]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
e5568f75 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 11 | * |
e5568f75 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
e5568f75 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * File: kern/clock.c | |
27 | * Purpose: Routines for the creation and use of kernel | |
28 | * alarm clock services. This file and the ipc | |
29 | * routines in kern/ipc_clock.c constitute the | |
30 | * machine-independent clock service layer. | |
31 | */ | |
32 | ||
33 | #include <cpus.h> | |
34 | #include <mach_host.h> | |
35 | ||
36 | #include <mach/boolean.h> | |
37 | #include <mach/processor_info.h> | |
38 | #include <mach/vm_param.h> | |
39 | #include <machine/mach_param.h> | |
40 | #include <kern/cpu_number.h> | |
41 | #include <kern/misc_protos.h> | |
42 | #include <kern/lock.h> | |
43 | #include <kern/host.h> | |
1c79356b | 44 | #include <kern/spl.h> |
55e303ae | 45 | #include <kern/sched_prim.h> |
1c79356b A |
46 | #include <kern/thread.h> |
47 | #include <kern/thread_swap.h> | |
48 | #include <kern/ipc_host.h> | |
49 | #include <kern/clock.h> | |
50 | #include <kern/zalloc.h> | |
1c79356b A |
51 | #include <ipc/ipc_port.h> |
52 | ||
53 | #include <mach/mach_syscalls.h> | |
54 | #include <mach/clock_reply.h> | |
55 | #include <mach/mach_time.h> | |
56 | ||
1c79356b A |
57 | /* |
58 | * Exported interface | |
59 | */ | |
60 | ||
61 | #include <mach/clock_server.h> | |
62 | #include <mach/mach_host_server.h> | |
63 | ||
64 | /* local data declarations */ | |
65 | decl_simple_lock_data(static,ClockLock) /* clock system synchronization */ | |
66 | static struct zone *alarm_zone; /* zone for user alarms */ | |
67 | static struct alarm *alrmfree; /* alarm free list pointer */ | |
68 | static struct alarm *alrmdone; /* alarm done list pointer */ | |
69 | static long alrm_seqno; /* uniquely identifies alarms */ | |
70 | static thread_call_data_t alarm_deliver; | |
71 | ||
9bccf70c | 72 | decl_simple_lock_data(static,calend_adjlock) |
9bccf70c A |
73 | |
74 | static timer_call_data_t calend_adjcall; | |
75 | static uint64_t calend_adjinterval, calend_adjdeadline; | |
76 | ||
55e303ae A |
77 | static thread_call_data_t calend_wakecall; |
78 | ||
1c79356b A |
79 | /* backwards compatibility */ |
80 | int hz = HZ; /* GET RID OF THIS !!! */ | |
81 | int tick = (1000000 / HZ); /* GET RID OF THIS !!! */ | |
82 | ||
83 | /* external declarations */ | |
84 | extern struct clock clock_list[]; | |
85 | extern int clock_count; | |
86 | ||
87 | /* local clock subroutines */ | |
88 | static | |
89 | void flush_alarms( | |
90 | clock_t clock); | |
91 | ||
92 | static | |
93 | void post_alarm( | |
94 | clock_t clock, | |
95 | alarm_t alarm); | |
96 | ||
97 | static | |
98 | int check_time( | |
99 | alarm_type_t alarm_type, | |
100 | mach_timespec_t *alarm_time, | |
101 | mach_timespec_t *clock_time); | |
102 | ||
103 | static | |
104 | void clock_alarm_deliver( | |
105 | thread_call_param_t p0, | |
106 | thread_call_param_t p1); | |
107 | ||
9bccf70c | 108 | static |
55e303ae | 109 | void calend_adjust_call( |
9bccf70c A |
110 | timer_call_param_t p0, |
111 | timer_call_param_t p1); | |
112 | ||
55e303ae A |
113 | static |
114 | void calend_dowakeup( | |
115 | thread_call_param_t p0, | |
116 | thread_call_param_t p1); | |
117 | ||
1c79356b A |
118 | /* |
119 | * Macros to lock/unlock clock system. | |
120 | */ | |
121 | #define LOCK_CLOCK(s) \ | |
122 | s = splclock(); \ | |
123 | simple_lock(&ClockLock); | |
124 | ||
125 | #define UNLOCK_CLOCK(s) \ | |
