_count = 0; | |
2445 | ||
2446 | /* | |
2447 | * This is the idle thread, which just looks for other threads | |
2448 | * to execute. | |
2449 | */ | |
2450 | void | |
2451 | idle_thread_continue(void) | |
2452 | { | |
55e303ae | 2453 | register processor_t processor; |
1c79356b A |
2454 | register volatile thread_t *threadp; |
2455 | register volatile int *gcount; | |
2456 | register volatile int *lcount; | |
2457 | register thread_t new_thread; | |
2458 | register int state; | |
2459 | register processor_set_t pset; | |
2460 | int mycpu; | |
2461 | ||
2462 | mycpu = cpu_number(); | |
55e303ae A |
2463 | processor = cpu_to_processor(mycpu); |
2464 | threadp = (volatile thread_t *) &processor->next_thread; | |
2465 | lcount = (volatile int *) &processor->runq.count; | |
1c79356b | 2466 | |
55e303ae | 2467 | gcount = (volatile int *)&processor->processor_set->runq.count; |
1c79356b | 2468 | |
55e303ae A |
2469 | (void)splsched(); |
2470 | while ( (*threadp == (volatile thread_t)THREAD_NULL) && | |
2471 | (*gcount == 0) && (*lcount == 0) ) { | |
de355530 | 2472 | |
55e303ae A |
2473 | /* check for ASTs while we wait */ |
2474 | if (need_ast[mycpu] &~ ( AST_SCHEDULING | AST_BSD )) { | |
2475 | /* no ASTs for us */ | |
2476 | need_ast[mycpu] &= AST_NONE; | |
2477 | (void)spllo(); | |
1c79356b | 2478 | } |
55e303ae A |
2479 | else |
2480 | machine_idle(); | |
2481 | ||
2482 | (void)splsched(); | |
2483 | } | |
2484 | ||
2485 | /* | |
2486 | * This is not a switch statement to avoid the | |
2487 | * bounds checking code in the common case. | |
2488 | */ | |
2489 | pset = processor->processor_set; | |
2490 | simple_lock(&pset->sched_lock); | |
1c79356b | 2491 | |
55e303ae A |
2492 | state = processor->state; |
2493 | if (state == PROCESSOR_DISPATCHING) { | |
1c79356b | 2494 | /* |
55e303ae | 2495 | * Commmon case -- cpu dispatched. |
1c79356b | 2496 | */ |
55e303ae A |
2497 | new_thread = *threadp; |
2498 | *threadp = (volatile thread_t) THREAD_NULL; | |
2499 | processor->state = PROCESSOR_RUNNING; | |
2500 | enqueue_tail(&pset->active_queue, (queue_entry_t)processor); | |
2501 | ||
2502 | if ( pset->runq.highq >= BASEPRI_RTQUEUES && | |
2503 | new_thread->sched_pri >= BASEPRI_RTQUEUES ) { | |
2504 | register run_queue_t runq = &pset->runq; | |
2505 | register queue_t q; | |
2506 | ||
2507 | q = runq->queues + runq->highq; | |
2508 | if (((thread_t)q->next)->realtime.deadline < | |
2509 | processor->deadline) { | |
2510 | thread_t thread = new_thread; | |
2511 | ||
2512 | new_thread = (thread_t)q->next; | |
2513 | ((queue_entry_t)new_thread)->next->prev = q; | |
2514 | q->next = ((queue_entry_t)new_thread)->next; | |
2515 | new_thread->runq = RUN_QUEUE_NULL; | |
2516 | processor->deadline = new_thread->realtime.deadline; | |
2517 | assert(new_thread->sched_mode & TH_MODE_PREEMPT); | |
2518 | runq->count--; runq->urgency--; | |
2519 | if (queue_empty(q)) { | |
2520 | if (runq->highq != IDLEPRI) | |
2521 | clrbit(MAXPRI - runq->highq, runq->bitmap); | |
2522 | runq->highq = MAXPRI - ffsbit(runq->bitmap); | |
2523 | } | |
2524 | dispatch_counts.missed_realtime++; | |