126 | simple_unlock(&ClockLock); \ | |
127 | splx(s); | |
128 | ||
129 | /* | |
130 | * Configure the clock system. (Not sure if we need this, | |
131 | * as separate from clock_init()). | |
132 | */ | |
133 | void | |
134 | clock_config(void) | |
135 | { | |
136 | clock_t clock; | |
137 | register int i; | |
138 | ||
139 | if (cpu_number() != master_cpu) | |
140 | panic("clock_config"); | |
141 | ||
55e303ae A |
142 | simple_lock_init(&ClockLock, ETAP_MISC_CLOCK); |
143 | thread_call_setup(&alarm_deliver, clock_alarm_deliver, NULL); | |
144 | ||
145 | simple_lock_init(&calend_adjlock, ETAP_MISC_CLOCK); | |
146 | timer_call_setup(&calend_adjcall, calend_adjust_call, NULL); | |
147 | ||
148 | thread_call_setup(&calend_wakecall, calend_dowakeup, NULL); | |
149 | ||
1c79356b A |
150 | /* |
151 | * Configure clock devices. | |
152 | */ | |
1c79356b A |
153 | for (i = 0; i < clock_count; i++) { |
154 | clock = &clock_list[i]; | |
155 | if (clock->cl_ops) { | |
156 | if ((*clock->cl_ops->c_config)() == 0) | |
157 | clock->cl_ops = 0; | |
158 | } | |
159 | } | |
160 | ||
161 | /* start alarm sequence numbers at 0 */ | |
162 | alrm_seqno = 0; | |
163 | } | |
164 | ||
165 | /* | |
166 | * Initialize the clock system. | |
167 | */ | |
168 | void | |
169 | clock_init(void) | |
170 | { | |
171 | clock_t clock; | |
172 | register int i; | |
173 | ||
174 | /* | |
175 | * Initialize basic clock structures. | |
176 | */ | |
177 | for (i = 0; i < clock_count; i++) { | |
178 | clock = &clock_list[i]; | |
179 | if (clock->cl_ops) | |
180 | (*clock->cl_ops->c_init)(); | |
181 | } | |
182 | } | |
183 | ||
55e303ae A |
184 | /* |
185 | * Called by machine dependent code | |
186 | * to initialize areas dependent on the | |
187 | * timebase value. May be called multiple | |
188 | * times during start up. | |
189 | */ | |
190 | void | |
191 | clock_timebase_init(void) | |
192 | { | |
193 | sched_timebase_init(); | |
194 | } | |
195 | ||
1c79356b A |
196 | /* |
197 | * Initialize the clock ipc service facility. | |
198 | */ | |
199 | void | |
200 | clock_service_create(void) | |
201 | { | |
202 | clock_t clock; | |
203 | register int i; | |
204 | ||
1c79356b A |
205 | /* |
206 | * Initialize ipc clock services. | |
207 | */ | |
208 | for (i = 0; i < clock_count; i++) { | |
209 | clock = &clock_list[i]; | |
210 | if (clock->cl_ops) { | |
211 | ipc_clock_init(clock); | |
212 | ipc_clock_enable(clock); | |
213 | } | |
214 | } | |
215 | ||
216 | /* | |
55e303ae A |
217 | * Perform miscellaneous late |
218 | * initialization. | |
1c79356b A |
219 | */ |
220 | i = sizeof(struct alarm); | |
221 | alarm_zone = zinit(i, (4096/i)*i, 10*i, "alarms"); | |
1c79356b A |
222 | } |
223 | ||
224 | /* | |
225 | * Get the service port on a clock. | |
226 | */ | |
227 | kern_return_t | |
228 | host_get_clock_service( | |
229 | host_t host, | |
230 | clock_id_t clock_id, | |
231 | clock_t *clock) /* OUT */ | |
232 | { | |
233 | if (host == HOST_NULL || clock_id < 0 || clock_id >= clock_count) { | |
234 | *clock = CLOCK_NULL; | |
235 | return (KERN_INVALID_ARGUMENT); | |
236 | } | |
237 | ||
238 | *clock = &clock_list[clock_id]; | |
239 | if ((*clock)->cl_ops == 0) | |
240 | return (KERN_FAILURE); | |
241 | return (KERN_SUCCESS); | |
242 | } | |
243 | ||
244 | /* | |
245 | * Get the control port on a clock. | |
246 | */ | |
247 | kern_return_t | |
248 | host_get_clock_control( | |
249 | host_priv_t host_priv, | |
250 | clock_id_t clock_id, | |
251 | clock_t *clock) /* OUT */ | |
252 | { | |
253 | if (host_priv == HOST_PRIV_NULL || clock_id < 0 || clock_id >= clock_count) { | |