2525 | simple_unlock(&pset->sched_lock); | |
1c79356b | 2526 | |
55e303ae A |
2527 | thread_lock(thread); |
2528 | thread_setrun(thread, SCHED_HEADQ); | |
2529 | thread_unlock(thread); | |
1c79356b | 2530 | |
1c79356b | 2531 | counter(c_idle_thread_handoff++); |
55e303ae | 2532 | thread_run(processor->idle_thread, |
1c79356b | 2533 | idle_thread_continue, new_thread); |
55e303ae | 2534 | /*NOTREACHED*/ |
1c79356b | 2535 | } |
9bccf70c | 2536 | simple_unlock(&pset->sched_lock); |
1c79356b | 2537 | |
55e303ae A |
2538 | counter(c_idle_thread_handoff++); |
2539 | thread_run(processor->idle_thread, | |
2540 | idle_thread_continue, new_thread); | |
2541 | /*NOTREACHED*/ | |
1c79356b | 2542 | } |
9bccf70c | 2543 | |
55e303ae A |
2544 | if ( processor->runq.highq > new_thread->sched_pri || |
2545 | pset->runq.highq > new_thread->sched_pri ) { | |
2546 | thread_t thread = new_thread; | |
2547 | ||
2548 | new_thread = choose_thread(pset, processor); | |
2549 | dispatch_counts.missed_other++; | |
2550 | simple_unlock(&pset->sched_lock); | |
1c79356b | 2551 | |
55e303ae A |
2552 | thread_lock(thread); |
2553 | thread_setrun(thread, SCHED_HEADQ); | |
2554 | thread_unlock(thread); | |
2555 | ||
2556 | counter(c_idle_thread_handoff++); | |
2557 | thread_run(processor->idle_thread, | |
2558 | idle_thread_continue, new_thread); | |
9bccf70c | 2559 | /* NOTREACHED */ |
1c79356b A |
2560 | } |
2561 | else { | |
9bccf70c | 2562 | simple_unlock(&pset->sched_lock); |
1c79356b | 2563 | |
55e303ae A |
2564 | counter(c_idle_thread_handoff++); |
2565 | thread_run(processor->idle_thread, | |
2566 | idle_thread_continue, new_thread); | |
2567 | /* NOTREACHED */ | |
1c79356b | 2568 | } |
55e303ae A |
2569 | } |
2570 | else | |
2571 | if (state == PROCESSOR_IDLE) { | |
2572 | /* | |
2573 | * Processor was not dispatched (Rare). | |
2574 | * Set it running again and force a | |
2575 | * reschedule. | |
2576 | */ | |
2577 | no_dispatch_count++; | |
2578 | pset->idle_count--; | |
2579 | remqueue(&pset->idle_queue, (queue_entry_t)processor); | |
2580 | processor->state = PROCESSOR_RUNNING; | |
2581 | enqueue_tail(&pset->active_queue, (queue_entry_t)processor); | |
2582 | simple_unlock(&pset->sched_lock); | |
1c79356b | 2583 | |
55e303ae A |
2584 | counter(c_idle_thread_block++); |
2585 | thread_block(idle_thread_continue); | |
2586 | /* NOTREACHED */ | |
1c79356b | 2587 | } |
55e303ae A |
2588 | else |
2589 | if (state == PROCESSOR_SHUTDOWN) { | |
2590 | /* | |
2591 | * Going off-line. Force a | |
2592 | * reschedule. | |
2593 | */ | |
2594 | if ((new_thread = (thread_t)*threadp) != THREAD_NULL) { | |
2595 | *threadp = (volatile thread_t) THREAD_NULL; | |
2596 | processor->deadline = UINT64_MAX; | |
2597 | simple_unlock(&pset->sched_lock); | |
2598 | ||
2599 | thread_lock(new_thread); | |
2600 | thread_setrun(new_thread, SCHED_HEADQ); | |
2601 | thread_unlock(new_thread); | |
2602 | } | |
2603 | else | |
2604 | simple_unlock(&pset->sched_lock); | |
2605 | ||
2606 | counter(c_idle_thread_block++); | |
2607 | thread_block(idle_thread_continue); | |
2608 | /* NOTREACHED */ | |
2609 | } | |