254 | *clock = CLOCK_NULL; | |
255 | return (KERN_INVALID_ARGUMENT); | |
256 | } | |
257 | ||
258 | *clock = &clock_list[clock_id]; | |
259 | if ((*clock)->cl_ops == 0) | |
260 | return (KERN_FAILURE); | |
261 | return (KERN_SUCCESS); | |
262 | } | |
263 | ||
264 | /* | |
265 | * Get the current clock time. | |
266 | */ | |
267 | kern_return_t | |
268 | clock_get_time( | |
269 | clock_t clock, | |
270 | mach_timespec_t *cur_time) /* OUT */ | |
271 | { | |
272 | if (clock == CLOCK_NULL) | |
273 | return (KERN_INVALID_ARGUMENT); | |
274 | return ((*clock->cl_ops->c_gettime)(cur_time)); | |
275 | } | |
276 | ||
277 | /* | |
278 | * Get clock attributes. | |
279 | */ | |
280 | kern_return_t | |
281 | clock_get_attributes( | |
282 | clock_t clock, | |
283 | clock_flavor_t flavor, | |
284 | clock_attr_t attr, /* OUT */ | |
285 | mach_msg_type_number_t *count) /* IN/OUT */ | |
286 | { | |
287 | kern_return_t (*getattr)( | |
288 | clock_flavor_t flavor, | |
289 | clock_attr_t attr, | |
290 | mach_msg_type_number_t *count); | |
291 | ||
292 | if (clock == CLOCK_NULL) | |
293 | return (KERN_INVALID_ARGUMENT); | |
294 | if (getattr = clock->cl_ops->c_getattr) | |
295 | return((*getattr)(flavor, attr, count)); | |
296 | else | |
297 | return (KERN_FAILURE); | |
298 | } | |
299 | ||
300 | /* | |
301 | * Set the current clock time. | |
302 | */ | |
303 | kern_return_t | |
304 | clock_set_time( | |
305 | clock_t clock, | |
306 | mach_timespec_t new_time) | |
307 | { | |
308 | mach_timespec_t *clock_time; | |
309 | kern_return_t (*settime)( | |
310 | mach_timespec_t *clock_time); | |
311 | ||
312 | if (clock == CLOCK_NULL) | |
313 | return (KERN_INVALID_ARGUMENT); | |
314 | if ((settime = clock->cl_ops->c_settime) == 0) | |
315 | return (KERN_FAILURE); | |
316 | clock_time = &new_time; | |
317 | if (BAD_MACH_TIMESPEC(clock_time)) | |
318 | return (KERN_INVALID_VALUE); | |
319 | ||
320 | /* | |
321 | * Flush all outstanding alarms. | |
322 | */ | |
323 | flush_alarms(clock); | |
324 | ||
325 | /* | |
326 | * Set the new time. | |
327 | */ | |
328 | return ((*settime)(clock_time)); | |
329 | } | |
330 | ||
331 | /* | |
332 | * Set the clock alarm resolution. | |
333 | */ | |
334 | kern_return_t | |
335 | clock_set_attributes( | |
336 | clock_t clock, | |
337 | clock_flavor_t flavor, | |
338 | clock_attr_t attr, | |
339 | mach_msg_type_number_t count) | |
340 | { | |
341 | kern_return_t (*setattr)( | |
342 | clock_flavor_t flavor, | |
343 | clock_attr_t attr, | |
344 | mach_msg_type_number_t count); | |
345 | ||
346 | if (clock == CLOCK_NULL) | |
347 | return (KERN_INVALID_ARGUMENT); | |
348 | if (setattr = clock->cl_ops->c_setattr) | |
349 | return ((*setattr)(flavor, attr, count)); | |
350 | else | |
351 | return (KERN_FAILURE); | |
352 | } | |
353 | ||
354 | /* | |
355 | * Setup a clock alarm. | |
356 | */ | |
357 | kern_return_t | |
358 | clock_alarm( | |
359 | clock_t clock, | |
360 | alarm_type_t alarm_type, | |
361 | mach_timespec_t alarm_time, | |
362 | ipc_port_t alarm_port, | |
363 | mach_msg_type_name_t alarm_port_type) | |
364 | { | |
365 | alarm_t alarm; | |
366 | mach_timespec_t clock_time; | |
367 | int chkstat; | |
368 | kern_return_t reply_code; | |
369 | spl_t s; | |
370 | ||
371 | if (clock == CLOCK_NULL) | |
372 | return (KERN_INVALID_ARGUMENT); | |
373 | if (clock->cl_ops->c_setalrm == 0) | |
374 | return (KERN_FAILURE); | |
375 | if (IP_VALID(alarm_port) == 0) | |
376 | return (KERN_INVALID_CAPABILITY); | |
377 | ||
378 | /* | |
379 | * Check alarm parameters. If parameters are invalid, | |