2610 | ||
2611 | simple_unlock(&pset->sched_lock); | |
2612 | ||
2613 | panic("idle_thread: state %d\n", cpu_state(mycpu)); | |
2614 | /*NOTREACHED*/ | |
1c79356b A |
2615 | } |
2616 | ||
2617 | void | |
2618 | idle_thread(void) | |
2619 | { | |
1c79356b | 2620 | counter(c_idle_thread_block++); |
9bccf70c | 2621 | thread_block(idle_thread_continue); |
1c79356b A |
2622 | /*NOTREACHED*/ |
2623 | } | |
2624 | ||
55e303ae | 2625 | static uint64_t sched_tick_deadline; |
0b4e3aa0 A |
2626 | |
2627 | void sched_tick_thread(void); | |
2628 | ||
2629 | void | |
2630 | sched_tick_init(void) | |
2631 | { | |
55e303ae | 2632 | kernel_thread_with_priority(sched_tick_thread, MAXPRI_STANDARD); |
0b4e3aa0 | 2633 | } |
1c79356b A |
2634 | |
2635 | /* | |
2636 | * sched_tick_thread | |
2637 | * | |
55e303ae A |
2638 | * Perform periodic bookkeeping functions about ten |
2639 | * times per second. | |
1c79356b A |
2640 | */ |
2641 | void | |
2642 | sched_tick_thread_continue(void) | |
2643 | { | |
0b4e3aa0 | 2644 | uint64_t abstime; |
1c79356b A |
2645 | #if SIMPLE_CLOCK |
2646 | int new_usec; | |
2647 | #endif /* SIMPLE_CLOCK */ | |
2648 | ||
55e303ae | 2649 | abstime = mach_absolute_time(); |
1c79356b A |
2650 | |
2651 | sched_tick++; /* age usage one more time */ | |
2652 | #if SIMPLE_CLOCK | |
2653 | /* | |
2654 | * Compensate for clock drift. sched_usec is an | |
2655 | * exponential average of the number of microseconds in | |
2656 | * a second. It decays in the same fashion as cpu_usage. | |
2657 | */ | |
2658 | new_usec = sched_usec_elapsed(); | |
2659 | sched_usec = (5*sched_usec + 3*new_usec)/8; | |
2660 | #endif /* SIMPLE_CLOCK */ | |
2661 | ||
2662 | /* | |
2663 | * Compute the scheduler load factors. | |
2664 | */ | |
2665 | compute_mach_factor(); | |
2666 | ||
2667 | /* | |
55e303ae A |
2668 | * Scan the run queues for timesharing threads which |
2669 | * may need to have their priorities recalculated. | |
1c79356b A |
2670 | */ |
2671 | do_thread_scan(); | |
2672 | ||
2673 | clock_deadline_for_periodic_event(sched_tick_interval, abstime, | |
2674 | &sched_tick_deadline); | |
2675 | ||
2676 | assert_wait((event_t)sched_tick_thread_continue, THREAD_INTERRUPTIBLE); | |
2677 | thread_set_timer_deadline(sched_tick_deadline); | |
2678 | thread_block(sched_tick_thread_continue); | |
2679 | /*NOTREACHED*/ | |
2680 | } | |
2681 | ||
2682 | void | |
2683 | sched_tick_thread(void) | |
2684 | { | |
55e303ae | 2685 | sched_tick_deadline = mach_absolute_time(); |
1c79356b A |
2686 | |
2687 | thread_block(sched_tick_thread_continue); | |
2688 | /*NOTREACHED*/ | |
2689 | } | |
2690 | ||
1c79356b | 2691 | /* |
55e303ae A |
2692 | * do_thread_scan: |
2693 | * | |
2694 | * Scan the run queues for timesharing threads which need | |
2695 | * to be aged, possibily adjusting their priorities upwards. | |
1c79356b A |
2696 | * |
2697 | * Scanner runs in two passes. Pass one squirrels likely | |
55e303ae | 2698 | * thread away in an array (takes out references for them). |
1c79356b A |
2699 | * Pass two does the priority updates. This is necessary because |
2700 | * the run queue lock is required for the candidate scan, but | |
9bccf70c | 2701 | * cannot be held during updates. |
1c79356b A |
2702 | * |
2703 | * Array length should be enough so that restart isn't necessary, | |
9bccf70c | 2704 | * but restart logic is included. |
1c79356b A |
2705 | * |
2706 | */ | |
55e303ae A |
2707 | |
2708 | #define MAX_STUCK_THREADS 128 | |
2709 | ||
2710 | static thread_t stuck_threads[MAX_STUCK_THREADS]; | |
2711 | static int stuck_count = 0; | |
1c79356b A |
2712 | |
2713 | /* | |
2714 | * do_runq_scan is the guts of pass 1. It scans a runq for | |
2715 | * stuck threads. A boolean is returned indicating whether | |
2716 | * a retry is needed. | |
2717 | */ | |
55e303ae | 2718 | static boolean_t |
1c79356b A |
2719 | do_runq_scan( |
2720 | run_queue_t runq) | |
2721 | { | |
2722 | register queue_t q; | |
2723 | register thread_t thread; | |
2724 | register int count; | |
1c79356b A |
2725 | boolean_t result = FALSE; |
2726 | ||
1c79356b A |
2727 | if ((count = runq->count) > 0) { |
2728 | q = runq->queues + runq->highq; | |
2729 | while (count > 0) { | |
2730 | queue_iterate(q, thread, thread_t, links) { | |
55e303ae | 2731 | if ( thread->sched_stamp != sched_tick && |
0b4e3aa0 | 2732 | (thread->sched_mode & TH_MODE_TIMESHARE) ) { |
55e303ae A |
2733 | /* |
2734 | * Stuck, save its id for later. | |
2735 | */ | |
2736 | if (stuck_count == MAX_STUCK_THREADS) { | |
1c79356b | 2737 | /* |
55e303ae | 2738 | * !@#$% No more room. |
1c79356b | 2739 | */ |
55e303ae A |
2740 | return (TRUE); |
2741 | } | |
1c79356b | 2742 | |
55e303ae A |
2743 | if (thread_lock_try(thread)) { |
2744 | thread->ref_count++; | |
2745 | thread_unlock(thread); | |
2746 | stuck_threads[stuck_count++] = thread; | |
1c79356b | 2747 | } |
55e303ae A |
2748 | else |
2749 | result = TRUE; | |
1c79356b A |
2750 | } |
2751 | ||
2752 | count--; | |
2753 | } | |
2754 | ||
2755 | q--; | |
2756 | } | |
2757 | } | |
1c79356b A |
2758 | |
2759 | return (result); | |
2760 | } | |
2761 | ||
2762 | boolean_t thread_scan_enabled = TRUE; | |
2763 | ||
55e303ae | 2764 | static void |
1c79356b A |
2765 | do_thread_scan(void) |
2766 | { | |
2767 | register boolean_t restart_needed = FALSE; | |
2768 | register thread_t thread; | |
2769 | register processor_set_t pset = &default_pset; | |
2770 | register processor_t processor; | |
2771 | spl_t s; | |
2772 | ||
2773 | if (!thread_scan_enabled) | |
2774 | return; | |
2775 | ||
2776 | do { | |
55e303ae A |
2777 | s = splsched(); |
2778 | simple_lock(&pset->sched_lock); | |
1c79356b | 2779 | restart_needed = do_runq_scan(&pset->runq); |
55e303ae A |
2780 | simple_unlock(&pset->sched_lock); |
2781 | ||
1c79356b | 2782 | if (!restart_needed) { |
55e303ae | 2783 | simple_lock(&pset->sched_lock); |
1c79356b A |
2784 | processor = (processor_t)queue_first(&pset->processors); |
2785 | while (!queue_end(&pset->processors, (queue_entry_t)processor)) { | |
2786 | if (restart_needed = do_runq_scan(&processor->runq)) | |
2787 | break; | |
2788 | ||
0b4e3aa0 A |
2789 | thread = processor->idle_thread; |
2790 | if (thread->sched_stamp != sched_tick) { | |