380 | * send alarm message immediately. | |
381 | */ | |
382 | (*clock->cl_ops->c_gettime)(&clock_time); | |
383 | chkstat = check_time(alarm_type, &alarm_time, &clock_time); | |
384 | if (chkstat <= 0) { | |
385 | reply_code = (chkstat < 0 ? KERN_INVALID_VALUE : KERN_SUCCESS); | |
386 | clock_alarm_reply(alarm_port, alarm_port_type, | |
387 | reply_code, alarm_type, clock_time); | |
388 | return (KERN_SUCCESS); | |
389 | } | |
390 | ||
391 | /* | |
392 | * Get alarm and add to clock alarm list. | |
393 | */ | |
394 | ||
395 | LOCK_CLOCK(s); | |
396 | if ((alarm = alrmfree) == 0) { | |
397 | UNLOCK_CLOCK(s); | |
398 | alarm = (alarm_t) zalloc(alarm_zone); | |
399 | if (alarm == 0) | |
400 | return (KERN_RESOURCE_SHORTAGE); | |
401 | LOCK_CLOCK(s); | |
402 | } | |
403 | else | |
404 | alrmfree = alarm->al_next; | |
405 | ||
406 | alarm->al_status = ALARM_CLOCK; | |
407 | alarm->al_time = alarm_time; | |
408 | alarm->al_type = alarm_type; | |
409 | alarm->al_port = alarm_port; | |
410 | alarm->al_port_type = alarm_port_type; | |
411 | alarm->al_clock = clock; | |
412 | alarm->al_seqno = alrm_seqno++; | |
413 | post_alarm(clock, alarm); | |
414 | UNLOCK_CLOCK(s); | |
415 | ||
416 | return (KERN_SUCCESS); | |
417 | } | |
418 | ||
419 | /* | |
420 | * Sleep on a clock. System trap. User-level libmach clock_sleep | |
421 | * interface call takes a mach_timespec_t sleep_time argument which it | |
422 | * converts to sleep_sec and sleep_nsec arguments which are then | |
423 | * passed to clock_sleep_trap. | |
424 | */ | |
425 | kern_return_t | |
426 | clock_sleep_trap( | |
427 | mach_port_name_t clock_name, | |
428 | sleep_type_t sleep_type, | |
429 | int sleep_sec, | |
430 | int sleep_nsec, | |
431 | mach_timespec_t *wakeup_time) | |
432 | { | |
433 | clock_t clock; | |
434 | mach_timespec_t swtime; | |
435 | kern_return_t rvalue; | |
436 | ||
437 | /* | |
438 | * Convert the trap parameters. | |
439 | */ | |
440 | if (clock_name != MACH_PORT_NULL) | |
441 | clock = port_name_to_clock(clock_name); | |
442 | else | |
443 | clock = &clock_list[SYSTEM_CLOCK]; | |
444 | ||
445 | swtime.tv_sec = sleep_sec; | |
446 | swtime.tv_nsec = sleep_nsec; | |
447 | ||
448 | /* | |
449 | * Call the actual clock_sleep routine. | |
450 | */ | |
451 | rvalue = clock_sleep_internal(clock, sleep_type, &swtime); | |
452 | ||
453 | /* | |
454 | * Return current time as wakeup time. | |
455 | */ | |
456 | if (rvalue != KERN_INVALID_ARGUMENT && rvalue != KERN_FAILURE) { | |
457 | copyout((char *)&swtime, (char *)wakeup_time, | |
458 | sizeof(mach_timespec_t)); | |
459 | } | |
460 | return (rvalue); | |
461 | } | |
462 | ||
463 | /* | |
464 | * Kernel internally callable clock sleep routine. The calling | |
465 | * thread is suspended until the requested sleep time is reached. | |
466 | */ | |
467 | kern_return_t | |
468 | clock_sleep_internal( | |
469 | clock_t clock, | |
470 | sleep_type_t sleep_type, | |
471 | mach_timespec_t *sleep_time) | |
472 | { | |
473 | alarm_t alarm; | |
474 | mach_timespec_t clock_time; | |
475 | kern_return_t rvalue; | |
476 | int chkstat; | |
477 | spl_t s; | |
478 | ||
479 | if (clock == CLOCK_NULL) | |
480 | return (KERN_INVALID_ARGUMENT); | |
481 | if (clock->cl_ops->c_setalrm == 0) | |
482 | return (KERN_FAILURE); | |
483 | ||
484 | /* | |
485 | * Check sleep parameters. If parameters are invalid | |
486 | * return an error, otherwise post alarm request. | |
487 | */ | |
488 | (*clock->cl_ops->c_gettime)(&clock_time); | |
489 | ||
490 | chkstat = check_time(sleep_type, sleep_time, &clock_time); | |
491 | if (chkstat < 0) | |
492 | return (KERN_INVALID_VALUE); | |
493 | rvalue = KERN_SUCCESS; | |
494 | if (chkstat > 0) { | |
9bccf70c A |
495 | wait_result_t wait_result; |
496 | ||
1c79356b A |
497 | /* |
498 | * Get alarm and add to clock alarm list. | |
499 | */ | |
500 | ||
501 | LOCK_CLOCK(s); | |
502 | if ((alarm = alrmfree) == 0) { | |
503 | UNLOCK_CLOCK(s); | |
504 | alarm = (alarm_t) zalloc(alarm_zone); | |
505 | if (alarm == 0) | |
506 | return (KERN_RESOURCE_SHORTAGE); | |
507 | LOCK_CLOCK(s); | |
508 | } | |
509 | else | |
510 | alrmfree = alarm->al_next; | |
511 | ||
1c79356b A |
512 | /* |
513 | * Wait for alarm to occur. | |
514 | */ | |
9bccf70c A |
515 | wait_result = assert_wait((event_t)alarm, THREAD_ABORTSAFE); |
516 | if (wait_result == THREAD_WAITING) { | |
517 | alarm->al_time = *sleep_time; | |
518 | alarm->al_status = ALARM_SLEEP; | |
519 | post_alarm(clock, alarm); | |
520 | UNLOCK_CLOCK(s); | |
1c79356b | 521 | |
9bccf70c A |
522 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
523 | ||
524 | /* | |
525 | * Note if alarm expired normally or whether it | |
526 | * was aborted. If aborted, delete alarm from | |
527 | * clock alarm list. Return alarm to free list. | |
528 | */ | |
529 | LOCK_CLOCK(s); | |
530 | if (alarm->al_status != ALARM_DONE) { | |
531 | assert(wait_result != THREAD_AWAKENED); | |
532 | if ((alarm->al_prev)->al_next = alarm->al_next) | |
533 | (alarm->al_next)->al_prev = alarm->al_prev; | |
534 | rvalue = KERN_ABORTED; | |
535 | } | |
536 | *sleep_time = alarm->al_time; | |
537 | alarm->al_status = ALARM_FREE; | |
538 | } else { | |
539 | assert(wait_result == THREAD_INTERRUPTED); | |
540 | assert(alarm->al_status == ALARM_FREE); | |
1c79356b A |
541 | rvalue = KERN_ABORTED; |
542 | } | |
1c79356b A |
543 | alarm->al_next = alrmfree; |
544 | alrmfree = alarm; | |
545 | UNLOCK_CLOCK(s); | |
546 | } | |
547 | else | |
548 | *sleep_time = clock_time; | |
549 | ||
550 | return (rvalue); | |
551 | } | |
552 | ||
553 | /* | |
554 | * CLOCK INTERRUPT SERVICE ROUTINES. | |
555 | */ | |
556 | ||
557 | /* | |
558 | * Service clock alarm interrupts. Called from machine dependent | |
559 | * layer at splclock(). The clock_id argument specifies the clock, | |
560 | * and the clock_time argument gives that clock's current time. | |
561 | */ | |
562 | void | |
563 | clock_alarm_intr( | |
564 | clock_id_t clock_id, | |
565 | mach_timespec_t *clock_time) | |
566 | { | |
567 | clock_t clock; | |
568 | register alarm_t alrm1; | |
569 | register alarm_t alrm2; | |
570 | mach_timespec_t *alarm_time; | |
571 | spl_t s; | |
572 | ||
573 | clock = &clock_list[clock_id]; | |
574 | ||
575 | /* | |
576 | * Update clock alarm list. All alarms that are due are moved | |
577 | * to the alarmdone list to be serviced by the alarm_thread. | |
578 | */ | |
579 | ||
580 | LOCK_CLOCK(s); | |
581 | alrm1 = (alarm_t) &clock->cl_alarm; | |
582 | while (alrm2 = alrm1->al_next) { | |
583 | alarm_time = &alrm2->al_time; | |
584 | if (CMP_MACH_TIMESPEC(alarm_time, clock_time) > 0) | |
585 | break; | |
586 | ||
587 | /* | |
588 | * Alarm has expired, so remove it from the | |
589 | * clock alarm list. | |
590 | */ | |
591 | if (alrm1->al_next = alrm2->al_next) | |
592 | (alrm1->al_next)->al_prev = alrm1; | |
593 | ||
594 | /* | |
595 | * If a clock_sleep() alarm, wakeup the thread | |
596 | * which issued the clock_sleep() call. | |
597 | */ | |
598 | if (alrm2->al_status == ALARM_SLEEP) { | |
599 | alrm2->al_next = 0; | |
600 | alrm2->al_status = ALARM_DONE; | |
601 | alrm2->al_time = *clock_time; | |