2791 | if (stuck_count == MAX_STUCK_THREADS) { | |
2792 | restart_needed = TRUE; | |
2793 | break; | |
2794 | } | |
2795 | ||
2796 | stuck_threads[stuck_count++] = thread; | |
2797 | } | |
2798 | ||
1c79356b A |
2799 | processor = (processor_t)queue_next(&processor->processors); |
2800 | } | |
55e303ae | 2801 | simple_unlock(&pset->sched_lock); |
1c79356b | 2802 | } |
55e303ae | 2803 | splx(s); |
1c79356b A |
2804 | |
2805 | /* | |
2806 | * Ok, we now have a collection of candidates -- fix them. | |
2807 | */ | |
2808 | while (stuck_count > 0) { | |
55e303ae A |
2809 | boolean_t idle_thread; |
2810 | ||
1c79356b A |
2811 | thread = stuck_threads[--stuck_count]; |
2812 | stuck_threads[stuck_count] = THREAD_NULL; | |
55e303ae | 2813 | |
1c79356b A |
2814 | s = splsched(); |
2815 | thread_lock(thread); | |
55e303ae A |
2816 | idle_thread = (thread->state & TH_IDLE) != 0; |
2817 | if ( !(thread->state & (TH_WAIT|TH_SUSP)) && | |
2818 | thread->sched_stamp != sched_tick ) | |
2819 | update_priority(thread); | |
1c79356b A |
2820 | thread_unlock(thread); |
2821 | splx(s); | |
55e303ae A |
2822 | |
2823 | if (!idle_thread) | |
0b4e3aa0 | 2824 | thread_deallocate(thread); |
1c79356b | 2825 | } |
9bccf70c A |
2826 | |
2827 | if (restart_needed) | |
2828 | delay(1); /* XXX */ | |
1c79356b A |
2829 | |
2830 | } while (restart_needed); | |
2831 | } | |
2832 | ||
2833 | /* | |
2834 | * Just in case someone doesn't use the macro | |
2835 | */ | |
2836 | #undef thread_wakeup | |
2837 | void | |
2838 | thread_wakeup( | |
2839 | event_t x); | |
2840 | ||
2841 | void | |
2842 | thread_wakeup( | |
2843 | event_t x) | |
2844 | { | |
2845 | thread_wakeup_with_result(x, THREAD_AWAKENED); | |
2846 | } | |
2847 | ||
9bccf70c | 2848 | |
0b4e3aa0 | 2849 | #if DEBUG |
0b4e3aa0 | 2850 | static boolean_t |
1c79356b | 2851 | thread_runnable( |
0b4e3aa0 | 2852 | thread_t thread) |
1c79356b | 2853 | { |
0b4e3aa0 | 2854 | return ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN); |
1c79356b | 2855 | } |
1c79356b A |
2856 | #endif /* DEBUG */ |
2857 | ||
2858 | #if MACH_KDB | |
2859 | #include <ddb/db_output.h> | |
2860 | #define printf kdbprintf | |
2861 | extern int db_indent; | |
2862 | void db_sched(void); | |
2863 | ||
2864 | void | |
2865 | db_sched(void) | |
2866 | { | |
2867 | iprintf("Scheduling Statistics:\n"); | |
2868 | db_indent += 2; | |
2869 | iprintf("Thread invocations: csw %d same %d\n", | |
2870 | c_thread_invoke_csw, c_thread_invoke_same); | |
2871 | #if MACH_COUNTERS | |
2872 | iprintf("Thread block: calls %d\n", | |
2873 | c_thread_block_calls); | |
2874 | iprintf("Idle thread:\n\thandoff %d block %d no_dispatch %d\n", | |
2875 | c_idle_thread_handoff, | |
2876 | c_idle_thread_block, no_dispatch_count); | |
2877 | iprintf("Sched thread blocks: %d\n", c_sched_thread_block); | |
2878 | #endif /* MACH_COUNTERS */ | |
2879 | db_indent -= 2; | |
2880 | } | |
55e303ae A |
2881 | |
2882 | #include <ddb/db_output.h> | |
2883 | void db_show_thread_log(void); | |
2884 | ||
2885 | void | |
2886 | db_show_thread_log(void) | |
2887 | { | |
2888 | } | |
1c79356b | 2889 | #endif /* MACH_KDB */ |