602 | thread_wakeup((event_t)alrm2); | |
603 | } | |
604 | ||
605 | /* | |
606 | * If a clock_alarm() alarm, place the alarm on | |
607 | * the alarm done list and schedule the alarm | |
608 | * delivery mechanism. | |
609 | */ | |
610 | else { | |
611 | assert(alrm2->al_status == ALARM_CLOCK); | |
612 | if (alrm2->al_next = alrmdone) | |
613 | alrmdone->al_prev = alrm2; | |
614 | else | |
615 | thread_call_enter(&alarm_deliver); | |
616 | alrm2->al_prev = (alarm_t) &alrmdone; | |
617 | alrmdone = alrm2; | |
618 | alrm2->al_status = ALARM_DONE; | |
619 | alrm2->al_time = *clock_time; | |
620 | } | |
621 | } | |
622 | ||
623 | /* | |
624 | * Setup the clock dependent layer to deliver another | |
625 | * interrupt for the next pending alarm. | |
626 | */ | |
627 | if (alrm2) | |
628 | (*clock->cl_ops->c_setalrm)(alarm_time); | |
629 | UNLOCK_CLOCK(s); | |
630 | } | |
631 | ||
632 | /* | |
633 | * ALARM DELIVERY ROUTINES. | |
634 | */ | |
635 | ||
636 | static void | |
637 | clock_alarm_deliver( | |
638 | thread_call_param_t p0, | |
639 | thread_call_param_t p1) | |
640 | { | |
641 | register alarm_t alrm; | |
642 | kern_return_t code; | |
643 | spl_t s; | |
644 | ||
645 | LOCK_CLOCK(s); | |
646 | while (alrm = alrmdone) { | |
647 | if (alrmdone = alrm->al_next) | |
648 | alrmdone->al_prev = (alarm_t) &alrmdone; | |
649 | UNLOCK_CLOCK(s); | |
650 | ||
651 | code = (alrm->al_status == ALARM_DONE? KERN_SUCCESS: KERN_ABORTED); | |
652 | if (alrm->al_port != IP_NULL) { | |
653 | /* Deliver message to designated port */ | |
654 | if (IP_VALID(alrm->al_port)) { | |
655 | clock_alarm_reply(alrm->al_port, alrm->al_port_type, code, | |
656 | alrm->al_type, alrm->al_time); | |
657 | } | |
658 | ||
659 | LOCK_CLOCK(s); | |
660 | alrm->al_status = ALARM_FREE; | |
661 | alrm->al_next = alrmfree; | |
662 | alrmfree = alrm; | |
663 | } | |
664 | else | |
665 | panic("clock_alarm_deliver"); | |
666 | } | |
667 | ||
668 | UNLOCK_CLOCK(s); | |
669 | } | |
670 | ||
671 | /* | |
672 | * CLOCK PRIVATE SERVICING SUBROUTINES. | |
673 | */ | |
674 | ||
675 | /* | |
676 | * Flush all pending alarms on a clock. All alarms | |
677 | * are activated and timestamped correctly, so any | |
678 | * programs waiting on alarms/threads will proceed | |
679 | * with accurate information. | |
680 | */ | |
681 | static | |
682 | void | |
683 | flush_alarms( | |
684 | clock_t clock) | |
685 | { | |
686 | register alarm_t alrm1, alrm2; | |
687 | spl_t s; | |
688 | ||
689 | /* | |
690 | * Flush all outstanding alarms. | |
691 | */ | |
692 | LOCK_CLOCK(s); | |
693 | alrm1 = (alarm_t) &clock->cl_alarm; | |
694 | while (alrm2 = alrm1->al_next) { | |
695 | /* | |
696 | * Remove alarm from the clock alarm list. | |
697 | */ | |
698 | if (alrm1->al_next = alrm2->al_next) | |
699 | (alrm1->al_next)->al_prev = alrm1; | |
700 | ||
701 | /* | |
702 | * If a clock_sleep() alarm, wakeup the thread | |
703 | * which issued the clock_sleep() call. | |
704 | */ | |
705 | if (alrm2->al_status == ALARM_SLEEP) { | |
706 | alrm2->al_next = 0; | |
707 | thread_wakeup((event_t)alrm2); | |
708 | } | |
709 | else { | |
710 | /* | |
711 | * If a clock_alarm() alarm, place the alarm on | |
712 | * the alarm done list and wakeup the dedicated | |
713 | * kernel alarm_thread to service the alarm. | |
714 | */ | |
715 | assert(alrm2->al_status == ALARM_CLOCK); | |
716 | if (alrm2->al_next = alrmdone) | |
717 | alrmdone->al_prev = alrm2; | |
718 | else | |
719 | thread_wakeup((event_t)&alrmdone); | |
720 | alrm2->al_prev = (alarm_t) &alrmdone; | |
721 | alrmdone = alrm2; | |
722 | } | |
723 | } | |
724 | UNLOCK_CLOCK(s); | |
725 | } | |
726 | ||
727 | /* | |
728 | * Post an alarm on a clock's active alarm list. The alarm is | |
729 | * inserted in time-order into the clock's active alarm list. | |
730 | * Always called from within a LOCK_CLOCK() code section. | |
731 | */ | |
732 | static | |
733 | void | |
734 | post_alarm( | |
735 | clock_t clock, | |
736 | alarm_t alarm) | |
737 | { | |
738 | register alarm_t alrm1, alrm2; | |
739 | mach_timespec_t *alarm_time; | |
740 | mach_timespec_t *queue_time; | |
741 | ||
742 | /* | |
743 | * Traverse alarm list until queue time is greater | |
744 | * than alarm time, then insert alarm. | |
745 | */ | |
746 | alarm_time = &alarm->al_time; | |
747 | alrm1 = (alarm_t) &clock->cl_alarm; | |
748 | while (alrm2 = alrm1->al_next) { | |
749 | queue_time = &alrm2->al_time; | |
750 | if (CMP_MACH_TIMESPEC(queue_time, alarm_time) > 0) | |
751 | break; | |
752 | alrm1 = alrm2; | |
753 | } | |
754 | alrm1->al_next = alarm; | |
755 | alarm->al_next = alrm2; | |
756 | alarm->al_prev = alrm1; | |
757 | if (alrm2) | |
758 | alrm2->al_prev = alarm; | |
759 | ||
760 | /* | |
761 | * If the inserted alarm is the 'earliest' alarm, | |
762 | * reset the device layer alarm time accordingly. | |
763 | */ | |
764 | if (clock->cl_alarm.al_next == alarm) | |
765 | (*clock->cl_ops->c_setalrm)(alarm_time); | |
766 | } | |
767 | ||
768 | /* | |
769 | * Check the validity of 'alarm_time' and 'alarm_type'. If either | |
770 | * argument is invalid, return a negative value. If the 'alarm_time' | |
771 | * is now, return a 0 value. If the 'alarm_time' is in the future, | |
772 | * return a positive value. | |
773 | */ | |
774 | static | |
775 | int | |
776 | check_time( | |
777 | alarm_type_t alarm_type, | |
778 | mach_timespec_t *alarm_time, | |
779 | mach_timespec_t *clock_time) | |
780 | { | |
781 | int result; | |
782 | ||
783 | if (BAD_ALRMTYPE(alarm_type)) | |
784 | return (-1); | |
785 | if (BAD_MACH_TIMESPEC(alarm_time)) | |
786 | return (-1); | |
787 | if ((alarm_type & ALRMTYPE) == TIME_RELATIVE) | |
788 | ADD_MACH_TIMESPEC(alarm_time, clock_time); | |
789 | ||
790 | result = CMP_MACH_TIMESPEC(alarm_time, clock_time); | |
791 | ||
792 | return ((result >= 0)? result: 0); | |
793 | } | |
794 | ||
795 | mach_timespec_t | |
796 | clock_get_system_value(void) | |
797 | { | |
798 | clock_t clock = &clock_list[SYSTEM_CLOCK]; | |
799 | mach_timespec_t value; | |
800 | ||
801 | (void) (*clock->cl_ops->c_gettime)(&value); | |
802 | ||
803 | return value; | |
804 | } | |
805 | ||
806 | mach_timespec_t | |
807 | clock_get_calendar_value(void) | |
808 | { | |
809 | clock_t clock = &clock_list[CALENDAR_CLOCK]; | |
810 | mach_timespec_t value = MACH_TIMESPEC_ZERO; | |
811 | ||
812 | (void) (*clock->cl_ops->c_gettime)(&value); | |
813 | ||
814 | return value; | |
815 | } | |
816 | ||
1c79356b A |
817 | void |
818 | clock_deadline_for_periodic_event( | |
0b4e3aa0 A |
819 | uint64_t interval, |
820 | uint64_t abstime, | |
821 | uint64_t *deadline) | |
1c79356b | 822 | { |
0b4e3aa0 | 823 | assert(interval != 0); |
1c79356b | 824 | |
0b4e3aa0 | 825 | *deadline += interval; |
1c79356b | 826 | |
0b4e3aa0 | 827 | if (*deadline <= abstime) { |
55e303ae A |
828 | *deadline = abstime + interval; |
829 | abstime = mach_absolute_time(); | |
1c79356b | 830 | |
55e303ae A |
831 | if (*deadline <= abstime) |
832 | *deadline = abstime + interval; | |
1c79356b A |
833 | } |
834 | } | |
835 | ||
836 | void | |
837 | mk_timebase_info( | |
838 | uint32_t *delta, | |
839 | uint32_t *abs_to_ns_numer, | |
840 | uint32_t *abs_to_ns_denom, | |
841 | uint32_t *proc_to_abs_numer, | |
842 | uint32_t *proc_to_abs_denom) | |
843 | { | |
844 | mach_timebase_info_data_t info; | |
845 | uint32_t one = 1; | |
846 | ||
847 | clock_timebase_info(&info); | |
848 | ||
849 | copyout((void *)&one, (void *)delta, sizeof (uint32_t)); | |
850 | ||
851 | copyout((void *)&info.numer, (void *)abs_to_ns_numer, sizeof (uint32_t)); | |
852 | copyout((void *)&info.denom, (void *)abs_to_ns_denom, sizeof (uint32_t)); | |
853 | ||
854 | copyout((void *)&one, (void *)proc_to_abs_numer, sizeof (uint32_t)); | |
855 | copyout((void *)&one, (void *)proc_to_abs_denom, sizeof (uint32_t)); | |
856 | } | |
857 | ||
858 | kern_return_t | |
859 | mach_timebase_info( | |
860 | mach_timebase_info_t out_info) | |
861 | { | |
862 | mach_timebase_info_data_t info; | |
863 | ||
864 | clock_timebase_info(&info); | |
865 | ||
866 | copyout((void *)&info, (void *)out_info, sizeof (info)); | |
867 | ||
868 | return (KERN_SUCCESS); | |
869 | } | |
870 | ||
871 | kern_return_t | |
872 | mach_wait_until( | |
873 | uint64_t deadline) | |
874 | { | |
875 | int wait_result; | |
876 | ||
9bccf70c A |
877 | wait_result = assert_wait((event_t)&mach_wait_until, THREAD_ABORTSAFE); |
878 | if (wait_result == THREAD_WAITING) { | |
879 | thread_set_timer_deadline(deadline); | |
880 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
881 | if (wait_result != THREAD_TIMED_OUT) | |
882 | thread_cancel_timer(); | |
883 | } | |
1c79356b A |
884 | |
885 | return ((wait_result == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS); | |
886 | } | |
9bccf70c | 887 | |
55e303ae A |
888 | void |
889 | clock_adjtime( | |
890 | int32_t *secs, | |
891 | int32_t *microsecs) | |
9bccf70c | 892 | { |
55e303ae A |
893 | uint32_t interval; |
894 | spl_t s; | |
9bccf70c A |
895 | |
896 | s = splclock(); | |
897 | simple_lock(&calend_adjlock); | |
898 | ||
55e303ae A |
899 | interval = clock_set_calendar_adjtime(secs, microsecs); |
900 | if (interval != 0) { | |
901 | if (calend_adjdeadline >= interval) | |
902 | calend_adjdeadline -= interval; | |
903 | clock_deadline_for_periodic_event(interval, mach_absolute_time(), | |
904 | &calend_adjdeadline); | |
9bccf70c A |
905 | |
906 | timer_call_enter(&calend_adjcall, calend_adjdeadline); | |
907 | } | |
55e303ae | 908 | else |
9bccf70c | 909 | timer_call_cancel(&calend_adjcall); |
9bccf70c A |
910 | |
911 | simple_unlock(&calend_adjlock); | |
912 | splx(s); | |
9bccf70c A |
913 | } |
914 | ||
915 | static void | |
55e303ae | 916 | calend_adjust_call( |
9bccf70c A |
917 | timer_call_param_t p0, |
918 | timer_call_param_t p1) | |
919 | { | |
55e303ae | 920 | uint32_t interval; |
9bccf70c A |
921 | spl_t s; |
922 | ||
923 | s = splclock(); | |
924 | simple_lock(&calend_adjlock); | |
925 | ||
55e303ae A |
926 | interval = clock_adjust_calendar(); |
927 | if (interval != 0) { | |
928 | clock_deadline_for_periodic_event(interval, mach_absolute_time(), | |
929 | &calend_adjdeadline); | |
9bccf70c A |
930 | |
931 | timer_call_enter(&calend_adjcall, calend_adjdeadline); | |
932 | } | |
933 | ||
934 | simple_unlock(&calend_adjlock); | |
935 | splx(s); | |
936 | } | |
55e303ae A |
937 | |
938 | void | |
939 | clock_wakeup_calendar(void) | |
940 | { | |
941 | thread_call_enter(&calend_wakecall); | |
942 | } | |
943 | ||
944 | static void | |
945 | calend_dowakeup( | |
946 | thread_call_param_t p0, | |
947 | thread_call_param_t p1) | |
948 | { | |
949 | void IOKitResetTime(void); | |
950 | ||
951 | IOKitResetTime(); | |
952 | } |